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NMDA Receptor Stimulation Induces Reversible Fission
of the Neuronal Endoplasmic Reticulum
Krzysztof Kucharz1, Morten Krogh2, Ai Na Ng1, Håkan Toresson1*
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Abstract

With few exceptions the endoplasmic reticulum (ER) is considered a continuous system of endomembranes within which
proteins and ions can move. We have studied dynamic structural changes of the ER in hippocampal neurons in primary
culture and organotypic slices. Fluorescence recovery after photobleaching (FRAP) was used to quantify and model ER
structural dynamics. Ultrastructure was assessed by electron microscopy. In live cell imaging experiments we found that,
under basal conditions, the ER of neuronal soma and dendrites was continuous. The smooth and uninterrupted appearance
of the ER changed dramatically after glutamate stimulation. The ER fragmented into isolated vesicles in a rapid fission
reaction that occurred prior to overt signs of neuronal damage. ER fission was found to be independent of ER calcium levels.
Apart from glutamate, the calcium ionophore ionomycin was able to induce ER fission. The N-methyl, D-aspartate (NMDA)
receptor antagonist MK-801 inhibited ER fission induced by glutamate as well as by ionomycin. Fission was not blocked by
either ifenprodil or kinase inhibitors. Interestingly, sub-lethal NMDA receptor stimulation caused rapid ER fission followed by
fusion. Hence, ER fission is not strictly associated with cellular damage or death. Our results thus demonstrate that neuronal
ER structure is dynamically regulated with important consequences for protein mobility and ER luminal calcium tunneling.
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Introduction

Activation of glutamate receptors triggers a multitude of

intracellular signaling pathways important for many aspects of

CNS physiology and disease. Some of these signaling events

terminate on the endoplasmic reticulum (ER) and are important

for many aspects of brain function [1–8]. The ER is generally

considered a continuous organelle and neuronal ER is no

exception; even the ER found within dendritic spines is connected

to the bulk of the ER in the dendrites and soma [9–12]. The

continuity of the ER is important for its normal function as a

calcium store as well as for its role in the secretory pathway. The

continuous ER lumen permits calcium tunneling so the ER

calcium channels can gate significant amounts of calcium in local

domains upon stimulation and may also permit the propagation of

signals over long distances [13,14]. In the secretory pathway, ER

continuity allows mature proteins to move to the specialized ER

exit sites from which they are trafficked to the Golgi [15–18].

In spite of the vital importance of ER continuity it is known that

under certain conditions the ER in some non-neuronal cell types

can undergo dramatic changes in structure leading to loss of

continuity. Such dramatically altered ER structure has been

reported in living cells such as sea urchin [19] and starfish [20]

eggs at fertilization, different non-neuronal cell lines [21–23] and

lacrimal cells [24]. Fragmentation (hereafter also called fission) of

the ER will most likely have significant effects on most, if not all,

aspects of ER function. Importantly, it can be predicted that long-

term fragmentation of the ER is likely to be incompatible with

cellular survival. Hence, for the fragmentation of the ER described

above to qualify as a physiologically relevant phenomenon, it

should be balanced by a mechanism mediating fusion of ER

vesicles. Such events where ER fission is followed by fusion has

been convincingly shown in starfish eggs following fertilization-

induced ER fission [20]. The fact that the ER in several cell types

undergo fission after physiological stimuli prompted us to explore

this question in neurons in primary culture as well as in cultured

organotypic slices. We describe that, indeed, the neuronal ER is a

dynamic organelle and that the fission machinery is controlled

specifically by NMDA receptor activity.

Materials and Methods

Primary hippocampal neuronal cultures
Animals were handled in accordance with Swedish law under

permits to HT (M197-07, M223-06). Dissected uteri from

embryonic day 17 pregnant NMRI mice were transferred to ice

cold PBS (Gibco). Hippocampal subdissection was done in ice cold

HBSS (Gibco) with 4.17 mM NaHCO3 (Gibco). Tissue was cut

with a fine spring scissors, gently disaggregated by triturating,

washed twice with HBSS/NaHCO3 (pH 7.4) and transferred to

Neurobasal medium supplemented with 2% B-27, 0.5 mM L-

glutamine, 16 pen/strep (all from Gibco) and 25 mM glutamate

(Fluka). Cells were plated at 46105 cells/ml in imaging 4 well

chamber slides (Nunc) coated with 10 mg/ml Poly-D-lysine
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(Sigma) and 5 mg/ml laminin (Sigma). At day in vitro (DIV) 4,

cells were transfected to express either EGFP and DsRed2-ER

(RedER) (Clontech; 0.4 mg/ml and 0.6 mg/ml respectively) or

DsRed2 and EGFP-ER (gift from Thomas Oertner, FMI, Basel)

using Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instruction. Liposome-containing medium was replaced

after 3–5 h by glutamate-free Neurobasal medium supplemented

as above.

Generation of Thy1-RedER transgenic mice
The transgene construct was built to express RedER and EGFP

from the same transcript by internal ribosome entry site (IRES)

mediated EGFP translation. Translation from the IRES was very

weak, however, and the EGFP signal too low for imaging. The

RedER gene derived from pDsRed2-ER was cloned into pIRES2-

EGFP vector linearized with NheI – BglII. Both vectors were

commercially available from Clontech. The RedER-IRES2-EGFP

fragment derived using NheI/NotI sites was cloned into the pThy-1

vector linearized with XhoI (gift from Joshua R. Sanes; Washington

University) [25].

