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Abstract 

The terrestrial ecosystem sequesters about one-third of anthropogenic emissions 

each year, thereby providing a critical ecosystem service that slows the rate of 

increase of atmospheric carbon dioxide and helps mitigate climate change. 

Observed atmospheric carbon dioxide concentrations exhibit a large inter-annual 

variability which is considered to be caused primarily by the response of the 

terrestrial ecosystem to climate change and anthropogenic activity. A better 

understanding of the functioning of the terrestrial ecosystem is therefore required to 

improve our ability to predict the global carbon cycle and climate change. 

Ecosystem models integrate and apply knowledge of ecological processes (e.g. 

photosynthesis, respiration, allocation, and other plant physiological and microbial 

processes) to simulate net primary production, biomass accumulation, litterfall and 

soil carbon amongst others, in terrestrial ecosystems worldwide. These models are 

widely applied to explore, analyze and further our understanding of the complex 

interactions among biomes as well as the flows of carbon, nutrients and water 

through ecosystems over time in response to climate change and disturbances. 

Ecosystem models also allow the projection of the evolution of the carbon cycle 

under different scenarios of future possible carbon dioxide concentrations. 

However, current studies have demonstrated large uncertainties in predictions of 

past and present terrestrial carbon dynamics which limits our confidence in 

projections of future changes. These uncertainties, originating from model structure, 

parameters and data that drives the model, greatly limits our ability to accurately 

assess the performance of ecosystem models as well as our understanding of the 

response of ecosystems to environmental changes. 

This thesis aims to analyze these caveats by disentangling the causes of uncertainties 

in modeling terrestrial carbon dynamics to inform future model improvement. A 

state-of-the-art ecosystem model LPJ-GUESS is employed as the model platform 

for this study. Climate data induced uncertainty in model-based estimations of 

terrestrial primary productivity are analyzed and quantified for different 

ecosystems. Also, different climate variables are identified as the main contributors 

to total climate induced uncertainty in different regions. In addition, this thesis 

assesses the suitability of contemporary climate datasets with respect to a given 

research purpose and study area, and quantifies the effect of land use and land cover 

changes on the terrestrial carbon sink. Moreover, a matrix approach, which 
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reorganizes the carbon balance equations of the ecosystem models into one matrix 

equation while preserving dynamically modeled carbon cycle processes and 

mechanisms, is applied to identify which ecological processes contribute most 

strongly to model-data disagreement in term of terrestrial carbon storage and flux.  

Identifying and reducing uncertainty in estimations of the terrestrial carbon cycle 

via a modeling approach enables us better understand, quantify, and forecast the 

effects of climate change and anthropogenic activity on the terrestrial ecosystem, 

but is also of increasing relevance in the context of climate change mitigation 

policies.  
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Sammanfattning 

Det terrestra ekosystemet absorberar cirka en tredjedel av de antropogena utsläppen 

varje år, vilket är en avgörande ekosystemtjänst som minskar ökningstakten av 

atmosfärisk koldioxid och bidrar till att mildra klimatförändringen. Observerade 

koncentrationer av atmosfäriskt koldioxid uppvisar en stor årlig variabilitet som 

främst anses vara orsakad av det terrestra ekosystemets respons på 

klimatförändringar och antropogen aktivitet. En bättre förståelse för det terrestra 

ekosystemets funktion ger därför inblick i den globala koldioxidcykeln och 

klimatförändringen. 

Ekosystemmodeller tillämpar kunskap om ekologiska processer (e.g. fotosyntes, 

respiration, kolallokering och andra växtfysiologiska och mikrobiella processer) för 

att simulera nettoprimärproduktion, ackumulering av biomassa, dött organiskt 

material och markkol i markbundna ekosystem världen över. Dessa modeller 

används i stor utsträckning för att undersöka möjligheter och ge ökad förståelse för 

de komplexa interaktionerna mellan biom och flöden av kol, näringsämnen och 

vatten genom ekosystem över tiden som svar på klimatförändringar och störningar. 

Ekosystemmodeller möjliggör också att projicera utvecklingen av kolcykeln under 

olika scenarier av framtida potentiell koldioxidkoncentration. Nuvarande studier har 

dock visat på stor osäkerhet vid förutsägelser av tidigare och nuvarande markbunden 

koldynamik och även stor osäkerhet i framtida prognoser. Dessa osäkerheter, som 

härrör från modellstruktur, parametrar och indata, begränsar vår förmåga att korrekt 

bedöma ekosystemmodellernas prestanda samt vår förståelse av ekosystemens svar 

på miljöförändringar. 

Denna avhandling avser att utreda osäkerheter i modellering av markbunden 

koldynamik, vilket hjälper till med förbättring av modeller. En modern 

ekosystemmodell, LPJ-GUESS, har använts som modelleringsplattform för denna 

studie. Osäkerhet orsakad av klimatdata vid modellbaserade uppskattningar av 

markbunden primärproduktion analyseras och kvantifieras för olika ekosystem. 

Olika klimatvariabler identifieras som de främsta bidragsgivarna till den totala 

klimatinducerade osäkerheten. Denna avhandling utvärderar också lämpligheten 

hos nuvarande klimatdataset med avseende på specifikt forskningssyfte och 

studieområde. Dessutom tillämpas en matrismetod som omorganiserar 

ekosystemmodellernas ekvationssystem till en matrisekvation och bibehåller alla 

ursprungliga mekanismer och processer relaterade till kolcykeln. Matrismetoden 
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tillämpas för att identifiera vilka ekologiska processer som bidrar mest till 

avvikelser mellan modellresultat och data med hänseende till markbaserade flöden 

och lagring av kol. 

Att identifiera och minska osäkerheten vid uppskattningar av den markbundna 

kolcykeln via ett modelleringsförfarande gör att vi bättre kan förstå, kvantifiera och 

förutspå effekterna av klimatförändringar och antropogen aktivitet på det 

markbundna ekosystemet, men det är också av ökande relevans i samband med 

klimatpolitik. 
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摘要 

陆地生态系统每年吸收约三分之一的人为二氧化碳排放量，从而提供关键的
生态系统服务即减缓大气二氧化碳的增加速度，并有助于缓解气候变化。观
测到的大气二氧化碳浓度表现出剧烈的年际变化，被认为主要是由陆地生态
系统对气候变化和人类活动的响应引起的。因此，加深对陆地生态系统的功
能理解有助于提高我们预测全球碳循环和气候变化的能力。 

生态系统模型整合并应用生态过程的知识（例如光合作用，呼吸作用，分配
和其他植物生理和微生物过程）来模拟全球陆地生态系统的净初级生产量，
生物量积累，凋落物和土壤碳含量等。这些模型广泛地用于探索在应对气候
变化和干扰下生物群落之间复杂的相互作用，以及生态系统中碳，养分和水
分的变化。生态系统模型还允许在未来不同二氧化碳浓度的情景下预测碳循
环的演变。然而，目前的研究表明，对过去和当前陆地碳动态的模拟存在很
大的不确定性，这限制了我们预测其未来变化的能力。这些不确定性源自模
型结构，参数和驱动模型的数据，并极大地限制了我们对生态系统模型性能
的准确评估以及我们对生态系统对环境变化的响应的理解。 

本论文旨在研究分析陆地碳动态建模中不确定性的因素, 以便为未来的模型
改进提供信息。这里采用了最先进的生态系统模型 LPJ-GUESS 作为本研究
的模型平台。本论文分析和量化气候数据在模拟不同生态系统的初级生产力
中引起的不确定性，并在空间上识别对引起的不确定性贡献最大的气候变量。
本论文还评估了当前气候数据集在特定研究目的和研究领域的适用性，量化
了土地利用和土地覆盖变化对陆地碳汇的影响。此外，论文中采用了一种矩
阵方法，该方法将生态系统模型的碳平衡方程重组为一个矩阵方程并保留原
始模型的碳循环过程和机制，用于识别哪些生态过程主导模型与观测数据间
的差异（在陆地碳存储和通量方面）。 

通过识别和降低模拟陆地碳循环的不确定性，使我们能够更好地理解，量化
和预测气候变化和人类活动对陆地生态系统的影响，同时对气候变化减缓政
策具有越来越重要的意义。 
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Abbreviations 
 

