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ABSTRACT
In contemporary research, microsaccade detection is typically per-
formed using the calibrated gaze-velocity signal acquired from
a video-based eye tracker. To generate this signal, the pupil and
corneal reflection (CR) signals are subtracted from each other and a
differentiation filter is applied, both of which may prevent small mi-
crosaccades from being detected due to signal distortion and noise
amplification. We propose a new algorithm where microsaccades
are detected directly from uncalibrated pupil-, and CR signals. It is
based on detrending followed by windowed correlation between
pupil and CR signals. The proposed algorithm outperforms the most
commonly used algorithm in the field (Engbert & Kliegl, 2003), in
particular for small amplitude microsaccades that are difficult to see
in the velocity signal even with the naked eye. We argue that it is
advantageous to consider the most basic output of the eye tracker,
i.e. pupil-, and CR signals, when detecting small microsaccades.
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1 INTRODUCTION
The eyes are not completely still even when participants are asked
to fixate a small target. Instead, three types of eye movements occur:
rapid microsaccades, slow drift, and low-amplitude, high frequency
tremor [Martinez-Conde et al. 2004; Poletti and Rucci 2016; Rolfs
2009]. Most attention has been given to microsaccades which share
many of the dynamic properties with larger, voluntary saccades,
and are typically described to occur 1-2 times per second and with
amplitudes less than one degree (but different opinions exist, see
e.g., [Nyström et al. 2014]). Recently, there has been an increased
interest in investigating microsaccades, for instance since they
have shown to be sensitive to transients in visual input, changes
in cognitive state, and anticipation [Fried et al. 2014; Scholes et al.
2015; Siegenthaler et al. 2014].
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A crucial part of investigating microsaccades in basic and clinical
research is to be able to accurately detect them in the eye-tracker
signal as well as calculating appropriate statistics such as the rate,
amplitude, and peak velocity. In the early days of research, this was
typically done by manual inspection of photographic records of
the recordings [Nachmias 1959]. Today, a couple of computer algo-
rithms have become standard tools to separate microsaccades from
other parts of the gaze signal [Engbert and Kliegl 2003b; Engbert
and Mergenthaler 2006; Otero-Millan et al. 2014].

In the most widely used algorithm by Engbert and Kliegl [2003b]
(EK), microsaccades are detected as outliers in a 2D velocity space if
more than N samples exceed a velocity threshold ηx,y = λx,yσx,y ,
where

σx,y = ⟨v2x,y ⟩ − ⟨vx,y ⟩ (1)

and λ is a constant typically set to λ = 6. ⟨⟩ denotes the median
estimator. The velocity v is computed directly from the (x ,y) gaze
coordinates using a moving average filter

®vn =
®xn+2 + ®xn+1 − ®xn−1 − ®xn−2

6∆t
. (2)

A more recent algorithm uses the same principle to detect mi-
crosaccade candidates by finding local peaks in the velocity sig-
nal [Otero-Millan et al. 2014]. The number of microsaccade can-
didates are however upper bounded by the assumption that the
maximum possible rate is five candidates per second. Since the aver-
age rate is typically lower, this means that some of the microsaccade
candidates likely represent noise. Therefore, this algorithm applies
k-means clustering based on velocity and acceleration features to
separate microsaccades from noise.

Despite the improvements on the algorithmic side of microsac-
cade detection, a more fundamental problem is that even the most
precise video-based eye tracker may have too low signal-to-noise
ratios to reliably detect the smallest microsaccades, in particular
when compared to older attachment devides [Collewijn and Kowler
2008]. As an example, several reports of monocular microsaccades
can be found in the literature [Engbert and Kliegl 2003a; Gautier
et al. 2016], even though their existence rather is a result of failing
to detect a microsaccade in one eye (false negative) or detecting a
microsaccade due to noise (false positive) [Nyström et al. 2017].

Part of the reason for errors in microsaccade detection is related
to signal processing inherent to the eye tracker and microsaccade
detection algorithms. Sources of noise and signal distortion in the
gaze- and velocity-signals include subtracting the pupil and CR sig-
nals [Hooge et al. 2016], mapping of pupil and CR signals to a gaze
signal (i.e., the calibration), and differentiation of the gaze signal
to compute velocity. Such signal processing may hide or distort
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genuine microsaccades and create microsaccade-like segments in
the signal even though no oculomotor microsaccade took place.

