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Energy loss of swift metastable projectiles with 
two bound electrons 

Toshiaki Kaneko and Hidetsugu Tsuchida 
Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Okayama 
700, Japan 

Received 27 July 1993, in final form 23 September 1993 

Abstract. An analytical formula for the electronic stopping power S was derived for 
swift(v34uo) frozen-charge-state projectiles (atomic number Zl) with two electrons in 
metastable I s 2  singlet and triplet states, using a first-order perturbation method. Thespatial 
electron distribution around a projectile was determined by the variational method. In order 
to demonstrate the magnitude of S. we also calculate the effective stopping-power charge. 
Compared with the ground state (Is’), S i n  the ls2s configuration is found to be enhanced 
especially at the lowest velocity (u=Z,v,) investigated. In addition, it is found that (i) there 
is no appreciable difference between ls2s singlet and triplet state, and (i i )  S for the ls2s 
singlet can be scaled in the form Sx Z;‘.’O. 

1. Introduction 

The problem of the energy loss of swift charged particles has been fundamental and 
essential for scientists working in the fields of atomic collisions in solids and the plasma- 
first wall interactions. The reason is because this quantity is directly related to the 
energy deposition of the injected ion beams in a material or the range which they can 
attain on the average. Also in ion implantation this quantity is applied to analysis of 
both the depth profile of the implanted atom and the structure of the host lattices in 
solids. 

So far, the electronic stopping power of materials for swift and fully ionized pro- 
jectiles with velocities U has been investigated intensively. From experimental viewpoints, 
a lot of measurements have provided valuable data, some of which were recently com- 
piled by Andersen and Ziegler (1977) and Janni (1982). On the other hand, theoretical 
models and methods have been proposed (Bethe 1930, Bloch 1933, Ritchie 1959, Neu- 
feld and Ritchie 1955, Lindhard and Winther 1964, Sigmund 1982, Echenique er al 
1986, Gertner e1 a/ 1978, 1980, Kaneko 1986a, 1989a, b) in order to interpret those 
data. Recently, theoretical data tables for the stopping power for a proton were also. 
presented on the basis of kinetic theory by Oddershede and Sabin (1984) and 
wavepacket theory by Kaneko (1993a). 

Regarding swift fully-stripped light ions, the energy-loss analyses have been made 
by means of the Bethe-Bloch theory, if necessary, with including the correction terms. 
For a point charge Zte moving with velocity U in a material, the electronic stopping 
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power S is expressed as (Lindhard 1976) 

T Kaneko and H Tsuchida 

S= (4re4/inu2)NZzL(Z,,  Z , ,  U) (I.la) 

L(Z1, z2, U ) = z : L o ( z 2 ,  u ) + z : L t ( z z ,  U)+Z14L,(Z2, U ) .  (l.lb) 

In the above, m, e and N are the electron rest mass, the elementary charge and the 
number of target atoms of atomic number Z2 per unit volume, respectively. The leading 
term Lo(Z2, U )  is given by Lo(Z2, U )  =In(2niu2/I), where I is the mean excitation energy 
of a material Z , .  The terms Z:LI and Z f k  in equation ( I  . I  6 )  are called the Barkas 
term (Barkas et al 1963) and the Bloch correction (Bloch 1933), respectively. 

The formula (1.1) cannot be applied to partially stripped ions (PSI). Ferrell and 
Ritchie (1977) first treated the energy loss of a PSI (i.e. Het) moving at low velocity 
in an electron gas. Afterward, the effect of the bound electrons was treated in a statistical 
model (Brandt and Kitagawa 1982), and in the local electron density models (Kaneko 
1986a). 

