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Quantifying the Optical Properties and Chromophore
Concentrations of Turbid Media by Chemometric Analysis
of Hyperspectral Diffuse Re� ectance Data Collected Using a
Fourier Interferometric Imaging System

TUAN H. PHAM, CHARLOTTA EKER, ANTHONY DURKIN,
BRUCE J. TROMBERG, and STEFAN ANDERSSON-ENGELS*
Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, SE-22100, Sweden (T.H.P., C.E., S.A.-E.); Beckman
Laser Institute and Medical Clinic, Laser Microbeam and Medical Program (LAMMP), Irvine, California 92612 (T.H.P., B.J.T.);
and Candela Corporation, Wayland, Massachusetts 01778 (A.D.)

A non-contact Fourier transform interferometric imaging system
was used to collect hyperspectral images of the steady-state diffuse
re� ectance from a point source in turbid media for the spectral
range of 550–850 nm. Steady-state diffuse re� ectance pro� les were
generated from the hyperspectral images, and partial least-squares
(PLS) regression was performed on the diffuse re� ectance pro� les
to quantify absorption ( m a) and reduced scattering ( m ) properties9s
of turbid media. The feasibility of using PLS regression to predict
optical properties was examined for two different sets of spatially-
resolved diffuse re� ectance data. One set of data was collected from
40 turbid phantoms, while the second set was generated by con-
volving Monte Carlo simulations with the instrument response of
the imaging system. Study results show that PLS prediction of m a

and m was accurate to within 6 8% and 6 5%, respectively, when9s
the model was trained on turbid phantom data. Moreover, PLS
prediction of optical properties was considerably faster and more
ef� cient than direct least-squares � tting of spatially-resolved pro-
� les. When the PLS model was trained on Monte Carlo simulated
data and subsequently used to predict m a and m from the diffuse9s
re� ectance of turbid phantom, the percent accuracies degraded to
6 12% and 6 5%, respectively. These accuracy values are applicable
to homogenous, semi–in� nite turbid phantoms with optical property
ranges comparable to tissues.

Index Headings: Partial least squares; PLS; Turbid media; Diffuse
re� ectance; Optical properties; Multispectral imaging.

INTRODUCTION

The absorption and reduced scattering parameters (ma

and m , respectively) of turbid media, such as tissue, can9s
be used to characterize its composition and structure. For
instance, ma and m of tissue can provide information on9s
a variety of physiological processes. Wavelength-depen-
dent absorption is used to quantify the concentration of
biologically important chromophores, such as hemoglo-
bin, myoglobin, water, fat, and near-infrared absorbing
drugs.1–6 Wavelength-dependent scattering properties of-
fer insight into the composition, density, and organization
of tissue structures, such as cells, subcellular organelles,
and connective tissue/ex tracellular matrix.7– 11 Since
changes in these components generally accompany path-
ologic transformations and physiologic processes, tech-
niques for non-invasively quantifying ma and m in vivo9s
have generated intense interest.

One approach for characterizing ma and m of turbid9s

Received 4 August 2000; accepted 16 April 2001.
* Author to whom correspondence should be sent.

media is to use spatially resolved, steady-state diffuse
re� ectance. Two strategies for spatially resolved re� ec-
tance measurements of turbid, semi-in� nite media have
been demonstrated: contact probe detection using � ber-
optic arrays12–19 and image re� ectometry.20–23 Systems
based on contact probe detection often have the capacity
to measure the re� ectance for a continuous range of
wavelengths but require that the detection � bers touch
the tissue. Imaging re� ectometry has an advantage in that
measurements can be performed remotely. Noncontact
detection can be particularly useful in clinical settings
where � ber-optic probes may contribute to a number of
problems, including contamination of sterile � elds and
alteration of regional tissue perfusion (via probe-induced
pressure).

Imaging re� ectometry systems often have limited
spectral range, typically consisting of only a few discrete
wavelengths.20,21,24 For many tissue applications, broad
spectral range is desirable. This is due to the fact that
detailed absorption and scattering spectra can be used to
determine the physiologic and structural properties of tis-
sues and are diagnostically valuable in characterizing pa-
thology.25–27 Calibration procedures are generally dif� cult
and complex because the instrument response depends
not only on the spatial and wavelength performance of
the CCD, but also on the point spread function of the
imaging system. Consequently, techniques that extend the
wavelength range and facilitate rapid, accurate calibration
are of considerable interest for spectroscopy and imaging
of turbid media.

