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Preface

This volume contains the extended abstracts from the presentations at the 23rd
Nordic Seminar on Computational Mechanics held at KTH — The Royal Institute
of Technology — in Stockholm, Sweden, 21–22 October 2010.

The Nordic Seminars on Computational Mechanics (‘NSCM’) are annually organized
by the Nordic Association for Computational Mechanics (the NoACM). The semi-
nars have circulated in the Nordic countries, and offered a meeting place between
academics and practitioners from the participating countries. The atmosphere has
always been a friendly and creative one. This year saw contributions and delegates
from a more international community than ever before.

This year’s seminar contained four invited lectures and 85 contributed papers,
whereof four keynote lectures, divided into two plenary sessions and twelve pa-
rallel sessions. In the present volume, the invited lectures are placed first, followed
by keynote and contributed papers in the order of their placement in the seminar
schedule.

The editors of this volume thank all invited and keynote lecturers together with
all contributors for their efforts in producing good presentations and abstracts. We
thank Ms. Nina Bauer at KTH Mechanics for substantial help in the arrangements,
and CIMNE, Barcelona (and, in particular, Mr. Alessio Bazzanella) for administra-
tive support, but also ELU Konsult AB and KTH for financial support.

Stockholm in October 2010

Anders Eriksson and Gunnar Tibert
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Summary. NURBS (Non Uniform Rational B-Spline) curves and surfaces have been used 
extensively in Computer Aided Design (CAD) in the last two decades but not in Finite 
Element Analysis (FEA). Isogeometric analysis [6], introduced in 2005 by Hughes [9] 
proposes to replace traditional Finite Elements shape functions with volumetric NURBS. 
Although mathematically this seems to be a minor adjustment, it will drastically change the 
model life-cycle in FEA.  

 
 
1 INTRODUCTION 

While the theoretical basis of Finite Element Analysis was already established around 1970 
[10], the basis of current CAD-technology was only developed during the 1970s and the early 
1980s [1,2,5], with wide deployment in industry in the 1990s. From the start FEA and CAD 
were developed in separate communities, consequently there are a lot of differences between 
the technologies. 

As integration and interoperability of systems have become more and more important in 
industry, the discrepancies between CAD and FEA have become evident:  

 Why is it so difficult to generate a Finite Element grid from CAD-models? 
 Why does not FEA keep the high precision of CAD-models for its element geometry 

description? 
 Why is it so difficult to use feedback from FEA within CAD-systems to adjust the 

CAD-model? 
In [5,6,9] isogeometric analysis is introduced proposing to replace traditional Finite 

Elements shape functions by trivariate tensor product NURBS. The obvious rationale for 
using NURBS representations rather than Finite Element shape functions is the possibility to 
represent exactly all elementary shapes from CAD (plane, sphere, cylinder, cone and torus) as 
well the NURBS surfaces of CAD.  

Higher order finite elements have until now had limited use within FEA as they often have 
not performed better than lower order elements (in some cases the observed performance is 
even worse), for industry relevant problems (for such cases the convergence rate is usually 
limited by the regularity of the problem, not the polynomial order of the finite elements). The 
commonly prevailing line of thought that higher order elements do not provide improved 
solutions was challenged in [4], where it is shown for vibration analysis that higher order 
isogeometric NURBS perform much better than traditional Finite Elements when the 
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polynomial degree of the element is increased.  
If one wants to make practical use of the proclaimed superiority of isogeometric analysis 

one should start to prepare the introduction of isogeometric analysis. 
 

2 FROM MODEL CONVERSION TO INTEROPERABLITY OF CAD AND 
ANALYSIS 

2.1 Isogeometric model quality 
Figure 1 depicts the current state-of-the-art one way information flow from CAD to 

analysis, while Figure 2 illustrates the potential for interoperability between CAD and 
analysis introduced by using NURBS elements in analysis. However, while CAD represents 
volumes as a patchwork of 2-variate surfaces describing the outer and inner hulls of the 
objects, the isogeometric NURBS model represents the objects by structures of 3-variate 
volumes that match exactly along common boundaries. Adjacent surfaces in the CAD 
patchwork of surfaces are not required to match exactly; they are only required to meet within 

Fig.1. The AIM@SHAPE scenario related to the 
ontology for product design. This builds on 
deducting a simulation model (the surface mesh 
to the right at the top) from the CAD-model by 
approximating the CAD-surfaces by low degree 
surface pieces that match  the representation of 
the volumetric Finite Elements to be generated 
later in the meshing process. 
 

Solving

Simulation Post 
Processing

Shape
Simplification

Meshing

Definition of
Boundary
conditions

Fig. 2. A revised scenario adapted to the 
potential of isogeometric analysis. It should be 
noted that the Shape Simplification can now 
take place much earlier in the process, as the 
same shape representation is used throughout 
the processes, however, with gradually 
improving resolution with regard to the 
analysis to be performed. Note that an 
additional arrow has been added for updating 
the isogeometric CAD-model directly from 
the simulation results.  
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tight tolerances. Thus the way from traditional CAD to an isogeometric NURBS model is not 
straight forward.  

2.2 Scenarios for isogeometric analysis 
When the AIM@SHAPE ontologies [3] were developed, scenarios and check lists of 

questions played a central role for validating the suitability of the scenarios. To follow this 
approach also for isogeometric analysis, scenarios have to be developed to support the 
revision of information processes triggered by isogeometric analysis. These scenarios should 
include aspects of: 

 Creation of the analysis model from a CAD-model by successively building a 
phantom block structure on top of the CAD-model to assist its conversion to a 
volumetric rational spline model. 

 Direct creation of the rational spline volumes of the analysis model through a broad 
range of volumetric shape operators such as ruling, sweeping, lofting, offsetting, 
intersection, filleting, rounding, etc.  

 Simplification of the analysis model by removing shape features with little 
influence on the analysis result. 

 Refinement of the analysis model to introduce the necessary additional degrees of 
freedom to produce a result of the required quality. This process is closely related 
to the traditional gridding. However, in contrast to traditional gridding the 
refinement does not change the physical shape of the model. The Locally Refined 
Splines will be an important spline representation to ensure the proper localization 
of the degrees of freedom added by the refinement. 

 Visualization of analysis results. Isogeometric analysis employs rational splines for 
representing the result. Consequently the visualization of the results poses new 
challenges and possibilities. The results will have the form of scalar and vector 
fields represented by higher polynomial degrees than in traditional Finite Element 
Analysis. The calculated solution can consequently better reflect the actual physical 
behavior, and has the potential of modeling singularities and features that 
traditional Finite Element Analysis is unable to represent. Consequently the 
traditional visualization tools will not be well suited when visualizing the results of 
isogeometric analysis. 

 Updating the isogeometric model by simulation results. Due to the discrepancies of 
CAD and FEM meshes it is very cumbersome to combine CAD-models, FEM and 
optimization. As the geometry representation and the simulation results now use the 
same spline space, simulation results can be directly applied to modify the 
isogeometric model and thus allow for advanced optimization processes. 

 For many analysis problems there exist invariants with respect to the properties of 
the FEM-model. One such test, known as the patch test, ensures that calculated 
displacements can be directly added to the grid and provide a correct displaced 
grid. The scenarios must include sufficient analysis focused invariants to ensure the 
applicability to the scenarios. 

 The scenarios should also include the potential of emerging spline technologies 
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such as T-Spline [10] and Locally Refined Splines (LR-Splines) [8]. While tensor 
product NURBS only allow global refinement of the spline space, T-splines and 
LR-Splines allow the introduction of local degrees of freedom where required.  
 

3  CONCLUSION 
Isogeometric analysis has the potential of drastically increasing the quality of FEA. Many 

challenges, however, remain to be solved, both with respect to creating analysis-suitable 
isogeometric models, local refinement, and to deploy the technology in industrial information 
processes.  
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MISCONCEPTIONS IN FRACTURE TOUGHNESS DEFINITIONS
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Summary. The term fracture toughness can contain several misconceptions. Some of them
are addressed here.

1 INTRODUCTION
Fracture mechanics is a comparatively new research field combining mechanical

engineering and material science. The importance of fracture mechanics is constantly
increasing, due to demand of increased structural efficiency, safety and life extension.
Approximately sixty years ago, George Irwin and his co-workers laid the foundation for a
one-parameter, continuum mechanics description of the fracture criteria. This description is to
a large extent still in use today. Most structural integrity assessment procedures are based on
this original description. The original continuum mechanics description assumes that there
exists a single lower bound, geometry and specimen size independent fracture toughness
value, when the crack experiences a plane-strain stress state. Deviations from pure plane-
strain state, will then be seen as an increase in the structural crack resistance. This is the view
adopted in classical fracture mechanical text books, still in use today. Improved understanding
of material behavior has revealed that the original continuum mechanics description of the
fracture criteria is insufficient and may lead to major misconceptions regarding the actual
failure process. Examples of such misconceptions are the specimen size requirement,
expected scatter in results, effect of stable crack propagation prior to failure, effect of time
dependent fracture processes, quantification of the loss of constraint and specimen geometry
effects. The improved material understanding has also opened a possibility to correct these
misconceptions, which presently form the major obstacle to the widened use of fracture
mechanics in design, material development, life prediction and safety assessment.

The material parameter required for the assessment of the criticality of real or postulated
flaws in structures is the fracture toughness. Unfortunately, due to historical reasons and a
strongly diversified research and standardization environment has led to a myriad of different
fracture toughness definitions (Figure 1), some of which are directly erroneous. This
multitude of parameters makes it difficult for the user to comprehend the significance of
different definitions. Sometimes the chosen parameter is totally irrelevant with respect to the
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desired assessment. This may lead to incorrect decisions regarding the safety or usability of
the structure being assessed, resulting in either unwanted failure or unneeded repair,
replacement or shut-down. There is clearly a need for a guide explaining the meaning of the
different fracture toughness definitions. Also, it is important to obtain information regarding
the relations between different fracture toughness definitions. Unlike mechanical properties,
there is no typical standard fracture toughness for a specific material. Therefore, material data
bases can only provide qualitative information and are not recommended for structural
integrity assessment.
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Figure 1: The multitude of fracture toughness definitions makes it difficult for the user to select the proper
definition for his/her purposes.

Besides the actual fracture toughness definition, the assessment is also affected by the
reliability of the test results themselves (Figure 2). Testing standards contain requirements on
the test equipment and specimen dimensions. Some standards contain even indirect quality
assurance criterions related to a specific test procedure. Generally applicable simple quality
assurance tests related to test performance have however not been proposed until now. Also,
the standards lack guidance on the test planning with regard e.g. to required displacements or
crack mouth openings as a function of specimen size and expected fracture toughness level.
Sometimes it is also required to apply test specimen dimensions or measuring locations, not
covered by the testing standards. In such cases, guidance is needed for the analysis of the test
results, to obtain comparable accuracy as with standard dimensions.

Figure 2: Uncertainties related to testing may have pronounced effects on the test result.
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This presentation intends to shed some light upon the above issues, focusing on providing
optimum estimates of fracture toughness values applicable in structural integrity assessment,
either advising on the test procedure and suitable parameter or giving relations between other
possibly available parameters.
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1 INTRODUCTION 

Scania is a leading manufacturer of heavy-duty trucks, buses, coaches and engines for 
marine and industrial applications. Since its birth in 1891, Scania has built and delivered more 
than 1,400,000 trucks and buses. Scania operates in around a hundred countries and employs 
34,000 people of which 2,400 work in research and development, mainly in Sweden. 

 
Scania presently produces a wide range of engines, reaching in power from 230 hp diesel 

engines for bus applications, to diesel engines for marine applications in excess of 1000 hp. 
Some five-hundred engineers and technicians work full time in the research and development 
of present and future engines. Ever-increasing peak cylinder pressures to address demands on 
fuel efficiency, as well as legally imposed limits on toxic emissions, pose great challenges to 
this development. From a durability point of view, engine components are subjected to 
vibrations and / or thermal cycling, both of which can cause fatigue. Some components are 
verified using traditional S/N testing while others require a “complete” engine environment 
due to complex displacement / temperature loading conditions. However, early on in the 
design phase, components may not even exist for testing purposes. Numerous concepts are 
usually evaluated before an actual (often expensive) first prototype is manufactured. 
Computational mechanics plays an important role in the design process, and is a key to saving 
time and effort. “Virtual test rigs” can aid in discarding bad designs early on, and overall 
make for rapid convergence of the design process. This lecture will describe two recent 
fatigue computations that were performed. The first case concerns the high cycle fatigue 
analysis of exhaust collectors, and the second case concerns the thermo-mechanical fatigue 
analysis of a cylinder head. Both results are presented in view of actual engine test results. 
The former case is described, in brief, below. 

2  HIGH CYCLE FATIGUE OF AN EXHAUST COLLECTOR 

The exhaust collectors, responsible for bringing exhaust fumes from the cylinder heads to 
the turbo, are mounted on the side of the engine (Figure 1). During normal operation, the 
engine firing causes vibrations that may lead to high cycle fatigue of the exhaust collectors. 
The standard work flow for this type of problem is as follows (Figure 2). The fundamental 
load associated with the firing is the cylinder pressure curve which gives the cylinder pressure 
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at a given crank angle. It is usually obtained through measurements. The curve is used as a 
driving force in full engine simulations, using the MBD code Excite. 

 

 

Figure 1 Exhaust collectors of the V8 engine (left bank) 

 
The size of the (coarsely meshed) FE model of the engine is in the order 3 Mdofs, but 

static and dynamic reductions are employed to reduce the model to some 4 kdofs for use in 
Excite. The results of the Excite simulation can be expanded to the original FE-model. The 
results are used to calculate, for example, emitted engine noise, as well as to provide 
excitation data for strength analyses. In the case of the analysis of an exhaust collector, 
displacement data (in the frequency domain) are extracted at its attachments to the cylinder 
heads and turbo. The displacement data, together with a detailed mesh for the exhaust 
collector are then used to calculate stresses in a frequency response analysis, typically 
performed using the FE code Nastran. The calculated stresses are analyzed using the fatigue 
post-processor FEMFAT, whereby a safety factor against fatigue is calculated using known 
fatigue data for the material. Figure 3 shows a predicted critical region, which also failed 
during engine testing. 

 

Figure 2 Work flow of a high cycle fatigue analysis 

 
Figure 3 Prediction of region of low fatigue strength (left) and fatigue failure during engine run (right) 
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Summary. We present adaptive particle methods for the simulations of fluid flow at the nano-
and macroscale. The nanoscale phenomena are studied using atomistic simulations with focus
on thermophoretic motion of nanodroplets confined inside carbon nanotubes. For simulations
at the macroscale we present a novel adaptive particle vortex method.

1 INTRODUCTION

Particle methods is the generic title of a series of methods based on a Lagrangian formu-
lation of discrete and continuous systems in science and engineering1,2. The methods enable
simulations of fluid flow at all length scales3: from ab-initio quantum mechanics, Monte Carlo
and Molecular Dynamics simulations of nanofluidic systems4, to Dissipative Particle Dynamics,
and Discrete Element Method simulations of discrete Brownian systems, to Smooth Particle Hy-
drodynamics5,6, Reproducing Kernel Methods7, Moving Least Squares8, and Discrete Vortex
Methods9,2 for problems in continuum fluid dynamics — and beyond, to simulations of planetary
systems in cosmology10,11.

The methods share common strengths such as their inherent adaptivity, as the computa-
tional elements “go with the flow”, and common weaknesses such as uniform particle size,
inaccurate treatment of diffential operators, and complex boundary conditions and kinematics.
The diffential operators are treated differently in the different particle methods. Thus, they are
computed by exact diffentiation (if available)12 , by stochastic models13, through diffentiation of
the smoothing kernels14, or by the method of Particle Strength Exchange15,16. Boundary con-
ditions are described by various techniques such as the method of images, boundary elements,
immersed boundary methods or penalization techniques17,18. The N -body problems associated
with the kinematics of the N particles may be solved using Cell and Verlet lists for the near
neighbour interactions19, and tree data structures and fast multipole methods20, or by hybrid
particle-mesh techniques for the far-field interactions21,22,23.

In continuum fluid dynamics the convergence of the methods has partly been ensured by a
renormalization of the particle interaction24,25 or by a reinitialization of the particles26. While

1
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generally applicable, these techniques are often limited to specfic particle methods.
For fluid flow at the nanoscale, molecular dynamics simulations allow us to study the indi-

vidual motion of the molecules at the solid surface and hence probe the validity of macroscale
models e.g., the fundamental, but empirically founded no-slip boundary condition. Moreover, it
allows us to study driving mechanisms for fluid flow at the nanoscale, where surface forces play
a dominating role. One mechanism is thermophoresis27,28,29 which we will discuss in detail at
the meeting. Fig. 1 illustrates a water nanodroplets confined inside a carbon nanotube. Motion
is imparted onto the droplet by imposing a thermal gradient onto the carbon nanotube30,31.

Figure 1: Flow of water in carbon nanotubes is studied using molecular dynamics simulations.

At the macroscale we study adaptive particle methods using particles of different resolution
cf. Fig. 2. The adaptivity is based on the linearity of the Poisson equation governing the flow
velocity and the properties of Fourier transforms. The second part of the talk will discuss this
algorithm in detail.

Figure 2: Schematic of the local refinement using patches in two-dimensional particle Vortex methods.
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Summary. We look at some succesfull examples of shape optimisation using isogeometric
analysis. We also addresses some problems which we encountered.

1 Introduction

In isogeometric analysis the physical domain Ω ⊆ R2 is parametrised by a map x : [0, 1]2 → Ω.
The map x, as well as all physical fields, are given in terms of B-splines or NURBS,

x(u, v) =
m∑

i=1

n∑
j=1

ci,jMi(u)Nj(v), (1)

where ci,j are the control points. When u or v becomes 0 or 1 we obtain the four boundary
curves x1, . . . ,x4. The shape of Ω is determined by the boundary so shape optimisation is done
by adjusting the four boundary curves or rather the boundary control points c0,j , cm,j , ci,0, ci,n.
How the inner control points are determined is addressed in Section 4.

2 Optimisation of the frequencies of a drum

In the first example we consider the design of a drum. That is, given N required frequencies
λ̂i, i = 1, . . . , N , we want to design a vibrating membrane such that the lower eigenfrequences
are exactly as required. Mathematically we specify the lower eigenvalues of the Laplace operator.
Not even the full spectrum of the Laplace operator determines the domain so we minimise the
length of the perimeter and treat the specified eigenvalues as constraints, see [8] and references
therein. If λ1 ≤ λ2 ≤ . . . are the eigenvalues of the Laplace operator 4, then we consider the
following optimisation problem,

minimise
4∑

i=1

∫ 1

0

∣∣∣∣dxi

dt

∣∣∣∣ dt, such that
λi = λ̂i, i = 1, . . . , N,
4fi = λi fi, i = 1, . . . , N.

(2)

In the specific example shown in Figure 1 we want the first four frequencies or eigenvalues to be
in the harmonic proportion 2 : 3 : 3 : 4. The problem with the double eigenvalue is solved by
replacing (2) for the case i = 2, 3 with λ2 + λ3 = λ̂2 + λ̂2 and λ2 λ3 = λ̂2 λ̂2.

1
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boundary control point
corner control point
inner control point

Figure 1: Minimising the perimeter of a harmonic drum. After 50 iterations the parametrisation became
nearly singular and if we continued it started to fold over in the indicated area. After improving the
parametrisation by using the Winslow functional the optimisation converged after another 16 iterations.

One problem we encountered during the optimisation was that the map x became singular,
i.e., it was no longer a parametrisation. So there is the need to have an reliable method to
determine the inner control points, see Section 4.

3 Optimisation of a pipe bend

In the second example we look at a 2D Stokes flow problem where a pipe bend has to be
designed such that the internal energy loss is minimised under constraints on the area of the
pipe bend, see [9]. If (u1, u2) is the velocity of the fluid the we have the following problem,

minimise
∫

Ω
(‖∇u1‖+ ‖∇u2‖) dx dy such that area(Ω) ≤ A (3)

The optimised design, see Figure 2, is in agreement with the result obtained by topology op-
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Figure 2: Optimisation of a pipe bend. After 25 iterations the geometry is determined. During the
remaining iterations the optimisation only changes the parametrisation, making it worse.

timisation, c.f., [3]. We see that the design is obtained after 25 iterations. But, the optimiser
continues its work, not changing the design but clustering the control points and thereby creating
a poorer parametrisation. This introduces numerical errors that makes the objective function
smaller. It is possible because the design contains a straight line and the control points can
move freely on this line without changing the geometry. It is a well known problem in shape
optimisation and has previously been dealt with by filtering techniques, extra contributions to
the objective function, or extra constraints such as a minimum distance between control points,
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see [1]. The latter will unfortunately also prevents the sharp corners at the inlet and outlet that
are part of the design. Another solution is to detect and remove superfluous control points, in
the present case eight on the inside and six on the outside of the bend.

4 Parametrisation

We now consider the parametrisation problem. That is, given a parametrisation y : ∂[0, 1]2 →
∂Ω of the boundary of a domain Ω extend it to a parametrisation x : [0, 1]2 → Ω of the whole
domain. Or, in terms of the control points given boundary control points determine the inner
control points, see Figure 3. The simplest way of obtaining a map x is by considering the control

−→x

Figure 3: The parametrisation problem: Given the (black) boundary control points, determine the (blue)
inner control points such that the map x is a parametrisation.

net as a set of springs with the same spring constant. Then every inner control points is the
average of its four neighbours. This is a linear system of equations which are easily solved. By
adjusting the spring constants one can make a given reference configuration in balance and then
use the equilibrium equations to get the inner control points after a change of the boundary
control points. One way of doing this is by using the mean value coordinates of Floater, see [4].
Another way to use a reference configuration is to demand that the configuration of an inner
control point and its four neighbours should be a scaled and rotated version of the one in the
reference net. This leads to an overdetermined set of equations which has to be solved in the
least square sense.

The map x is a parametrisation if and only if the determinant of the Jacobian is non vanishing.
The determinant of the Jacobian is piecewise polynomial, so we can write it in terms of B-splines

det J =
m,n∑
i,j=1

m,n∑
k,`=1

det(ci,j , ck,`)Mi
′(u)Nj(v)Mk(u)N`

′(v) =
em,en∑

i,j=1

di,j M̃i(u) Ñj(v), (4)

A sufficient condition for the positivity of det J is the positivity of all the coefficients di,j . They
depend quadratically on the control points ci,j . The solution to the following problem

maximise
inner control points

S, such that di,j ≥ S. (5)

gives a valid parametrisation if the control net is sufficiently refined. Even though the parametri-
sation is valid it need not be very good. One way to improve it is to make it as conformal as
possible and this can be done by minimising the Winslow functional:

minimise
inner control points

∫ 1

0

∫ 1

0

‖xu‖2 + ‖xv‖2

det(xu,xv)
dudv, (6)
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see [5] for details. To make sure that we have a valid parametrisation, and a positive denomi-
nator, we add the constraints, di,j ≥ δS0, where δ ∈ [0, 1] and di,j and S0 are given by (4) and
(5) respectively. If we let r = x−1 be the inverse map and change variables from (u, v) to (x, y)
in (6) then we obtain the following linearly constrained quadratic optimisation problem

minimise
r

∫
Ω

(
‖rx‖2 + ‖ry‖2

)
dx dy, such that r|∂Ω = y−1. (7)

It has a unique minimum realised by a pair of harmonic functions. By the Kneser-Rado-Choquet
Theorem, [2, 6, 10], this is a diffeomorphism. So the original problem (6) has a unique minimum
too.

If we square the numerator in (6) then we obtain the modified Liao functional which is well
known from grid generation, [7], but in our experience the Winslow functional behaves better
for our purpose.

It is quite expensive to solve the problems (5) and (6) so we do not do this in each optimisation
cycle. If the parametrisation becomes close to singular then we do it and obtain hereby a good
reference parametrisation, or control net, x0. We then propose to linearise the problem (6) and
solve the linear equation

Hx0(W)x = Hx0(W)x0 −∇x0W, (8)

where W denotes the Winslow functional and ∇x0W and Hx0(W) are the gradient and Hessian
evaluated at x0, respectively.

REFERENCES

[1] K.-U. Bletzinger, M. Firl, J. Lindhard, and R. WÜchner, Optimal shapes of mechanically
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Summary. We use NURBS-based isogeometric analysis to investigate dependences of magnetic
energy on geometry for some two-dimensional scattering problems.