With recent progress in experimental techniques, it has become possible to measure 
directly the energy loss of a PSI. Cowern et a! (1984) reported the energy loss of 
3 MeVamu-I Cbst ions in very thin carbon foils. Ogawa et a1 (1991, 1992, 1993) 
measured the energy-loss of fast hydrogen-like (H-like), helium-like (He-like), and 
lithium-like (Li-like) ions passing through thin carbon foils with kinetic energy of 
10 MeV a m - '  under the frozen charge-state condition. To interpret these data theoreti- 
cally, the analytical stopping-power formulae for H-like and He-like projectiles were 
derived explicitly (Kaneko 1991) in the form of equation ( I . ] ) ,  but L(Zl, Z 2 ,  U )  must 
be replaced by 

L ( Z I , Z 2 ,  v ) = ( Z ,  - N I , ) ~ I ~ ( ~ ~ ~ ~ / I ) + ( ~ Z ~ N I , - N ~ , )  

x In{u/(Z,vo)} + Z I N I . -  ( 11 /IZ)Nk. ( 1.2) 

Here N I ,  denotes the number of the Is electrons so that Z,=Zl and NI,= I for H-like 
and 

z c =z  I -r 16 ( 1.3) 

and NI,=2 for He-like ( ls2, singlet) projectiles. The quantity Z.  is related to the screen- 
ing parameter which will appear in the next section. Moreover for Li-like and Belike 
projectiles the stopping-power formulae were also obtained (Kaneko I993b). In these 
expressions the Z :  and Z f  terms are neglected. 

The above consideration is based on the idea that the ground state configuration 
may be dominant. The existence of the excited states of projectiles in solids will play a 
main role in the study of the beam-foil interaction (Andra 1975, Andra et al 1976). 
To our regret, there have been no experimental data on the energy loss of excited-stale 
projectiles yet. As a basic knowledge, however, theoretical prediction of this quantity 
will become important. Therefore, as a first step, we present here an analytical formula 
for the electronic energy loss of swift metastable projectiles in electron configuration 
ls2s for the first time. Both a singlet and a triplet state are considered here. First, 
section 2 is devoted to a description of the theoretical procedure. Results and discussion 
are given in section 3. Throughout this paper, 1% e, ao, uo and fi denote the electron 
rest mass, the elementary charge, the Bohr radius (=OS29 x IO-* cm), the Bohr velocity 
(=2.19 x 108cm s-I) and the Planck constant divided by 2n, respectively. 
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2. Theory 

Here we assume that the projectile velocity U is larger than both the average velocity 
of the target electrons, Zi/’vO, and that of the projectile electron, Zeuo. Hence we can 
use the first Bom approximation. Second, the electronic state of the projectile is com- 
pletely frozen during the passage of the projectile. This assumption (a ‘frozen charge 
state’) is actually valid if a fast projectile penetrates a very thin foil. 

We now discuss the validity of the frozen-charge-state condition. The condition of 
U >  Z,uo means that the electron loss process is much more dominant than the electron 
capture process, as the velocity-stripping criterion suggests (Bohr 1948). In this velocity 
region, the survival fraction 6 of particles penetrating to depth z with a charge equal 
to the incident decreases like exp(-z/L), where A denotes the attenuation length. As 
the penetration depth increases, the value of 6 will deviate from a simple exponential 
function and finally it reaches the equilibrium fraction &,dependent upon the velocity 
(Gaillard et a1 1977). Since the capture cross section can be negligibly small (i.e. q& is 
very small), 2, is approximately given by I/(UI,,~&’), where ulosS is the one-electron loss 
cross section for the incident particle, and N the number of target atoms per unit volume. 
Therefore, the preequilibrium charge-state depth zprc is approximately characterized by 

Of course this value depends on the projectile velocity via &, and uloJs. The electron- 
loss cross section is inversely proportional to the binding energy (Rule 1977, Kaneko 
1986b). Then based on a hydrogen-like model, the losscross section ul.,,,for an excited 
state with principal quantum number n is approximately represented by n2u10s.l,. Hence 
the concept of the frozen charge state has meaning only in  a thin foil region of z < 
(I/n2)zp,e. Is, where zpre, I s  is the pre-equilibrium depth for the Is state. 

2.1. Dislribution of the projectile electrons 

Here we determine the spatial distribution of two electrons bound on the projectile. 
Here one electron is assigned to the Is and the other electron to the 2s state. In order 
to satisfy the Pauli principle, the wavefunction of this two-electron system has to be 
antisymmetric with respect to mutual exchange of electrons. Symmetry in space corre- 
lates with antisymmetry in spin. Now the spin-orbital interaction is neglected so that 
the one-electron state can be described by the product of the wavefunction in space 
and that in spin. 

