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A measure of dependence between two

compositions
(Running Title: Dependence between two compositions)

Jakob Bergman∗and Björn Holmquist

Lund University

Summary

We consider the problem of describing the correlation between two

compositions. Using a bicompositional Dirichlet distribution, we cal-

culate a joint correlation coefficient, based on the concept of inform-

ation gain, between two compositions. Numerical values of the joint

correlation coefficient are calculated for compositions of two and three

components. We also present an estimator of the joint correlation coef-

ficient for a sample from a bicompositional Dirichlet distribution. Two

confidence intervals are also presented and we examine their empirical

confidence coefficient using a Monte Carlo study. Finally we apply

the estimator to a data set analysing the joint correlation between the

1967 and 1997, and the 1977 and 1997 compositions of the government
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gross domestic product for the 50 U.S. states and District of Columbia.

Key words: correlation; Dirichlet distribution; empirical confidence

coefficient; Fraser information; joint correlation coefficient; simplex

1 Introduction

A composition is a vector of positive components summing to a constant, usu-

ally taken to be 1. Compositions arise in many different areas; the geochem-

ical compositions of different rock specimens, the proportion of expenditures

on different commodity groups in household budgets, and the party prefer-

ences in a party preference survey are all examples of compositions from three

different scientific areas. We will refer to compositions with two components

as bicomponent, to compositions with three components as tricomponent and

to compositions with more than two components as multicomponent.

Due to the summation constraint the components of a composition are not

independent. Much research have been concerned with describing how the

components of a composition correlate, i.e. the intra-compositional depend-

ence. A review of different independence concepts pertaining to partitions of

a composition is presented by Aitchison (1986, Chap. 10).

Our concern is correlations between compositions, a topic which has pre-

viously not been given equally much attention. We believe that a measure

of inter-compositional dependence is needed in order to describe various nat-

urally occurring phenomena, for instance the spatial similarity between two

geochemical compositions measured at different locations, or the temporal
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similarity between party preference surveys conducted at different times.

There exist many proposals of measures for comparing the similarity (or

dissimilarity) between two compositions based on intuitive meanings of sim-

ilarity in different contexts. For example in ecology the abundance of species

in two communities (or the percentage cover of different species in two com-

munities) have been proposed to be compared using the Bray-Curtis measure

of ‘percent similarity’ (Bray & Curtis 1957), or using chi-square distance for

quantifying resemblance in abundance data.

Some such techniques adapt to situations where many pairs of composi-

tions are available and the general tendency of similarity between the pairs is

to be quantified. Again the approach is to consider measures that intuitively

would strengthen the idea of a general similarity between pairs.

The approach taken here is somewhat the opposite. We describe, using

a joint distribution, the simultaneous outcome of pairs of compositions. We

characterize in this joint distribution what describes this dependence between

the composition pairs. This will in effect be through a very general definition

of correlation in terms of information gain in the dependence model relative

a model of independence (Kent 1983). We also describe how this h property,

in terms of a particular parameter, could be estimated using a sample of

paired observations of compositions. The statistic derived for use in a sample

of paired observations of compositions will hence be an estimator of the

corresponding theoretical parameter describing the correlation. This makes

inference about this property possible.
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2 The bicompositional Dirichlet distribution

The sample space of a random composition is the simplex. Without loss of

generality we will always take the summing constant to be 1, and we define

the D-part simplex S D as

S D =
{

(x1, . . . , xD)> ∈ RD
+ :

D∑
j=1

xj = 1
}
,

where R+ is the positive real space. The joint sample space of two compos-

itions is the Cartesian product of two simplices S D ×S D. Unfortunately

very few distributions with dependence structures defined on S D ×S D are

available. For the bicomponent case there have been proposed a few bivari-

ate Beta distributions (though usually not in a compositional context). See

for instance Olkin & Liu 2003, Nadarajah & Kotz 2005, Nadarajah 2006 or

Nadarajah 2007. Apart from the fact that these distributions do not enable

modelling of multicomponent compositions, some are unable to model in-

dependence between the compositions. Jørgensen & Lauritzen (2000) have

introduced a distribution defined on the Cartesian product of p bicomponent

simplices (S 2)p, i.e. a bicomponent multicompositional distribution, however

still only a bicomponent distribution.

