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We present results from numerical simulations of the interaction of an intense ultrashort (100 fs)
laser pulse with a neutral helium (He) atom and its ion He™. The simulations are done for a number
of laser intensities in the range of 10'*~10'® W/cm? at the KrF-laser wavelength. These intensities
range from close to well above the saturation intensity of the neutral atoms and it is therefore
necessary to study the contribution to harmonics from neutral atoms as well as ions. Our approach
is based on a two-step procedure where we first calculated the neutral atom response in the single
active electron approximation. We observe that harmonics are still produced by the neutral atoms
above the saturation intensity, but the simple classical law for the cutoff is not obeyed. In the second
step we calculated the response of ions. We show that the contribution from ions extends through
and beyond the region where the contribution from the neutral atoms disappears. We find good
agreement between our numerical results and the experimental ones. We also present some ideas
about the importance of the laser defocusing and phase matching at such high intensities.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

In the past few years there have been several experi-
mental studies [1-5] of harmonic generation at laser in-
tensities between 10'* and a few times 107 W/cm?.
These intensities range from close to well above the sat-
uration intensity of any rare gas. The saturation inten-
sity (Isat) is conventionally understood as the intensity at
which a sample of atoms is mostly ionized. In principle,
going past the saturation intensity means that we should
now have clear experimental evidence of the role of ions
in harmonic generation. Due to the larger ionization po-
tential of rare gas ions compared to the neutral atoms,
the harmonics generated by ions are expected to extend
to a higher order than the ones generated by neutral
atoms. Interpreting the results of present experiments is
not, however, as simple as one might wish; going above
the saturation intensity does not mean we completely
deplete the neutral population. Moreover, the neutral
atoms that are left will experience very high intensities
indeed. This point may not have been fully taken into ac-
count in the interpretation of harmonic generation based
on steady state response. Our calculation, which models
the full response for a pulse, brings this point out clearly.

Calculations using one-dimensional model atoms and
again considering the full pulse response have shown that
the number of harmonic peaks increases with the peak
laser intensity, even when the intensity goes above the
point of saturation [6]. This increase, however, is not
linear with the peak laser intensity as it is for intensi-
ties below the saturation intensity. This does not imply
a complete breakdown of the cutoff rule, as one has to
think in detail about the response of an ever diminishing
number of atoms in a rapidly increasing field. This means
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we will get higher and higher harmonics coming from a
smaller and smaller number of atoms. The efficiency in
producing these high harmonics will be greatly reduced
due to the small amount of atoms left. As a consequence,
a complete and definitive answer about the role of ions
cannot be deduced from the previously mentioned ex-
periments since it is not easy to discriminate completely
between the contributions from atoms and ions.

A qualitative explanation of the experiments per-
formed to date can be obtained by combining the sin-
gle neutral-atom response with that of ions, for a full
pulse. This is what we present in this paper, so that ex-
perimentalists may better assess the relative role played
by the single-atom or ion response. We shall address
the case of helium and compare the responses of neu-
tral He for a full pulse with that of He™, the latter pro-
duced along the pulse as the neutral atoms are ionized.
Helium has the largest ionization potential of all rare
gases (U; = 24.6 eV) and can therefore survive to very
high intensities in the ionization process. The intensities
we have used in the simulations range from 6 x 10 to
2 x 10'® W/cm? for a fixed KrF-laser wavelength. The
choice of this wavelength is related to the efficiency in
producing harmonics. Larger wavelengths will produce
higher-order harmonics, but with an associated lower ef-
ficiency [7]. This lower efficiency may well be an impor-
tant issue in the attempts to observe the contribution
from ions using longer wavelength lasers.

