Spatially Resolved Flow Velocity-measurements Using Laser-induced Fluorescence From A Pulsed Laser

Westblom, U; Aldén, Marcus

Published in:
Optics Letters

DOI:
10.1364/OL.14.000009

1989

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spatially resolved flow velocity measurements using laser-induced fluorescence from a pulsed laser

Ulf Westblom and Marcus Aldén
The Combustion Centre, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden

Received April 29, 1988; accepted October 21, 1988

We describe how spatially resolved velocity measurements can be acquired using a pulse-amplified single-mode cw laser with a potential of single-shot measurements. The laser beam was tuned to the point of maximum slope of a Doppler-broadened absorption profile of I₂, which was seeded into the flow. The beam was then split into two components and sent counterpropagating through the measurement region. By diode-array detection of the laser-induced fluorescence from I₂, spatially and temporally resolved velocities can be acquired.

Many laser spectroscopic techniques have recently become some of the most important tools in the understanding of different combustion and flow phenomena. One of these is laser-induced fluorescence (LIF), which has been used mostly for temperature determination and concentration measurements of minor species (see, e.g., Refs. 1 and 2). One important advantage of LIF is the possibility of making multiple-point measurements through imaging experiments using one- or two-dimensional detectors. This technique was first demonstrated in one dimension using a diode-array detector, followed by two-dimensional measurements and multiple-species (C₂, OH) detection. Recently even three-dimensional images have been presented.

In addition to temperature and concentration determinations, velocity measurements are of vital importance for a deeper understanding of various combustion and flow phenomena. It has been shown how spatially resolved velocity measurements can be achieved by using a single-mode cw laser tuned to a Doppler-broadened absorption line profile. In these experiments the time resolution has been in the millisecond regime owing to limitations in the signal strength. However, in order to freeze turbulent velocity fluctuations over the full frequency range of interest, a technique with submicrosecond resolution is required. This will permit accurate sampling of the full range of velocity fluctuations in turbulent flows and hence give access to averages of second and higher moments of the velocity. It is also particularly of interest for studies of the correlation between velocity and concentration, which are vital to a deeper understanding of the processes governing reacting turbulent flows. The available techniques do not seem to have the potential for this increase in time resolution by simply going to shorter exposure times while keeping other parameters constant. Other techniques that have been proposed for spatially resolved velocity measurements are, e.g., photothermal deflection and tagging techniques.

In this Letter we report on spatially resolved velocity measurements using a pulse- (10-nsec) amplified cw dye laser, tuned to the point of maximum slope of a Doppler-broadened absorption profile of I₂, that was seeded into the flow, yielding a concentration of approximately 300 parts in 10⁶. In the present experiment it was not possible to identify the exact rotational excitation transition, and, since it was not clear how differences in hyperfine structure splittings and spectral perturbations would influence the measurements, several different transitions were examined and found to give consistent results.

The experimental setup is shown in Fig. 1. An argon-ion laser (Spectra-Physics 171-17) pumps a ring dye laser (Coherent 699-21), yielding an output power of ~500 mW with a bandwidth of ~1 MHz at λ = 580 nm. Part of the beam was split off to monitor the frequency stability with a scanning Fabry–Perot interferometer.
ferometer, the power with a photodiode (PD), and the
$I_2$ fluorescence intensity from a reference cell (RC).
The main part of the cw beam was directed through
two amplifying dye cells (DC's), with Kiton Red as the
dye, which were pumped by a frequency-doubled
Nd:YAG laser (Quantel YG 581-10). The pump energies
were 2 mJ for the first stage and 25 mJ for the
second, yielding output energies of 5 μJ and 3 mJ,
respectively, with a frequency width of ~150 MHz. A
dispersive isolation stage between the dye cells gave a
reduction in the amplified spontaneous emission of
less than 1% in the final pulse. The pulse-amplified
beam was then divided into two beams that were fo-
cused by $f$ = 700 mm lenses and sequentially directed,
counterpropagating, through the flow chamber. The
flow facility, which was built to simulate a free ex-
 panding jet, consisted of two chambers in sequence.
This arrangement was made in order to avoid shock
phenomena, and thereby large pressure gradients, in
the test section. The chambers were evacuated to
pressures of 10 and 70 Torr, respectively. A Nikon
$f/1.4$ lens was used to image the fluorescence directly
onto an intensified diode-array detector (PARC OMA
III) with 1024 pixels through a cutoff filter (Schott OG
590).

In Fig. 2, experimentally recorded LIF excitation
profiles are shown of $I_2$ in a cell with the beam direc-
tion against the flow (curve a), static gas
(curve b), and the beam direction with the flow (curve c).
Also shown are line profiles recorded with cw and pulsed
lasers (inset).

where $S_+$ and $S_-$ are the fluorescence intensities from
the different beams, $\lambda$ is the laser wavelength, $g(\nu_l)$ is
the value of the normalized absorption profile at the
laser wavelength, and $g'(\nu_l)$ is the value of the function
derivative at this point. The advantage of this expres-
sion is that the velocity $\nu$ is expressed in factors that
are independent of laser power, quenching, and seed-
ing concentration. As can be seen from Fig. 2, the
absorption profiles recorded with the pulsed amplified
laser are broader than the profile using the pure cw
laser, 1.5 and 1.1 GHz, respectively. The broadening
of the absorption profile is due to saturation broaden-
ing and the use of a laser with a larger bandwidth for
excitation. In addition, there are contributions to the
line shape from amplified spontaneous emission and
from sidebands in the pulse-amplified laser owing to
mode beating, since the Nd:YAG laser was multimode
($\sim$1 cm$^{-1}$). These phenomena and possibly spurious
scattered light were taken into account when calculat-
ing the flow velocity.