The logistic-normal distribution on the simplex (see e.g. Aitchison &

Shen 1980; Aitchison 1986) can be generalized to bicompositional distribution

on S D × S D through two inverse additive log-ratio transformations of a

multivariate normal distribution on RD−1 ×RD−1. The actual dependence

structure between the compositions is then determined through the cross
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covariance matrix between the two normal sub-vectors on RD−1. A similar

technique applies when considering logistic skew-normal distributions (see

e.g. Mateu-Figueras et al. 2005) where the dependence structure between

the compositions will be even more complex.

For our purpose we shall here consider the bicompositional Dirichlet dis-

tribution proposed by Bergman (2009). The proposed distribution has the

probability density function

f(x,y) = A

(
D∏
j=1

x
αj−1
j y

βj−1
j

)(
x>y

)γ
, (1)

where x = (x1, . . . , xD)> ∈ S D, y = (y1, . . . , yD)> ∈ S D, and αj, βj ∈ R+

(j = 1, . . . , D). The parameter space of γ depends on α and β; however, all

non-negative values are always included. Expressions for the normalization

constant A under various parameter settings are given in Bergman (2009).

If γ = 0, the probability density function (1) is the product of two Di-

richlet probability density functions with parameters α and β respectively,

and hence X and Y are independent in that case. The bicompositional

Dirichlet distribution forms an exponential family with natural parameters

θ = (γ, α̃, β̃)>, where α̃j = αj − 1 and β̃j = βj − 1.

If we consider two families of parametric models {f(x,y;θ),θ ∈ Θi}

(i = 0, 1) with Θ0 ⊂ Θ1 and the true joint density function is g(x,y), the

Fraser information is defined in Kent (1983) as

F (θ) =

∫
log f(x,y;θ)g(x,y)dxdy, (2)
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that is, F (θ) is the expected log-likelihood.

By choosing θi to maximize F (θ) in the parameter space Θi, ‘θi is the

theoretical analogue of the maximum likelihood estimate of θ over the para-

meter space Θi’ (Kent 1983). We divide θ into two parts θ = (ψ,λ), where

ψ is the parameter of interest and λ is a nuisance parameter.

If the model forms an exponential family

f(x,y;θ) = exp{ψ>v(x,y) + λ>w(x,y)− c(θ)},

the maximized Fraser information may be calculated as

F (θi) = θi
>b(θi)− c(θi), (3)

for the two parameter spaces Θi, i = 1, 2, where b(θ) is the vector of partial

derivatives of c(θ) with respect to θ.

If for Θ0 = {θ : ψ = 0}, X and Y are modelled as independent, the

information gain of allowing for dependence between X and Y in the model

is Γ(θ1 : θ0) = 2{F (θ1) − F (θ0)}. Since F (θi) is the maximized expected

log likelihood, Γ(θ1 : θ0) is the theoretical analogue of −2 times the log

likelihood ratio statistic.

Kent (1983) proposed a joint correlation coefficient between X and Y

defined as ρ2J = 1 − exp{−Γ(θ1 : θ0)}. As is easily seen, 0 ≤ ρ2J < 1 and

tending to one as Γ(θ1 : θ0) tends to infinity. Independence between X and

Y implies zero ρ2J -correlation if g(x,y) = f(x,y;θ) for some θ, or ‘the model

Θ1 forms a regular exponential family’ (Inaba & Shirahata 1986, p. 346). The
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subscript J indicates that the information gain is with respect to the joint

distribution rather than to conditional distributions which in general would

give a different kind of correlation measure, see Kent (1983).

We shall assume that the true density function g(x,y) is the bicompos-

itional Dirichlet probability density function (1) and that the two families

of parametric models f(x,y;θi) also are bicompositional Dirichlet distribu-

tions. The Fraser information now equals the Kullback-Leibler information

(Kullback & Leibler 1951). The parameter of interest ψ in these models is γ.

Denoting θ1 = (γ(1), α̃(1), β̃(1))> and θ0 = (γ(0), α̃(0), β̃(0))>, it can be shown,

through the information inequality, that γ(1) = γ, α̃(1) = α̃, and β̃(1) = β̃,

but when γ(0) = 0, in general α̃(0) 6= α̃ and β̃(0) 6= β̃. Hence calculation of

F (θ0) requires maximization, usually numerically, with respect to α(0) and

β(0).

2.1 The bicomponent case

For two components, the calculation of the joint correlation coefficient ρ2J has

been done through the information gain as described earlier for some different

situations. Figure 1 depicts the joint correlation coefficient ρ2J , calculated for

five different sets of α and β values and 49 values of γ ranging from −1.25

to 2.0.