Slice cultures
Organotypic hippocampal slice cultures were prepared from 7-

days old Thy-1 RedER transgenic mice as described [26]. Mice

were decapitated and brains were transferred to ice-cold HBSS

(Gibco) with 20 mM HEPES (Sigma), 6 mg/ml D-glucose (Sigma)

and pen/strep (Gibco). Hippocampi were dissected and cut into

250 mm thick slices using a McIlwan Tissue Chopper. Slices were

transferred to Millicell culture inserts (Millipore) in 24-well culture

plates. Cultures were maintained at 35uC in 50% MEM (Gibco)

with 25% heat inactivated horse serum (Gibco), 18% HBSS/

NaHCO3 (pH 7.4) supplemented with 6 mg/ml D-glucose

(Sigma), 2% B-27 (Gibco), 4 mM L-glutamine and pen/strep.

After 7 days in vitro slices were grown in maintaining medium (as

above) without B-27 supplement.

Live cell imaging and FRAP analysis
Live cell imaging was performed with a Zeiss LSM 510 inverted

confocal microscope system equipped with heating insert P and

incubator S perfused with humidified air with CO2 (5%). Multi

track mode was used and EGFP was excited with the 488 Argon

laser line and the emitted light detected after a 505–530 band pass

filter. DsRed2 was excited with the HeNe 543 laser and emission

detected after a 560 long pass filter. Temperature was maintained

at 37uC by heating the air and with a lens heater. Primary cultures

were imaged in their growth medium by using the 636N.A. 1.4

objective. Slices used for collecting images were cut out from their

insert and placed in an imaging chamber, perfused with carbogen-

bubbled artificial cerebrospinal fluid (NaCl: 119, KCl: 2.5,

MgSO4: 1.3, NaH2PO4: 1, NaHCO3: 26, CaCl2: 2.5, glucose:

11 (numbers are concentration in mM), pH 7.4) and imaged with

the 636 lens at 37uC. Images were exported from the Zeiss LSM

software as projected images in TIFF or uncompressed JPEG

format. Adjustment of images (in LSM or Adobe Photoshop) was

limited to changing the contrast and brightness of the whole

image. For FRAP recordings the 106 objective was used to

analyze slices in their inserts placed on a glass-bottom petri dish

with slice culture medium. For FRAP experiments fluorescence

intensity was measured from a selected region of interest (ROI) on

a dendrite for 30 scanning cycles (,40 sec), bleached with 100%

He/Ne laser intensity for 80 cycles (,10 sec) and FRAP curve was

recorded for up to 170 cycles (,250 sec). The same ROI was used

at every FRAP recording in the respective experiment. In addition

to recording the RedER FRAP signal, for primary cultures, the

EGFP signal was recorded in another channel in the multi track

mode to serve as a control for fluctuations in the FRAP signal due

to e.g. focal drift. Furthermore, a non-bleached ROI was always

defined outside the dendrite, but adjacent to the dendrite ROI, to

collect background signal (Fig. S2). The FRAP signal used for the

analysis was defined as the ratio between the red and the green

channel after subtracting the background in the two channels,

respectively. For data display, the FRAP signal was normalized by

dividing with V1+V2 obtained from the equations described below.

Drugs
Glutamate, NMDA, ifenprodil and DHPG were dissolved in

water; ionomycin in ethanol; KN-93, MK-801, thapsigargin and

staurosporine in DMSO. All drugs were frozen in small aliquots at

a concentration of at least 10006 and only thawed once.

Glutamate was from Sigma, all others from Tocris Cookson Inc.

Statistical analysis
All statistics and modeling was performed in R [27]. The model

for the FRAP curves is described in the result section. The data

was fitted to the model using least squares error minimization, i.e.,

the sum of the squares of the deviation of the data point and the

predicted value was calculated and the parameters b, c, k1, V1, k2

and V2 were chosen to minimize this sum of squares. The t-tests,

paired or unpaired, were performed with distinct variances in the

two groups, i.e. without assuming equal variance in the two

groups. The standard R function t-test was used. Data presented in

the results section are given as average6standard deviation. Box

plots show distribution and median.

Electron microscopy analysis
Organotypic slices for transmission EM analysis were fixed in

1.5% paraformaldehyde and 1.5% glutaraldehyde in 0.1 M

Sörensen’s phosphate buffer (0.1 M NaH2PO4/Na2HPO4,

pH 7.2) for 1 h followed by washing 3 times in Sörensen’s

phosphate buffer. Tissue was postfixed in 1% osmium tetroxid in

Sörensen’s phosphate buffer for 1 h, washed 3 times and

dehydrated in ethanol with increasing concentration: 25, 50, 75

and 96% for 2610 min respectively and 100% for 2615 min.

Prior to embedding, the slices were placed in 100% acetone for

2620 min and then in a mixture of acetone and epon resin

polybed 812 (Polysciences) 1:1 over night. Next day the specimen

was transferred to pure resin for at least 4 h before embedding in

new pure resin and polymerization at 60uC for 48 h. The

embedded specimen was sectioned in an ultratome (Super Nova,

Reichert Jung) at 50 nm and mounted on slot copper grids

previously covered with a thin film of pioloform. Grids were

stained in 4% uranyl acetate for 30 min at 40uC and 0.5% lead

citrate for 2 min at room temperature and observed with a Philips

CM 10 electron microscope. In total, sections from 4 control and 4

glutamate treated slices were analyzed.