In a previous study, a Fourier transform interferometric
imaging system (FTIIS) was used to collect hyperspectral
images of the steady-state diffuse re� ectance from tissue-
like phantoms containing fat emulsion scatterers and dye
absorbers. We have demonstrated that Monte Carlo sim-
ulations can be � t to the image-generated diffuse re� ec-
tance pro� le in order to quantify optical properties over
a continuous and broad spectral range.28 However, the
iterative � tting procedure is computationally intensive
and therefore not practical for real-time property deter-
mination. In this study, we investigate the feasibility of
using multivariate analysis, speci� cally, partial least-
squares (PLS) regression, to quantify ma and m from spa-9s
tially resolved diffuse re� ectance data obtained from hy-
perspectral images. PLS regression was selected because
it is a robust and effective multivariate approach.29,30
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FIG. 1. Experimental setup of the Fourier transform interferometric
imaging system used to collect hyperspectral images of the diffuse re-
� ectance from turbid media. The principle parts of the system are the
halogen white light source, the collection optics, a Sagnac interferom-
eter, and a cooled 12-bit CCD camera (CCD). Interference patterns of
the object are collected for a sequential series of optical path differences
(OPD) by incrementally rotating the beamsplitter (BS). An interfero-
gram is generated at each pixel, which corresponds to a particular region
of the object. Inverse Fourier transform of the interferograms yields the
hyperspectral images. Data acquisition and processing were performed
using a PC. Abbreviations: optical � ber (OF), aperture (A), camera
zoom lens (CZL), neutral density � lter (NDF), lens to focus the white
light source (L1), lens to image the recombined beams onto the CCD
(L2), mirror (M), and optical pathlength (OPL).

Moreover, this analytical technique was recently used to
successfully analyze spectra collected from scattering
media.31,32

We examined three approaches to PLS regression and
veri� cation for two different data sets. The � rst data set
consisted of measurements from 40 turbid phantoms. The
second data set was generated by convolving Monte Car-
lo simulations with the instrument response of FTIIS
(MCSIJIR). The three approaches examined were: (1)
perform PLS regression and model validation on turbid
phantom data (labeled as trainTPD–valTPD); (2) perform
PLS regression and model validation on Monte Carlo
simulated data (trainMCSI–valMCSI); and (3) perform
PLS regression on simulated data and then use the model
to predict optical properties from the diffuse re� ectance
of turbid phantom (trainMCSI–predTPD). Predicted m9s
and ma spectra, in turn, were used to quantify, respec-
tively, the fat emulsion and dye concentrations.

MATERIAL AND METHODS

Fourier Transform Interferometric Imaging System
(FTIIS). Figure 1 schematically illustrates the main com-
ponents of the hyperspectral imaging device. White light
from a broadband halogen source (LS1, Ocean Optics
Inc., Dunedin, FL) is coupled into a 0.16 NA, 200 mm
diameter optical � ber. Light exiting the � ber (2 mW) is
re-focused to form a 250 mm diameter point source that
is launched onto tissue-like phantoms at an incidence an-
gle of 258 relative to the surface normal. At this angle,
specularly re� ected light is not collected by the imaging
optics, and the diffuse re� ectance distribution is mini-

mally affected.21 Hyperspectral images are collected us-
ing a Fourier transform interferometric imaging system
(SpectraCubet imaging system, Applied Spectral Imag-
ing, Migdal HaEmek 10511, Israel).

The FTIIS employs a cyclic (Sagnac) interferometer33

to construct hyperspectral images. The principle compo-
nents of the FTIIS are the collection optics, a Sagnac
interferometer, and a 12-bit charge-coupled device (CCD)
camera operating at 232 8C (Model TE-CCD-512-EFT/
UV, Princeton Instruments, Inc., Trenton, NJ). The col-
lection optics consist of a commercial camera zoom lens
(a 50 mm focal length, f /1.2 to f /16) and a 1.5 O.D.
neutral density � lter (NDF). The camera is oriented per-
pendicular to the surface of the phantom, as shown in
Fig. 1. The achromatic zoom lens allows for adjustable
image magni� cation and acceptance angle. Neutral den-
sity � lters were placed in front of the camera lens to
prevent saturation of the CCD pixels that image the re-
gions near the source where the intensity is maximal.

Light entering the collection optics is split into two
beams and directed along different optical paths (OPL1
and OPL2). The two beams are then recombined at the
CCD. The optical path difference (OPD) between the
beams, which is a function of the beamsplitter’s angular
position, generates interference patterns of the object on
the CCD. To obtain hyperspectral images, interference
patterns are collected for sequences of OPDs, generated
by step-wise rotation of the beam splitter. In this manner,
an interferogram is constructed for each pixel in the im-
age. With the use of the software that accompanies the
FTIIS, Fourier analysis of the interferograms produces
the wavelength spectra. The selected magnitude, range,
and spacing of the OPDs determine spectral range and
resolution. Images can occupy up to 512 3 512 pixels
(for a given wavelength), and, depending on the selected
magni� cation, objects with sizes on the order of 1–50
mm can be imaged. In this study, we set the FTIIS pa-
rameters so that hyperspectral images for wavelengths
ranging from 550–850 nm were generated; this wave-
length range corresponds to the spectral range of the
FTIIS. The images obtained were unevenly spaced within
the wavelength range. On average, the spacing was 15
nm. Image size was 170 3 170 pixels, corresponding to
a physical (object) dimension of 25 3 25 mm. At these
settings, each set of 24 hyperspectral images was ac-
quired in 40 s.

