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Large-scale multiconfiguration Hartree-Fock calculations of hyperfine-interaction constants
for low-lying states in beryllium, boron, and carbon
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Charlotte Froese Fischer
Department of Computer Science, Vanderbilt University, Box 6035 B, 1Vashv'ille, Tennessee 37235

(Received 15 June 1993)

Multiconfiguration Hartree-Fock (MCHF) calculations of hyperfine constants for the 2s2p P states of
beryllium and the ground states of boron and carbon are reported. The capacity of a recently developed
configuration-interaction program [Froese Fischer and Tong (unpublished); Stathopoulos and Froese
Fischer (unpublished)], allowing for large configuration expansions, is explored. Using a systematic
active-space MCHF approach, combined with large multireference configuration-interaction calcula-
tions, it is shown that hyperfine constants can be calculated very accurately. To reliably account for
spin-polarization of the 1s and 2s shells in boron and carbon, three-particle effects had to be included in

a systematic way. The relativistic, finite-nuclear-size- and finite-nuclear-mass-corrected values of the
hyperfine constants are compared with experimental values and with the most accurate theoretical
values obtained with other methods.

PACS number(s): 31.20.Tz, 31.30.Gs, 31.30.Jv, 31.20.Di

I. INTRODUCTION

and

WM t(J,J)=—'AqC

The hyperfine structure of atomic energy levels is
caused by the interaction between the electrons and the
electromagnetic multipole moments of the nucleus. The
leading terms of this interaction are the magnetic dipole
and electric-quadrupole moments.

The hyperfine interaction couples the electronic (J)
and nuclear (I) angular momenta to a total momentum
F=I+J. In the ~yIJFM~) representation the diagonal
hyperfine energy corrections are given by

—,'C(C+1) I(I+1)J—(J+1)
WE2( J,J)=Bq 2I (2I —1)J(2J —1)

where

C =F(F+ 1)—J (J+ 1) I(I+ 1) . —

(2)

The magnetic dipole hyperfine constants AJ can be
written as linear combinations of the orbital, spin-dipole,
and Fermi contact parameters (at, a,d, and a, ) [1]:

1 I (L'J) [3(S L)(L'J) L(L'+ll(S'J)] gs '(S'J) gs
' I LJ(J+1)g, a, +

SL (2L —1)J(J+ 1) 2 ' SJ(J+ 1) 6asd + a

where, for an ¹ lectron atom,

N
aI= yLSLS lo" i r; yLSLS

i=1
N

a,d= yLSLS 2CO ' i so" i r, yLSLS
i =1

N

a, = yLSLS 2so" i r,- 5 r; yLSLS
i=1

and

(L.J)=
—,
' [J(J+1)+L(L+1)—S(S+1)],

(S.J) =
—,'[J(J+1) L(L+1)+S(S+—1)],

(S L) =
—,'[J(J+1) L(L+1)—S(S+1)], —

(3)

(4)

(6)
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pl is the nuclear magnetic dipole moment, g& =(1—m, /M„, ) the orbital electron g factor, and g, =2.002 32 the QED
corrected electron-spin g factor. The electric-quadrupole hyperfine constants BJ are proportional to the electric-field
gradient b:

[6(L J) —3(L J) 2L—(L+1)J(J+1)]
L (2L —1)(J+ 1)(2J+3)

(10)

where

N
b = yLSLS 2Co ' i r; yLSLS

i=1

and Q is the nuclear electric-quadrupole moment.
In the formulas above, hyperfine parameters are evalu-

ated in atomic units using LS-coupled wave functions
with ML =L and Mz =S. For hyperfine constants in the
customary experimental unit of MHz, 6~1=95~ 4107 and
GE2 =234.965.

The diagonal magnetic dipole and electric-quadrupole
hyperfine constants have been determined very accurately
with the atomic-beam magnetic-resonance technique
[2—5] for the states in beryllium, boron, and carbon in-
vestigated here. Since accurate nuclear magnetic dipole
moinents p, z are known for these atoms [6], precise com-
parisons between experimental and theoretical values of
the magnetic dipole hyperfine constants are possible.
Such comparisons cannot be made for the electric-
quadrupole hyperfine constants, since the corresponding
nuclear quadrupole moments Q are not known from
direct nuclear experiments, at least not with high pre-
cision [6]. More accurate values of the nuclear quadru-
pole moments can instead be obtained by combining the
experimental values of the electric-quadrupole hyperfine
constants (in MHz) with the calculated electric-field gra-
dients b (in a.u. ) [7].

It is in general a very demanding task to calculate
hyperfine structures accurately. Polarization of the
closed shells in the core, due to the Coulomb interaction
with open shells, can have a large effect on the hyperfine
structure. Polarization of s shells is especially important.
If the two s electrons in the same shell have different spin
densities at the nucleus, a contact interaction is induced.
Since inner s electrons have high densities at the nucleus,
a very small unbalance is sufficient to cause a net interac-
tion which is comparable to that of an open outer shell.
Already in lithium, a seemingly simple three-electron sys-
tem, large configuration expansions, including triple exci-
tations, have to be used to describe the spin-polarization
of the Is shell accurately [g]. In a Hylleraas calculation,
the energy must approach the nonrelativistic limit to give
reliable values of the hyperfine parameters. For boron
and carbon the situation is more difficult since the contri-
butions from the spin-polarized 1s and 2s shells are both
large, but nearly cancel. To compute an accurate value
of the Fermi contact term, as noted by Bauschlicher in a
recent study of the related nitrogen atom [9], virtually all
of the correlation energy must be obtained. In particular,
the correlation of the 1s and 2s shells must be correctly
balanced. Thus, very extensive treatments are required
for the calculations. The Fermi contact term in boron
has been studied with a number of theoretical methods,

but the calculated values differ significantly from each
other and from the experimental value. However, the
Fermi contact term is small and contributes little to the
total magnetic dipole hyperfine constants. In carbon the
situation is different. Here the Fermi contact term is of
crucial importance for the magnetic dipole hyperfine con-
stant in the J= 1 state due to the strong cancellation be-
tween the spin-dipole and orbital terms.

