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Abstract

The release of alkali metals during biomass pyrolysis was numerically and experimentally studied. The
concentration of sodium and potassium in the gas phase above a biomass particle was measured;
quantitative and time resolved data was acquired by means of the Laser-Induced Breakdown
Spectroscopy (LIBS) technique. LIBS made it possible to extend the measurements of alkali metal
concentration to the sooty pyrolysis stage. Data from the measurements revealed a staged release of
alkali metals from biomass. Two distinct peaks of concentrations were observed, one associated with the
pyrolysis stage and the other with the gasification stage. Since during the pyrolysis stage a large
temperature gradient exist inside the particle, numerical simulations were carried out to explain the
experimental measurements and extract the kinetic data. Using a detailed particle model, the rates of
potassium and sodium release from the particle during the pyrolysis stage were attained. For sodium
release the activation energy was found to be in the range of 218 to 248 kJ/mole and for potassium
release it was found to be between 168 and 198 kJ/mole. Furthermore, equilibrium calculations were
performed to identify the stable sodium and potassium compounds and their phases during the pyrolysis

stage of the particle.

Keywords: Alkali metal release; Biomass; Pyrolysis; LIBS; In situ measurement

1. Introduction

Owing to the presence of high amount of alkali metals (potassium and sodium) in some biomass
sources, the release of alkali metals during biomass pyrolysis and gasification can cause serious damage
to the gasification systems. The problems can lead to reduced heat transfer, disturbance of the gas flow,

physical damage to the gasifier parts, corrosion and erosion of the parts due to fouling, slagging, and



agglomeration [1-5]. To prevent the damage caused by these species it is important to understand the
release of alkali metals during thermochemical conversion of biomass.

Recent studies identified staged release of sodium and potassium from biomass during the biomass
pyrolysis stage and the char gasification/combustion stage [6, 7]. During these different stages, the
composition of potassium and sodium compounds can be different. Potassium in biomass is mostly in
the form of ionic salts [3, 8] and depending on the presence of water vapor, the main form of potassium
compound in gas phase can change between KOH and KCl [3]. Sodium in biomass usually exists at
lower concentration compared with potassium and behaves similarly as potassium. Sodium compounds
in the gas phase are mostly NaCl and NaOH [8]. Sodium can also react with sulfur to form sulfates. CI
and S can assist the mobility of sodium and potassium; however, there are studies showing that Cl and S
can be released at low temperature, between 200-700 °C, while the potassium content of biomass
remains intact at these temperatures [9-12]. While the main Cl compounds at low temperature are HCI
and methyl chloride (CH3Cl) [10, 13], at temperatures higher than 700 °C, Cl will be released mainly in
the form of alkali metal chlorine [14]. More release of sodium compared with potassium has been
reported at low temperature pyrolysis [15]. The higher release of sodium at temperature below 700 °C
can be associated with the sublimation of NaCl, while the sublimation of KCI will occur at temperatures
higher than 700 °C [15]. Part of the potassium release during pyrolysis can be redeposited as discrete
particles of KCl and K>COs bounded to the organic matrix of biomass. Later in the process at higher
temperatures, the initial release of potassium to the gas phase is due to the sublimation of these discrete
KCl particles [11]. By increasing the temperature, it was shown that the release of K will increase [16,
17].

Above mentioned studies show that there is a strong dependency between the amount and
composition of alkali metals compounds with temperature, gas composition and the stage of biomass

conversion. Despite these efforts, qualitative and time resolved data on the gas phase concentrations and
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release kinetics of alkali metals during biomass pyrolysis is rare. The focus of this paper is on the release
of sodium and potassium during the pyrolysis stage of biomass at different temperatures. To this aim, a
joined experimental and numerical study was performed. Experimental data was attained by placing a
biomass particle in the hot flue gas of a methane flame and Laser-Induced Breakdown Spectroscopy
(LIBS) was employed to measure the time-resolved concentration of potassium and sodium at the
boundary of the particle at different temperatures and gas compositions. The LIBS method has the
advantage of providing in-situ and time resolved data during the sooty pyrolysis stage, while other
techniques may fail due to the laser scattering in this condition. Previous studies on the release of
sodium from a coal particle with planar laser-induced fluorescence (PLIF) [7, 18] was limited to the
combustion and gasification stage due to the high level of laser scattering during the pyrolysis stage. A
recent study on release of potassium from a pine wood particle by LIBS technique has also shown the
capability of the technique for quantitative measurement of alkali metal release [19]. The experimental
data is used in a detailed numerical model of the particle to estimate the chemical kinetics of alkali
metals release. Furthermore, the kinetic data was supplemented by equilibrium calculations to study the

stable species in the gas phase under the experimental condition.

