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Theory of high-order harmonic generation by an elliptically polarized laser field
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We generalize a recently formulated theory of high-order harmonic generation by low-frequency laser fields
[Anne LHuillier et al, Phys. Rev. A48, R3433(1993] to the case of an elliptically polarized light. Our
theoretical description includes both the single-atom response and propagation. Phase matching significantly
modifies the results obtained in the single-atom response. The results of our calculations, including propagation
for both the intensity and polarization properties of harmonics as a function of laser ellipticity, compare very
well with recent experimental observations.

PACS numbsdis): 32.80.Rm, 42.65.Ky

[. INTRODUCTION shift of the fundamental beam at the focus and to the dy-
namical phase shift of the induced atomic dipole moment
High-order harmonic generatiqitlG) is one of the most [8,11-13.

rapidly developing topics in the field of intense laser-atom The two—step model, as well as our theory, lead to the
interactions. The recent progress in understanding the origiobvious conclusion that HG should be greatly reduced if the
of the high-order harmonics observed in the experiment&toms are driven by elliptically polarized light. In the case of
(typically beyond the 100th orderl] can be attributed to the linear polarization, some of the classical trajectories of the
development of the two-step quasiclassical interpretatiomlectron pass the nucleus periodically, thus allowing for re-
[2,3]. This model has been very useful in explaining, in par-combination and harmonic generation. There are, strictly
ticular, the location of the cutoff in the harmonic generationspeaking, no such trajectories for elliptic polarization. HG is,
spectrd 4]. According to this model, the electron first tunnels in that case, possible only thanks to the finite extent of the
[5,6] from the ground state of the atom through the barrierelectronic wave packet and quantum diffusion effects. The
formed by the Coulomb potential and the laser field. Its subHG efficiency is expected to decrease rapidly with an in-
sequent motion can be treated classically, and primarily corerease of the ellipticity of the laser. Several laboratories have
sists in oscillations of the free charge in the laser field. Thedemonstrated this effect experimentalli4—17. Measure-
electron may come back in the vicinity of the nucleus andments have been performed both at relatively low intensities
recombine back to the ground state. If it returns with a ki-and harmonic orders, i.e., in the multiphoton regime, and at
netic energyE,;,, a photon of the energi,+1,, where  high intensities and harmonic orders, for which the two-step
I, is the ionization potential, may be emitted. Since thedescription applies. The decrease of HG strength with ellip-
maximal kinetic energy of the returning electron is ticity is clearly more pronounced in the latter case.
Ewin=3.2U,, WhereUp=E2/4w2 is the ponderomotive po- Harmonics generated by single atoms driven by ellipti-
tential, i.e., the mean kinetic energy acquired by a free eleceally polarized light are also polarized elliptically. In the per-
tron in the laser field of amplitude and frequencyw, the turbative regime, their polarization is expected to be the
cutoff in the harmonic spectrum occurs at harmonics of ordesame as that of the lasgt8]. This prediction is not valid in

Nma=(1p+3.2Up)/ o [7]. the general(nonperturbative case. Weiheet al. [19] have
In a series of paperg3,9], we have formulated a fully observed that the polarization ellipse of low-order harmonics
quantum theory, valid in the tunneling limiU,=1,>w), is rotated by some angle with respect to the polarization el-

which recovers the semiclassical picture of the two-stegipse of the laser.

model and includes rigorously the effects of quantum tunnel- A systematic theoretical study of HG, including the case
ing, quantum diffusion, and interference. This theory is aof elliptically polarized laser fields, has been recently pre-
version of the so-called strong-field approximatj@hand is  sented by Beckest al., who discussed the exact solutions for
very much related to thé-potential model of Becker and the S-potential model[10]. Dietrich et al. [15] used a sim-
co-workers[10]. Moreover, we have shown that a single- plified version of our theoryin which the electron is allowed
atom description is not sufficient, in general, to explain theto return to the nucleus only once interpret their experi-
experimental datd48,11]. To get good agreement between mental data. However, none of these authors discusses
theory and experiment, it is necessary to consider the effecfgropagation effects and the polarization properties of the har-
of propagation and phase matching of the harmonics in thehonics, which are the main subject of the present work.
macroscopic medium. This, to a large extent, is caused by th@ther studies of harmonics generated by laser fields of vari-
variation of the harmonic phase, which is due to the phasable polarization have concentrated on the possibility of gen-

1050-2947/96/53)/172521)/$10.00 53 1725 © 1996 The American Physical Society



1726 PHILIPPE ANTOINE et al. 53

erating attosecond pulsg¢20], and on applications for con- tential. a(t) is the ground-state amplitude; Finally,
trol and optimization of the harmonic source using severag(f,,t,t') is the quasiclassical actiondescribing the motion

CO|0fS[21,23- ) . of an electron moving in the laser field with a constant mo-
The aim of the present paper is to generalize and app%entumf)

the theory formulated in Ref8,9] to the case of elliptically
polarized light. The paper is organized as follows. In Sec. Il, ¢
we discuss the single-atom response. We show that the varia- S(f),t,t’)= f dt”(
tion of the harmonic strengths as a function of laser elliptic- t

ity exhibit quantum interference effects, which depend on the Equation (1) is a sum of probability amplitudes corre-

laser intensity and harmonlc order. In Sec. lll, we present t.h%ponding to the following processes: The last term in the
method for calculating the macroscopic response by solving

the inhomogeneous Maxwell equatidizs] and we compare ntegral, Z(t")-d(p—A(t))a(t’), is the probability ampli-
the propagated results with experimental détd]. We ob- tude for an electron to make the transition to the continuum
tain a very good agreement between theory and experimerat timet’ with the canonical momenturp. The electronic
Finally, in Sec. IV, we discuss the polarization of harmonicswave function is then propagated until tirh@nd acquires a
from the single atom to the macroscopic response. For singlghase factor equal to expiS(p,tt')]. The electron recom-
atoms, a simple linear dependence of the ellipticity of thebines at time t with an amplitude equal to
harmomcs and_of_ the rotation angle of thg ellipse as a fu_nca* (5—A(t))a*(t). The expressioifl) neglects continuum-
t!on of IaS(_ar elllptlcny occurs only fat .rellatlvely Iow.|nten5|- continuum contributions ta(t).
ties. For_hlgher intensities, both eIhpnqty and. rotation qngle The ground-state amplitudg(t) can be expressed as
vary rapidly as a function of both laser intensity and elliptic-
ity, and exhibit quantum interference effects. In some situa- t

a(t)=ex —f y(t")dt" |,

0

@

[p—A(t")]?
GAC |

()

tions, thehelicity of the harmonic field undergoes dynami-
cally induced change of sign, so that, in the complex plane,
the fundamental and harmonic fields circulate in opposit§nere the time-dependent, complex, ionization rate is deter-
directions. All these effects are smoothédaut not elimi- mined from
nated by propagation effects.
t
t)= dt’fdy?;?*)t La* (p—A(t
Il. SINGLE-ATOM RESPONSE " fo P2 P (®)
A. Theory xexg —iS(p.t,t)]ZA(t") - dp—-A)).  (4)

