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ABSTRACT

A first-order system with random parameters and random forcing is
studied. The analysis is concentrated on the probability distributions.
It is shown that considerable qualitative information can be obtained
from Feller's classification of the singular points of the forward and
backward Kolmogorov equations. It is found that there is a drastic
difference between the cases of uncorrelated and strongly correlated
disturbances.

The existence of stationary distributions is shown and their structure is
analysed; it is found that the steady-state distributions are of the Pearson
type. Some examples exhibit in detail the differences between uncorrelated
and strongly correlated disturbances, giving the rather surprising effect
that by making the fluctuations of the parameters sufficiently large, the
probability of finding the state of the system in an interval around the
origin can be made arbitrarily close to one ‘peaking’. The results of some
numerical computations are presented.

A case where the energy of the fluctuation in parameters is limited within
a certain frequency band shows that this situation is different from the case
of ‘white noise’. For example, ‘ peaking ’ of the distributions does not
oceur. It is found that, for the purpose of analysing probability distributions
the system obtained can be approximated by a different system with white
noise coefficients. These results are also illustrated by numerical
computations.

§ 1. INTRODUCTION

THE problem discussed in this paper arose from the study of control
systems subject to random disturbances. Linear systems with additive
disturbances have been extensively studied and are well understood ; but
linear systems with random disturbances in the parameters are not so well
understood. Adaptive control systems are typical examples.

1 Communicated by the Author.
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It is of interest to analyse the statistical properties of the output when
those of the disturbances are known. Among the problems which naturally
arise we mention the following : stability, influence of correlation between
fluctuations in parameters and driving functions, ergodicity, character of
the steady-state distribution, etc.

Some aspects of linear systems with random fluctuation in the parameters
have been studied previously. The case of weakly stationary gaussian
disturbances is treated by Tikhonov (1958) and Samuels and Eringen (1959).
‘White noise’ fluctuation in parameters is discussed in Samuels (1960),
Astrom (1962), Bogdanoff and Kozin (1962) and Caughey and Dienes
(1962), analyses of the stability of systems with random fluctuations in the
parameter have been given by Samuels (1960), Khas’'minskii (1962) and
Kozin (1963).

There are also some studies of a more general scope which contain material
on the subject, e.g. Adomian (1963), Bharucha-Reid (1964) and Merklinger
(1963). The problem discussed in this paper is similar to that treated
by Caughey and Dienes (1962). Our analysis does, however, differ in two
respects. Our study is limited to a first-order system with random para-
metersand random foreing. The analysisis concentrated on the probability
distributions. Caughey and Dienes (1962) studied an nth-order system
with emphasis on the moments of the distribution. Also, we do not agree
with some of the results of Caughey and Dienes (1962). In such cases our
results confirm these of Bogdanoff and Kozin (1962).

The problem is stated in §2. The moments of the first probability
distribution are given in §3, and §4 is devoted to a detailed study of the
first probability distribution. In particular it is shown that considerable
qualitative information can be obtained from Feller’s classification of the
singular points of the forward and backward Kolmogorov equations. It
is found that there is a drastic difference between the cases of uncorrelated
and strongly correlated disturbances.

In § 5 the existence of stationary distributions is shown and their structure
is analysed. It is found that the steady-state distributions are of the
Pearson type. Some examples are considered in § 6, which exhibit in detail
the differences between uncorrelated and strongly correlated disturbances.
In these examples we also find the rather surprising effect that by making
the fluctuations of the parameters sufficiently large, the probability of
finding the state of the system in an interval around the origin can be made
arbitrarily close to one. In §7 we present the results of some numerical
computations.

In § 8 we consider a case where the energy of the fluctuation in parameters
is limited within a certain frequency band. It is found that this situation
is different from the case of ‘white noise’. For example, peaking of the
distributions does not occur. It is also found that, for the purpose of
analysing probability distributions, the system obtained can be approxi-
mated by a different system with white noise coefficients. These results
are also illustrated by numerical computations.
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§ 2. STATEMENT OF THE PROBLEM
Consider the scalar stochastic differential equation :

dx = xdw, + dw,, (2.1)

where w, and w, are Wiener processes, i.e. random functions having
independent gaussian increments such that

EAw; = —mh, (2.2)

B Awy=m,h, (2.3)

var (Aw;)=24,h, (2.4)

cov (Awy, Aw,) =24}, (2.5)

var (Aw,) = 24,h, (2.6)
where

Aw,=wy(t+h)—w,(t), +=1,2 (2.7

and
my>0,my>0,4,20,4,>0 and A, ,2<A A4, (2.8)

There are basically two ways of interpreting eqn. (2.1). In one approach
(Ito 1951, Doob 1953), the solution is defined by means of Picard iteration
of the corresponding integral equation with the integral interpreted as a
stochastic integral. In the other approach (Gihman 1955), the solution
of (2.1) is defined as the limit of a stochastic difference equation. Both
interpretations show that the solution of (2.1) & = x(t, w) is & Markov process
with continuous trajectories whose infinitesimal inecremental moments are
given by:

1
b(x) :ﬁml—E’[Ax]n;] = — M+ My, (2.9)
B0 1t
1.1
a(x) = =lim ]—E[(Am)zlm] =A%+ 2eAd,+ A4, (2.10)
“ ps0 1t

See Appendix. Equation (2.8) does not agree with eqn. (2.5) of Caughey
and Dienes (1962) but agrees with eqn. (9) Bogdanoft and Kozin (1962),
The functions a(z) and b(x) clearly satisfy the conditions given by Doob
(1953, p. 277) and Gihman (1955, Theorem 2). The solution of (2.1) will
thus exist for all £.  The problem we will consider is that of analysing the
stochastic properties of the solution.

§ 3. MOMENTS OF THE SOLUTION

The moments of the solution of (2.1) are wellknown.  See, e.g., Bogdanoff
and Kozin (1962). For the purpose of easy reference we will give the
expressions here.

Introducing

oy (6) = (), (3.1)
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where I denotes mathematical expectation, we arrive easily at the following
equations for «,(f):

ap=1, 1
doy
= ot iy,
L (3.2)
do,,
rrin [—nmy+n(n—1)AJa, + [nmy+ 2n(n — 1) dgp]ey, 4
+n(n—Dde, 5 n=2.