The harmonic spectra are obtained using the acceler-
ation of the electric dipole moment d(t). Closely related
calculations using a steady state response have been pre-
viously presented in the literature [8-10]. In these calcu-
lations the harmonic spectra were determined from the
dipole moment itself. Both quantities are easily related,
but at high intensities the simple relation d(t) = —w?d(t)
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cannot be employed because the dipole moment and its
velocity do not vanish at large times [11]. It has been
shown that when significant amounts of ionization are
produced during the laser pulse, large final dipole mo-
ments are also produced. The presence of a final dipole
moment can give rise to a background in the harmonic
spectrum that increases with increasing intensity; this
background is spurious and may hide harmonics that are
produced during the process. For intensities around or
beyond the saturation intensity the ionization is obvi-
ously large and the dipole acceleration has shown to be
the most reliable method to calculate the harmonic emis-
sion.

Another interesting feature arises in our calculations
since the overall response from ions is related to the
amount of ionization as the pulse proceeds. By comput-
ing the ionization of neutral atoms during-the pulse, we
can calculate the ions’ contribution more precisely. This
is done by solving first the time-dependent Schrédinger
equation for helium, obtaining a time-dependent ioniza-
tion function Pion(t). This function Pion(t) is then in-
cluded in the calculation of the ions’ response. By doing
that, we achieve a more realistic response of the ions for
the whole pulse.

Finally, our results are compared with the available ex-
perimental data [3,5]. Quantitative comparisons should,
of course, involve a calculation of the macroscopic issues
of propagation with all its associated complexity. The
single-atom response is, nevertheless, useful in indicat-
ing at what intensities neutral atoms and ions are com-
petitive. We obtain, however, excellent agreement with
the published results [3,5], stressing the fact that phase-
matching effects could, in fact, be less important in the
saturation regime [1]. Before describing our method and
the results we obtain, we shall briefly review the experi-
mental results in the next section.

II. EXPERIMENTAL RESULTS

To our knowledge there are at least five different exper-
iments [1-5] in helium, at intensities beyond or around
the saturation intensity. In an experiment with a gas tar-
get the saturation intensity is determined by the break-
down of the power law that relates the number of cre-
ated ions with intensity 19, where ¢ is the order of the
process. Krause et al. [8] define the saturation intensity
as the intensity reached when approximately 20% of the
atoms are left unionized. That results in an ionization
rate that is a few times the inverse of the pulse width; in
other words, the ionization rate times the pulse duration
is close to one.

The experiments mentioned above correspond to differ-
ent wavelengths (248 < A < 1053 nm), peak intensities
(10 < I < 10" W/cm?), pulse durations, and satura-
tion intensities. Therefore the quantitative results vary
greatly. In almost all the cases, nevertheless, the quali-
tative features are the same. A plateau in the harmonic
generation is encountered. The cutoff to this plateau
is given approximately by U; + 3U, [8]. It has become
conventional to infer the species, ion or neutral atom, re-
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sponsible for generating a particular range of harmonics
by using the cutoff rule (via the dependence of the cutoff
on ionization potential). As an example, in the exper-
iments performed by Sarukura et al. [5] with KrF, the
cutoff rule has been used to infer generation of harmonics
by He™. Those inferences are based on the single-atom
response at constant intensity close to saturation [8,9,12]
and none of them take into account pulse shape or phase
matching effects. The point we want to emphasize here
is that even though only a small fraction of the neutral
atoms survives to the saturation intensities, it radiates
in the presence of a very high field. As a consequence,
the harmonics generated from this small fraction can be
comparable to those produced by ions over a fair range
of the transition region.

III. METHOD

Our approach is based on a two-step procedure where,
as a first step, the ionization and harmonic generation for
the neutral helium atom is calculated in the single active
electron (SAE) approximation with an absorbing bound-
ary condition [8]. The validity of this approximation re-
lies on the assumption that ionization is a stepwise pro-
cess. It is well known that the SAE approximation leads
to reasonable results for photons energies below 10 eV [9].
(At extrahigh intensities and ludicrously short pulses, di-
rect multiple electron production may be possible [13].)
For more energetic photons there is the possibility of a si-
multaneous double ionization and then the SAE will not
be valid. The effective potential Veg(r) of helium is con-
structed from Hartree calculations on its ground state,
using a modified version of the Hartree-Fock program of
Froese Fischer [14,15]. Our results for the effective po-
tential and the helium ground state are displayed in Fig.
1. The ionization potential we obtain from the effective
potential is Uge = 0.901 a.u. (24.50 eV), very close to
its experimental value (24.58 eV). From the decrease of
the norm of the neutral atoms’ wave function, a time-
dependent ionization function Py, (t) is obtained as the
pulse proceeds. In the second step, we solve the time-

(a.u.)

l 1 J
0 5 10 15 20
radii (a.u.)