The purpose of this work is to explore the capacity of a
recently developed configuration-interaction (CI) pro-
gram, allowing for large configuration expansions, and to
study the convergence of the hyperfine parameters using
sequences of active spaces. Special attention has been
paid to the large and cancelling contributions to the Fer-
mi contact term from the spin-polarized 1s and 2s shells
in boron and carbon, where three-particle effects are very
important and must be included in a systematic way.

II. METHOD OF CALCULATION

The wave functions were generated with the MCHF
atomic structure package of Froese Fischer [10,11],
where the wavefunction g for a state labeled yLSJ is ex-
panded in terms of configuration-state functions (CSF's)

P (y~LSJ ) with the same LS term:

f(yLSJ) =g c~ PJ (y~LSJ) . (12)

In the numerical multiconfiguration Hartree-Fock
(MCHF) approach, the CSF's are sums of products of
spin orbitals, where the radial part of the spin orbital is
represented by its numerical values at a number of grid
points. In the multiconfigurational self-consistent-field
(MCSCF) procedure, both the orbitals and the expansion
coefficients (c ) are optimized to self-consistency. The
subsequent CI calculations were performed with a recent-
ly developed program, using a sparse representation of
the lower triangular part of the Hamiltonian matrix
[12,13]. With this program, expansions with up to 40000
CSF's could be handled on a DEC workstation with 32-
Mbyte internal memory, the limit set by the available
disk space. The calculation of the parameters (4) —(6) and
(11) from the MCHF wave functions was done with a
hyperfine structure program [14], part of the MCHF
atomic structure package of Froese Fischer.

The confignration expansions were obtained with the
active-space method, where CSF's of a particular parity
and LS symmetry are generated by excitations from one
or more reference configurations to an active set of orbit-
als. The active set is then increased in a systematic way,
allowing the convergence of the hyperfine parameters to
be studied. If all possible excitations to the active set are
allowed, the configuration-state expansion, referred to as
the complete active space (CAS), grows very rapidly with
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the increasing active set. By imposing different restric-
tions on the allowed excitations, the number of
configuration states can be kept down and orbitals can be
targeted to describe different electron-correlation effects.
This method has been utilized by the quantum chemists
in the restricted-active-space (RAS) approach for some
time [15,16j. In their notation, the size of the active set
of orbitals is specified by the number of orbitals of a given
symmetry since the principal quantum numbers do not
have physical significance. The active set is increased not
one orbital at a time, but by adding a group of new orbit-
als. We refer to the new' group as a shell of active orbit-
als. The set of configurations states generated from the
active set under certain rules is called the active space.

For smaller configuration expansions, where most of
the orbitals are spectroscopic, a stationary requirement
with respect to orbital rotations speeds up the conver-
gence in the MCSCF procedure considerably [17]. In the
improvement of an approximate orbital basis, pairs of ra-
dial functions with the same I quantum number were
then allowed to rotate:

P (r)

P '(r)
P (r)

1 P,(r) (13)

changing the energy

E~E+ghE+g 5 E . (14)

The solution for which the energy is stationary with
respect to small variations in g was then selected. How-
ever, for the larger expansions in this study the orbital ro-
tations introduced instabilities in the MCSCF procedure
and more stable convergence was obtained when the rota-
tional analysis was turned off.

III. RESULTS AND DISCUSSION

A. 1s 2s2p Pin Be

With current codes, it is not possible to do a complete
active-space calculation for beryllium, that is, to include
all single, double, triple, and quadruple excitations
(SDTQ excitations) to the active sets of increasing size.

Since the number of configurations must be kept rather
small in an MCHF calculation, only SD excitations from
the reference configuration were allowed to the larger ac-
tive sets. To capture the most important three- and
four-particle effects, CSF's obtained by triple and quadru-
ple excitations to the smaller active set 4s 3p 2d 1f aug-
mented the CSF's obtained from SD excitations to the
large active sets. In Table I the results of the active-space
calculations are shown. For the sets up to 4s3p2d 1f,
where all SDTQ excitations were included, convergence
was very good and all orbitals could be optimized simul-
taneously. When further shells of active orbitals were
added, to which only SD excitations were allowed, stabil-
ity problems occurred in the MCSCF procedure, and so
the previous shells had to be frozen and only the new
ones optimized. The orbital, spin-dipole, and Fermi con-
tact terms converge smoothly with increasing active
space, and the extrapolations to the nonrelativistic spdf
limits are obvious. The convergence with increasing ac-
tive space for the electric-field gradient is slow and oscil-
latory, and the extrapolation to the spdf limit is more un-
certain.