This system of equations is linear and has constant coefficients. Solutions
will thus exist for all finite £. As ¢ approaches infinity solutions may,
however, cease to exist. The condition

(n—1)A4; <my (3.3)
is sufficient for «,,(f) to be finite, as ¢ tends to infinity.

§ 4. FirsT PROBABILITY DENSITY

Let P(t, 2, ') be the transition probability of the Markov process defined
by (2.1), i.e. the probability that a trajector of (2.1), starting at w, after
time ¢t will be T'. TFurther, let P(,a,z) be the corresponding density.
The transition probability P(f,x, I') satisfies the Chapman-—Kolmogorov
equation :

Pt+s,ez, F)sz(t, z, YP(s,x,dz), (4.1)

and defines a one-parameter family of transformations:

7.f= [P..dnf ) (£.2)

This family of transformations form a semi-group {7} which preserves
positivity and has the infinitesimal generator :
Q=a(x) il +0(x) 4 4.3

=¥) 5 +0(@) 5 (4.3)
where a(z) and b(x) are given by (2.9)and (2.10). The transition probability
satisfies the Kolmogorov equation:

opP 0P oP
The character of the Markov process defined by (2.1) depends on the singu-
larities of the operator Q given by (4.3):
We have to separate two cases:

I: Ap2<A4,; }

II: Ay2=Ad,. (4.5)

J
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In case I eqn. (4.4) has singular points only at x= + . In case II there
is also a singularity at x= —1/(4,/4;) in the sense that the coefficient
of the highest derivative of the right member vanishes.

To find the character of the boundaries, we introduce Feller’s canonical
scale and Feller’s canonical measure (Ito 1957, Bharucha-Reid 1964):

s{x) :f exp{— f b(s)a=1(s) ds} du, (4.6)
m(m):f a(x) exp{ f b(s)a=L(s) ds} da. (4.7)

We get:
Gg= ffdm(x) ds(yy= 0, a<x<y< oo, (4.8)
o = des(x) dm(y)=co, a<z<y< co. (4.9)
The singular point = + oo is thus natural (Ito 1957, pp. 5-57). In the
same way we conclude that x= — oo also is a natural boundary for eqn,

(4.4).

As the boundaries are natural it follows that no boundary conditions are
required for the solution of (4.4) or for its formal adjoint:
op 0* 0
J——— Q* foe &X — b X .
5 P a$2(a(%)p) am( ()p)
See Feller (1952, p. 517).

In case IT we find that the point = — 4/(4,/4,) is also singular. This
point is a right translational point if

mqg/ (Aof4 ) +my> 0. (4.10)
See Feller (1954a, Definition 7). The condition (2.8) thus implies that
rx=0=—+/(4,/4,) is a right translational point in case II. In this case

we can separately consider the processes in [ — oo, —4/(d,/4,)] and
[—4/A4,/A4,),0]. We get for the process in [ — 00, —/(d4/4,)]:

Oy= ffdm(x) ds(yy< o0, o' <ax<y<a, »

M‘:ffdm(y) ds(x)= o0, o' <z<y<a,
and for the process in [—4/(d4,/4,), o]:

olszdm(a;) ds(y)= o0, a<y<w<a,

py= ffdm(y) ds(x)< 0, a<y<a<al.

The point = —4/(4,/4,) is thus an exit boundary for the process in
[— o, —4/(4,/4,)] and an entrance boundary for the process in
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[—+/(dy/4,), 0]. The forward equation (4.8) then has a unique solution
in [— oo,—+/(4,/4;)] without any boundary conditions Feller (1952,
p.517). To solve the forward eqn. (4.8) for the process in [ —4/(4,/44), o]
one boundary condition is required. This is obtained from the following
condition :

lim [(af),—0f1= lim Laf),—bf], (4.11)
b —J(AafAy) w4 —(def4y)
where the right-hand member is obtained from the unique solution of (4.8)
in [— oo, —4/(dy/45)]. The condition (4.11) implies that there is no
accumulation of probability mass at ¥= — £/ (dy/45).

Using another classification (Feller 1954 a, p. 11) we find that in case 11
the boundary @ = — co is tnaccessible and the boundary x= —1/(4,/4,) is
accessible. Consider the probability that the processin [— o0, 1/(d,/d4)]
will ultimately leave this interval. It follows directly from Theorem 5 of
Teller (1954 a) and the fact that v = —+/ (4, [A,) is an exit boundary for the
process that this probability equals one. In the same way we find that the
boundaries v = —+/(4,/A4,) and x= co are inaccessible boundaries for the
process in [ —4/(4,/44), o] Tn case IT a solution of (2.1) starting in the
interval [— oo, —4/(d,/4,)] will thus, with probability one, leave this
interval while a solution starting in [—/(4s/4;), o] will stay in that
interval with probability one.

Thus, in itself the analysis of the singular points of eqn. (4.4) will give a
good qualitative picture of the behaviour of the solutions of the stochastic
differential eqn. (2.1).

§ 5. STATIONARY PROBABILITY DISTRIBUTION

We will now turn to a more detailed analysis of the stochastic properties
of the solution of (2.1). The first probability distribution of the solution
of (2.1) is calculated as:

p=T7*Py, (5.1)

where T'* is the adjoint of the operator T and p, is the density of the initial
distribution. The infinitesimal generator of T* is (*.

As the transformations 7'* are norm-preserving, we can immediately
conclude that the limiting distributions of p, exist in the abelian sense
(Hille and Philips 1957, p. 502). The density of the limit distribution is
the eigenfunction of Q* corresponding to A=0 and it is given by :

0% —-—dz(ff)—d(bf)—O 5.2
O‘dx2”0 Ja o= (5.2)
Integrating once we get:

_d_(afo) — bfy = constant. (5.3)
dx
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As the boundaries 2= + o are inaccessible, the constant has to vanish
and the density of the stationary distribution is then given by the solution
of

7
(af) =ty =0, (5.4)

which has L; norm equal to one.

is natural to consider the operator * on the space of measures and Q
on the space of continuous functions. For the purpose of discussing the
steady-state solution we will, however, consider Q* on the Hilbert space
whose scalar product is defined by :

(frg)= f F@)g@pw() dx, (5.5)

where the integration is performed over the interval (— oo, o).
The operator Q* can be written as:

=2 (v D 7). (5.6)
where
plo) =@ exp [ =b(s)a(s)ds (5.7)
and
w(x) =a(x)exp fw—b(s)(b‘l(s) ds. (5.8)
We have

a
0.940)= [ g (wipuf) )io
d d d
~ (- 0) = [w-tn o) ) 80
(Z v ]
= (gu) () ) = o -2 o)

+fwfd—(iuliw—2p%(wg)]. (5.9)

Ag the boundaries are natural, the out integrated parts vanish and Q* is
thus self-adjoint. Further, it follows from (5.9) that

(f, Q%)= — flv‘zp [(%(wf):l 2de.