FIG. 1. Effective potential Veg(r) and ground state wave
function ¢o(r) for helium. The calculated ionization potential
is Unge = 0.90 a.u. (24.5 eV).
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dependent Schrodinger equation for the ion and then
the ion wave function is weighted by the time-dependent
Pion(t) ion-population function. [At each temporal step,
the wave function corresponding to Het, Uy.+(7,t), is
multiplied by Pion(t). We assume an adiabatic behavior
in the ions’ response.] In this way the problem is reduced
from the time propagation of a two-electron wave func-
tion to the propagation of two one-electron wave func-
tions. The numerical time evolution of the one-electron
wave function is performed using standard techniques
[16,17]. We begin with the time-dependent Schrédinger
equation
oY (7,t)

i = HOU( ), 1)

where H(t) is the total Hamiltonian of the system

H = {-1V2 4 Vig(r) + E(t) - Fsinwt}. (2)

We use the length gauge and consider the laser to be
linearly polarized along the z axis. Here V.g(r) either
refers to the effective potential if we deal with He or is
simply equal to —2/r if we deal with Het. We expand
the wave function ¥(7,¢) in an angular basis

Lmax

BE) = 3 Sl )Y (6), (3)

=0

where for simplicity only spherical harmonics with m = 0
are introduced. This kind of simplified expansion is cor-
rect provided that the atom is initially in an s state. By
using this angular basis we obtain a set of L., coupled
one-dimensional differential partial equations. The inter-
action term E - 7 couples each x; component with x;+1
and the Schrédinger equation reduces to

.0 1 62 (1+1)
Zg—tXl(T,t)z {—557—3+%3(7')+ }Xl(rvt)

2r2
+rE(t) sinwt [¢] 141 (7, t)
+e; xi-1(r,t)] - (4)

Here c,i are the Clebsch-Gordan coupling coefficients. To
solve Eq. (4) the Hamiltonian is split into the atomic and
the interaction term with a symmetric decomposition.
Each term is propagated in time with a semi-implicit
Crank-Nicholson scheme. The box size is 300 a.u. with
a spatial step Ar = 0.10 and we use an absorbing mask
function boundary. Typically, the time step varies be-
tween 1024 and 4096 points per optical cycle. Because
of the absorbing boundary the decrease of the norm of
¥ (7, t) can be used as a measure of ionization. The time-
dependent ion population is then given by

Pion(t) = 1= (¥(7,2) |(F,1)). ()

As we pointed out before, this function will be used to
weight the ions response at each temporal step, as the
pulse proceeds. The harmonic emission is computed us-
ing the acceleration form as

2

T
P(w)oc|a(w)|2=' [ aweral,

where T is the duration of the laser pulse and d(t) the
acceleration of the dipole moment

2

d(t) = & (w02 0, 0). ")

The acceleration is calculated using Ehrenfest’s theorem

o
éz[Veff(?‘) + Hing)

d(t) = —<\II(F, t)

\Il(F,t)>. (8)

In many studies the harmonic spectra is computed as

2

T
P(w)ocw'*/(; d(t)e *tdt (9)

A partial integration
T 3 . . . .
/ d(t)e*tdt = e7**d(T) + iwe™*“*d(T)
0

T
—w2/ d(t)e™*tdt (10)
0

shows that the two methods are equivalent only if d(T)
and d(T) are negligible. If there is a significant amount of
ionization during the pulse, the value of the final dipole
moment can be quite large and, as a consequence, the two
expressions (6) and (9) lead to different results [11,18].
Finally, the number of partial waves [, used in the ex-
pansion of ¥(7,t) has to be carefully checked for each in-
tensity. We consider that convergence is achieved when
the harmonic spectrum obtained does not change sig-
nificantly when increasing the number of partial waves
included in the calculation. Since the different partial
waves are coupled through the interaction term, it is clear
that the number of partial waves has to be increased
with the laser intensity. However, the harmonic genera-
tion emission is relatively insensitive to the high angular
momentum components [20] and convergent results are
obtained with few partial waves, i.e., [hax < 30.