We consider an atom in a single-electron approximation

under the influence of the laser fieéfﬁt) of arbitrary polar- For smallt, ¥(t) IS a rather complicated function of time,
ization. We here use atomic units, but express all energies i ut becomes pe”Od'.C typically afte_r a few laser cycles. S_mce
e effect of depletion over the time scale of few optical

terms of the photon energy. A more appropriate system of . ) ! ) . .
units (MKSA) will be used in Sec. Il to describe the propa- periods is negligible, and since the integral ot/eis actually

gation of electromagnetic fields. We skip the details of theresfrlcted tot’=t owing to quantum diffusion, we may set
derivation and the discussion of the validity range of ourd(t’)=a(t) in Eq. (1). R
approach since they were thoroughly discussed in Foaf. The harmonic amplitudes, are obtained by Fourier
Briefly, we neglect the contribution to the evolution of the transforming the time-dependent dipole momegt):
system of all bound states except the ground state, as well as
the effect of the atomic potential on continuum electronic -1 (27, iqt
states. Our approach is valid in the tunneling regime for ion- XQ_EJO x(t)edt. ®)
ization, i.e., wherlJ, is comparable or larger thdn .

The time-dependent dipole moment x(t)  As we have shown in Refg], the dominant contributions to
=(W(t)|x|¥(t)), with | ¥(t)) denoting the time-dependent iq come from the stationary points of the Legendre-
electronic wave function, can be written in the form of atransformed quasiclassical action, for which the derivatives

generalized Landau-Dyhne formJl24] as of S(p,t,t’)—qt with respect tgp, t, andt’ vanish(saddle-
. point equationp Introducing the return time=t—t’, these
i(t)zifodt'f d3pd* (p—A(t))a* (1) equations read
t
xexd —iS(p,t,t')]Z(t")-d(p—At')a(t')+c.c. VeS(p,t,7)=p7— Jt_TA(t”)dt’EO, (6)
D A o
aS(p,t,7) [D_A(t—T)]z_H 0 @
In this expressiond(p—A(t)) is the field-free dipole transi- ar 2 P
tion matrix element between the ground-state and the con-
tinuum state characterized by the velocify:r;—,&(t), 5 aS(f),t,r) [5—5(0]2 [5—5\(t—7-)]2
denoting the canonical momentum aﬁ(jt), the vector po- at - 2 a 2 =a. @
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The first of these equations means that the only relevant eletote the characteristic prefactor € i 7/2) %2 coming from
tron trajectories are those in which the electron leaves théhe effect of quantum diffusion. It cuts off very efficiently the
nucleus at time¢— 7 and returns to it at. Equation(7) has a  contributions from larger’s and allows us to extend the in-
somewhat more complicated interpretationl Jfwas zero, it tegration range from 0 to infinity.

would simply state that the electron leaving the nucleus at The complex decay rate may be treated in a similar way
t—7 should have a velocity equal to zero. In reality# 0 and becomes
and, in order to tunnel through the Coulomb barrier, the elec-

- 312
tron must have a negative kinetic energytatr. This con- V(t):f dr
0

Z*(t)-d* (ps— A(t))

dition cannot be fulfilled for reak’s, but can easily be ful- v+iT/2

filled for complex7's. The imaginary part of- can then be . . .

interpreted as a tunneling time, just as it has been done in the xexd —iS(ps,t,7)]2(t") - d(ps—A(t— 7).
seminal papers of Ammosov, Delone, and Krairléy. Fi- (12)

nally, we can rewrite the last expressi(8) as
Within this approximation,y(t) is a periodic function of
[p—A(t)]? time. Oscillations ofy(t) modify obviously the Fourier spec-
2 +H1p=Eun() +1,=0. ©  frum of X(t), i.e., influence the harmonic spectr{ig2s]. We
have checked numerically, however, that, in the discussed
This is simply the energy conservation law, which gives the'®9ime of parameters, this effect is negligible. It is thus le-
final kinetic energy of the recombining electron that gener-gitimate to replacey(t) by its time averagey and to assume
ates thegth harmonic that the decay of the ground state is exponential:
* . ) ) 2_ . _ Y .

In Ref.[15], such a quasiclassical analysis was used. Thea(t)|*=exp(=T'), with I'=2Re(y). Note thatl" is a func-
authors considered, however, the contribution from only ondion of I, Uy, and the polarization of the laser field.
saddle point ,t,7), and calculated it in the limit,<U,. We are now in the position to evaluate t'he' harmonic Spec-
There are, however, in general, several comple’;< sta;)tionar pum emitted by an atom driven by an eIIIptlc_:aIIy polarlzed
points that fulfill the saddle-point equations. In REf2], we eld. The laser electric field and vector potential are given by

included the contribution of the two most relevant saddle R 4U

points. We showed the importance of interferences between () =1/ 1 Po(cog(t), esin(t),0), (13
the contributions of these two saddle points at high laser te
intensities, in the case of linear polarization. In the present

: . : . 4U

paper, we will only use the saddle-point technique to evalu- A(t)= P2
ate the integral over momenta, and to handle the slowly vary- 1+e
ing parts of expressiofil), as discussed below. We perform

all other integrations ovet’ (replaced, in practice, by For the case of hydrogenlike atoms and transitions fsom

r=t—t") andt numerically, thus accounting for the contri- tates. the field-free dinol trix el ¢ b .
butions of all saddle points and their interferences exactly. A%:tgz’ byFQ '286] -iree dipole matfix elements can be approxi-

we shall see, for small ellipticities and moderate intensities,

(—sin(t),ecoqt),0), (14

where e denotes the ellipticity of the laser field.

our results for the ellipticity dependences of the harmonics 2712504 5
are consistent with those of Rdf15]. However, for high d(p)=i = 5 (15)
intensities corresponding to the plateau regide.g., ™ (pta)

>2x 10" W/cm? for the 43rd harmonic in neof12], the
interference of the two saddle points that have return time
Re(r) in the interval [0,2r] becomes very significant.
Moreover, for large ellipticities, the contributions of saddle
points with even larger return times can no longer be ne- 6(5)oc5. (16)
glected.