To estimate the contributions from higher symmetries,
g orbitals were added to the active sets and another set of
MCHF calculations were performed; the results are
shown in Table II. From these calculations g-shell
corrections to the spdf limits could be derived. It is in-
teresting to see how slow the g-shell contributions build
up and that a relatively large number of orbitals is needed
to get the correct contributions. As expected from the
tensorial form of the hyperfine operators, the g-shell
correction is most important for the orbital term and
least important for the Fermi contact term. Finally, to
account for the remaining three-particle effects, a set of
CI calculations was performed where CSF's obtained
from triple excitations to increasing active sets were aug-
mented to the 12s 1 lp 10d9f space from the MCHF cal-
culation. In Table III the results of the CI calculations
are shown. It can be seen that triple excitations to the
5s4p3d2f set are important, but as further triple excita-
tions are included, the resulting changes in the hyperfine
parameters are small. The three-particle contributions

TABLE I. The hyperfine parameters and total energies (in a.u. ) of the 1s 2s2p 'P term in Be for
different active sets of orbitals.

Active set

HF
2s 1p
3$2p 1d
4s3p2d 1f
5s4p 3d 2f
6s5p4d3f
7s6pSd4f
8s7p6dSf
9s8p7d6f
10s9p8d7f
11s10p9d 8f
12s 1 1p 10d9f
Extrapolated

aI

0.295 21
0.295 80
0.298 87
0.302 88
0.303 44
0.304 63
0.304 11
0.304 31
0.303 67
0.303 73
0.303 68
0.303 70
0.303 69

asd

—0.059 04
—0.059 16
—0.061 82
—0.068 51
—0.063 34
—0.068 46
—0.064 71
—0.066 94
—0.066 03
—0.065 78
—0.065 96
—0.065 91
—0.065 94

a,

7.8182
7.8297
9.0900
9.0444
9.1527
9.2254
9.2376
9.2268
9.2293
9.2317
9.2298
9.2316
9.2310

bq

—0.11809
—0.11832
—0.122 82
—0.107 67
—0.11291
—0.11991
—0.11178
—0.11904
—0.11606
—0.11548
—0.11598
—0.115 67
—0.115 82

Energy

—14.511 502
—14.511 577
—14.553 679
—14.S60 100
—14.563 946
—14.565 325
—14.S65 841
—14.566 132
—14.566 232
—14.566 295
—14.566 319
—14.566 333
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TABLE II. The hyperfine parameters and total energies (in a.u. ) of the 1s 2s2p 'P term in Be for in-
creasing active sets including g orbitals.

Active set

HF
2s 1p
3$2p 1d
4s3p2d 1f
5s4p3d2f lg
6s5p4d3f 2g
7s6p5d4f 3g
Ss7p6d5f4g
9s8p7d6f 5g

al

0.295 21
0.295 80
0.298 87
0.302 88
0.303 45
0.304 70
0.304 22
0.304 45
0.303 82

as

—0.059 04
—0.059 16
—0.061 82
—0.068 51
—0.063 34
—0.068 47
—0.064 73
—0.066 94
—0.066 05

a,

7.8182
7.8297
9.0900
9.0444
9.1530
9.2252
9.2377
9.2278
9.2307

—0.11809
—0.11832
—0.122 82
—0.107 67
—0.11292
—0.11992
—0.11183
—0.11909
—0.116 11

Energy

—14.511 502
—14.511 577
—14.553 679
—14.560 100
—14.563 969
—14.565 533
—14.566 119
—14.566 441
—14.566 560

were added to the extrapolated values from the MCHF
calculations to give the final spdf limits. Remaining
four-particle effects were found to be very small and were
neglected. In Table IV the final values of the hyperfine
parameters are compared with values from other calcula-
tions. From the diagonal magnetic dipole hyperfine con-
stants, an experimental value of the spin-dipole parame-
ter can be obtained. The theoretical hyperfine parame-
ters have to be corrected for relativistic, finite-nuclear-
size and finite-nuclear-mass effects before they are com-
pared with the experimental values. The finite nuclear
mass M9 leads to a scaling of the Schrodinger equation.

Be

The effect of this scaling is accounted for by multiplying
the nonrelativistic hyperfine parameters with the factor

(1—m, /M9 ) =0.99982 .

The most important effect of relativity is the contraction
of the valence orbitals. This is in part counterbalanced
by the effect of the finite nuclear size. Besides orbital
contraction, relativistic effects also lead to a deviation
from LS coupling which manifests itself in a small change
of the intermediate-coupling coefficients c, =Q —,

' and
c2=+—', in the LSjj transformati-on:

(16)

If the deviation from L,S coupling is neglected, the rela-
tivistic effects on the different hyperfine parameters aI,
a,d, a„and b can be estimated by looking at hydrogen-
like relativistic corrections for the electric and magnetic
hyperfine integrals [18]. This was done by Sundholm and
Olsen [19] using the tables of Ref. [18]. In Table V the
relativistic and finite-nuclear-mass-corrected values are

compared with the experimental values. The final value
of the spin-dipole parameter agrees perfectly with the ex-
perimental value. Our values also agree very well with
the finite-element MCHF (FE MCHF) values of Sun-
dholm and Olsen. The Fermi contact term differs by only
0.069%, whereas the differences for the other terms are
on the order of a few parts in a thousand. A possible ex-
planation for these differences could be different f and-
g-shell contributions. Whereas we calculate the spdf lim-
its and estimate the g-shell contribution, Sundholm and
Olsen calculated the spd limits and estimated the f and-
g-shell contributions. Considering the slow buildup,
these contributions can easily be underestimated.