IV. NUMERICAL RESULTS

For the results presented here we use two kinds of
pulses: short pulses with a linear turn on of 10 cycles
followed by a flat part of 22 optical cycles, and more re-
alistic pulses, with a sin® envelope function, where the
interaction lasts 128 cycles (105 fs). We first investi-
gate harmonic emission at intensities around I, for neu-
tral atoms and ions separately. We start by using the
shortest pulses with a linear turn on of 10 cycles. To
calculate the saturation intensity corresponding to each
charge state (He or He™) we compute the ionization rates
through the decay of the normalization. As an example,
in Fig. 2 we plot the ground state population and nor-
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FIG. 2. Normalization and ground state population of He
as a function of time (logarithmic scale) for a short pulse of
32 cycles with a linear turn on of ten cycles and intensity
I=3.2x 10" W/cm?.

malization together, with the pulse profile for an inten-
sity I = 3.2 x 10'®* W/cm?. We can see that the decay is
purely exponential once the atom has adjusted its behav-
ior to the external field, i.e., when it reaches the constant
intensity part of the pulse and then the ionization rate
can be computed either using the normalization function
or the ground state population. Our predictions for the
saturation intensities of He and He™ at this wavelength
(and pulse shape) are about 5x 10** and 4 x 10'®* W /cm?,
respectively, in very good agreement with Ref. [8].

In Fig. 3 we plot the harmonic spectra for the neu-
tral atoms at the intensities I = (6, 20, and 32) x
10'* W/cm2. For clarity we plot only the peak inten-
sities for each harmonic (joined by a line to guide the
eye). The first point we should make is that in spite
of going above the saturation intensity (Isat ~ 5 X 1014
W /cm?), the number of harmonics does indeed increase
with intensity. Second, the efficiency in harmonic gener-

107 § ® 6x10™ W/cm?
E 02x10'" W/cm?
103 |9 B3.2x10 'SW/cm 2
. :
= 5 F
3 10°] .
©
T 407k \E
‘o |
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E ©
oM b v v v b e b L
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ation decreases after exceeding 54 as we should expect.
Increasing the laser intensity further results in a gradual
saturation of the higher harmonic orders. When this oc-
curs the position of the cutoff will no longer increase lin-
early with intensity and then will not follow the U; + 3U,
rule. The complete saturation of the harmonic order oc-
curs when there is no population left in the initial state
and everything has been ionized. It can be seen in Fig.
2 that for I = 3.2 x 10'®* W/cm? only 50% of the ground
state population survives the linear turn on of the pulse.
(The ground state population is calculated by projecting
the time-dependent wave function onto the initial ground
state.) It is this part left in the ground state that will
experience the highest intensity and therefore generates
the most energetic harmonics but with a lower efficiency.
With greatly increasing intensity the ground state be-
comes depleted faster resulting in a poorer harmonic ef-
ficiency [7,20]. A similar kind of harmonic degradation
has been seen experimentally [3].

To better understand these features we plot now the
whole harmonic spectra (including the background) for
the previous cases: He at I = 2 x 10> W/cm? and
I = 3.2 x 10® W/cm? [Figs. 4(a) and 4(b), respec-
tively]. We find that the edge of the plateau region grad-
ually becomes broader [as can be seen by comparing Fig.
4(a) to Fig. 4(b)] as the intensity increases. For the

(4
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FIG. 3. Harmonic spectra of helium at intensities (a)
I = 6 x 10* W/cm? (solid dots), (b) I = 2 x 10*®* W/cm?
(dots), and (c) I = 3.2 x 10*® W/cm? (squares) for a short
pulse with a linear turn on. For clarity we plot only the peak
intensities of each harmonics joined by a line to guide the eye.