Hence, the operator Q* is also non-positive. We can thus conclude
that the non-positive axis contains the spectrum of Q*. One eigenvalue of
Q* is equal to zero. The solution of (5.1) p,(+) is thus positive and I,
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integrable. Its Laplace transform has the pole s =0 and no other singula-

rities for Res=0. It then follows from Ikeharas Tauberian Theorem

(Widder 1946, p. 233) that the limit lim p(¢, x) exists and equals f(x).
~

For the Markov process defined by (2> .1), where a(z) and b(x) are respect-
ively quadratic and linear functions of z, the steady state-distribution will
be of the Pearson type. An account of these distributions is found in
Elderton (1938).

The character of the distributions will depend on the character of the
zeros of the quadratic a(x) and we will thus have to consider cases I and I1
of §4 separately.

In case I the polynomial a(z) has two imaginary roots and the distribution
is of Pearson type IV. Integrating (5.4) we get the following expression
for the density of the steady-state distribution:

m,
f(@)=0" (4127 +24 0+ 4,)—-1 —71
1
ey +mAqe A+ A4, }
ex arctg ——————1. 5.10
p{Al\/(A1A2—A122) 5 V(A Ay — Ays?) ( )
If this is to be a density function, we must require that
My
—> 1. 5.11
s (5.11)

1

If this condition is fulfilled the function f(x) is also in Ly(w).

In case Il the quadratic a(z), a double real zero, the distribution is- of
Pearson type V. In this case the density function of the stationary
distribution is:

A3
G —G(x)a>— [
P +mqfAy) e/ A +mqn/Ay) A ( ) exp ya> \/

fla)=
0 %<—\/—,
L)
(5.12)
where
) = 1 my/(4 —{—ml\/( 9) (5.13)

Z1-"”\/1\/

If this is to be a density function eqn. (5.11) must be satisfied. In both
cases distributions have the mode:

Moy — 241,

= 5.14
M+ 244 ( )
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The moments are obtained from the stationary solutions of the equations
given in §3. 'The first two moments of the stationary distribution are:

p= 2 (5.15)
my
[ 7712(277;2 +44,,) ;1}— 2my A, my< Ay,
a2 = my(my — Ayq) (5.16)
L + o0 my= Ay |
If 4, tends to zero, both steady-state distributions tend toward
my \ 2 m mg\ 2
limf(a)=(—) exp—rt(a——) . 5.17
Alleof ®) <27TA2> ! 24, < My ( )

When the function w, is deterministic and linear in ¢ the first probability
density of the solution of (2.1) is thus normal N[my/my, v/ (4y/m,)].

§ 6. ExamMPLES

We will now consider two examples.
Example 1

Assume that the random functions w, and w, are uncorrelated and that
w,y has a zero average i.e.

Ap=my=0. (6.1)

The steady-state distribution is then symmetrical and of Pearson type VII.
i.e. a student distribution. The density of the steady-state distribution is:

A\ TTL (my/24,)] PacAR 7 il 6.2
fla)= <;Z—2> WD_] <1+:L2A_2> 24 (6.2)
Fig. 1

-2:0 -1-0

Density function of the steady-state distribution for the case of uncorrelated
disturbances.
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Fig. 2

Steady-state distribution function for the case of uncorrelated disturbances.

The moments of the stationary distribution are:

HaPni =0, (6.3)
(%): (=D ...3 W
Ay [(mgf24,) =3[ (my[24,) — 3] ... [(my/241) —n+1/2]
A 2
2270 _1 —_ >
B ml<n+ r (6:4)
A, 2
+ oo — = .
L my n-+l ]

As the stationary distribution (6.2) for A4;=0 becomes normal
N[0,4/(43/mq) ], it is natural to normalize by choosing

Ay =my. (6.5)
The function f(2) then depends only on the parameter
4, A4,

Graphs of the density functions and the corresponding distributions are
shown in fig. 1 and fig. 2.

Example 2

Consider now the case when the random functions w; and w, are strongly
correlated.
Ap?= 4,4, (6.7)
Further assuming
Mg =10 (6.8)

and normalizing in the same way as in the previous example,
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compare equn. (6.5), the density of the steady-state distribution
then becomes:

-

<Al> 302 1 <A2 1 > +244
Ay) D1+ (4y/4,)] \ Ay T+a/(44/4,)

4 1
exp — %

Ay Tray/(4y/4,)

> 4,
xx — 22
> I

Graphs of this density funection and the corresponding distribution are
shownin figs. 3and 4. The stochastic differential eqn. (2.1) can be regarded
as a perturbatior of the following stochastic differential equation :

da = —mqx di + dv,, (6.10)
whose solution is a normal process whose steady-state distribution is normal
N0, +4/(Ayfm;)]. The analysis just performed will show the effect of a
stochastic perturbation of the ccefficient m;. The intensity of this
perturbation is proportional to 4,. Inexample 1 the perturbation of the
coefficient is independent of the driving function v,, while in example 2
the perturbation is strongly correlated to the driving function v,. For
perturbation with low intensities the steady-state distribution is close to the
gaussian distribution at the origin. For large values of A, the
steady-state distribution does, however, differ from the gaussian; this is
strongly reflected in the moments of the distribution.

Fig. 3

Density function of the steady-state distribution for the case of strongly
correlated disturbances.
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Fig. 4

1-0 =100

a=10 ==

10 0 1.0 2:0

Steady-state distribution function for the case of strongly correlated
disturbances.

As the intensity of the perturbation increases, the character of the steady-
state distribution changes. The qualitative features of the changes are
seen in fig. 1 and fig. 3. Notice in particular the different behaviour of
case T and II.  Also notice that in both cases the probability mass in an
interval around the origin increases with increasing intensity of the pertur-
bation. In case I the steady-state probability of finding the variable »
in the interval (— e, €) is thus:

o\ 2T[L A+ (1/20)] [
2|lged=1-2 ) s 1 4 22a) 1@ g
Plll= o=1-2(2) p iy, 00
2 T[1+(120)] «
zl——r-. . . ~1=(4o), 6.11
=T n T+ (120)] 4+a (ev/e) (6.11)
Similarly we have in case I1:
1
wl<as1— _ 1t 12
In both cases we thus find that
P{lz|<e} =1 as A—»oo. (6.13)

On the other hand, all the moments of the distributions will diverge
as A; = oo. Compare with eqn. (3.3).