2. Experimental measurements

The LIBS technique was adopted to measure quantitatively the concentration of alkali metals during
thermochemical conversion of biomass. LIBS provides high temperature plasma using a high energetic
laser pulse. The existing species in the focus point of the laser are dissociated to atoms and the excited
atoms will deliver a spectral signature that can be detected by a spectrometer and can be calibrated to
provide quantitative data of the element concentration. By employing the LIBS technique, temporal

release of potassium and sodium was measured in the flue gas of methane combustion with different



concentrations of O, diluted by carbon dioxide, at four different temperatures. The hot flue gas was
provided from a laminar multi-jet burner flame.

The particle samples were cylindrical pellets from Swedish wood with a diameter of 8 mm and
height of 4 mm. The ultimate analysis of the samples shows 50.6% C, 6.6% H and 42.8% O on dry ash
free basis. The mass fraction of sodium and potassium in the dry particle are 0.03% and 0.05%,
respectively. The details of the experimental set-up and the measurement technique can be found in [6].
The experimental conditions are presented in Table 1. Two equivalence ratios, ¢, and four different
temperatures are studied. Temperatures at the exit plane of the burner at three locations, center, middle

and outer limit, are presented in the table.

Table 1. Temperature profile along the radius of the burner exit plane for various test cases

0] Temperature profile along  Label
radius [K]
r=0 r=20mm r=33mm
0.9 1596 1515 577 F1
1483 1272 562 F2
1408 1100 567 F3
1.2 1518 1491 718 F4

3. Numerical analysis

During the pyrolysis stage, the particle experiences a large temperature gradient from its surface to
its center. This is due to the fact that the particle is thermally thick and is still in the transient heating up
stage. Due to the limitation in the experiment, the detailed information inside the particle is not
available. To relate the measurement data to the processes inside the particle during this transient stage,
a detailed numerical model was employed. The particle domain is discretized into control volumes and
mass, species and energy conservation equations are solved for each control volume. The model

considers the convective and conductive heat and mass transfer and radiative heat transfer inside the



particle as well as heat and mass transfer between the particle and the surrounding gas. The particle
model is presented in [20]. A sub-model is developed to calculate the release rate of alkali metals based
on the measured concentrations. This sub-model is presented below.
3.1. Alkali metal release sub-model

Considering the convective and diffusive transport of a given species from the porous structure of

biomass to the ambient, the total mass flux of a given species j can be represented as follows [21],

=Y+ Aphpy (57 = ¥, n
j

where Y; is the mass fraction of species j and the superscripts s and co represent the conditions at the
particle surface and in the ambient gas, respectively. p, is the gas density and Ap is the outer surface

area of the particle which changes with time due to the particle shrinkage and h,, is the mass transfer
coefficient. In this equation, the diffusion through the ash layer is neglected due to the low ash content
of the particle. By dividing the particle into control volumes where i represents each control volume cell

inside the particle, 7; = X,; R; ;V; is the sum of the formation/consumption rates of species j in the entire
particle domain. R; is the volumetric formation/consumption rate of mass of species j where O, COs,

H>O, CHs, H», Tar, K and Na are considered and V; is the volume of the cell i. The rates of
formation/consumption of each species due to various processes inside the particle are presented as

follows:

Ruzo = Rm + 200y — Muzo/Mc Ry,

Reoz = ﬁcozmg — Mcoz/ M, ERccoz @)

mco =l9comg+Mco/MC(mC02+2m +§R

€coz CHZO)

