Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements

Dam, J. S; Dalgaard, T; Fabricius, P. E; Andersson-Engels, Stefan

Published in: Applied Optics

DOI: 10.1364/AO.39.001202

2000

Citation for published version (APA):
Multiple polynomial regression method for
determination of biomedical optical properties
from integrating sphere measurements

Jan S. Dam, Torben Dalgaard, Paul Erik Fabricius, and Stefan Andersson-Engels

We present a new, to our knowledge, method for extracting optical properties from integrating sphere measurements on thin biological samples. The method is based on multivariate calibration techniques involving Monte Carlo simulations, multiple polynomial regression, and a Newton-Raphson algorithm for solving nonlinear equation systems. Prediction tests with simulated data showed that the mean relative prediction error of the absorption and the reduced scattering coefficients within typical biological ranges was less than 0.3%. Similar tests with data from integrating sphere measurements on 20 dye-polystyrene microsphere phantoms led to mean errors less than 1.7% between predicted and theoretically calculated values. Comparisons showed that our method was more robust and typically 5–10 times as fast and accurate as two other established methods, i.e., the inverse adding-doubling method and the Monte Carlo spline interpolation method. © 2000 Optical Society of America

OCIS codes: 120.3150, 120.5820, 170.7050, 170.1470, 160.4760.

1. Introduction

In the field of biomedical optics, determination of the optical properties of various biological materials is essential, not only for diagnostic purposes, e.g., whole blood analysis,1–4 but also in therapeutic applications, e.g., in the development of tissue light propagation models for various types of laser therapy.5,6 The optical properties,7 i.e., the absorption coefficient μ_a, the scattering coefficient μ_s, and the anisotropy parameter g, are often determined by measurement of the total diffuse reflectance R and the diffuse transmittance T of a thin sample in an integrating sphere setup. However, it is only possible to determine μ_a and the reduced scattering coefficient $\mu_s' = (1 - g)\mu_s$ from pure R and T measurements. To separate μ_s' into μ_s and g, one often includes measurements of the collimated transmittance T_c as well. Because accurate T_c measurements are difficult to perform, the similarity principle8–10 is often applied in conjunction with integrating sphere measurements; i.e., only μ_a and μ_s' are determined. R and T measurements may be carried out with either a single- or a double-sphere setup. In the latter, R and T can be determined simultaneously without moving the sample; however, the obtainable accuracy is decreased compared with a single-sphere setup, owing to optical cross talk between the two spheres.11

Several methods have been applied to solve the problem of extracting μ_a and μ_s' from R and T measurements, e.g., methods based on Kubelka-Munk theory12 and diffusion theory.13 Although both these methods provide analytical expressions for $R(\mu_a, \mu_s')$ and $T(\mu_a, \mu_s')$, the inverse problem of determining $\mu_a(R, T)$ and $\mu_s'(R, T)$ has no analytical solutions. Furthermore, the analytical solutions of $R(\mu_a, \mu_s')$ and $T(\mu_a, \mu_s')$ are not accurate; thus most contemporary approaches are based on numerical methods, which provide more accurate calculations of $R(\mu_a, \mu_s')$ and $T(\mu_a, \mu_s')$, e.g., the inverse adding-doubling (IAD) method14 or methods involving Monte Carlo simulations.2–15 For all the above methods it is common that $\mu_a(R, T)$ and $\mu_s'(R, T)$ have to be determined by iterative numerical calculations. This may prove to be to slow in some cases, e.g., applications involving real-time multiwavelength analysis. In this paper we present a method, which is both fast and accurate and thus suitable for such
applications. The method is based on Monte Carlo
simulations,16 polynomial regression, and a Newton–
Raphson algorithm17 for solving nonlinear equation
systems. For brevity we denote the method MPR
(multiple polynomial regression).

In the following sections we first explain the steps
of the MPR method in detail. Next, we present and
discuss simulated and measured test results. Fi-

nally, we compare the performance of the MPR
method with that of the IAD method and another
Monte Carlo-based method, the so-called Monte
Carlo spline interpolation (MCSI) method.5

2. Methods

The purpose of the MPR method is to extract \(\mu_a \) and
\(\mu'_s \) from integrating sphere measurements of \(R \) and \(T \)
on thin turbid biological samples. This involves sev-

eral numerical and experimental methods, which we
describe in the present section.