FIGURE 1 ABOUT HERE

As can be seen in the figure, the joint correlation coefficient depends

primarily on the value of γ but also to some extent on the rest of the para-

7



meters. This may seem peculiar but is a natural consequence of that the

intra-dependence between the parts of a composition implies that correla-

tions between two compositions are in general not only depending of the

corresponding components of the two compositions, but also have to be in-

fluenced by the remaining parts of the composition, and thus also of the

parameters that rule their relative magnitudes.

It may be noted that ρ2J is not symmetric around 0; the rate at which

ρ2J changes differs for negative and positive γ and we note that the vertical

order of the five graphs in the figure are different for negative and positive γ.

The small deviations in the curvature of the graphs, e.g. at −0.65, are likely

due to numerical issues in the maximization.

2.2 The tricomponent case

The normalization constant in the multicomponent case of the bicompos-

itional Dirichlet distribution is hitherto calculated only for γ being non-

negative integers (Bergman 2009). We will hence calculate the joint cor-

relation coefficient only for such γ values. Also, since differentiation with

respect to γ may not be meaningful, we will not use (3) in the calculation,

but will instead utilize the definition given in (2).

The Fraser information for the tricomponent bicompositional Dirichlet
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distribution is

F (θi) =

∫
log{Axα

(i)
1 −1

1 x
α
(i)
2 −1

2 x
α
(i)
3 −1

3 y
β
(i)
1 −1

1 y
β
(i)
2 −1

2 y
β
(i)
3 −1

3 (x>y)γ
(i)}g(x,y)dxdy

= logA+ (α(i)

1 − 1)

∫
log(x1)g(x,y)dxdy

+ · · ·

+ (β(i)

3 − 1)

∫
log(y3)g(x,y)dxdy

+ γ(i)

∫
log(x1y1 + x2y2 + x3y3)g(x,y)dxdy,

for i = 0, 1. Thus F (θi) equals the sum of a constant, six log expectations,

and the expectation E{log(x>y)}.

Using the Multinomial Theorem and also that for a Dirichlet distributed

random variable X = (X1, . . . , XD)>, E{log(Xj)} = Ψ(αj)−Ψ(α.), where Ψ

denotes the digamma function (Abramowitz & Stegun 1964; Aitchison 1986)

and for generic a, a. = a1 + · · ·+ aD, we may calculate the first seven terms

of F (θi) exactly. For example:

∫
log(xj)g(x,y)dxdy

= A
∑
ki≥0
k.=γ

(
γ

k

)∏3
i=1 Γ(αi + ki)

Γ(α. + γ)

∏3
i=1 Γ(βi + ki)

Γ(β. + γ)
{Ψ(αj + kj)−Ψ(α. + γ)} .

where (
γ

k

)
=

γ!

k1!k2!k3!
,

i.e. the multinomial coefficient.

The integral
∫

log(yj)g(x,y)dxdy analogously yields the same result ex-

cept for the last factor, where αj and α. are replaced by βj and β. respectively.
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The last term of F (θ1) must be integrated numerically. (See Appendix I

for integration over S 3 ×S 3.) This is not the case for F (θ0), as γ(0) = 0,

but instead, in order to obtain θ0, F (θ) must be maximized with respect to

α(0) and β(0).

Using these approaches the joint correlation coefficient has been calcu-

lated for bicomponent models with parameters α = (2.1, 2.4)> and β = (2.2,

2.3)> for γ ranging from −2 to 8, and for tricomponent models with para-

meters α = (2.1, 2.4, 2.3)> and β = (2.2, 2.3, 2.1)> for non-negative integer

values of γ upto 8.

FIGURE 2 ABOUT HERE

In Figure 2 these values are plotted and we see how the joint correlation

coefficient is levelling off towards 1 as γ increases, something that is not

really visible in Figure 1. We can also see again that the joint correlation

not only depend on γ but to some extent on the full set of parameters in the

distribution.

In both the bicomponent and tricomponent case the Fraser information,

and hence the joint correlation coefficient, is calculated with respect to the

Lebesgue measure in accordance with the Dirichlet integral. It remains as

future work to reformulate it using the Aitchison (or simplicial) measure

(Pawlowsky-Glahn 2003).
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3 Estimation

We will now focus on estimating the joint correlation coefficient in a bicom-

positional Dirichlet probability density function under the restriction of a

bicomponent model.