Rens = 19CH4mg
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Ry, = ﬁHZERg + MHZ/MCERCHZO

Roz = -2 MOZ/Mcg‘Rcoz'

where R, is the moisture evaporation rate, R is the rate of formation of gas due to pyrolysis and R, is
the rate of heterogeneous reactions of char with O, CO and H>O. 9; accounts for the mass fraction of
species j on the basis of the total gas produced due to pyrolysis and M; is the molar mass of species or

element j. The mass fraction of each species at the particle surface can be obtained by dividing the mass

flux of species j by sum of all the species mass fluxes,

s _ 2iR;iVi + AphypgV™
P XN RV +Aphmpy

(€)

The first term in the numerator is the total mass formation/consumption rates of species j in the
entire particle volume due to moisture evaporation, pyrolysis and heterogeneous reactions. The second
term in the numerator is the mass transfer of species j from/to the ambient gas. The two terms in the
denominator are the sum of all the species mass fluxes at the particle surface.

Equation (3) provides the connection between the rate of release of potassium and sodium from the
particle and the measured concentrations at the particle surface. In the experiments, the elemental

. . Ex . . .
concentrations of potassium, Cy P were measured. The mass fraction of potassium is equal to the

YKExp = ngp /pg. Due to the short distance between the

concentration divided by the gas density,
particle surface and the measurement point the mass fraction of potassium at the measurement point is

approximately equal to the mass fraction at the particle surface, Y@ = YKE *P and similarly for sodium,

s ~ yEXP
=D 7



3.2. Extracting kinetic data

For all the species in the system, except for K and Na, the formation and consumption rates are
known, cf, Eq. (2). By rearranging Eq. (3) and assuming that the concentrations of the gaseous

potassium and sodium in the ambient gas are zero, the rate of release of potassium and sodium are,

. Vi (X i Ty +Ap hmpy)

Ty T-7; .k = Kand Na. 4)

The rates of formation of Ky and Na, are equal to the rates of consumption of corresponding species
in solid form inside the particle. If mg, ,;, and my, g ,,, represent the time dependent mass of K and Na
that remain inside the particle, by assuming a first order kinetic rate for consumption of solid K and Na,

one can write,

de lid EK .
T = i g exp (~ 755) =

dmya. . E
solid __ _“Na) _
dt _”lNasolidANaexp( RT) = N

)

where A is the pre-exponential factor, E is activation energy and R is the universal gas constant. The

kinetic constant for potassium and sodium release can be obtained by knowing the instantaneous

Na

. 7
consumption rates and masses of K and Na (m X and —
Ksolid Nasolid

) and the particle temperature. The
release rates of K and Na (73) are calculated by using the experimental data and Eq. (4) while the

particle temperature and the instantaneous masses of K and Na are obtained from the detailed particle

Tk

model. Linear least-square fitting in ln( ) and % space then provides the estimate of A and E

Mksolid

through rearrangement of Eq. (5).



4. Results and discussions
4.1. Kinetic rate constants of alkali metal release

The temperature inside the particle shows a high spatial variation during the pyrolysis stage due to
the large Biot number and the importance of the intra-particle heat transfer. The particle model showed
that this variation can be up to several hundred Kelvin and therefore it is not suitable to assign an
average temperature to the particle while calculating the kinetic rate constants of alkali metal release.
Figure 1 shows the particle temperature history during the pyrolysis stage. The difference between the
highest (at the surface) and lowest (at the center) temperature in the particle is also presented in the

figure. The temperature difference reaches to 500 K during a large part of the pyrolysis stage.