After performing the saddle-point integration over mo- This expression describes a “flat” dipole moment and ne-

menta in Eq.(1) [see Eq6)], replacinga(t’) by a(t), and  glects the energy dependencedsp). It corresponds to the
using the return timer, we obtain “Gaussian broad limit"(GBR) model discussed in Ref9];
an analogous formula has been used in RES]. We stress

ith «=2l,. Many qualitative and some quantitative prop-
erties of the HG spectra can be obtained from the simplified
expression

3/2

(1) =i f‘”dT ™ &*(5 _A) that our present calculations indicate that the expregdion
0 v+itl2 s cannot be used for accurate quantitative evaluation of the HG
spectra. The absolute values of the harmonic strengths and
X exf —iS(Ps,t, 7)1 (t") - d(ps— A(t— 7)) ionization rates from theappropriately normalizédGBR
) model are typically two orders of magnitude smaller than
x|a(t)|>+c.c., (100 those obtained with Eq(15) [27]. The GBR model does,
however, provide quite an accurate description of the relative
wherev is a positive regularization constant, whereas harmonic intensity and ellipticity dependences.
In the present work, we use Eql5). For the term
b= Pu(t7) = Jt At A"/ 7. (11) 5(§S—ﬂ(t)) in Eq. (10), we make use of the fact that the
t—r main contribution to the integral overandt in the equation
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giving theqth harmonic amplitud€Eq. (5), in whichx(t) is ~ Peaks are still very narrow, sinde<1. Note that this condi-

replaced by the expressiofl0)], comes from the saddle tion means that depletion is negligible on a scale of one laser

points. We therefore substituté ps—A(t)]>+a} 2 by cycle, which does not exclude that it might be dominant on a
. S

(20) 3, in accordance with Eq$7) and(8). This cannot be scale_ of the laser pulse duratior, . The complex harmonic
done for&(ﬁ —,&(t—fr)) since this term is singular at the amplitudes are calculated as the values of the Fourier trans-
S ’

saddle poin{see Eq.7)]. We have to treat this term in the form of i'(t) at th? centers of the Ii_nes, i.e., at.the_ harmonic
integrand of(10) exactly. To this aim, we use the Fourier frequencies, multiplied by appropriate normalization factors
expansion N. The normalization is such th&iN|? gives the total area

under the corresponding Lorentzian peak in the spectrum
1 * (total energy emitted into the given harmonic figlde.,
H 2 =2I'T
— = > by(nexg—iM(2t-7)]. N2=(1—e 2'To)/2r.
{[ps—A(t—=7)]"+a}® m=== The final expressions for theandy components for the
17 complex harmonic amplitudes read

The coefficientsby,(7) can be evaluated exactly using the

Caucthy theorem,. as descnbeq in Appendix :A Xq=N z dmX_ () by (7)EM7, (18)
Without depletion, the Fourier transform »ft)[ Eq. (5)] M=-= JO

consists of a series of the Diracé peaks. The moduli .

squared of these amplitudes determine the corresponding B * M~

harmonic strengths. With depletion, the Fourier transform of Yo= NM;x 0 d7Yy—m(m)bu(m)e™, (19)

X(t) becomes a sum of Lorentzian peaks centered at the har-
monic frequencies. In the present regime of parameters, theséere X=q—1,

U 3/2 32a5/2 T 3/2 .
xK<r)=i((1+’;z) o wmz) exi —iF (][~ (1~ €)B(7)Ic+2(0pC(7)
—i(1- €2)e'B(7)Ic_1(U,C(7)+i[(1+ €2)e™B(7) + D (1) +i€2C(1) 13k +1(U,C() +{(1+ €2)B(7)
+[D(7)—i€2C(7)]e' 13 (U,C(7)], (20
U 3/2 32(15/2 € T 3/2 N
YK<T>=i((1+’;z) o r T T,z) exi] —iF k(7)][— (1~ €)B(n)Jk+2(U,C(7)

+i(1— €2)e'B(7) I 1(U,C(7)+i[(1+ €2)e™B(7) + €2D(7) +iC (1) 13k +1(U,C(7)— {(1+ €2)B(7)

+[€2D(7) ~iC(7)]e' Nk (U,C())], (21)
|
with In Figs. 1 and 2, we present typical results for the inten-
1—¢2 sity dependence of the andy components of the induced
Op: UPW' (22)  atomic dipole at the 43rd harmonic, for three values of the
€

ellipticity. Figure 2 contains only two curves, since for

and J(-) denoting the Bessel function dfth order. The €=0, they component °2f the dipole is zero.ZTh_e intensity
explicit expressions for the functio®(r), C(7), D(7), and  dependences of botix,“[Fig. 1(a)], and|y.q*[Fig. 2@)]

Fk(7) are given in Appendix B. show the characteristic transition from the cutoff region
_ (where the dipole strengths increase rapidty the plateau
B. Numerical results region (where the dipole strengths saturate and are domi-

In the numerical calculations, we calculate the integralnated by quantum interference effectevith increasing el-
(18) and (19) over a range of typically 4—5 optical cycles. lipticity, the dipole strength decreases whereas the cutoff po-
The sum oveM is extended tdM|=7—8 in order to get a  sition shifts slightly toward higher intensitigbence, for a
good convergencénote that the restriction of the sum over given intensity, towards lower harmonic order$n Figs.