From the hyperfine parameters, the nuclear spin I=—,
'

and the nuclear magnetic dipole moment
pl= —1.177492(17)pz [6] values of the diagonal mag-
netic dipole hyperfine constants were calculated. Before
being compared with experiment, these values must be
corrected for relativistic, finite-nuclear-size, and finite-
nuclear-mass effects. More accurate corrections for the
hyperfine constants than the ones resulting from the
correction of the hyperfine parameters were obtained by
multiplying the nonrelativistic values of the magnetic di-
pole hyperfine constants with the ratio of the Dirac-Fock
(DF) and Hartree-Fock values, where in the Dirac-Fock
calculation a Fermi charge distribution was used
[20,21,8]. By this procedure the neglected deviation from
LS coupling as well as the effect of finite nuclear size are
properly accounted for. In Table VI the final values of
the magnetic dipole hyperfine constants are compared
with results from other calculations and experiment.

The total relativistic corrections for the diagonal mag-
netic dipole hyperfine constants resulting from the pa-
rameter corrections are —0.223 and —0.218 MHz for
the J= 1 and 2 states, respectively. This should be com-

TABLE III. The hyperfine parameters and total energies (in a.u. ) of the 1s 2s2p P term in Be from
CI calculations also including triple excitations. The CSF's obtained from triple excitations to the
second active set (following //) augmented the SD expansion to 12s 1 lp 10d9f.

Active set

12s 1 lp 10d9f
12s 1 lp 10d9f //5s4p 3d2f
12s 1 lp 10d9f //6s5p4d3f

a&

0.303 70
0.303 21
0.303 16

asd

—0.065 91
—0.065 82
—0.065 82

a,

9.2316
9.2406
9.2407

—0.11567
—0.11545
—0.11550

Energy

—14.566 333
—14.566 386
—14.566 404
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TABLE IV. The hyperfine parameters {in a.u. ) of the 1s 2s2p P term in Be compared with litera-
ture values.

Method

spdf limit

Ag correction
Final values
FE MCHF
LC MBPT'
HF + SDCI

0.303 14
0.000 15
0.303 29
0.302 61
0.304 78
0.300 14

asd

—0.065 85
—0.000 02
—0.065 87
—0.065 64
—0.064 90
—0.066 56

a,

9.2401
0.0015
9.2416
9.2349
9.2319
9.2738

—0.11565
—0.000 05
—0.11570
—0.1150
—0.1156
—0.1097

Reference

This work
This work
This work
[19]
[30,31]

'Linked-cluster many-body perturbation theory.
"Hartree-Fock and CI allowing all SD excitations to correlation orbitals of Slater type.

pared with the relativistic and finite-nuclear-size correc-
tions of —0. 177 and —0. 140 MHz from the ratio of the
Dirac-Fock and Hartree-Fock values. Although small,
these differences are important at the present level of ac-
curacy, showing that the nonrelativistic limit of the cal-
culations essentially has been reached and that much of
the uncertainty is hidden in these corrections. In order
to improve the result further, relativity and the finite-
nuclear-size effects have to be taken into account in a
more rigorous way. This can, in principle, be done in the
fully relativistic multiconfiguration Dirack-Fock ap-
proach with a realistic model of the nuclear charge distri-
bution [20—22]. However, the computer power required
to do large-scale MCDF calculations is presently large,
making the calculations unfeasible on a workstation.

Combined with the experimental electric-quadrupole
hyperfine constant B2=1.429(8) MHz, the corrected
value b = —0. 1157 a.u. gives a nuclear quadrupole mo-
ment of Q( Be)=0.052 56 b. This is slightly smaller than
the value of Q( Be)=0.052 88 b obtained by Sundholm
and Olsen.

B. 1s 2s 2p Pin "B

The Fermi contact term is very dificult to calculate
due to the large and cancelling contributions from the
spin-polarization of the 1s and 2s shells. When only
energy-optimized orbitals were used, the behavior of the
Fermi contact term was extremely oscillatory. In order
to reduce the oscillations and to include spin-polarization
at an early stage of the calculation, we augmented three
spin-polarization orbitals to the active set of orbitals. All
SD excitations were then allowed to the augmented set.

To construct the polarization orbitals, we started from
frozen Hartree-Fock orbitals. Only single excitations
were allowed to the polarization shells, which were opti-
mized. The spin-polarization orbitals were then kept
frozen in the subsequent calculations in which all the oth-
er orbitals were optimized simultaneously. In Table VII
the hyperfine parameters and total energies are shown as
a function of the increasing active space. Spin-
polarization orbitals are preceded by a slash in the tables.
Even though three spin-polarization s shells have been
augmented to the active set, the behavior of the Fermi
contact term is still oscillatory in the beginning, but
starts to stabilize after the seventh energy-optimized s
shell has been added. The orbital term converges
smoothly with increasing active space, but the spin-dipole
term and electric-field gradient converge more slowly and
it would have been desirable to add a few more shells to
the active set. Doing so, the limit set by the internal
memory of the computer is passed and the MCSCF pro-
cedure is slowed down due to heavy swapping to the
external disk. The practical limit for the MCHF expan-
sions is around 5500 CSF's on a machine with 32-Mbyte
internal memory.

In contrast to beryllium, triple excitations contribute a
great deal to the Fermi contact term. This can be under-
stood by looking at the result of the first CI calculation in
Table VIII, where the 1s shell was kept closed. By com-
paring it with the equivalent CI calculation in which ex-
citations from the 1s shell were allowed, the separate con-
tributions to the Fermi contact term from the 1s and 2s
shells can be estimated. Since these contributions are
large and have different sign, a small unbalance due to
the three-particle effects can change the total value

TABLE V. The relativistic and finite-nuclear-mass-corrected hyperfine parameters (in a.u. ) of the
1s 2s2p P term in Be compared with values from other calculations and experiment.