A. General Principles

In mathematical terms the first step of the MPR
method is to perform two bijective mappings of a
relevant subset of the \(\{\mu_a, \mu'_s\} \) space onto their images
in the \(R \) and the \(T \) spaces, respectively. Such mappings
may of course be obtained from a series of \(R \) and
\(T \) measurements on phantoms are performed with
known \(\mu_a \) and \(\mu'_s \) values. However, it is faster to
apply a proper light-propagation model, e.g., Monte
Carlo simulations.

The next step is to create a calibration model, i.e.,
to find a mathematical description of the \(R(\mu_a, \mu'_s) \)
and \(T(\mu_a, \mu'_s) \) mappings. A regular and a smooth
appearance of simulated \(R \) and \(T \) images, i.e., \(R_{\text{sim}} \)
and \(T_{\text{sim}} \), indicated that these may be fitted well by
relatively simple mathematical functions. Thus we
tested and used double polynomials with the generic
form

\[
P(\mu_a, \mu'_s, m) = (a_0 + a_1 \mu_a + a_2 \mu_a^2 + \cdots + a_m \mu_a^m) \\
\times (b_0 + b_1 \mu'_s + b_2 \mu'_s^2 + \cdots + b_m \mu'_s^m),
\]

(1)

where \((a_0, a_1, a_2, \ldots, b_0, b_1, b_2, \ldots) \) are fitting
coefficients determined by least-squares regression
and \(m \) is the order of the double polynomial. The
resulting polynomial fits to \(R_{\text{sim}} \) and \(T_{\text{sim}} \) were
defined as

\[
R_{\text{fit}} = P_R(\mu_a, \mu'_s, m), \\
T_{\text{fit}} = P_T(\mu_a, \mu'_s, m).
\]

(2)

The final step of the MPR method is to solve the
inverse problem of extracting \(\mu_a \) and \(\mu'_s \) from real
integrating sphere measurements, i.e., \(R_{\text{meas}} \) and
\(T_{\text{meas}} \). For this we used a Newton–Raphson
algorithm. First, we defined

\[
\begin{align*}
F(\mu_a, \mu'_s) &= R_{\text{fit}} - R_{\text{meas}}, \\
G(\mu_a, \mu'_s) &= T_{\text{fit}} - T_{\text{meas}}.
\end{align*}
\]

(3)

Then we performed converging iterative calculations
of \(\mu_a \) and \(\mu'_s \), using the algorithm in Eq. (4):

\[
-F(\mu_a, \mu'_s) \\
G(\mu_a, \mu'_s)
\]

\[
\begin{pmatrix}
\frac{\partial F}{\partial \mu_a} \\
\frac{\partial G}{\partial \mu_a}
\end{pmatrix} \begin{pmatrix}
\mu_a \\
\mu'_s
\end{pmatrix} \\
\begin{pmatrix}
\frac{\partial F}{\partial \mu'_s} \\
\frac{\partial G}{\partial \mu'_s}
\end{pmatrix} \begin{pmatrix}
\mu'_s
\end{pmatrix}
\]

\[= \begin{pmatrix}
h_{a,k} \\
h_{s,k}
\end{pmatrix},
\]

\[\begin{pmatrix}
\mu_{a,k+1} \\
\mu'_{s,k+1}
\end{pmatrix} = \begin{pmatrix}
\mu_{a,k} \\
\mu'_{s,k}
\end{pmatrix} + \begin{pmatrix}
h_{a,k} \\
h_{s,k}
\end{pmatrix}
\]

(4)

where \(h_{a,k} \) and \(h_{s,k} \) are correction terms of \(\mu_a \) and \(\mu'_s \).
The calculations were continued until \(h_{a,k} \) and \(h_{s,k} \)
satisfied predefined accuracy requirements. Finally,
\(\mu_{a,k} \) and \(\mu'_{s,k} \) were read.