M to M=0 is equivalent to an appropriately normalized 1(b) and 2b), we show the intensity dependences of the
GBR mode). Our results for neon are presented in Figs. 1-3phase of the dipole. This phase, as we stressed in Refs.
Throughout the paper, we use laser parameters that corrgtl,12, determines, to a great extent, the coherence proper-
spond to the laser used in the experiments of R&d], ties of the propagated signal and can be interpreted in qua-
which produced 150 fs[full width at half maximum siclassical terms. It exhibits a piecewise linear behavior as a
(FWHM)] pulses at the wavelength of 825 nm. In our systenfunction of the laser intensity. The slope of the phase for
of units, I ,=14.4 andT,=100. intensities below the cutoff-plateau transition point is equal
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FIG. 1. Strengthla) and phasdb) of the x component of the neon dipole at the 43rd harmonic frequency as a function of the laser
intensity, for three values of the ellipticitg=0 (long-dashed ling €= 0.3 (solid ling), and e= 0.6 (short-dashed line

to =—3.2 in units ofU,,. In this regime, it practically does harmonic orders. Numerical analysis confirms this interpre-
not change with ellipticity. In the plateau region, the phasetation. The contributions from high values of the return times
exhibits oscillations due to quantum interferences. The averare usually cut off due to diffusion effect&hich our theory
age slope is larger= — 5.8 for e=0) than in the cutoff, and accounts foy, and due to electron rescattering effe@tdich
increases with ellipticity € — 20 for e=0.6). This increase our theory ignores One could argue that the physical sig-
of the slope with the laser ellipticity takes place over a lim-nificance of such trajectories could be questioned at small
ited range of intensitieffrom ~2.7 to 6<10'* W/cm? in ellipticities, since electron rescattering would eliminate them
Figs. Xb) and Zb)]. It strongly depends on the process order,(see discussion ifi9]). At high ellipticities, however, this
being more and more pronounced as the harmonic order irargument fails, since the effects of rescattering are much
creasesit is very significant for the 63rd harmonic weaker, and can be perfectly neglected. These contributions
As we have shown in Ref12], the slope is related to the then have to be taken into account, and only quantum diffu-
return time of the electron for the most relevant saddlesion might eliminate them. This effect influences the propa-
points. The large slopes obtained for large ellipticities seengation effects significantly, as we shall see below.
to imply that the trajectories corresponding to long return In Fig. 3, we plot the relative harmonic strengths as a
times (i.e., longer than one period with, possibly, multiple function of the laser ellipticity for théa) 23rd, (b) 43rd, and
returng play a dominant role in this case, especially for high(c) 63rd harmonics, and for different values of the laser in-
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FIG. 2. Strengthla) and phasdb) of the y component of the neon dipole at the 43rd harmonic frequency as a function of the laser
intensity, for two values of the ellipticitye= 0.3 (solid line) and e= 0.6 (short-dashed line

tensity. The curves are normalized such that the harmoniorders(comparable td ). It is also worth stressing that the
strengths fore=0 are set equal to one. The dipole strengthinterference effects are smaller in the hydrogen model than
decreases drastical(gix orders of magnitude at leasts the in the cruder GBR description. The contributions of several
laser ellipticity increases from (inear polarizationto 0.5  Fourier components of the atomic dipole momestse Eqg.

(an ellipticity of 1 corresponds to circular polarizatjoithis  (17)] apparently tend to smooth out quantum interference
effect is more pronounced for high harmonic orders, ineffects.

agreement with the experimental observatiph4,2g. The The results presented in Fig. 3 have been obtained without
influence of the laser intensity is not very important. It taking depletion into account. The effect of depletion is in-
changes the relative dipole strengths by at most two orders afeed hardly visible on these curves, at the intensities consid-
magnitude, and in a nonmonotonic whsee, for example, ered (6x 10" W/cm?). The relative harmonic strengths
Fig. 3(@]. Interference effects are clearly observed as oscildepend on the depletion rate only through the normalization
latory features in Figs.(®) and 3c). They even induce a constantN. Since the depletion rate is a weakly decreasing
local minimum ate= 0 at high intensitysee Fig. &)]. Note  function of the ellipticity, the nornN increases with elliptic-
that this minimum cannot be interpreted in terms of the efdty. It thus promotes the regions of large valueseaklative
fects discussed ifiL7], which apply to much lower harmonic to the regione=0. The resulting broadening of the curves is,
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however,4 ViSiblg only at sufficiently high intensities ,,cesses/M s therefore the polarization induced by the
(=810 W/cm?), when the depletion starts playing a sig- f;nqamental field only. Introducing the electric excitation

nificant role. In the following, we shall thus neglect the - - - o
depletion, keeping in mind what i{smal) effect might be. 4= eoéqJ“/Ja’ Eq. (23) becomes a set of equations:

Note that, if we had plotted the absolute harmonic strengths, .
1 9°y(r,t)

the effect of depletion would have been more pronounced, V27,(F 1) — -6

since the results for high intensiti¢sigh depletion would TR ec? at? ’

have been shifted down along the vertical akis., reduced

in valug), by up to one order of magnitude. 1 2o rt) 1 PANTY

22 (7 Zq\"\ 7q
Vg (ri)——= 7 - 2 2 :
Eoc ot Eoc ot
. MACROSCOPIC RESPONSE 27

The second step of the theoretical description consists of i
solving the propagation equations in the paraxial and slowly! €€ equations are only coupled through the dependence of

varying envelope approximations, using the dipole moments’y (f.t) on Zy(r’,t’) (it may not be a local function of the
discussed previously as source terms. The method for solelectric field. Note that, at this point, we have not made any
ing the propagation equations has been discussed previoughraxial or slowly varying envelope approximations. We
for linearly polarized fundamentafand harmonig fields  now introduce the envelope functioﬁg and ISSL

[23]. In the present paper, we discuss the validity of the

different approximations used and we generalize the method 2 = 1. . (koz—qut)
to elliptically polarized fields. Zo(1 1) =5 Bq(r )t +cc,
A. Propagation equations in homogeneous media 1
) o NL 2oy — BNL 2 i(gkiz—qot)
We start from the general wave equation describing the Za 5 Pq (r,p)e"ts tece (29

propagation of an electromagnetic fie%’(ﬁt) in an isotro-
pic, globally neutral, nonmagnetic, dielectric medium, char-w is the laser frequency argldenotes the coordinate on the

acterized by an electronic polarizati@?(?,t): pﬁroﬁpagation axis. In the pﬁari';\xial approximation, the field
o o #(r,t) and the polarizationA(r,t) are supposed to be per-
P 1 6%4(r 1) 1 PAr ) pendicular to the propagation axsi.e., in the §, y) plane.
Vea(nn— 2 sz eC’  JtZ (23 Further, we make the slowly varying envelope approxima-