1400
1200
1000+
800
600+
400
200

Temperature [K]

30 40
Time [s]

Figure 1. Particle temperature at surface and center, average temperature and temperature difference during the
pyrolysis stage

To assign the corresponding temperature to the release rates, both distributions of temperature and
the rates are required. The temperature distribution inside the particle at each time during the particle
conversion can be calculated from the particle model. Since 74, = };; Ry ;V;, the distribution of the Ry ;
inside the particle is required to be assigned to the correct temperature. To find a spatial distribution for
Ry i, it 1s assumed that the K and Na release start from the particle surface, similar to the drying and
pyrolysis processes, and also the spatial distribution of the K and Na release rate inside the particle is

similar to that of the pyrolysis rate. Figure 2 shows the spatial distribution of the pyrolysis rate at
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different times between t = 10 and 50 s. At the beginning of the process, the distribution is more spread
along the particle radius and shows a smaller peak value due to the relatively lower particle temperature.
When the particle temperature increases, the distribution becomes narrower, representing a sharper
pyrolysis front. The same spatial distribution as presented in Figure 2 is assigned to release of K and Na
providing the location of the reaction front inside the particle. By knowing the location of the reaction

front at any time, a temperature distribution can be associated to the release rates.

o
o

Increasing Time
-

Rv [Kg/m3s] _.
o
o

1 2 3
Particle Radius [mm]

Figure 2. Spatial distribution of pyrolysis rate inside the particle at different time instances

By plotting In (7 /my,,;,) versus 1000/T and fitting a linear regression function to the data

points, estimates of E} /R and In(A4;) can be obtained. Figure 3 shows the scatter plots of the inverse
temperature and the natural logarithm of the release rates for both K and Na during the pyrolysis stage.
Each data point in this figure represents a numerical cell with nonzero release rate at each time step for
all four cases, F1-F4. The linear fit to each set of data, F1 to F4, is presented with a solid line in the
same figure. The activation energy is equal to the slope of the linear regression times the universal gas
constant, R. For sodium release, the activation energy spans from 218to 248 kJ/mole and for
potassium release it changes between 168 and 198 kJ/mole. The pre-exponential factor is equivalent to
the exponent of y intercept and shows values between 102~10%* 1/s for sodium and 4 X 10°~9 X
101° 1/s for potassium. By fitting a line to all data sets, the average values of activation energies and

pre-exponential factors for sodium and potassium release during the pyrolysis stage can be obtained,
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Ag=5.3 %10 1/s; Ex = 185 kJ /mole
(6)
Ana=3x 102 1/s; Ey, = 223 kJ /mole.

During calculation of the activation energies and pre-exponential factors for the release rate of
sodium and potassium, the data corresponding to low temperatures (less than 750 K) were excluded, as
they showed very low activation energies. The release of potassium and sodium at low temperature can
be due to the sublimation of water solvable compounds which is controlled by the heat transfer rate

rather than the kinetic rate.

Or ' ' ' = 2
,%_2?;‘ ,,,,,,,,, '%0
§-4— E:-z
E gt € 4
11 105 12 125 1.3 1.0 115 T2 155 13

1000/T [1/K] 1000/T [1/K]
F1:In(r/m, ) =-29.936(1000/T)+32.889; R’=0.957  F1:In(r,/m,, . ) =-22.527(1000/T)+25.222; R’=0.956
F2: In(r/m, ) =-28.908(1000/T)+31.721; R’=0.954  F2.In(r,/m,, . ,.) =-22.665(1000/T)+25.362; R’=0.934
F3:In(r,/m, ) =-26.385(1000/T)+28.109; R*=0.935  F3:In(r,/m,, . ) =-20.261(1000/T)+22.113; R’=0.945
F4:In(r /m, ) =-26.308(1000/T)+27.746; R*=0.963  F4.In(r,/m,, . ) =-23.915(1000/T)+26.538; R’=0.965

K,soli

Figure 3. Scatter plot of the natural logarithm of 7 /my g ;. versus the inverse of temperature for sodium and
potassium during the pyrolysis stage

Figure 4 shows the normalized mass of sodium and potassium in the biomass during the pyrolysis
stage. The mass is normalized with the initial mass of each of these species inside the solid structure, as
reported in the ultimate analysis of the particle. The sodium mass curves show that up to 55% of the

sodium is released during the pyrolysis stage. This value for potassium is much lower, up to 10%,
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showing that the potassium release mostly occurs during the char burning and ash-cooking stages at
higher temperatures. This is in agreement with the findings of previous studies, e.g., [15], where the

release of potassium was reported to occur at higher temperature compared with that of sodium.