1 INTRODUCTION

We consider two-dimensional electromagnetic (EM) scattering problems as depicted in Fig. 1(a)
where the incident magnetic field intensity is given as: H = (0, 0,Hz). The governing equations

(a) (b) (c)

Figure 1: Various models of scattering problems

of the problem, c.f. [1], are

∇ ·
( 1

εcr
∇Hz

)

+ k2
0µrHz = 0 in Ω, (1a)

1

εcr

∂Hz

∂n
− jk0

√

µs
r

εs
cr

Hz = 0 on Γs, (1b)

∂Hz

∂n
+ (jk0 +

1

2rt
)Hz −

∂H i
z

∂n
− (jk0 +

1

2rt
)H i

z = 0 on Γt, (1c)

1Corresponding author. Tel.: +45 4525 3037; fax: +45 4588 1399.
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where εcr, µr are the relative complex permittivity and the relative permeability of the dielectric
material to the corresponding constants of free space, respectively; εs

cr, µs
r are the relative

complex permittivity and the relative permeability of the scatterer, respectively; rt is the radius
of the circular truncation boundary; k0 is the wavenumber of free space. As a results of the
above equations, the weak form of the scattering problem reads: Find Hz ∈ H(div,Ω) [2] such
that for every φ ∈ H(div,Ω):

∫

Ω

1

εcr
∇Hz · ∇φdV − k2

0

∫

Ω
µrHz φdV − jk0

∫

Γs

ηs
crHz φd∂ + (jk0 +

1

2rt
)

∫

Γt

1

εcr
Hz φd∂

=

∫

Γt

1

εcr

(∂H i
z

∂n
+ (jk0 +

1

2rt
)H i

z

)

φd∂. (2)

In particular, if Hz = H0e
−jkx and geometry of the problem is symmetric about the line y = 0,

e.g. the model in Fig. 1(b), the problem can be solved in a half of the truncation domain with
the following boundary condition along the boundary y = 0: ∂Hz

∂y
= 0.

2 NUMERICAL EXAMPLES

2.1 Comparison between numerical and exact solutions

We consider the problem sketched in Fig. 1(c), in which the scatterer is a perfect electric
conductor. The exact solution of the problem, cf. [3], is

Hz =
+∞
∑

n=−∞

j−n

(

Jn(kρ) −
J′n(krs)

H
(2)′
n (krs)

H(2)
n (kρ)

)

ejnφ. (3)

To apply isogeometric analysis to the problem, we model the problem by two patches as showed
in Fig. 2(a). According to Fig. 2(d), the numerical and exact solutions agree up to 2%.

(a) (b) (c) (d)

Figure 2: Comparison between numerical and exact solutions of the scattering problem in Fig. 1(c). (a):
The truncation domain comprised of two patches. (b): Exact solution. (c): Isogeometric analysis-based
solution. (d): Relative error.

2.2 Magnetic resonator

We now want to examine dependences of magnetic energy, in terms of the quantity Wm =
∫

ΩW
lg

(µ|H(u)|2

4·10−7

)

dV, on geometry of the scattering problem sketched in Fig. 1(b). To solve the
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problem, three patches are used to model its truncation domain, see Fig. 3(left). To compute
Wm, we use an extended trapezoidal rule and an optimization problem to find preimages of the
integrating points of the rule in the physical domain is invoked.

We first examine the dependence on the distance d between the origin and the scaterer center.
The results, depicted in Fig. 3(right), shows that magnetic energy depends inversely on d.

0.5 1 1.5 2 2.5
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

d

W
m

Figure 3: Left: Multiple patches used to model the scattering problem sketched in Fig. 1(b); Right: The
dependence of magnetic energy on the distance d between the origin and the scaterer center.

Moreover, we choose the model with circular magnetic resonators as a reference model and
compare models whose magnetic resonators have different shapes to the reference model. In
comparison to magnetic energy of the reference model (Fig. 4(a)), magnetic energies of the
models whose resonators with one deformed upper part (Fig. 4(b)) or lower part (Fig. 4(d)) are
stronger.

Wm = −1.5562 Wm = −1.5204 Wm = −1.5821 Wm = −1.347
(a) (b) (c) (d)

Figure 4: Magnetic energy in the presence of various magnetic resonators with different shapes

3 FUTURE WORK

We consider the following shape optimization problem

maximize
ρb

Wm (4a)

where K(ρb)u = f(ρb), (4b)
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where ρb are the control points that govern the shape of the scatterer and the equation (4b) is
the discretized form of the weak form (2). This is not a new problem. It originates from recent
attempts for improving wireless power transfer via coupled magnetic resonances [4]. Recently,
Sigmund and his coworkers [5] have used topology optimization to find spatial distributions of
two magnetic resonators. Some of their results are depicted in Fig. 3.

0 0.5 1

Y

XZ 0 0.5 1

Y

XZ

Figure 5: Results from a previous work [5], which were obtained by topology optimization, the initial
designs are similar to the model in Fig. 1(b).

Our future work is to utilize advantages of isogeometric shape optimization [6] to enhance
their results.
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Summary. We present an adaptive T-spline f nite element solver in an isogeomtric setting. Tradi-
tional NURBS basis functions are tensor-product, while T-splines allow for true local ref nement.
This is proving superior to problems containing singularities. Moreover, T-splines is having a pos-
itive effect on smooth problems as well, since it will make the solver less prone to the choice
parametrization.

1 Introduction

Hughes et al.1 introduced the concept of isogeometric f nite element method (FEM) solvers by
using non-uniform rational B-splines (NURBS) as a basis. One of the main arguments is that
modern computer aided engineering (CAE) is seeing a severe bottleneck in the construction of
analysis suitable geometries. Hughes reports that as much as 20 percent of the time used in a CAE
pipeline is used for creating a geometric model which for analysis is possible, while as much as 60
percent of the time is used creating a model which is good for analysis purposes. This totals a 80/20
factor of geometry construction versus actual analysis. While NURBS basis functions itself might
reduce the f rst 20 percent by allowing geometry construction to take place in existing computer-
aided design (CAD) tools which have perfected this process for decades, there still remains to
create a model which is good for analysis. T-splines along with adaptive ref nement through a
posteriori error estimates is what is making this last step superf uous by completely automating
this process, allowing the designer to ultimately focus on the task at hand, which is making a
model in which analysis is possible.

2 T-splines

For our solutions, we will be using T-splines as introduced by Sederberg et al. in 20032. T-splines
allow for true local ref nement as they are not restricted to tensor product conf gurations. While
you will have to add an entire new row or column to your mesh when ref ning using NURBS, the
T-spline technology allows for T-joints.

1
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3 Problems containing singularities

We will here present how the T-splines along with a posteriori error estimators perform on prob-
lems containing singularities. We will present a model problem which we will solve using the
presented method. Obviously, T-splines will outperform the homogeneous ref nement strategies,
but as we shall see, even more sophisticated NURBS ref nement strategies are not comparable with
T-splines due to the fact that they are limited to tensor product ref nement. For our model problem
containing a singularity, we are going to solve the stationary heat equation, or Laplace equation
∇2u = f on an L-shape geometry with appropriate boundary conditions.

3.1 A posteriori error estimator

For the adaptivity we will need an estimate on what parts of the grid is contributing the most to the
global error. For this purpose, we will be using a resiudal-based a posteriori error estimator. From
Ainsworth3, we have

|||e|||2 ≤ C







∑

K∈P

h2K‖r‖2L2(K) +
∑

γ∈Γ

hK‖R‖2L2(γ)







, (1)

where R is a compact notation for the edge residual

R =











g − ∂uh

∂n
, on ∂ΩN

[

∂uh

∂n

]

K
−

[

∂uh

∂n

]

L
, on ∂K ∩ ∂L ∀ K,L ∈ P

0, else

(2)

and r is the internal residual r = f − ∇2u. This allows us to quantify an error estimate for each
element to be

η2K = h2K‖r‖2L2(K) + hK‖R‖2L2(∂K) (3)

For comparison purposes, we provide three adaptivity strategies.
a) Uniform ref nement using NURBS.
b) Rule of thumb ref nement, where we recursively ref ne the element closest to the singularity
using NURBS.
c) Adaptive T-splines where we use the error estimator ηK to ref ne the α percent elements with
the highest contribution to the error.

3.2 Results

Due to the singularity the convergence rates of the uniform ref nement is completely ruined. How-
ever the rule-of-thumb ref nement keeps an optimal slope up until the point where the error from
other parts of the grid than the singularity becomes dominant. The T-splines however gains an
optimal convergence.

4 Smooth problems

In this section we take a look at a smooth problem, namely the static elasticity problem on an
inf nite plate with a circular hole. For full details on the problem see4.
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Figure 1: Results obtained from the singularity problem
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(a) The parametrization control mesh
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(b) The physical mapping

Figure 2: Parametrization of the hole problem

4.1 Parametrization

What is interesting here is the choice of parametrization. We will chose a particular parametriza-
tion which is given in f gure 2. The traditional way of creating sharp corners using NURBS is by
making the knot vector be interpolating by creating a knot with multiplicity p where p is the degree
of the NURBS. However we have created the upper right corner by stacking p control points on top
of each other. Multiple control points is making the derivatives vanish, much in the same manner
as multiple knots and is thus allowing us to create the sharp corner. This parametrization has some
propterties which is rendering the particular error estimator presented earlier, useless. We will use
the exact error for adaptation purposes and argue that given an appropriate error estimator, then
T-splines will contain some remarkable properties, even for smooth problems without singulari-
ties. The problem with our choice of parametrization for the hole-problem is that it is not uniform.
That is a uniform ref nement in the parametric domain, will result in a biased ref nement in the
physical space. This is illustrated in f gure 2b where we have drawn one such uniform ref nement.
We clearly see that the ref nements are completely biased towards the upper right corner, leaving
the lower right and upper left corners with unnaturally large elements. It is however possible to
bypass this by weighting the ref nement in the parametric space, but this requires hand-tailoring
by the implementer, which we want to avoid as much as possible.

4.2 Refinement using T-splines

When using an adaptive T-spline ref nement strategy, this will detect the large elements that occur
in the upper left and lower right corners and ref ne those as appropriate. This is a true local ref ne-
ment and will not spread out to the rest of the domain, resulting in a better ref nement. T-splines is
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Figure 3: Results from solving a smooth problem

as such, negating the effect of the bad parametrization by enforcing a true uniform ref nement in
the physical space.

This is shown in f gure 3a where the physical T-mesh is illustrated. The parametric mesh corre-
sponding to this is depicted in f gure 3b where it is plotted in the parametric space.

4.3 Results

Since this problem has a smooth solution, we expect the uniform NURBS ref nement to be close
to optimal. As was seen, however, the (parametric) uniform ref nement scheme was not uniform at
all when viewed in the physical space. This is then resulting in a non-optimal ref nement scheme.
The adaptive T-splines countered this, and is thus providing a better convergence rate. These are
shown in f gure 3c.

5 Concluding remarks

T-splines shows great promise as a basis for adaptive FEM. Not only have they superior properties
when it comes to true local ref nement around singularities, but they also have the remarkable
property of negating the effect of badly parameterized models.
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Summary. Isogeometric analysis is a novel technique in Finite Element Analysis. The current
paper discusses simulation in marine applications using isogeometric shell approximations.

1 INTRODUCTION

Isogeometric Analysis (IGA), Hughes et al. [5], is a novel approach within Finite Element
Analysis (FEA) where the concept is motivated by the gap existing between Computer Aided
Design (CAD) models and the FEA models. The transfer of a design model to an analysis model
is a bottleneck in the current simulation based design cycle. IGA is an attempt to adapt both
the analysis geometry and solution parameters to the modelling geometry found in most CAD
systems in order to simplify the model transfer.

Current practise for linear analyses of thin walled structures in the marine industry includes
the use lower order finite elements based on thin or moderately thick shell theory.

In CAD software spline or Non-Uniform Rational B-splines (NURBS) is used to model the
geometry. Splines are defined recursively for all polynomial degrees using a knot vector. In IGA
they are also used in the approximation of the displacements, thus higher order approximations
are straightforward. Here an isogeometric continuum based shell element is compared to an
equivalent second order element found in most finite element implementations. The current
isogeometric shell implementation is based on a pure displacement formulation with no special
techniques to handle out of plane shear locking or membrane locking. This is due to the fact
that higher order approximations are believed to be less susceptible to locking.

The geometry model is the union of a set of patches where each patch is a tensor product
NURBS surface where two patches sharing a common edge has the same parameterization.
Geometry has to be generated very carefully in order to make it suitable for IGA. In particulare
we note that trimmed surfaces, which are common in CAD models, are not used in IGA. Further,
proper continuity in multi-patch models also pose a challenge using tensor product NURBS.

2 SHELL FORMULATION

A number of shell models are available in the literature. In the current study the shell
kinematics are derived from an Isogeometric solid element formulation. This is similar to the
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Figure 1: The degenerated solid approach illustrated in three steps: parent element, linear
constraint in normal direction and midplane projection.

implementation found in SESTRA, [6], the linear finite element solver within the SESAM system.
The principle approach is depicted in Figure 1.

The displacement field may be expressed using parameters defined on the shell mid sur-
face where the through thickness in-plane displacements are expressed using midplane rotation
components and the through thickness out-of-plan displacement component is constant, thus

u(�1, �2, �3) = Na(�
1, �2)

(
va + �3tav

d
a

)
(1)

va denotes the midplane control point translation vector while vda denotes the out-of-midplane
displacement corrections. ta is the shell thickness at the control point and �i are the curvilinear
coordinates (parametric coordinates) and the Einstein’s summation convention is used. Na

denotes the spline (in our setting NURBS) shape functions. vda may be expressed using either
two or three rotations where the latter include the drilling rotation;

vda = −Da × ! or vda = (−Aa2Θa1 + Aa1Θa2) (2)

Θai denotes the midplane rotation components and Aa� is an orthogonal local coordinate system
that span the shell tangent plane. ! denotes the three components of the global rotation vector.

The linearized strains may be expressed in the global coordinate system according to the
familiar expression from linearized elasticity. The zero transverse normal stress condition �33 = 0
has to be enforced in the local shell coordinate frame.

Since the formulation may include an additional unknown the formulation needs to be stabi-
lized. One criteria for the stabilization is that is should not destroy the sparsity pattern of the
patch stiffness matrix. A penalty formulation, suggested by Fox and Simo [4], is used with this
in mind. The augmented potential energy functional may be expressed as

Π
(u,!) = Π(u,!) +



2

∫
Ω

(
A1 ⋅

∂u

∂�2
− ∂u

∂�1
⋅A2 − 2A1 ×A2 ⋅ !

)2

(3)

where Π(⋅) denotes the potential energy for the shell formulation and 
 is the penalty parameter.
The equations above use a local coordinate triad to express the shell rotations and the local

material law. A number of methods to establish the local triad at control points has been
suggested in Benson et al. [2].
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Figure 2: Pinched cylinder with diaphragms; convergence of the displacement under the load.

3 NUMERICAL EXAMPLE

3.1 Pinched cylinder

The shell obstacle course suggested by Belytschko et al. [1] is used to check robustness and
accuracy for shell implementation in complex strain states. The problem set includes three
problems, namely, the Scordelis-Lo roof, the pinched cylinder diaphragm and finally the pinched
hemispherical shell. The cylinder is fully restrained by rigid diagraph at the ends and is subjected
to two radial point loads alternating at 90∘. The displacement in the direction of the point load
is compared to the reference solution given as ∣uz∣ = 1.8248× 10−5.

The convergence curves for displacement under the load as a function of the mesh density
for the spline and SESTRA formulation is shown in Figure 2.

3.2 Tubular joint

Pipe intersections occur frequently in off-shore applications. A simple two pipe model is
shown in Figure 3 where the pipes meet at a right angle. The diameters are different for the
two intersecting pipes, D1 = 2 and D2 = 1. The pipe segements are L1 = 10 and L2 = 5
respectively. The number of patches in the pipe model is 12.

A stress analysis is performed. The two ends of the larger pipe are fixed in all translations
and rotations. The free end of the smaller pipe is subject to a line-load with a load intensity
of unity in the global z-direction, that is in the longitudinal direction of the larger pipe. The
geometry is not exact in this example, that is, the vertical cylinder is not a perfect cylinder in
the neighborhood of the intersection.

The convergence of the displacement under the load is shown in Figure 3.

4 CONCLUSIONS

The results are comparable to the current second order shell finite element. However, the
SESTRA second order shell element performs in general better than the plain Isogeometric shell
implementation. The current Isogeometric shell implementation is based on a pure displacement
formulation with no remedies to handle out of plane shear locking or membrane locking. This is
due to the fact that higher order approximations are believed to be less susceptible to locking.
IGA is in its infancy and more research is needed to tune the performance in commercial shell
type applications.
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Summary. We are developing a framework (C++ class library) for isogeometric, nonlinear
quasi-static FE analysis in structural applications, using splines and NURBS as basis functions.
The work is based on the foundation developed in the project ICADA for linear analysis, but have
been augmented with additional capabilities such that nonlinear analysis of finite deformation
problems in solid mechanics involving material and geometrical nonlinearities may be performed.
Herein, we report some preliminary findings when comparing results obtained with NURBS and
classical Lagrange finite elements on a three-dimensional finite deformation elastic problem.

1 FINITE ELEMENT FORMULATION

The new paradigm of Isogeometric analysis, which was introduced by Hughes et al.1,2, demon-
strates that much is to be gained with respect to efficiency, quality and accuracy in analysis by
replacing traditional finite elements by volumetric NURBS (Non-Uniform Rational B-Splines)
elements. By using NURBS, which is standard technology employed in CAD systems, as basis
functions in the finite element analysis one may transfer models from design directly to analysis
without any modifications. This reduces the man-hours needed for establishing analysis-suitable
finite element meshes, as well as no loss of accuracy in the geometrical description of the object
at hand. Thus, use of NURBS seems to be a very appealing step forward for finite element
analysis. It is therefore natural to investigate the numerical performance of NURBS compared
to traditional Lagrange basis functions. We have been doing so for linear elasticity problems and
obtained very promising results, and we have now started to address this for finite deformation
elastic problems.

Two important features with NURBS are its capability to exactly represent conical sections
(e.g. circles) and that a regular p-th order NURBS basis is Cp−1 continuous. Many industrial
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solid/structural mechanics problems involve objects where part of the geometry is described by
circles or circle segments, and traditionally this has been represented inaccurately by means of
low order Lagrange polynomials, whereas by using NURBS these inaccuracies may be eliminated.
Furthermore, in elasticity we do have continuous stresses and strains except for at certain singular
points, lines or surfaces, i.e. the displacement field is C1-continuous away from singularities.
Classical finite elements based on Lagrange polynomials are only C0-continuous and this lack of
regularity shows up in discontinuous (along inter-element boundaries) finite element stress and
strain fields, whereas NURBS (p ≥ 2) may represent this behavior qualitatively correct.

NURBS-based and classical Lagrange, finite deformation, displacement-based, solid elements
of any order have been implemented into our nonlinear FE solver. Both the material and
spatial formulation, based on the reference and the current configuration, respectively, have
been implemented. However, as pointed out in standard references on the subject3,4, the spatial
formulation is more computational efficient on the elemental level due to the standard sparse
structure of the B-matrix, that coincides with the sparsity of the B-matrix of the linear theory,
compared to the full B-matrix for the material formulation.

Also as pointed out by Miehe5, the formulation and the finite element implementation of
finite deformation isotropic elasticity turns out to be more compact and carried out with lower
computational effort when adopting the spatial configuration. As demonstrated in5, the elas-
ticity equations may be formulated exclusively based on the left Cauchy-Green tensor, often
referred to as the Finger tensor; b = FFT , that may be be computed directly and with low
computational effort for a given deformation gradient F. For this reason the spatial formulation
is adopted in the present study.

2 NUMERICAL RESULTS

The isogeometric nonlinear solver has been tested on a geometry that cannot be represented
exactly by Lagrange polynomials. It involves finite deformation analysis of a thick hollow cylin-
der, for which the exact initial geometry can be obtained with quadratic NURBS. Due to symme-
try only one quarter of the whole problem is discretized and analyzed, and boundary conditions
at the two symmetry planes are set accordingly, as shown in Figure 1. This problem was first
studied by Büchter and co-workers6 using shell elements, and later by others7,8 considering it
as a 3D continuum. The material model applied is a standard compressible Neo-Hookean model
with strain energy function

W (J,b) =
1
2
µ(trb− 3)− µ ln J +

1
2
λ(ln J)2 (1)

where µ and λ are Lame’s constants that may be derived from Young’s modulus E and Poisson’s
ratio ν, J is the determinant of the deformation gradient F and b is the Finger tensor. Since
Poisson’s ratio ν = 0.4, no volumetric locking is expected.

Herein, the cylinder is parameterized by a single NURBS patch and analyzed using quadratic
and cubic NURBS as basis functions, and compared with standard quadratic Lagrange elements.
Gaussian integration is used throughout all analyses applying 3×3×3 Gauss points for quadratic
NURBS as well as Lagrange basis functions and 4 × 4 × 4 Gauss points for NURBS functions
of order 3. Even though it is sufficient with quadratic basis functions in the thickness direction
to capture the bending behavior, herein NURBS functions of order 3 are used in the thickness
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Inner radius : Ri = 8.0
Young’s modulus : E = 16800
Poisson’s ratio : ν = 0.4
Load intensity : p0 = 500.0

Figure 1: Compression of a thick cylinder: Geometry and properties.

direction as well for the cubic NURBS elements. In order to avoid singularities due to the
concentrated loading, an equivalent constant traction is applied to the reference configuration
of the top symmetry cross-section of the cylinder and kept fixed during deformation, such that
the total load applied on the cylinder is 30× 103. Therefore, we cannot expect full compliance
with the results obtained in7,8 where the load is applied as a line load along the top edge.

The results are presented in Figure 2. As expected, cubic NURBS gives a somewhat softer
solution than quadratic NURBS. However it is also interesting to note that the quadratic NURBS
seems to give a slightly stiffer solution than the Lagrange elements. This is believed to be an
effect of inter-element continuity, since this is one of the main differences between NURBS
finite elements and Lagrange finite elements. While standard Lagrange finite elements provide
C0-continuous interpolation between elements, Cp−1-continuity may be achieved with NURBS
throughout an entire patch. In general it is interesting to investigate further whether such
improved inter-element continuity will improve the quality of the approximate solution or not,
particularly in cases where standard finite elements tend to lock.
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Figure 2: Compression of a thick cylinder: Deformed configuration with σxz Cauchy stress for the
32× 16× 1 mesh with quadratic NURBS (left), and maximum vertical deflection for all meshes (right).
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Summary. We derive a novel rate-dependent, physically based constitutive model for 
intrinsic and oxygen-contaminated silicon monocrystals and calibrate it on experimental data 
covering a broad range of temperature and strain rates. This model is implemented further in a 
commercial Finite Elements software and used to study the evolution of stresses, strains and 
dislocation densities in both monocrystalline and multicrystalline silicon materials.  

 
 
1 INTRODUCTION 

Silicon ingots produced by directional solidification for the photovoltaic (PV) industry 
exhibit a multicrystalline nature (mc-Si) that makes their mechanical analysis complicated to 
perform. Assessing the fracture risk of a brittle material relies on probabilistic methods that 
request the knowledge of the stress level throughout the material1. Silicon being brittle below 
600 C approximately, it is of high industrial interest to predict the fracture probability of mc-
Si given a thermo-mechanical loading path such as a solidification and cooling process 
history. 

The constitutive models used until now to analyze the stress field evolution in mc-Si 
materials assume them to be continuum, homogeneous single crystals, and plasticity is 
assumed to be isotropic2-4. This approach provides with the thermally-induced, macroscopic 
stresses. However, the multicrystalline nature of directionally solidified ingots and wafers 
leads to additional, mesoscopic stresses owing to kinematic compatibility requirements at the 
grain boundaries5,6. Finally, the presence of inclusions and impurities in Solar-grade silicon 
(SoG-Si) implies stress peaks on a microscopic scale7,8. 

We introduce in section 2 a novel constitutive model for silicon materials based on the 
rate-dependent crystal plasticity theory, able to account for complex thermo-mechanical 
loading paths and the subsequent stress and dislocation density evolutions from the melting 
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point down to room temperature9. Model parameters for intrinsic and oxygen-contaminated 
single crystals are derived from tensile tests performed at high temperatures10,11. 