§ 7. NuMERICAL CALCULATIONS

As an illustration, some numerical calculations were performed. To do
these we utilize the fact that the stochastic differential eqn. (2.1) can be
interpreted as the limit of the following stochastic difference equation:

Tty =01 — Tomy ), (t,) +mgh + @t etV I+ eat,)V I, (7.1)
b1 = t,+ h, .
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where {¢,(£,)} and {e,(t;)} are sequences at normal random variables with zero
means and the covariances:

cov [ex(t), ex(t))] = 24,3, (7.2)
cov [e;(t;), ea(t;) 1= 24158, (7.3)
cov [ey(t;), eo(t;) 1= 24,5;;, (7.4)

where §;; is the Kronecker delta. The difference eqn. (7.1) converges
formally to the stochastic differential eqn. (2.1), and the mean and variance
of the incremental moments satisfy Lipschitz conditions in & and their
expectations are of the order A. According to Gihman (1955, Theorem 2)
the solution of (7.1) will then converge (in the sense of mean square) to the
solution of (2.1). The distribution law of x,(¢) defined by (7.1) will also
converge to the distribution law of the solution of (2.1). The purpose of the
numerical calculations is to demonstrate that, for sufficiently small values
of & the solution of (7.1) and its distribution law will be arbitrarily close
to the solution of (2.1) and its distribution law. In the calculations we will
evaluate the steady-state values of the first probability distribution. The
solution of (7.1) was computed on the IBM 7090. The sequences of normal
random numbers {¢,(#;)} and {e,(t;)} were obtained from standard routines
for the computer installation. The standard routines operate in the follow-
ing way. Pseudo-random numbers with a rectangular distribution
are generated using the power residue method. The following recursive
equation is used:
£, =R, (2¥8+3) mod2%.

This calculation is done in integer arithmetic and the result is converted
to a floating point number in the interval (0,1). To obtain normally
distributed random numbers, twelve rectangularly distributed pseudo-
random numbers R, are generated and the number

12
G= S R—6
i=1

is formed. The numbers @ will be approximately normal N(0,1). In the
numerical calculations the solution of (7.1) for (0,7) with the initial

Fig. 5

-1:0 0 1-0
Histogram of the steady-state solution for an experiment with uncorrelated
disturbances.
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Table 1
Centre Density
of class- 1 2 3 4 Average | o Censby
- unction
interval
—2:0 0-0258 | 0:0200 | 0-0224 | 0-0256 | 0-0234 | 0-0218
-1-9 0-0292 | 0-0230 | 0-0256 | 0-0284 | 0-0266 | 0-0242
—1-8 0-0310 | 0-0280 | 00272 | 0-0314 | 0-0294 | 0-6270
—-17 0-0348 | 0-0280 | 0-0332 | 0-0388 | 0-0337 | 0-0304
—16 0-0404 | 0-0330 | 0-0378 | 0-0432 | 0-0386 | 0-0343
—-15 0-0478 | 0-0322 | 0-0420 | 0-0526 | 0-0435 | 0-0391
—14 | 00408 | 0-0402 | 0-0450 | 0-0580 | 0-0482 | 0-0449
—-1-3 0-0650 | 0-0494 | 0-0502 | 0-0662 | 0-0577 | 0-0520
—-12 0-0634 | 0-0564 | 0-0608 | 0-0712 | 0-0630 | 0-0610
—11 0-0836 | 0-0676 | 0-0696 | 0-0910 | 0-0780 | 0-0723

—-1-0 0-1002 | 0-0788 | 0-0822 | 0-1076 | 0-0922 | 0-0868
—09 0-1110 | 0-1066 | 0:0996 | 0-1318 | 0-1122 | 0-1060
—0-8 0-1422 | 0-1272 | 0-1168 | 0-1536 | 0-1350 | 0-1318
—0-7 0-1706 | 0-1768 | 0-1518 | 0-1936 | 0-1730 | 0-1673
—0-6 0-2132 | 0-2280 | 0-2006 | 0-2708 | 0-2282 | 0-2174
—-05 0-2910 | 03116 | 0-2754 | 0-3420 | 0-3050 | 0-2898
—0-4 0-3852 | 04154 | 0-3720 | 0-4454 | 04045 | 0-3961
—0-3 05304 | 05572 | 0-5088 | 0-5814 | 0-5444 | 0-5502
—02 07112 | 0-7624 | 0-6896 | 0-7362 \ 0-7248 | 0-7556
0-9144 | 0-9586 | 0-8832 | 0-9428 | 0-9248 | 0-9674
1-0504 | 10502 | 1-0056 | 1:0128 | 1-0320 | 1-0654
1-0130 | 0-9492 | 0-9288 | 0-9024 | 0-9484 | 0-9674
0-8358 | 0-7382 | 0-7528 | 0-6938 | 0-7552 | 0-7556
0-5726 | 0-5552 | 0-5598 | 0-5236 | 0-5528 | 0-5502
0-4186 | 0-4128 | 0-3808 | 0-3858 | 0-3995 | 0-3961
0-2828 | 0-2006 | 0-2980 | 0-2804 | 0-2880 | 0-2898
0-2156 | 0-2164 | 0-2252 | 0-2104 | 0-2169 | 0-2174
0-1594 | 0-1696 | 0-1818 | 0-1642 | 0-1688 | 0-1673
0-1128 | 0-1260 | 0-1422 | 0-1278 | 0-1272 | 0-1318
0-0826 | 0-1034 | 0-1144 | 0-1070 | 0-1018 | 0-1060
0-0700 | 0-0916 | 0-0886 | 0-0844 | 0-0836 | 0-0868
0-0588 | 0-0750 | 0-0770 | 0-0722 | 0-0708 | 0-0723
0-0458 | 0-0510 | 0-0580 | 0-0618 | 0-054Z | 0-0610
0-0380 | 0-0510 | 0-0538 | 0-0580 | 0-0502 | 0-0520
0-0366 | 0-0412 | 0-0494 | 0-0438 | 0-0428 | 0-0449
0:0330 | 0-0340 | 0-0378 | 0-0462 | 0-0373 | 0:0391
0-0304 | 0-0346 | 00378 | 0-0390 | 0-0354 | 0-0343
0-0252 | 0-0302 | 0-0372 | 0:0318 | 0-0311 | 0-0304
0-0298 | 0-0204 | 0-0272 | 0-0260 | 0-0281 | 0-0270
0-0248 | 0.0216 | 0-0240 | 0-0246 | 0-0238 | 0-0242
0-0218 | 0-0220 | 0-0274 | 0-0176 | 0-0222 | 0-0218
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value ,(0) =0, was calculated with the random numbers {e,(t,)} and {e,(t,)}
generated as described above. For a particular solution the quantities

Até}‘) = {% s a{t) EF} (7.8)

were formed. These quantities will approximate the steady-state proba-
bility P{xel'}.