 

 

 

AGB Above Ground Biomass 

C Carbon  

CMIP5 Coupled Model Intercomparison Project Phase 5 

DGVM Dynamic Global Vegetation Model 

ESM Earth System Model 

GCB Global Carbon Budget 

GCM General Circulation Model 

GPP Gross Primary Production 

IPCC Intergovernmental Panel on Climate Change 

LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator 

LUE Light-Use Efficiency 

LULCC Land Use and Land Cover Change 

MODIS Moderate Resolution Imaging Spectroradiometer 

MTE Model Tree Ensembles 

N Nitrogen  

NBP Net Biome Production 

NEE Net Ecosystem Exchange 

NPP Net Primary Production 

TF Traceability Framework 

VOD Vegetation Optical Depth 
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1.Introduction 

1.1. Global carbon cycle         

The global carbon cycle can be viewed as an exchange of fluxes of carbon within a 

series of reservoirs of carbon in the earth system (atmosphere, ocean, land and 

lithosphere). Conceptually, the global carbon cycle has two domains, the fast and 

slow domains (Ciais et al., 2014). The fast domain consists of carbon in the 

atmosphere, the ocean surface, ocean sediments and on land in vegetation, soils and 

freshwater, where carbon turnover is relatively fast (from a few years to decades). 

In the slow domain, which consists of the huge carbon stores in rocks and sediments, 

carbon turnover is slow (up to millennia or longer). Since 1750, the beginning of 

the Industrial Era, fossil fuel extraction from geological reservoirs, and their 

combustion, has resulted in the transfer of a significant amount of fossil carbon from 

the slow domain into the fast domain, thus causing a major anthropogenic 

perturbation in the carbon cycle and further in the climate system (Ciais et al., 2014).  

The global carbon budget (Le Quéré et al., 2018), a key indicator of the 

anthropogenic influence of the global carbon cycle, provides an assessment of 

anthropogenic carbon emissions and their redistribution among the atmosphere, 

ocean, and terrestrial biosphere (Figure 1). Le Quéré et al. (2018) reported that 

human-induced perturbation (e.g. combustion of fossil fuels and land-use change) 

during 2007-2016 resulted in an input of 39.2±5.0 PgC yr-1 carbon dioxide (CO2) 

into the atmosphere, of which 51% was taken up by land (11.2±3.0 PgC yr-1) and 

ocean (8.7±2.0 PgC yr-1) reservoirs and 44% remained in the atmosphere (17.3±0.2 

PgC yr-1) leaving a remaining unattributed budget imbalance of 5%. Therefore, 

oceanic and terrestrial ecosystems represent a critical ecosystem service which 

slows the rise in atmospheric CO2 concentration, and reduces the influence of 

anthropogenic carbon emissions on global climate change (Ballantyne et al., 2012).  

1.2. The terrestrial ecosystem in the global carbon cycle 

Ballantyne et al. (2012) showed that the uptake of carbon by oceanic and terrestrial 

ecosystems increased with accelerating CO2 emissions, while atmospheric CO2 
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concentrations exhibited a large inter-annual variability (Le Quéré et al., 2018). 

Such inter-annual variability is considered to be caused primarily by terrestrial 

ecosystem processes, e.g. increased carbon uptake in semi-arid regions with 

increased precipitation (Poulter et al., 2014, Ahlström et al., 2015a) or the large 

amount of CO2 released from tropical forests to atmosphere with warming 

temperatures (Cox et al., 2013). The carbon uptake by terrestrial ecosystems varies 

markedly between years and has a strong response to climate variations, in 

comparison with the relatively stable carbon uptake by the ocean reservoir (e.g. 

Figure 1. Schematic representation of the overall perturbation of the global carbon cycle caused by 

anthropogenic activities, averaged globally for the decade 2007-2016. The arrows represent emissions 

from fossil fuels and industry, emissions from deforestation and other land-use changes, the growth 

rate in atmospheric CO2 concentration, and the uptake of carbon by the sinks in the ocean and land 

reservoirs. The budget imbalance is also shown. All fluxes are in units of PgC yr-1, with uncertainties 

reported as ±1σ (68% confidence that the real value lies within the given interval) as described in the 

text. (Le Quéré et al., 2018) 
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Lovenduski and Bonan, 2017, Le Quéré et al., 2018). Terrestrial ecosystems have 

the capacity to be a sink or a source of carbon depending on the balance between 

carbon uptake by vegetation and the return of vegetation and soil carbon to the 

atmosphere through respiration, biomass burning and other minor release fluxes 

(Luo et al., 2003). The Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC AR5) reported that there are large uncertainties in projecting 

future carbon storage by Earth System Models (ESMs): the majority of ESMs 

projected continued net carbon uptake (sink) under all future CO2 emission 

scenarios, yet some models simulated a net carbon emission from the land (source) 

due to the combined effect of climate change and land use change (Ciais et al., 

2014). Therefore, reducing uncertainty in estimations of the terrestrial carbon sink 

or source and its response to global changes is of great importance to the global 

carbon budget, and enables us to better understand, quantify, and forecast the effects 

of climate change and anthropogenic activities on terrestrial ecosystems, thus 

further assisting policy makers to make informed decisions for mitigating human-

driven climate change. 

1.3. Methods for quantifying terrestrial carbon dynamics 

Typically, there are three methods for quantifying the carbon dynamics of terrestrial 

ecosystems: (i) ground-based measurements, (ii) satellite-based measurements and 

(iii) model simulations (Prentice et al., 2007). Ground-based measurements, such as 

biomass inventories, community descriptions and eddy covariance flux 

measurements are made at single sites or across networks, but remain a challenge to 

scale up. Satellite-based measurements provide comprehensive coverage and 

averages over landscapes, which enables understanding of the large-scale processes 

of carbon dynamics. With advances in techniques and sensors, satellite-based 

measurements are expanding the scope of observations, improving spatial resolution 

from the scale of kilometers to meters and reducing temporal sampling intervals 

from weeks to hours. However, one of the major limitations of available satellite 

observations is their short record length providing continuous global coverage only 

since the 1970’s. Moreover, satellite-based measurements provide limited 

information with regards to biodiversity and belowground processes.  

Therefore, there is a need for ecosystem models (Prentice et al., 2000), which 

integrate the knowledge of the representative ecological processes (e.g. 

photosynthesis, respiration, allocation, and other plant physiological and microbial 

processes) from field measurements and satellite observations, to simulate net 

primary production, biomass accumulation, litter fall and soil carbon amongst others 

in terrestrial ecosystems worldwide. These models aid our understanding of the 

complex interactions among biomes under rapidly changing environmental 
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conditions, e.g. climate change and land use change. Ecosystem models 

complement observation-based methods such as remote sensing and field 

measurements by explicitly accounting for the process interactions and feedbacks 

linking climate and other drivers to ecosystem dynamics. Furthermore, ecosystem 

models can be used to predict future carbon budgets under different scenarios 

describing future possible CO2 conditions. 

One type of ecosystem model is known as dynamic global vegetation models 

(DGVMs) (Cramer et al., 2001), and nowadays these models are widely applied to 

represent transient aspects of ecosystem response (e.g. plant geography, plant 

physiology and biogeochemistry, vegetation dynamics, and biophysics) to climate 

change and certain other aspects of global change. DGVMs have been developed 

since the 1990s and examples include BIOME (Prentice et al., 1992), IBIS (Foley 

et al., 1996), HYBRID (Friend et al., 1997), LPJ-GUESS (Smith et al., 2001), 

TRIFFID (Cox, 2001), LPJ-DGVM (Sitch et al., 2003), ORCHIDEE (Krinner et al., 

2005) to name a few. These models are usually driven by external drivers (e.g. CO2 

concentration, land use and climate data) and simulate changes in community 

composition, biomass, and productivity as result of the birth, growth, and death of 

vegetation, as well as the decomposition of dead organic matter associated with the 

carbon cycle and other biogeochemical cycles (Cox, 2001, Smith et al., 2001, Sitch 

et al., 2003, Krinner et al., 2005, Prentice et al., 2007, Zaehle and Friend, 2010). 

DGVMs are often considered the primary approach for mapping future regional to 

global terrestrial carbon storage and fluxes under climate change.  