B. Simulations and Numerical Analysis

We used the Monte Carlo code provided by Wang et
al.16 to generate calibration and simulated prediction
data sets. To provide a detailed calibration model,
we first generated two \(20 \times 50 \) matrices of \(R_{\text{sim}} \) and
\(T_{\text{sim}} \), where \(T_{\text{sim}} \) includes both the collimated and the
diffuse transmittance, whereas \(R_{\text{sim}} \) represents dif-

fuse reflectance only. The values of \(\mu_a \) and \(\mu'_s \) in
these matrices were incremented in steps of 0.1 and
1 cm\(^{-1}\), respectively, within the typical biological
ranges18,19:

\[
\begin{align*}
0.1 \text{ cm}^{-1} &\leq \mu_a \leq 5 \text{ cm}^{-1}, \\
1 \text{ cm}^{-1} &\leq \mu'_s \leq 20 \text{ cm}^{-1}, \\
g &= 0.9, \\
n &= 1.4,
\end{align*}
\]

(5)

where \(n \) is the refractive index. Note that both \(g \) and
\(n \) were kept fixed in the simulations. The sample
geometry of the simulations was a semi-infinite slab
with thickness \(d_{\text{sample}} = 0.5 \) mm. The slab was
placed between semi-infinite glass slides with thick-
ness \(d_{\text{slide}} = 1 \) mm and refractive index \(n_{\text{slide}} = 1.52 \).
The slab was irradiated by a collimated beam with the
diameter \(r_{\text{beam}} = 1 \) mm. In each simulation, \(1 \times 10^8 \)
photons were traced. This extensive \(R_{\text{sim}} \) and
\(T_{\text{sim}} \) data set was used in the evaluation of the MPR
technique to extract \(\mu_a \) and \(\mu'_s \) from Monte Carlo
simulated prediction data.

To perform prediction tests on data from integrating
sphere measurements on phantom models as well, we
generated a second calibration model. Referring to
the results from the prediction tests on simulated data,
the number of simulations used in this calibration model were reduced to include only
\(117 (9 \times 13) \) \(R_{\text{sim}} \) and \(T_{\text{sim}} \) simulations. The geometry
of these simulations were adapted to the single
integrating sphere setup geometry in Fig. 1, and the
optical properties of the simulations were chosen to
cover the phantom optical property range sufficiently:

\[0 \text{ cm}^{-1} \leq \mu_a \leq 3 \text{ cm}^{-1}, \]
\[4.4 \text{ cm}^{-1} \leq \mu'_a = 21.8 \text{ cm}^{-1}, \]
\[g = 0.92, \]
\[n = 1.33. \]

(6)

Except for the Monte Carlo simulations, all numerical analysis and algorithms in this paper were carried out with Matlab 5.2. Thus all matrix manipulation, least-squares fitting, etc., is based on standard Matlab routines.

C. Experimental Setup and Measurements

To carry out MPR tests on experimental data, we measured \(R_{\text{meas}} \) and \(T_{\text{meas}} \) of 20 liquid phantoms, each with a distinct set of \(\mu_a \) and \(\mu'_a \), using the integrating sphere setup shown in Fig. 1. The phantoms consisted of green food dye and 1.9-μm polystyrene spheres suspended in water. During the measurements the phantoms were contained in cuvettes, consisting of two glass slides separated by a black plastic spacer.

As illustrated in Fig. 1, some of the transmitted and reflected diffuse light is lost in real integrating sphere measurements, owing to the limited diameter of sample port. During the prediction analysis we therefore corrected \(R_{\text{sim}} \) and \(T_{\text{sim}} \) to take these transversal losses into account before the polynomial fits \(R_{\text{fit}} \) and \(T_{\text{fit}} \) were calculated. We did this by ignoring values of \(R_{\text{sim}} \) and \(T_{\text{sim}} \) for radial distances \(r > 0.5 \) \(r_{\text{sample}} \).