. o tion, i.e., we assume thay(r,t), Py(r,t) vary slowly in

It is natural to decomposé&(r,t) and ZAr,t) as sum of time over theharmonicperiod and in the coordinate over
harmonic fields and polarizations: the harmonic wavelength. Although for short laser pulses and
high intensities, the nonlinear polarization may vary rapidly

Sy . T A N in time, compared to the excitinlgiser period, we believe
é(r’t)_%: ZoT DAY Eq: UL 24 that the slowly varying envelope approximation is satisfied
for the harmonic propagation equations. After a few manipu-

;%(F,t) can be expressed as lations described in textbooksee, e.g[29]), Eq. (27) be-
L o o comes
Tyt =74 )+ AN b) (25)
. ,e - [ GEL(rt) 1 9E4(r.t)) .
where.;’//’;(r,t) denotes thdinear responset the(harmonio VIE (r,t)+2ik, e v ot =0,
g

frequency and/"(r,t) the nonlinear responseWe assume

that the linear response takes the simple form: L. . aéq(F,t) 1 al?q(F,t)
VIE4(r,)+2ikg| ——+————

Z5(0,0) = €axqZq(T 1), (26) 9 vgq O
B oy . 2 2
tr;e suscepgbmty)(q bgmg related to the wave vectl_aﬁ b_y __= “’2 5§L(F,t)exp(—iAqu). (29)
kg=(qw/c)“e(qo), with e(qw) =1+ x4. The refractive in- €oC

dex ng is equal toye(qw). For the sake of simplicity, we ,

here neglect nonlinear corrections to the linear susceptibility ga denotes the group Ve_|OCIty at2 f_requencqw ar_1d
and assume the medium to be homogeneous. We will com&Kq=Kq— 0k, the phase mismatciV? is the Laplacian
back on these points in the next section. The nonlinear redPerating on the transverse coordinatesy), or when the
sponse of the mediun??“L(F,t), includes, in principle, con- problem is axisymmetric, on the coordinateTo obtain Eq.

tributions from a large number of processes involving the(29, we have neglected the double derivativesEg(r,t)
harmonic and fundamental fields. We neglect the influence dfélative  to z and t and we have assumed
wave mixing processes involving harmonic fields as well as’>7(r,t)/dt?= — g?w?7,(r,t). Assuming equal group ve-
the depletion of the fundamental field by energy transfer tdocities for all the frequencieéwvhich is valid for the small
the harmonic fields. Both assumptions are justified owing taand diluted media considered in the high-order harmonic
the relatively low conversion efficiency for these high-ordergeneration experimentand making the change of variables
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r’'=r;t'=t—2z/vy, which amounts to using the referential  The case of inhomogeneous media owingpartia) ion-

moving at the common group velocity, we obtain ization is more difficult and requires additional approxima-
tions. The refractive index, contains contributions from
L EL(r ) . atoms, ions(which we assume, for simplicity, to be only
v2 Ey(r',t")+2ik;————=0, singly chargeyl and electrons,
LB [Ng(r.D12=1+X3(r, )+ xg(r.O+ x50, (33
VEEG(r ) +2ikg— " —
5 2 where the indicesa,i, and e refer to the atomic, ionic,
w” — ] ’ . Sl . i
__ 9 ng‘L(r',t')e—'Aqu (300 and electronic susceptibilities, respectivelyg'(r,t)
Eoc

=21 t)a® (qw), wherea®(qw) and./ ®i(r,t) denote
(we drop the primes from now 9nSo far, we have not the(atomic or ionig dip_ole polarizab_ility and density.. Wequ
specified the dependence of the polarization on the incideritot consider h(_are nonlinear corrections to the polarizabilities.
field. We now assume that the polarization ieeal function N the calculations presented below, we shall actually com-
of the incident electric field, both in space and time. The fieldP!€tely neglect the atomic and ionic dispersion, considering

creating a polarization inf(t) is Z4(7.t). In space, this ap- only the dispersion induced by the electrons. The electronic

proximation is valid for the dilute media used in the presentterm takes a simple form:

problem. In time, the implication that the polarization fol-

lows “instantaneously” the change in electric field, might be . e2 1 &(r 1)

guestionable for high intensities and short pulses. The valid- Xg(r,t): - W (34

ity of the temporal locality will be investigated in future

work. Here, we simply approximate the nonlinear polariza-

tion, in the framework of the dipole approximation, by For short laser pulses, the electrons do not have time to move
o oL so that the electronic density///e(F,t)z./l/‘(r*,t). This ap-
Pyt(rt)=20"%q(r 1)1y, (31)  proximation allows us to keep the cylindrical symmetry rela-

tive to the propagation axis. We express the refractive index
where. /" is the atomic density, angl,(r,t), the harmonic ~and the wave vector as
component of the atomic dipole moment, calculated for a
field [|E1,| cos(t),|Eyylsin(wt),0]. The factor of 2 arises from
different conventions used in the definitionsF?QL[Eq. (29)]
andiq[Eq. (5)]. Finally, ¢4(r,t) represents the phase of the . . o .
laser field envelop&,(r,t), obtained by solving the propa- Kq(r, ) =nq(r,1)qo/c=kq(2) + 8ky(r,1), (35
gation equation for the fundamental.