The parameter space for models allowing dependence between the com-

positions, i.e. unrestricted models, is Θ1 = {α1 > 0, α2 > 0, β1 > 0, β2 >

0, γ > −min(α1 + β2, α2 + β1)} while the parameter for models not allowing

dependence is Θ0 = {α1 > 0, α2 > 0, β1 > 0, β2 > 0, γ = 0}. The information

gained by allowing dependence Γ(θ1 : θ0) may be estimated by

Γ̂(θ̂1 : θ̂0) =
2

n
{

n∑
k=1

log f(xk,yk; θ̂1)−
n∑
k=1

log f(xk,yk; θ̂0)}, (4)

where θ̂1 and θ̂0 are the maximum likelihood estimates under the parameter

spaces Θ1 and Θ0, respectively (Kent 1983).

3.1 Maximum likelihood estimates

If we assume a sample of n independent observations (xj,yj) (j = 1, . . . , n)

from a bicomponent bicompositional Dirichlet distribution with parameters

α,β and γ, the log likelihood function is

`(α,β, γ) = −nc(α,β, γ) + γ
n∑
k=1

log(x>k yk)

+
n∑
k=1

2∑
j=1

{(αj − 1) log xkj + (βj − 1) log ykj}
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where

c(α,β, γ) = − logA(α,β, γ) = log{2−γ
∞∑
i=0

(
γ

i

)
SαSβ}.

Here Sα =
∑i

j=0[i!/{j!(i − j)!}](−1)i−jB(α1 + j, α2 + i − j), where B(·, ·)

denotes the Beta function.

Finding the maximum likelihood estimates will in general require numer-

ical methods. We stress the fact that the parameter space for γ depends on

the values of the other parameters.

The maximum likelihood estimate of θ = (α,β, γ) under the parameter

space Θi (i = 0, 1) is denoted θ̂i. An estimator of the joint correlation

coefficient is thus ρ̂2J = 1− exp{−Γ̂(θ̂1 : θ̂0)}.

3.2 Confidence intervals

Kent (1983) gives two proposals concerning confidence intervals for Γ(θ1 :

θ0): when the value of Γ(θ1 : θ0) is ‘large’ and when it is ‘small’. Kent

does not indicate which values of Γ(θ1 : θ0) that are to be considered ‘large’

and which are to be considered ‘small,’ other than that it depends on the

number of observations n. He notes though that ‘the asymptotics for ‘small’

Γ(θ1 : θ0) are likely to prove most useful.’

The first 1− α confidence interval (‘large’) is

{
Γ̂(θ̂1 : θ̂0)− (s2χ2

1;αn
−1)1/2, Γ̂(θ̂1 : θ̂0) + (s2χ2

1;αn
−1)1/2

}
(5)

where s2 is the sample variance of 2 log{f(xj,yj; θ̂1)/f(xj,yj; θ̂0)} for j =
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1, . . . , n and χ2
1;α is the upper α quantile of the χ2

1 distribution.

The second 1− α confidence interval (‘small’) is (corrected for an appar-

ently misprinted α̂ instead of â)

{
µκ1;α/2(â/µ)

n
,
µδ1;α/2(â/µ)

n

}
, (6)

where â = nΓ̂(θ̂1 : θ̂0) and κ1;α(a) and δ1;α(a) are the values of the non-

centrality parameters of a non-central chi square distribution defined by

Pr[χ2
1{κ1;α(a)} ≥ a] = α and Pr[χ2

1{δ1;α(a)} ≤ a] = α, respectively, ex-

cept that κ1;α(a) ≡ 0 if Pr[χ2
1{0} ≥ a] > α (Kent 1983, p. 169). The

constant µ is equal to 1, as we are convinced that the true density function

belongs to {f(x,y;θ)|θ ∈ Θ1}. The α in (5) and (6) is one minus the con-

fidence coefficient, not to be confused with the parameter α = (α1, α2)
> of

the bicomponent bicompositional Dirichlet distribution.

We thus transform the confidence intervals of Γ(θ1 : θ0) yielding the

‘large’

[
1− exp

{
−Γ̂(θ̂1 : θ̂0) + (s2χ2

1;αn
−1)1/2

}
,

1− exp
{
−Γ̂(θ̂1 : θ̂0)− (s2χ2

1;αn
−1)1/2

}]
(7)

and the ‘small’

[
1− exp

{
−
κ1;α/2(â)

n

}
, 1− exp

{
−
δ1;α/2(â)

n

}]
(8)

1− α confidence intervals of ρ2J .
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Asymptotically the likelihood ratio test for θ ∈ Θ0 (i.e. γ = 0, or ρ2J = 0)

against θ ∈ Θ1 rejects Θ0 if and only if the one-sided upper confidence

interval analogous to (6) does not contain 0.