@ | pr—————nggpzma s T Potassiu
Soof 0 gy T
-
g osf E; -
8 b e B2 N\ Sodium
E A | =< S N
R0T) S— F4
=2

05 1020 20 50 80 70

30
Time [s]

Figure 4. Normalized mass of sodium and potassium in the particle during the pyrolysis stage

The measured concentrations of K and Na for the four cases, F1-F4, during the pyrolysis stage
along with the model predictions are presented in Figure 5. Each measurement point is an average of
data from ten different biomass samples. The peaks of the sodium and potassium release correspond to
the highest particle mass loss rate. While the model can predict the peak of sodium and potassium
release and the trend regarding different cases, there is a discrepancy between the measurements and the
model prediction at the early stage of the process. This early stage corresponds to the sodium and
potassium release at low temperature, for which the data was disregarded when estimating the kinetic
constants. The larger difference between model prediction and measurement in the case of sodium
compared with potassium is due to the lower sublimation temperature of NaCl compared with KCI [15]
and higher release of Na at lower temperature. The kinetic constants for release of potassium during the

char combustion and ash-cooking stages along with a proposed mechanism are presented in [6].
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Figure 5. Measurements and model prediction of mass concentration of potassium and sodium at four different
flame conditions; symbols are from the experiment and lines are from the numerical model

4.2. Thermodynamic equilibrium calculations

The data from the LIBS measurement can provide the total atomic release of potassium and sodium
from the particle. However, the different species that contain potassium and sodium cannot be identified
by this technique. The knowledge of the gas phase composition is essential, as some of the species are
more likely to cause problems such as slagging than the others. To investigate the stable species in the
gas phase under the experimental conditions, thermodynamic equilibrium calculations were carried out.
In equilibrium calculations, for a given composition, temperature and pressure of the system, the stable
species and their state are identified by minimizing the total Gibbs free energy of the system while
maintaining the mass conservation constraint. The calculations are performed under the assumption that
the residence time of the system is significantly longer than the chemical kinetic time scale and all the
species are homogenously mixed and available for reaction [22]. Thus, the results can be considered
qualitative and serves as a reference.

The equilibrium calculations were performed using CHEMKIN [23]. More than 100 species were
considered in the system. The list of elements and species used in the calculations are presented in Table
2. The thermodynamic data for the listed species are from Goos et al. [24] and the CHEMKIN database

[23]. For some of the potassium compounds which weren’t available in those databases, thermodynamic
14



data from Glarborg and Marshall [25] was used. Thermodynamic properties of K>2O-(Si02) and Na>O-

(S10») systems were extracted from Allendorf and Spear [26].

Table 2. List of elements and species included in the equilibrium calculations

Elements | Species in gas, liquid and solid phases

C, H, O, N | Biomass (approximated by CsH;0Os), Char (Approximated by Cs)), CHs
Csz C2H4 CO COz HzO(L) HzO Hz @] 02 03 OH NH NHz NH3 N2H4 HCN
HNO HNO; HNO3; N> N>O N,O4 NO NO,

K K KOH (KOH), K,COssy K2Os) KO KO, KC1 KCl1y KClsy (KCI), KSO»
KSO; KHSO4 KHSO3 KSO4 KSO3;CL K2SO4 KaSOys) (K2SOs),  (K2SO4)3
(K2S04)s KoSO41) K20.(Si02) Kr0.(S102): K0.(Si02)s K20.(Si02)s)
K>0.(S102)xs) K20.(Si102)4sy KCN

Na Na Nazo(s) Na2804 Nast4(s) Na2804(ii) Na2804(m) Na2804(iv) Na2804(v)
NaCl NaCl(s) NaOH Na20.8i02 (Na20.8i02)2 Nazo.Si02(5) (Nazo.Si02)2(s)

S S S(s) H2S SN SO COS SO, SOs S,

Cl HCI CCI CClI, CCl; CCly CoCls C1 CIO Cl,

Si Sis) Si Siz Si3z SiOys) Si204 SiCl SiCl, SiClbH; SiCls SiClsH SiCls SiH SiHy

The equilibrium calculations are sensitive to the elemental composition of the system [27], therefore
different cases were considered for comparison. KoCOjzs), K2SOss), KoO-(SiO2)s) and KCls) were
chosen as the initial solid state of potassium and Na>O-(Si02)(s), Na2SOs4s) and NaClsy were considered
for sodium. Different concentrations have been tested and the results are found not sensitive to the initial
concentrations of these compounds.