Turbid Phantom Data. The turbid phantom data set
consisted of the hyperspectral images of the diffuse re-
� ectance and the expected ma and m values of 40 phan-9s
toms. The phantoms were prepared from a unique and
randomly selected combination of three absorbing dyes
(Nigrosin, Janus green B, and Prussian blue, Sigma, St.
Louis, MO) and fat emulsion scatterers (Intralipid, 200
mg/mL (20%), Pharmacia & Upjohn, Sverige AB, Stock-
holm, Sweden). The dye and Intralipid concentrations
were selected to yield optical property ranges comparable
to those of tissues.34 This produced phantoms with unique
and randomly distributed ma and m values within the9s
optical property range of 1.0 3 1023–0.20 mm21 for ma

and 0.20–2.50 mm21 for m . For each 500 mL phantom,9s
known concentrations of aqueous dye solutions were pre-
pared from distilled water and dyes, followed by the ad-
dition of Intralipid scatterers. Conventional absorption
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spectrophotometry was performed on a small sample (2
mL) collected from the aqueous dye mixture in order to
independently measure ma. These ma values deviated less
than 63% from the expected phantom absorption values
that were calculated from the dye concentrations and ex-
tinction coef� cients.

The corresponding expected values for reduced scat-
tering (m ) were calculated according to van Staveren et9s
al.,35 who used Mie theory to relate the scattering coef-
� cient and anisotropy factor of Intralipid to the optical
wavelength. According to that work, the scattering co-
ef� cient (ms) and the anisotropy factor (g) of 10% In-
tralipid can be expressed as a function of the optical
wavelength, l:

22.4m (l) 5 16l (1)s

g (l) 5 1.1 2 0.58l (2)

where l is given in micrometers and ms in mm21. Values
obtained from Eqs. 1 and 2 were shown to have an ac-
curacy of 66% as compared to Mie theory prediction.
The reduced scattering coef� cient for 10% Intralipid was
calculated from ms and g using the similarity relation m9s
5 ms(1 2 g). For Intralipid, this can be expressed as m9s
5 sC%, where s 5 ms(1 2 g)/10 and C% is the Intralipid
concentration in percent volume. This relationship has
been shown valid for Intralipid concentrations of less
than 10% by volume.35 These expected ma values deter-
mined from dilute solution absorption spectrophotometry
and m values deduced using the method above were used9s
as the ‘‘gold standard’’ for calibration and validation of
the PLS model.

Hyperspectral images of the diffuse re� ectance were
collected immediately following the preparation of the
phantoms to minimize the possibility of any changes in
optical properties over time. Data from the hyperspectral
images were preprocessed before performing PLS mod-
eling. The image of the diffuse re� ectance at each wave-
length was binned circumferentially. That is, the image
was divided into concentric rings, and pixel values in
each ring were summed and normalized to the pixel count
of the ring. Circumferential binning of data conferred two
advantages: (1) pixel values from different areas but with
the same radial distance from the source were averaged,
and thus noise was reduced; and (2) the computational
demands of PLS regression were reduced because the
diffuse re� ectance data were of one spatial dimension
instead of two. We performed a natural logarithmic trans-
form of the diffuse re� ectance pro� le in order to obtain
an approximately linear relationship between the optical
properties and the logarithm of the diffuse re� ectance in-
tensity. PLS regression optimally models relationships
that are linear.29,31 The natural logarithmic transform was
selected because the diffuse re� ectance can be approxi-
mated by the function

C exp(2C r)1 2R } (3)
mr

where C1, C2, and m are parameters dependent on the
optical properties of the medium as well as the source-
detector (r) separations.18,36 The speci� c functional rela-
tionship between the diffuse re� ectance and optical prop-

erties of the medium is well described in the literature,
for instance, see Refs. 18, 21, 37, and 38.