Method

MCHF'
FE MCHF'
LC MBPT'
HF + SDCI'
Experiment

0.303 46
0.302 78
0.304 95
0.300 31

asd

—0.065 91
—0.065 68
—0.064 94
—0.06660
—0.065 95

a,

9.2566
9.2499
9.2469
9.2888

—0.11568
—0.1150
—0.1156
—0.109 7

Reference

This work
[19]
[30,31]
[32]
[2]

The given uncorrected hyperfine parameters have been relativistic and finite-nuclear-mass corrected.
The relativistic correction is estimated from the tables of Ref. [18].
"Assuming LS coupling.
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TABLE VI. The relativistic, finite-nuclear-size, and finite-nuclear-mass-corrected magnetic dipole
constants (in MHz) for the 1s 2s2p 'P& 2 states in Be compared with values from other calculations and
experiment.

Method

HF
DF
MCHF'
FE MCHFb
LC MBPT'
HF + SDCI'
Experiment

2$2p P i

—119.83
—119.98
—139.35
—139.27
—].39.10
—139.77
—139.373( 12)

2s2p P2

—106.55
—106.67
—124.50
—124.50
—124.47
—124.76
—124.5368( 17)

Reference

This work
This work
This work
[19]
[30,31]
[32]
[21

Relativistic and finite-nuclear-size corrections using the ratio of the DF and HF values.
Hydrogenlike relativistic corrections for the integrals of the hyperfine parameters.
Calculated from given uncorrected hyperfine parameters with present relativistic and finite-nuclear-

size corrections.

TABLE VII. The hyperfine parameters and total energies (in a.u. ) of the 1s 2s 2p P term in "Bas a
function of the increasing active set. The /3s refers to three frozen core-polarization orbitals.

Active set

HF
3s2p ld /3s
4s3p2d 1f /3s
Ss4p3d2f lg /3s
6s5p4d3f 2g/3s
7s6p5d4f 3g/3s
8s7p6dSf4g/3s
9s8p7d6f 5g/3s

0.7756
0.8284
0.7630
0.7795
0.7850
0.7843
0.7841
0.7842

Qsd

—0.1551
—0.1714
—0.1693
—0.1660
—0.1663
—0.1682
—0.1686
—0.1674

a,

0.000 00
0.266 85
0.044 66
0.045 04
0.031 83
0.035 21
0.037 43
0.037 19

—0.3102
—0.3177
—0.2642
—0.2770
—0.2929
—0.2884
—0.2855
—0.2879

Energy

—24.529 061
—24.623 387
—24.637 739
—24.643 805
—24.646 639
—24.647 981
—24.648 532
—24.648 758

TABLE VIII. The hyperfine parameters and total energies (in a.u. ) of the 1s 2s 2p P term in "Bfrom MRCI calculations. The
CSF's obtained by SDT excitations from 1s 2s 2p and 1s 2p' to increasing active sets (preceded with //) augmented the CSF's ob-
tained by SD excitations from ls 2s 2p to 9s8p7d6f 5g/3s.

Active set

( ls)9s8p7d6f Sg/3s'
9s 8p7d6f 5g / js
9s8p7d6f 5g/3s//3s2p ld/3s
9s8p7d6f 5g/3s//4s3p2d 1f /3s
9s8p7d6f 5g/3s//Ss4p3d2f lg/3s
9s8p7d6f 5g/3s//6s5p4d3f2g/3s"

al

0.7646
0.7842
0.7833
0.7813
0.7811
0.7807

Qs

—0.1575
—0.1674
—0.1673
—0.1678
—0.1670
—0.1671

a,

0.811 70
0.037 19
0.055 10
0.069 46
0.079 93
0.085 71

bq

—0.2907
—0.2879
—0.2860
—0.2850
—0.2846
—0.2844

Energy

—24.601 595
—24.648 758
—24.650 964
—24.651 600
—24.652 039
—24.652 143

Number of
CSF's

1 323

4 861
5 598
8 983

20 245
36 924

'ls-shell closed, SD excitations from 2s 2p to 9s8p7d6f 5g/3s.
SDTexcitations from ls 2s 2p to 6s5p4d3f2g/3s and from ls 2p to Ss4p3d2flg/3s.
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TABLE IX. The hyperfine parameters (in a.u. ) of the 1s 2s 2p P term in "Bcompared with values
from other calculations.