In the paper, we propose a new and fundamentally different
microsaccade detection algorithm using ‘raw’ and uncalibrated
pupil and CR signals acquired binocularly with an EyeLink 1000
Plus. The algorithm avoids all of the sources of noise and distortion
above since it uses signals that directly reflect how tracked eye
features move in the camera image. It uses the fact that during a
microsaccade, the positions of the pupil and the CR in the camera
image are highly correlated andmove faster than positional changes
due to small head movement or drift. The algorithm specifically
targets small microsaccades that may be hard to even see in the gaze
signal, but are clearly visible in the pupil and CR signals [Nyström
et al. 2017].

The proposed algorithmwill be compared to manual annotations
and with the most widely used algorithm in the literature [Engbert
and Kliegl 2003b], both in terms of overall statistics and with a few
examples highlighting the increased sensitivity of our proposed
method.

2 DESCRIPTION OF NEW ALGORITHM
The new algorithm, henceforth denoted NN, operates directly on
the pupil-, and CR signals obtained from the eye tracker. These
signals are given in pixels in the coordinate system of the eye
tracker’s camera.

The pupil-, and CR signals (Figure 1, top panel) for each eye are
first ‘detrended’ (Fig 1, middle panel) such that slow variation in
the signals is removed while fast variation, i.e., the microsaccades,
are retained. Detrending is performed by subtracting each signal
with a lowpass filtered version of the corresponding original signal.
The lowpass filter in this work is a third order Savitzky-Golay filter
of length Lsд [Savitzky and Golay 1964].

The detrending should ideally remove all slow variation in the
pupil-, and CR signals due to e.g., small head movements, drift, or
pupil dilation. As a result, the correlation between the detrended
pupil-, and CR signals is effectively reduced in the intra microsac-
cadic intervals (IMSIs). Figure 1 (bottom panel) shows the result of
computing this correlation within a moving window of length Lc .
As expected, the correlation is close to zero in the IMSIs, and peaks
when a microsaccade occurs. Microsaccade candidates are detected
when the correlation exceeds a threshold η′ which, analogous to
the work in [Engbert and Kliegl 2003b], is computed as a multiple
of the variation σ ′ in the correlation signal η′ = λ′σ ′. Only mi-
crosaccade candidates spanning at least δ samples of are accepted
as microsaccades. If two microsaccade candidates are closer than γ
samples apart, they are merged into one.

The NN algorithm above is described for pupil-, and CR signals
from one eye. If binocular data are available, there are two possible
options. First, average the correlation signals before applying the
algorithm and, second, detect the microsaccades monocularly, and
identify binocular microsaccade using an overlap criterion [Engbert
and Mergenthaler 2006]. In this paper the latter option is used.

3 EVALUATION
The NN and EK algorithms are evaluated on data from four par-
ticipants recorded with an EyeLink 1000 Plus. In brief, binocular

Table 1: Microsaccade rate and amplitude (M and SD) for
each participant (PID) and algorithm (Algo). Amplitudes are
given in degrees. HC means human coder.

PID Algo N Rate Amp (M) Amp (SD)

1 EK 292 1.44 0.09 0.04
NN 301 1.49 0.11 0.04
HC 292 1.44 0.10 0.06

2 EK 438 2.10 0.50 0.35
NN 397 1.90 0.33 0.23
HC 474 2.27 0.37 0.31

3 EK 240 1.17 0.17 0.09
NN 259 1.26 0.16 0.07
HC 260 1.26 0.15 0.08

4 EK 112 0.56 0.31 0.17
NN 115 0.57 0.26 0.16
HC 113 0.56 0.27 0.16

pupil-, and CR data were collected at 1000 Hz while participants
fixated a small target in the center of a screen. Details about the
recordings and data are provided in [Nyström et al. 2017].

The results below are generated with the parameters {λ′ =
25,Lc = 13,δ = 3,γ = 10,Lsд = 61}. The EK algorithm was used
as described in [Nyström et al. 2017].

Detections from the algorithms were also compared with anno-
tation from a human coder (one of the authors).

In Table 1, microsaccade rate and amplitudes are presented for
both algorithms. Again, there is a high agreement in rate and am-
plitudes between the algorithms where the NN-algorithm finds
slightly more microsaccades for three of the participants (P1, P3,
P4). To opposite is however true for participant P2.