Results

ER fission occurs after stimulation of glutamate receptors
When examining primary hippocampal cultures transfected to

express a fluorescent protein directed to the ER lumen (as

described in e.g. [12]) we sometimes identified neurons with

abnormal ER structure but with otherwise normal neuronal

morphology. The ER in these cells was fragmented and existed as

vesicles rather than the normal smooth and continuous appear-

ance. To explore ER fragmentation further, we transfected

hippocampal cultures to express a fluorescent protein targeted to

the ER (EGFP-ER or DsRed2-ER (RedER) where the fluorescent

Reversible Neuronal ER Fission
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protein is flanked by an ER-targeting sequence and a KDEL ER

retention signal previously shown to label neuronal ER [28–30])

and a cytosolic fluorescent protein of another color (EGFP or

DsRed2). When such cultures were treated with 100 mM

glutamate at day in vitro 17 or later, the neuronal ER underwent

rapid (within 1 to 10 min) fragmentation in 17 out of 19 neurons

analyzed (Fig. 1A–C). The dramatic change in ER structure always

preceded alterations in dendrite morphology. In most instances the

ER of the whole neuron fragmented more or less simultaneously but

in some cases a gradual distal to proximal wave of ER fission was

noted (Fig. S1). Even concentrations of glutamate as low as 10 mM

caused rapid fission of the ER in some neurons (data not shown).

Selective stimulation of NMDA receptors with 100 mM NMDA had

the same effect on ER structure as glutamate (Fig. 1D–E). After

10 min all 17 neurons had undergone ER fission. The ER vesicles

found after glutamate as well as NMDA-induced fission were largely

stationary and no evidence of trafficking of ER fragments within

dendrites was obtained (not shown and Video S1 (between t = 6 and

t = 11 min). Following 24 h of glutamate or NMDA all neurons

were dead including those few where no ER fission was observed

(data not shown).

Modeling ER continuity
In order to determine whether the fragmented appearance of

the ER really represented a break of ER continuity we performed

FRAP experiments. For these experiments RedER was used rather

than EGFP-ER as bleaching EGFP with the 488 argon laser

bleaches DsRed2 and then the cytosolic signal cannot be used to

control for focal drift (see methods). Multipolar and spiny neurons

were selected and for each cell FRAP was recorded from a

dendritic region of interest once prior to and once after the

addition of glutamate or NMDA (Fig. S2). The time-point for the

second FRAP recording varied for individual neurons between 1–

55 minutes after the addition of drug. The reason for this variation

in time was to permit collecting data from more than one neuron

from each well. Our FRAP analysis clearly shows that ER with a

fragmented appearance constitutes ER with broken or much

reduced lumenal continuity after glutamate (Fig. 2A) or NMDA

(Fig. 2B) treatment. To quantify FRAP results in a reliable way we

decided to mathematically model ER continuity. The ER within

the FRAP region of interest (ROI) was modeled as consisting of

two compartments with volume V1 and V2, respectively (Fig. 2C).

The compartments have rate constants, k1 and k2, respectively,

defined as the rate at which a RedER molecule, bleached or

unbleached, leaves the compartment and is replaced with a

molecule from outside the ROI. Molecules within the ROI are

bleached with the rate constant c during the photobleaching step.

Our model also takes into account the lower level of photobleach-

ing occurring during the recording scans by assigning the rate

constant b to this bleaching. The equation governing the FRAP

signal (S) during the recording scans in the compartment i = 1, 2 is:

dSi

dt
~{bSizki Vi{Sið Þ ð1Þ

The equation during photobleaching is the same except for

replacing b with c. In the time interval from t = 0 to t = t1, we

record the signal, and hence the bleaching rate is b. The total

signal is:

S~S1zS2

In the time interval t = t1 to t = t2, we perform the photobleach-

ing with bleaching rate constant c. And finally, from time t = t2

and onwards, we record again with bleaching rate b. By solving

these equations with the initial condition that all molecules are

unbleached at time 0, i.e., Si = Vi, we get:

Si tð Þ
Vi

~
ki

kizbð Þz 1{
ki

kizbð Þ

� �
exp { kizbð Þtð Þ

0v~tv~t1

ð2Þ

Si tð Þ
Vi

~
ki

kizcð Þz Si tið Þ{
ki

kizcð Þ

� �
exp { kizcð Þ t{t1ð Þð Þ

t1v~tv~t2

ð3Þ

Si tð Þ
Vi

~
ki

kizbð Þz Si t2ð Þ{
ki

kizbð Þ

� �
exp { kizbð Þ t{t2ð Þð Þ

t2v~t

ð4Þ

We fit this model to all the FRAP curves and it was able to fit

the data very well (Fig. S3).

We wanted a single measure of ER continuity that could be used

to compare the properties of the ER within neurons with different

treatments and at different time-points. Such a measure can be made

from the 6 parameters that describe the FRAP curve. The bleaching

constants, b and c, however, are not intrinsic to the neurons, but

depend on the laser power and other experimental settings. Hence,

the continuity measure should be constructed from V1, V2, k1 and k2.