Furthermore, we also had to carry out corrections due to losses through the ports and the reflective coating of the integrating sphere. The measured intensity at the detector \(P_{\text{out}} \) in an integrating sphere setup is the result of multiple reflections in the sphere originating from the first interaction of the incident light with the sample. This relation is given by

\[
P_{\text{out}} = P_0 \delta_d r_w \sum_{n=0}^{\infty} (\alpha w r_w + \alpha_s r_s + \alpha_d r_d)^n
= P_0 \frac{\delta_d r_w}{1 - \alpha w r_w - \alpha_s r_s - \alpha_d r_d},
\]

(7)

where \(r \) denotes diffuse reflectance coefficients and \(\alpha \) denotes normalized areas relative to the total sphere area. The subscripts \(w, s, \) and \(d \) denote wall, sample, and detector, respectively. The initial reflected or transmitted intensity at the sample is \(P_0 = R_w P_{\text{in}} \) or \(P_0 = t_s P_{\text{in}} \), respectively, where \(P_{\text{in}} \) is the intensity of the incident laser beam and \(r_w \) and \(t_s \) are diffuse reflectance and transmittance coefficients of the sample, respectively.

Note that the specular reflectance \(R_{\text{spec}} \) leaves the sphere through the entrance port and that the collimated transmittance \(T_c \ll T_{\text{total}} \); thus both are ignored in this particular setup. To avoid direct exposure of the detector from \(P_0 \), it was pulled back from the detector port; thus only diffuse reflectance from a portion of the opposite sphere wall was detected. The normalized area of this portion is denoted \(\delta_d \) in Eq. (7). Using a well-defined reflectance standard as a reference in conjunction with Eq. (7), we extracted \(r_s \) and \(t_s \) from the phantom measurements and used these as input to the MPR method during the prediction analysis, i.e., \(R_{\text{meas}} = r_s \) and \(T_{\text{meas}} = t_s \).

3. Results and Discussion

A. Calibration Model

Figure 2 depicts the two simulated \(R_{\text{sim}} \) and \(T_{\text{sim}} \) data sets of the calibration model that we used in the MPR evaluations on simulated prediction data. As we stated above, the overall appearance of the \(R_{\text{sim}} \) and the \(T_{\text{sim}} \) plots is smooth and regular and thus well suited for polynomial fitting. Figure 3 shows the resulting fitting errors when two fifth-order double polynomials are used to fit the \(R_{\text{sim}} \) and \(T_{\text{sim}} \) plots in Fig. 2.

The speckled appearance of the absolute error plots in Figs. 3(a) and 3(b) indicates that any systematic fitting errors due to the fitting algorithm are less significant than errors introduced by the random intrinsic noise of the Monte Carlo simulations. The relative errors of \(R_{\text{fit}} \) in Fig. 3(c) are significantly higher for low \(\mu'_a \) values. This is because the low absolute levels of \(R_{\text{fit}} \) in this region (see Fig. 2) are more easily afflicted by the Monte Carlo noise and that the applied least-squares regression algorithm optimizes the fit on the basis of the absolute—and not the relative—errors. Various preprocessing of \(R_{\text{sim}} \) and \(T_{\text{sim}} \) before fitting might reduce the latter error source.

To test the performance of the Newton–Raphson algorithm separately, we also did predictions tests, using the original calibration data sets as input to the Newton–Raphson method, i.e., \(R_{\text{meas}} = R_{\text{fit}} \) and \(T_{\text{meas}} = T_{\text{fit}} \). The results showed that the mean relative calculation error of both \(\mu_a \) and \(\mu'_a \) was approximately \(1 \times 10^{-6} \). Furthermore, the Newton–
Raphson algorithm converged in all cases; thus the specific contribution of the algorithm to the total prediction errors of the MPR method is negligible.

B. Numerical Prediction Tests

We tested the overall prediction performance of the MPR method, using a simulated prediction set of a total of 100 \(R_{\text{meas}} \) and \(T_{\text{meas}} \) data based on random \(\mu_a \) and \(\mu_s' \) values within the ranges defined in relation (5). Figure 4 shows the actual random distribution of \(\mu_a \) and \(\mu_s' \) in the prediction set. All results discussed in the present subsection are based on this prediction set and the large 20 \(\times \) 50 calibration set described in Subsection 2.B. Furthermore, all reported errors are relative prediction errors:

\[
\text{Err} = 100\% \left(\frac{\mu_{\text{pred}} - \mu_{\text{ref}}}{\mu_{\text{ref}}} \right), \tag{8}
\]

where \(\mu_{\text{pred}} \) is the predicted value and \(\mu_{\text{ref}} \) the true value of either \(\mu_a \) or \(\mu_s' \). The prediction errors of \(\mu_a \) or \(\mu_s' \) are denoted \(\text{Err}_a \) and \(\text{Err}_s \), respectively.