Monte Carlo Simulated Data. In addition to the tur-
bid phantom training set, we constructed another training
set based on Monte Carlo simulated data. Monte Carlo
simulations of light propagation in turbid media were
used to generate diffuse re� ectance data for homogenous,
semi-in� nite media. We chose to use Monte Carlo sim-
ulations,38 instead of the diffusion approximation, be-
cause the numerical approach readily accounts for the
effects of boundary, source distribution, and media ge-
ometry on the diffuse re� ectance. In addition, re� ectance
data from Monte Carlo simulations are more accurate for
highly absorbing media, as well as for data close to the
source. The Henyey–Greenstein phase function,39 which
describes the probability that a photon is scattered in a
particular direction, was used in the simulations. Various
investigators have used this function to successfully mod-
el the scattering phase function of fat emulsions. In order
to obtain two data sets of equal size, 40 unique and ran-
domly generated pairs of ma and m were generated for9s
each of the 24 wavelengths. The ma and m values used9s
in the simulations encompassed optical property ranges
comparable to those of the phantoms. Speci� cally, ma and
m ranges were 1 3 1023–0.30 mm21 and 0.20–2.509s
mm21, respectively. The refractive index was set to the
value corresponding to water (n 5 1.33), and the anisot-
ropy factor was set to the value corresponding to fat
emulsion (g 5 0.7).35 Because of the natural cylindrical
symmetry, Monte Carlo data for diffuse re� ectance were
organized using a cylindrical coordinate system. For ex-
ample, diffuse re� ectance data were arranged in concen-
tric rings surrounding the source. The radial bin thickness
of the concentric rings was 50 mm. The number of pho-
tons was empirically set to N 5 (ma /m )1/4 3 107 so that9s
the noise characteristics were similar across the data set.21

The diffuse re� ectance was recorded as a function of the
radial distance from the source and stored as photon
probability per unit area.

A calibration procedure was performed in order to ac-
count for the instrument response (IR) of the imaging
system, including such instrumental factors as the point
spread function, numerical aperture, spectral sensitivity
of the CCD, and uniformity of the CCD response. The
calibration procedure consisted of three main steps. First,
we collected an image of a marked ruler and counted the
number of pixels corresponding to a unit length on the
ruler. The ratio of length-to-pixel count is the factor that
relates the pixel count to the physical size of the object.
Second, hyperspectral images of the diffuse re� ectance
were acquired from a reference phantom, which was con-
structed from Intralipid and dyes, in order to determine
the IR at each measured wavelength. Calibration images
were obtained by using the same settings as those used
to perform data collection so that, for example, numerical
aperture and magni� cation factor were identical to those
used to construct hyperspectral images of the test sam-
ples. Finally, the IR of the system was calculated using
the calibration images and the known optical properties
of the reference phantom. For this purpose, the calibra-
tion image at each wavelength was Fourier transformed
into the spatial-frequency domain (SFD). Likewise, the
Monte Carlo simulated image (MCSI) corresponding to
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FIG. 2. (a) A schematic showing the organization of matrices X and
Y. The columns of X consist of the diffuse re� ectance pro� les at mea-
sured wavelengths. The columns of Y consist of expected optical prop-
erties (ma or m ) vs. wavelength. Rows of X and Y correspond to the9s
number of samples. (b) Explanation of the basic concepts of PLS re-
gression and the full-cross validation (leave-one-out) procedure. PLS
regression decomposes matrices X and Y into score and loading vectors
(scores t i and loadings p i for X; scores u i and loadings q i for Y ) in a
manner that optimally correlates X to Y. The resulting PLS model is
used to predict Y values from future X measurements. In full-cross
validation, one sample is left out of the training set while PLS regres-
sion is done on the remaining samples. Prediction is then made on the
omitted sample. The procedure is iterated for the next sample and so
on until all samples have served as test specimens. (c) An outline of
the three approaches to PLS regression and veri� cation of the two dif-
ferent training sets.

the reference phantom optical properties was transformed
into the SFD. The overall instrument response of the
FTIIS at each wavelength was calculated from the spatial
transforms of the calibration and MCSI via the relation

F (IR) 5 F (I )/F (MCSI ) (4)

where F (I ), F (MCSI ), and F (IR) are the spatial Fourier
transforms of the calibration image, the Monte Carlo sim-
ulated image, and the instrument response, respectively.

To construct a training set based on Monte Carlo sim-
ulations, the MCSI corresponding to a particular set of
optical properties was effectively convolved with the in-
strument response at the evaluated wavelength, yielding
MCSIJIR where J denotes a convolution. However, the
convolution was performed indirectly in the spatial-fre-
quency domain. MCSI was � rst transformed into the
SFD, F (MCSI ). The spatial-frequency transform of MCSI
was multiplied by F (IR) to account for the instrument
response. The product, F (MCSI )F (IR), was inversely
Fourier transformed into the spatial domain to yield
MCSIJIR. The Monte Carlo training set consisting of
MCSIJIR data was subjected to the same preprocessing
scheme, (i.e., circumferential binning and logarithmic
transformation) as that performed on the turbid phantom
data.

Chemometric Analysis. Diffuse re� ectance data and
expected optical property spectra were organized into
matrices, denoted respectively as matrices X and Y in
Fig. 2a. The rows of X and Y correspond to the samples
(turbid phantoms or MCSIJIR). The columns of X cor-
respond to the logarithmic intensity pro� les as a function
of the radial distance at the measured wavelengths, while
the optical property (ma or m ) spectra make up the col-9s
umns of Y . Partial least-squares regression was imple-
mented in order to develop models that predict the optical
properties (Y ) based on the diffuse re� ectance measure-
ments (X ).