1.4. Ecological terms for quantifying terrestrial carbon 

exchange 

There are four commonly used ecological terms describing the terrestrial carbon 

balance: (i) Gross Primary Production (GPP), (ii) Net Primary Production (NPP), 

(iii) Net Ecosystem Exchange (NEE) and (vi) Net Biome Production (NBP). GPP 

is defined as the rate of the total amount of carbon fixed by plants in the process of 

photosynthesis in a given length of time. NPP is defined as the difference between 

GPP and autotrophic respiration, and measures the net production or accumulation 

of dry matter in plants over a period (Roxburgh et al., 2005). NEE, also known as 

net ecosystem production (NEP), refers to the balance in ecosystems among carbon 

uptake during photosynthesis (i.e. GPP), carbon loss during plant respiration, and 

carbon loss by organisms other than the plants. NEE measures net storage of carbon 

in the ecosystem in the absence of disturbance (e.g. fire and human activities). NBP, 

also known as Net Biome Exchange (NBE), refers to the change in carbon stocks 

and takes into account carbon losses due to natural or anthropogenic disturbances. 

NBP and NEE are used interchangeably when the ecosystem is not typically affected 
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by disturbances. NBP is usually applied as much to the biome level as to the regional 

level. When it is applied at global level, it can also refer to the terrestrial net carbon 

sink.  

GPP is the main ecological term used for model uncertainty analysis, model 

evaluation and model-data fusion in this thesis. In DGVMs, GPP represents the 

origin of carbon within the simulated ecosystem, controlling many other 

downstream processes. If GPP is simulated incorrectly, errors propagate to other 

processes and affect all carbon pools and fluxes of the simulated ecosystem (Luo et 

al., 2003). As mentioned in section 1.3, there are three widely applied research 

approaches to estimate GPP from local to global scale: (i) CO2 flux measurement 

by the eddy covariance technique (Baldocchi et al., 2001, Baldocchi, 2003, Goulden 

et al., 2011), in which continuous measurement of NEE, between terrestrial 

ecosystems and the atmosphere from eddy flux towers, can be partitioned into 

ecosystem respiration and GPP at local scale (e.g. Reichstein et al., 2005, Papale et 

al., 2006), and can be further upscaled to the regional and global scale (e.g. Jung et 

al., 2011, Jung et al., 2017). (ii) Production efficiency models, which are based on 

the radiation conversion efficiency concept of light-use efficiency (LUE) with the 

inputs of satellite images and climate data (Potter et al., 1993, Running et al., 1999, 

Peng and Gitelson, 2012). Finally, (iii) process-based biogeochemical models (e.g. 

Cox, 2001, Smith et al., 2001, Sitch et al., 2003, Krinner et al., 2005), which 

incorporate a number of physiological processes and use climate data as inputs. 

Most of these models use the Farquhar et al. (1980) model or its derivatives (Collatz 

et al., 1991, Collatz et al., 1992, Haxeltine and Prentice, 1996) to estimate GPP.   

1.5. Disagreement between model simulations and 

observations 

Many different types of contemporary observations (derived from ground-based and 

satellite-based measurements) are used to test model performance in estimating 

terrestrial carbon exchange. Currently there is a considerable mismatch between 

observations and model simulations; here the model-data mismatch is illustrated in 

terms of the CO2 sink and GPP. The temporal correlation of the global terrestrial 

CO2 sink between data on the global carbon budget (GCB) and the outputs from 14 

DGVMs ranged from 0.51 to 0.77 for the period 1959 to 2015 (Le Quéré et al., 

2016). The global annual CO2 sink across the DGVMs (2.2±0.7 PgC yr-1), averaged 

over the last decade (2006-2015), was approximately 30% higher than the 

estimation of the GCB (1.7±0.7 PgC yr-1). Anav et al. (2015) reported that the global 

terrestrial GPP averaged across 3 DGVMs (149.7±3.5 PgC yr-1) and across 5 ESMs 

(143.6±2.8 PgC yr-1) was overestimated by 20-33% in comparison to a data-driven 

GPP product derived from eddy covariance measurements (119±1.3 PgC yr-1) and 
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satellite measurements (112±0.8 PgC yr-1) during 1990-2009. Furthermore, the 

average linear GPP trends over 1990-2009 derived from models (0.41±0.18 PgC yr-

1) are much stronger than those derived from the data-driven products (0.01±0.01 

PgC yr-1). For longer periods (1982-2008), Piao et al. (2013) showed global 

terrestrial GPP averaged across 10 DGVMs was approximately 13% higher than a 

data-driven GPP product (Jung et al., 2011), with the temporal correlation typically 

lower than 0.4. In order to avoid over-interpretation of model-data mismatches in 

evaluation or assimilation schemes, it is mandatory to also consider the limitations 

of the observational data. 

1.5.1. Observational uncertainty 

The terrestrial CO2 sink derived from the GCB accounting method represents the 

residual of anthropogenic fossil fuel emissions, atmospheric growth and oceanic 

uptake of carbon (Le Quéré et al., 2018). This data is widely used to constrain carbon 

cycle models. However, any errors in either the emissions or in the atmospheric or 

oceanic sinks are therefore debited to the net land flux, where errors accumulate. 

The eddy covariance technique provides measurements of surface-

atmosphere CO2 exchange from towers with a very high temporal resolution 

(Baldocchi et al., 2001, Baldocchi, 2003), and the derived flux products are 

widely used for model evaluation (Williams et al., 2009). Recent 

developments in statistical modelling have enabled such flux tower-derived 

measurements to be scaled up, using satellite observations to interpolate 

across space, to create globally gridded products (e.g. FLUXCOM GPP; Jung 

et al., 2011, Jung et al., 2017). However, flux tower-derived measurements 

inevitably include systematic and random errors (e.g. instrument failure, gaps 

when conditions are unsuitable for making measurements) and uncertainties. 

For instance, uncertainties in flux measurements can originate from 

discriminating between low and well mixed fluxes (Papale et al., 2006), 

estimation of missing values (Moffat et al., 2007), and flux partitioning (i.e. 

partitioning the observed NEE into GPP and ecosystem respiration) 

(Reichstein et al., 2005, Lasslop et al., 2010). These uncertainties, 

furthermore, propagate when extrapolating to the globe, e.g. by the Model 

Tree Ensembles (MTE) approach (Jung et al., 2011).  

Satellite-based products (e.g. GPP, NPP) are widely used to evaluate 

DGVMs (e.g. Maignan et al., 2011), notably the Moderate Resolution 

Imaging Spectroradiometer (MODIS) products. MODIS provides various 

gridded data products of vegetation state, by interpreting the spectral 

reflectance data (e.g. its intensity, spectral properties and angular properties) 
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acquired from a spectroradiometer, which helps infer the structure, 

composition, and functioning of plant canopies (Running et al., 1999, Zhao 

et al., 2005). However, it is important to bear in mind that these products 

(often used as observations) derived from the raw satellite data are also based 

on a range of assumptions and algorithms. The potential sources for 

uncertainties in biophysical products derived from optical satellite systems 

are: (i) noise in satellite data, e.g. caused by clouds, atmospheric constituents, 

sensor view and sun angles, canopy background, sensor problems, and 

weather conditions like snowfall, rain and haze (Eklundh et al., 2011); (ii) 

uncertainty in climate inputs, e.g. air temperature and relative humidity, in 

the LUE algorithm (Monteith, 1972, Monteith and Moss, 1977, Running et 

al., 1999) and (iii) the lack of representation of certain processes within the 

algorithm, e.g. soil moisture (Coops et al., 2007).  

Another satellite products which are based on vegetation optical depth (VOD) 

have been used to monitor changes in vegetation carbon (Liu et al., 2015, 

Tian et al., 2016, Brandt et al., 2018), which is also used for evaluation in 

this thesis. The VOD signal derived from passive microwave observations, 

quantifying brightness temperature based on the NASA-VU Land Parameter 

Retrieval Model (LPRM) (Owe et al., 2008). VOD is sensitive to the water 

content in the aboveground vegetation, including both photosynthetic (e.g. 

leaf) and non-photosynthetic (e.g. wood) compartments (Shi et al., 2008). 