4 Comparison of the confidence intervals

In order to examine the properties of the two confidence intervals (7) and (8),

we conducted a Monte Carlo study for six models with different ρ2J and for

different numbers of observations (n = 50, 100, 250). For every combination

of model and number of observations we generate random variates (Bergman

2012), estimate ρ̂2J , compute the two confidence intervals, and record in how

many cases the true value of ρ2J is covered by the two intervals (the empirical

confidence coefficient). The results are presented in Table 1. The nominal

confidence coefficient in the study is 0.95 and we see clearly from the table

that most empirical confidence coefficients are close to this; they vary between

0.90 and 1.00. We note that especially the ‘large’ confidence intervals seem

to have empirical confidence coefficients that are too high, indicating overly

wide confidence intervals. It should be noted though that as the ‘large’

confidence intervals are not guaranteed to be non-negative, the comparisons

are from a practical point of view not entirely fair; a lower limit less than

zero would in practice be replaced by zero as both the information gain

and the joint correlation coefficient are non-negative. On the other hand, a

confidence limit that is not restricted to the appropriate parameter space is

of less practical use.
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TABLE 1 ABOUT HERE

Kent (1983) notes that the estimator (4) is biased and suggests a less

biased estimator. However, in our case numerical examples indicated that

the bias-corrected estimates are, contrary to Kent’s claim, actually more

biased than the uncorrected ones, especially for models with large ρ2J . We

believe that this increased bias might be due to numerical issues in calcula-

tions, which consist of large numbers of infinite sums. Due to this lack of

improvement we have not used this bias correction in our estimations. It can

however be concluded from this limited study that the ‘small’ interval gives

a fairly reasonable (correct) coverage probability in general, with a tendency

to be slightly too conservative (too wide) when ρ2J is large.

5 An example

We illustrate the estimation of the joint correlation coefficient presented in

Section 3 with an example. The data consist of the composition of the govern-

ment gross domestic product for the 50 U.S. states and District of Columbia,

for the years 1967, 1977 and 1997. The composition is originally (Federal

civilian, Federal military, State and local), but we have collapsed the Federal

military and the State and local, to create a bicomponent composition. Data

come from the Bureau of Economic Analysis, U.S. Department of Commerce.

We estimate the correlation between the GDP composition in 1967 and

that in 1997. The maximum likelihood estimates of the parameters under Θ1

are α̂ = (16.32, 14.41)>, β̂ = (17.31, 43.20)>, and γ̂ = 57.41. The estimate
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of the joint correlation coefficient is ρ̂2J = 0.3027, with a ‘small’ confidence

interval of (0.0993, 0.5371). An analogous one-sided upper confidence inter-

val will have lower bound at least 0.0993, thus indicating that composition

of the government GDP in 1967 is correlated with the composition of the

government GDP in 1997.

For comparison, we also calculated the corresponding values for the years

1977 and 1997. This yielded the following maximum likelihood estimates:

α̂ = (19.02, 31.14)>, β̂ = (18.33, 45.98)>, and γ̂ = 51.02. The estimated

joint correlation coefficient is ρ̂2J = 0.3538, with a ‘small’ 95 % confidence

interval of (0.1369, 0.5852). We note that the estimated correlation is slightly

higher between 1977 and 1997 than between 1967 and 1997. This could be

explained by the greater temporal proximity. The confidence intervals are

however to a large extent overlapping.

6 Discussion

The compositional data analysis has through history primarily been con-

cerned with modelling the dependence between the components of one com-

position, the intra-compositional dependence. This is a very natural focus

due to the intrinsic correlation of compositions. However, understanding and

modelling the dependence between two compositions, the inter-compositional

dependence, is also of interest.

We have considered correlation as a measure of similarity in accordance

with e.g. Dodge (2003). We have demonstrated that the joint correlation

coefficient measuring the similarity between two compositions may be found
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under the assumption of a bicompositional Dirichlet distribution. As the

joint correlation coefficient is in the range 0 to 1, this also enables the pos-

sibility to compare the dependence between two D-part compositions with

the dependence between two N -part compositions for D 6= N .

The approach taken here also allows for the possibility of calculating

correlation between one D-part composition and another N -part composition

when a suitable family of joint distributions on S D ×S N is defined.