Partial least-squares regression is a widely accepted
multivariate method. In this method, a linear model is
used to correlate the measured variable (X ) to the param-
eters of interest (Y ).29 A PLS model is developed em-
pirically from the calibration data. The PLS model, in
turn, is used to predict parameter Y from future mea-
surements of X. An abundant amount of literature has
been published on PLS regression.40,41 Brie� y, the basic
idea of PLS regression is to decompose the matrix con-
taining the measured variable X into a linear combination
of near-orthogonal vectors denoted as the scores (ti) and
loadings ( p i), as illustrated in Fig. 2b. Similarly, PLS
regression decomposes the Y matrix into two sets of basis
vectors, which are denoted as the score (u i) and loading
(q i) vectors. Basis vectors, when linearly combined, com-
prise the information content of matrix X or Y , while the
residual matrices E and F contain the ‘‘noise’’ compo-
nents of X and Y, respectively. A key feature of PLS
regression is that the X and Y matrices are decomposed
in a manner that optimally correlates the basis vectors of
X and Y .29 The weight matrix W relates the regression
of X to Y , and is used with the loading matrices P and
Q to predict the value of Y in future samples. Speci� -
cally, matrix Y is predicted from measured variable X
as29

Y 5 W (PTW )21QTX. (5)

In this study, the PLS2 algorithm 29 was implemented
using the software package The Unscrambler (Camo
ASA, Oslo, Norway). The PLS2 algorithm was selected
because the Y matrix was multivariate (i.e., consisting of
optical property spectra).The performance of a PLS mod-
el is judged by how well the model predicts optical prop-
erties from measurements of the diffuse re� ectance. Ide-
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FIG. 3. (a) A schematic showing the data organization of hyperspectral
images obtained from the FTIIS measurements. Image at each wave-
length may contain up to 512 3 512 pixels at 12–bit dynamic range.
(b) A typical image of the diffuse re� ectance collected on a phantom
with ma 5 0.0281 mm21 and m 5 1.163 mm 21 at 630 nm. Image9s
intensities were circumferentially binned and log transformed. (c) Plots
of representative log-transformed diffuse re� ectance data at 24 wave-
lengths from one of the turbid phantoms.

ally, measurements of the diffuse re� ectance from a new
set of samples, (i.e., the test set) should be used to vali-
date the model. An acceptable alternative for model ver-
i� cation is to use full-cross validation (leave-one-out),42

which ef� ciently utilizes all data from the training set for
PLS regression. Figure 2b schematically shows the full-
cross validation procedure performed on a data set con-
sisting of forty samples. Thirty-nine samples are used for
PLS regression, while one is omitted to serve as a test
sample. The PLS model based on the 39 samples is used
to predict the optical property of the omitted sample. It-
eration is performed on subsequent samples until all 40
samples have served as test specimen. For each test sam-
ple, the errors between PLS predicted and expected op-
tical properties are calculated. The root mean square error
of prediction (RMSEP) is calculated from these errors
and represents the accuracy of PLS prediction. The num-
ber of loading vectors, or rank, of the PLS model is se-
lected so that the RMSEP is minimal.29,42 In addition to
RMSEP, other merit indicators of the PLS model are the
slope of the plot between the predicted versus expected
values and its corresponding correlation coef� cient.

To evaluate the feasibility of using PLS regression to
predict optical properties from the diffuse re� ectance
data, three strategies for PLS regression were used with
two different training sets: turbid phantom data and Mon-
te Carlo simulated data. The three strategies are outlined
in Fig. 2c. Slope, correlation coef� cient, and RMSEP
were calculated for each approach.

Concentrations. Partial least-squares regression and
least-squares solution were both used to determine the
dye and Intralipid concentrations from PLS predicted ma

and m spectra, respectively. Speci� cally, a second stage9s
PLS regression predicted concentration (dye or Intralipid)
from the optical property (ma and m ) spectra. Least-9s
squares solution was an alternative approach to extract
concentration from optical property spectra. For instance,
ma spectra are related to the dye concentrations as ex-
pressed by the matrix

l1 l1 l1 l1é ù é ù é ùm « « · · « Ca d1 d2 dm d1

l2 l2m « · · · · Ca d1 d2ê ú ê ú ê ú
· 5 · · · · · · (6)ê ú ê ú ê ú

· · · · · · ·ê ú ê ú ê ú
ln ln ln lnm « « · · « Ca d1 d2 dm dmë û ë û ë û

where e is the extinction coef� cient (ml/mg mm21) ofl i
di

the dye di at wavelength li, and C di is the concentration
(mg/ml) of the dye di. In this study, the concentration
vector consisted of three elements because three dyes
were used to make the phantoms. Extinction coef� cients
of Nigrosin, Janus green, and Prussian blue over the
wavelength range were determined from absorption spec-
trophotometer measurements. A least-squares solution for
Eq. 6 was determined for the concentration vector with
the constraint that the concentration values be positive.43

Within a certain range, the macroscopic m is proportional9s
to the scatterer concentration and can be expressed in
matrix form similar to Eq. 6. PLS predicted m spectra9s
were then used to determine Intralipid percent concentra-
tion in a manner analogous to the dye concentration cal-
culation.