Therefore, VOD has been applied for measuring water content of 

aboveground vegetation and further has been used as a proxy for vegetation 

biomass (Liu et al., 2015, Tian et al., 2016, Brandt et al., 2018). Furthermore, 

due to the longer wavelength and stronger penetration capacity of microwave, 

VOD is insensitive to the effects of atmosphere and cloud contamination, 

providing reliable information of aboveground vegetation in cloudy region 

such as tropics where has shortage of observation data. However, large data 

gap and noise as well as background soil moisture conditions can influence 

the quality of VOD products. 

1.5.2. Model uncertainty 

Ecosystem models help explore possibilities and aid understanding of the complex 

interactions among biomes as well as the flows of carbon, nutrients and water 

through ecosystems under rapidly changing environmental conditions (Sykes, 

2009). However, it is not possible to incorporate all ecological factors and processes 

into one model. The art of modeling is to determine what should be explicitly 

represented in models and what can be ignored. Therefore, all models have a range 
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of assumptions and uncertainties that users must be aware of before attempting to 

interpret model outputs. A sub-optimal performance of current models can result 

from biases in any of the three following components across time and space: model 

structure, model parameters and external drivers (Luo et al., 2011, Luo et al., 2016). 

Model structure 

Model structure is the set of equations used to describe the dynamic patterns of 

ecological processes. The components of terrestrial ecosystems and the interactions 

among them are complicated or not well understood, so simplifying assumptions 

must be made to describe them. Different modeling strategies adopt different 

simplifying assumptions, leading to different model complexity and behavior and 

thus structural uncertainty between models. For instance, model structural 

uncertainty can arise from differences in the representation of ecological processes, 

the scaling of these processes, their interactions and linkages to drivers and 

descriptors of ecosystem state, as well as the inclusion of certain processes, e.g. 

wildfires or nutrient interactions, in some models but not others (Cramer et al., 2001, 

Tebaldi and Knutti, 2007, Sitch et al., 2008, Zaehle et al., 2014). In addition, even 

when models apply the same theory for an ecological process (e.g. photosynthesis), 

Rogers et al. (2017) have shown that their varying numerical implementation of that 

theory leads to divergent simulation results. 

Structural uncertainty has been addressed by numerical experiments with multi-

model ensembles (MMEs), whereby a group of models is run with the same drivers 

(Cramer et al., 2001, Adams et al., 2004, Tebaldi and Knutti, 2007, Sitch et al., 2008, 

Carvalhais et al., 2014, Zaehle et al., 2014, Sitch et al., 2015). Recent studies have 

pointed out that the large spread of the predicted terrestrial C sinks among models 

can result from differences in NPP (Cramer et al., 2001), soil decomposition (Jones 

et al., 2003), biome shifts (Friedlingstein et al., 2006) and vegetation turnover 

(Todd-Brown et al., 2013, Friend et al., 2014). Besides, different models are 

sensitive to different climate variables (Sitch et al., 2008, Galbraith et al., 2010).  

Model parameters 

Once the model structure is defined, differences in parameter values (i.e. 

parameterization) for mathematical formulations of ecological processes can 

generate divergent modeling results. Previous studies have demonstrated a large 

spread in model output within a single model structure arising from parameter 

uncertainty, e.g. (Booth et al., 2012). The parameterization-induced uncertainty is 

mainly due to different model calibration strategies (Knorr and Heimann, 2001, 

Zaehle et al., 2005, Wramneby et al., 2008). In practice, it is difficult to identify 

parameters in a complicated model that can be effectively calibrated to fit data well 

across diverse landscapes, i.e. a model with well-calibrated parameters at one site 

may not reliably work at other sites (Xiao et al., 2014). Differences among DGVMs 

in structure and parameterization mean that they have different response functions 
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relating rates of carbon and water fluxes to environmental change (e.g., CO2 

concentration, temperature, and precipitation or soil moisture content). Subtle 

changes to response functions and parameterizations can yield large divergences in 

the modelled responses of ecosystems and has been demonstrated by parameter 

sensitivity studies (e.g. White et al., 2000, Zaehle et al., 2005) and model 

intercomparison studies (e.g. Friedlingstein et al., 2006, Todd-Brown et al., 2013).  

External drivers 

Models also require reliable external drivers, representing the physical and 

biological environment the ecosystem experiences or will experience. 

External drivers usually include CO2 concentration, N deposition, land use 

and climatic drivers (typically air temperature, precipitation and shortwave 

radiation). As ecological processes are highly sensitive to environmental 

change, small biases in external drivers can lead to large divergences in 

model results. The following discussion focuses on historical and projected 

climatic drivers and land use data. 

Historical climate data can, at least in part, originate from historical 

instrumental records that are either site-specific or have been interpolated 

into a standard spatial grid. Interpolation of climate values across areas of 

unmeasured territory inevitably introduces uncertainty and propagates 

through the ecosystem model (Zhao et al., 2006). Much of the climate data 

used by models come from General Circulation Models (GCMs), which 

model gridded climate data for the past, present and future at large scales. 

The projected climate datasets stem from GCMs, simulating the response of 

the global and regional climate system to greenhouse gas emission scenarios 

(Stocker, 2014). These scenarios represent possible emission levels derived 

from the results of different socioeconomic storylines, which describe 

possible future conditions (e.g. economic development, technological 

development, population growth, etc.), although none of these scenarios is 

likely to be the future. GCMs may produce quite different results even using 

the same drivers, because of the way certain processes and feedbacks are 

modeled (Flato et al., 2013).  

At the global scale, land use data is often specified as gridded products, recording 

the fractional area of each grid cell is occupied by land type (e.g. forest, pasture and 

cropland, etc.). For instance, the History Database of the Global Environment 

(HYDE) data (Goldewijk, 2001, Goldewijk et al., 2011) and its derivatives (Hurtt 

et al., 2006, Hurtt et al., 2011), which are currently widely used in many DGVMs 

attempting to estimate the effects of spatially and temporally variable patterns of 

human land-use activities on terrestrial ecosystem dynamics (e.g. Arneth et al., 

2017, Piao et al., 2018). The HYDE data is model-derived products and inevitably 
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contains uncertainties. The uncertainties can be originated from input sources (e.g. 

population, cropland and pasture statistics, and satellite-derived land cover) and 

specific allocation algorithms (Goldewijk et al., 2011, Hurtt et al., 2011). Besides, 

the land use data presented as the fractional area of grid cell may not capture the 

actual land use transitions. For instance, the same fractional coverage of cropland 

for two consecutive years, which can be read as no land use transition, or the 

abandonment of any area of cropland offset by the establishment of an equal area of 

new cropland during the period. 

In previous studies, climatic drivers were found to be a large source of uncertainty 

in DGVMs (McGuire et al., 2001, Jung et al., 2007, Poulter et al., 2011, Ahlström 

et al., 2012, Ahlström et al., 2013). The choice of historical climate dataset input 

can result in 9% - 20% uncertainty of estimated global GPP (Jung et al., 2007, 

Barman et al., 2014, Wu et al., 2017), and also influences the spatial patterns of 

simulated GPP (Jung et al., 2007, Poulter et al., 2011). Similarly for projected 

climate data, Ahlström et al. (2012) found large differences in total carbon uptake, 

ranging from -0.97 to 2.27 PgC yr-1 over the coming century by using 18 climate 

datasets from the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate 

change projections. Besides, the choice of land use data can induce 1.10 PgC yr-1 

uncertainty of estimated global NEE (Poulter et al., 2011). 