[ng(r )%= 14 x§(2) + dx4(T.1),

with )(g(z)=_/f”'(2)aa(Qw), A (z) being the(initial) me-
B. Propagation equations in inhomogeneous media dium density, andk8(2)=(qw/C)[1+)(g(Z)/2]. We have
The propagation equationEq. (30)] are immediately here extracted the contributions from the atomic medium,
generalized to the case of neutral media, withdependent assumed to be not depleted by ionizatiph+ xg(2z) and
atomic density,/ (z). In Egs. (28), (29), and (30), k;z, kg(z)]. The remaining contributions to the refractive index
kqz, and Ak,z are replaced by ?k,(z')dz', [%k4(z")dZ’, and the wave vector induced by ionization are written as
and [?Akq(z')dZ’, respectively. correction termséxq(F,t) and 6kq(F,t), respectively. Note
When the medium isabsorbing at frequency qo, that we could also, more simply, consider the wave vector
|Eq(r )| =|Z4(r,t)|exd Jxq(Z)dZ], where «, is the ab- describing propagation in vacuurky=qu/c, including all
sorption coefficient at frequency qw (imaginary  dispersion effects ibky .
part of ky). It is then more convenient to introduce a  The linear response of the mediUsee Eq/(26)] can be
new envelope function for the harmonic fields written as

Eo(F.1) = Eq(F.)exdi[?Aky(Z)dZ], such that |Eq(F.b)]

=|Z4(r,t)|. The propagation equatiori80) become :%(F,t)=foxg(z)?§£1(;,t)+605Xq(F,t)ga(F,t)- (36)
Vfél(f)’t)+2iklm26, The first term i_n the sum is treateq as befor_e by moving it.to
9z the left-hand side of the propagation equation, incorporating

it by means of the wave vectdxﬁ. The second term is con-

—

- . aEq(F,t) - . sidered as an additional source term to the propagation equa-
Vqu(r,t)+2iqu+2kquq(z)Eq(r,t) tions, to which the slowly varying enveloPe zippfoximation
) can be  applied, e, @2Oxq(r.t)Zq(r ) at?
_ Qo BNL(F 1) 32 =—q2w?8x4(r,t) Z4(r,t). Following the derivation of the
€c’ a4 preceding section, and using the envelopes defined by
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=—e2{/l/e(ra,t)/2mqau.The electronic density is obtained

from the tunneling ionization ratd3(|E,|) derived in Sec. Il
as

N 1_> - . 0, _s ’
Zo(r,)= EEq(r,t)e'qu(Z )47’ —qutl ¢ ¢

- - 1 - - H Z ! !

A= EPQ'L(r,t)e'[‘U KiZ)dz' ~qotl f ¢ ¢ (37) ) ¢ o
A (F0) = (2) 1—exp(— f r[|E1<r,t'>|]dt’H-

Eq. (32) becomes (40

V2E,(7.)+2iK° IE4(r,t) The dispersion introduced by the free electrons has several

L= oz effects: it introduces an additional phase mismatch, thus de-

(38)  teriorating phase matching. It leads to defocusing and blue-
shifting of the fundamental field. These effects play a domi-

nant role in some situationg30]. For the intensities and

+2k98ky (1, E(r,)=0,

gz > ) Oal?q(F,t) 0« 10 density used in these calculations, however, they remain mar-
VIEq(r D)+ 2ikg——— +2kg[Aky(2) ginal. We checked that they do not influence the polarization
properties of the generated harmonic field in any significant
SN 9’0’ SNL, 2 way.
+ ko (r D) JE4(r,t)=— 7Pq (r,t). (39

In Fig. 4, we compare the single-atom resuikelid line)
with the propagated signaldashed lingfor the (a) 23rd, (b)
43rd, and(c) 63rd harmonics at an intensity of>x610*

_ _ W/cm?. For the calculation including propagation, this in-
The propagation equatiofigs.(38) and(39)] are solved  ensity is to be understood as the peak intensity. The first

numerically over the length of the nonlinear medium using &:,cjysjon to be drawn from the figure is that propagation
finite-difference techmque. They are dlscret|zeq in theX (and time-averagingsmooths out quantum interference pat-
plane on a 508 300 point grid and integrated using a SPaCeans. In general, the propagated results decrease faster with

marching Crank-Nicholson scheme. The field at the pOSItIO%”iptiCity than in the single-atom response, especially for

z; is obtained from that at the positianp_, by inverting a - . . s
tridiagonal matrix with a classical recursive algorithm. Equa-h'g.h order harmomc@sge F'g.' 4)]. The re§ult in Fig. €),
which is at variance with this tendency, is probably due to

tion (38),_nonl|nea_r through Fhe dependenced(r,t) ON o gegtryctive interfence effect occurringeat 0.35, which
:Eg(gﬁ:gt;(r:];(?lgsrllgléfizS:(lj\/iiiigtrasr:i ;Zﬁghﬁéxogr?emcggﬁlgttsesfreduces, in this case, the single-atom response. The faster
SNL) 2 i ' ' decrease with ellipticity in the propagated results can be ex-
Pq (r,t) and ky(r,2) induced by theperturbedfundamen-  yj5ined by the previously noted increase of the variation of
tal field E(r,t). Then, Eq.(39) is solved, yielding the har- the phase in the plateau region with the laser elliptiitye
monic fieldéq(F,t). This is repeated for a sequence of timesFigs. 1 and )], which deteriorates phase matching for
t spanning the laser pulse durati@gpically 30 pointg. To  large ellipticities.
obtain the harmonic strengths, we integrig(r,t)|? at the In Fig. 5, we compare the results of our calculatiam
exit of the medium, over the transverse coordimat@sing  cluding propagationwith experimental data for the) 23rd,
cylindrical coordinatels and over the laser pulse duration. As (b) 43rd, (c) 63rd harmonics. In each plot, we present three
in Sec. Il, we use parameters close to the experimental cortheoretical curves corresponding to the laser peak intensities
ditions of[14]. The laser is assumed to be Gaussian in spacg, 4, and 6x 10* W/cm? [only the last two are shown in
and time, with a 5-mm confocal parameter and a 150-fs puls€ig. 5(c), the 63rd-harmonic generation efficiency at 2
duration at half maximum. The atomic density profile is ax 10* W/cm? being negligiblé. The full circles denote the
truncated Lorentzian function with a 0.8-mm FWHM, cen- result of the experiment performed by Buei al. [14]. The
tered at the laser focus. This is not the best condition foppen squares are the results of recent experiments carried out
generating coherent harmonifkl, 12, but no optimization  at Saclay with a Ti:sapphire laser at a slightly different wave-
with respect to the focus position has been done in the eXength, 790 nm, but otherwise in very similar conditions
periments. The peak density is taken to be 15 Torr. The dif2g]. This laser has a higher repetition r429 Hz) than the
mension of the grid in space is approximatéepending on  one used in[14], thus allowing for better statistics. The
the process ordgr00 um X 1.6 mm, and in time, 250 fs.  agreement between theory and experiment is very good, ir-
For low laser frequencies, pressures above 10 Torr angkspective of the laser intensity used in the calculations
intensities high enough to partially ionize the medium, the(which does not influence much the resplta particular, the
refractive index will be dominated by the free electron Con-theory reproduces extremely well the significant narrowing
tribution. In the calculations presented below, we neglecbf the ellipticity dependence with increasing harmonic num-
all atomic or ionic dispersion effects, as well as absorpher[compare Figs. &) and 5c)]. The deviation observed at
tion, but we include the effects of depletion and thejarge ellipticities is simply due to the fact that, in the experi-
dispersion induced by free electrons. In Eq&38  ments, the signal was barely above the noise level, and mea-
and (39), we setkj=qw/c, Akj(z) =0, and Sk,(r,t)  sured with poor accuracy in this region.