We apply this constitutive model to 3D simulations of different thermo-mechanical 
loadings of mc-Si samples in section 3. The evolution of stresses with time is analyzed. 
Stress, strain and dislocation density distributions in the final material are shown to be 
heterogeneous. The fracture probability map at room temperature is drawn using our 
experimental characterization of SoG-Si. 

 

2 CONSTITUTIVE MODEL 

The constitutive model adopted in this work is physically based on the dynamical properties 
of dislocations in silicon crystals. Dislocations in silicon have been studied for many decades 
at high temperatures and their velocity is well established12,13 in the temperature range below 
roughly 1323 K as a function of temperature T and the effective stress τeff: 

( )
( )

0
0

expeff

b

U
v v

k T


 


 

  
 

 (1) 

Where v0 and τ0 are constants, U is the activation energy for dislocation motion proceeding by 
double kink nucleation and propagation in the considered temperature range, and kb is 
Boltzmann’s constant. Note that the equation is valid on any of the 12 slip systems α allowed 
by the diamond cubic structure. Orowan’s law is used to link the microscopic dislocation 
mechanisms to the macroscopic plastic slip rate: 

( ) ( ) ( )
p m bv     (2) 

The constitutive model is characterized by the expression of the effective stress, and the rate 
equations governing the evolution of the dislocation densities. 

2.1 Evolution of dislocation densities and internal stress 
Two dislocation density populations are distinguished on each slip system: the mobile 

dislocation density that carries plastic flow ρm and the density of immobile dislocations ρi that 
contribute to the buildup of internal stresses but do not affect the plastic slip rates. In the 
presence of dissolved oxygen or other fast-diffusing impurities, the dislocations are pinned by 
impurity atoms that have segregated at their core and the effective dislocation density actually 
carrying plastic flow ρm,eff  is a fraction of ρm that depends solely on the unlocking stress, 
stress required to free dislocations from their impurities. The temperature-dependent model 
equations have been derived and their parameters calibrated elsewhere9,14. 

The internal stress τint is made up of three components, one stemming from the long-range 
stresses generated by the mobile dislocations τlr, another one representing short-range 
interactions due to e.g. forest interactions τsr, the last term being due to dislocation pinning by 
impurities that leads to the appearance of an unlocking stress11,15.  τint reads: 

 ( ) ( ) ( )
intmax ,0eff

       (3) 
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Where τ is the Schmid stress, projection of the second Piola-Kirchhoff stress onto each slip 
system. Detailed expressions of the internal stress components are given elsewhere9,14. 

2.3 Implementation into an explicit Finite Element Software 
 The constitutive model is implemented into Abaqus/Explicit in a VUMAT (user material) 
routine working in the co-rotational coordinate system. The kinematics  used in large strains 
crystal plasticity rely on the multiplicative decomposition of the deformation gradient, and 
even though plastic slip does not deform the crystal lattice it does induce a rotation of the 
material point, and care must be taken to correctly account for this effect9,14. 

3 FOUR-POINT BENDING OF SILICON MULTICRYSTALS 
Multicrystalline silicon bars of dimensions 4x3x50mm3 are generated from smoothed 

EBSD scans of real specimen. In this work we consider only bars made up of 11 crystals, 
which orientations are randomly assigned. Figure 1 shows the mesh used for simulating the 
four point bending test, as well as the orientations of the different crystals. 

  

 
Figure 1: FE mesh used for simulation of 4PB tests of mc-Si bars (~140,000 elements) and crystal orientations 

Dissolved oxygen can be incorporated into the model if required. Deformation is simulated 
at a strain rate of 10-5 s-1 and a temperature of 1173 K. The initial dislocation density is 
homogeneous and equal to ρm=108 m-2 per slip system. Deformation is stopped after the lower 
yield point, in the steady-state of deformation. Output clearly outlines the inhomogeneity of 
stresses and dislocation densities in the sample (Figure 2). Comparison can be done with the 
case of monocrystals loaded in similar conditions. Stress concentrations caused by kinematic 
compatibility at the grain boundaries and the intrinsic material anisotropy increase the failure 
probability at room temperature and favors the nucleation and opening of microcracks at high 
temperatures. 

4 CONCLUSIONS 
- The constitutive model successfully reproduces the behavior of intrinsic and oxygen-

contaminated silicon monocrystals at high temperatures 
- Application to multicrystals shows a global force-displacement behavior similar to 

the one of monocrystals, but reveals strong inhomogeneities at a smaller scale 
- Simulations predict the development of stress concentrations and localized 

dislocation clusters as experimentally observed 
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- Coupling of these results with statistically determined fracture strength has been done 
This model will be applied in the future to the case of directionally solidified ingots. 
 

 

  
 

Figure 2: (left) Von Mises stress distribution (right) total density of dislocations 
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Summary. In this paper a simple phenomenological model to describe ductile to brittle tran-
sition of rate-dependent solids is presented. The model is based on consistent thermodynamic
formulation using proper expressions for the Helmholtz free energy and the dissipation poten-
tial. In the model the dissipation potential is additively split into damage and visco-plastic parts
and the transition behaviour is obtained using a stress dependent damage potential. Damage is
described by using a vectorial variable.

1 INTRODUCTION

Most materials exhibit rate-dependent inelastic behaviour. Increasing strain-rate usually
increases the yield stress thus enlarging the elastic range. However, the ductility is gradually
lost and for some materials there exist a rather sharp transition strain-rate zone after which the
material behaviour is completely brittle.

In this paper a simple phenomenological approach to model ductile to brittle transition of
rate-dependent solids is presented. It is an extension to the model presented in1,2using vectorial
damage variable3. The model is based on consistent thermodynamic formulation using proper
expressions for the Helmholtz free energy and dissipation potential. The dissipation potential
is additively split into damage and visco-plastic parts and the transition behaviour is obtained
using a stress dependent damage potential. The basic features of the model are discussed.

2 THERMODYNAMIC FORMULATION

The constitutive model is derived using a thermodynamic formulation, in which the material
behaviour is described completely through the Helmholz free energy and the dissipation potential
in terms of the variables of state and dissipation and considering that the Clausius-Duhem
inequality is satisfied4.

1
 --38--

firstname.lastname@tkk.fi
http://www.tkk.fi/
firstname.lastname@vtt.fi
http://www.vtt.fi/


Juha Hartikainen, Kari Kolari and Reijo Kouhia

The Helmholtz free energy
ψ = ψ(ǫe,D) (1)

is assumed to be a function of the elastic strains, ǫe, and the damage vector D. Assuming small
strains, the total strain can be additively decomposed into elastic and inelastic strains ǫi as
ǫ = ǫe + ǫi.

The Clausius-Duhem inequality, in the absence of thermal effects, is formulated as

γ ≥ 0, γ = −ρψ̇ + σ : ǫ̇, (2)

where ρ is the material density. As usual in the solid mechanics, the dissipation potential

ϕ = ϕ(σ,Y) (3)

is expressed in terms of the thermodynamic forces σ and Y dual to the fluxes ǫ̇i and Ḋ, respec-
tively. The dissipation potential is associated with the power of dissipation, γ, such that

γ =
∂ϕ

∂σ

: σ +
∂ϕ

∂Y
·Y. (4)

Using definition (4) equation (2)2 and defining that ρ∂ψ/∂D = −Y, result in equation

(

σ − ρ
∂ψ

∂ǫe

)

: ǫ̇e +

(

ǫ̇i −
∂ϕ

∂σ

)

: σ +

(

Ḋ− ∂ϕ

∂Y

)

· Y = 0. (5)

Then, if eq. (5) holds for any evolution of ǫ̇e, σ and Y , inequality (2) is satisfied and the following
relevant constitutive relations are obtained:

σ = ρ
∂ψ

∂ǫe
, ǫ̇i =

∂ϕ

∂σ

, Ḋ =
∂ϕ

∂Y
. (6)

3 PARTICULAR MODEL

In the present formulation the Helmholtz free energy, ψ, is a function depending on the
symmetric second order strain tensor ǫe and the damage vector D, the integrity basis thus
consists of the following six invariants

I1 = tr ǫe, I2 = 1
2tr ǫ

2
e , I3 = 1

3 tr ǫ
3
e , I4 = ‖D‖, I5 = D·ǫe·D, I6 = D·ǫ2

e ·D. (7)

A particular expression for the free energy, describing the elastic material behaviour with the
directional reduction effect due to damage, is given by3

ρψ = (1 − I4)
(

1
2λI

2
1 + 2µI2

)

+H(σ⊥)
λµ

λ+ 2µ
(I4I

2
1 − 2I1I5I

−1
4 + I2

5I
−3
4 ) + (1 −H(σ⊥))(1

2λI4I
2
1 + µI2

5I
−3
4 )

+ µ
(

2I4I2 + I2
5I

−3
4 − 2I6I

−1
4

)

, (8)

where λ and µ are the Lamé parameters, H is the Heaviside step-function and

σ⊥ = λI1 + 2µD̂·ǫe·D̂, and D̂ = D/I4. (9)
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To model the ductile-to-brittle transition due to increasing strain-rate, the dissipation po-
tential is decomposed into the brittle damage part, ϕd, and the ductile viscoplastic part, ϕvp,
as

ϕ(σ,Y) = ϕd(Y)ϕtr(σ) + ϕvp(σ), (10)

where the transition function, ϕtr, deals with the change in the mode of deformation when
the strain-rate ǫ̇i increases. Applying an overstress type of viscoplasticity5,6,7 and the principle
of strain equivalence8,9, the following choices are made to characterize the inelastic material
behaviour:

ϕd =
1

2r + 2

Yr

τd(1 − I4)
H(ǫ1 − ǫtresh)

(

Y ·M ·Y
Y 2

r

)r+1

, (11)

ϕtr =
1

pn

[

1

τvpη

(

σ̄

(1 − I4)σr

)p]n

, (12)

ϕvp =
1

p+ 1

σr

τvp

(

σ̄

(1 − I4)σr

)p+1

, (13)

where parameters τd, r and n are associated with the damage evolution, and parameters τvp

and p with the visco-plastic flow. In addition, η denotes the inelastic transition strain-rate. The
damage treshold strain is ǫtresh and the largest principal strain is denoted as ǫ1. Direction of the
damage vector is defined through the tensor

M = n ⊗ n (14)

where n is the eigenvector of the elastic strain tensor corresponding to the largest principal strain
ǫ1 and ⊗ denotes the tensor product. The relaxation times τd and τvp have the dimension of
time and the exponents r, p ≥ 0 and n ≥ 1 are dimensionless. σ̄ is a scalar function of stress, e.g.
the effective stress σeff =

√
3J2, where J2 is the second invariant of the deviatoric stress. The

reference values Yr and σr can be chosen arbitrarily, and they are used to make the expressions
dimensionally reasonable. Since only isotropic elasticity is considered, the reference value Yr has
been chosen as Yr = σ2

r /E, where E is the Young’s modulus.
Making use of eqs. (6), choices (8)-(13) yield the desired constitutive equations.
This particular model has the following general properties:
• Elastic stiffness is reduced monotonously due to damage.
• The model does not include any specific yield stress.
• In the absence of damage evolution, the inelastic model behaves under a constant uniaxial

strain-rate loading as
σ → (τvpǫ̇0)

1/pσr when t→ ∞,

where ǫ̇0 is a prescribed strain-rate;
• In the evolution of damage, the constraint for the damage D = I4 = ‖D‖ that D ∈ [0, 1]

is satisfied automatically, since initially D = 0, Ḋ ≥ 0 and Ḋ → 0 as D → 1;
• The transition function ϕtr deals with the change in the mode of deformation through the

damage evolution such that

ϕtr ≥ 0 and ϕtr ≈ 0 when ‖ǫ̇i‖ < η and ϕtr > 1 when ‖ǫ̇i‖ > η;

3
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• Inequality (2) is satisfied a priori for any admissible isothermal process. Moreover, the
dissipation potential (10) is a non-convex function with respect to the thermodynamic
forces σ and Y.

• The evolution of damage (6)3 with the potential (11) will result in splitting damage in
compression, while for tensile loading damage occurs on the plane perpendicular to the
tensile stress10.

• The form (8) of the Helmholtz free energy takes into account the directionality of damage.
The crack deactivation criteria is based on the elastic normal stress acting on the damage
plane.
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Summary. Three crack propagation methods (based on material forces) are compared for two
test cases. From this, a crack propagation law for fatigue growth is proposed. Time integration
of this propagation law allows for simulation of head check growth. This is exemplified through a
2D example where the propagation of a single surface crack is simulated for various parameters.

1 INTRODUCTION

Rolling Contact Fatigue (RCF) of rails is a major problem worldwide. Common RCF defects
that can be observed in rails are tounge lipping, head checks and squats. However, only the
development of head checks will be investigated in this paper. Head checks are typically closely
spaced cracks which initially grow almost parallel. The cracks are initiated at the rail surface
and are common near the gauge corner in curves. Also the surface friction conditions affect the
initiation of head checks. Cracks are more easily initiated under dry conditions than in wet.

To properly simulate the propagation of a crack, we need to model how fast and in what
direction it grows. A generalized crack driving force (GCDF ), based on the concept of material
forces, is used to model the growth of the crack. Results from simulations using three crack
propagation methods are evaluated against experimental results. Based on this evaluation, one
propagation method is chosen for subsequent studies.

Next, the propagation of a single head check crack in a piece of rail, under realistic RCF
loading conditions, is simulated by the use of a 2D model. Results from the simulations are
presented and qualitatively compared to field observations.

2 FATIGUE CRACK PROPAGATION

The GCDF (adopted in this study) can be expressed as1

G =

∫
ΩX

−Σ · (ϕ∇X) dVX (1)

where Σ is the Eshelby stress tensor and ϕ is a suitably chosen weight function of unit value at
the crack tip. In this manner, the GCDF is the change of rate of mechanical dissipation due to
an advancement of the crack tip.
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Figure 1: 2D problem setup.

Based on the GCDF for the existing crack, we may formulate a propagation law as

ȧ = γ < Φ̇ >
∂Φ

∂G
(2)

with the constitutive parameter γ and the crack-driving potential Φ. The expression for the
potential Φ is assumed as follows:

Φ = |G| − Gcr (3)

where Gcr is a parameter that describes the fracture toughness of the material. By this particular
choice of Φ, the crack growth is proportional in direction to the GCDF, which has shown to
produce results in good agreement with experiments. It may also be noted that the proposed
propagation is of a rate independent type.

The propagation law in eq. (2) is expressed in terms of the crack tip velocity. Therefore, by
integrating over one load cycle (N) the crack growth per load cycle can be computed.

da

dN
=

∫ tN+1

tN

ȧ dt (4)

From this, the crack growth is then extrapolated a given number of cycles and the mesh is
updated accordingly. The procedure is then repeated until the total number of loading cycles
has been reached.

3 NUMERICAL EXAMPLE

To get an understanding of the characteristics of the propagation of a single surface crack in
a piece of rail material, a simplified 2D-example is investigated, cf. Figure 1. The material is
assumed to be linear elastic and in a state of plane strain. The rail is subjected to the loads
from a passing bogie (velocity v) with 2 wheelsets. This produces bending stresses in the rail
together with normal and traction stresses in the wheel-rail contact. Bending stresses σb is
evaluated from the bending moment developed in the rail as the bogie passes. The normal load
pN(x, t) is assumed to be given by an elastic Hertzian contact pressure distribution2 (with with
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[m]

higher coef. 

of friction

Figure 2: Example of simulated crack paths for varying coefficient of friction (µ = 0.2− 0.6).

2a). Moreover, the traction stress pT(x, t) is obtained from the normal pressure pN(x, t) and
the coefficient of friction µ by assuming full slip, i.e pT(x, t) = µpN(x, t). The traction stress pT
acts in the direction opposite to the velocity of the wheel. Furthermore, the crack surfaces are
assumed smooth (i.e. no friction).

Results from simulations of crack growth for various parameters will be presented and dis-
cussed. The studied parameters are initial crack angle ϕ, initial crack length a0 and coefficient
of friction µ. In Figure 2, an example of simulated crack paths for varying coefficient of friction
can be seen.
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Summary. The strength of adhesively bonded double-lap shear joints has been studied. Failure
loads obtained experimentally have been presented and compared with theoretical predictions.
Capacity estimates provided by traditional strength of materials approaches do not agree with
experiments. On the other hand, results obtained using a recent inelastic fracture-based analysis
represent measured strength values well.

1 INTRODUCTION

High-speed craft and ships have traditionally been made of aluminum or steel. To improve
the performance, there is a tendency to seeking lighter weight structures, at least in parts of the
structure where weight-saving is particularly beneficial, such as in the superstructure. Light-
weight materials can be fibre reinforced composites. When combining metals and composite
materials, traditional joining by welding is not an option. Instead, one may apply bolting.
However, bolted joints suffer from high stress concentrations. Moreover, such joints are costly
to make and maintain. Therefore adhesive bonding becomes an attractive option for joining
composite materials to metals.

Another important application area of adhesive bonding, is repair of floating production
storage and offloading units (FPSOs) and other kinds of offshore storage units. Experience has
shown that FPSOs develop corrosion and cracks during service. Such defects are no serious
problem for ordinary tankers - the defects are simply welded and possibly reinforced when the
ship calls into the next harbour. Welding is, however, hot work that is not allowed for FPSOs
during production. Closing down can be very expensive. Thus, composite patch repair using
adhesives is an attractive alternative.

In the present study, the mechanical response and strength of adhesively bonded joints have
been investigated experimentally, as well as theoretically using analytical derivations and finite
element analysis.

1
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2 EXPERIMENTAL STRENGTH MEASUREMENTS

In several recent research projects, the strength of adhesively bonded joints has been inves-
tigated experimentally. Here we will present a set of results obtained within the context of a
network of excellence on marine structures (MARSTRUCT), to which one of the authors be-
longs. A set of double-lap shear joints was analysed. In all cases, the inner adherend was made
of 10 mm steel, while the outer adherends consisted of 0/90 woven rowing glass fibre reinforced
plastics (GFRP) or 0/90 uni-directional carbon fibre reinforced plastics (CFRP) laminates of
various thicknesses. The composite laminates were bonded to the steel plate using an epoxy
adhesive of the type Araldite 2015. More details are available from1.

The measured failure loads for various overlap lengths are shown in Fig. 1. It is seen that for
short overlap lengths, the strength is proportional to the overlap length. This behaviour lasts
until a plateau level is reached, from which the failure load is almost constant and does not
depend on the overlap length. The same kind of strength behaviour of bonded steel-composite
joints was obtained in a recent EUCLID project2.
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Figure 1: Failure loads of double-lap shear joints made of steel/CFRP and steel/GFRP.

In the experimental studies reported above, the thickness of the adhesive layer was the same
for each set of test specimens. Thus, the effect of adhesive layer thickness on joint strength could
not be studied. However, in a similar joint industry project on patch repair3, test specimens
with different values of the adhesive thickness were produced. In that study it was shown that
the adhesive layer thickness played a negligible role on the joint strength.

3 ANALYSIS USING STRENGTH OF MATERIALS APPROACH

3.1 Critical stress approach

The capacity of adhesive joints has traditionally been analysed using a strength of materials
method, of which the critical stress approach is the simplest. This is an elastic stress-based
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method for predicting the strength, and it is assumed that fracture of the bondline will occur
when the maximum shear stress in the adhesive layer reaches a critical level. The critical stress
level is determined through comparison of theoretical stress analysis and the experimentally
observed failure load of a selected joint with a specific overlap length. The distribution of the
adhesive shear stresses in the joint is modeled using, e.g., the classical theory of Volkersen4,
or the modified version developed by Tsai et al.5, in which adherend shear deformations are
included. Analysing the joint subjected to the measured failure load, the critical stress level is
defined as the maximum value of the shear stresses in the adhesive layer. Using this value as the
maximum allowed stress level, the critical stress approach offers reasonable strength predictions
for joints with overlap lengths close to the one selected, but the overall strength behaviour as
illustrated in Fig. 1 is not offered.

3.2 Critical plastic strain approach

A slightly more complex analysis method is provided by the critical plastic strain approach.
This method is based on the assumption of elastic-plastic behaviour of the shear stresses in the
bondline. Thus, plastic effects of the adhesive layer are included, and it is assumed that the
joint fails when a critical plastic strain is reached. The theoretical foundation of the method
might be provided by the well-known work of Hart-Smith6 or the extended theory derived by
Osnes and McGeorge2. In the critical plastic strain approach, the yield stress and the maximum
plastic strain of the adhesive layer must be determined. The former value is determined from the
experimentally observed failure load of a joint with a short overlap length, while the latter critical
property is obtained from the result of a joint at the plateau level. The method offers strength
predictions that agree well with the results presented in Fig. 1. However, the theoretically
obtained failure loads depend considerably on the adhesive layer thickness, a feature that is not
supported by experimental strength measurements.

4 ANALYSIS USING INELASTIC FRACTURE MECHANICS APPROACH

4.1 Analytical derivations

Recently, McGeorge derived an energy release rate formulation accounting for plastic defor-
mations7. It models the fracture process that causes failure of bonded joints and accounts for the
energy released and consumed in the various parts of the bonded assembly during fracture. It is
essential that the nonlinear inelastic behaviour of the adhesive bondline is taken into account.
The strength parameters to be determined from experiments is the adhesive yield stress and the
fracture resistance. In the work of McGeorge7, certain closed form equations were derived for
the fracture load of some simple joint geometries, and good agreement was demonstrated with
experimental results.

4.2 Finite element analysis using cohesive elements

In the present study, the new energy release rate formulation7 has been investigated for
more general joint geometries. Finite element analysis (FEA) using cohesive elements of the
Abaqus software package has been conducted. The equations derived by McGeorge for simplified
geometries have been confirmed. Furthermore, the general applicability of FEA has permitted
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comparison of theoretical predictions with experiments for a wider range of geometries. Again,
very good agreement with experimental results has been obtained. The strength behaviour
from Fig. 1 is excellently represented. In addition, the present fracture-based strength method
predicts failure loads that are almost independent of the thickness of the adhesive layer. This
contributes to gaining confidence in adhesive bonding technology, and this improved confidence
will be important for implementation of adhesive bonding in the industry.

5 CONCLUSIONS

In this study, the strength of adhesively bonded double-lap shear joints has been investigated.
Experimentally measured failure loads have been presented and compared with predictions of-
fered by theoretical analysis methods. The strategy is to apply the measured strength values
for a few (typically one or two) joints to determine the critical strength parameters required in
the theoretical models.

The capacity of adhesive joints has traditionally been modeled using a strength of materi-
als approach. However, the results provided by such methods do not agree with experimental
predictions. Thus, a new fracture-based energy release rate formulation has been derived. Ana-
lytical relations have been developed for simplified geometries and FEA using cohesive elements
has been conducted for more general joint geometries. In both cases, the results agree well with
failure loads measured experimentally.
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1 INTRODUCTION 

Advanced com posite materials are today incr easingly used in a number of industrial 
sectors due to a favorable com bination of low weight and good m echanical properties. 
Composite structures have been shown to be susceptible to impact damage and this is a matter 
of continued concern. Impact can induce variou s types of dam age in the structure including 
matrix cracking, fibre-m atrix debonding, fibre breakage, delam ination etc. Unlike ductile 
metals that can absorb large am ounts of energy by plastic yielding, brittle com posites absorb 
energy by irrevers ible micro-cracking mechanisms. The design of com posite components or 
structures to resist im pact or crash events re presents a difficult task. In this direction, the 
Norwegian research council, the com posite industry and the SINTEF-NTNU research 
community have, recently, established the COMPACT project. The main goal of this research 
project is the developm ent of generic com petence, experimental techno logies, and numerical 
methods for the design of safe, robust and cost -efficient composite structures. A recent state-
of-art report 1 was written under the task “Modeling of composite materials”; this docum ent 
served as the main inspiration to generate the results presented here. 