1. Order of Polynomials

Table 1 gives the prediction errors using \(R_{\text{fit}} \) and \(T_{\text{fit}} \) fitting polynomials of orders 3, 4, and 5, respectively. The iterations of the Newton–Raphson algorithm were stopped when both \(h_a \) and \(h_s \), \(1 \leq 10^{-6} \) [see Eq. (4)]. This criterion was typically satisfied after 5–15 iterations, leading to almost identical calculation times in all three cases. It is evident that the prediction accuracy of the fifth-order polynomials are superior to the third- and fourth-order polynomials. Sixth-order polynomials were also tested but caused rank deficient problems in the regression algorithm and were therefore rejected.

2. Large-Error Analysis

The cases in which the prediction errors of \(\mu_a \) and/or \(\mu_s' \), i.e., \(\text{Err}_a \) and/or \(\text{Err}_s \), were larger than 0.5% with the fifth-order fits from Table 1 are depicted in Fig. 4. It appears that the \(\text{Err}_a \) values are largest when \(R \) is low, whereas the largest \(\text{Err}_s \) values occur mainly when \(R \) is low and \(T \) is high (see discussion in subsection 3.A). To analyze the Monte Carlo noise contribution versus the fitting-error contribution to the total prediction error, we generated 10 identical but independent \(R_{\text{sim}} \) and \(T_{\text{sim}} \) sets for each of the 14 marked large-error cases in Fig. 4. The results from this analysis are shown in Fig. 5. In cases 1–6 both \(\text{Err}_a \) and \(\text{Err}_s > 0.5\% \) (i.e., the triangles in Fig. 4), whereas in cases 7–14 only \(\text{Err}_a > 0.5\% \) (i.e., the open circles in Fig. 4). In each of the 14 cases in Fig. 5 the left-hand bar indicates the maximum deviation from the true value, the middle bar is a measure of the prediction precision error, and the right-hand bar is a measure of the prediction accuracy error. By comparing the middle and the right-hand bars, we can conclude that the errors in cases 1–6 are mainly due to MPR fitting errors in the calibration set, whereas the errors in cases 7–14 are not due to limitations of the MPR method in general but rather to the Monte Carlo noise in the prediction set. Thus only one of the latter eight cases were off by more than 0.5%, when we, in each case, calculated the mean of the ten independent predictions, i.e., the right-hand columns of Fig. 5.
3. Calculation Speed versus Accuracy

The applied Newton–Raphson algorithm was implemented in Matlab and run on a 166-MHz Pentium personal computer. As shown in Table 1, one single prediction of \(m_a \) and \(m_9 \) was calculated in \(\sim 60 \) ms. If the algorithms were implemented and compiled in, e.g., the C programming language, the calculations would run even faster. In contrast, it took days to generate the Monte Carlo data for the \(20 \times 50 \) calibration model we used. However, the total Monte Carlo calculation time may be reduced by means of either tracing less photons in each simulation or using less simulations to generate the calibration model. The calculation time might also be reduced with the Monte Carlo techniques suggested by Pifferi et al.\(^{20}\) Table 2 shows the resulting prediction errors of four equivalent fifth-order calibration models based on four \(R_{\text{sim}} \) and \(T_{\text{sim}} \) sets with two different numbers of simulations and two different numbers of photons per simulation. The results showed no significant increase in the mean prediction errors when either the number of photons or the number of simulations was reduced. Only when both the number of photons and the number of simulations were reduced simultaneously did a significant increase in the prediction errors occur. Consequently, the total calculation time of the calibration set may be reduced at least 10 times without any significant increase in the average prediction errors.