Method

CI(CIV3)
Bethe-Goldstone
FE MCHF
MRCI

0.7752
0.7789
0.7784
0.7807

—0.1670
—0.1674
—0.1674
—0.1671

a,

0.098
0.047 62
0.073 23
0.085 71

—0.2953
—0.2822
—0.2824
—0.2844

Reference

[27]
[25,26]
[23]
This work

dramatically. It is therefore necessary to include these
excitations in a systematic way. This was done in a se-
quence of multireference CI (MRCI) calculations where
CSF's generated by SDT excitations to smaller active sets
augmented the CSF's obtained by SD excitations to the
9s 8p 7d 6f5g /3s set. The most important near-
degeneracy was included by allowing SDT excitations to
the smaller active sets from the 1s 2p configuration. In
Table VIII the hyperfine parameters, total energies, and
number of CSF's are shown for the MRCI calculations.
All parameters, except the spin-dipole, show a smooth
monotonic convergence. The Fermi contact term is not
quite converged, and the value a, =0.08571 a.u. should
be considered as a lower limit. While the three-particle
effects are almost negligible for the orbital and spin-
dipole parameters, this is not the case for the Fermi con-
tact term and the electric-field gradient. It is seen that
the triple excitations, interpreted as polarization of the
doubly excited configurations, give a larger total contri-
bution to the Fermi contact term than the single and dou-
ble excitations, and so it is not surprising that literature
values of the Fermi contact term differ by a factor of 2 or
more. The three-particle contribution to the electric-field
gradient is much smaller, but still decreases the value by
more than 1.2%. In Table IX the final nonrelativistic
values of the hyperfine parameters are compared with
values from other calculations. From the measured diag-
onal and off-diagonal magnetic dipole hyperfine con-
stants, experimental values of all three hyperfine parame-
ters can be deduced. The accuracy is limited by the off-
diagonal constant which is known with error bars of
2.5%%uo [4]. The theoretical hyperfine parameters have to
be corrected for relativistic, finite-nuclear-size, and
finite-nuclear-mass effects before being compared with
the experimental values. We used the same corrections
as Sundholm and Olsen [23] where the relativistic and
finite-nuclear-size corrections were estimated by scaling
the Li( P) hyperfine parameter corrections from Ref. [24]

with the square of the nuclear charge. The effect of the
finite nuclear mass was corrected for by multiplying with
the factor

(1—m, /M„) =0.99985 .

In Table X the corrected values are compared with the
experimental values. It is interesting to note that all
theoretical values of the spin-dipole term are in perfect
agreement, but outside the error bars of the experimental
value. By using the theoretical values for the spin-dipole
parameter combined with the diagonal magnetic dipole
hyperfine constants

A i/p
=73.3496(4) MHz

and

A 3/2
=366 0765( 1 5 ) MHz

(Refs. [3,4]), accurate semitheoretical values of the orbital
and Fermi contact parameters can be deduced. This was
done by Sundholm and Olsen who, using the calculated
spin-dipole parameter

a,d=0. 1675(3) a.u. ,

obtained a&=0.7817(11) a.u. and a =0.0879(28) a.u.
[23]. Our parameters agree closely with the semitheoreti-
cal ones, supporting the value

A &/2 3/2=17. 32(21) MHz

of Sundholm and Olsen calculated from the latter. This
semitheoretical value of the off-diagonal constant is out-
side the error bars of the experimental value

A, /p 3/p 16.44(40) MHz,

indicating that the given error bars can be too small. The
values of the electric-field gradient from the FE MCHF
calculation of Sundholm and Olsen and the Bethe-

TABLE X. The relativistic, finite-nuclear-size, and finite-nuclear-mass-corrected hyperfine parameters (in a.u. ) of the 1s 2s 2p P
term in "Bcompared with values from other calculations and experiment.

Method

CI(CIV3)'
Bethe-Goldstone'
FE MCHF'
MRCI'
Semitheoretical
Experiment

a

0.7752
0.7789
0.7784
0.7807
0.7817( 11 )

0.7783( 16)

Qsd

—0.1671
—0.1675
—0.1675
—0.1672

—0.1686(5 )

a,

0.098
0.047 71
0.073 32
0.085 80
0.087 9(28)
0.1016(62)

—0.2953
—0.2822
—0.2824
—0.2844

Reference

[27]
[25,26]
[23]
This work
[23]
[»4]

'The given uncorrected hyperfine parameters have been relativistic, finite-nuclear-size, and finite-nuclear-mass corrected. Relativistic
and finite-nuclear-size corrections were made using scaled corrections from Li( P).
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TABLE XI. The relativistic, finite-nuclear-size, and finite-nuclear-mass-corrected magnetic dipole
constants (in MHz) for the 1s 2s 2p P&/p 3/2 states in "Bcompared with values from other calculations
and experiment.

Method

HF
DF
Unrestricted HF
FE MCHF'
MCHFb
Bethe-Goldstone'
CI(CIV3)'
Experiment

2p 'Pl/2

353.9
354.3
362.6
365.9
365.9
367.2
364.1

366.0765( 15 )

2p P

70.72
70.69
79.8
72.42
73.15
71.47
73.01
73.3496(4)

Reference

This work
This work
[33]
[23]
This work
[25,26]
[27]
[3,4]

'Relativistic and finite-nuclear-size corrected using scaled corrections from Li{ P).
Relativistic and finite-nuclear-size corrected using the ratio of the DF and HF values.
Calculated from given uncorrected hyperfine parameters with present relativistic and finite-nuclear-

size corrections.

Goldstone calculation [25,26] agree perfectly. Looking at
the convergence patterns in Tables VII and VIII, it is
reasonable to believe that the value b = —0.2844 a.u.
from the largest MRCI calculation is too low, and a
better value is obtained if the mean value of the two last
calculations in Table VII is corrected for three-particle
effects. This gives b = —0.2832 a.u. , in better agreement
with the FE MCHF and Bethe-Goldstone values. The
CI(CIV3) value of Glass and Hibbert [27] differs by al-
most 5% from these values, which is surprising since the
agreement for the orbital and spin-dipole parameters is
good.

For the diagonal magnetic dipole hyperfine constants,
more accurate relativistic and finite-nuclear-size correc-
tions than the ones resulting from the scaled Li( P)
corrections of the hyperfine parameters were obtained, as
in beryllium, by multiplying the nonrelativistic values of
the magnetic dipole hyperfine constants with the ratio of
the Dirac-Fock and Hartree-Fock values, where in the
Dirac-Fock calculation a Fermi charge distribution was
used. In Table XI the corrected hyperfine constants, cal-
culated with the nuclear spin I=—,

' and nuclear magnetic
dipole moment

pi =2.688 648 9(10)p~

[6], are compared with values from other calculations and
experiment. The difference between the theoretical and

experimental values is less than three parts in a thousand
for both the J states. The improvement compared to the
FE MCHF and Bethe-Goldstone calculations lies in the
more accurate value for the Fermi contact term.