2 THE ABAQUS DAMAGE MODEL 

Abaqus2 6.9 offers a dam age mechanics based m odel to p redict the  onset and  growth of  
damage f or elas tic-brittle m aterials with an isotropic behavior. The m odel is intended to be 
used with classical fibre reinforced composites materials.  The model requires three important 
inputs: The elas tic behavior, the dam age initia tion criterion  and the dam age evolution law.  
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Shortly the elastic beha vior assumes an orthotropic law in plane stress (e.g. LAMINA). The 
damage initiation follows the Hash in’s criterion formulated in the effective stress  space and 
finally, the damage evolution law uses the fracture energy fG  concept. The elastic damaging 
response follows the constitutive equation ( ) dσ C ε , where the “damaged” stiffness matrix, 

( )dC , is defined as: 
 

1 21 1

12 2 2

12

(1 ) (1 )(1 ) 0
1 (1 )(1 ) (1 ) 0

0 0 (1 )

f f m

f m m

s

d E d d E
d d E d E

D
D d G




   
     
  

C  

 

        (1)

 
where D  is a param eter defined by: 12 211 (1 )(1 ) 0f mD d d        and the fibre ( fd ) and  
matrix ( md ) damage variables can have di fferent values in tension ( ,ft mtd d ) and compression 
( ,fc mcd d ). The shear dam age variab le is as sumed to be dependent on the fibre and m atrix 
damages according to: 
 

1 (1 )(1 )(1 )(1 )s ft fc mt mcd d d d d       
        (2)

 
The Hashin’s criterion requires tensile and co mpressive strengths for fibre and m atrix 

directions; in addition to the l ongitudinal and transversal shear st rengths. Finally, the damage 
evolution law is based on a linear softening model where four fracture energy values (for each 
failure mode): , , ,ft fc mt mcG G G G , need to be introduced. 

 

3 PIN-LOADED PLATE PROBLEM 

Chang et al. 3 performed a large experim ental progr am on pin-loaded plates m ade of 
T300/1034C graphite/epoxy lam inate m aterial w ith diffe rent ply orientations. The test 
program included different geometries where, in addition to the material properties, the failure 
strength and failure modes we re reported. The thickness of  the plate was 3 mm. Three 
stacking sequences, of Chang’s work, ar e co nsidered in this work: [ (0/90)6]S, [( ±)6]S and  
[(0/±45/90)3]S. The nominal failure strengths and fa ilure modes reported were: 458-S (MPa), 
550-T (MPa) and 641-B  (MPa), respectively. The capital letters indicate  S for shear, B for 
bearing and T for tension failure modes.  
 

4 NUMERICAL SIMULATIONS 

The pin-loaded finite element plate model (shell SR4) and boundary con ditions are shown 
in Figure 1a. A friction coeffici ent of 0.30 (metal-composite contact Coulomb type) was used 
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together with the m aterial data repo rted. However, no data was availab le for fracture energ y 
values to describe the dam age evolution law (e.g. , , ,ft fc mt mcG G G G ). Cheng’s work indicated 
that m atrix dam age was the m ain dom inating m echanism for failure, consequently, it is 
believed that fracture energy values for fibre da mage are not cruc ial for the f ailure strength 
assessment (here we assum ed 16.2 N/mmft fcG G  , based on the elastic properties and 
element size). With respect to the matrix, one finds in the literature4,5,6 fracture energy values 
in tension, of about 0.15 to 0.30 N/mm for an  epoxy based m atrix while for the compressive 
case, we found values of 0.5 to 1. 0 N/ mm. Based on this infor mation it was decided to 
introduce in our calculations values of  0.25 and 0.50mt mcG G   N/mm. These assumptions 
complete the data required to perform the load carrying capacity assessment. 
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Figure 1: Finite element model and main results 
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The global response from  the e xperimental tests and num erical sim ulations is shown as 
stress-displacement curves in Fig ure 1b fo r the three stack ing sequences stu died. Th e 
numerical model provides a fairly good prediction of the load-carrying capacity when 
compared to the experim ents. In addition, the three failure modes were cor rectly predic ted:  
shear for th e [(0/90) 6]S ply, bearing for the [(0/±45/90) 3]S ply and tensile failure for the 
[(±45)6]S ply, see Fig. 2. 

 

 
 

Figure 2: Bearing, “tensile” and shear failure mechanisms predicted (bottom ply) 

5 CONCLUSIONS 

- Measurements of th e fracture energ y values: , , ,ft fc mt mcG G G G  are required for load-
carrying capacity failure assessment. 

- The shear dam age law proposed in the Abaqus m odel (Eqn. 2) seem s to work well 
for the problem s analysed here. However, such  a law can not be generalized and  
should be used with care. 
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Summary. The accuracy of the Cartesian grid method has been investigated for the 1D
Burgers’ equation and the 1D and 2D compressible Euler equations. Wall boundary conditions
are imposed at ghost points by interpolating the numerical solution at the corresponding mirror
points linearly or quadratically. We find that linear interpolation does not affect the accuracy
of our node-centred finite volume method. When we employ the MUSCL approach with slope
limiters, the convergence rate of the Cartesian grid method is reduced similar to corresponding
standard body-fitted methods.

1 INTRODUCTION

The Cartesian grid method1,2,3 has been becoming popular among researchers due to its
simplicity, ease of programming and less computational effort compared to body-fitted grid
methods. We have been using the ghost point treatment for embedded boundaries.

In this study we analyze the accuracy of the Cartesian grid method for the 1D inviscid
Burgers’ equation and the 1D and 2D compressible Euler equations. We impose wall boundary
conditions at ghost points by interpolating the numerical solution at the mirror points in the
fluid domain and mirroring the interpolated values to ensure reflective wall boundary conditions.
First order total variation diminishing (TVD) methods are applied for smooth as well as for shock
problems. The order of our method is increased by the MUSCL approach with minmod limiter.
The first order explicit Euler and the third order TVD Runge-Kutta methods are used for time
integration.

For the scalar problem the Cartesian grid method is applied to a smooth solution. For the 1D
compressible Euler equations the Cartesian grid method is applied to a normal shock reflection.
For the 2D compressible Euler equations we apply the Cartesian grid method to an oblique
shock wave.
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2 GOVERNING EQUATIONS

2.1 Inviscid Burgers’ Equation

The conservative form of the 1D scalar inviscid Burgers’ equation with the initial condition
reads

ut + (
1
2
u2)x = 0, u(x, 0) = sin

(
πx

xb

)
, (1)

where xb is the location of the wall.

2.2 Compressible Euler Equations

The 2D compressible Euler equations for perfect gas in conservative form are given as

Ut + (F )x + (G)y = 0, (2)

where U = [ρ, ρu, ρv, ρE]T , F = [ρu, ρu2+p, ρuv, (ρE+p)u]T and G = [ρv, ρuv, ρv2+p, (ρE+
p)v]T are the vector of the conservative variables and the flux vectors in x− and y−directions,
respectively.

3 NUMERICAL METHODS

3.1 DISCRETIZATION SCHEMES

For the spatial discretization we apply the upwind method for inviscid Burgers’ equation. We
apply the Lax-Friedrichs (LF) and local Lax-Friedrichs (LLF) method for the 1D compressible
Euler equations and local Lax-Friedrichs (LLF) method for the 2D compressible Euler equations.
To obtain higher order we apply MUSCL with minmod limiter. For time integration we use the
first order explicit Euler and the third order TVD Runge-Kutta methods.

3.2 GHOST POINT TREATMENT

Figure 1: 2D ghost point treatment

In Fig. 1 we show a simplified ghost point treatment
for the 2D case. The mathematical form of the ghost point
treatment can be written as follows

un,G = −un,M , ut,G = ut,M , (3)
ρG = ρM , pG = pM ,

where un, ut, ρ and p denote normal and tangential veloc-
ity with respect to the embedded wall boundary, density
and pressure, respectively. In Fig. 1, M and G are the
mirror and ghost points, respectively. δ is the distance
between the ghost point G and the boundary point on the
vertical grid line. The ghost point G in the solid is mir-
rored to the mirror point M in the fluid with respect to the
wall (boldface line) on a grid line. The numerical solution
at M is interpolated on that grid line.
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4 RESULTS

4.1 INVISCID BURGERS’ EQUATION

In this section we present results for the 1D inviscid Burgers’ equation. The wall is located
at xb = 0.5001 and end time is tend = 0.02. In Tables 1 and 2 we show the convergence rates of
the first and higher order methods while using linear and quadratic interpolation at the mirror
points. It is clear from these tables that linear and quadratic interpolations yield the same error
and are not affecting the accuracy of the first and higher order methods.

Inviscid Burgers’ Equation
Linear Interpolation Quadratic Interpolation

N Order L2-norm Order L2-norm
101 - 0.0018 - 0.0018
201 0.9729 0.009 0.9729 0.009
401 0.9865 0.005 0.9865 0.005
801 0.9932 0.002 0.9932 0.002
1601 0.9965 0.001 0.9965 0.001
3201 0.9980 0.001 0.9980 0.001

Table 1: First order TVD method.

Inviscid Burgers’ Equation
Linear Interpolation Quadratic Interpolation

N Order L2-norm Order L2-norm
101 - 0.1772× 10−3 - 0.1772× 10−3

201 1.5906 0.0588× 10−3 1.5906 0.0588× 10−3

401 1.5940 0.0195× 10−3 1.5940 0.0195× 10−3

801 1.6000 0.0064× 10−3 1.6000 0.0064× 10−3

1601 1.6045 0.0021× 10−3 1.6045 0.0021× 10−3

3201 1.6079 0.0007× 10−3 1.6079 0.0007× 10−3

Table 2: Higher order TVD method.

4.2 1D COMPRESSIBLE EULER EQUATIONS

In this section we present results for the 1D compressible Euler equations. The wall is located
at xb = 0.8001. At the mirror point we apply linear interpolation. For the spatial discretization
we apply the higher order LF and LLF TVD methods. In Figs. 2(a) and 2(b) we present results
for a moving normal shock wave. In Fig. 2(a) we draw a comparison between the exact and
numerical solutions of density. We observe that the density is lower after reflection from the
wall. The convergence rate of the higher TVD method is shown in 2(b). The convergence rate
is low (∼ 0.5 in the L2-norm) due to the shock wave.

(a) Comparison of incident and reflected shock for
density using the higher order TVD method.

(b) Convergence rate of density for higher order TVD
method.

Figure 2: Normal shock wave.
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4.3 2D COMPRESSIBLE EULER EQUATIONS

In this section we present results for the 2D compressible Euler equations. We verified our 2D
code for an oblique shock wave. We apply the simplified ghost point treatment adjacent to the
embedded boundary and use linear interpolation at the mirror points. For spatial discretization
we apply the local Lax-Friedrichs (LLF) method. For time integration we employ the explicit
Euler method. In Fig. 3(a) we present pressure results for an oblique shock wave at M∞ = 2
and wedge angle of Θ = 15 degrees. In Fig. 3(b) we compare the results for three grids with
the exact solution and observe grid convergence for the first order method.

(a) Computed pressure for M∞ = 2 and wedge angle
Θ = 15 degrees.

(b) Comparison of exact and numerical solutions for
different grids.

Figure 3: Oblique shock wave.

5 CONCLUSIONS

We applied the Cartesian grid method to the scalar 1D inviscid Burgers’ equation and the 1D
and 2D compressible Euler equations, and both normal and oblique shock waves were computed.
Local symmetry boundary conditions were implemented at each ghost point. Accuracy and
convergence rate of the Cartesian grid method proved to be similar to standard body fitted
methods. We observed the same accuracy for both linear and quadratic interpolation.
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Summary. Nonaxisymmetric loss of stability of a transversely isotropic non-homogeneous
plate, modelling the Lamina Cribrosa of a human eye was considered. Numerical results for
different type of non-uniformity are presented.

1 INTRODUCTION

Elevated intraocular pressure (IOP) is associated with the development of glaucomatous optic
neuropathy. The site of retinal ganglion cell dysfunction in glaucoma is the Lamina Cribrosa
(LC), a porous connective tissue spanning the scleral canal1 (Fig. 1).

Figure 1: A human eye diagram. Adapted from a diagram by the National Eye Institute.

It was found that under glaucoma the atrophy of the optic nerve axons occurs in the nar-
row zone at the periphery of LC. In this zone the edema of the optic nerve disc takes place2.
The purpose of the presented research is to analyze if such edemas could be explained by the
bucking of the axisymmetric state of the LC in the nonaxisymmetric state.
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2 MATERIALS AND METHODS

Large deformations of homogeneous circular plates under normal pressure produce compres-
sive stresses at the edges, which may cause buckling of the axisymmetric equilibrium state3.

The LC, as a soft biological tissue, was modelled as a transversely isotropic plate with radial4.
It was also assumed that the modulus of elasticity in the transverse direction was much smaller
than modulus of elasticity in the plane of the plate.

The fundamental equations of a geometrically nonlinear transversely isotropic non-uniform
plate can be represented in the form of the system
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with the boundary conditions at r = 1
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All quantities entering into (1) are dimensionless, and are related with those with dimensions
by the expressions: r = r∗/R, w = w∗/h, p = p∗R4/Eavh

4, F = F ∗/Eavh
3. Here R is the radius

of the plate; w∗ — deflection; F ∗— stress function; h — thickness of the plate; p∗ — normal
pressure; r∗ — variable radius, θ — circumferential coordinate.

We supposed that in the plane of the plate the modulus of elasticity is defined as E(r) =
E0f(r). Function f(r) decreases away from the center.

We solved the corresponding problem numerically for different functions f(r) and values E0

for the constant average value of the modulus of elasticity Eav = 1
π

2π∫
0

1∫
0

E(r)rdr.

System (1) is obtained from the determining relations of the nonlinear theory of anisotropic
plates5.

Following Panov et al.6, we used Galerkin method to determine the critical value of the load p

of nonaxisymmetric buckling. The solution of system (1) was sought in the form

w(r, θ) = A(1− r2)α(1 + r2)β +Br4(1− r2)2 cosnθ (3)

F (r, θ) = F0(r) + F1(r) cosnθ + F2(r) cos 2nθ.

To fit the boundary conditions (2) it is necessary α > 1, β > 0 . Stress functions Fi (i = 0, 1, 2)
were elevated from second equation (1).

Galerkin technique applied to first equation (1) yielded a system of two equations in A, B.

2

 --58--



Eva B. Voronkova

3 RESULTS

The values of critical loads of nonaxisymmetric buckling, pnax, for different parameter of
non-uniformity, q, are presented in Fig. 2 in case f(r) = e−qr.

771.48

39.28

1 2 3 4
q

200

400

600

800

pnax

Figure 2: The value of critical loads versus degree of non-uniformity.

It is seen that as the parameter q increases, the values of pnax decrease. For parameters
Eav = 1.43MPa, R = 1mm, h = 1mm the non-axisymmetric buckling occurs under pressure
equals about 60 mm Hg.
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Summary. The change of the cornea strain after the refractive surgeries that involves the
varying of the cornea’s thickness is examined. The stress state of the joint soft isotropic or
transverse-isotropic spherical shells of different radii, the sclera and the cornea, under uniformly
distributed Intraocular Pressure (IOP) is analyzed. The numerical solution for the 3D mathe-
matical model is obtained by means of the FEM code ANSYS.

1 INTRODUCTION

Nowadays the surgery LASEK (Laser-Assisted Sub-Epithelial Keratectomy) is widely used
refracting operation on myopia and astigmatism of myopia. The surgery is based on reduc-
tion of the cornea thickness1. The alteration of the cornea stress-strain state after LASEK
was estimated2. The cornea was considered as a flat shell and the sclera was assumed to be
substantially more rigid, than the cornea.

The purpose of the present study is to examine the cornea stress-strain state after the refrac-
tive surgeries at various ratio of the sclera and cornea elasticity modulus.

2 MATERIALS AND METHODS

The eye-ball is modeled as two joint shells, the sclera and the cornea (Fig. 1). The sclera is
represented by the open-ended uniform spherical shell. The cornea connected with the sclera is
considered as shallow uniform shell of the other radius.

To simplify the problem the eye shell is considered as a hemisphere with the free supported
edges. In the different cases shells are simulated as isotropic or transverse-isotropic.

3 RESULTS

Table 1 lists the deflection of corneal apex before and after the LASEK surgery under
15 mm Hg of IOP level.

The sclera Young’s moduli are supposed to be three3 or five4 times larger than the correspond-
ing cornea ones. Then the shells were simulated as transversely isotropic, it was also assumed
that the modulus of elasticity in the transverse direction (E′) was much smaller than modulus
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Figure 1: A human eye diagram. Adapted from a diagram by the National Eye Institute.

of elasticity in the plane (E) of the plate5. Subscripts s and c denote variables associated with
the sclera and the cornea.

The averaged radius of sclera is 12 mm, the cornea radius is 8 mm, the sclera thickness
is 0.5 mm, the Poisson coefficient of the cornea and sclera are 0.42 and 0.4 respectively, the
elasticity module of the sclera is 14.3 MPa. The deflection is measured in 10−3mm.

Isotropic Cornea Anisotropic Cornea

Thickness, mm h = 0.42 h = 0.52 h = 0.62 h = 0.42 h = 0.52 h = 0.62

Ec = Es/3 17.2 13.2 10.4 546 480 424

Ec = Es/5 31.1 24.8 21.5 751 652 569

Table 1: Deflections of the cornea apex for isotropic and anisotropic shells (E′ = E/20) under 15 mm Hg
of IOP level.

4 CONCLUSIONS

Comparison of the results for isotropic and transversely isotropic joint shells shows that
anisotropy has significant effect on the value and shape of the cornea deflection (Fig. 2): (2a)
isotropic shells, (2b) transverse-isotropic shells.

Figure 2: Deflections of the joint isotropic and anisotropic shells.
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The deflection of the cornea modelled as a transverse-isotropic spherical shell is larger than
for an isotropic shell. The deflection shape of the transverse-isotropic shell well agrees with the
shape of the actual the cornea.
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Summary. Three different mechanical models describing the “pressure–volume” relationship
for a human eye are considered. The relation “pressure–volume” is obtained for the eyeball
shell, which is modeled as ellipsoidal transversal isotropic shell. In the second model the sclera
and cornea are simulated as a joint shell consisting of two spherical or ellipsoidal segments with
different radii and different mechanical properties at that the sclera and cornea are assumed
to be transversal-isotropic shells with small modules of elasticity in the thickness direction.
Finally sclera and cornea are considered as 3D elastic solids and in this case the relationship
“pressure-volume” is analyzed numerically by means of FEM package ANSYS.

1 INTRODUCTION

As it is noted1,2 the knowledge of the effect of the intraocular volume (IOV) on the intraocular
pressure (IOP) in a human eye is important to draw a physically correct conclusion from the data
of standard measurement procedure used in ophthalmology. Clinical tonometry and tonography,
recently developed methods to assess the ocular pulse amplitude and pulsatile ocular blood flow
and measurements with Ocular Response Analyzer, are based on the concept of ocular rigidity.
The ocular rigidity is a parameter, which characterize the “pressure–volume” relationship in the
eye3,4.

The relationship “pressure–volume” for a certain eye can also help to estimate the mechanical
parameters of the cornea and sclera for a living eye. Therefore it’s important to reveal which
mechanical characteristics affect the most significantly on this relationship “pressure-volume”
for a human eye.

An outer shell of the eye — fibrous shell — consists of the cornea and sclera. The sclera
forms more than 90 % of fibrous eye shell and the sclera is tougher than the cornea. For people
with normal sight the sclera has a shape close to spherical one. That is why in all models of the
first type the eye shell was represented as “one segment” spherical shell. However, it is known
that myopic and hyperopic eyes have out-of-sphericity shapes. As it has been noted5 the shape
of the sclera or cornea under myopia and hyperopia may differ significantly from spherical, and
the shape of the sclera differs from spherical most often.
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2 MATERIALS AND METHODS

With the first simple model we consider ellipsoidal transversely isotropic shells of revolu-
tion of different shapes (modeling the sclera) with equal initial volumes under inner pressure.
The results are obtained for different sets of parameters.

In Fig. 1 the increasing of IOV under the pressure 45mm Hg as a function of the ratio of
axial length (2R2) and the equatorial diameter (2R1) is plotted. In Fig. 2 the effect of absolute
and relative change of IOV on IOP variation is presented.
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Figure 1: Relative change of IOV versus ratio of axial length (2R2) and the equatorial diameter (2R1).

If the ratio of the axial length (Axl) and the equatorial diameter of the shell (Deq) increases
(shell modeling a myopic eye), then factor K (∆P/∆V ) decreases up to 5%. If the ratio Axl/Deq
decreases (shell modeling a hyperopic eye), then factor K significantly decreases up to 20%.
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Figure 2: Effect of absolute (dashed line) and relative (solid line) changes of IOV on IOP variation.

In Fig. 3 the relation IOV − IOP is plotted for “one segment” and “two-segment” models,
when we take into account the properties of the cornea. Sclera and cornea are assumed to be
transversaly isotropic shells with small modules of elasticity in the thickness direction. Modules
of elasticity in the tangential directions for cornea are three times smaller than module of elas-
ticity for sclera in the tangential directions. This case is analyzed with the help of the applied
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shell theory by Rodionova–Titaev–Chernykh and by means of FEM package ANSYS. Results
obtained with both models are well agreed.
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Figure 3: Relative change of IOV for “one-segment” model (solid line) versus “two-segment” model
(dashed line).

3 CONCLUSIONS

Both the orthotropic properties of the sclera (the ratio of two tangential modules of elasticity)
and the non-uniformity of the sclera affect greatly on the character of the pressure-volume
relationship and, thus, on the rigidity of a human eye. Geometric and elastic properties of the
cornea also affect the relationship, although to the less extent. It’s important, that the initial
intraocular pressure also influences on the factor of rigidity K (∆P/∆V ), as it is described1,2.
The less initial IOP leads to the less factor K.

4 ACKNOWLEDGMENTS

The research was supported in part by SI-sponsored Visby program from KTH and by RFBR
grant 09-01-00140a.

REFERENCES

[1] A.A. Stein. Pressure–Volume Dependence for Eyeball under External Load. Fluid Dynam-

ics, 45, 177–186, (2010).

[2] G.A. Lyubimov. Opportunities of the Elastometry Method for Investigating for Elastic
Properties of the Eyeball Shell. Fluid Dynamics, 45, 169–176, (2010).

[3] O.W. White. Ocular elasticity? Ophthalmology, 90, 1092–1094, (1990).

[4] P. Purslow, W.S. Karwatowsky. Is engineering stiffness a more useful characterization pa-
rameter than ocular rigidity. Ophthalmology, 105, 1686–1692, (1996).

[5] G.K. Lang. Ophthalmology, Stuttgart–New York, Thieme, (2000).

3

 --65--



23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c©KTH, Stockholm, 2010

MATHEMATICAL MODELS FOR APPLANATION
TONOMETRY

SVETLANA M. BAUER, ANGELINA A. ROMANOVA AND
BORIS N. SEMENOV

St. Petersburg State University
Faculty of Mathematics and Mechanics

28 Universitetskii pr., 198504 St. Petersburg, Russia
e-mail: s bauer@mail.ru, web page: http://www.math.spbu.ru

Key words: Intraocular Pressure, Tonometry, Eyeball Shells.

Summary. Three mathematical models for measurement of the intraocular pressure by the
applanation method are discussed. The eyeball is modeled as two conjugated elliptic shells.
The effect of out-of-sphericity of corneal and sclera shape on applanation tonometry readings is
estimated.

1 INTRODUCTION

Applanation tonometry estimates intraocular pressure (IOP) by quantifying the force needed
to generate the defined deformation of the cornea (flat tonometer tips similar to the Goldmann
tips) or by estimating the diameter of the circular contact area between the cornea and flat
tonometer under the given load (Maklakoff tonometry). Due to new types of refractive surgery
the problem of the IOP measurements standardization and the assessment of the effect of in-
dividual variations in geometrical and mechanical parameters of the eyeball on the accuracy of
IOP readings acquire special attention. Recently, a number of studies on Goldmann tonometry
modeling were published1,2. Since the contact zone of the Goldmann tonometer and a cornea is
small it is assumed usually1,2 that the perturbation introduced to fibrous coat by the Goldmann
tonometer is localized near the contact area, and on the conjunction of a cornea with a sclera
this perturbation is quite small, i.e. it was supposed that cornea deformation depends mainly on
the cornea properties. However, as it was reported2, a sclera may have a essential impact on the
deformation process not only under the Maklakoff tonometry, but even under Goldmann’s one.
It is known that the contact zone of the Maklakoff tonometer and a cornea, especially for 10 g
tonometer, is considerably larger than the contact zone under Goldmann tonometry, therefore,
an effect of a sclera on corneal deformation could be significant. Thus, developing of a complete
model, which takes into account properties of the sclera and the cornea, is highly important
problem.

2 MATERIALS AND METHODS

The model, which takes into account properties of the sclera and the cornea, was proposed3.
The eyeball was modeled as two spherical shells. However, myopic and hyperopic eyes have
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out-of-sphericity shapes. As it was noted4, either curvature of sclera and elongation (Fig. 1a)
or shortening (Fig. 1c) of an anterior-posterior axes or curvature of a cornea (Fig. 1b, 1d) could
lead to myopia or hyperopia.