The sets ', were chosen as adjacent equidistant intervals of length 8. In
table 1 we give the results obtained for four solutions with the data:

A,=10, A,=1, my=0, my=1, h=0002, T=01, B=01.

The quantities AH{T,)/T, which rvepresent the ordinates of the histogram
of the steady-state distribution, are tabulated as a function of the centres
of the class intervals. The steady-state distribution of the solution of
(2.1) for 4;=10, 4,=1, m;=0 and m,=1 has the density function:

f(x):(ﬁ)l’z. F(1-05) (1 +1022)~105, (7.6)

i

See example 1 of §6.  Figure & shows the average histogram obtained from
the four experiments and the density function (7.6).
Table 2 shows the results obtained for a case with strongly correlated
disturbances. Five solutions of (7.1) with the data:
A;=1, Ad,=1, my=0, my=1, h=0002, T=100, B=0-05,
were generated and the quantities A#(1")/7T" are shown. The steady-state
distribution of (2.1) for A, = 4,=m, =1 and m; =0 has the density function:

f@)=(0+a)2exp —(1+2). (7.7)

This density function and the average histogram of the five experiments
are shown in fig. 6.

Fig. 6

10 05 0 0§ 1-0

Histogram of the steady-state solution for an experiment with strongly
correlated disturbances k=1.
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Table 2
Centre Densis
of clags- 1 2 3 4 5 Average | ; ensity
i unction
interval

—1-00 0-0000 | 0-0000 | 0-0000 | 0-0000 | 0-0000 [ 0-0000 | 0-0000
—0-95 0-0000 | 0-0000 | 0-0016 | 0-0000 | 0-0000 | 0-0003 | 0-0000
—0-90 0-0532 | 0-0228 | 0-0852 | 0:0548 | 0-0600 | 0-05562 | 0-0454
—0-85 0-3612 | 0-3632 | 0-5428 | 0-3480 | 0-4144 | 04059 | 0-3771
—0-80 0-7156 | 0-9000 | 0-9252 | 0-7248 | 0-9316 | 0-8394 | 0-8422
—0-75 1-0012 | 1-2228 | 1-0496 | 0-9404 | 1-2408 | 1.0910 | 1.1722
—0-70 1-2864 | 1-4108 | 10824 | 1-0780 | 1-3640 | 1-2443 | 1-3213
—0-65 1-1624 | 1-4200 | 1-1900 | 1-1396 | 1-3208 | 1-2466 | 1-3395
—0-60 1-0468 | 1-3496 | 1-1552 | 1-1128 | 1-3076 | 1-1944 | 1-2826
—0-55 1-0216 | 1-1164 | 1.0588 | 1-0288 | 1.2616 | 1-0974 | 1.1892
—0-50 1:0504 | 1-0820 | 1-0272 | 09164 | 1-1304 | 1:0413 | 1-0827
—0-45 0-9508 | 0-9728 | 0-9728 | 0-8936 | 1-0476 | 0-9675 | 0-9756
—0-40 0-8648 | 0-8972 | 0-0084 | 0-8320 | 0-9324 | 0-8870 | 0-8744
—035 0-8012 | 0-8104 | 0:8092 | 0-7064 | 0-8220 | 0-7898 | 0-7818
—0-30 0-6860 | 0-7592 | 0-7484 | 0-6764 | 0-7708 | 0-7282 | 0-6987
—0-25 0-6372 | 0:6328 | 0-6704 | 0-5944 | 0-6572 | 0-6384 | 0-6248
—0-20 0-5244 | 0-5552 | 0-5672 | 0-5440 | 0-5724 | 0-5526 | 0-5596
—0-15 0-4468 | 0-4920 | 0-5212 | 0-5400 | 0-4948 | 04950 | 0-5021
—0-10 3976 | 0-4508 | 0-4940 | 0-4500 | 0-4532 | 0-4491 | 0-4516
—0:05 0-3764 | 0-3808 | 0-4544 | 0-3896 | 0-3808 | 0-3964 | 04071
0-0 0-3820 | 0-3540 | 0-3872 | 0-3620 | 0-3452 | 0-3661 | 0-3679
0-05 03652 | 0:3276 | 0-3396 | 0-3476 | 0-3256 | 0-3411 | 0-3333
0-10 0-3508 | 0-2880 | 0-2908 | 0-3400 | 0-3260 | 0-3191 | 0-3027
0-15 0-3432 | 0-2708 | 0-2632 | 0-3084 | 0-2584 | 0-2888 | 0-2756
0-20 0-3344 | 0-2572 | 0-2380 | 0-2924 | 0-2916 | 0-2827 | 0-2515
0-25 0-2084 | 0-2206 | 0-2048 | 0-2940 | 0-2580 | 0-2570 | 0:2301
0-30 0-2768 | 0-2204 | 0-1836 | 0-2448 | 0-2640 | 0-2379 | 0:2109
0-35 0-2464 | 0-2096 | 0-1824 | 0-2352 | 0-2212 | 0-2190 | 0-1938
0-40 02348 | 0:1636 | 0-1792 | 0-2180 | 0-1976 | 0-1986 | 0-1784
0-45 0-2148 | 0-1648 | 0-1624 | 0-1956 | 0-1808 | 0-1837 | 0-1646
0-50 0-2048 | 0-1440 | 0-1532 | 0-1844 | 0-1544 | 0-1682 | 0-1521
0-55 0-1840 | 0-1348 | 0-1492 | 0-1724 | 0-1244 | 0-1530 | 0-1409
0-60 0-2004 | 0-1396 | 0-1272 | 0:1756 | 0-1412 | 0-1568 | 0-1307
0-65 0-1704 | 01228 | 0-1208 | 0-1352 | 0-1296 | 0-1358 | 0-1214
0-70 0-1612 | 0-1184 | 0-1072 | 0-1448 | 0-1024 | 0-1268 | 0-1130
075 0-1548 | 0-1096 | 0-1096 | 0-1376 | 0-1020 | 0-1227 | 0-1054
0-80 0-1436 | 0-0968 | 0-0848 | 0-1268 | 0-0828 | 0-1070 | 0-0984
0-85 0-1352 | 0-0944. | 0-0816 | 0-1356 | 0-0708 | 0-1035 | 0-0920
0-90 0:1192 | 0-0716 | 0-0712 | 0-1132 | 0-0768 | 0-0904 | 0-0861
0-95 0-1004 | 0-0752 | 0-0700 | 0-1160 | 0-0744 | 0-0872 | 0-0808
1-00 0-0956 | 0-0584 | 0-0732 | 0-0968 | 0-0668 | 0-0782 | 0-0758
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§ 8. AN APPLICATION