Harmonic number

FIG. 4. (a) Harmonic spectrum of helium for a linear turn
on pulse at intensity I = 2 x 10'®* W/cm?®. (b) Harmonic
spectrum of helium for a linear turn on pulse at intensity
I=3.2x10"® W/cm?.
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higher intensity [Fig. 4(b)] case we can clearly see that
the high-order harmonics are broader than the low-order
ones. The higher-order harmonics are produced at the
flat part of the pulse, when there are just a few neutral
atoms left. It is clear that they should be broadened in
frequency since they are produced in very short time, just
before the ground state becomes completely depleted.
We have seen that for short pulses the saturation in-
tensity does not imply a strict limit on obtaining higher
harmonics beyond the U; + 3 I ,;/4w? order. We there-
fore repeat the calculations for a more realistic sin® pulse
of 128 cycles at different laser peak intensities, including
now the ions’ response during the pulse. The contri-
bution from ions is weighted at each temporal step by
the function Pion(t) as it is computed from the decay of
neutral-atom normalization. In Figs. 5(a) and 5(b) we
plot the neutral atoms and ions response together with
the pulse profile at two different intensities I = 3.2 x 10°
and I = 1.2x 10'® W/cm?. The first case [Fig. 5(a)] cor-
responds to an intensity below the I ,; of He', whereas
in the second case [Fig. 5(b)] the intensity exceeds the
Het saturation intensity. The overall response is there-
fore very different. For the lower intensity case, the neu-
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FIG. 5. (a) Neutral (He) and ion (He") populations for
a sin? pulse profile of 128 cycles (105 fs) and peak intensity
I = 3.2 x 10"® W/cm?. (b) Neutral (He) and ion (He")
populations for a sin® pulse profile of 128 cycles (105 fs) and
peak intensity I = 1.2 x 10*® W/cm?.
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FIG. 6. Neutral [He (dots)] and ion [Het (squares)] re-
sponse at I = 3.2 x 10'®* W/cm?. Experimental data (solid
dots) from Ref. [5], normalized to the 13th harmonic, have
been included for comparison.

tral atoms ionize quickly to Het, but very little He?* is
produced at the end of the pulse. For the latter case,
however, the ions rapidly ionize to He?* and very few
He™ ions in fact experience the peak intensity. We can
see in Fig. 5(b) that the peak ion population is reached
before the peak laser intensity and it decays very fast to
He2+.

We compare our harmonic generation results with the
experimental ones from Refs. [3,5]. The best fit between
experimental and numerical results occurs at intensities
around I ~ 3.5 x 10'® W/cm?. This is shown in Fig. 6,
where the experimental data are plotted together with
the neutral atom and ion response at I = 3.2 x 10'®
W /cm?. (The experimental data are normalized to the
13th harmonic.) The agreement between the experimen-
tal and the numerical spectra is remarkably good. We
can see that both neutral atoms and ions show the char-
acteristic structure of a plateau followed by a cutoff. The
plateau of ions extends to higher orders than the neutral
atoms and it is crossed by the neutral-atom cutoff around
the 15th-17th harmonic. So, in fact, only the higher
peaks (19-23 orders) are produced by ions exclusively.

The fact that such good agreement between numeri-
cal simulations and experiments is reproduced by using
a peak intensity almost two orders of magnitude lower
than the one claimed in the experiments suggests that
the effect of the defocusing of the laser beam at such
intensity, gas density, and experimental geometry is im-
portant. A full treatment of the defocusing inside a gas
will require a complex calculation on the refractive index
gradient produced by ionization. However, a rough ap-
proximation following the work done by Rae [19] for a
one-dimensional model atom indicates that the effective
intensity could easily be more than one order of magni-
tude weaker than the peak laser intensity in vacuum. We
could not assert that defocusing is solely to blame for the
apparent decrease in intensity. In fact, other transverse
properties of the beam—intensity variations, filamenta-
tion, poor beam quality—as well as longitudinal propa-
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gation effects should be taken into account to have a full
description of the experiments. It is quite impossible, at
the present time, to combine a full treatment of single-ion
atom evolution within a pulse with all the issues of beam
propagation. The present study does, however, provide
exceptionally strong motivation for pursuing studies of
this kind.