Figure 1: Axial myopia (a) and hyperopia (c), refractive myopia (b) and hyperopia (d). Adapted from
a diagram by [4].

Three mathematical models for measurement of the intraocular pressure by the applanation
method are discussed. The eyeball is modeled as two conjugated elliptic shells. The two segments
shell is filled with uncompressible liquid under the pressure.

The analytical model is based on the theory of momentless (membrane) shells. The nonlinear
theory of shell is used to analyze the significant deformations of the shell part, which models
the cornea.

The numerical models are analyzed by means of FEM code ANSYS. In the first case the
cornea and sclera are modeled as 3D elastic transversal isotropic solids. In the second case
cornea is considered as the multilayer shell. The results for different models are compared.

Comparison of the results received with different models reveal good agreement but defer in
details.

3 RESULTS

It is assumed that cornea and sclera are the parts of elliptic shells. This assumption per-
mits to study the effect of out-of-sphericity of a corneal and sclera shapes as well as radii of
segments on applanation tonometry readings. The results are obtained over a wide range of
the parameters of sclera and cornea. The calculations show that the real IOP becomes smaller
for more prolate cornea for same contact area. The difference in the corneal and sclera radii
of curvature could cause the measurement error of applanation tonometry IOP readings ranged
between 3% and 25%. It should be noted that the simulation results are in good agreement with
the experimental data5. As an example the modeling of the IOP measurement after refractive
surgery is presented in Fig. 2.
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Figure 2: Contact stress distribution after 50 µm and 100 µm central ablation. True IOP level is 15 mm
Hg, radius of curvature at the apex R — 7.8 mm, corneal base diameter D — 11 mm, internal radius of
the sclera Rs — 12 mm.)

The developed mathematical model could give one of possible biomechanical explanation for
the occurrence of false IOP readings during AT measurements. Corneas with flatted profile
and/or IOP lower than 15 mm Hg can cause “corneal collapse” — detachment of cornea surface
from the tonometer under the applanation tonometry procedure.
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Summary. This contribution considers the steering of motion of a mechanical system from an
initial state to a target state as an optimal control problem. Suitable FE-approximations for
the state and control variables are discussed along with a goal-oriented a posteriori estimate of
the discretization errors.

1 INTRODUCTION

A particular class of optimal control problems concerns the steering of motion of a mechanical
system from an initial state to a target state (target or trajectory control). The motion of
the system depends on forces acting as controls via a set of ordinary differential equations.
Upon considering the equations of motion and the relevant kinematic and kinetic limitations,
a constrained optimization problem can be formulated where the control forces are sought to
minimize a chosen objective function, such as the energy consumption. In this contribution we
study the musculoskeletal motion of a human body considered as a discrete mechanical system2,4.

2 DISCRETIZATION OF THE OPTIMAL CONTROL PROBLEM

In order to solve the optimal control problem numerically, approximations for the state (gen-
eralized coordinates and momenta) and control (generalized forces) variables are introduced.
The approximations are made in a finite element fashion, such that the state and controls are
expressed in terms of (vector-valued) nodal values and basis functions in time. In particular,
the control and displacement state variables are discretized separately. For the introduced ap-
proximations, the optimality conditions are expressed in weak form, resulting in a nonlinear
system of the sought nodal values determining the discrete solution for the state and control.
The subject of the present work is to determine the error in the approximate solution compared
to the exact solution.

From the optimality conditions on weak form, we may employ previous work on a posteriori
error estimates based on the pertinent dual problem to estimate discretization errors in both
state and control variables. The sources of errors can be traced to specific regions of the state and
control time-meshes, which can be used in an adaptive mesh-refinement procedure. Earlier work
on a posteriori error estimation for optimal control problems have been based on the ”optimal

1
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control” approach1,5, whereas the present contribution will use our previous work in error control
for parameter identification problems based on a tangent form of the dual problem3.

3 NUMERICAL EXAMPLE

To illustrate the theoretical strategy, we study an example presented in4 of a very simple
dynamical system (a double pendulum) representing the movement of the upper arm in the
sagittal plane. The arm is to be lifted from vertical hanging to a horizontal straight position
using minimal energy (or related measure) without violating anthropomorphic constraints (the
opening angle of the elbow must be between 0 and 135 degrees) and control constraints (the
control variables are restricted by maximum and minimum values). The solution algorithm is
based on a nested format with a relaxation of the constraints.

Target state

Initial state 0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

 

 

u1
u2
u3
u4

0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

 

 

p1
p2

Figure 1: Left: Plot of the arm from vertical hanging to a horizontal straight position. Right: Comparison
of the solved state (u1-u4) and control (p1-p2) variables using fine (dashed line) and coarse discretization
(solid line).

The numerical example indicate that a discretization error in the control variable arises in
order to ”compensate” for discretization errors in the solution of the equations of motion.
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1 INTRODUCTION 
 Induced acceleration analysis (IAA) is a method for computing the accelerations produced 
by an application force or moment to a  body or system of  bodies1 and has been used to 
quantify potential of a muscle force to flex/extend joints, to support and to forward propel the 
body during walking2. 
 The foundation for generating simulations relies on interactive computer-implemented 
musculoskeletal models which are constructed based on various authors’ own assumptions 
and simplifications. Schwartz et al.3 has modelled the foot-ground contact as rigid contact, a 
moving revolute joint instantaneously located at the center of  pressure (COP). Alternative 
approaches have included a ba ll-socket joint at initial contact and toe-off, and r igid contact 
during foot-flat. In rigid contact modelling, the use of  appropriate joint constraints and 
accurate locations of COP are key factors in validating the investigation of interest.  
 The aim of the present study was to determine the influence of Case 1: location of the COP 
and Case 2: varied constraints of  foot-ground joints on potential dynamic function of  the 
ankle muscles during the stance phase. 

2 METHOD 

2.1 Mathematical model for induced acceleration analysis 
The generalized equations-of-motion of a multi-articulated body system4 can be written as: 

                                                   (1) 

Where qqq  ,, are the vectors of generalized coordinates, velocities and accelerations; )(qI 
the 
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system mass matrix; Mf


 the vector of muscle forces; )(qR 
the matrix of muscle moment 

arms; )(qG 
 the vector of gravitational force; )q,q(C 2

 the vector of Centripetal and Coriolis 
forces; ),( qq 

Γ  the vector of ligament torques; EF


, the vector of external force. 

Thus the accelerations q are: 
 (2) 

Since 1)q(I −
 is non-diagonal, the contribution of an individual muscle force M

if


 to the 
instantaneous accelerations of the segments q  is presumed to be the summed contribution 
arising from M

if


 at that instant, and the ground-reaction force due to the immediate past 
trajectory of M

if


. Eq (2) can be reformulated as Eq (3) while all other force terms were set to 
zero.                     

                                                                                                                                                                                       (3)                                                                                      

2.2 Musculoskeletal model and configuration data 
 A generic 3D linkage model was scaled to fit each specific subject, configured by gait data 
and driven by 1 N muscle force. The model consists of  28 rigid segments and 88 lower 
extremity muscles. Muscle paths, bone geometry, and segment inertial parameters were based 
on previous study5. Analyse were performed i n SIMM and SD/Fast. Captured motion data 
from f ive healthy controls (age: 28±3 yrs) examined using a motion capture system (Vicon 
MX40) was analyzed. 

2.3 Foot-ground contact 
 Foot-ground contact was modelled in four sub-phases: initial-contact to foot-flat ( ‘1st 
rocker’), foot-flat (‘2nd rocker’), heel lift to toe-flat (‘3rd rocker’) and toe-flat to toe-off (‘toe-
off’). Three ground-foot joints were added in the model- at the posterior inferior point of the 
heel (‘GFH’), the distal end of  the third metatarsal ( ‘GFM’), and the lifting point of  foot 
(‘GFT’) respectively- which served as the constraint for the estimated COP in gait.  
 Case 1: The lateral and medial shift of the locations of COP was modelled by moving foot-
ground joints laterally or medially by 10% of the subject’s foot width. 
 Case 2 : ‘Simple’ and ‘Multiple’ constraints were applied to the foot-ground joints. 
‘Simple’ constraint referred to modelling a ball-socket joint at a ll sub-phases other than the 
2nd rocker, where the foot was completely fixed to the ground. ‘Multiple’ constraint referred 
to varying degrees of f reedom ( DOFs) allowed in the sub-phases. The same constraints as  
‘Simple’ were allowed in the 1st and 2nd rockers. In the 3rd rocker, only a sagittal DOF was 
allowed at the GFM joint. In toe-off, sagittal and transverse DOFs were allowed at the GFT 
joint.  

3 RESULTS 
Case 1 
 An example of  tibialis anterior’s IAA is  shown in Figure 1A and 1B . No obvious 
differences can  be  seen in the fore-aft or vertical potential accelerations of the  body COM. 

}Ff)q(R)q,q()q(G)q,q(C{)q(Iq EM
21 




 ++++= − Γ

}
i
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Smaller lateral body COM potential accelerations were found in the 3rd rocker when COP 
was shifted laterally, and even smaller when the COP was shifted medially. 

At the hip joint, abduction, instead of adduction potential acceleration was found in the 1st 
rocker when COP shifted medially. Otherwise, the general trends were similar at other lower 
limb joints. Some discrepancies can be found in the 1st rocker. 

Figure 1: (A) Center of mass potential accelerations induced by tibialis anterior in the stance phase. (B) Induced 
potential accelerations at the hip, knee, ankle and subtalar joints by tibialis anterior in the stance phase.  Lines 

illustrate the average IAA data in the observed gait, and with COP shifted laterally and medially. 

Case 2 
 The tibialis anterior’s potential to accelerate t he body COM in the fore-aft and vertical 
directions was similar with the ‘ Simple’ and ‘Multiple’ constraints (Figure 2 A). The 
‘Multiple’ constraints, however, had potential to accelerate the body COM medially, and the 
‘Simple’, laterally. General t rends of  induced accelerations at hip, knee, ankle and subtalar 
joints were similar ( Figure 2B). With the ‘ Simple’ constraints, larger hip abduction and 
subtalar eversion accelerations were found in the 3rd rocker. 

Figure 2: (A) Center of mass potential accelerations induced by tibialis anterior in the stance phase. (B) Induced 
potential accelerations at the hip, knee, ankle and subtalar joints by tibialis anterior in the stance phase. Lines 

illustrate the controls’ average data with ‘Multiple’ and ‘Simple’ foot-ground constraints. 
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4 DISCUSSIONS 
 A foot constraint model determines how  the interaction of  the foot and floor will be  
defined during stance phase of gait. Particularly in IAA, it plays an important role since only 
muscle force and corresponding ground reaction force are present in the dynamic equations. 
As e xpected, the multiple vs  simple constraints did not  pr oduce obvious differences in the 
muscle’s sagittal plane potential accelerations, e.g. knee extension-flexion, and fore-aft and  
vertical COM, but larger deviations were found in the frontal and transverse planes in the 1st 
and 3rd rockers. Potential accelerations of body COM towards the lateral direction implies that 
the constraint changes in the frontal and transverse planes are more influential in the medial-
lateral induced acceleration. 
 There are many sources of  errors in data generation using IAA, wherein the location of  
COP can be  considered one  of  them. Kimmel has concluded that moving the COP location 
had the smallest effect among changing the location of muscle origin, muscle insertion, joint 
center and COP6. In our study, when COP was shifted, we found that deviations mostly 
occurred in the 1 st rocker only few in the 3 rd rocker when foot has more f reedom to move. 
Compared to the knee and hip joints, the ankle and subtalar joint induced accelerations were 
more affected due to their more proximal location and the muscle’s anatomical function. It is 
worth mentioning t hat t he 10%  f oot width was equivalent to an average of  8.5  mm in our  
study, and only 1N muscle force was applied, which are both rather trivial magnitudes. 
Further investigation, e .g. increasing deviations of  the COP location, will be  valuable to 
confirm how much IAA results can be affected. 

5 CONCLUSION 
In the current study, we found that the potential induced accelerations in lateral-medial body 
COM were more sensitive to the foot-ground constraints as well as the COP locations than in 
other directions. Although the general trends at the lower extremity joints were similar in both 
cases, 1s t rocker and 3rd rockers are the most affected sub-phases. Care should be taken in 
applying foot-ground constraints, depending on the specific investigation of interest. 
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1 INTRODUCTION 

Development of new material models also involves experimental efforts where well 
defined material tests are required for calibration of the model parameters. At present, the 
static uniaxial tension test is the simplest mechanical test used for material characterization. 
However, for polymeric materials determination of the true tensile stress-strain curve is 
difficult. Digital image correlation (DIC) is a technique that can overcome this difficulty. 
Furthermore, interpretation of experimental data and its utilization for material calibration can 
be cumbersome because of strain rate and temperature dependency. The variables involved in 
the thermo-mechanical characterization are highly coupled; consequently, material 
identification by trial and error procedures can be inefficient. 

 Alternatively, nonlinear inverse computational methods can be applied to identify material 
parameters in cases where the parameters are not directly measurable or the deformations 
fields are of heterogeneous nature (e.g. complex boundary conditions, loss of homogeneity 
during the deformation process). Such methodology is applied here.  

2 CONSTITUTIVE MODEL 
Polymers are increasingly being used in the transport industry, specially, in structural 

components related to passengers or pedestrian safety. In this direction, a new hyperelastic-
viscoplastic constitutive model for thermoplastics (under isothermal conditions) has been 
developed by Polanco-Loria et al.1 (see Fig. 1). 

A complete description of the model is given in the corresponding reference1. With respect 
to the plasticity response of Part A (see Fig.1) the model has been enhanced to include 
isotropic hardening/softening behavior according to Voce’s saturation model: 
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  1 expsat
T

pHR         
(1)

where, R is the stress hardening level. The hardening/softening modulus is represented by 
H , the saturation and yield tensile stress by sat and T , respectively. Hence, for the 

hardening case sat
T  while for the softening case sat

T  :  
  

Network 
stretching

Stiffness

Flow

Plasticity

Part BPart A

 FA FB

 Total

Part A 
(intermolecular)

Part B
(network)





 
 

Figure 1:   Constitutive model with inter-molecular (A) and network (B) contributions 
 

The constitutive model requires 11 parameters to be identified: 
 Spring A  represents the initial elastic stiffness with a Neo-Hookean formulation.  

There are two elastic coefficients E (Young’s modulus) and  (Poisson’s ratio). 
 Friction element A models the yielding process with pressure dependency and a non-

associative flow rule. Three parameters in this friction element are needed: the 
uniaxial yield tensile stress T , the pressure sensitive parameter   and the volumetric 

plastic strain control parameter  . The hardening/softening behaviour necessitates 

two additional terms (see Eqn. 1): and satH  . 
 Dashpot A  is included to represent the rate dependence of the material. The visco-

plastic multiplier uses a linear (log scale) strain rate law characterized by two 
parameters:  the reference strain rate 0  and the strain rate coefficient C . 

 Spring B  represents the elongation of the molecule chains, here modeled with a 
hyperelastic law. Only the distortional stress-stretch relation is used here where two 
hardening coefficients RC  and L need to be identified. 
 

The model has been implemented as a user-defined model in the explicit solver LS-
DYNA2 using a semi-implicit algorithm.  
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3 MATERIAL PARAMETER IDENTIFICATION PROCEDURE 

3.1 The parameter identification methodology 
The calibration procedure is cumbersome because the nine variables, describing the non-

linear behavior, to some degree are coupled to each other. In addition, local strain rates 
change during the tests. Indeed, because of the necking phenomenon, global and local strain 
rates can be rather different and homogeneous strain rates fields can be difficult to achieve. 
For this reason an inverse modeling methodology for thermoplastic materials was proposed 
by Polanco-Loria et al.3 where the locally measured strain rate history, associated to the true 
stress-strain response, was applied to “load” the FE “material point”. The identification 
procedure could be performed by comparing the numerical and the experimental response 
history by minimizing the least square residual (LSR), see Fig. 2. The methodology was 
successfully applied to a PP copolymer material4. 
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Figure 1: Parameter identification methodology

3.2 Application to HDPE and PVC thermoplastics 
An extensive experimental program on HDPE and PVC thermoplastic materials was 
performed by Hovden5 using DIC and from that study a semi-analytical identification 
procedure was proposed. Hovden’s results are used as the main input for our procedure. The 
methodology is restricted to the identification of 5 variables contained in the design vector 

Tsat
R LC H     x which characterizes the hardening response together with the 

volumetric plastic strain. The two elastic parameters, the two strain rate parameters, the 
pressure sensitivity and the yield tensile stress were kept constants with the values proposed 
by Hovden as an initial guess for the optimization procedure. In this way a more reasonable 
comparison could be traced between the semi-analytical and inverse procedures. The 
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optimization method uses the response surface technique and it was performed using the 
software LS-OPT6. The obtained results are given in Table 1. The two methods provide 
different sets of material. It is believed that the observed deviations are, mainly, due to a) 
variations in the local strain rates with respect to the global one (e.g. about 4 times for the 
HDPE and about 2.5 times for the PVC), and b) the direction of the plastic flow does not 
remain constant during the deformation process. Nevertheless, the semi-analytical model is 
very useful because of its practical purpose (e.g. industry) and because it can be used to 
generate the initial guess data for the inverse modelling procedure.   
 
  (MPa)sat (MPa)H  (MPa)RC  L    

HDPE Semi-analytic. 23.90 39.60 1.74 7.75 1.04
Inv. Mod. 22.65 49.52 1.96 12.45 1.03

PVC Semi-analytic. 37.80 15.00 6.07 1.71 1.27
Inv. Mod. 39.25 11.62 6.11 1.73 1.22

 

Table 1 : Comparison between inverse modeling and semi-analytical identification 
procedures 

4 CONCLUSIONS 
- An inverse modelling approach to identify material parameters, with applications to 

HDPE and PVC thermoplastics, has been described. An experimental set of 
vol        relations are needed.  

- A semi-analytical model is useful for industrial applications as well as an initial guess 
assessment for the inverse modelling procedure.  
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Summary: Novel Monte-Carlo simulation methods have been developed for examining how 
the tie-chain concentration of polyethylene and other semi-crystalline polymers affect the 
mechanical material properties.  

 
 

1 ESTIMATING TIE-CHAIN CONCENTRATION 

 
When polyethylene and similar semi-crystalline polymers are cooled from melt, typically 

small crystal nuclei eventually form throughout the material. From these nucleation points 
stacks of thin crystal lamellae starts growing radially outwards, often forming superstructures 
like spherulites and axialites. The orientation of each crystal lamellae is depending on both 
the chemical and physical properties of the material and on the processing conditions. 
However, they usually become more parallel with increasing crystallinity. Between the layers 
a portion of amorphous (i.e. non-crystalline) polymer always remains.  

 
A polymer chain leaving a section of a crystal lamellae thus has the following options: (1) 

immediately return into the same crystal from where it came, (2) enter the amorphous region 
for a while but eventually return into the initial crystal, (3) enter the amorphous region and 
end there, and (4) enter the amorphous region and propagate to an adjacent crystal lamellae. 
The fourth alternative means that a tie-chain is formed. The number of tie-chains leaving a 
unit area of fold surface largely controls the fracture toghness of semi-crystalline polymers 
like polyethylene.  
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Figure 1: Schematic visualisation of four crystal layers consisting of four polyethylene chains coloured in red, 
blue, green and yellow. The tie-chains connecting the layers together are for simplicity plotted as straight lines 

even though the polymer chains in reality are heavily curved in the amorphous regions between the crystals.   

 
Several theoretical models for estimating the tie-chain concentration for linear 

polyethylenes have previously been suggested. Many molecular dynamics studies have also 
been focused on the amorphous interlayer of polyethylenes. Anyhow, to our knowledge none 
of the previous simulations have systematically studied how the tie-chain concentration is 
affected by polymer-branching density, molecular weight, crystal thickness and temperature. 
Neither have any other kinds of entanglements than tie-chains been taken into account.  

 
As a part of a larger multi-scale project covering not only mechanics but also diffusion, 

heat transfer and dielectrics, we have developed a Monte-Carlo model¹ that is able to examine 
the influence of the properties previously mentioned. Some preliminary results of the model 
will be presented on the conference.  
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Summary. The mechanical  properties of  micron-sized  composite  polymer  particles have 
been investigated by using a nanoindentation-based flat punch technique. The contact load-
displacement relationship of particles has been established and the stress-strain relationship 
has been determined. An interesting size effect on mechanical properties of both polymer 
particles and metallized polymer particles has been found. The smaller the particle size is, the 
stiffer the particle is. Finite element analyses indicate that different mechanisms dominate the 
size effect of two types of particles. 

 
 
1 INTRODUCTION 

Ugelstad monodisperse polymer particles have been widely used in chemical industries 
and biotechnology  [1]. Recently there is a growing interest in polymer particles with potential 
application in new electronic packaging technologies, such as Anisotropic Conductive 
Adhesives (ACA) in Flat Panel Displays  [2]. The particles are conductive through deposition 
of nano-scale metal coating on the particle surface. The metallized particles usually consist of 
a micron sized polymer core for improving contact compliance, a nanoscale Ni inner layer for 
obtaining electrical conductivity, and a nanoscale Au outer layer for protecting inner layer 
from oxidation and improving the reliability of electrical performance.  The use of metallized 
polymer particles in ACA technology possesses many advantages in terms of lead-free, 
reducing package size and achieving high-density interconnections. The electrical 
characteristics as well as the reliability of the interconnection are mainly determined by the 
mechanical performance of the conductive polymer particles. Therefore, the mechanical 
performance of particles is of crucial importance to a reliable connection. This motivates us to 
study the large deformation behaviours of composite polymer particles. Both experiment 
study and finite element analysis have been carried out to study the mechanical properties of 
composite polymer particles. 
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2 EXPERIMENT 

2.1 Materials 
Both polymer particles and metallized polymer particles were tested. The chemical 

composition of polymer particles was 98% polystyrene slightly crosslinked with 2% 
divinylbenzene (PS-DVB). The PS-DVB particle sizes were varied from 2.6 to 25.1μm. The 
core of metallized polymer particle was strongly crosslinked by 40wt% acrylic with 60wt% 
diacrylic (AC-DAC). The core sizes were 3.8μm and 4.8μm in diameter. The Ni and Au were 
deposited on the polymer core by an electroless plating process. The thickness of Ni inner 
layer and Au outer layer was about 50nm and 25nm, respectively. 

2.2 Experiment 
The mechanical test of single acrylic particles was performed by using a nanoindentation-

based flat punch methodology. A diamond flat punch of 100μm in diameter was specially 
designed to compress single particles. During compression the real time force and 
displacement on particles were monitored and the contact force–displacement curves were 
obtained. To compare the particle behaviour, the stress–strain relationship was calculated as 
follows: 

 

2N R

P


                                         ( 1 ) 

R

D
εN                                              (2) 

 
where P was the applied force, D was the half displacement during compression and R was 

the radius of undeformed particle. 

2.3 Finite element Analysis 
Large deformation finite element analysis (FEA) with ABAQUS was carried out to study 

the mechanical behaviour of single polymer particles. The material was assumed to be linear 
elastic and axisymmetric elements were used to model particles. Axisymmetric analytic rigid 
surface was used to model the diamond flat punch. Very fine mesh was used in the contact 
region. The minimum element size in the model was about 0.1% of the initial sphere radius. 
The mesh and model used in the analysis are shown in Figure 1. 

 

 
Figure 1: Finite element analysis with non-linear geometry. 
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3 RESULTS AND DISCUSSION 
The normalized compressive stress of PS-DVB particles at 4% deformation level with 

different strain rates are plotted in Figure 2, in which the compressive stress is normalized to 
the value of the smallest particle. Particles display distinct size effect on the compressive 
stress. The size effect also has different trends depending on the strain rate. With the smaller 
strain rate, the size effect is most evident for the two smaller particles, whereas for the larger 
strain rate the size effect is more evenly distributed. The size effect of PS-DVB particle is 
mainly contributed by a “core–shell” structure where there is a higher crosslink density in the 
surface shell than the core due to different hydrophilicity of DVB and styrene monomers. 
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Figure 2: PS-DVB Particle size dependence of the normalized stress (a) experimental results with strain rate 0.01 

and 0.02/s at deformation level 4% and (b) finite element solutions. 