Measurements were made using the system in both
the cw and pulsed modes. A comparison between
velocity recordings obtained with the cw and pulsed
techniques is shown in Fig. 3. As can be seen, the
velocity distributions acquired with the pulsed tech-
nique are similar to the recordings taken in the cw
mode, when the difference in absorption line profile is
taken into account. In Fig. 4, single-shot recordings
are also shown for the beam direction against the flow
(curve a), no flow (curve b), and the beam direction
with the flow (curve c). The three recordings were
made at the same pressure, 10 Torr, and yielded within
a factor of 4 the same number of counts on the diode
array. The difference in rms values between the re-
cordings with flow and without flow is attributed to
time-resolved turbulence. Since only one diode-array
detector was available for the time of the experiment,
the recordings for the left and the right beam were
made with a time difference of 100 msec; consequent-
ly, the velocities from these recordings would not give
the true time-resolved values. To do this two detec-
tors would have to be used, gated sequentially since
the readout time of most detector systems is consid-
erably longer than the turbulent time scale. Thus, by
gating the detector on each of the two counterpropa-
gating beams, a time resolution of less than 100 msec
will be achieved. This can of course also be achieved

![Fig. 2. Experimentally recorded $I_2$ absorption profiles in the beam direction against the flow (curve a), static gas (curve b), and the beam direction with the flow (curve c). The three recordings were taken into account. In Fig. 4, single-shot recordings are also shown for the beam direction against the flow (curve a), no flow (curve b), and the beam direction with the flow (curve c). The three recordings were made at the same pressure, 10 Torr, and yielded within a factor of 4 the same number of counts on the diode array. The difference in rms values between the recordings with flow and without flow is attributed to time-resolved turbulence. Since only one diode-array detector was available for the time of the experiment, the recordings for the left and the right beam were made with a time difference of 100 msec; consequently, the velocities from these recordings would not give the true time-resolved values. To do this two detectors would have to be used, gated sequentially since the readout time of most detector systems is considerably longer than the turbulent time scale. Thus, by gating the detector on each of the two counterpropagating beams, a time resolution of less than 100 msec will be achieved. This can of course also be achieved.

![Fig. 3. Comparison between velocity recordings using pulsed- and cw-laser techniques.](image-url)
which for I$_2$ is below 1 Torr. Thus raising the pressure easily accessible spectra in the visible region. However, since the saturation effect makes the shape of the absorption profile dependent on laser power, focusing, and laser bandwidth, it is important that the velocity changes with pressure and temperature. Thus it is important that the values of these parameters are constant through the probe volume or that they can be measured in situ.

The flow studied in this experiment was designed to have small temperature and pressure gradients to circumvent this problem. The low pressures used reflect the problem with collisional deexcitation—quenching—in LIF. When the pressure is raised the collision rate will increase, and hence the quenching increases, which reduces the fluorescence intensity. At the same time, the number density will also increase, but only until the vapor pressure of the species is reached, which for I$_2$ is below 1 Torr. Thus raising the pressure above this value only increases the quenching but not the number density. Under the experimental conditions reported here an increase in pressure from 10 to 200 Torr caused a decrease in signal intensity by a factor of 10. It can be shown that the dependence of pressure is reduced if the laser power becomes large, i.e., the transition becomes saturated. Operation in the saturated regime thus has the advantage of decreasing the pressure dependence of the fluorescence signal. Another advantage to working in the saturated mode is that it also reduces the sensitivity to changes in laser power due to, e.g., absorption. However, since the saturation effect makes the shape of the absorption profile dependent on laser power, focusing, and laser bandwidth, it is important that the velocity measurements are recorded under the same conditions as those when the shape of the absorption profile is measured.

In the experiments reported here, I$_2$ was chosen as the test species because of its high vapor pressure and easily accessible spectra in the visible region. However, it is clear that this species is not an optimal seeding species, since it is poisonous and corrosive and, compared with species naturally occurring as a gas, its concentration is low. The useful measurement range in I$_2$ is also limited to below approximately 200 Torr since transitions start to overlap above this pressure owing to pressure broadening. For the technique to have general usefulness in studying turbulent fluctuations, these limitations with I$_2$ have to be overcome.

Consequently, an alternative to I$_2$ would be advantageous. Unfortunately, most stable species have their absorption bands in the UV or VUV spectral regions. However, these wavelengths can be reached by nonlinear processes such as frequency mixing and doubling and/or by using multiphoton processes. Both of these alternatives are possible in the pulsed-laser approach but hardly in the cw-laser approach.

The optimum choice as a seeder in many respects would be N$_2$. Unfortunately, its resonances lie well down in the VUV. However, recently N$_2$ was detected in the atmosphere using a multiphoton process near 280 nm with UV and near-UV fluorescence, which will also be considered for velocity measurements in the future using the technique proposed here.

The authors gratefully acknowledge the constant support and help from S. Svanberg. We also thank S. Kröll, B. Norén, and G. Holmstedt for stimulating discussions and help during the course of this work and P. Hutchinson, Cranfield Institute of Technology, for helpful suggestions on the manuscript. This research was financially supported by the National Swedish Energy Board and the National Swedish Board for Technical Development.

References

13. L. Rahn, Sandia National Laboratory, Livermore, California 94550 (personal communication).