1.5.3. Model-data fusion  

By learning about the origins of model uncertainty mentioned above, and together 

with the rapid increase of biomass and flux observations at different space and time 

scales, it is becoming increasingly important to identify strategies that are capable 

of making the best use of existing information and optimally integrate various data 

sources for improving model. Data assimilation, a model-data fusion method, was 

recognized as the highest priority to improve predictions of carbon dynamics in 

ESMs (Luo et al., 2015). This technique integrates multiple sources of information 

from observational data (e.g. ecosystem flux tower data, remote sensing data, 

biomass and soil inventories) to constrain parameters of carbon cycle models at 

different spatial and temporal scales (Xu et al., 2006, Scholze et al., 2007, Weng 

and Luo, 2011, Zhou et al., 2012, Haverd et al., 2013, Niu et al., 2014). The key 

model parameters are optimized by using statistically rigorous methods, e.g. the 

Bayesian approach and Markov Chain Monte Carlo (MCMC) technique, to reduce 

a cost function until the reduction is smaller than a prescribed tolerance. Here the 

cost function quantifies the deviation between the model outputs (depending on the 

specified parameters) and the various observational data. A more detailed 

description of the data assimilation technique can be found in the Carbon Cycle Data 

Assimilation System (CCDAS) (Kaminski et al., 2003, Rayner et al., 2005). 
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1.5.4. When can we say the model is acceptable?  

There is no such thing as a model that perfectly represents terrestrial carbon 

dynamics or the observational data. Models are developed in order to interpret 

observations and identify the underlying mechanisms in the functioning of 

ecosystems, and allow to make predictions for the future based on knowledge 

derived from past observations. All models are idealized to some degree and 

consensus is drawn on whether a model is suitable for a specific purpose by 

weighing up the different lines of evidence (e.g. state estimation, process 

definitions). Successful application of the model is contingent on the modelers’ 

understanding of ecosystem changes in terms of space, time, and prognostic 

variables. Due to ecological complexity, a single model cannot comprehensively 

capture the dynamics of an ecosystem. However, if a model community (an 

ensemble of multiple models) can capture the range of possible ecosystem 

dynamics, then modeling approaches worth more attention and acceptance. 
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2. Aims and objectives 

The objective of this PhD thesis is to analyze the causes of uncertainties in modeling 

the terrestrial carbon pool and carbon flux dynamics and improve model 

performance. This study investigates and quantifies model uncertainty focusing on 

climate inputs and model structure. In an attempt to improve model performance, a 

model-data fusion method is used to reduce the model-data mismatch in ecosystem 

state by combining model and data from site measurements and remote sensing. The 

thesis can be divided into the following main aims: 

I. Quantifying the influence of climate data uncertainties on simulations of 

carbon uptake by vegetation, and how much each climate variable 

contributes to total climate induced uncertainties. 

II. Assessing the suitability of contemporary climate datasets for simulations 

of GPP with respect to a given research purpose and study area, 

acknowledging the large uncertainties in climate data. 

III. Quantifying the effect of land use and land cover changes on the terrestrial 

carbon sink. 

IV. Determining which carbon cycle processes are associated with the greatest 

model-data mismatch (e.g. in terms of terrestrial carbon storage and flux) 
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3. Methods 

3.1. LPJ-GUESS 

As one out of many DGVMs, the Lund-Potsdam-Jena General Ecosystem Simulator 

(LPJ-GUESS; Smith et al., 2001, Smith et al., 2014) was applied in a wide range of 

studies and showed relatively similar predictive skills and response to climate 

variations compared to other global ecosystem models (McGuire et al., 2012, 

Murray-Tortarolo et al., 2013, Piao et al., 2013, Sitch et al., 2015), thus LPJ-GUESS 

is employed as the model platform for this thesis. LPJ-GUESS is a process-based 

dynamic global vegetation model, which uniquely combines an individual-based 

representation of plant growth, demography and interspecific competition with 

process-based physiology and biogeochemistry (Figure 2). LPJ-GUESS implements 

two categories of processes corresponding to the characteristic time scale of the 

processes: daily processes and annual processes. Daily processes simulate the 

diurnal cycle including energy and gas exchange at the canopy-atmosphere 

interface, and plant-soil water exchange. Annual processes include biomass 

allocation, growth, reproduction, establishment, mortality and disturbance.  

LPJ-GUESS employs gridded time series of climate data (air temperature, 

precipitation and incoming shortwave radiation), atmospheric CO2 concentrations, 

land use, N deposition and soil properties as drivers, and simulates the effects of 

environmental change (e.g. climate and land use change) on vegetation structure 

and composition in terms of plant functional types (PFTs), soil hydrology and 

biogeochemistry. PFTs are characterized by properties such as growth form, leaf 

phenology, life history strategy and bioclimatic limits which govern their 

performance and competitive interactions under the driving conditions and realized 

ecosystem state (Sitch et al., 2003).  Simulations are initialized with spin-up (e.g. 

1000 years) by recycling de-trended the first few years (e.g. 30 years) of historical 

drivers, which enable the vegetation as well as soil and litter carbon pools 

accumulate and approach an equilibrium, then start subsequent simulations under 

historical and future driving conditions. Each simulated grid cell is represented by 

a number of replicate patches (e.g. 20). These patches share the common climate 

and soil type, while plants on different patches do not affect one another (e.g. in the 

capture of light, water uptake, and disturbances), which results in different 

vegetation dynamics (section 3.1.4) in different patches. The independence among 

the replicate patches enables to simulate succession following patch-destroying 
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disturbances in realistic way. The simulated properties for a grid cell tend to 

converge on a single value, which is averaged over the all inner patches.  

3.1.1. Physiology and biogeochemistry 

Plants absorb carbon from the atmosphere via photosynthesis, by which light energy 

is used to produce carbohydrates from CO2 and water. LPJ-GEUSS simulates 

photosynthesis coupled with stomatal conductance, water uptake and 

evapotranspiration, using a derivative of the Farquhar et al. (1980) model adapted 

from the BIOME3 model (Haxeltine and Prentice, 1996). Photosynthesis is a 

function of absorbed photosynthetically active radiation (APAR), temperature, CO2 

concentration and canopy conductance.   

Carbon is released back to the atmosphere by autotrophic respiration (plant) and 

heterotrophic respiration (organic matter in soil). Autotrophic respiration is 

separated into maintenance and growth components. Maintenance respiration 

differs among tissues (e.g. according to C:N ratio of the tissue) and follows a 

Figure 2. Conceptual representation of LPJ-GUESS showing the main processes, time steps, state 

variables and environmental input data. The potential output of the model includes current values of 

the ecosystem state variables (e.g. biomass for different plant functional types, PFTs) as well as 

biogeochemical fluxes of CO2 and H2O from ecosystems to the atmosphere or hydrosphere. 
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modified Arrhenius response to temperature (Ryan, 1991, Lloyd and Taylor, 1994). 

Growth respiration is accounted for by a 25% reduction in the carbon remaining 

following deduction of maintenance respiration from gross photosynthesis. 

Heterotrophic respiration refers to the carbon released when organic matter in litter 

and soil is consumed by heterotrophic organisms, and is regulated by soil moisture 

and temperature (Lloyd and Taylor, 1994). 

3.1.2. Carbon allocation and turnover 

The remaining assimilated carbon, after accounting for maintenance and growth 

respiration and a fixed fractional allocation to reproduction, is allocated to the living 

tissue compartments (leaf, wood and root) as new biomass following allometric 

relationships (Shinozaki et al., 1964a, Shinozaki et al., 1964b, Waring et al., 1982, 

Huang et al., 1992). Allocation is performed at the end of a simulation year. 

Carbon enters the soil as litter associated with tissue turnover (e.g. leaf and root 

shedding) and vegetation mortality. Mortality of individuals is caused by the age of 

an individual going beyond its mean non-stressed longevity (PFT-specific), growth 

efficiency (the ratio of individual net annual production to leaf area) dropping lower 

than a threshold (PFT-specific), climatic conditions becoming unsuitable for 

survival, allometric failure (assimilated carbon can not satisfy the growth of various 

compartments of a vegetation individual), anthropogenic disturbance (e.g. harvest 

and land use change), or natural disturbance (see next section). Part of the litter and 

soil carbon are decomposed, with the carbon subsequently either respired as CO2 or 

transferred to receiving pools with longer residence times. In this thesis, LPJ-

GUESS incorporates the CENTURY model (Parton et al., 1993) and inherits its 

coupled soil C and N scheme (Smith et al., 2014). The structure of the soil pools is 

illustrated in Figure 3.  

3.1.3. Disturbance 

LPJ-GUESS incorporates a dynamic representation of disturbances rather than 

applying turnover constants for vegetation carbon as used in other DGVMs, e.g. 

IBIS (Foley et al., 1996). Modelled wildfires burn live and dead plants, litter, and 

carbon in the top soil layers, resulting in the removal of carbon from these pools. 