The compression stress–strain curves of uncoated and metalized AC-DAC particles are 
shown in Figure 3. The metallized particle sizes are 3.875 and 4.875μm, respectively, while 
uncoated counterparts are 3.8 and 4.8μm. At the beginning of loading, the metallized particle 
is significantly stiffer than the uncoated one. The occurrences of a large “pop-in” on the 
loading segment suggest that a significant change has happened to the metallized particles. 
With further deformation, one or more additional smaller “pop-ins” occurs, and finally the 
loading curves of the metallized and uncoated particles overlap each other. At this stage it is 
evident that the metal coating has no effect on the particle behaviour any more. 
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Figure 3: The compression stress–strain curves of uncoated and coated AC-DAC particles: (a) 3.8μm particles 

and (b) 4.8μm particles. 
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The stress–strain relationship of two metallized particles is compared in Figure 4 (a). The 
pop-in on both particles occurs at around 18% deformation. A particle size effect can be 
clearly observed, which shows that the 3.8μm particle is harder than the larger 4.8μm particle. 
This is consistent with the PS-DVB particles. Unlike the mechanism of size effect on PS-
DVB particles, the presence of the metal coating significantly influences the particle 
behaviour. Since the metallized particles have different core size but same coating thickness, 
the volume fraction of the metal coating in two metallized particles are different. This results 
in the particle size effect. The finite element solutions of metallized AC-DAC particles and 
uncoated AC-DAC particles are shown in Figure 4 (b). Metallized particles are much stronger 
than uncoated ones, in agreement with experimental results. Two uncoated particles behave 
identical while metallized particles display a particle size effect that the smaller particle is 
harder. This demonstrates that the metal coating plays a dominate role on the particle size 
effect. 
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Figure 4 : AC-DAC Particle size dependence of the normalized stress (a) experimental and (b) Finite element 

solutions. 

4 CONCLUSIONS 
The mechanical behaviour of PS-DVB polymer particles and metallized AC-DAC particles 

was studied by using the nanoindentation–based flat punch method. A size effect of both 
particles was discovered. For the PS-DVB polymer particles, a core-shell structure is possibly 
a main contributor; while the presence of nanoscale metal coating is the leading factor for the 
metallized AC-DAC particles. The findings have important implications in the design of the 
metallized polymer particles for electrical packaging applications. 
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Summary. The effect of crosslinked and branched polyethylene molecules on the thermo-
mechanical properties (eg. bulk density, glass transition temperature Tg, Young’s modulus E 
and Poisson’s ratio v) has been investigated using united-atom molecular dynamics 
simulations. We found that all values of v with present branched and crosslinked molecules 
are almost independent of the molecular shapes and are about a constant 0.4 at 200K. The 
bulk density and E increase with the increase of crosslink density remarkably, while Tg does 
not seem to be sensitive to it and is about 290K. For the branched molecules with same 
molecular weight, the molecular shapes have a weak effect on these parameters and the 
maximal difference among them is not more than 15%. 
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1 INTRODUCTION 
    The branched and crosslinked polyethylene (PE) molecules are more frequent in the 
industrial application and synthesis due to the important physical and chemical properties. In 
recent years, great efforts have been made for decades to clarify these properties in both 
theoretical and experimental studies. However, all of these work were seldom used to reveal 
the effect of branched and crosslinked polymer molecules on the thermo-mechanical 
properties systematically. In this study, we have extensively scrutinized their thermo-
mechanical bulk properties (eg. bulk density, glass transition temperature Tg, Young’s 
modulus E and Poisson’s ratio v) using extensive united-atom (UA) molecular dynamics 
(MD) simulations.  

2 SIMULATION DETAILS 
A united atom approximation is utilized in which the methyl groups are represented by a 

single “atom” or unit. The effect of the hydrogen atoms on the polymer’s configuration is 
accounted for in the potentials[1, 2]. In present simulation, the two different molecular 
constraint conditions have been considered (See Fig. 1). The crosslinked molecules are built 
up with 100 linear molecular chains in which every linear chain includes 142 UA beads. 2). 
The number of all UA beads in one cell (14200 UA beads) and molecular weight (C142H286) 
are both same. All of the initial configurations for each one of the simulated systems were set 
up in amorphous cells subjected to periodic boundary conditions in Materials Studio (version 
4.2) software package of Accelrys Inc.[3]. These initial structures were transformed to 
LAMMPS software[4] and all of simulations was executed in NPT ensemble and the annealing 
process are similar with our previous work[5]. 

 
Fig. 1 Schematic plot of the polyethylene molecular architecture. (Branched model represented as 

CCb*Nbr*Nfreq here) 

3 RESULTS AND DISCUSSIONS 

3.1 The effect of crosslinked molecules 
To verify the present potential and structure, we compared the bulk density and radial 

distribution functions g(r) of present results with available experimental data for linear and 
branched PE molecules. It was found that the present data are in excellent agreement with 
them. Fig. 2a and b show that the bulk density increases with increasing crosslink density and 
decreasing temperature, while Tg does not seem to be sensitive to the crosslink density. To 
reduce the effect of the different direction and facilitate the plot of the curves under both 
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tension and compression, we calculate the average stress which is under three directions (x, y 
and z) tension and compression and we define that compressive stress is negative and tensile 
stress is positive. It is found that the difference of stress-strain curves under tension with 
crosslink density is not remarkable in Fig. 2c, while it becomes more remarkable under the 
compression. With increasing compressive strain (after yield strain), the difference becomes 
larger. The corresponding E and Poisson’s ratio v are fitted by linear function at a tensile and 
compressive strain of 0.1. It can be found that E almost increases with increasing crosslink 
density, while v changes weakly with it in Fig. 2d (The difference is less than 5%). 
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Fig.2. Thermo-mechanical properties of different crosslinked shapes. (a) Bulk density. (b) Specific volume 
and Tg.  (c) The stress-strain curves and Young’s modulus. (d) Poisson’s ratio.  

3.2 The effect of branched shapes with the same molecular weight 
Fig. 3a and b show that the bulk density and Tg changes weakly with different molecular 

architecture. The difference between them is not more than 10%. The stress-strain curves and 
corresponding E with different molecular shapes also change weakly in Fig. 3c. Fig. 3d shows 
that the molecular shape has a weak effect on Poisson’s ratio (The difference is less than 5%) 
and all the values of v with present branched molecules are about a constant 0.4.  
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Fig. 3. Thermo-mechanical properties of different branched shapes. (a) Bulk density. (b) Specific volume and 
Tg.  (c) The stress-strain curves and Young’s modulus. (d) Poisson’s ratio. 

4 CONCLUSIONS 
    The Poisson’s ratio is almost independent of present crosslinked and branched architectures 
and all of the values are about a constant 0.4. The bulk density and E remarkably increase 
with increasing crosslink density, while Tg does not seem to be sensitive to it. The present 
branched shapes have a weak effect on the parameters. 
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Summary. The mechanical behaviors of 5-fold twinning FCC iron nanorod under tension have 
been investigated by a molecular dynamics technique with an embedded-atom method. 
Tension tests of the rod showed that {111} <112> dislocations pile-up at twin boundaries are 
formed as nanorods are above a threshold radius of around 2nm, and the yield strength 
increases with decreasing temperature. However, this strengthening effect becomes less clear 
as the temperature increases due to the nano-scale size effect. 
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1 INTRODUCTION 
Metallic nanorods have been synthesized extensively in the past decades due to their great 

potential application to nanomechanical and nanoelectronic devices. Recently, a new kind of 
the faceted FCC iron nanorods with a five-fold twinning structure has been fabricated for the 
first time by Ling et al.[1] These five-fold twinned iron nanorods show that {100} planes on 
their sides and are capped by {111} planes, growing along the [110] direction, same as other 
five-fold twinned FCC Ag[2] , Cu[3] and Au[4] metal nanorods. The theoretical angle between 
two (111) planes is α≈70.53°, but the β=72° angle is required to get a pentagon by jointing 5 
triangles as shown in Fig. 1a, which means the total ~7.5° gap is generated. An example 
nanorod with a pentagonal cross section is presented in Fig. 1b. Therefore, the nanorod has 
internal strain with corresponding mechanical stresses and possesses stored elastic energy.     
Therefore, the mechanical properties of these five-fold FCC twinning iron nanorods subjected 
to tension are studied by a molecular dynamics technique in the present work. Out of many 
effects upon the mechanical properties, we focus on the effects of system size and 
temperature. Comprehensive MD simulations are performed. 

 
Fig. 1 Schematic illustration of the 5-fold twinning FCC iron nanorod (a) A gap of 1.5° at 
the twin boundaries (b) An example nanorod with radius r=2.093nm, length L=66nm 

2 SIMULATION DETAILS 
Molecular dynamics simulations using LAMMPS[5] with an embedded-atom potential of Fe 

developed by Mendelev et al.[6] confirmed that such nanorods remain stable. In order to 
explore the size-dependent behavior, the iron nanorods with radius ranging from 1.114nm to 
8.706nm were modeled. The radius of the nanorod of pentagon cross section was defined as 
an average of length of a side and height of the isosceles triangle. In some literatures, the two 
ends were fixed with free boundary condition in the direction of axial loading which would 
introduce end-effect to the results. In our case, periodic boundary condition was only applied 
in the direction of axial loading. The surfaces in other directions were free. Also, the nanorods 
had same axial length 66nm, which will decrease the effect of periodic boundary condition.   

Before loading, the nanorod was fully relaxed at a constant temperature such as T=0.01, 
100, 300, 500K and a constant pressure P=0 bar under NPT conditions, the temperatures and 
pressure were controlled by a Nose-Hoover thermostat and barostat, respectively. Thus the 
nanorod could change its volume in response to the applied external pressure and the system’s 
internal stress. The volume of the nanorod was re-sized automatically to keep zero pressure 
along the length direction. After obtaining a free relaxation state, the nanorods were deformed 

(a) (b) 
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in tension by homogeneously rescaling the coordinates of all atoms in the length direction 
with a constant engineering strain rate R=2×108s-1. Prior to each rescaling step, the atoms 
virial stress, the atoms von Mises stress, and averaged stress over all of the atoms in the 
system, were calculated.  

3 RESULTS AND DISCUSSION 
   Fig. 2 shows that the stress-strain curves of 5-fold twinning FCC iron nanorods under 
tension with different radius at different temperature. The nanorods first show an elastic 
loading stage, characterized by monotonously increasing stress with increasing applied strain, 
and then the slope of the curves become less, which implies the nonlinear elasticity of 
nanorods at larger strain, followed  by a sudden stress drop. 

 

In order to investigate the size effect and temperature effect for the tensile testing, the yield 
strengths are picked up against the radius of nanorod, which is shown in Fig.3. From this 
figure, it is found that the yield strength decreases with increasing temperature. However, the 
trend of the decreasing becomes less clear as the temperature increases. Fig. 4 shows one 
snapshot of the {111} slip planes of the largest nanorod r=8.706nm at the deformation 
corresponding to the yield strength. In this snapshot, clarity perfect FCC atoms and surface 
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Fig.2 The stress-strain curves of 5-fold twinning FCC iron nanorod under tension with different radius at 

different temperature
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atoms of the nanorod are removed to visualize interior defects. Atoms are colored according 
to the von Mises stress from 0GPa to 400GPa. It is interesting that that {111} <112> 
dislocations pile-up at twin boundaries are formed as nanorods above a threshold radius of 
around 2nm during the yielding deformation process.  

 

  
Fig.4 {111} <112> dislocation piles-up at twin 

boundaries  
 

4   SUMMARY 
    Molecular dynamics simulation ware performed to investigate the mechanical properties of 
five-fold twinning FCC iron nanorods. The simulated results have shown that smaller twinned 
nanorod displays higher strength at the same temperature due to the size effect. This size 
effect becomes less as the temperature increases. {111} <112> dislocation piles-up at twin 
boundaries can be found when the radius of nanorod reaches 2nm.  
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Fig. 3 Yield stress as a function of radius at different T 
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Summary. This paper is concerned with the application of electromagnets in vibration 
control. A mathematical model of a controller with electromagnetic elements is developed 
and coupling between a mechanical, an electrical and a magnetic subsystem is modelled. 
Numerical simulations are done to compare predictions from the model with experimental data.  
 
1 INTRODUCTION 

There are two principal approaches to control vibration of machines or structures [1]: 
- Passive – no change in controller’s properties during operation; 
- Active – controller can change its properties and adjust to different conditions. 

According to ability to react on changes, there are fully- and semi-active controllers. 
Considering a machine running at constant operation conditions, passive vibration control 

can be used. However, while starting up or changing its operation cycle, machine passes its 
resonances and the semi-active controller can be used to modify the natural frequencies 
and/or reduce amplitude at the resonances. This can be achieved by: 

- Changing equivalent stiffness – changing a natural frequency of the system; 
- Introduction of damping – reducing amplitude of vibration at the resonance. 
Mizuno [2], Sodano [3] analyzed and verified utilization of electromagnet in vibration 

control from various view points, and showed that electromagnetic elements behave as: 
- Spring Element – non-linear force-displacement relationship [Figure 2 (c)] allows to 

modify (shift) the natural frequency of the system; 
- Damping Element – induced current in electromagnet due to vibration can be 

dissipated in a shunt resistance. 
This was proved experimentally [4] using clamped-clamped beam setup shown in 

Figure 1 (a). By turning the electromagnet on, a resonance was shifted to lower frequency 
region by an amount of Δf [Figure 1 (b)] and additional damping was introduced (reduction of 
the amplitude at the resonance by ΔA). It proves feasibility of using electromagnetic elements 
in vibration control.  

The paper focuses on multidisciplinary modelling of a vibration control system with 
electromagnetic element. The coupled system of equation of electro-magneto-mechanical 
interaction is solved numerically to demonstrate change both in stiffness and damping of the system. 
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(a) (b) 
Figure 1: (a) Experimental set-up used to investigate the vibration controller’s operation; 

 (b) results of impact hammer tests [4] 

2 MATHEMATICAL MODEL 

An electro-magneto-mechanical model is formulated to describe dynamical behaviour of 
the vibration controller mathematically. 

2.1 Electro-Magnetic Model 

A model of the electrical subsystem includes the RL circuit, which represents the 
electromagnet, with iron losses included, as shown in Figure 2 (a). The magnetic subsystem is 
composed of an electromagnet with a core and yoke [Figure 2 (b)]. Parameters of the model 
were determined experimentally. A force-displacement relationship of electromagnetic force, 
a coupling force between electro-magnetic and mechanical system, is shown in Figure 2 (c). 

The mathematical formulation of the electro-magnetic model is [4]: 
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see [4] for details. 
 

(a) (b) (c) 
Figure 2: Mathematical model of (a) electric circuit; (b) magnetic circuit; 

(c) electromagnetic force – displacement diagram [4] 
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2.2 Mechanical Model 

The mechanical model of the measurement setup [Figure 1 (a)] is derived in two steps: 
1. Model of the beam [Figure 3 (a)] – Euler-Bernoulli beam theory used. A beam is 

constrained at both ends by general boundary conditions, modelled by torsion and 
compression springs. Parameters of the model were found experimentally; 

2. Lumped parameter modelling [Figure 3 (b)] – to simplify analysis of dynamics of the 
mechanical model, the stiffness and mass of the beam setup [Figure 3 (a)] were 
lumped in order to reduce it to a single degree of freedom system. 

The mathematical formulation of the lumped parameter model is [4]: 
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see [4] for details. 

 
(a) (b) (c) 

Figure 3: Mechanical model: (a) general model; (b) lumped parameter model;  
(c) coupling between electro-magneto-mechanical sub-systems [4] 

2.3 Coupled Model 

Comparing Eq. (1) and (2) it can be concluded, the electro-magnetic and the mechanical 
systems are mutually coupled by two terms: displacement of the beam wvar and coil current of 
electromagnet isup [Figure 3 (c)]. Therefore, in order to model the interaction, the system of 
coupled equations, Eq. (1) and (2), needs to be solved simultaneously. 

3 EVALUATION OF VIBRATION CONTROLLER’S OPERATION  

The coupled electro-magneto-mechanical model [Eq. (1) and (2)] is solved numerically, 
using MATLAB software. Three cases are presented in Figure 4: 

a. Free vibration of coupled system [Figure 4 (a)] – time domain analyzed – increasing 
current in the coil of electromagnet, the system acquires more damping (larger 
logarithmic decrement is obtained); 

b. Forced vibration, no inductance assumed [Figure 4 (b)] – frequency domain 
analyzed – filtering out the induced current, only change in stiffness is obtained, i.e. 
resonance curves are shifted to the lower frequency region as coil current increases; 

c. Forced vibration, no stiffness change assumed [Figure 4 (c)] – frequency domain 
analyzed – if induced current is large enough, the introduction of damping is 
dominant. The higher the supply current is, the larger amount of damping is 
introduced into the system (i.e. the smaller the amplitude at the resonance is); 
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(a) (b) (c) 

Figure 4: (a) time capture of free vibration of coupled system; (b) FRF of system with no inductance assumed; 
(c) FRF of system with no stiffness change assumed [4] 

The results from numerical simulations (Figure 4) proved that the coupled model of 
vibration controller with electromagnetic element is able to mimic qualitatively behaviour of 
experimental setup [Figure 1 (b)]. The model needs to be tuned further in order to fit 
experimental data also quantitatively. 

4 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK  

The multidisciplinary model of semi-active vibration controller with the electromagnetic 
element was formulated as the system of coupled equations [Eq. (1) and (2)], which describe 
the interaction between the electro-magnetic and the vibration fields. 

The model was qualitatively verified by comparison of numerical results with measured 
data. Experimentally detected effects of the frequency shift and the damping in dynamical 
behaviour of the system due to the electromagnet were also observed in numerical 
simulations. 

The project will be continued with the quantitative analysis of the behavior of the coupled 
system. The mechanical model was verified and is found adequate [4]. However, deeper 
characterization of the electromagnet and analysis of induction process in electromagnetic 
system due to vibration of a yoke is required. The eddy current losses should be assessed as 
an additional source of damping to improve dynamic characterization of electromagnet. 
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Summary. To achieve optimum attenuation of lateral vibration of rotors, the damping effect 
must be controllable. This is enabled by magnetorheological squeeze film dampers. In this 
paper, there is presented a computational procedure for calculation of the steady state 
response of rigid rotors coupled with their casings by flexible elements and short 
magnetorheological dampers. Application of this approach makes possible to propose the 
control of the damping effect to achieve optimum performance of the dampers. 

 
 
1 INTRODUCTION 

Lateral vibration of rotors can be significantly reduced by inserting damping elements 
between the shaft and its casing. To achieve their optimum performance, the damping effect 
must be controllable. This is enabled by application of magnetorheological squeeze film 
dampers. Control of the damping effect is carried out by changing intensity of magnetic field 
in the lubricating layer. 

At present time, the magnetorheological dampers are a subject of intensive research. E.g. 
Forte et al. [1] presented results of the theoretical and experimental investigations of a long 
magnetorheological damper. In [2], Zapomel and Ferfecki introduced the mathematical model 
of a short squeeze film damper lubricated with magnetorheological liquid. The equations of 
motion of rotors attenuated by magnetorheological damping devices are nonlinear. An 
efficient tool for obtaining their steady state solution is a trigonometric collocation method. It 
was used e.g. by Zhao et al. [3] to analyze behaviour of a flexible rotor supported by classical 
squeeze dampers. Zapoměl and Malenovský [4] extended application of this method for 
investigation of rotors mounted with hydrodynamic bearings and excited by baseplate 
excitation. In this paper, the emphasis is put on application of the collocation method for 
determination of the steady state response of rotors damped by magnetorheological dampers. 
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2 CALCULATION OF THE DAMPING FORCES 

The magnetorheological dampers consist of two rings, between which there is a thin film 
of magnetorheological liquid. The outer ring is coupled with the casing of the rotating 
machine directly, the inner one by a flexible element. The shaft is supported by a rolling 
element bearing, whose outer race is coupled with the inner ring of the damper. The damping 
effect is produced by squeezing the liquid in the lubricating layer due to lateral vibration of 
the rotor. In the stationary part of the damper, there are the coils, which are the source of 
magnetic field. Its intensity in the gap of the damper influences resistance of the 
magnetorheological liquid against its flow and therefore the change of magnitude of the 
applied electric current can be used to control the damping effect. 

In the developed mathematical model, it is assumed that ratio of the length of the damper 
to the diametre of its rings is small (short damper) and that the lubricant is Bingham liquid. 

On these conditions, the distribution of the pressure gradient in the lubricating layer is 
described by the differential equation 

 . (1) 0443 32233 =′±′ yBy p)Zhh(ph τητ m&m

p' is the pressure gradient in the axial direction, τy, ηB are the yield shear stress and viscosity 
of the Bingham liquid, Z is the axial coordinate, h is the lubricating film thickness and (·) 
denotes the first derivative with respect to time. The upper signs are valid for negative, the 
lower signs for the positive pressure gradient. 

In the case of the simplest design of the damper, the inner and outer rings form a core of an 
electromagnet that is divided by two gaps. Then the relation between the yield shear stress 
and the applied current in the coil can be expressed 
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N is the number of the coil turns, I is the electric current and kB, nB are the material constants. 
The pressure profile is calculated by integration of the pressure gradient in the axial 

direction with the boundary condition expressing that the pressure at the edge of the damper is 
equal to the atmospheric one. At location, where the thickness of the oil film rises, a 
cavitation takes place. Pressure of the medium in cavitated areas is assumed to be constant 
and equal to the pressure in the ambient space. Components of the damping force are then 
obtained by integration of the pressure distribution. 
 

3 THE EQUATIONS OF MOTION OF THE INVESTIGATED ROTOR 

The investigated rotor (Fig.1) consists of a shaft and of one disc. The rotor is mounted 
with rolling element bearings, whose outer races are coupled with the casing by flexible 
elements. The magnetorheological dampers are inserted between the spring elements and the 
casing. The system is symmetric relative to the middle plane of the disc. The rotor turns at 
constant angular speed, is loaded by its weight and is excited by a centrifugal force produced 
by the disc unbalance. The springs are prestressed in the vertical direction to eliminate their 
deflection caused by the rotor weight. 
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Figure 1: The investigated rotor system 

In the computational model, the rotor and the stationary part are considered to be 
absolutely rigid. The magnetorheological liquid is modelled by Bingham material.  

Lateral vibration of the rotor is then described (taking into account the system symmetry) 

 ( ) ( )oTRdyDPR temzyzyFykybym ψωω ++=++ cos5.0,,,5.05.0 2&&&&& , (3) 

 ( ) ( ) gmtemFzyzyFzkzbzm RoTRPSdzDPR 5.0sin5.0,,,5.05.0 2 −+++=++ ψωω&&&&& . (4) 

mR is the mass of the rotor, kD is the stiffness of the rotor flexible support, bP is the coefficient 
of external damping, eT is eccentricity of the rotor centre of gravity, ω is angular speed of the 
rotor turning, ψo is the phase leg, g is the gravity acceleration, Fdy, Fdz are components of the 
damping force, FPS denotes the prestress force, t is time, y, z are displacements of the rotor 
centre and (·) and (··) denote the first and second derivatives with respect to time. 

Because of the prestress, trajectory of the rotor centre has a circular shape. This enables to 
assume the steady state solution of the equations of motion (3) and (4) in the form 

 trtry SC ωω sincos −= ,  trtrz SC ωω cossin += . (5) 

The unknown values of coefficients rC and rS can be calculated by application of a 
collocation method. This requires to substitute (5)  and their first and second derivatives with 
respect to time into (3) and (4) and to express the resulting equations at the collocation points 
of time. As the number of unknown parameters and the number of equations is 2, only one 
collocation point is needed. After carrying out the mentioned manipulations related to the 
collocation time equal to 0 s, the resulting set of nonlinear algebraic equations takes the form 

 ( ) ( ) 0,5.05.05.0 22 =−−−− SCdyTRSPCRD rrFemrbrmk ωωω , (6) 

 ( ) ( ) 0,5.05.0 2 =−−+ SCdzSRDCP rrFrmkrb ωω . (7) 

 

4 THE COMPUTATIONAL SIMULATIONS 

The task of the computational simulations was to analyze the steady state vibration of the 
rotor system, whose principal parameters are: mass of the rotor 425.9 kg, stiffness of the 
supporting springs 2.106 N/m, length, diameter and width of the gap of the damper 50 mm, 
150 mm, 1.0 mm, number of the coil turns 400, Bingham viscosity 0.003 Pa·s and the yield 

 --99--



stress material coefficients of the magnetorheological liquid 2.5 10-8 N/A2 and 2 (exponent). 
In Fig.2 and 3, there are drawn orbits of the rotor centre and time history of the force 
transmitted into the stationary part in the horizontal direction for two magnitudes of the 
applied current. It is evident that increasing current leads to reduction of the rotor oscillations 
but on the other hand also to rising magnitude of the force transmitted into the rotor casing. 
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 Figure 2: Orbits of the rotor centre  Figure 3: Force transmitted into the casing 

 

5 CONCLUSIONS 

The described approach represents a computational procedure for determination of the 
steady state response of rigid symmetric rotors supported by flexible couplings combined with 
short magnetorheological squeeze film dampers. It is intended for proposing control of the 
damping effect to achieve the optimum performance of the dampers. 
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Summary. This paper presents a task on numerical modeling to investigate the dynamics of
rotating compressor blade with different geometrical parameters. Numerical results are also
compared with FEM results to show a good agreement.