C. 1s 2s 2p Pin'C

For carbon, in contrast to boron, the Fermi contact
term will be the most important term for the magnetic di-
pole hyperfine constant in the J= 1 state. This can be
seen from Table XII, where the contributions (in MHz)
to the dipole hyperfine constants from the orbital, spin-
dipole, and Fermi contact terms are shown. On the
Hartree-Fock level, the Fermi contact term is zero; the
orbital and spin-dipole terms are both large, but cancel,
leading to a hyperfine constant close to zero. The intro-
duction of polarization and correlation effects will induce
a Fermi contact term as well as change the degree of can-
cellation between the orbital and spin-dipole terms.

For carbon the same computational strategy was used
as for boron. Here the number of CSF's in the MCHF
expansions grows more rapidly, and the two last MCHF
calculations had to be run on a computer with 64-Mbyte
internal memory. In Table XIII hyperfine parameters
and total energies are shown as a function of the active
space. The orbital parameter and the electric-field gra-
dient converge after the first few active spaces and remain
very stable. For the spin-dipole and Fermi contact pa-

TABLE XII. Contributions to the total magnetic dipole hyperfine constants (in MHz) for the
1s 2s 2p 'P& 2 states of "C from the orbital, spin-dipole, and Fermi contact terms.

Method

HF

SD MCHF

SDT MRCI

Experiment

113.38
113.38
114.50
114.50
114.31
114.31

—113.51
22.70

—120.94
24.19

—121.05
24.21

0.00
0.00
5.27
5.27
9.09
9.09

—0.13
136.08
—1.18
143.95

2.36
147.62

2.838
149.055
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TABLE XIII. The hyperfine parameters and total energies (in a.u. ) of the 1$2$2p P term in ' C as
a function of the increasing active set.

Active set

HF
3$2p 1d /3$
4s3p2d 1f /3s
5s4p 3d 2f 1g /3s
6s 5p4d 3f2g /3s
7s6p5d4f 3g/3s
Ss7p6d5f 3g /3s
9s Sp7d6f 3g /3s

a

1.6918
1.6634
1.6942
1.7073
1.7089
1.7089
1.7085
1.7085

asa

0.3384
0.3424
0.3752
0.3651
0.3596
0.3609
0.3623
0.3605

a,

0.0000
0.3619
0.2377
0.2096
0.2302
0.2342
0.2371
0.2356

0.6767
0.6360
0.6071
0.6147
0.6359
0.6399
0.6352
0.6353

Energy

—37.688 619
—37.788 241
—37.821 515
—37.831 270
—37.835 674
—37.837 436
—37.838 110
—37.838 386

TABLE XIV. Number of CSF's in the MRCI calculation of the 1$2$2p P term in ' C.

Notation

9s 8p 7d 6f3g /3s //3s 2p 1d /3s

9s Sp7d6f 3g/3s//4s3p2d 1f/3s

9sSp7d6f3g/3s//5s4p3d2f /3s

Reference
Configuration

$ 2$ 2p
1$ 2$~2p
1$'2p4

$~2$~2p~
1'2 '2 '
1$2p

$ ~2$ ~2p ~

1$~2$ ~2p ~

1$'2p'

Active set

9s Sp 7d 6f3g /3s
3$2p 1d /3$
3$2p1d /3$

9s8p7d6f 3g/3s
4s3p2d 1f/3s
4s3p2d 1f/3s

9s8p7d6f 3g/3s
5s4p3d2f/3s
4s3p2d 1f /3s

Excitation s

SD
SDT
SDT

SD
SDT
SDT

SD
SDT
SDT

Number of
CSF's

8 328
1 281

881

Total 9554
8 328
7 358
4 699

Total 16365
8 328

23 140
4 699

Total 31381

TABLE XV. The hyperfine parameters and total energies (in a.u. ) of the 1$2$2p P term in ' C from MRCI calculations. The
CSF's obtained by SDT excitations from 1$2$2p and 1$2p with active sets (preceded with //) of increasing size augmented the
CSF's obtained by SD excitations from ls 2s 2p to 9sSp7d6f3g/3s.

Active sets

( ls)9s8p7d6f 3g/3s'
9s Sp7d6f3g/3s
9s 8p 7d 6f3g /3s //3s2p 1d /3s
9s8p7d6f 3g/3s//4s3p2d 1 f /3s
9s8p7d6f 3g/3s//Ss4p3d2f/3s

ag

1.6852
1.7085
1.7079
1.7063
1.7057

asd

0.3444
0.3605
0.3606
0.3615
0.3608

a,

2.9555
0.2356
0.2694
0.3817
0.4066

0.6465
0.6353
0.6342
0.6324
0.6319

Energy

—37.787 204
—37.838 386
—37.839 671
—37.841 073
—37.841 559

Number of
CSF's

2 296
8 328
9 554

16 365
31 381

'ls-shell closed, SD excitations from 2s 2p to 9sSp7d6f 3g/3s.

TABLE XVI. The hyperfine parameters (in a.u. ) of the 1$2$2p 'P term in ' C compared with

values from other calculations.