With a single compartment, the rate constant, k, or the half-time of

recovery t= ln2/k, is a good measure. In this case we have two

compartments, and hence a double exponential recovery, which

does not have a simple half-time of recovery. In order to get a single

recovery time, a time scale, T, needs to be defined. An effective rate

constant, keff, can then be defined by requiring that a single

exponential recovery with rate keff at time T has the same recovery as

the double exponential:

V1zV2ð Þexp {keff T
� �

~V1 exp {k1Tð ÞzV2 exp {k2Tð Þ

The effective half-time of recovery, which depends on the

choice of time scale T, is given by:

teff ~
ln 2

keff

We fit the model to the experimental results from each

individual neuron and teff was calculated for T = 100 s. Glutamate

treatment caused an increase in average teff from 43.2611.6 s to

256.26242.7 s (n = 19, p,0.0001). For NMDA the increase was

from 43.669.7 s to 87.4638.4 s (n = 17, p,0.0001). The

distribution of the data with median teff for glutamate and

NMDA is shown in Fig. 2D and Fig. 2E respectively. Average teff

after glutamate was significantly higher than after NMDA

(p = 0.008).

ER fission is reversible
We had previously observed that spontaneous fission could be

followed by fusion (HT unpublished). The observed reversibility of

Reversible Neuronal ER Fission
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Figure 1. ER fission induced by glutamate or NMDA. (A) Representative image of a dendrite of a living hippocampal neuron transfected to
express cytosolic EGFP and RedER showing normal ER morphology. (B) When exposed to 100 mM glutamate, rapid fission of the ER occurred after
1 min. Note the lack of change in dendritic and dendritic spine morphology in the green channel. (C) Image of proximal dendrite exposed to 100 mM
glutamate for 20 min clearly showing the fragmented appearance of the ER in the xy (upper panel) and xz (lower panel) dimensions. (D)
Representative image of a dendrite with normal morphology. (E) When exposed to 100 mM NMDA, rapid fission of the ER occurred within 3 min. Note
the lack of change in dendritic and dendritic spine morphology in the green channel. Scale bar in all panels: 10 mm.
doi:10.1371/journal.pone.0005250.g001
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Figure 2. Analysis of ER fission by FRAP. (A and B) Normalized average FRAP signal over time in untreated neurons (blue) and the same neurons
after (A) 100 mM glutamate, or (B) 100 mM NMDA (orange). Photobleaching was performed between the arrows. Time = 0 was set to when
photobleaching ends and fluorescence starts to recover. Error bars are standard error of the mean (SEM). n = 19 for glutamate; n = 17 for NMDA. (C)

Reversible Neuronal ER Fission
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fragmentation, along with the fact that neurons with fragmented

ER often displayed normal neuronal morphology, makes it

possible that such ER fission and fusion could have an important

function in neurons. In order to further explore this aspect we

established an experimental system where neuronal ER fission

followed by fusion could be reliably induced without causing cell

death. We found that inducing rapid ER fission with 100 mM

NMDA followed by the addition of 25 mM of the NMDA receptor

antagonist MK-801 2 to 5 minutes after NMDA, allowed ER

fusion and cell survival after 24 h (Fig. 3A–C). In some instances

ER fusion could be noted as early as 20 min after adding MK-801

(Video S1). After 24 h, ER and overall morphology of the neurons

were as prior to NMDA exposure (Fig. 3A–C). Furthermore, we

recorded FRAP at three time-points: prior to adding NMDA and

MK-801, immediately after the drugs (5–60 min to allow

collecting data from several cells in one well) and after 24 h

(Fig. 3D). The observed fragmentation was found to correlate with

an increase in average teff from 35.168.0 s to 92.0644.5 s (n = 20,

p,0.0001). Furthermore, analysis of FRAP data revealed that at

24 h RedER fluorescence recovered from bleaching as prior to

adding the drugs. The value for average teff at 24 h was

37.6611.3 s (p = 0.44 prior to drugs, p,0.0001 after fission).

The distribution of the data with median teff is shown in Fig. 3E.

ER fission and fusion in hippocampal organotypic slices
As the next step towards exploring the function of neuronal ER

fission and fusion we generated transgenic mice expressing the

RedER marker under the Thy1 promoter. Of the three founder

lines tested, we chose to use lines 18 and 27 both of which showed

high expression of the marker in the majority of pyramidal cells of

the CA1. Line 27 showed additional RedER expression in a subset

of CA3 pyramidal cells (Fig. 4A, B). We established hippocampal

organotypic slices from these mice at postnatal day 7. In slices

cultured for at least 10 days the ER of the soma and dendrites

appeared smooth and continuous (Fig. 4C). Continuity of the

dendritic ER lumen was confirmed by FRAP analysis (Fig. 4F and

Video S2). Addition of glutamate or NMDA at 100 mM caused

rapid ER fission that could be detected visually (Fig. 4D) as well as

by FRAP (Fig. 4F and Video S3). Importantly, the same protocol

that was developed to permit ER fusion in primary cultured

neurons (i.e. 100 mM NMDA followed by 25 mM MK-801) had

the same effect on neurons in slices (Fig. 4E, F) (4 out of 4 slices

tested).

Ultrastructure of ER fission
While the optical methods used to assess ER structure

demonstrate a clear reduction in ER lumenal continuity they

cannot be used to determine the actual ultrastructural changes

underlying the optical observations. We therefore examined

ultrathin sections of organotypic slices with electron microscopy

(EM). Untreated slices showed the expected ER structure with

wavy membrane tubules and cisterns of smooth ER (SER) in the

dendrites (Fig. 5A) and large cisterns of rough ER (RER) in the

soma (Fig. 6A). In sections from slices treated with 100 mM

glutamate none of the normal ER structures were observed.