RESULTS AND DISCUSSION

The hyperspectral images of 40 tissue-like phantoms
were examined to select an outer distance to be used in
PLS regression. An outer distance of 6.5 mm was se-
lected to guarantee that the image intensities used in data
� tting were higher than the CCD dark noise and the sig-
nal-to-noise ratio was on average greater than 2 at the
outer distances (;6.5 mm). Figure 3a schematically pre-
sents the organization of the hyperspectral image data. In
Fig. 3b, image intensity (in units of CCD counts) is plot-
ted as a function of spatial coordinates (x, y) for a rep-
resentative diffuse re� ectance image at 630 nm. The im-
ages were circumferentially binned, and the intensity pro-
� les were natural log transformed. Figure 3c shows rep-
resentative log transformed diffuse re� ectance pro� les at
24 wavelengths for one of the samples. These pro� les
combined with the expected optical properties at 24
wavelengths of the forty samples constituted, respective-
ly, the X and Y matrices of the turbid phantom training
set.

Monte Carlo simulated data were used as the training
set for PLS regression. To account for the instrument fac-
tors, Monte Carlo simulated image was convolved with
the instrument response at the appropriate wavelength to
form MCSIJIR. Figure 4a shows a typical example of
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FIG. 4. (a) Examples of the Monte Carlo simulated image for ma and
m values of 0.028 mm21 and 1.16 mm21, respectively, and the FTIIS9s
instrument responses (IR) at 630 nm. IRs were calculated from the
hyperspectral images collected on a reference phantom and the corre-
sponding MCSI generated from its optical properties. MCSI was con-
volved with IR at the appropriate wavelength to generate MCSIJIR.
A Monte Carlo training set was constructed from MCSIJIR data. (b)
Representative examples of the circumferential binned and log-trans-
formed MCSIJIR data.

the instrument response (630 nm) and the convolution
procedure used to generate a simulation-based training
set. Representative log transformed diffuse re� ectance
pro� les from MCSIJIR data are shown in Fig. 4b for
24 wavelengths.

The regression of ma spectra vs. diffuse re� ectance pro-
� les was carried out separately from that of m spectra9s
vs. diffuse re� ectance. PLS regression with full-cross val-
idation of the turbid phantom training set resulted in PLS
models (trainTPD–valTPD) with rank (i.e., the number
of components where RMSEP was minimal) 10 for ma

and rank 5 for m . Similarly, PLS regression with full-9s
cross validation was carried out on the MCSIJIR train-
ing set, resulting in PLS models (trainMCSI–valMCSI)
with rank 8 for ma and rank 5 for m . In the third case9s
(i.e., trainMCSI–predTPD), PLS models were developed

from an MCSIJIR training set and were subsequently
used to predict the optical properties of turbid phantoms.
Optimal predictions were achieved using PLS models
with a rank 5 for both ma and m .9s

Figure 5 plots the results of predicted (from absorption
spectrophotometry) vs. expected ma for the three PLS
models. Data at 730 nm are shown for 40 samples and
represent typical prediction results for ma at other wave-
lengths. The merit indicators of ma prediction (i.e., the
slope, correlation coef� cient, and RMSEP) for the data
shown are speci� ed in the � gure caption. Likewise, Fig.
6 plots predicted vs. expected m for the three PLS mod-9s
els. Data at 640 nm are shown for 40 samples and rep-
resent typical prediction results for m at other wave-9s
lengths. The slope, correlation coef� cient, and RMSEP
of m prediction for the data shown are speci� ed in the9s
� gure caption.