The amount, moisture content and flammability of biomass fuels (e.g. litter) control 

the probability of fires (Thonicke et al., 2001). PFTs differ in their resistance to fire, 

so that the degree of damage caused to standing biomass depends on the vegetation 

composition. Additional disturbances (representing ensembles of the other 

disturbances, e.g. insect outbreaks, windstorms and extreme events) occur at 

random with a prescribed probability (e.g. 0.01, i.e. interval of disturbance is 100 
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years), and kill all individuals on an affected patch in a particular year, converting 

their biomass to litter.  

3.1.4. Vegetation dynamics 

Vegetation dynamics are associated with the establishment, growth and 

mortality of individuals which results from disturbance and competition for 

light, space and soil resources among PFTs. This changes the composition of 

PFTs in each of the replicate patches over time. In LPJ-GUESS, multiple 

PFTs are allowed to co-occur in a patch if they can survive under the climate 

condition of the patch and effectively compete for resources. The carbon 

storage within each PFT is updated at the end of each year in response to 

resource competition, allocation, biomass turnover, mortality, establishment 

and fire. Smith et al. (2001) showed that when LPJ-GUESS incorporated the 

‘forest gap’ model FORSKA (Prentice et al., 1993) and implemented 

individual-based population dynamics, it resulted in more accurate and 

realistic estimates of PFT dynamics, when compared to the more generalized, 

area-based approach of the LPJ-DGVM model (Sitch et al., 2003). 

3.2. Traceability Framework (TF) 

For most of the process-based global dynamic vegetation models like LPJ-GUESS, 

their complex carbon cycle among vegetation, litter and soil can be illustrated as in 

Figure 3. Carbon enters the ecosystem via photosynthesis. Part of the photosynthate 

is consumed by plant respiration. The rest is partitioned into the growth of leaf, 

wood and root biomass. Dead plant material is transferred to litter pools. Part of the 

litter carbon is respired (e.g. decomposed by microbes) and part of it is converted to 

soil organic matter (SOM) and transferred among soil carbon pools. 

The carbon cycle in most DGVMs can be characterized by four fundamental 

properties (Luo and Weng, 2011):  

 the carbon cycle in a terrestrial ecosystem is usually initiated with plant 

photosynthesis.  

 the photosynthetic carbon is first partitioned into various plant pools (i.e., leaf, 

root, and woody biomass) and then allocated to litter and soil pools after the 

plant parts die.  

 the carbon transfers are dictated by the donor pools.  
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 the decomposition of litter and soil carbon can be described by first-order decay 

functions.  

These shared properties of carbon cycling among the DGVMs make systematical 

analysis possible (Luo et al., 2015, Luo et al., 2016), and carbon movements from 

one pool to another in most DGVMs can be represented by ordinary differential 

equation in a matrix form (Luo et al., 2003, Xia et al., 2013, Sierra and Muller, 2015, 

Luo et al., 2017), namely the traceability framework: 

𝑋′(𝑡) = 𝐵(𝑡)𝑈(𝑡) − 𝐴(𝑡)𝜉(𝑡)𝐾𝑋(𝑡)                                (1) 

where 𝐵(𝑡) is a vector of allocation coefficients of the photosynthesized carbon into 

different plant pools (e.g. leaf, wood and root) at time t. 𝑈(𝑡) is the photosynthetic 

input (i.e. NPP or GPP). 𝐴(𝑡) is a matrix of transfer coefficients of carbon exiting 

from one pool into another pool. 𝜉(𝑡) is a diagonal matrix of environmental scalars 

(e.g. temperature, moisture and nutrient scalars), reflecting the control of physical 

and chemical properties (e.g., temperature, moisture, nutrients, litter quality and soil 

texture) on C decomposition. 𝐾  is a diagonal matrix of the first-order baseline 

Figure 3. Schematic representation of the C transfers among multiple pools in the vegetation and soil 

(including litter) in the LPJ-GUESS model. 
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turnover rate for plant pools and decomposition rate for litter and soil pools. 𝑋(𝑡) is 

a vector of carbon pool sizes. 𝑋′(𝑡) is the net change of an individual C pool at time 

t. 

The traceability framework keeps the structure of C cycling of the DGVMs, and 

preserves all relative flows between C pools, so that it exactly reproduces the C 

dynamics of the original models. This framework can help to accelerate model spin-

up, quantify the relevant processes’ responses to global changes and enable model-

data fusion. 

3.2.1. Steady state 

By letting 𝑋′(𝑡) equal zero and transforming the equation (1), i.e. 

 𝑋𝑠𝑠(𝑡) =  (𝐴(𝑡)𝜉(𝑡)𝐾)−1 ∗ 𝐵(𝑡)𝑈(𝑡)                                  (2) 

Xia et al. (2013) decomposed steady state ecosystem C storage ( 𝑋𝑠𝑠, the maximum 

C amount that an ecosystem can potentially store) into two fundamental 

components: (i) net primary productivity, i.e. 𝑈(𝑡), and (ii) ecosystem residence 

time (𝜏𝑒), i.e. (𝐴(𝑡)𝜉(𝑡)𝐾)−1 ∗ 𝐵(𝑡). 𝜏𝑒 is codetermined by the transfer coefficients 

(𝐴), the environmental scalar (𝜉), the baseline turnover rate (𝐾) and allocation 

coefficients (𝐵). This matrix, (𝐴(𝑡)𝜉(𝑡)𝐾)−1, is called redistribution matrix (𝜏𝑐ℎ), 

as it measures the time needed for the net C pool change to be redistributed in the 

network containing all C pools (Luo et al., 2017). 

3.2.2. Transient dynamics 

Luo et al. (2017) further analyzed the determinants and the characteristics of 

transient dynamics of terrestrial C storage and extended the steady state traceability 

framework by Xia et al. (2013) to the transient traceability framework. By 

multiplying both sides of the equation (1) with (𝐴(𝑡)𝜉(𝑡)𝐾)−1, the equation can be 

transformed to: 

𝑋(𝑡) =  (𝐴(𝑡)𝜉(𝑡)𝐾)−1 ∗ 𝐵(𝑡)𝑈(𝑡) − (𝐴(𝑡)𝜉(𝑡)𝐾)−1 ∗ 𝑋′(𝑡)               (3) 

𝑋𝑝(𝑡) =  (𝐴(𝑡)𝜉(𝑡)𝐾)−1 ∗ 𝑋′(𝑡)                                    (4) 

Combining equation (2-4), the transient traceability framework can therefore 

decompose modeled transient C storage dynamics into two components, the C 

storage capacity ( 𝑋𝑠𝑠 ) and C storage potential (𝑋𝑝 ). 𝑋𝑝  represents the internal 

capacity of an ecosystem to equilibrate C input and output for a network of pools, a 

product of the redistribution matrix (𝜏𝑐ℎ) and the net change of individual C (𝑋′). 

In this thesis, the transient traceability framework has been implemented for the 
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LPJ-GUESS model to simulate transient C storage dynamics. The traceable 

components are shown in Figure 4. 

 

3.2.3. Identifying uncertainty  

The traceability framework can be used to decompose the terrestrial C cycle into a 

few traceable components according to its fundamental properties (Figure 4). By 

analyzing the traceable components, one can explore how global change factors 

such as climatic changes, vegetation dynamics, N deposition, land use change, and 

disturbance influence transient C storage dynamics. For example, (Ahlström et al., 

2015b) applied the traceability framework to LPJ-GUESS to quantify the relative 

roles of ecosystem C cycle processes (i.e. NPP, vegetation turnover, and soil 

decomposition) in contributing to future C uptake uncertainties under different 

climate change scenarios. In addition, the traceability framework has the potential 

to help diagnose the sources of uncertainties in predictions of C storage dynamics 

across different DGVMs, as most DGVMs share the similar model architecture 

described above.  