Within dendrites, normal SER morphology was absent. Instead,

vesicles of varying sizes could be seen; often lined up giving the

impression of being the result of a fragmentation event (Fig. 5B). In

the soma the RER membranes were dilated, fewer ribosomes were

attached and the membranes enclosed vesicles rather than the

cisterns normally seen (Fig. 6B). EM analysis also revealed that ER

in the CA3 region of line 18 (where the transgene is not expressed)

was fragmented (not shown) demonstrating that ER fission is not

caused by the presence of RedER in the ER.

Mechanisms mediating glutamate induced ER fission
The fact that NMDA rapidly triggered ER fission led us to

explore the role of the NMDA receptor. Primary cultures were

treated with 25 mM MK-801 for 10 min followed by the addition

of 100 mM glutamate. In this instance no fission was observed

(Fig. 7A–C) although neuronal morphology was altered with

blebbing of dendrites and reduced spine size. In spite of the lack of

visible ER fragmentation, FRAP analysis (Fig. 7D) revealed a

slight but significant increase in average teff from 39.867.5 s

before adding MK-801 and glutamate to 55.1621.8 s (n = 20,

p = 0.001) after 10–60 min of drug treatment. After 24 h 19 out of

20 cells had survived and average teff was reduced to 36.369.5 s,

that was not different from time-point one (p = 0.24) but

significantly lower than after glutamate exposure (p = 0.008).

The distribution of the data with median teff is shown in Fig. 7E.

The fact that no ER fission was seen when the NMDA receptor

was blocked suggested to us that influx of calcium could be

important for triggering ER fission. Indeed, the addition of 5 mM

of the calcium ionophore ionomycin led to ER fission (Fig. 8A, B).

FRAP analysis confirmed reduced protein mobility (Fig. 8C) and

average teff was increased from 39.5611.1 s to 261.76242.1 s

(n = 18, p,0.0001). The distribution of the data with median teff is

shown in Fig. 8D. While such a result is typically interpreted as a

general rise in cytosolic calcium is sufficient to trigger the

phenomenon under study, secondary effects of ionomycin leading

to NMDA receptor activation cannot be excluded. To test this, we

incubated the cells with 25 mM MK-801 for 20 min prior to

adding 5 mM ionomycin. Interestingly, when the NMDA receptor

was blocked, ionomycin treatment did not trigger ER fission

(Fig. 8E, F). FRAP experiments showed that MK-801 completely

blocked the effect of ionomycin (Fig. 8G) with no change in

average teff before and after MK-801+ionomycin: 36.9610.0 s

and 38.3612.1 s respectively (n = 18, p = 0.59). The distribution of

the data with median teff is shown in Fig. 8H.

An increase in cytosolic calcium can also be caused by release of

ER calcium. However, neither type I metabotropic glutamate

receptor activation with 100 mM 3,5-dihydrophenylglycine

(DHPG) nor blockade of the sarco- and endoplasmic reticulum

ATPase (SERCA) with 200 nM thapsigargin caused fission.

NMDA-induced fission was independent of ER calcium levels as

it occurred after thapsigargin (Table 1). Numerous downstream

signaling events are triggered downstream of NMDA receptor

activation. To learn more about the signaling pathways leading to

activation of the hitherto unknown ER fission machinery we used

pharmacological inhibition of the NMDA receptor as well as

several enzymes known to be activated by the NMDA receptor to

see if this affected the fission process. Ifenprodil is a non-

competitive NMDA receptor antagonist but contrary to MK-801

it specifically inhibits activation of NR2B subunit-containing

The ER within the ROI (dashed line) was modeled as consisting of two volumes: V1 and V2. The RedER molecules move within these volumes with rate
constants k1 and k2 respectively. (D and E) Box plot of teff values of the same neurons shown in A and B. Untreated neurons are blue and the same
neurons after (D) 100 mM glutamate or (E) NMDA are orange. Note the difference in scale between D and E. The line in the box is the median and the
box represents the 25–75 percentiles. Whiskers extend to the extreme values as long as they are within a range of 1.56box length. Values outside
this range are plotted as outliers. avg.: average.
doi:10.1371/journal.pone.0005250.g002
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NMDA receptors. 10 mM ifenprodil added 10 min before NMDA

did not inhibit ER fission (Table 1). 10 min of 20 mM

staurosporine, a broad-spectrum kinase inhibitor was unable to

block NMDA-induced ER fission (Table 1). As expected from the

staurosporine result, specific inhibition of calcium and calmodulin

regulated kinase II (CamKII) by 10 mM KN-93 had no effect on

NMDA-induced ER fission (Table 1).

Discussion

Induction of neuronal ER fission
Elevated cytosolic calcium in non-neuronal cells was previously

found to cause ER fission [21,22]. Glutamate and NMDA trigger

influx of extracellular calcium directly via the NMDA receptor and

indirectly by activation of voltage-gated calcium channels. Release of

ER calcium will occur by activation of metabotropic glutamate

receptors and by calcium induced calcium release [1,7]. Our

experiments show that activation of the NMDA receptor is necessary

and sufficient for inducing neuronal ER fission in dissociated and

organotypic culture. First, glutamate-induced ER fission was

inhibited by the NMDA receptor antagonist MK-801. Second,

NMDA alone rapidly triggered ER fission. Third, we found that the

calcium ionophore ionomycin caused ER fission but that, even in

this case, ER fission required NMDA receptor activation. Finally,

release of ER calcium triggered by activation of type I mGluRs or

store depletion by thapsigargin did not lead to ER fission.