Values for the slope, correlation coef� cient, and
RMSEP at all measured wavelengths were pooled and
the mean and standard deviations computed from the
pooled values. Figure 7a plots the mean slope and cor-
relation coef� cient of ma and m predictions for the three9s
PLS models. When the prediction is perfect, the slope
and correlation coef� cient equal one while RMSEP
equals zero. For ma prediction, mean slopes of 1.014,
1.040, and 0.972 were obtained, respectively, fo r
trainTPD–valTPD , trainMCSI–valMCSI, and train-
MCSI–predTPD models. The corresponding mean cor-
relation coef� cients for the models were 0.958, 0.976,
and 0.931. For m prediction, the mean slopes for the9s
respective models were 0.974, 0.979, and 0.956. The cor-
responding mean correlation coef� cients were 0.978,
0.995, and 0.980, respectively. Error bars for ma and m9s
plotted in Fig. 7a correspond to standard deviations. Note
that the standard deviations for m prediction are quite9s
small, and consequently, the error bars do not display
well. Error bars for ma prediction are large compared to
error bars for m prediction because the merits of ma pre-9s
diction are dependent on the wavelength. Compared to
the results shown in Fig. 5, ma prediction was more ac-
curate for shorter wavelengths but less accurate for longer
wavelengths. In contrast, the merits of m prediction were9s
less dependent on the wavelength. Figures 7b and 7c plot
the mean RMSEP of ma and m prediction, respectively,9s
for the three models. The root mean square errors of pre-
diction for ma prediction were, respectively, 0.0094,
0.0057, and 0.0130 mm21 (or equivalently, 68%, 65%,
and 612% in terms of percent accuracy) for trainTPD–
valTPD, trainMCSI–valMCSI, and trainMCSI–predTPD.
The root mean square errors of prediction for m predic-9s
tion were 0.081, 0.038, and 0.082 mm21 (65%, 63%,
and 65%) for the respective models. All merit indicators
were optimal when PLS regression and validation were
performed on the MCSIJIR training set.

The ma and m spectra derived from PLS predictions9s
were used to determine the dye and Intralipid concentra-
tions. Speci� cally, a second stage PLS regression and a
least-squares algorithm were used to extract chromophore
concentrations from ma spectra. Similarly, Intralipid per-
cent volume of each phantom was calculated from m9s
spectra. Concentration calculations obtained by using ei-
ther PLS regression or least squares solution have com-
parable accuracy. Accordingly, Fig. 8 shows only repre-



APPLIED SPECTROSCOPY 1041

FIG. 5. PLS prediction of ma on all 40 phantoms is shown for the three PLS models at 730 nm. (a) PLS regression and full-cross validation were
performed on the turbid phantom data set (trainTPD–valTPD). The slope, correlation coef� cient, and RMSEP of ma prediction were 1.03, 0.964,
and 0.0041 mm21, respectively, for a 10-component model. (b) PLS regression and full-cross validation (trainMCSI–valMCSI) were performed on
the MCSIJIR data set. The slope, correlation coef� cient, and RMSEP of ma prediction were 1.05, 0.979, and 0.0029 mm21, respectively, for a 10
component model. (c) PLS regression was � rst performed on the MCSIJIR data set; the resulting PLS model was then used to predict ma from
the turbid phantom data (trainMCSI–predTPD). The slope, correlation coef� cient, and RMSEP of ma prediction were 0.969, 0.954, and 0.0054
mm21, respectively, for a 5-component model.

sentative dye and Intralipid concentrations for the 40
phantoms that were obtained by the least-squares solu-
tion: (a) predicted vs. expected Prussian blue concentra-
tions, and (b) predicted vs. expected Intralipid concentra-
tions. A comparison of the predicted vs. expected con-
centrations shown in Fig. 8 yielded a prediction accuracy
of 67% for Prussian blue and 60.5% for Intralipid.

CONCLUSION

Quantitative hyperspectral imaging of diffuse re� ec-
tance from turbid media offers several key advantages
over contact � ber-probe strategies. First, the image con-
tains a complete two-dimensional pro� le of diffuse re-
� ectance over a continuous and adjustable range of dis-
tances from the source. This feature may be important in
the spectroscopy of biological tissues because the full im-

age offers the possibility of identifying inhomogeneous
regions. Second, image detection can be performed in
non-contact or remote mode, an important feature well
suited for certain clinical measurements. Third, conven-
tional bright � eld images of the medium can be collected
in conjunction with diffuse re� ectance, making it possible
to simultaneously visualize super� cial structure and un-
derlying composition. Finally, the FTIIS has an intrinsi-
cally broad spectral dynamic range (visible to near-infra-
red), thereby overcoming range limitations of single or
multi-source imaging devices.

In a previous study, we noted that direct � tting of Mon-
te Carlo simulations to diffuse re� ectance pro� les is com-
putationally intensive and time consuming.28 Consequent-
ly, the direct � tting approach is not suitable for applica-
tions that require rapid processing of hyperspectral data.
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FIG. 6. PLS prediction of m on all 40 phantoms is shown for the three PLS models at 640 nm wavelength. (a) PLS regression and full-cross9s
validation were performed on the turbid phantom data set (trainTPD–valTPD). The slope, correlation coef� cient, and RMSEP of m prediction were9s
0.974, 0.978, and 0.084 mm21, respectively, for a 5-component model. (b) PLS regression and full-cross validation were performed on the MCSIJIR
data set (trainMCSI–valMCSI). The slope, correlation coef� cient, and RMSEP of m prediction were 0.971, 0.992, and 0.040 mm21, respectively,9s
for a 5-component model. (c) PLS regression was � rst performed on the MCSIJIR training set; the resulting PLS model was then used to predict
m from the turbid phantom data set (trainMCSI–predTPD). The slope, correlation coef� cient, and RMSEP of m prediction were 0.956, 0.980, and9 9s s

0.085 mm21, respectively, for a 5-component model.