Let us define the spin wavefunctions for the up-spin and the down-spin state, respec- 
tively, by u(u) and P ( G ) ,  where U is spin variable. As well, the wavefunctions in space 
for the Is and 2s states are denoted by yl,(v) and yzr(r). Then, the total wavefunction 
Ys for the singlet spin state is expressed in tenns of 

Ys= ys(r1, rz)xs(u,, u 2 )  (2.2~) 

where 

vVs(r1 3 p 2 ) =  (2)-’/2[WldrI)~2s(Y2f + VlS(~2)Wzr(h)I (2.2b) 

X S ( U I ,  UZ) = W’2[u(u l )p (ud-  a(uz)p(ut)]. (2.2c) 
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Similarly, the wavefunction YT for the triplet spin state is expressed as 
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and 

(2.3a) 

(2.36) 

a(ul)a(a2) 

P ( U I M U 2 ) .  

X ~ U I ,  ud= (2)-’/’[a(~1)P(~z)+~(~~)P(~~)1 (2.3~) 

(2.4a) 

The spatial wavefunctions yl.(r) and ty2.(v) are assumed to have the following 

y&) = ( ~ a ~ ) - ‘ / ~  exp(-r/a) 

yla(r)= (4n)-”2(2a)-”z(2- r /a)  exp(-r/2a). (2.46) 

It is obvious that these normalized functions are orthogonal to each other. In equation 
(2.4), a is the orbital screening parameter, depending on the nuclear charge Z, of the 
projectile. In order to determine it, we minimize the total energy, which was calculated 
both for the singlet and triplet states in quantum-mechanical manner. Let us consider 
the Hamiltonian of the system composed of Is and 2s electrons. 

i 
forms: 

H =  H:+ VIZ 
1-1.2 

H F  (-fi2/2m)Aj-Z,$/ri 

V12=2/lr, - r z l .  

(2 .5~)  

(2.5b) 

(2.5~) 

Using equations (2.5), the expectation value of H for the singlet, ( H ) s ,  is calculated 
as follows 

( W s = E i , +  Ea+ Vis.a+Klr-2r (2 .6~)  

E~,= fi2/(2inaz) - Zlez/a (2.6b) 

(2.6c) E - ?  

VI-Z.=~ dr dv’ I ~ d ~ ) l ~ l  ~ d v ’ ) l ~ / l ~ - r ‘ l  

2 8 -  ,El% 

(2.6d) 

s s  
= 17e2/8ia 

KII-2.= I d r  j d r ‘  wl,(r)* v2,(r‘)*(ez/lr- JI )yls(r‘)vIdr) 

= I 6e2/729a. (2.6e) 

In the above equations, Vllls-2s and KI5.& are, respectively, the direct Coulomb integral 
and the exchange integral. For the triplet state, on the other hand, the sign of the 
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exchange integral is negative so that the total energy (H)T has the following form: 

(EJ)T= EIS+ E2s + VISA - Kis-2~ (2.7) 

For convenience, a new parameter 2. is introduced instead of a by a=ao/Z,. Then, 

(2.8) 

(2.9) 
As one can easily see, these are parabolic functions with respect to Z, so that they take 
a minimum at Zc=Z,-&$ and at Z.=Z,-&. Thus the orbital parameter a, or Z,, 
can be determined by the energy-minimizing variational method. The variable Z. is 
interpreted as the screened nuclear charge for the ls2s configuration system. If there is 
only one bound electron, this system reduces to a hydrogenic one, resulting in Zc=ZI. 
In our treatment, therefore, a two-electron system on a projectile is governed by the 
hydrogen-like orthonormal orbitals defined under the screened nuclear charges of the 
forms 

Z,(~S-%, singlet)=zl-& (2.10~) 

z*(~s-~s,  triplet)=^, -%. (2.10b) 

It is worthwhile comparing equations (2.9) to the corresponding quantity ( I  .3) for 
the Is2 ground state (singlet). From equations (2.10) and (l.3), the degree of screening 
in the Isz state is stronger than in the metastable ls2s state by 0.13-0.16. 

where all notations are the same as in equation (2.6).  

one obtains in units of e2/ao 
676 2 

548 2 

( H ) s  =i{Ze- (ZI -E)}z - az, -m) 
(H)T=Z{Zc-{ZI -%)}'-2(Zl-m) . 