V. CONCLUSIONS

We have calculated single-atom harmonic emission
from neutral atoms and ions at intensities beyond the
corresponding saturation intensity using realistic pulses.
We have shown that the concept of saturation intensity
does not imply a total restriction in obtaining higher-
order harmonics. As a consequence we have seen that
the contribution of neutral atoms in experiments running
at very high intensities extends to higher orders than the
ones previously mentioned in the literature. Neverthe-
less, we have found some differences in the behavior of
the harmonic spectrum when the intensity goes beyond
the corresponding saturation intensity. First of all, the
efficiency of the harmonics clearly diminishes; the plateau
intensity becomes lower for intensities above the satura-

tion intensity than for the saturation intensity itself. We
have also found that the cutoff of the plateau does not
scale linearly with the intensity anymore and shows an
obvious tendency to saturate. We have compared our
results with the experimental ones and found excellent
agreement for an intensity almost two orders of magni-
tude below the one claimed experimentally. This agree-
ment suggests that phase matching plays a less important
role in the saturation regime. Moreover it emphasizes
that beam propagation effects at such intensities and gas
densities result in significant lower effective intensities.
Finally, we want to point that we have not been able
to reproduce these results by using the dipole moment
form of the harmonic calculation. This is what we would
expect in this rapidly ionizing regime.

ACKNOWLEDGMENTS

The authors wish to thank the European Community,
the United Kingdom Science and Engineering Research
Council, and DGICYT (Contract No. PB92-0600). A.S.
also thanks the MEC/Fleming program for financial sup-
port and K.-A. Suominen for reading the manuscript.

[1] A. L’Huiller and Ph. Balcou, Phys. Rev. Lett. 70, 774
(1993).

[2] K. Miyazaki and H. Sakai, J. Phys. B 25, L83 (1992).

[3] K. Kondo, N. Sarukura, K. Sajiki, and S. Watanabe,
Phys. Rev. A 47, R2480 (1993).

[4] J.K. Crane, M.D. Perry, S. Herman, and R.W. Falcone,
Opt. Lett. 17, 1256 (1992).

[5] N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watan-
abe, and S. Watanabe, Phys. Rev. A 43, R1669 (1991).

[6] S. C. Rae and K. Burnett, Phys. Rev. A 48, 2490 (1993).

[7] J. B. Watson, A. Sanpera, and K. Burnett, Phys. Rev. A
51, 1458 (1995).

[8] J.L. Krause, K.J. Schafer, and K.C. Kulander, Phys. Rev.
Lett. 68, 3535 (1992).

[9] H. Xu, X. Tang, and P. Lambropoulos, Phys. Rev A 486,
R2225 (1992).

[10] H. Xu, X. Tang, and P. Lambropoulos, Laser Phys. 3,
795 (1993).

(11] K. Burnett, V.C. Reed, J. Cooper, and P.L. Knight,
Phys. Rev. A 45, 3347 (1992).

[12] W. Becker, S. Long, and J.K. Mclver, Phys. Rev. A 41,
4112 (1990); 46, 5334 (1992).

[13] K. Burnett, J. Phys. B 21, 3083 (1988).

[14] C. Froese Fischer, Int. J. Supercomput. Appl. 5, 5 (1991).

[15] H.A. Bethe and E.E. Salpeter, Quantum Mechanics of
One and Two Electron Atoms (Plenum, New York, 1977).

(16] K.J. LaGattuta, J. Opt. Soc. Am. B 7, 503 (1990).

[17] P.L. DeVries J. Opt. Soc. Am. B 7, 517 (1990).

[18] J.L. Krause, K.J. Schafer, and K.C. Kulander, Phys. Rev.
A 45, 4998 (1992).

[19] S.C. Rae, Opt. Commun. 97, 25 (1993).

(20] X. Chen, A. Sanpera, and K. Burnett (unpublished).