It should be noted that even if NMDA receptor activation was

needed for obtaining optically defined ER fragments, glutamate

Figure 3. Reversibility of ER fission. (A) Representative image of a dendrite from a neuron with normal dendritic and ER structure. (B) 100 mM of
NMDA caused rapid ER fission without any effect on gross dendritic structure. (C) Antagonizing NMDA receptor activation by 25 mM MK-801 allowed
for ER fusion and recovery of ER structure by 24 h. (D) Normalized average FRAP signal over time in untreated neurons (blue), the same neurons after
NMDA for an average of 20 min (orange) (note that MK-801 was added after 2–5 min) and after MK-801 for 24 h (purple). Photobleaching was
performed between the arrows. Time = 0 was set to when photobleaching ends and fluorescence starts to recover. Error bars are SEM. n = 20. (E) Box
plot of teff values in untreated neurons (blue) and the same neurons after NMDA (orange) and MK-801 (purple). The line in the box is the median and
the box represents the 25–75 percentiles. Whiskers extend to the extreme values as long as they are within a range of 1.56box length. Scale bar in all
panels: 10 mm. avg.: average.
doi:10.1371/journal.pone.0005250.g003

Reversible Neuronal ER Fission

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5250



Figure 4. Reversible ER fission in organotypic slices. (A) Hippocampal expression of RedER in Thy1-RedER transgenic mouse line 18. (B) RedER
expression in line 27. The expression pattern of the transgene differs slightly in that line 18 has no expression in pyramidal cells of CA3 but does
express at high level in the hilus. (C) Representative images of dendritic ER structure in a CA3 pyramidal cell from line 27 with continuous ER prior to
any treatment. (D) 100 mM NMDA triggered rapid ER fission. (E) 25 mM MK-801 led to fusion within 25 min. (F) Normalized average FRAP signal over
time in untreated neurons (blue), the same neurons after NMDA for 10 min (orange) (note that MK-801 was added after 5 min) and after MK-801
(purple). Photobleaching was performed between the arrows. Time = 0 was set to when photobleaching ends and fluorescence starts to recover.
Error bars are SEM. n = 4 neurons in 4 slices. Scale bars: 500 mm in A and B, 10 mm in C-E. avg.: average.
doi:10.1371/journal.pone.0005250.g004
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treatment in the presence of the NMDA receptor antagonist MK-

801 did cause a small but significant increase in teff. Taken

together with the observation that glutamate caused a greater

increase in teff than NMDA; this may indicate that glutamate has

some NMDA receptor-independent effect on ER structure.

Nevertheless, we cannot exclude that the increase in teff occurring

after MK-801+glutamate treatment is a reflection of the rather

dramatic but transient changes in neuronal morphology. Further-

more, the fact that teff increases more after glutamate than after

NMDA could still be an NMDA receptor-mediated effect as

glutamate can be assumed to give stronger NMDA receptor

activation than NMDA alone (glycine was not co-applied with

NMDA).

The observed requirement for NMDA receptor activation to

trigger ER fission raises the possibility that specific signaling

pathways initiated at the NMDA receptor, rather than a general

requirement for high cytosolic calcium, are important. Contrary to

MK-801, ifenprodil (another non-competitive NMDA receptor

Figure 5. EM analysis of SER in dendrites. (A) Three representative images of dendrites from CA1 and CA3 in organotypic slices. ER profiles are
indicated by arrows. (B) The ultrastructure after 100 mM glutamate for 5 min before fixing. No normal SER profiles were seen; instead the dendritic
cytosol contains numerous dilated vesicles indicated by arrows. Boxed areas in the low magnification panel are enlarged below. Scale bar in all panels
500 nm.
doi:10.1371/journal.pone.0005250.g005
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antagonist) did not block NMDA induced ER fragmentation.

Ifenprodil specifically inhibits NMDA receptors containing NR2B

subunits [31]. Hence, activation of NR2A containing NMDA

receptors is sufficient for induction of fission. Much of the signaling

downstream of the NMDA receptor is mediated by kinases.

However, staurosporine, a broad spectrum kinase inhibitor that

blocks serine-threonine as well as tyrosine kinases [32] or the more

specific CamKII inhibitor KN-93, did not affect NMDA-induced

ER fission. Non-kinase calcium-induced signaling events down-

stream of the NMDA receptor are known. For instance, the small

GTPases Ras and Rac can be activated by calcium-dependent

guanine-nucleotide exchange factors that localize to spines

[33,34]. Alternatively, calcium sensitive parts of the hitherto

unknown fission machinery may be localized close to NMDA

receptors to induce fragmentation.

Relevance of ER fission
Reorganization of the neuronal ER has been described

previously but was not characterized in detail [9,35]. Our results

show distinct ER fission, that fragmented ER can fuse and we

demonstrate that ER fission is not a point-of-no-return towards

cell death. Hence, the poorly known mechanisms of ER fission and

fusion are of direct relevance for understanding harmful processes

and the development of neuroprotective therapeutic strategies.

Indeed, the possibility of neuronal ER fission followed by fusion

and cell survival has been suggested to occur after cerebral

ischemia followed by reperfusion [36,37]. Interestingly, the same

conditions that cause ER fragmentation have been reported to

induce stalling and fission of neuronal mitochondria. This process

is known in greater detail than ER fission and mutations in several

genes of the mitochondrial fission and fusion machinery are known

to cause disease [38,39].