60C

C. Numerical results
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IV. POLARIZATION OF HARMONICS The interest of the Stokes parameters is that they can also
Before presenting numerical results, we discuss how t(?e defir_1ed as _result_s of simpl_e experiments consisting in
] ' N Mmeasuring the intensity of the light passing through a com-
extract from the calculated dipole componexy in the  pination of polarizer and compensator. Let us introduce
single-atom response, and from the complex space- andy ¢) as the intensity of light vibration in the direction
time-dependent harmonic fiel,(r,t) in the macroscopic making an angle with the x axis, when they component is
response, the polarization of the harmonics. We use theubjected to a retardatian with respect to thee component.

Stokes parameters, following Born and WE#fl]. The Stokes parameters can be expressed as

A. Stokes parameters
o ) ) ) , Sp=1(0,0)+ 1 (7/2,0),
For an elliptically polarized light field E.e '%x

Eye*“ﬁy, 0), the Stokes parametesg, S;, S,, ands; are

defined by $1=1(0,0—1(=/2,0),
so=EZ+E; (intensity, s,= (/4,0 — 1 (37/4,0),
Sle)%—E)Z,, s3=|I(7l4,712) =1 (37/4,7/2). (43

These definitiong43) do not require the light source to be
S;=2E,Eycoq @) , with =y — ¢y, polarized. They can therefore be used to characterize the
polarization properties of partially polarized light source,
i.e., such that the phase differengebetween the two com-
S3=2EEysin(¢). (42 ponents of the field is not fixed and varies with time and/or

5 2 o ) space. Thalegree of polarizatiomf a light source is defined
Note thatsy=s]+s;+s;. Let s be the angle of rotation of

the major axes of the ellipse in thg,§) plane(defined with
respect to the axis) and y the parameter characterizing, at

the same time, the ellipticity of the field and the sense of \/s§l+s§+ 532
rotation of the ellipse (helicity); more precisely, let 7= s (44)

tan(y)= =b/a, b anda denoting, correspondingly, the mi-

nor and major axes of the ellipse, ahfh denoting the el- In general,”” is less than 1, and equal to 1 only for com-
lipticity. The sign is positive for right-handed polarization, pletely polarized radiation. The angle of rotation, and ellip-
i.e., such that, to an observer looking in the direction fromticity (helicity) of an “average” ellipse, are defined through
which the light is coming, the electric field vector turns in the relations:

the clockwise sensey and ¢ are related to the Stokes pa-

rameters by the relations:

S2
tan(2¢) = I~
S1=50C042))COg 2¢),

S3

Sp=SoC0g 2))siN(24)), sin(2y) = JFrsrs (45)
. The harmonic radiation generated by high-order conver-

S3= SeSIN(2x), sion of an elliptically polarized laser fieldy(r,t), is only

partially polarized, because the phase differegde,t) be-

s,=s,tan2y). (42) tween thex andy components varies, ispace over the

beam profile, and itime, over the pulse duration. We define
Equations(41) and (42) allow us to calculate simply the the polarization properties of the harmonic field with the help
polarization properties of the harmonics in the single-atonof the Stokes parametef&q. (43)]. We calculatd (6,¢) as
response. we would measure it in an experiment:

|(0,e)=f f |Equ(r,2,t)cog 8) + Eqy(r,z,t)sin(0)e'¢|22rdrdt. (46)
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In this equation,Eq,,E4y represent thecomplex xandy rotation angle increases approximately linearly with the laser
components of the total ﬁe|ﬁq(r,z,t)_ 1(6,¢) is calculated ~ €llipticity up to about 30°, then saturates. This result is con-

at the exit of the mediun(it does not depend on the coordi- Sistent with the experiments of RdfL9], performed, how-
natez, as long ag is outside the mediun|f the degree of ever, for lower harmonic orders. For the 43rd harmonic, the

polarization7= 1, the ellipticity of the field can be deter- ! In€ar increase of the angle stops at about 7°, and is followed
mined froms,,s;, ands, [compare Eqsi44) and(45)]. It is by a decrease. The rotation angles for the high-order harmon-

; . o ics remain practically equal to zere<6°).
worth stressing, howe\{er, that in genera!, Whéql'. |t.|s. In Fig. 10, we show similar resuli.e., same harmonics
necessary to measusg in order to determine the ellipticity

f the fields. Th : Ld L f the ellioti and intensities for the polarization degree. Here, we con-
of the fields. The experimental determination of the elliptic-g;qar oniy the propagated results, since, for a single atom, the

ity is obviously more difficult in this case than the determi- ,|5ization degree is by definition equal to 1. The polariza-

nation of the rotation angle, which can be done by performyion degree remains close to 1 for high-order process. It de-

ing contrast measuremeniamounting to measuring; and  vijates from 1 for high intensities, large ellipticities, and low

S2), as explained in Ref19]. process orders. It remains, however, practically always larger
than 0.65.