To quantify the overall agreement between the two algorithms
and the human coder (HC), the F1-score is used. In case two mi-
crosaccades detected with one algorithm overlap with the same
microsaccade detected with the other algorithm, only one of them
is consider a match [Hooge et al. 2017]. A score of 1 means perfect
agreement whereas 0 is the worst possible score. Figure 2 shows
the agreement between the two algorithms and the human coder.
Overall, the agreement is high, which means that both algorithms
agree with each other and the human coder on where the microsac-
cades are located. For three of the participants (P1, P3, and P4),
the agreement between the human coder and the NN-algorithm
is higher than the agreement between the human coder and the
EK-algorithm. It is also interesting to note that in the same three
participants, the algorithms agree more with each other than the
human coder agrees with the EK-algorithm.

To probe the nature of the differences across algorithms and
participants, two examples are presented. Figure 3 illustrates why
a larger number of microsaccades are detected by the EK algorithm
than the NN algorithm for P2. As can be seen from the figure, this
participant produces many square wave jerks (SWJ), and the NN-
algorithm cannot separate the pair of microsaccades due to their
close temporal proximity and because it is more difficult to precisely
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Figure 1: Raw pupil-, and CR data (top panel), Detrended pupil-, and CR data (middle panel), and moving window correlation
between detrended pupil-, and CR data (bottom panel). The dashed line indicate the threshold used to detect microsaccades.
Data represent horizontal movements of one eye relative to the eye-tracker’s camera.
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Figure 2: F1-scores between the two algorithms (NN and EK) and the human coder (HC) for each participant (P).

determine the exact onset and offset of the microsaccade in the
correlation signal compared to the velocity signal.

A larger number of microsaccades are reported by the NN-
algorithm for the remaining participants (P1, P3, P4). Figure 4 pro-
vides insight into the origin of theses additional detections. As can
been seen, small microsaccades are more easily detected in the
correlation signal compared to the velocity signal, where small eye
movements are obscured by noise.

4 DISCUSSION
A new algorithm for microsaccade detection was proposed. Unlike
traditional methods using the calibrated gaze signal, we use the
raw pupil-, and corneal reflection (CR) signal directly as the mi-
crosaccades may be detected more easily and reliably [Nyström
et al. 2017].

The proposed NN-algorithm showed a similar performance with
manual annotation from a human coder and to the most widely

used algorithm in the field [Engbert and Kliegl 2003b; Engbert and
Mergenthaler 2006], but with a potential improvement in sensitivity
to detect small microsaccades. This is a welcome contribution since
the detection of low amplitude microsaccades in data from video-
based eye tracker is controversial [Collewijn and Kowler 2008;
Poletti and Rucci 2016], and has led to research findings that were
later challenged [Gautier et al. 2016; Nyström et al. 2017].

There is room for future improvements of the NN-algorithm.
Since it uses the moving window correlation between pupil- and
CR signals, it is difficult to find the exact onset and offset of a
microsaccade, since the correlation typically increases/decreases
slightly before/after the actual eye movement. This is problematic
for two reasons. First, to get accurate estimates of the amplitude
is it critial to know when a microsaccade start and stops. Second,
microsaccades that occur within a short temporal interval, for in-
stance due to SWJ, may be difficult to separate, and are merged into
one longer microsaccade.
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Figure 3: Detection of a square wave jerk (SWJ) using the
velocity signal in EK (upper panel) and the correlation signal
in NN (lower panel). Microsaccades with a small temporal
separation often become merged with NN. Shaded regions
indicate detected microsaccades. Data represent horizontal
movements of one eye relative to the eye-tracker’s camera.

Ongoing work intended for a longer journal article includes find-
ing solutions to these issues as well as a more thorough comparison
including other algorithms as well as more hand coded data, still
considered the ‘gold standard’ in the field.
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Figure 4: The velocity signal in EK (upper panel) and the correlation signal in NN (lower panel) over a 250 ms time window.
Twomicrosaccades are detected by the NN algorithm. However, the smallermicrosaccade is not picked up by the EK algorithm.
Shaded regions indicate detected microsaccades. Data represent horizontal movements of one eye relative to the eye-tracker’s
camera.
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