1 INTRODUCTION

Compressor blade is an important component to supply high pressure gas flow into combus-
tion chamber of turbomachinery. The dynamic behavior of blade under high rotation speed has
been studied for a long time1. Most of studies are to model blades as a beam structure2,3,4,5,6,
such as Euler beam, Timoshenko beam7 or thin-walled beam8. Beam structure with one dimen-
sion is quite widely used for both analytical and numerical calculations. Also to be deep into
details, both shell and plate theories are used to give numerical results with two dimensions.
Meanwhile, the finite element method (FEM) is utilized for blades with complex geometry. FEM
is straightforward to simulate dynamic characteristics of blades. However, the drawback of FEM
is that parametric analysis about geometry is time-consuming because in each case, a new CAD
model needs to be imported. For numerical model, it is quite easy to change arbitrary parameter
once the model is established.

2 METHODOLOGY

In this paper, a plate theory9,10 is utilized to establish a single rotating blade model with
arbitrary stagger angle at various rotation speeds. The governing equation is derived by Hamil-
ton’s Principle via integration by parts which extracts dynamic boundary conditions11,12. Since
this blade model is a cantilever plate, it is difficulty to find an analytical solution. Instead,
Extended Galerkin Procedure is used to give approximate solution including eigenfrequency and
mode shape. The idea of Extended Galerkin Procedure is to assume trial functions for unknown
variables (in this paper, i.e., displacement components). Then, the next step is to use these trial
functions as weight functions and integrate the multiple of residue with weight functions. In
Galerkin sense, the integration should be suppressed to zero, which results in a classic second
order ordinary differential equation (ODE). Finally, it only needs to solve a typical eigen value
problem.

1
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3 RESULTS AND CONCLUSION

Finite element (FE) calculations as a reference are implemented by the commercial software
COMSOL13. Fig.1 shows both numerical and FE results of a straight blade made of stainless
steel with rotation speed from 3000 to 15000 RPM and a good agreement is obtained in the
whole rotation speed range. The method is applicable for elastodynamics analysis for rotary
structure, especially blades of turbomachineries. The system of equations of motion also can be
used to perform force response analysis by using finite difference method.

Figure 1: First six eigen frequencies vs RPM (Square: Numerical results; Circle: COMSOL results)
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Summary 
    Nonlinear functions are known as vital terms to be processed and solved in most of 
engineering problems. Most scientific problems in vibration and dynamics are inherently 
nonlinear. Except a limited number of these problems, most of them do not have analytical 
solutions. Therefore, these nonlinear equations should be solved using other methods. In this 
paper, it is tried to present and apply a new analytical technique known as Max-Min method 
to solve the equations of oscillators with smooth odd nonlinearities. The results obtained in 
this study are compared with numerical results and released in the literature. Close agreement 
of the two sets of results indicates the accuracy of the Max-Min method. The method can 
obtain an expression which is acceptable for all values of effective parameters and also is able 
to control the convergence of the solution. After validating the results, influence of each 
parameter on the system response and phase plan are discussed. Finding maximum/minimum 
threshold of a solution of a nonlinear equation is easy in most of engineering problems. 
Besides, the angular frequency can be readily calculated in Max-Min method. A promising 
approach is illustrated step by step which is suggested by the algorithm. It is shown that, this 
method is not only accurate and convenient to use, but also easy to apply to other nonlinear 
oscillations extensively. 
 

1 INTRODUCTION 
Recently a large number of research have been related to nonlinear systems, because in 

most of engineering problems we are facing to nonlinear equations which are difficult to 
solve, especially analytically. Therefore, these nonlinear equations should be solved using 
methods such as homotopy perturbation method (HPM)¹¸² , homotopy analysis method 
(HAM) 3¸4 and He’s parameter expanding method (HPEM) 5¸6 .A new technique which is 
introduced recently is Max-min method. In most nonlinear problems, it is easy to find 
maximum/minimum thresholds of a solution of a nonlinear equation7.Max-min method is 
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based on this advantage of nonlinear equations. This approach is based on the relationship 
between maximum and minimum threshold and the exact value of solution. He presented the 
method for the first time and this method is based on ancient Chinese mathematics8. 
In this study Max-Min Method is used to investigate the behaviors of nonlinear problems in 
vibration. To show the accuracy and application of this method, an example is studied and it 
is compared with numerical values. 
 

2 APPLICATION OF MAX-MIN METHOD 

2.1 Example 
We consider a special case of a system to show the applicability if the method .It would be  
the equation of motion of a Duffing-type nonlinear oscillator 

0)0(u,A)0(u,
u1

uu '
2

3
'' ==

+
−=  

(1)

Note that for small u Eq.(1) becomes 0uu 3'' ≈+  
and for large u , it becomes large 0uu '' ≈+ . 
Thus, for small u, the equation of motion is a Duffing-type nonlinear oscillator, while for 
large u, the equation of motion approximates that of a linear harmonic oscillator; hence, Eq. 
(1) is called the Duffing-harmonic oscillator. The system will oscillate between symmetric 
bounds [−A, A], and the frequency and corresponding periodic solution of the nonlinear 
oscillator are dependent on the amplitude A 9. According to the initial conditions, we choose a 
trial-function in the form of following equation, which can satisfies the conditions. 

tcosAu ω=  (2)

where ω is the frequency to be determined. 
After substituting Eq.(2) into Eq.(1)  and using some simplification we can observe that 

Square of ω is greater than zero and never exceeds the 2

2

A1
A
+

so  

2

2
2

A1
A0
+

<ω<  (3)

According to He Chengtian’s interpolation, we have 

2

2

2

2
2

A1
kA

)A1(nm
nA)0(m

+
=

++

+
=ω  (4)

Where m and n are weighting factors, and  
nm

nk
+

=  

So the frequency can be approximated as 

2

2

A1
kA
+

=ω    (5)

And its approximate solution is: 

( ) ⎥⎦
⎤

⎢⎣
⎡ += tA1kAcosA)t(u

2/122  (6)
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By substituting the solution into Eq. (1), we have: 

u)A1kA(uuuu)A1kA(u 22''2322'' ++−−=++  (7)

If we assume Eq. (6) is the exact solution, the right side of Eq. (7) can be vanished, so we 
have: 

[ ] 0tdtcosu)A1kA(uuuI
4T

0

22''23 =ω++−−= ∫  (8)

Where ω
π= 2T .By Substituting (6) in (8), we obtain sub-term of I which equals to I1 +I2 +I3 

To simplify the solution for readers, we divide I as a Singular term located in the integral to 
some terms and solve them one by one in the manuscript, so we have: 

2/122
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0III 321 =++  (9)

After some simplification we have: 

1)A1(3
)A1(3k 2

2

++

+
=    (10)

Finally the frequency is obtained: 

2

2
2

A34
A3

+
=ω    (11)

Moreover, the approximate period is: 

3
A34

A
22T

2+π
=

ω
π

=    (12)

3 RESULTS  AND DISCUSSION 
To validate the results, Range Kutta method has been employed to obtain numerical 

solutions. In Fig (1) a comparison has been made between the results of applying Max-min 
method and the results from numerical solution. The Comparison with the numerical ones 
represents a remarkable accuracy even for large value of nonlinear terms. Also, it has been 
shown that by increasing the domain of the problem, obtained results converge. After 
validating the results, the influence of each parameter on the system response and phase plan 
can be easily discussed. Max-Min Method can be successfully applied to provide analytical 
solutions for other vibrations and dynamics problems. 
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Figure 1: comparison between Max-min and numerical solution. (a) u  (t), (b), 'u (t). 

 

4 CONCLUSION 
Applying He’s Max–min method to Duffing-type nonlinear oscillator equation which is a 

strong nonlinear equation shows that this method could be useful to oscillators and vibrations 
in several branches of sciences, such as: Dynamical and vibrational systems, civil structures, 
fluid mechanic, etc. It can be also used for analyzing nonlinear systems.The results indicate 
that this method has a simple and direct procedure for determining approximations to the 
periodic solutions. We demonstrated the accuracy , simplicity and efficiency of this method 
by an example. He’s Max–min method have the potential to be extended to any nonlinear 
equation. 
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Summary. Two methods for the stress analysis of a spacecraft structure under random vi-
bration loading are studied and applied to a wire boom deployment structure for the future
BepiColombo mission to Mercury to qualify the structure for launch.

1 INTRODUCTION

A spacecraft is typically subjected to the largest loads during launch and every part on
the spacecraft must be able to sustain the random vibration launch loads without permanent
deformation or failure. MEFISTO-S is a wire boom deployment system with an electric field
measurement unit that will be used in one of the spacecraft of the BepiColombo mission. The
qualification of each part is typically done by computing the stress factors of safety against the
yield and ultimate strengths. In a structural stress analysis, the von Mises stress criterion plays a
major role. In most cases, static or dynamic, when the input forces are deterministic, calculating
the von Mises stress is a straightforward process. In cases when the forces are non-deterministic
or, in another words, when the structure is under random or stochastic input conditions, the
response parameters will also be in a statistical and probabilistic format. In random vibration
analysis, the input is often given as a power spectral density (PSD). The linear method which is
used to evaluate the root-mean-square (rms) acceleration, displacement and stress components
cannot be directly used to derive the rms von Mises stress since it is a non-linear function of the
linear stress components. The aim in this study1 is to compare the current methods available
to engineers when dealing with random vibration stress levels with the MEFISTO-S structure
as example.

1
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2 MILE’S VERSUS RMS VON MISES STRESS

The most common method when dealing with the stress levels caused by random vibration on
a spacecraft structure is to use Mile’s equation 2. In that method, one chooses a single eigenfre-
quency of the structure, typically the dominant one, which relates to the highest modal effective
mass within the bandwidth of the imposed input frequencies. With the use of modal damping,
the PSD of the input acceleration and Mile’s equation, the rms of the response acceleration is
computed as

ẍrms =

√
fD π

4ξ
APSD(fD) (1)

where APSD is the PSD of the acceleration, fD is the dominant eigenfrequency and ξ is the
damping ratio. This rms response acceleration is multiplied by a factor of 3 and applied to
the structure as an equivalent static gravity field. Applying a field with a gravity acceleration
of 3ẍrms to the structure results in a von Mises stress that is considered to cover the highest
response peaks for 99.73% of the duration of the imposed random vibration disturbance.

Mile’s equation is very simple to implement, but it has some limitations that are important
to consider. The equation has been derived for a single-degree-of-freedom system, so therefore
it cannot consider all the eigenfrequencies within the input bandwidth for a multi-degree-of-
freedom system. There is also the assumption that the input PSD is of white noise nature, so
more complex inputs with changing octaves PSDs might produce errors.

The major simplification in Mile’s equation is that it is not considering the rms von Mises
stress, but assumes that the rms static acceleration is causing the stresses in the structure. The
most direct method to accurately estimate the rms von Mises stresses is to evaluate all the stress
components in each time step and the rms value is then derived from time integration for each
location in the model, but this method would computationally be very expensive to process.
Segalman et al.3 have developed an efficient method to evaluate the rms von Mises stress for
structures subjected to random vibration. In this method, the rms von Mises stress is evaluated
as a summation of modal stress eigenvectors and the modal cross-covariance which itself consists
of the modal transfer functions and input PSDs. The rms von Mises stress is3:

σrms von Mises =
√∑

i,j

ΓijTij (2)

where Tij presents the modal stress eigenvectors contribution3:

Tij = ψσT
i Aψσ

j (3)

and A is the von Mises stress coefficients matrix. Γij in Eq. (2) is the modal cross-covariance3:

Γij =
Nf∑
a

Nf∑
b

φaiφbj

(
1
π

∫ ∞

0
Re(Di(ω)Dj(ω)[Sff (ω)]ab)dω

)
(4)

where ψ is the modal stress eigenvector, φ is the displacement eigenvector, D is the modal
transfer function and Sff is the cross-spectral density matrix of the input random vibration.
Nf represents the number of forces that are imposed on the structure.
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When implementing this method, the von Mises stress and T are to be computed for every
integration point. Γ is computed only once, as it depends on the modal properties of the
structure. In practice, Γ depends on the number of truncated modes, modal damping ratios
and the input PSDs, so the integral in Eq. (4) can be approximated by summation over the
bandwidth frequency3:

Γij =
Nf∑
a

Nf∑
b

φaiφbj

(
Nω∑
n=1

Re(Di(ωn)Dj(ωn)[Sff (ωn)]ab)
∆ω

π

)
(5)

In deriving the rms von Mises stress method3, an assumption is that all the loads are stationary
with a zero mean value, which in practice might not be the case. Nevertheless, the values obtains
from rms von Mises stress method are found to be conservative and accurate. The advantage of
the rms von Mises stress method in comparison with Mile’s equation is that the former includes
all the truncated modes and mode shapes in the bandwidth of the excitation.

3 QUALIFICATION OF THE MEFISTO-S STRUCTURE

To test the accuracy of Mile’s equation in comparison with the rms von Mises method, both
methods have been applied to the MEFISTO-S structure. Figure 1 shows the maximum rms von
Mises stress, with a probability of 99.73%, as a function of the number of eigenmodes included
in Eq. (5). The first seven modes are the eigenfrequencies of the structure which are in the input
bandwidth. The rule of thumb in calculating the rms von Mises stress is to truncate the modes
of the structure with one and half times of the actual bandwidth upper bound frequency3. For
each mode, the von Mises stress by Mile’s equation has been computed and the value of the von
Mises stress achieved with the same probability for each mode has been recorded. As seen in Fig.
1, the Mile’s stress value for the dominant mode of the structure (fourth mode) is conservative
compared to the maximum rms von Mises stress.

Figure 1: Comparison between Mile’s equation and and the rms von Mises stress method.
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The comparison also shows that the stress by Mile’s method is only close to the rms von Mises
method when the deformed shape caused by the gravity field is similar to the dominant mode
shape which is used in Eq. (1). In the case of the MEFISTO-S structure, the fifth eigenmode,
which is not the dominant mode, would have given a more accurate result by Mile’s equation,
as the deformed shape in that mode is similar to the fifth mode shape of the structure.

4 CONCLUSIONS

The stress analysis of the MEFISTO-S structure shows that Mile’s equation presents higher
stresses than the rms von Mises stress method and might therefore be a less good method from
a design point of view, due to the strict mass limits in the aerospace industry. Mile’s equation
is producing good results only if the deformed shape caused by the static gravity field is similar
to the dominant mode shape. For other cases, Mile’s equation can give either unsafe or too
conservative results.

Figure 2: Von Mises stresses (MPa) in the MEFISTO-S structure under static gravity field load (fourth
eigenmode).
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1 INTRODUCTION

We note that continuum mechanical modeling in the area of machining simulations traditionally con-
siders ”hypo”-formulations, where incremental stress-strain relations are postulated in terms of various
objective stress rates. The idea of the current contribution is to recapture the well known Johnson-Cook
(JC) model1 for machining simulations and compare the model behaviors obtained with respect to the
different objective rates. It has been shown in the literature that one of the most frequently considered
stress rates, the Zaremba-Jaumann stress rate, leads to unwanted and inaccurate oscillations in the stress
response in the case of f nite simple shear deformation. Particularly in the case of kinematic hardening2

but also in special cases of isotropic hardening3 . Since f nite shear is a natural deformation mode in
machining, it is important to ensure that such oscillations are avoided in the simulations, whereby the
effect of the adopted stress rates for the JC-model is investigated in this work. Another interesting issue
related to the handling of ”rate formulated” constitutive models concerns thermodynamic consistency.
The question is how to repair/formulate new rate models with respect to this issue. We thereby introduce
the concept of hyperelastic-inelastic response in the framework of multiplicative decomposition of the
deformation gradient, where the JC-model is reformulated. The idea is to identify the proper postulation
of the rate response in order to assure that the resulting model is thermodynamically consistent.

2 THE JOHNSON-COOK PLASTICITY MODEL

The present model is to be utilized in simulation of machining operations of Compacted Graphite
Iron (CGI). In order to account for the considerable levels of strain, strain rate, temperature and pressure
in the work piece material, we adopt the material model by Johnson and Cook1, frequently used for
chip formation simulations and other transient dynamic simulations. Thereby, a fairly good accessibility
of material constants exists in the literature. The model basically assumes f ve material constants, cf.
Eq. (1), where the coeff cient A is the yield strength, B is the hardening modulus, C is the strain rate
sensitivity coeff cient, n is the hardening coeff cient and m is the thermal softening coeff cient. Thus, for
this model, the actual f ow stress function take on the following multiplicative structure:

σy(ε
p, ε̇p, θ) = (A+B (εp)n)

(

1 + ln

(

ε̇p

ε̇0

))

(

1 + θ̂m
)

(1)

1
 --112--



Goran Ljustina, Martin Fagerström and Ragnar Larsson

where εp is the total equivalent plastic strain, ε̇p is the equivalent plastic strain rate and where ε̇0 is a
reference strain rate controlling the model rate dependence. The temperature dependence is accounted
for via the so-called homologous temperature

θ̂ =
θ − θtrans

θtrans − θmelt
(2)

where θtrans is the transition temperature def ned as the one at or below which there is no temperature
dependence (usually taken as room temperature).

3 HYPO AND HYPERELASTIC-INELASTIC MODELS

Hypoelastic-inelastic constitutive relations means constitutive relations postulated on rate-form in
terms of an objective stress rate, cf. subsection 3.1 below for a number of alternatives used in the
literature. Generically, for the case of isotropic hardening, these constitutive rate-relations are formulated
as

τ́ = E[k] : (l − lp − lth) + h[τ , k] = E[k] : le + h[τ , k] (3)

where τ́ is the considered objective stress rate and where E is a spatial material operator tangent modulus
tensor, k is an internal variable associated with the isotropic hardening and l, lp and lth are the total, the
plastic and the thermal portion of the spatial velocity gradient def ned as

l = v ⊗ ∇ = Ḟ · F−1, lp = λ
∂Φ

∂τ

, lth = αθ̇1. (4)

In practice, this means that only the rate of deformation is necessary to determine the stress state, in
contrast to hyperelastic-inelastic models where the total deformation is required, and the consequent
stress rate behavior is merely a consequence of the hyper elastic-inelastic formulation. The drawbacks
of the hypo-formulation are that they lack the property of being (unconditionally) thermodynamically
consistent and also that no explicit expression for the mechanical dissipation can be derived.

Therefore, it is of signif cant interest to relate the proposed constitutive relations based on hypoelastic-
inelastic response to the more thermodynamically consistent hyperelastic-inelastic formulation for which
the basic assumption is to assume the presence of the isotropic stored energy function ψ

[

C̄, k, θ
]

as a
function of the reversible part of the deformation, here represented by the reversible right Cauchy-Green
deformation C̄ tensor, the temperature θ and an internal hardening variables k. Within the hyperelastic-
inelastic framework, the structure of the constitutive relations are based on the second law of thermo-
dynamics, which may be specif ed as the dissipation inequality in terms of the second Piola-Kirchhoff
stress S as

D =
1

2
S : C − ∂ψ

∂C̄

: ˙̄
C − ∂ψ

∂k
k̇ − 1

θ
H · ∇Xθ ≥ 0 (5)

which directly yields the corresponding state equations for the intermediate second Piola-Kirchhoff stress
S̄ and the heat f ux H as

S̄ = 2
∂ψ

∂C̄

, H = −K · ∇Xθ (6)
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3.1 Objective stress rates for Hypo-formulation of constitutive response

The idea is to scrutinize hypo-formulations based on the spatial Green-Naghdi, Oldroyd and Zaremba-
Jaumann stress rates. The two former objective stress rates are obtained based on induced, differently
back–rotated stresses - either the material stress tensor T or the second Piola Kirchhoff stress tensor S

associated with the Kirchhoff stress τ , respectively. These stresses and their associated objective rates
are def ned as

T = R
t · τ · R ⇒ Ṫ = R

t · τ̂ · R (7)
S = F

−1 · τ · F−t ⇒ Ṡ = F
−1 · τ̃ · F−t (8)

where τ̂ and τ̃ are the symmetric Green-Naghdi and Oldroyd stress rates, respectively, and where F is
the deformation gradient and R is the rotational part of the continuum deformation gradient according to
the polar decomposition F = R ·U with U being the symmetric right stretch tensor. As a consequence
of Eqs. (7) and (8), we f nd that τ̂ and τ̃ are obtained as

τ̂ = τ̇ − ω · τ + τ · ω (9)
τ̃ = τ̇ − l · τ − τ · lt (10)

where (again) l is the spatial velocity gradient and ω is a material spin according to ω = Ṙ ·Rt. For later
comparisons, let us introduce also the convective Zaremba-Jaumann stress rate def ned with the subtle
difference that ω → w from the Naghdi-Green stress rate so that

~τ = τ̇ − w · τ + τ · w (11)

where w is the skew symmetric part of the spatial velocity gradient l.

3.2 Hypoelastic-inelastic formulation

Traditionally, for hypoelastic-inelastic consitutive models the stress rate response is postulated for the
objective stress rate in terms of the elastic material operator E

e as

τ́ = E
e : le (12)

where E
e is taken as the constant isotropic spatial material tensor

E
e = 2GIdev +K1⊗ 1 with Idev = Isym − 1

3
1⊗ 1 (13)

where Isym is the fourth order symmetric unit tensor. Moreover, G and K are the elastic constants
pertinent to shear and volumetric response, respectively.

3.3 Hyperelastic-inelastic formulation

To compare the hypo and hyper formulations let us from Eq. (61) express the rate of the second
Piola-Kirchhoff stress tensor as

˙̄
S =

1

2
L

e
2 : C̄ with L

e
2 = 4

∂2ψ

∂C̄ ⊗ ∂C̄

(14)
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where L
e
2 is the elastic second Lagrangian material tangent operator. Push-forward transformation of

this relation yields (after some elaborations under the assumption of elastic and plastic isotropy) to the
Oldroyd stress rate as

τ̃ = E
e
2 : l

e − 2lp · τ (15)

where E
e
2 =

(

F̄⊗F̄

)

: L
e
2 :

(

F̄
t⊗F̄

t
)

is the elastic second Eulerian material tangent operator induced
via L

e
2. Please carefully note that it was used that (a⊗b)ijkl = aikbjl. Thus, in order to compare with

the postulation proposed in Eq. (3), choosing E = E
e
2 and h = 2lp · τ implies a thermodynamically

consistent formulation in the sense that the postulated Oldroyd rate behavior is in line with a hyperelasto-
viscoplastic formulation based on multiplicative split of the deformation gradient.