4. Similarity Principle

When no collimated transmittance data \(T_c \) are available during integrating sphere measurements, the similarity principle is often assumed. However, this assumption is strictly valid only for large sample geometries and for \(g > 0.9^{9,10} \). We tested the validity of the similarity principle, using our calibration model \((g = 0.9) \) on a series of simulated \(R_{\text{meas}} \) and \(T_{\text{meas}} \) with constant \(\mu_s' \) but varying \(g \). For constant \(\mu_s' = 10 \text{ cm}^{-1} \)
we found that the prediction values of m_s deviated approximately 2.5% at $g = 0.8$ and $1.2.5\%$ at $g = 0.99$, respectively. To determine g in conjunction with R and T measurements, it is necessary to perform T_c measurements also. Because of the practical difficulties involved in T_c measurements, the resulting measurement errors are often more severe than the errors arising from calibration models with a fixed g. However, the MPR method can be readily extended to include determination of m_s and g as well by generation of calibration models for various g values and application of a simple algorithm for choosing the appropriate model during each prediction.

5. Comparisons with other Methods

We also compared the MPR method with the MCSI method and the IAD method. Both the latter methods are capable of extracting the full set of optical properties, i.e., m_a, m_s, and g. To do this, they are designed to be fed with collimated transmittance data T_c in addition to the R and T data. In the case of the IAD method it is possible, though, to assume a g value and then use R and T data only. We chose to feed both the MCSI and the IAD method with T_c data calculated with the Beer–Lambert law and the Fresnel law. Table 3 shows the prediction errors, the prediction calculation time, and the number of outliers of the MPR, MCSI, and IAD methods, respectively. The outliers—which we defined as predictions with errors greater than 10%—were excluded from the mean prediction error calculations. All three methods were tested on the same computer.

It appears that the MPR method is significantly faster and more accurate than both the IAD and the MCSI methods. As stated in Subsection 2.B, we applied a finite light source in these experiments. In fact, the IAD method implies uniform illumination; i.e., it is capable of handling one-dimensional light propagation only. This may to some degree account for the lower accuracy. Furthermore, we used only four quadrature points in the IAD calculations. Thus the accuracy of the IAD method may be improved by use of more quadrature points at the expense of the calculation speed.

Although the MCSI and the MPR methods are both based on databases of Monte Carlo simulations, the MPR method yields significantly better accuracy and robustness than the MCSI method. This may be attributed to the fact that the MPR method is less sensitive to the Monte Carlo noise embedded in the databases. The MCSI method is based on spline interpolation of a selection of a few juxtaposed R or T points from the Monte Carlo database. Thus the MCSI fit will pass exactly through all of the selected data points and track any local variation, including intrinsic Monte Carlo noise. Owing to the local variability (i.e., noise) in the Monte Carlo data (see Fig. 3), the interpolated fit may even oscillate widely to pass

Table 1. Prediction Errors, Number of Iterations, and Prediction Calculation Times for Polynomial Fits of Orders 3, 4, and 5

<table>
<thead>
<tr>
<th>Orders</th>
<th>Err_a (%)</th>
<th>Err_s (%)</th>
<th>Iterations</th>
<th>Calc. Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max.</td>
<td>Mean</td>
<td>Max.</td>
</tr>
<tr>
<td>Third order</td>
<td>1.0</td>
<td>7.8</td>
<td>0.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Fourth order</td>
<td>0.4</td>
<td>3.1</td>
<td>0.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Fifth order</td>
<td>0.2</td>
<td>1.4</td>
<td>0.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 2. Prediction Errors with Fifth-Order Polynomial Fits and a Reduced Number of Photon Packets and/or Simulations for the Calibration Model

<table>
<thead>
<tr>
<th></th>
<th>1×10^5 Photons/Simulation</th>
<th>1×10^6 Photons/Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Err_a (%)</td>
<td>Err_s (%)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Max.</td>
</tr>
<tr>
<td>100 Simulations</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>1000 Simulations</td>
<td>0.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>
through all data points and thereby produce unrealis-
tic intermediate values. In contrast, the MPR method is based on two immediate fits including all R and T data points of the Monte Carlo database. In this case the fits are optimized with least-squares regression; thus any local variability in the R and T data will be smoothened out, which in turn will reduce the interference from the random Monte Carlo noise.