2.2. Stopping-power formula 

As usual, let us begin with a general expression of the electronic stopping power S i n  
the Born approximation as follows (Kim and Cheng 1980, Gillespie and Inokuti 1980): 

S =  N 1 (E. - Eo) IqIr ( d q / q 3 ) 8 ~ ( ~ z / ~ ~ ) 2 1 ~ 6 b ( - q ) 1 2 1 ~ ~ ( ~ ) 1 2 .  (2.1 I )  
n 

In the above, E, and Eo denote the eigenenergies of the target-material states n and 0, 
respectively. N is the number of target atoms per unit volume. The momentum trans- 
ferred to the target electrons ranges from fiq,"ln=(En- Eo)/v  to /Wqm,,=2inu. The form 
factor of the projectile, F&(-q), and inelastic scattering amplitude of the target atom, 
F&(q), are given by 

%(-d =ZI - (01 C exp(fiqrJl0) (2.12) 

G o ( d = ( n l  1 exp(-iw)l0). (2.13) 

The function Fgo(-q) is calculated by the Fourier transform of the spatial distribution 
of the configuration for the ls2s singlet and the ls2s triplet. As (01 zexp(iqr,)lO> is 
denoted by p(q), we have 

I 

(2.14a) 

(2.14c) 

(2.146) 
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It is convenient to divide the integration region [q.,%., qmaJ into two sections, i.e. 
A=[q,i,, qoJ and B=[qo ,qmlmax] ,  where qo is such an appropriate parameter that the 
dipole approximation can be applied to Fh(q). Hereby we have expl-iqv,)= I -iqq 
and the contribution from section A,  SA, is then reduced to 

90 

&=NI (En- ~ O ~ ~ ~ ( ~ / f i ~ ) ’ l d , d ’  1 (dq/q)I%(-q)’ 

l- 

(2.15) 
n rlmin 

where d,,, is the dipole matrix element. On the other hand, the contribution from section 
B, SB,  is expressed as 

S~=N(ti’/2m)Z28n(e’/fiu)’ (dq/q)I%(-q)I’. (2.16) 

Here one can interchange the order of the summation over n and the integration over 
q since both qma. and qo are independent of the eigenstate In). Thus we are able to 
employ the sum rule (Landau and Lifshitz 1958) 

(2.17) 

Fortunately, the definite integrals in SA and SB are straightforwardly estimated if one 
uses the following analytical result of the indefinite integral: 

2 ~(dq/q)/i%(-q)12 

= A  In(da2) +f(q2a2+ I )  t g(q2a2 t 4) t integral constant. (2.18) 

Here the functionsf(x) and g ( x )  are defined by 
1 

i- I 
f ( x )  = Bo ln(x) t Bi/xJ (2.19) 

3 
g(x) = CO h(x) + c,/d. (2.20) 

J= I 

In equations (2.18)-(2.20), A, E, (i= 1-7) and C, (i= 1-3) are the following constants: 

A = (2, -2)2 B 0 = 2 Z 1 + g  B 1 = % - 2 2 ,  B ~ = Z I - ~  

(2.21) B - 3 6  E, =?- 421 B4 = -$ B 5 = 5  B 6 z - 8  7 - 7  

G = 2 Z 1 - 3  c 1 - ~ - 8 2 1  -16 C2=8 C3=?. 

At this point, we remember that, the high but non-relativistic velocity case is now 
considered. Therefore, we can naturally assume that a2q:i.cc 1, namely, (&-Eo)/ 
(fiv/ao)<<Z(ls-2s, singlet) (or Z(1s-2s. triplet)) and a2q~,,>>4, namely, u/u0>> 
Z( I s - ~ s ,  singlet) (or Z(ls-Zs, triplet)) hold valid in this energy region. Then, using 
the sum rule (Landau and Lifshitz 1958) 

(E.  - E a ) l d d =  (fiZ/2nr)Z2 (2.22) 
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and the approximations 

3 

g(a2di. +4) = CO In 4+ C Cj/4‘+ (qmi.a)’+ O(qka4)  (2.24) 
, = I  

we get 

SA=(21re4/mv2)NZ2 2A In(qoa)+f(q?,u2+ l)+g(q&zz+4)-2A In(la/hv) 