While we can safely assume that regaining continuity of the ER

is an absolute requirement for cellular survival, an important

question remains: Is ER fission a harmful consequence of a

harmful stimulus and hence the cell pays a price for ER fusion or is

ER fission a protective response that helps the cell overcome a

potentially harmful stimulus? The latter is supported by the fact

that ER fission has been described in other cell types as a

physiological phenomenon [19,20] and we now report that

neuronal ER fission occurs in the absence of morphological

indicators of cell damage such as dendritic blebbing or loss of

spines. What could then be the advantage for a cell to transiently

fragment its ER? We hypothesize that the loss of continuity can be

seen as creating bulkheads within the ER. Given that neuronal ER

calcium can flow freely [40,41], the partitioning caused by fission

may serve to limit the release of calcium from the ER lumen under

conditions when e.g. part of a neuron’s dendritic arbor lies within

a region of the brain parenchyma with excess levels of extracellular

glutamate. It makes sense to limit release of ER calcium as either

its contribution to elevated cytosolic calcium or the depletion of

the ER store can contribute to neuronal damage [42–44]. ER

fission may also serve to maintain damaged proteins within an

area exposed to protein unfolding conditions. Potentially this

Figure 6. EM analysis of RER in neuronal somata. (A) Three representative images of CA1 and CA3 somata with normal ultrastructure. RER
membranes studded with ribosomes are indicated with arrows. (B) The ultrastructure after 100 mM glutamate for 5 min. No normal RER profiles can
be seen; instead the cytosol contains numerous dilated vesicles or tubules/cisterns that appear to have fewer ribosomes attached. Scale bar in all
panels 500 nm.
doi:10.1371/journal.pone.0005250.g006
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sequestration of damaged proteins serves to prevent unnecessary

induction of the unfolded protein response, which will lead to

protein synthesis inhibition [2,6].

The observation in non-neuronal cells that reversible ER fission

is a structural correlate of physiological events on the cellular level

[19,20] suggests that a similar function in neurons cannot be

excluded. Based on current knowledge, transient ER fission can be

expected to alter the functional properties of the ER primarily by

limiting the movement of ER restricted molecules and ions.

Assuming that ER calcium channels function in the fragmented

state, the pool of releasable calcium is dramatically altered when

ER calcium tunneling [13] is aborted. Moreover, ER structural

dynamics may have implications on local protein synthesis in

dendrites, a process that has been implicated in synaptic plasticity

[45]. In case ER vesicles are capable of supporting protein

processing, the fragmented state will support highly localized and

stationary protein synthesis, processing and export from the ER.

The ultrastructure of ER fission
By light microscopic visual examination it appears that NMDA

receptor stimulation causes the ER to fragment into isolated

vesicles. FRAP analyses confirmed a reduction in ER protein

mobility. Reduced mobility most likely also applies to calcium ions

although presumably on a shorter time scale [40,46]. Nevertheless,

in only a few cases could we observe a near complete loss of FRAP

(i.e. keff close to zero) when we bleached a dendrite with

fragmented ER. Hence, from this data it cannot be excluded that

rather than exclusively forming isolated fragments the ER may

Figure 7. Inhibition of NMDA receptors is sufficient to block glutamate-induced ER fission. (A) Representative image of a dendrite from a
neuron with normal dendritic and ER structure. (B) Treatment with 25 mM MK-801 for 10 min prior to 100 mM glutamate prevented ER fission
although an effect on gross dendritic structure was seen (reduction in spine length). (C) After 24 h, 19 out of 20 cells had survived and resumed
normal morphology. (D) Normalized average FRAP signal over time in untreated neurons (blue), the same neurons after MK-801 and glutamate for an
average of 35 min (orange) and after 24 h (purple). Photobleaching was performed between the arrows. Time = 0 was set to when photobleaching
ends and fluorescence starts to recover. Error bars are SEM. (E) Box plot of teff values in untreated neurons (blue) and the same neurons after
glutamate (orange). The line in the box is the median and the box represents the 25–75 percentiles. Whiskers extend to the extreme values as long as
they are within a range of 1.56box length. One neuron was outside this range and plotted as an outlier. Scale bars in all panels: 10 mm. avg.: average.
doi:10.1371/journal.pone.0005250.g007
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additionally form vesicles connected by thin tubules to resemble

beads on a string. Data from EM studies of ER fission in other cell

types have not provided conclusive evidence to rule out either

complete vesiculation or beading of the ER [21,47].

From our EM analysis of ultrastructural changes caused by

short-term NMDA and glutamate treatment it can be concluded

that somatic RER may indeed maintain connections between ER

vesicles. In dendrites we found no evidence for connected ER

fragments. However, one must bear in mind that on single sections

thin connecting tubules may be missed and hence their existence

cannot be ruled out. Thus, the physical basis for the low but

existing FRAP after NMDA receptor activation still needs to be

elucidated. We do not believe that it was caused by movement of

large vesicles into the ROI; as such an event should easily be

detected in our time-lapse images. Alternatively, some of the low

level FRAP that we observed after fission could be caused by

RedER molecules outside the ER proper, as the KDEL retention

sequence allows trafficking out of the ER followed by cis-Golgi

sorting back to the ER [48]. Additionally, ER vesicles may

undergo cycles of fusion-fission and thus permit slow exchange of

bleached molecules. Indeed, it can be hypothesized that, what is

observed as fragmentation, is the outcome of a shift in the

balance between constantly on-going fission and fusion events

(Fig. 9).