Method

CI(CIV3)
FE MCHF
MRCI

a

1.6636

1.7057

asa

0.3580

0.3608

a,

0.726

0.4066

0.6476
0.6325
0.6319

Reference

[27]
[28]
This work
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TABLE XVII. The relativistic, finite-nuclear-size, and finite-nuclear-mass-corrected magnetic dipole
constants (in MHz) for the 1s 2s 2p P& 2 states in ' C compared with values from other calculations
and experiment.

Method

HF
DF
Unrestricted HF
MCHF'
CI(CIV3)
Experiment

2p2 3P

—0.13

13.7
2.36
7.63
2.838( 17)

2p2 3P

136.1
136.3
160.6
147.9
152.0
149.055( 10)

Reference

This work
This work
[33]
This work
I:&71

I:51

'The J =2 state relativistic and finite-nuclear-size corrected using the ratio of the DF and HF values.
Calculated from the given uncorrected hyperfine parameters with present relativistic and finite-

nuclear-size corrections for the J=2 state.

rameters, the convergence is oscillatory and slow, sug-
gesting that there is an overcompensation each time the
active space is increased.

Three-particle effects and near-degeneracies were in-
cluded in systematic MRCI calculations. The CSF's ob-
tained by SDT excitations from the 1z 2z 2p P and
1s 2p P configurations to smaller active sets were aug-
mented to the CSFs obtained by SD excitations from the
ls 2s 2p P configuration to the 9s8p7d6f Sg/3s set. To
prevent the expansions from growing unmanageably
large, some restrictions on the active sets to which SDT
excitations were allowed had to be imposed. These re-
strictions together with the number of CSF's in the
MRCI expansions are shown in Table XIV. The
hyperfine parameters and total energies are shown in
Table XV. The convergence trends are very similar to
the ones in boron, but, although very important, the
three-particle effects do not have the same dramatic effect
on the Fermi contact term as in boron. This is explained
by the relatively smaller cancelling 1s and 2s-shell contri-
butions compared to the total value. Since the off-
diagonal magnetic dipole hyperfine constant has not been
measured for carbon, experimental values for the indivi-
dual hyperfine parameters cannot be deduced. Relatively
few calculations have been done on carbon, but in Table
XVI the final theoretical values of the hyperfine parame-
ters are compared with the values from other calcula-
tions. The agreement between the MRCI and the
CI(CIV3) [27] calculation is, except for the spin-dipole
term, not very good. The Fermi contact term differs by
about 80%, whereas for the orbital parameter and the
electric-field gradient, the difference is between 2% and
3%. The electric-field gradient has recently been calcu-
lated with the FE MCHF method by Sundholm and Ol-
sen [28], and the agreement with their value is excellent.
From the measured electric-quadrupole hyperfine con-
stant for the J=2 state in "C, B2= —4.949(28) MHz
[29], the electric quadrupole moment can be calculated.
Our value confirms the value

Q("C)=0.033 27(24) b

obtained by Sundholm and Olsen.
The magnetic dipole hyperfine constants have been cal-

culated with the nuclear spin I=—,
' and the nuclear mag-

netic dipole moment

@1=0.702411 8(14)p~

(Ref. [6]). The relativistic and finite-nuclear-size correc-
tion is very difticult to determine for the J=1 state since
the hyperfine constant is zero at the Hartree-Fock level.
However, the correction is small and can be neglected at
the present level of accuracy. The correction for the
J=2 state was obtained by multiplying the nonrelativis-
tic hyperfine constant with the ratio of the Dirac-Fock
and Hartree-Fock values. In Table XVII the final
hyperfine constants are compared with values from other
calculations and experiment. The difference between the
theoretical and experimental values for the J=2 state is
less than 1%, whereas the values for the J= 1 state differ
by 20%. The large difference for the latter is not surpris-
ing considering the large and cancelling terms that are
summed to give the final value. It can be interesting to
note, in Table XII, that if only SD excitations are allowed
to the 9s 8p7d 6f3g /3s active set, the J= 1 hyperfine con-
stant does not even have the right sign. But, as three-
particle effects are taken into account in the MRCI calcu-
lations, the sign changes and the value approaches the ex-
perimental one.

IV. SUMMARY AND CONCLUSIONS

We report large-scale MCHF and MRCI calculations,
where the configuration expansions were generated with
the systematic active-space approach. The largest MRCI
expansion for the present calculations consists of almost
40000 configuration states. The hyperfine parameters of
the 2s2p P term in Be converge slowly with an increas-
ing number of active shells, but, using systematic se-
quences of active sets, extrapolation to the nonrelativistic
limits is obvious. For beryllium the nonrelativistic limit
is essentially reached and, to improve the calculations
further, a fully relativistic approach with a realistic
charge distribution has to be employed.

The necessity of a systematic approach is demonstrated
in boron and carbon, where the Fermi contact term ob-
tained from SD excitations to large active sets deviates by
more than a factor of 2 from the correct value. To ac-
count accurately for the spin-polarization of the contact
term, three-particle effects had to be included in a sys-
tematic way, leading to very large configuration expan-
sions.
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The relativistic, finite-nuclear-size- and finite-nuclear-
mass-corrected values of the magnetic dipole hyperfine
constants for the calculated states all agree very well with
the extremely accurate experimental atomic-beam
magnetic-resonance (ABMR) values. By performing sys-
tematic large-scale MCHF calculations, it should be pos-
sible to obtain accurate dipole hyperfine constants for
states where experimental determinations are difficult.
For many states, not accessible to the resonance methods,
it should even be possible to calculate the hyperfine con-

stants more accurately than they can be measured with
existing techniques.
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