Consider the differential equation :

%ll-ziz —az+é(t), (8.1)
where é(t) is a stationary random process whose power spectrum is essentially
flat up to frequencies wy. For frequencies higher than wy the power
spectrum decreases with w. It is also assumed that wp is considerably
higher than «. It is well known that the probability distributions of z(t)
are independent of the detailed shape of the power spectrum of e(t)and of the
actual value of wg, if wy is large enough. It is also well known that in
such a case the probability distributions of the solutions of (8.1) are well
approximated by those of the stochastic differential equation :

dr = —ax dt -+ dv, (8.

o

)

where v is a Wiener process whose increments have zero means and the
variances

var [v(t+h) —v(t)]= 27N gh, (8.3)

where N, is the power density of «(t) at the origin. The joint distribution
of 2(t), 2(ty),...,2(t,) is thus well approximated by a(ty), 2(ty), . . ., a(t,)
if

1
min |t,—¢,|’
i3]

U)B>>

This fact is widely used in the analysis and design of linear systems with
additive disturbances.

We will now investigate if a similar result will hold for the stochastic
differential equation :

dz L (3.4)
— =82+ &,, S,
ar t 2
where
de, . deg
py=—  and é,=—=
“ dt ST

are stationary random processes whose power spectra are essentially flat
up to the frequency wg and decreasing for higher values of w.

Let —n,; and n,, n,> 0, ny> 0, denote the mean values and r(8), 7o(t)
and ry(t) denote the convariance functions of &, and ¢y,  Further, let
éy=¢;+n; and e,=6,—n,. It is assumed that the covariance functions
are integrable over (0, ). To analyse eqn. (8.4) we will now use the
technique outlined in the Appendix. We find that (8.4) can be written as :

z=Kz+yg, (8.5)




318 K. J. Astrom on a

where
go(ty=oxp [—mli—to)](te) + (L —exp ==L, (5:6)
i
gﬂw=:fiexp[—nAt—sndeﬂa, (5.7)
g(t)=go(t) + 920, (8.8)
Kf(t)= f teXp [ —ny(t—8)1f (s) deg (s). (8.9)

The integrals appearing on the ri ght-hand side of (8.7) and (8.9) are stocha-
stic integrals (Doob 1953, p. 426). They exist if the covariance functions
7,(t) are integrable. Under these conditions the operations of integration
with respect to time and the taking of mathematical expectation can be
interchanged (Loeve 1963, p. 472).
Now let r,(t), i=1, 12, 2 depend on a parameter 7, ie.
() =), 1=1,12,2.

Agsume that #(t) converges weakly as n— oo in such a way that
o
[ o 2850) (3.10)
-

for every continuous f(f). This implies that the corresponding power
spectra converges to:

ki)

1 B,
b (w) = %J exp (— w1 () dt—— (8.11)

for all finite w.
Now choose £ fixed but arbitrarily small and consider the increment
of the random process defined by (8.4) over the interval (t,t +5).

Solving eqn. (8.5) by successive approximations we find that

Ea(t +n)— 2B 1> — [na— ny2(t) + Byo + Bya(t) 1h + 0(h312), (8.12)
B[t +n) —2()2]e(6) ]~ [B2*(0) + 2B,,2(t) + Bylh 4 0(h%2), (8.13)
as n—- 0.

We notice that due to (8.10) the increments of z(f) over intervals £
converges to Zero as #-— 0. Hence, if the process z(t) is sampled at intervals
of fixed but arbitrarily small lengths 1 we find that (¢) the correlations of
successive increments of z(f) are arbitrarily small and (b) the fivst two
moments of the increment of z(¢) are arbitrarily close to those of the process
« defined by (2.1) if the parameters of (2.1) are chosen as:

A,=B, i=1,12,2, (8.14)
My =ny— By — B (8.15)