3 7 3 

L 
7 

- x B i - C , I n 4 - C  Ci/4’- BOX i B j + f G - C  iC;/4“+” 
i= I i= I i i - 1  i =  I 

x (2m/fi2Z2)G3(a/ftv)2- O(Gs(a/Rv)4) . (2.25) I 
Here i denotes the mean excitation energy, defined by 

In I =  ( I  /~~)(2m/ft’) 2 (E. - E,)[& l2 In(.& - E ~ )  (2.26) 
n 

and 

G,,=C (4- Eo)’”l+o I (m=3,5). (2.27) 

I n  this equation, G,. denotes the mth excitation energy moment of the dipole transition 
probability. The first moment G, leads to the weU known sum rule (2.22). 

f(.’b.. + 1 = BO ln(dq2, ) + (BO+ 51 ) ( q m . d 2  + O((qmax4-4)  

and 

g(2&,,+4)= CO ]n(Qzbax)+ (4co + CI )(qm..a)-’+ O((qm~xa)-~) 

we have 

SB= (2ae4/mvZ)NZ2[2(A +Bo+Co)  In(2mua/h) -2A In(q0a) -f(qid+ 1) 

n 

Similarly, using the approximations 

(2.28) 

(2.29) 

-g(# +4) f (Bo+ Bi +4co+ CI )( @/hzU2d) 
+ 0((2mva/fi)-4]. (2.30) 

Summing SA in equation (2.25) and SB in equation (2.30), the total electronic 

S= (4ne4/mv’)NZ2L (2.31a) 

stopping power S for singlet and triplet states can be represented in the form 

where 

~ = ( ~ , - 2 ) ~ 1 n ( 2 m u ~ / 1 ) + 4 ( ~ ~ -  I )  I n ( v / z , u , ) + ( 2 ~ ~ + ~ )  i n ( 2 ) + ; ~ ~  -- (2.316) 
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where Z.=Z( Is-2s, singlet) for the singlet state and Z,= Z(ls-2s, triplet) for the triplet 
state. We remark here that in the above equation, the character of a target atom is 
represented by the only one parameter I .  Note that 90 cancel out in the total stopping 
power S. The leading correction term to equation (2.31b) is of the order of vm2, 
representing 

AL= -15(Z1 - 2 ) ( 2 i ~ 1 G ~ / ~ ~ Z ~ ) ; ( ~ n o ~ v Z ~ ) ' .  (2.32) 

Hereafter we only focus on the leading term L, because the correction AL can be 
omitted together with other higher-order terms in the velocity region considered. 

As an application of (2.31), we present here the stopping power for swift neutral 
projectiles. By setting Zt =2, one gets the quantity L (equations (2.31b) and ( I  .2)) for 
a metastable helium atom as 

&ta.He=4 In(o/z,vo) + ln(2) -'a (2.33~) 

where Z ,  is given by (2.10). On the other hand, from (1.2) and (l.3), for the ground 
state (ls', singlet) helium atoms, L reduces to 

LH,=4 ln(16~/270~) ++. (2.336) 

It is noted that the characteristic parameter l o f  a target does not appear in the above 
equations. In other words, the energy loss depends not on the microscopic quantum 
states of the target but on the macroscopic target parameters, i.e. Nand Z2, as well as 
on the projectile parameters. Hence, the stopping cross section for these atoms in the 
charge-statepre-equilibrium region is completely proportional to the target atomic num- 
ber 2'. This is because the projectile excitation process is not taken into account. 