In this study, PLS regression was used to predict optical
properties as well as concentrations from the hyperspec-
tral diffuse re� ectance data. The study results show that
PLS regression is an effective approach to rapidly quan-
tifying optical properties of turbid media from the hy-
perspectral diffuse re� ectance data. The accuracy of us-
ing a PLS model to predict ma and m is comparable to9s
the direct � tting approach.28 For instance, PLS prediction
of ma is accurate to within 68% while the accuracy for
direct � tting is 67%. PLS prediction of m has an accu-9s
racy of 65% while direct � tting is 63%. Note that the
accuracy values are applicable for homogenous media
with optical properties that are within the speci� ed range.
However, the approach is applicable for media with op-
tical properties outside the range investigated in the
study.

Not surprisingly, the best PLS prediction was obtained
when PLS regression and validation were used with
MCSIJIR data. MCSIJIR data were not subject to ex-
perimental errors, such as the measurement uncertainties
associated with phantom preparation. Additionally, a cal-
ibration procedure was used to explicitly determine the
instrument response in the case of MCSIJIR data. With
regard to the turbid phantom data, we relied on the PLS
model to implicitly account for the instrument response.
The calibration procedure may be more accurate in ac-
counting for the instrument response than PLS regression.
Consequently, prediction results are optimal. Because the
Monte Carlo simulations and IR contain noise, prediction
of MCSIJIR data has small but � nite errors. However,
noise in the Monte Carlo data can be reduced by using
more photons in the simulation.
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FIG. 7. The merit indicators of PLS prediction (i.e., the slope, correlation coef� cient, and RMSEP) at all 24 wavelengths were pooled. Mean and
standard deviations of the slope, correlation coef� cient, and RMSEP were calculated from the pooled data. (a) Plots of the mean slope and correlation
coef� cient of ma and m predictions for the three PLS models. Error bars represent standard deviations. Standard deviations for m are quite small;9 9s s

consequently, the error bars do not show clearly on the plot. (b), (c) Respectively, plots of the RMSEP for ma and m predictions of the three PLS9s
models.

Although the accuracy of quantifying ma and m was9s
not improved with multivariate analysis, PLS regression
is a more attractive approach than direct � tting for several
important reasons. First, PLS prediction of ma and m is9s
computationally ef� cient and rapid, since prediction is
made directly from the linear PLS model rather than re-
lying on a computationally intensive iterative search al-
gorithm. Second, PLS regression offers practicality and
� exibility not seen with direct least-squares � tting. Even
when the physical underlying processes are not fully un-
derstood, it is still possible to construct an empirical PLS
model based on an experimental training set. In cases
where the physical processes (e.g., photon propagation in
turbid media) and instrumental factors are fully charac-
terized, a training set can be generated from simulated
data. In fact, the study results demonstrate that a PLS

model trained on simulated data (MCSIJIR) predicts op-
tical properties from measured diffuse re� ectance data
almost as well as a model trained on turbid phantom data.
This is, of course, only possible when the relationship
between the measured quantities (e.g., diffuse re� ectance)
and the parameters of interest (e.g., optical properties) is
fully understood. The option of using a simulated training
set has an important practical implication. It is not nec-
essary to generate a training set from real samples every
time the instrument settings are changed. This is prefer-
able because sample preparation and data collection are
often time-consuming and cumbersome tasks. In essence,
a much simpler IR calibration procedure replaces the
time-consuming and inef� cient process of constructing
the training set from real samples. Moreover, the ability
to use simulated data to accurately model the physical
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FIG. 8. Least-squares method was used to determine the chromophore
and Intralipid concentration. Dye concentrations were determined from
ma spectra, while Intralipid percent volume was extracted from m spec-9s
tra. Examples of the least-squares (LSQ) derived concentrations are
shown for 40 phantoms: (a) Prussian blue concentration and (b) Intral-
ipid percent volume. For the data shown, the errors between predicted
and expected concentrations are within 67% and 60.5% for Prussian
blue and Intralipid, respectively. Similar accuracy values were obtained
when a second PLS regression was used to predict concentrations from
the optical property spectra.

processes is essential for spectroscopy of in situ tissues,
where it is rarely possible to generate the training set
from tissue samples.

In summary, a non-contact FTIIS imaging system in
combination with PLS regression can be used to rapidly
quantify the optical property spectra of turbid media over
a wide spectral range. This integrative approach proves
suitable for quantitative spectroscopy of tissue optical
properties.
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