My = Mgy (8.16)
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Table 3
Centre j
of class 1 2 3 4 Average tp ensity
. unction
interval
—2:0 0-0276 | 0-0090 | 0-0352 | 0-0174 | 0-0223 | 0-0192
—19 0-0290 | 0-0108 | 0-0302 | 0-0102 | 0-0200 | 0-0203
—1-8 0-0294 | 0:0060 | 0-0326 | 0-0132 | 0-0202 | 0-0215
—1-7 0-0314 | 0-0082 | 0-0320 | 0-0188 | 0-0226 | 0-0228
—1-6 0-0294 1 0:0112 | 0-0310 | ©0-0274 | 0-0248 | 0-0244
—15 0-0400 | 0-0082 | 0-0290 | 0-0310 | 0-0270 | 0.0261
— 14 0-0500 | 0-0112 | 0-0242 | 0-0348 | 0-0300 | 0-0280
—13 0-0432 | 0-0134 | 0-0260 | 0-0324 | 0-0288 | 0-0303
—12 0-0454 | 0-0118 | 0-0362 | 0-0336 | 0-0318 | 0-0329
—11 0-0498 | 0-0140 | 0-0476 | 0-0320 | 0-0358 | 0-0360
—1-0 0-0514 | 0-0168 | 0-0446 | 0-0332 | 0-0365 | 0-0396
—09 0-0570 1 0-0200 | 0-0342 | 0-0280 | 0-0348 | 0-0440
—0-8 0-0570 | 0:0282 | 0-0400 | 0-0422 | 0-0418 | 0-0493
—0-7 0-0618 | 0-0342 | 0-0434 | 0-0584 | 0-0494 | 0-0558
—06 0-0802 | 0-0498 | 0-0538 | 0-0750 | 0-0647 | 0-0640
—05 0-0982 | 0-0624 | 0-0682 | 0-0922 | 0-0802 | 0-0744
— 04 0-1302 | 0-0822 | 0-0700 | 0-1144 | 0-0992 | 0-0876
—03 0-1602 | 0-0980 | 0-0918 | 0-1282 | 0-1196 | 0-1040
—0-2 01924 | 0-1348 | 0-1146 | 0-1382 | 0-1450 | 0-1231
—0-1 0-1986 | 0-1678 | 0-1308 | 0-1392 | 0-1591 | 0-1405
00 0-2240 | 0-1852 | 0-1492 | 0-1710 | 0-1824 | 0-1481
01 0-1986 | 0-2030 | 0-1224 | 0-1720 | 0-1740 | 0-1405
0-2 0-1802 | 0-1848 | 0-1218 | 0-1352 | 0-1555 | 0-1231
03 0-1798 | 0-1772 | 0-1200 | 0-1126 | 0-1474 | 0-1040
04 0-1534 | 01374 | 0-:0986 | 0-0912 | 0-1202 | 0-0876
05 0-1246 | 0-1026 | 0-0850 | 0-0720 | 0-0960 | 0-0744
0-6 0-1132 | 0-0878 | 0-0716 | 0-0566 | 0-0823 | 0-0640
07 0-0988 | 0-0674 | 0-0628 | 0-0384 | 0-0668 | 0-0558
0-8 0-0916 | 0-0604 | 0-0722 | 0-0384 | 0-0656 | 0-0493
09 0-0706 | 0-0614 | 0-0624 | 0-0334 | 0-0570 | 0-0440
1-0 0-0566 | 0-0560 | 0-0486 | 0-0330 | 0-0486 | 0-0398
11 0-0416 | 0-0504 | 0-0344 | 0-0284 | 0-0387 | 0-0360
1-2 0-0396 | 0-0402 | 0-0270 | 0-0294 | 0-0340 | 0-0329
1-3 0-0364 | 0-0392 | 0-0208 | 0-0370 | 0-0334 | 0-0303
14 0-0362 | 0:0352 | 0-0166 | 0-0248 | 0-0282 | 0-0280
15 0-0356 | 0-0390 | 0-0124 | 0-0314 | 0-0296 | 0-0261
1-6 0-0328 | 0-0270 | 0-0124 | 0-0270 | 0-0248 | 0-0944
1-7 0-0248 | 0-0210 | 0-0188 | 0-0226 | 0-0218 | 0-0228
1-8 0-0228 | 0-0230 | 0-0160 | 0-0190 | 0-0202 | 0-0215
19 0-0214 | 0-0182 | 0-0160 | 0-0228 | 0-0196 | 0-0203
2-0 0-0222 | 0-0212 | 0:0178 | 0-0224 | 0-0209 | 0-0192

319
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if nis sufficiently large. Thus, the joint distribution of 2(ty), 2(t)s -« - 2lEn)
for min |t;—t;|>" will be arbitrarily close to the distribution of ®(ty),

2(ty) ,L.?& . ,a(t,) if nis large enough.

Notice in particular eqn. (8.15). Back-tracking we will find that the last
two terms of the right - hand member arve due to the increments of e;(t)
being correlated. Compare eqns. (A15) and (A16) of the Appendix.
Tt is thus clear that there will be a drastic change in the character of the
solution of (8.4) depending on whether the disturbance e,(t) has uncorrelated
inerements or not. This can be demonstrated numerically by introducing
correlation in the sequence {e(t,)} of the difference approximation (8.1)
of (2.1). Consider for example, the following system :

& 7z(f/n+1) = (1 - lwnl/)xh(tn) -+ /m’zlh +x Ib(tny)u(tn)'\/h + ez(tn) '\/h)
U/(tn,‘fl) = (1 - hbl)u(tnr) + ble3(tn) \/hﬂ (817)
b=t t h.

where {e,(t;)} and {e,(t,)} ave sequences of normal random variables with zero
means and the covariances:

covley(t:), eolt))] = 24,85 (8.18)
cov [es(t)s e(ty)] = 2450 } (8.19)

These equations correspond to A;p="0 and
covleg(ty), elt)]=2(1— hb,) I A;. (8.20)

Tn table 3 we present the histograms of four experimentally obtained
steady-state distributions of (8.17) for:

A,=10, A,=1, my =1, e =0, h=0-002, T=100, B=01,
' b, =10, (0)=0-0.

The solutions were obtained by the difference eqns. (8.17) using pseudo-
random numbers for {e,(t))} and {e4(t;)} a8 described in §7. In table 3 we
have tabulated At(T)/T' versus the middle of the class intervals ;.

The stochastic differential equation which approximates (8.17) has

A4,=10, A43,=09 Ay=1, 'Jnl———onl'-—Al—Am:—Q, My=my =0,

and its solution has a steady -state distribution with the density function

C[INVET(O58) o geys
f(.@)*<_7;> T60%) (1 +1022)055, (8.21)

This density function is tabulated in the last columi of table 3. Itisalso
graphed in fig. 7 together with the average histogram. In fig. 7 we have
also shown the density function (8.21).

Notice the difference between the case of no correlation between the
increments of e,(f;). Compare figs. 5 and 7, and equs. (7.6) and (8.21}).




Fig. 7
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Histogram of the steady-state solution for an experiment with uncorrelated
wide-band disturbances.

The stochastic differential eqn. (8.4) has also been studied on an analogue
computer. The qualitative features of the solution have been verified.
In fig. 8 we show some typical results for the equation %+ 6z = (1+kz)e,
where ¢ is a stationary process whose spectrum is essentially flat up to
200 rad sec! with a power density
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In fig. 8 we show in (a) a sample of 2 with k=0, in (6) sample of zwith k=1,
(¢) and (d) respectively the same things with an expanded time scale. The
theoretical distribution, functions are:

1 @
Plz<a}= »\/('771)_[ exp —3t2di

— 0

and

Plz<a}=exp—

l+a
respectively.