C. Phantom Measurements

To further validate the method, we also tested it on R_{meas} and T_{meas} data from phantom measurements. In these experiments we used the small 9×13 calibration set described in Subsection 2.C. Assuming that the scattering due to the dye in the phantoms was negligible, we determined the actual μ_n of the 20 phantoms from collimated transmittance measurements of pure dye solutions, using the Beer–Lambert law. Also assuming that the absorption in the polystyrene spheres in the phantoms was negligible, we calculated the actual μ'_s of the phantoms, using Mie theory.

Figure 6 shows correlation plots of the actual optical properties versus optical properties determined from integrating sphere measurements with the MPR method. In this case a few prediction outliers occurred when we used a fifth-order model, whereas a fourth-order model caused no such problems. This is probably because the higher-order models, although they are more accurate in general, may be more sensitive to the inevitable noise in measured prediction data and thus less robust than lower-order models. As a compromise between accuracy and robustness we therefore used fourth-order models for the predictions presented in Fig. 6. The means of Err_a and Err_s were 1.1% and 1.7%, respectively. In contrast to the errors reported in Subsection 3.B (see Eq. 8), these errors are relative to the dynamic ranges of μ_n and μ'_s in the phantoms:

$$\text{Err} = 100\% \left| \frac{\mu_{\text{pred}} - \mu_{\text{ref}}}{\mu_{\text{ref,max}} - \mu_{\text{ref,min}}} \right|. \quad (9)$$

We used the definition in Eq. (9) in this case, because μ_n includes zero values, leading to division by zero if Eq. (8) is used instead. Although the prediction errors of the measurements are relatively small, they are slightly higher than the errors obtained from similar simulated tests on this model (mean $\text{Err}_a \sim 0.7\%$ and mean $\text{Err}_s \sim 0.2\%$). This is mainly due to uncertainties, partly in the determination of the exact sphere compensation parameters and partly in the stated values of the applied optical properties of microspheres, glass, water, etc. Furthermore, the Monte Carlo simulations employ the Henyey–Greenstein phase function to calculate the scattering properties of the calibration data. However, the
Heney–Greenstein phase function is an approximation to the more correct and complex phase function obtained from Mie theory calculations. Consequently, this may also account for some of the minor discrepancies between the predicted and the true values of μ_a and μ_s' in Fig. 6.

4. Conclusions

The above results show that the MPR method is accurate, fast, and robust. The minor increase in the prediction errors for low-reflectance levels may be reduced by preprocessing of the calibration data before the fitting is performed. However, if this particular region is of main interest, it would be better to apply a larger sample thickness to increase the reflectance signal level and thereby reduce the effect of the interference from Monte Carlo noise and measurement noise.

It appears that the similarity principle is not strictly valid in the above experiments. Consequently, g variations lead to increased but systematic μ_s' prediction errors of the MPR method. However, if necessary, the MPR method could readily be extended to include direct determination of μ_a and g as well, and thus circumvent any similarity problems.

The calculations of the data for the calibration model suffer from the same advantages and drawbacks as all other Monte Carlo-based methods. The main advantages are the flexibility in sample geometry and the potentially high accuracy. The major drawback is the calculation time needed to obtain this high accuracy. However, the results showed that the MPR method maintained a high level of accuracy when the number of simulations or traced photons in the calibration data set was significantly reduced, i.e., 10 times. In our case this meant that the calculation time of the calibration data could be reduced from days to hours.

The predicted values of μ_a and μ_s' with the MPR method on data from real integrating sphere measurements showed good correlation with theoretically calculated values. These experiments also showed that, when MPR predictions involve real measurement data, it is essential to include proper compensation for the various radiation losses in the setup. Furthermore, it may be necessary to decrease the order of the polynomial fits to obtain robust results on measured (i.e., noisy) data compared with similar experiments on simulated data.

In conclusion, it is evident that, once the calibration model has been implemented, the prediction speed, the accuracy, and the robustness of the MPR method is sufficient for a wide range of real-time spectroscopic analysis applications with integrating sphere measurements.

The authors acknowledge the financial support from the Danish Academy of Technical Sciences.

References