Figure 4. Schematic diagram of the traceable components for LPJ-GUESS based on the transient 

traceability framework. 
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3.2.4. Improving model capacity 

The traceability framework tracks model uncertainty deeply into specific processes 

or parameters, which can explicitly guide modelers to improve their models. This 

framework, using matrix representation, enables pool-based data assimilation to be 

easily applied in ecosystem models. For instance, the capacity of ecosystem models 

such as the TECO model (Shi et al., 2015, Du et al., 2017) and the CLM-CASA 

model (Hararuk et al., 2014) in projecting C pool and flux dynamics have been 

substantially improved via data assimilation using matrix representation of these 

models. In this thesis, the traceability framework was applied to perform model-data 

fusion by correcting the model state and/or parameters which by replacing traceable 

components with observational data (e.g. replacing modeled NPP with observed 

NPP), can be used for identifying those processes that are poorly represented in the 

model. 
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4. Results and discussion  

4.1. Paper I 

The choice of published climate dataset has been found to lead to differences in 

model- based vegetation GPP estimation of about 20% (Jung et al., 2007, Barman 

et al., 2014). This study illustrated how much each climate variable contributed to 

the total climate induced uncertainty, and further illustrated the uncertainties 

associated with the climate data range (uncertainty in the magnitude of the drivers) 

and the apparent sensitivity of the modeled GPP to the driver (apparent model 

sensitivity).  

The results showed that precipitation dominates climate induced uncertainty in arid 

regions, and the areas where the uncertainty were dominated by precipitation covers 

approximately half (~48%) of the terrestrial vegetated land surface (Figure 5). The 

areas in which the uncertainty were dominated by temperature and shortwave 

radiation were roughly equal in areal extent and made up the remainder of the 

terrestrial vegetated surface, with shortwave radiation dominating in moderate to 

Figure 5. Relative importance of climate factors (red: temperature; blue: precipitation; green: 

shortwave radiation) to ensemble uncertainty of GPP. Non-vegetated regions and areas with no 

significant relationship between GPP change and climate change are masked as grey. Among the three 

drivers, precipitation dominates the climatic uncertainty over the largest area. 
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densely wooded ecosystems whereas temperature tended to dominate in high 

latitude and/or high altitude areas. The tropical regions showed disproportionately 

large climate induced uncertainty and empirical uncertainty based on observations. 

Data limitations in the tropics were likely to be an important source of the large 

spread in estimated GPP. The climate induced uncertainty in tropical forests was 

most strongly associated with shortwave radiation and precipitation drivers. In 

addition to data limitations, Jung et al. (2007) suggested that cloud and aerosol 

physics (which govern precipitation and radiation transfer) are most likely the 

principal causes of differences in precipitation and radiation estimates between 

datasets. Overall, the climate data range contributed more uncertainty to simulated 

global GPP than the sensitivity of the simulated ecosystem processes to climate 

driver. This implied that uncertainties in the climate datasets played an important 

role in model-based carbon cycle estimations, and most likely exceeded the 

importance of shortcomings in ecosystem model structure or parameterization. 

This study highlighted the need to better constrain tropical climate (e.g. further 

develop climate data products) and showed that climatic driver uncertainties must 

be considered when comparing and evaluating model results and empirical datasets. 

4.2. Paper II 

Uncertainty among different historical climate datasets stems mainly from the 

source and processing of the raw data. Such gridded climate data are derived either 

from quasi-point based measurements and subsequent spatial interpolation, model-

based reanalysis, or are generated as an observational-reanalysis hybrid. Given the 

source and manifold methodological differences, it is a challenge to determine 

whether all datasets are equally reliable or if any of them is better suited for a certain 

study region or purpose than others, when applying ecosystem models to explore 

and quantify an ecosystem’s response to climate change. This study assessed the 

impact of six widely used climate datasets on simulated GPP and evaluated the 

suitability of them for reproducing the global and regional carbon cycle as mapped 

from independent GPP data.  

The results (Figure 6) showed that all datasets tested produced relatively similar 

GPP simulations at a global scale, corresponding fairly well to the observation-

based data with a difference between simulations and observations ranging from -

50 to 60 g C m-2 yr-1. However, all simulations also showed a strong underestimation 

of GPP (ranging from -533 to -870 g C m-2 yr-1) and low temporal agreement (r < 

0.4) compared with observations over tropical areas and a large overestimation in 

the non-tropical regions. This indicated that the choice of climate dataset for 

estimating regional GPP was more critical than when estimating GPP at the global 
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scale, since there was a compensation for regional discrepancies between the 

overestimation in the non-tropics and the underestimation in the tropics. 

As the shortwave radiation for tropical areas was found to have the highest 

uncertainty in the analyzed historical climate datasets, I tested whether simulation 

results could be improved by a correction of the shortwave radiation dataset for 

tropical areas using a new radiation product from the International Satellite Cloud 

Climatology Project (ISCCP). A large improvement (up to 48%) in simulated GPP 

Figure 6. Comparison of monthly index of agreement (IoA), annual mean GPP and monthly temporal 

correlation during 1982-2010 as estimated by LPJ-GUESS forced by six climate datasets versus the 

observation-based GPP product JUNG11. Panel (a) shows the IoA, panel (b) shows the average 

difference and the last panel (c) shows the temporal correlation coefficient between simulated GPP 

and observations for each land cover class: global; semi-arid ecosystems (SS); tundra and arctic shrub 

land (TS); grasslands and land under agriculture (GC); tropical forest (TF) and extra-tropical forest 

(ExTF) including boreal and temperate forest. 
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magnitude was observed with bias-corrected shortwave radiation, as well as an 

increase in spatio-temporal agreement between the simulated GPP and observation-

based GPP. However, the correction of a given climate variable within a climate 

dataset should be done with caution, as improving a single variable from a climate 

dataset may introduce an imbalance in relation to other co-varying climate variables 

of that dataset. Therefore, I consider it preferable to first select a suitable climate 

dataset for a study area and then, if deemed necessary, a given variable of this dataset 

can additionally be bias-corrected. 

4.3. Paper III 

The impact of land use and land cover changes (LULCC) on the terrestrial carbon 

sink during 1992-2015 was analyzed by forcing LPJ-GUESS with a dynamic global 

land cover product from the European Space Agency (ESA) Climate Change 

Initiative (CCI). The ESACCI data, derived from state-of-the-art high resolution 

Earth observation data, showed that the area of tropical forest was reduced by 

4.56×105 km2 during 1992-2015, which was in line with increasing anthropogenic 

LULCC in tropical regions, e.g. deforestation, forest degradation and cropland 

expansion.  

The strongest contributors to the mean global terrestrial C sink in 1992-2015 were 

found to be boreal (27%) and tropical forests (26%) (Figure 7a), and all other biomes 

had a relatively small contribution (0.8-11%). Boreal forests dominated the 

contribution to the trend in the terrestrial C sink for 1992-2015 with a 30% 

contribution (Figure 7b). The evolution of the contribution of different biomes to 

the terrestrial carbon sink during 1992-2015 (Figure 7d) showed that the 

contribution of tropical forests declined from 29% to 24%, while the contribution 

of boreal forests increased from 20% to 33%. The decreasing importance of tropical 

forests within the terrestrial C sink was due the offset between the sink effect of CO2 

and N fertilization and the release effect of meteorological driver and LULCC 

causing only a small net change in tropical forest NBP. However, meteorological 

driver and LULCC played minor roles on the trend in boreal forest NBP compared 

to CO2 and N fertilization, resulting in a large sink effect for the boreal forests, 

which resulted in increased importance of boreal forests within the increasing 

terrestrial C sink. Semi-arid ecosystems contributed most to the inter-annual 

variability (22%) (Figure 7c), which is consistent with (Ahlström et al., 2015a) who 

found the inter-annual variability was strongly associated with circulation-driven 

variations in both precipitation and temperature. 

Although the model output still suggested tropical forests were a net carbon sink, 

the anthropogenic LULCC decreased the role of tropical forests in contributing to 
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the terrestrial carbon sink, and boreal forest ecosystems became the most dominant 

biome contributing to the terrestrial carbon sink. 