T Kaneko and ff Tsuchida 

2.3. The effective stopping-power charge 

In order to comprehend and compile the stopping power data for partially stripped 
ions, the concept of the effective charge Zen is useful. This idea is based on the Bethe 
formula (equation (l.la) with L = Z ?  1n(2tno2/l)) for a point charge intruder. Accord- 
ing to this formula, the quantities characterizing a projectile are the charge Z le  and the 
velocity v so that Sisproportional to Z:at constant velocity. Then in order toconjecture 
the magnitude of the stopping power, it is convenient to define the effective stopping- 
power charge in the frozen charge state, zm, as 

Zrr= (s/s,)"2 (2.34) 

where S,, is the stopping power for a proton (Z, = 1) at the same velocity as the projectile 
considered. At this point, the effective charge means the magnitude of electric charge 
of a projectile seen through the stopping power. The ZLm is different from the conven- 
tional effective charge ZeR. There itre two effects on the ZCw. One is the charge-changing 
effect inside a target and the other is the size effect of a projectile. The former is due 
to the fact that at least several charge-state components have contributed to the stopping 
power S. In recent frozen-charge-state measurements, however, the first effect cannot 
appear. In this sense, the i$ obtained here reflects the size effect only. In general, the 
Zfr, and Zen for ion species Aq+ are different from the net charge qe. Moreover, Z, is 
dependent on but not equal to the average charge qmcsn. Actually, due to close collisions, 
ZC,&,) is rather greater than qmean (q )  especially for low-velocity ion-beams (frozen- 
charge-state ions) (e.g. Kaneko 1984, 1986a). 
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According to the definition, the Z:,~for the projectile in a metastable ls2s configura- 
tion is found to be 

(2.35) 

One should keep in mind that the above expression is not for fast ions undergoing 
electron stripping or exchange collisions but for ions of the same charge-state as the 
incident one. Therefore, the formula (2.35) is different from the Z e ~ ,  which mono- 
tonically goes to ZI with increasing ion velocity. This is due to the charge-changing 
effect. Namely, the fact that the bound electrons will be stripped off more and more as 
the velocity increases, plays a key role. However, this is not our case. Here, even at 
high velocities, the bound electrons are assumed to still attach to the ion moving in a 
very thin foil. In the limit of extremely high velocity, i.e. u>>Z& and 21>>(I/2m)'/~, 
equation (2.35) becomes saturated at the value 

z f f= (2 : -2zI  +2)'/2 (2.36) 

which is independent of the ion velocity. It is noted here that the above value is deter- 
mined only by the number of bound electrons. As is expected, the ground state Isz 
configuration also yields the same Z:, value. 

In order to see a systematic feature, let us have the following expression of Z., for 
hydrogen-like and helium-like (1s') projectiles (Kaneko 1991) : 

zff=[(Zl -NI,)Z+[ln(2moz/I)]-'N1,{(2ZI -NI$) In(u/Z.uo)+Zl -#NI,} JtiZ (2.37) 

where NI. denotes the number of Is electrons. One has, for hydrogen-like projectiles, 
Z.=Zl and NI,= 1 ,  and on the other hand, for helium-like ones, Z.=ZI -& and NI,= 
2. At high velocities (2.37) reduces to 

(2.38) 

This result is also independent of velocity. By setting N1,=2 one sees that equation 
(2.38) gets the same value as equation (2.36). 

I 2 112 zff = [(ZI - N I 3  + ZINIS- 3 ~ 1 , l  . 

3. Numerical results and discussion 

Figure 1 shows the stopping cross section S ( l s 2 ) / N  of carbon calculated from (1.2) 
with I=77.3 eV=2.842au (Andersen et al 1977) for helium-like ground-state (1s') 
projectiles with atomic number 2, =2,4,6 and 8 and with velocity from u=Zlu0 to 
o= 60u0. Figure 2 displays the stopping cross section, S( ls2s, singlet), of carbon calcula- 
ted from (2.31) for the corresponding projectiles in the metastable ls2s singlet state. In 
order to estimate the difference between in the Is2 and in the ls2s state, we plot in 
figure 3 the ratio of S( I s ~ s ,  singlet)/S(ls'). At velocities 03 Zlu0 it becomes greater than 
2 for small 21, while with increasing velocity i t  gradually decreases, approaching unity. 
Such an enhancement in the metastable stopping is not so large for the larger ZI values. 
This result can be explained as follows. In general, as the ZI value increases, the average 
radius df the bound electron becomes shorter since, roughly speaking, the radius is 
inversely proportional to Z1 . Then the screening of the ion nuclear charge by the bound 
electrons is more complete and thereby the net-charge approximation becomes valid 
for heavier (or larger 2,) ions. In other words, formula (2.31b) is apt to be dominantly 
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Figure 1. The calculated stopping crws section, S(ls')/N, of carbon (1=77.3eV) as a 
function of velocity U for helium-like ground-state (Id) projectiles with Z,=2 (-), 
Zt =4  (---), Z , = 6  (---) and 2,-8 (-----). 
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Figure 2. The calculated stopping cross section, S(lsZs, singlet)/N, of carbon as a function 
of velocity U for helium-like metastable-state (Is~s, singlet) projectiles with Z,=2 (-), 
2, = 4  (- - -), ZI = 6  (- - -) and Z, = 8  (- - - -). 