§ 9. CONCLUSIONS

(1) The analysis clearly shows that the moments do not conveniently
characterize the probability distributions for the solutions of the stochastic
differential eqn. (2.1). We have found that the order of moments which
exists depends on the intensity of the disturbance on the parameter.
Given a specified level of disturbance there will always exist an integer »
such that the nth order moment of the first probability distribution does
not exist (see eqn. (3.3)). In the examples illustrated in §7, moments
of an order higher than the first do not exist, and in § 8 we have an example
where not even the first moment exists.

(2) We have also found that the character of the solutions depends
strongly upon the correlation between the forcing disturbance and the
disturbance on the parameter. Compare examples 1 and 2 of §6 which
represent the extremes of uncorrelated and linearly dependent disturbances.

(3) Ttisalsofound that an analysis of the singular points of Kolmogorov’s
equation using Feller’s classification will give considerable insgight into the
qualitative features of the solution.

(4) The analysis also shows that there is a great difference hetween the
cages of ‘white noise’ and ‘band-limited’ disturbances. Thus, it is not
possible to express the case for ‘white noise’ disturbance by solving the
problem for a disturbance with finite bandwidth and afterwards letting the
bandwidth go to infinity. The case of band-limited disturbance on the
parameter can, however, be approximated with *white noise = disturbance
on the parameter, the ‘white noise’ disturbance having a different mean
than the band-limited disturbances (see equs. (8.16), (8.17), (8.19)).

(5) In §6 we have also found the rather surprising effect that the proba-
bility distributions tend to concentrate at x =0 with an increasing intensity
in the disturbance on the parameter.

Although the analysis in this paper is limited to a first-order system we
are led to ask if the conclusions arrived at will also hold for higher-order
systems. Conclusion (1) obviously generalizes. KEquations for the
moments are easily obtained in the higher-order cases, and it is easily
seen that they are given by linear equations similar to those of first-order
cases. Higher-order moments do not exist for sufficiently large intensities
of disturbances on the parameters.
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The peculiar effect that the probability distributions tend to concentrate
around the origin with increasing intensity of the disturbance on the para-
meters does not seem to extend to higher-order systems. The phenomenon
seems to be related to the character of the singularity of the Green-function
of the operator Q, different in one, two and three dimensions. A related
effect is mentioned by Khas'minskii (1962, p. 1562) where it is found that an
unstable first-order linear system can be stabilized by ¢ white noise ’ distur-
bance on the parameter, but not a higher-order system. The same effect
is seen in the different character of the absorption probabilities for random
walks (Feller 1958, p. 327) in one, two and three dimensions.

APPENDIX

Solution of the Stochastic Differential Equation by Successive Approvimations
and Calculation of the Imcremental Moments

Equation (2.1) can be written as:
dx = (—2mq +my) dt +x dvy + dw,, (A1)
where v, and v, are Wiener processes whose increments have zero means and

the same covariances as wy(f) and w,(f). See equs. (2.4)—(2.6). Re-writing
(A1) as an integral equation, we get:

o(0) = exp [ =y tg) ollo) + = {L = exp [—my(t — 1)}
1

nty

~I—J‘t1 exp [ — i, (t— 8)Ja(s) dus(s) +_I exp [ —my (£ —s)1dvy(s), (A 2)

ty to

where the last two integrals cve stochastic integrals (Doob 1953, pp.
426-451).
Introduce the functions

gdnzexp[—nha-¢@}q%)+%?{1~exp[—nhu-¢gﬂ, (A3)
1
g.(t) = f exp [ —my(t—8) ] dvy(s), (A4d)
fo .
(&) = g(t) + 9, (8), (A 5)

and the operator K defined as:

~t

Kf@):J exp [ —mny(t — )1 (5) dvy(s). (A 6)

to

The eqn. (A 2) now becomes:
r=Ka+yg. (A7)
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Let f (£, ) be a random function whose second moment exists. Thenorm
of such a function is defined by :

12
|f @, w)]l:[ max Ef3(t, w):l . (A 8)
to<<t<ity
Hence
“90” = Ixol + ‘ ;%2 A{l—exp [—my(ty— )1} (A9)
1
A 172
H.‘h“ = {;; [exp [2my(f; —%o)]—1] } - (A10)
1

To find the operator norm subordinate to (A 8) we proceed as follows:

to<t<<ty

[|Kf|p = max E f J‘t exp [—my (26— —")1f ($)f(s") dvy(s") dvy(s”)
t Yt

t 13
<) max B f f exp [—my (2t —s" —s")]dvy(s") dvy(s”)
fo J 1y

to sty

A
<|IfIP 7771{1 —exp [ — 2my(t; —to) 1} (All)

where the first inequality is equivalent to the definition (A 8), the second
inequality follows from the fact that v, and v, have uncorrelated increments,
and the third inequality is obtained by interchanging expectation and
integration. Equality is obtained for f(f,w)=1 with probability one.
Hence

A 1/2
)| ={ 22 1 —exp [~ 2t =D } (412)

My

If ||K]| <1, which obviously can be achieved by choosing b sufficiently
small, the solution of (A 7) is given by the Neuman series:

r=g+Kg+K%q+....

In order to obtain the incremental moments we retain only terms of order
h. We notice that

lgoll=0(1),

llga1[=0022),

[|K||=0(A2),
and we get

Ax=u(t) —a(t,)

=go—(ty) + g1 + Kgo+ Kgy + K25+ 0(h%2). (A13)
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The third term is fully written in (A 4). We write out the last three com-
pletely and get:

&y
K= [ exp L=mlty 1) dn) (A14)

to

8

Kg, = ftl exp [ —m,(t; —8)] d”1(£)f exp [ —my(t —s)] dvy(s"), (A 15)

ty to

3

K2g, = fl exp [— my(t; —8)] dvl(s)f exp [ —m, (s —8'g)1go(s") dvy(s’).

to £y

(A 16)

As the increments of », and v, have zero means, the expectation of the
third and the fourth terms of (A 13) will thus vanish. Also the expectation
of the fourth and fifth terms vanish because the increments of v; and v,
are uncorrelated. By letting 7 tend to zero in (A 13), we obtain (2.8)
and (2.9) in the same way.

In the same way, we find that

(Aw)2=g,2+ (Kgo)* + Kgogs + 92Ky + O(R).

By letting & tend to zero we get (2.9).
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