4.4. Paper IV 

Empirical datasets and models differ in their estimates of carbon influx and 

turnover, resulting in uncertain and diverging estimates of carbon uptake and 

storage. Which carbon cycle processes most strongly contribute to model-data 

disagreement on carbon uptake and storage is currently unknown. Here I used the 

Traceability Framework (TF; Luo et al., 2003, Xia et al., 2013, Luo et al., 2017) to 

represent the structure and carbon dynamics of an individual-based dynamic 

ecosystem model, LPJ-GUESS. The method preserved the model structure and 

carbon dynamics perfectly in space and time and allowed us to replace model 

simulated C-influx, vegetation C turnover rate, and soil C turnover rate with 

empirical datasets and products derived by combining empirical datasets. This study 

thereby allowed a quantification of the role of C-influx and C turnover on model-

data disagreement on C uptake and storage. 

Figure 7. Contribution of biomes to the mean, trend and inter-annual variability in the terrestrial C 

sink. Contributions to:  a) the mean; b) trend; and c) inter-annual variability in the terrestrial C sink 

1992-2015. d) Average change in contribution to the terrestrial C sink 1992-2015 for the boreal and 

tropical forests. 
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The resulting vegetation and soil C storage and global land C fluxes by TF-

realizations (replacing model-simulated C-influx and/or C turnover rates with 

empirical datasets) were compared to independent empirical datasets. I found small 

improvements in estimation of aboveground biomass (AGB) (Figure 8) and soil C 

storage (Figure 9) at the global scale by correcting simulated C influx, with a 

compensation for regional discrepancies in improvements across global land cover 

classes. However, fully dynamic simulation and the TF-realizations showed model-

data agreements (dots and triangles in Figure 8c and 9c) that exceed the baseline 

(the agreement between the two independent empirical datasets, black segments) at 

the global scale and over most of the land cover classes, suggesting that the increase 

in agreement should be interpreted with caution due to the limited understanding of 

the actual conditions (i.e. a rather high uncertainty in one of the independent 

empirical datasets or both).  

 

Figure 8. Comparison of predicted AGB with two empirical datasets (panel a, b and c) over six land 

cover classes. Black line segments show the comparison between two independent contemporary 

empirical datasets of AGB. Output from LPJ-GUESS simulation before replacing NPP is marked in 

red. TF-realizations by replacing simulated NPP with refined NPP derived from MODIS NPP and 

FLUXCOM GPP are marked in blue. Error bars show the range of results from replacing simulated 

NPP with the five refined NPP datasets. 

The two empirical datasets of AGB and two datasets of soil C were used to generate 

apparent turnover rate (here using C-influx instead of C-efflux would have 

introduced a bias in non-steady state systems, which is referred to as apparent 

turnover rate), and applied to investigate the role of C turnover rate on model-data 

disagreement. Correcting simulated vegetation and soil C turnover together with C-

influx led to the largest improvement in the agreement between predicted NBP and 

the GCB net land C flux (Figure 10a). The generally low agreement between 

contemporary empirical datasets identified here limits our confidence in inferring 

what processes in the simulated terrestrial C cycle caused the largest share of overall 

uncertainty. Our results do however indicate that replacing both C-influx and 

turnover rates with products derived from empirical datasets may lead to large 
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changes in global NBP (Figure 10b), vegetation (Figure 8) and soil C stocks (Figure 

9) in the LPJ-GUESS model. 

 

Figure 10. Comparison of spatial soil carbon (representing 2000s) with two independent contemporary 

empirical datasets (panel a, b and c) over six land cover classes. Black line segments show the 

comparison between two empirical datasets of soil carbon. Output from LPJ-GUESS simulation before 

replacing NPP is marked in red. TF-realizations by replacing simulated NPP with the refined NPP 

derived from MODIS NPP and FLUXCOM GPP are marked in blue. Error bars show the range of 

results from replacing simulated NPP with the five refined NPP datasets. 

Our analysis suggested that we may be approaching a point where only a marginally 

improved understanding of land C cycle simulations is gained from comparisons 

between models and the present generation of global datasets of vegetation and soil 

C. We concluded that decreased uncertainty in global datasets of vegetation and soil 

Figure 9. Global annual net land flux and NBP during 1982-2011. (a) Lines show the temporal pattern 

of the net land flux derived from LPJ-GUESS (red), the best TF-realization (based on IoA) when using 

MODIS NPP to correct NPP and C turnover (blue), and the best TF-realization (based on IoA) when 

using FLUXCOM GPP to correct NPP and C turnover (orange). (b) The red shaded area shows the 

range of 65 TF-realizations (5 for replacing NPP only, 10 for replacing vegetation turnover, 10 for 

replacing soil turnover, and 40 for replacing NPP and turnover, including vegetation, soil and both 

turnovers). The net land flux from GCB in (a-b) is shown in black lines with ± 0.8 PgC uncertainty 

range (grey shaded area). 



42 

C would allow valuable global benchmarking of simulated C storage and model-

data fusion using global vegetation and soil C datasets. 
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5. Conclusions  

In this thesis, a series of model implementations and model evaluations have been 

conducted, which provides new insights into model uncertainty in term of climate 

inputs and model structure. The traceability framework (a matrix approach) is 

introduced to identify the ecological processes contribute most strongly to the 

model-data mismatch and an attempt to reduce the model-data mismatch by model-

data fusion which combines model and data derived from site measurement and 

remote sensing. The conclusions and responses to the research aims are summarized 

as follow: 

I. The differences between global climate datasets induce considerable 

uncertainty (up to 32%) in simulated GPP, and the relative importance of 

each climate variable to ensemble uncertainty in GPP was demonstrated in 

a spatially explicit manner. Overall, for a given climate variable, the 

difference between datasets contributed more to the climate induced 

uncertainty than the sensitivity of the modeled processes to those 

differences. 

II. The choice of the climate dataset when estimating GPP at the regional scale 

was more critical than when estimating GPP at the global scale. Tropical 

area exhibited large model-data mismatch, which highlighted a need to 

improve the incoming shortwave radiation estimates of most of the climate 

datasets tested (except CRUNCEP).  

III. Anthropogenic LULCC decreased the role of tropical forests in contributing 

to the terrestrial carbon sink, and the boreal forest ecosystem became the 

biome contributing the most to the terrestrial carbon sink. 

IV. Improving modeling of C-influx (i.e. C assimilation) and C turnover can 

decrease the model-data disagreement in predicted land carbon storage and 

dynamics. However, the model-data agreement is at the time of writing 

comparable or even higher than the agreement between independent 

empirical datasets, which suggests that improved agreement by model-data 

fusion should be interpreted with caution due to the limited understanding 

of the actual conditions driving carbon influx and turnover. 
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6. Future studies 

With modelers’ increased understanding of ecological processes (e.g. associated 

with disturbances, land management, vegetation dynamics, and nutrients), more and 

more processes have been incorporated into ecosystem models resulting in more 

complex models. The increasing complexity of models raises challenges of 

identification and quantification of which ecological processes contribute to the 

divergence between model outputs and observational data. In this thesis I have 

shown the advantages of the traceability framework in exploring the effects of C-

fluxes, vegetation and soil C turnover on terrestrial C storage dynamics. This matrix 

approach can also trace the deep level of ecological processes, e.g. change of 

vegetation C turnover can be traced back to tissue turnover, mortality (due to 

longevity, growth efficiency and bioclimatic limit), fire disturbance and land 

management. Therefore, this approach can further help diagnose which processes 

should be explicitly represented in order to improve the model and allow fast 

feedback between performance evaluation and model development.    

With the advent of new techniques in ground-based and satellite-based 

measurements and observatory networks, we are entering the data abundant era. 

There is a challenge of how to use these diverse and abundant data for improving 

ecological understanding and forecasting. One approach is known as data 

assimilation, one of the model-data fusion methods, which compares model outputs 

with a particular dataset in order to find optimal parameters and improve the model. 

Instead of looking for optimal parameters, in this thesis I have shown an example 

of model-data fusion by replacing traceable components with observational data via 

the traceability framework, e.g. replacing simulated NPP with observation-based 

NPP to estimate terrestrial C storage and its annual changes. Similarly, the 

traceability framework can translate diverse observational data into ecological terms 

under the model structure, which turns raw data into interpretable information. 

However, we need to consider the uncertainties in the observational data itself as 

well, as these uncertainties greatly limit our ability to accurately diagnose and assess 

the performance of complex models, therefore there is a need for better quality 

observational data (e.g. low-frequency passive microwaves (L-VOD) products; 

Brandt et al., 2018). 
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