govemed by the first term so that the ion can be regarded as a point charge. This 
picture leads to another conclusion that the effective stopping-power charge gfrreduces 
asymptotically to the net charge. 

Regarding the ls2s triplet projectiles, no appreciable difference is found in the 
stopping between the ls2s singlet and the ls2s triplet state. To see in detail, however, 
the relative difference, [S( ls2s, singlet) - S( ls2s, triplet)]/S( ls2s, triplet) X 100 is shown 
in figure 4. One can see that this value is within 3% over the whole velocity range 
considered, and that this becomes smaller with increasing velocity. 

As stated above, it is convenient to convert the electronic stopping power into the 
effective charge 2,~. Figure 5 shows the zN of swift C4' and 06+ ions both in the 
ground state (Is') and the ls2s singlet state. It is found that in going from the ground 
state to the excited state zfl increases by 0.5 at low velocities and by 0.2 at high 
velocities. 

Finally figure 6 indicates that scaling of the electronic stopping cross sections can 
be possible for the helium-like metastable (ls2s) projectiles with 21 > 3. The scaling 
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Figure 3. The ratio of S(IsZs, singlet) to S(ls') for Z , = 2  (-1, Z , = 3  (---), Z1=4 
(- - -) and ZI = 6 (- - - -) as a function of velocity. 

Figure 4. The ratio. AS=[S(lsZs, singlet) - S(lsZs, triplet)]/S(ls2s, triplet), expressed in 
Per cent, as a function of velocity for Zt=2 (-), Z , = 3  (---), 2,=4 (---) and 
Zt=6(----). 

factor Z;2.20 is numerically found by the least-squares fitting of the calculated stopping 
values for Z I = 3 , 4 ,  6 , 8 ,  IO, 20 and 30 at u=3Ou0. In the figure we draw the scaled 
stopping curves S x Z2.*' for 2, = 3 , 4 , 6 , 8 ,  IO, 20 and 30 in the velocity range 
Z , u o ~ u < l O O u o .  In spite of fitting at a particular velocity, the obtained curve is well 
scaled over the whole range of velocity. At u=60uo the power of 21 in the scaling factor 
is -2.205 which is very near to the case of U = 3000. This scaling factor is almost constant 
at high velocities. At lower velocities, e.g. U =  IOU,, and 20v0, the power becomes -2.218, 
deviating a bit from -2.20. This means that the six scaled curves do not look like one 
universal curve in the low velocity region. 

In conclusion, the analytical expression for the electronic stopping power for the 
metastable ls2s helium-like projectiles in a frozen charge state was presented on the 
basis of the first-order perturbation theory and the Hartree-Fock-Slater method. The 
leading correction term A L ( Z , ,  Z2, U) at high velocity was also presented. Enhancement 
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FiguTe 6. The scaled stopping cross seetion, S(ls2s, singlei)/Nx Z;'.20 for swift projectiles 
in the ls2s singlet state in carbon. 

in the stopping power for the metastable projectiles occurs, especially at the lowest 
velocity U =  Z,uo, and consequently, the effective stopping-power charge of those projec- 
tiles becomes larger than that of the ground-state ( Is2) projectile. No appreciable differ- 
ence in the electronic stopping is found between the ls2s singlet and the ls2s triplet 
state. A scaling law could also be found numerically for the ls2s electronic stopping 
curve. To our regret, there are no experimental data on the projectiles in excited states 
as far as the authors know. We think, however, these results will be useful to analyse 
energy-loss data in which excited states are incorporated. Investigation of the energy- 
loss of swift ions with a 2p electron is now in progress and will be published in the 
near future. 
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