Supporting Information

Figure S1 Gradual distal to proximal ER fission. In neurons

where ER fission did not occur instantaneously fragmentation

always occurred gradually from the most distal parts of dendrites

towards the soma. The image shows a neuron that was treated

with 20 mM glutamate (5 min) and subsequently 25 mM MK801

to attenuate the stimulus. Scale bar: 10 mm.

Found at: doi:10.1371/journal.pone.0005250.s001 (1.91 MB TIF)

Figure S2 Example of FRAP ROI. For all FRAP recordings a

rectangular region of interest (ROI) was placed over a dendrite

and a square ROI was placed immediately outside the dendrite to

collect the background signal. The small boxes show the signal

from the FRAP ROI. Scale bar: 10 mm (large image).

Found at: doi:10.1371/journal.pone.0005250.s002 (2.20 MB TIF)

Figure S3 Curve fitting to data points. The FRAP recordings

from the 19 neurons in the 100 mM glutamate experiment are

shown. The upper panels are recordings prior to glutamate

exposure and the lower panels are after 5–60 min of glutamate.

The curve fit is in red.

Found at: doi:10.1371/journal.pone.0005250.s003 (1.04 MB TIF)

Video S1 Reversibility of ER fission. Time-lapse recording of a

neuron transfected to express RedER exposed to 20 mM

glutamate at t = 5 min resulting in rapid ER fission. 25 mM

MK-801 was added at t = 11 min and within 20 min the ER

vesicles fused. Pixel dimensions: 1516303, frame rate: 25 fps,

images collected at 1 Hz.

Found at: doi:10.1371/journal.pone.0005250.s004 (8.31 MB

MOV)

Video S2 FRAP experiment on untreated CA1 neuron. Time-

lapse recording of a neuron in an organotypic slice expressing

RedER under the Thy1 promoter (line 18). Bleaching was

performed after the 5th frame (t = 24 s) in the ROI marked with

a white rectangle. After bleaching fluorescence recovered rapidly

indicating that the ER was continuous. This neuron was not

included in the analysis. Pixel dimensions: 3666341, frame rate:

8 fps, images collected at 0.2 Hz.

Found at: doi:10.1371/journal.pone.0005250.s005 (6.17 MB

MOV)

Video S3 FRAP experiment on glutamate treated CA1 neuron.

Time-lapse recording of a neuron in an organotypic slice

Table 1. Pharmacological manipulation of cytosolic calcium and calcium signaling.

na drug 1 effect 1 (nb) drug 2 effect 2 (nb)

16 ifenprodil 10 mM/10 min no ER fission (16) NMDA 100 mM ER fission (16)

20 thapsigargin 0.2 mM/60 min no ER fission (20) - -

6 thapsigargin 0.2 mM/10 min no ER fission (6) NMDA 100 mM ER fission (6)

10 KN-93 10 mM/10 min no ER fission (10) NMDA 100 mM ER fission (10)

20 staurosporine 20 mM/20 min no ER fission (20) NMDA 100 mM ER fission (20)

20 DHPG 100 mM/60 min no ER fission (20) - -

Effect on ER structure.
aTotal number of neurons tested.
bNumber of neurons displaying the indicated response.
doi:10.1371/journal.pone.0005250.t001

Figure 8. Ionomycin triggers NMDA receptor-mediated ER fission. (A) Representative image of a dendrite from a neuron with normal
dendritic and ER structure. (B) Treatment with 5 mM ionomycin for 10 min caused ER fission along with a pronounced effect on gross dendritic
structure (dendritic blebbing). (C) Normalized average FRAP signal over time in untreated neurons (blue) and the same neurons after ionomycin for
an average of 35 min (orange). Photobleaching was performed between the arrows. Time = 0 was set to when photobleaching ends and fluorescence
starts to recover. Error bars are SEM. n = 18. (D) Box plot of teff values in untreated neurons (blue) and the same neurons after ionomycin (orange). The
line in the box is the median and the box represents the 25–75 percentiles. Whiskers extend to the extreme values as long as they are within a range
of 1.56box length. (E) Representative image of a dendrite from a neuron with normal dendritic and ER structure. (F) Treatment with 25 mM MK-801
for 20 min prior to 5 mM ionomycin prevented ER fission and only caused minor effects on gross dendritic structure. (G) Normalized average FRAP
signal over time in untreated neurons (blue) and the same neurons after MK-801 and ionomycin for an average of 50 min (orange). Photobleaching
was performed between the arrows. Time = 0 was set to when photobleaching ends and fluorescence starts to recover. Error bars are SEM. n = 18. (H)
Box plot of teff values in untreated neurons (blue) and the same neurons after ionomycin (orange). The line in the box is the median and the box
represents the 25–75 percentiles. Whiskers extend to the extreme values as long as they are within a range of 1.56 box length. One neuron was
outside this range and plotted as an outlier. Scale bar in all panels: 10 mm. avg.: average.
doi:10.1371/journal.pone.0005250.g008
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expressing RedER under the Thy1 promoter (line 18). 100 mM

glutamate was added 5 min prior to recording. Bleaching was

performed after the 5th frame (t = 24 s) in the ROI marked with a

white rectangle and a clear reduction in FRAP was noted. Pixel

dimensions: 3656348, frame rate: 8 fps, images collected at

0.2 Hz.

Found at: doi:10.1371/journal.pone.0005250.s006 (7.36 MB

MOV)
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