B. Numerical results
V. CONCLUSION

Our results are organized as follows: we present two se- ) )
ries of figures, one for the single atom, the other for the In conclusion, we have presented a theoretical approach

macroscopic results, concerning successively the harmonf@ harmonic generation by elliptically polarized fields. The

ellipticity and the rotation angle. Figure 6 shows the varia-Single-atom part is a generalization of the theory developed

: o ~in [8,9]. Numerical calculations are presented for the 23rd,
tion of the ellipticity of the(a) 23rd, (b) 43rd, (c) 63rd har @rd, and 63rd harmonics of 825-nm-wavelength light. The

monics generated by a single atom, as a fl_Jnctlor_1 of the Ias‘?‘narmonic strengths decrease rapidly with ellipticity, and ex-
ellipticity and for different values of laser intensity. At low hibit quantum intereferences

|ntter1ff3|t|e§ an?hsmﬁ_ll t?”.'tpt'cf'tt'ﬁs'ﬁ" for ha(morll.lcs mf the The macroscopic response of the nonlinear medium is cal-
cutoff region), the ellipticity of the harmonic is a linear func- culated within the slowly varying envelope and paraxial ap-

tion of the ellipticity of the lasergpap, €. The proportion- o roximations. The effect of propagation is to smooth out in-
ality factor is smaller than orfsee the dashed curves in Figs. terference features and to make the decrease of harmonic
6(a) and Gb)]. At higher intensities(when the harmonics strength versus ellipticity even faster, especially for the high-
enter the plateguand higher ellipticities, the ellipticity of the  order harmonics. This is attributed to the increase of the
harmonics is a rapidly changing function of the laser ellip-phase variation of the dipole for large ellipticities, which we
ticity and exhibits several local maxima and minifisge all  interpret as due to the influence of electron trajectories with
other curves in Figs.(@—6(c)]. We attribute these variations several returns. The numerical results obtained agree very
to quantum interference effects. Note that the harmonic elwell with the experimental data.
lipticity may change sign, which means that the helicity of  The polarization properties of the generated light are ex-
the harmonic undergoes a dynamically induced jufttis  tracted with the help of the Stokes parameters. The single-
effect is seen practically in all curves in Fig). 6 atom response is dominated by quantum interference effects

Figure 7 presents the same quantities as Fig. 6, but for thgnd exhibit rapid variations of the ellipticity as well rotation
macroscopic response. Propagation smooths out the quantuiigle as a function of the laser ellipticity, especially for low-
interferences, but only partly, in particular for low-order har- order harmonics. Propagation partly smooths out the quan-
monics[Fig. 7(a)]. Note, that, in contrast to the harmonic tum interference effects. The rotation angle of the ellipse
strengthg(Fig. 5), the results are quite dependent on the lasefyith respect to the fundamental is quite importart30°)
intensity. The harmonic ellipticity becomes significantly for low-order harmonics, in agreement with experiments.
smaller with increasing laser intensity. Note that the harmonic fields generated in the macroscopic

In Figs. 8 and 9, we present single-atom and macroscopigesponse are only partially polarized. Their degree of polar-
results Concerning the rotation angle of the harmonic E‘”ipS$zation remains, however, close to unity_
with respect to the fundamental, as a function of the laser The theory developed in the present manuscript provides
elllpt|C|ty For low process orders, low intensities and low the ground for treating other appea"ng prob|em5, dea”ng
ellipticities, the rotation angle is a linear function of the laserwith the control of harmonics using more sophisticated fun-
ellipticity, and may reach 20°—30fsee the dashed line in damental fieldswith a polarization that varies during the
Fig. 8@]. For high-order harmonics, low intensities and low |aser pulsg20], or involving several colojs These aspects
ellipticities, the rotation of the ellipse is hardly visibleee  will be addressed in future work.
the dashed line in Fig.(B) and the solid line in Fig. @)].
For high intensities and ellipticities, the rotation angle be- ACKNOWLEDGMENTS
comes a rapidly varying function of both laser ellipticity and
intensity, and exhibits quantum interference effects. The ro
tation angles for the high-order harmonjsge Figs. &) and
8(c)] are, in general, apart from a narrow ellipticity range,
smaller (= 5°-10°) than for low-order harmonidsvhich
are close to 60°; see Fig(a].

Propagation smooths out interference features quite effi- Here we present a derivation of the analytic expression
ciently, as shown in Fig. 9. For low-order harmonics, thefor the coefficientdy (7). Let us introduce

_ We acknowledge fruitful discussions with P. H. Bucks-
baum, M. Yu. lvanov, K. J. Schafer and K. C. Kulander.

APPENDIX A: FOURIER COMPONENTS
OF THE FIELD-FREE DIPOLE MOMENT
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1 (2= .
CM(a,T)ZZ d[2t—r]eM@t=7
1

X— = , (A1)

[ps(t,7) —A(t—7)]*+a

related toby,(7) by

b L > A2
M(T)—EWCM(C!,T) . (A2)

p

Introducing the complex variable=e'(?*~ 7 the integral
(47) reduces to a contour integral along the unit cirele

1 M
Cula,7)= 2_77iszZW1(a,7')Z+V( N2V (7)
(A3)
where

Wy(a,7)=2U[a%(7)+s%(7)]+a, (A4)
V(7)=[Wa(7)—iW3(7)]/2, (A5)
V* (1) =[Wy(7) +iWg(7)]/2, (A6)
W,(7) =20 [s%(7)—a?(7)], (A7)
W;(7)=—4U0a(n)s(7), (A8)

with s(7)=sin(7#/2), a(7)=cos@/2)—2sin(#/2)/7.
For M=0, we obtain

PHILIPPE ANTOINEet al.

Z'f'(a,r)

VWi(a,7) = Wa(7) —W(r)

cul(a,7)= (A9)

with
Zl(alT) =(_W1(0[,7')

+ Wi @, 7) — W5(7) —W35(7))/2V(7),
(A10)

From Eqgs.(48) and(55), the analytic expression fdry(7)
can be easily obtained. ForM<0, we use

b_u(7)=by(7).
APPENDIX B: ADDITIONAL DEFINITIONS

In this appendix, we present the explicit expressions for
the functionsC(7), B(7), D(7), andF(7) that enter the
expressiong20) and (21). Their definitions are, in fact, the
same as for the case of the GBR discussed9ih These
functions are given by

_ 4sirt(7/2)
C(r)=sin(r) - ———, (B1)
B(r)= — ZSlni(;/Z) N S|n7(-7') B ; (B2
D(7)=—2B(7)—1+cog ), (B3)
4U ,Siré(7/2)
Fi(r)=(lp+Up=K) 7= ———. (B4)
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