The use of a single-valued measure for describing the inter-compositional

dependence based on the information gain, is in line with the fact that ρ2J

corresponds, in a different model, to a combination of the squared canon-

ical correlations between two multivariate dependent normal variables (Kent

1983, Sec 10), thus reflecting the dependence not only in the same coordin-

ate but also the dependence due to all other coordinates of the two variables.

This is furthermore closely related to what would be the correlation meas-

ure between compositions whose log-ratio transforms were dependent mul-

tivariate normally distributed, i.e. themselves logistic-normal, as outlined in

Section 2.

We have also shown how to estimate this joint correlation coefficient

with a point estimate and two confidence intervals. The two confidence

intervals were compared and it is apparent for the models that we have ex-

amined that the so called ‘small’ confidence interval (based on non-central

χ2-distributions) will produce the smaller intervals, yielding an empirical

confidence coefficient for almost all models of approximately 95 %, when the

nominal confidence coefficient is 95 %. The ‘large’ confidence intervals are in

general wider.

17



We have demonstrated that the joint correlation coefficient between com-

positions can be calculated for real data using an example for American gross

domestic product data.

Future work will include considering other families of bicompositional

joint distributions allowing for the calculation of the joint correlation between

the compositions.

Appendix I Integration over S 3 ×S 3

Integrating over S 3 ⊂ R3 is equivalent to integrating over a triangle in R2

defined by a coordinate along the basis of the triangle, 0 < u < 21/2, and an

orthogonal coordinate from the midpoint of this basis up to the edge of the

triangle, 0 < v < (3/2)1/2 − 31/2
∣∣2−1/2 − u∣∣. Analogously, integration over

S 3 × S 3 becomes a quadruple integral. However, since the tricomponent

bicompositional Dirichlet distribution is defined on S 3 ×S 3, the R2 ×R2

coordinates must be transformed into compositions to get the density. Using

x(s, t) = y(s, t) =


t
(
2
3

)1/2
s2−1/2 − t6−1/2

1− s2−1/2 − t6−1/2

 ,

the integral of a function h(x,y) over S 3 ×S 3 becomes

∫
h(x,y)dxdy =

∫ 21/2

s=0

∫ ( 3
2)

1/2
−31/2|2−1/2−s|

t=0

∫ 21/2

u=0

∫ ( 3
2)

1/2
−31/2|2−1/2−u|

v=0

h(x(s, t),y(u, v))
1

3
dvdudtds.
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where the Jacobian of the transformation is 1/3.
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S. Thió-Henestrosa & J. A. Mart́ın-Fernández, eds. Universitat de Girona.

21



Table 1: The empirical confidence coefficient is presented for six different
models (α,β, γ) and three different numbers of observations n. For each
model and number of observations, 500 samples of random variates are gen-
erated and the two confidence intervals (“large” and “small”) for the correl-
ation coefficient are calculated for nominal confidence level 95 %. We then
calculate the proportion of the confidence intervals that cover the true value
of the correlation coefficient ρ2J for that model.

Parameter values Interval

α β γ ρ2J n “large” “small”

(3, 2.3) (4, 2) 1.5 0.038 50 0.926 0.954
100 0.930 0.958
250 0.992 0.970

(9, 7) (4, 2) 4.5 0.099 50 0.992 0.964
100 0.978 0.904
250 0.998 0.960

(4, 3) (4, 2) 4.5 0.174 50 0.998 0.950
100 0.978 0.918
250 1.000 0.942

(4, 3) (3, 4) 4.5 0.244 50 0.998 0.954
100 1.000 0.968
250 0.998 0.958

(4, 3) (3, 4) 9.5 0.652 50 1.000 0.976
100 1.000 0.944
250 1.000 0.986

(4, 3) (3, 4) 14.0 0.867 50 0.998 0.982
100 1.000 0.980
250 0.996 0.984
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Figure 1: The joint correlation coefficient ρ2J calculated for γ ranging from
−1.25 to 2.0 for the (α;β) parameter values (2.1, 2.4; 2.2, 2.3) (�), (2.1, 2.2;
3.6, 3.5) (N), (5.2, 2.0; 2.0, 2.0) (O), (1.9, 6.4; 3.2, 2.1) (•) and (4.1, 2.4; 4.1,
2.4) (+).
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Figure 2: The joint correlation coefficient ρ2J calculated for γ ranging from
−2 to 8 for bicomponent models with (α;β) parameter values (2.1, 2.4; 2.2,
2.3) (◦) and tricomponent models with (α;β) parameter values (2.1, 2.4, 2.3;
2.2, 2.3, 2.1) (N).
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