Three different cases were considered; in Case I, the main solid form was represented by Cs), in
Case II, 10% (mass base) of moisture was added to Cs) and in Case III, the solid biomass was
approximated by CsH10Os in the presence of H>O. The pressure of the system was set to 1 bar and the
temperature was varied from 500 to 1500 K. The main species of potassium and sodium from
equilibrium calculations for the three cases are presented in Figure 6. Comparing the results of Case I
and II shows that in the presence of water vapor the main potassium and sodium compound changes
from K and Na to KOH and NaOH, respectively. By adding H>O to the system, K>CO3(s) and KCls)

become stable until higher temperatures and the amount of KCl in the gas phase is reduced by an order
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of magnitude. In the temperature range of 500 to 1000, the equilibrium mole fraction of KoCOj3s) shows
a 50% increase and the equilibrium mole fraction of KCls) shows up to 100% increase in comparison
with their initial values. This increase can indicate that during the pyrolysis stage, evaporated inorganic
potassium can be redeposited in the solid structure in the form of K>COjss) and KCls). This is in
agreement with the findings of Jensen et al. [11]. For sodium release, on the other hand, the evaporation
of NaCls) is dominant and part of the evaporated inorganic sodium is redeposited in the form of Na>O-
Si0xs) and remains stable until high temperatures.

For Case III, the results are fairly different. KOH is the main gaseous species of potassium. For
sodium, NaOH, NaCl and Na are presented in the gas phase but in a considerably lower concentrations

compared with case I and II.
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Figure 6. Main species of potassium and sodium from equilibrium calculations of three different cases

It should be noted that for large particles, different parts of the particle can be in different stages of
thermochemical conversion. The overlapping between different processes indicates that char, biomass
and water vapor can coexist in the particle; char at the outer part, dry biomass in the middle part and

moist biomass at the center of the particle. Thus, the overall release of potassium and sodium to the gas

16



phase can be considered as the sum of the results from Case I to III. By considering these three cases,
one can conclude that at low temperature the main potassium species in the gas phase is KOH, while at
moderate temperatures atomic K can be dominant. At higher temperature, towards the end of the
pyrolysis, KCI can be released to the gas phase. Atomic sodium, Na, and at higher temperatures with

lower concentrations NaOH and NaCl are the main sodium species in the gas phase.

5. Conclusion

The release of potassium and sodium from a biomass particle during pyrolysis stage were
experimentally and numerically studied. The experiments were carried out using the LIBS technique, a
powerful atomic spectroscopic method that can overcome the laser scattering during the pyrolysis stage.
The results showed distinct behaviors during the pyrolysis and gasification stages, indicating different
mechanisms and kinetic rates for the release of alkali metals at these stages. The experimental
measurements were used to extract the global kinetic constants of alkali metals release during the
pyrolysis stage. To find the kinetic constants, the temperature at the potassium and sodium “reaction
front” is required. Due to the high spatial variations of temperature inside the particle, a detailed particle
model was employed to assign corresponding temperature to the release rates. The average activation
energy for the release of sodium was found to be 223 kJ/mole and for potassium 185 kJ/mole. The
kinetic data could predict the amount of potassium and sodium released during the pyrolysis stage. It
was shown that during the pyrolysis stage up to 55% of the sodium and less than 10% of potassium was
released. To investigate the composition of sodium and potassium compounds in the gas phase,
thermodynamic equilibrium calculations were carried out in the temperature range of 500 to 1500 K.
Three cases were considered, representing large particles during the pyrolysis stage. Due to the

overlapping processes in large particles, char, water vapor and biomass can coexist and different

17



potassium and sodium compounds can be originated from these different parts. By analyzing these

different cases, the stable sodium and potassium compounds in the gas phase were discussed.
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