4 NUMERICAL EXAMPLE

Let us consider next the response at simple shear deformation and uniaxial stress compression. We
thus emphasize that different responses are generally obtained depending on which stress rate the rate be-
havior E

e : l
e is postulated with respect to. We thus consider the shear response with respect to the stress

rates Green-Naghdi (SGN), Zaremba-Jaumann (SJM) and two version of the Oldroyd stress rate, the
f rst one is the ad–hoc model (SOR) where linear elastic response in the Oldroyd stress rate is specif ed,
whereas for the second one (SORa) the Oldroyd stress rate is consistent with the hyperelastic–inelastic
model as outlined in Subsection 3.3. For comparison, we also consider two hyperelastic-inelastic Neo-
Hooke models (NH) and (NHL) where the latter is formulated in logarithmic strains. The results for the
simple shear test are shown in Figure 1a, where it is observed that all stress rate formulations yields more
or less the same response. The same tendency is observed for the uniaxial compressive test, cf. Figure
1b. However, the results differ slightly at large strains between the consistent neo–Hookean NHL–model
and the SGN, SJM, and SORa–models.

a) b)
Figure 1: Stress response in f nite shear deformation a) and uniaxial compression b)
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Summary. Articular resurfacing metal plugs have recently been tested in animal models to treat full
thickness cartilage defects, showing promising results. However, the mechanical behavior of cartilage
surrounding the metal plug has not been studied yet. Therefore, we implemented a detailed numerical
f nite element model by approximating one of the condyles of the sheep tibiofemoral joint. Using this
model, the mechanical behavior of the surrounding of metal plug was studied. We demonstrated that
treating cartilage defects with the metal plug was mechanically advantageous. Two types of prof les
were investigated for metal plug. A plug with a double-curved prof le, i.e., a prof le fully congruent with
the articular surfaces in the knee, has better performance than the plug with unicurved spherical prof le.
The plug should be placed at a certain distance into the cartilage to avoid damage to opposing biological
surface. Too deep positions, however, lead to high shear stresses in the cartilage edges around the plug.
The mechanical sealing was achieved with the wedge shape of the plug which also might be useful for
biochemical sealing of cartilage edges at the defect.

1 INTRODUCTION

Full thickness cartilage defects can cause pain and functional limitation, have poor capacity for repair
or regeneration and may lead to degenerative arthritis. Currently, the available biological repair tech-
niques are not eff cient and all have drawbacks1. Alternatively, a defect-sized biocompatible metallic
articular resurfacing plug can be used to treat localized cartilage defects in the joints2,3,4,5. The me-
chanical behavior of the soft tissues surrounding the metal plug have not been predicted. Therefore, we
implemented a f nite element (FE) model of one of the condyles of the sheep tibiofemoral joint. The FE
model was based on a plug (Episurf Medical AB, Stockholm, Sweden) developed for insertion into small
full-thickness chondral defects in the femoral condyle and to articulate against tibial cartilage. The plug
(implant) is presently subject to validation studies in a sheep model. The main purpose of the present
study was to simulate the cartilage mechanical behavior. The FE simulations considered axial loading
situations for two prof les of the plug: a symmetric spherical articulating surface and a double-curved ar-
ticulating surface modelled from CT scans of a sheep knee. Primary f xation is achieved by interference
f t of a pin into the subchondral bone.
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Figure 1: (a) Simplif ed geometry for one of the condyles of the sheep knee (a sectional view through FE mesh),
(b) Double-curved (left) and Spherical (right) plugs

2 FORMULATION AND METHODS

A 3D simplif ed geometrical representation was developed for one of the condyles (approximated as a
semi-ellipsoid with two different principal radii, 17.36 and 7.53 mm) of the sheep’s knee joint including
the cartilages. A hole, representing the defect, was assumed at the center of the femoral condyle and
expressed as diameter (6, 8, 10 and 12 mm). Dimensions were measured from a cadaveric sheep knee.
The meniscus was mimicked by introducing a full congruency between the articular cartilages. The
plugs had a diameter of specif c defect size; cap height of 2.5 mm; the pin of 2 x 10 mm. The radius
of curvature of the spherical prof le was 8.5 mm, whereas the double-curved plug exactly matched the
femoral cartilage prof le within a circle of defect sized diameter. The sealing of the surrounding cartilage
was achieved by wedging the plug’s cap.

Extensive parametric simulations were performed by varying the axial position of plug with respect
to cartilage surface, wedge shape/angle of the plug’s cap, and the size of the defect. These cases were
compared to healthy and defected conditions with perfect cartilage and with a circular hole, respectively.
The axial positioning of plug was def ned as “at ± x mm“, where the positive sign indicates an plug
inserted into the femoral bone. Articular cartilages were always described as a linear isotropic biphasic
poro-elastic materials and all other materials were considered as isotropic linearly elastic.

The models were implemented using the commercial FE software ABAQUS V6.7. The nodes on the
bottom plane of the tibia were constrained to move equally in vertical (axial) direction. The top plane
of the femur was rigidly constrained in all directions. Frictionless small sliding contact was assumed
between cartilages and also between plug and femoral cartilage. The free surfaces of the cartilages,
which are not in contact, were allowing free f uid f ow. No f uid leakage was allowed from the femoral
cartilage surface when in contact with the plug. The knee joint forces were represented by equal vertical
displacements on the bottom plane of the tibia in the form of pressure (2 times body weight of the sheep).
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Figure 2: (a) The maximum contact pressures for different defect sizes with defect sized double-curved plug (DCP).
In the 10 mm defect model, axial compressions of cartilages immediately surrounding the plug with the (b) double-
curved plug, (c) spherical plug, (d) total contact force transmitted through the plug expressed as a percentage of
applied load, maximum Tresca (Shear) stress in the femoral cartilage with the (e) double-curved plug, (f) spherical
plug

3 RESULTS

For any position of the plug, the maximal contact pressure was either almost equal or lower than that
of the defected joint for 6, 8, 10, 12 mm defect sizes. For 6 and 8mm defect sizes, the double-curved
plug positioned at +0.3 mm gave the lowest maximum contact pressure, whereas for 10 and 12 mm defect
sizes the plug position at +0.1 mm gave the lowest maximum, Fig. 2(a). In the 10 mm defect model, the
forces transmitted through the plugs were found around 25% (125 N) and 10% (50 N) of applied load
with the double-curved and spherical plugs positioned at 0 mm, respectively, Fig. 2(d). With the plug
deeper into femoral bone, the force transmitted through the plug was reduced, approaching the defected
situation.

The maximum Tresca stress (indicating shear) in the femoral cartilage was signif cantly affected by
the position of the double-curved plug. There were limited changes with the wedge angle. The maximum
Tresca stress in the 10mm defect model was 0.4213 and 0.4750 MPa, close to that of healthy joint (0.4026
MPa), with a double-curved plug positioned at 0 and +0.1 mm. As the double-curved plug sits deeper, the
Tresca stress in the cartilage edges increases if the edges deform less than the plug’s depth, approaching
defected condition. The edges of the spherical plug always sink into cortical bone in the A-P (anterior-
posterior) plane for any axial position, giving higher Tresca stress: 2.2 to 2.4 MPa, in the cartilage edges.
This was always higher than for the corresponding defected joint (1.726 MPa), Fig. 2(f). The maximum
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Tresca stress in the femoral cartilage was almost independent of wedge angle for a spherical plug.
The axial compressions of the cartilages, on the implanted side (femoral cartilage) and the opposing

side (tibial cartilage), immediately surrounding the plug are shown in Figs. 2(b), 2(c) for various po-
sitions of spherical and double-curved plugs of size 10 mm. For a 10 mm defect, the maximum radial
inward displacement of the femoral cartilage edges towards the center was 30% and 19% of the defect
size in A-P and M-L directions. There were no signif cant differences in the deformations and contact
pressures due to wedge angle. Void ratio (f uid volume fraction) in the cartilage edges around the plug
was 4 and 3.65 for 0

◦ and 4
◦ wedge angles with double-curved plug positioned at 0 mm and decreased

with the deeper positions.

4 DISCUSSION

This study was initially aimed at developing a conceptual poroelastic FE model of the sheep knee.
Using the model, two plug prof les with various positions of the plug with respect to cartilage surface
were verif ed. With this model we found qualitatively realistic contact pressure distributions, mechanical
stresses and strains in the cartilage edges at the defect with or without plug. The contact pressure was
more evenly distributed with the double-curved plug than with the spherical one. Since the spherical
plug sunk into the bone in A-P plane, the stresses at the rim of the defect were higher than those of
double-curved plug. It is observed the solidif cation of material in the cartilage edges around the plug
due to the increasing wedge angle, indicating mechanical sealing of cartilages. All the results show that
a double-curved plug is preferable to a spherical plug. Mechanically, it is advantageous to have plug’s
cap slightly sunk into the cartilage to avoid damage to the opposing biological structures and high local
pressures, but too deep positions may lead to high rim stresses at the defect and shear stresses in cartilage.
The study supports the idea of using a metal resurfacing plug for the treatment of full thickness cartilage
defects. The obtained results will be compared to results from the ongoing animal study, and can be used
to improve the plug design and placement.
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Summary. The development of a coupled thermo-mechanical FE analysis of orthogonal 

cutting is presented. The work piece material is modeled with Johnson-Cook plasticity and 

damage formulation. The focus of study is on the deformation zones occurring in the work 

piece in a machining process. 
 

 

1 INTRODUCTION 

One of the most common operations in manufacturing is metal cutting. There is a wide 

range of cutting operations such as turning, milling, drilling etc. Many studies and 

experiments has been performed since the beginning of the 20th century. First analytical 

models of orthogonal cutting were created on the base of experiments and empirically based 

research such as Merchant's orthogonal force model (1945). The problem of analytically 

models is to express wide range of materials, their properties and cutting conditions. 

Development of the Finite Element Method (FEM) in early 1970s first pioneered simulations 

of orthogonal cutting. FEM simulations of the machining process is a typical dynamic 

non/linear problem for use of the explicit method. In FEM modeling there are three major 

formulations: Lagrangian, Eulerian, Arbitary Lagranian Eulerian (ALE). The most common 

and with the simplest code is the Lagranian one, this method requires a separation criteria  or 

remshing method (Adaptive meshing) to describe the chip formation. The earliest studies used 

a predefined criterion for chip separation from the work piece along the separation area. The 

adaptive meshing technique gives better results, but this method is characterized by long 

computational times. The ALE-formulation and remeshing scheme combined the Lagranian 

and Eulerian formulation which leads to shorter computational times since you eliminate the 

element distortion in certain areas of the model. Chip thickness ratio, cutting forces and 

deformation zones for different theoretical chip thicknesses has been studied. The 

 --120--



M. Agmell, A.Ahadi and J-E. Ståhl 

 2 

deformation zones is of great interest, since this has a big influence on the machining process 

when cutting in deformation hardening materials since if the tool is cutting in the hardened 

material on the second revolution it will experience higher stresses than expected which leads 

to higher wear on the tool and in turn can lead to standstill in the production line. 

2 MATERIAL MODEL 

The work piece was modeled as AISI 4140 material, and a cemented carbide material is 

used for the tool. The general thermal and mechanical properties are presented in details in ¹. 

2.1 Constitutive law 

The material model utilized is Johnson Cook plasticity model, see 
2
. This constitutive 

relation is commonly used when modeling orthogonal cutting with FEM, since it takes in 

account strain rate and temperature which has a strong effect on the strain/stress relationship 

in the machining process and that its often already implemented in commercial software. The 

constitutive law is given by 

                    
   

   
      

    

        

 
 

  

 

(1) 

where   is the equivalent stress,     is the equivalent plastic strain rate,    is the equivalent 

plastic strain,     is the reference strain rate,   is the initial yield stress,   is the hardening 

modulus,   is the strain rate dependency coefficient,   is the strain hardening exponent,   is 

the thermal softening coefficient,   is the process temperature,       is the melting temperature 

and    is the bulk temperature. 

2.2 Chip separation criteria 

For this study the Johnson Cook damage law is used to model the chip separation, see 
2
. 

The cumulative damage law is given by 

    
   

  
  (2) 

where   is the damage parameter,     is the increment of the equivalent plastic strain and    is 

equivalent strain at failure. According to the Johnson-Cook model,     is updated at every 

load step and    is expressed by 

               
 

 
          

   

   
        

    

        

   (3) 

where     is the equivalent plastic strain rate,     is the reference equivalent strain rate,   is the 

process temperature,       is the melting temperature,    is the bulk temperature and ratio of 

hydrostatic pressure to equivalent stress 
 

 
. Failure will occur when the damage parameter  , 

given by equation (2) reaches 1. When this condition is meet with in an element, the stress 

component are set to zero and remains zero for the rest of the calculation. 
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2.3 Modeling of the tool-chip interface contact 

The contact interaction in machining has two distinct zones sliding and sticking friction, 

around the tool tip sticking friction appear due to the high pressures in the region, for the rest 

of the contact interface sliding friction is active. This has been modeled with Coulomb's 

friction law with an upper bound on the frictional force, the region where maximum frictional 

stress is produced models the sticking region, which is defined by 

 
      

       
    
               

               
 

(4) 

where    is the normal stress along the tool-chip interface,   is the friction coefficient,    is 

the frictional stress and      is the maximal value of the frictional stress. 

2.4 Heat generation and heat transfer between the tool and chip 

There are two sources for heat generation in machining material plastic deformation and 

friction. Most of the plastic deformation energy is converted in to heat. In this study the 

percentage was taken as 90% . The heat generated by friction is assumed to be fully absorbed 

by the material hence the fraction of heat generated from friction is set to 1.0. To simulate the 

heat flow between the tool and the work piece a thermal boundary condition was defined. 

Heat conduction between the tool and the work piece is pressure dependant. The heat 

conduction coefficient,   is defined as a function of pressure, see 
1
. 

3 FINITE ELEMENT MODEL 

The orthogonal cutting process was simulated using a 2D model in ABAQUS/Explicit v6.9 

a fully coupled thermo-mechanical analysis was used. The work piece length was taken as 5 

mm and its height as 2 mm. The cutting tool had a clearance angle of   , rake angle of   , 

edge radius   μm, height and length of 2 mm, the cutting speed    was set to 260 m/min. The 

tool was considered as a rigid body, to shorten the simulation time. 

4 RESULTS 

In this section the simulation model is firstly validated by comparing the cutting forces at 

different theoretical chip thicknesses   . Then the model is used to predict the deformation 

zones. 

4.1 Cutting forces 

The force has been experimentally determined with a stepwise increased feed test in the 

interval              mm. In figure 1 it can be seen that the cutting force reaches steady 

state within the simulation time. This justifies the use of a machining length 2.5 mm.. As seen 

in figure 2 a good agreement is obtained between the simulated and measured cutting forces 

for all theoretical chip thicknesses. 
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Figure 1: The cutting force as a function of time for the FE simulations with         mm to the left,               

             mm in the middle and         mm to the right. The dashed red line is the mean 

           value for the cutting force in the steady state interval. 

 
Figure 2: To the left cutting force as a function of    the red dots is predicted and blue is measured values. To 

  the right feed force as a function of    the red dots is predicted values and blue is measured 

values. 

4.2 Deformation zones 

The deformation zones will simulated for           . The deformation zones and 

deformation widths is of great interest in machining when your are working with strain 

hardening materials, since if the machining takes place in a predeformed material layer the 

tool will experience a material with different properties. This can lead to higher forces and 

tool ware than expected and in the worst case standstill in production due to machine failure. 

Therefore it is important to study how the deformation zones and deformation width varies 

with the theoretical chip thickness      in orthogonal machining. Figure 3 shows the 

equivalent strain distribution for     0.15 and 0.30. 
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Figure 4: Distribution of the equivalent strain for     0.15 to the left and 0.30 to the right. 

The relative deformation width is only defined for the secondary- and tertiary zone. These 

are defined in equation 5. If      exceeds 1.0 machining will take place in predformed material 

after the first revolution, since        . 

 

    
   

  

     
    

  

  
(5) 

The measured relative deformation widths is taken from 
3
, where the defromation widths has 

been determined with a quick-stop method where the tool pushed away from the cutting 

process with a small gunpowder charge, in this way a freezed sequence of the process is 

achieved. As seen in figure 5 a there is a very good agreement between measured and 

predicted values of the deformation widths. 

 

 
Figure 5: Relative deformation widths, the secondary to the left measured data points are in black and predicted 

are in blue. The tertiary zone is to the right, measured data points are in black and predicted are in red. 
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5 CONCLUSIONS 

This study presents results of a coupled thermo-mechanical FE analysis with the aim of 

studying the theoretical chip thickness influence on the shape of deformation zones in 

orthogonal machining. The predicted cutting forces, chip thickness ratio and deformation 

widths shows good correlation with experimentally measured data thereby validating the 

model. The study shows that you can model the deformation zones which enables a high 

resolution of the strain distribution in the deformation zones, which can be difficult to achieve 

with good accuracy for conventional quick-stop methods. 
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Summary. In the present work the strain gradient formulation for isotropic plasticity, proposed
by Fleck and Willis, is extended to crystal visco-plasticity. Size-effects are predicted by the
theory due to the addition of gradient terms in both the free energy as well as through a
dissipation potential. A robust numerical method applicable for crystal plasticity is presented.
Some plane deformation problems relevant for certain specific orientations of a face centered
cubic crystal under plane loading conditions are studied. The problem of pure shear of a single
crystal between rigid platens is studied, and convergence properties of the numerical method
proposed are discussed.

1 INTRODUCTION

In metals strain gradient effects lead to significant strengthening on the micron scale. Experi-
mental investigations on size-effects in metals have been carried out for a variety of materials and
under different loading conditions such as bending1,2, torsion3, indentation and contact com-
pression4, as well as the characterization of the density of geometrically necessary dislocations5.
While some experiments suggest that the yield strength increases with decreasing size3,6, other
experiments show that the size-effect mainly affects the material hardening behavior7. Some
experiments even show size-effects on both yield strength and hardening behavior2.

Much research has been devoted to modeling observed size-effects. This includes modeling
of the above mentioned experiments in addition to studies of size-effects in void growth, fiber
reinforced materials and fracture problems.

In this paper variational principles for a strain gradient crystal plasticity theory are laid out
along the lines developed for isotropic plasticity by Fleck and Willis8,9. Furthermore, the details
of a robust finite element formulation of the strain gradient crystal plastic theory is presented.
The theory is closely related to that proposed by Gurtin and co-workers10 even though the
numerical method is quite different.
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2 MATERIAL MODEL

Within a small strain framework an additive decomposition of the total strain, ǫij , into and
elastic part, ǫe

ij , and a plastic part, ǫp
ij , is used

ǫij = ǫe
ij + ǫp

ij (1)

The plastic strain rate is due to crystallographic slip on the slip planes α

ǫ̇p
ij =

∑

(α)

γ̇(α)µ
(α)
ij (2)

with the Schmid orientation tensor given by

µ
(α)
ij =

1

2
(s

(α)
i m

(α)
j + s

(α)
j m

(α)
i ) (3)

where s
(α)
i and m

(α)
j are the direction of slip and the slip plane normal, respectively.

The material model is based on the following form of the principle of virtual work

∫

V

(

σijδǫij +
∑

α

(q(α)
− τ (α))δγ(α) +

∑

α

ξ(α)s
(α)
i δγ

(α)
,i

)

dV =

∫

S

(

Tiδui +
∑

α

r(α)δγ(α)

)

dS

(4)
Here, σij is the stress tensor, ǫij is the strain tensor, q(α) is the micro-stress on slip plane α

and τ (α) = σijµ
(α)
ij is the Schmid stress. The higher order nature of the theory is due to the

terms ξ(α), which are the higher order stresses work conjugate to the slip gradients, γ
(α)
,i , where

( ),i signifies the gradient operator. With ni denoting the outward unit normal, the right hand
side of the principle of virtual work includes the conventional traction vector Ti = σijnj , work

conjugate to the displacement vector ui, and the higher order tractions r(α) = ξ(α)s
(α)
i n

(α)
i , which

are work conjugates to the slips, γ(α).
Accounting for both dissipative and energetic gradient effects, the higher order stresses are

decomposed into a dissipative part, ξ̄(α) and an energetic part, ξ̃(α)

ξ(α) = ξ̄(α) + ξ̃(α) (5)

whereas the micro-stresses are assumed to have a dissipative part, q̄(α), only.

2.1 Dissipative contributions

To account for dissipative gradient effects, a visco-plastic potential is used from which the
following constitutive equations for the dissipative stress-quantities are derived

q̄(α) = τ (α)
e

γ̇(α)

γ̇
(α)
e

and ξ̄(α) = τ (α)
e

(L
(α)
d )2γ̇

(α)
,i s

(α)
i

γ̇
(α)
e

(6)

Here, τ
(α)
e is an effective stress, γ̇

(α)
e is an effective slip rate, and L

(α)
d are dissipative length

parameters.
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2.2 Energetic contributions

Assuming that free energy, Ψ, is stored due to a decoupled quadratic form in the elastic strain
and the gradients of slip, the energetic higher order stresses are derived according to

ξ̃(α) =
∂Ψ

∂(γ
(α)
,i s

(α)
i )

= G
(

L(α)
e

)2
s
(α)
i γ

(α)
,i (7)

where G is the shear modulus and L
(α)
e are energetic length parameters.

2.3 Minimum principles used for generating solutions

To solve for the slip rate fields the following minimum principle is used within a finite element
setting:

H[γ̇(α)] =

∫

V

(

Φ[γ̇(α)∗]γ̇(α)∗ + ξ̃(α)siγ̇
(α)∗
,i − sijµ

(α)
ij γ̇(α)∗

)

dV −

∫

ST

r(α)γ̇(α)∗dS (8)

Here, Φ is a visco-plastic potential, and sij is the stress deviator
When knowing the solution for the slip rate fields, nodal velocities are found from minimizing

J [u̇∗
i ] =

∫

V

1

2
Lijkl

(

ǫ̇∗ij −
∑

α

µ
(α)
ij γ̇(α)

)(

ǫ̇∗kl −

∑

α

µ
(α)
kl γ̇(α)

)

dV −

∫

ST

Ṫiu̇
∗
i dS (9)

This two step solution method is a suitable modification for crystal plasticity of corresponding
minimum principles for isotropic plasticity laid out by Fleck and Willis8,9.

3 RESULTS AND CONCLUSIONS

Results are obtained using a finite element discretization. An iterative algorithm is used
to minimize the functional H[γ̇(α)] in order to obtain the slip rate fields. Then solution of
a standard elastic-visco plastic finite element system yields the nodal velocities as a result of
minimizing J [u̇∗

i ].
In Fig. 1a response curves in terms of shear stress versus shear strain are shown for pure

shear of a long film of elastic-plastic material of thickness H between rigid platens. It is seen
how increasing the dissipative length parameter relative to the thickness of the film increases
the yield strength of the material system over that of conventional predictions (conv.). In Fig.
1b the number of iterations used to obtain converged solutions when minimizing H[γ̇(α)] are
shown. It is seen that a large number of iterations are used in the transition from elastic to
plastic behavior, and a small number of iterations are used otherwise.
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Summary. This paper presents a tool for stiffness evaluation of tensegrity structures considering
large external loads applied at the initial configuration, and small external disturbance loads
applied at the loaded structure. The presented method is based on a geometrical non-linear
analysis and is a visual evaluation of the flexibility of the self-stressed structure.

1 INTRODUCTION

Structures composed of tension elements (strings, tendons or cables) and compression ele-
ments (bars or struts) are often denoted tensegrity structures1. The process of finding the initial
member forces for a given geometry is known as pre-stress design. In this paper, we assume that
the form-finding step has been completed, meaning that the structure is in a stable pre-stressed
configuration. The axial stiffness of the elements are also known. In the design process, the
form-finding step must be complemented with requirements on the response of the structure to a
variety of loading situations. The aim is to determine the pre-stress magnitude which is the only
variable to reach certain stiffness. The idea here is to introduce a tool for stiffness evaluation
of a given structure when it is exposed to different load combinations. The tool is based on the
finite element method to handle the non-linear static analysis.

2 FORMULATION AND METHODS

Figure 1 illustrates the proposed method. A test load is an external load of a certain mag-
nitude which tests the response of the structure in each direction for each unconstrained node.
Thus, the test load rotates around each unconstrained node. The aim of the test load analysis is
to investigate the response of the structure for different load levels from zero to maximum mag-
nitude of the external load. The load levels are given by the type of application, the geometry of
the structure and the maximum design load level. A loaded structure must also be stable when
it is exposed to disturbance loads, e.g. wind gusts. Disturbance loads are assumed to be random
in magnitude, direction and point of attack. In the simulations, they are not assumed to have an
absolute magnitude, but are seen as small loads, acting in addition to the fixed external loads.
In the analysis, they can thereby be seen formally as differential quantities, or more practically
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Figure 1: The proposed flexibility-based pre-stress design.

as a percentage of the magnitude of the test load. The random nature of disturbance loads mean
that they should be considered for any unconstrained node, and in any unsupported direction.
The aim of incremental load analysis is to evaluate the incremental stiffness of a loaded structure
in order to find the minimum acceptable pre-stress level.

3 NUMERICAL EXAMPLE

In the non-linear analysis, the tangent stiffness formulation presented by Guest(author?)2

for a simple bar element was used. The cable elements were assumed to be of the no-compression
type with zero stiffness when slack. In tension, the tangent stiffness formulation of the bar and
the cable element is similar.

The test load is rotated around each unconstrained node separately, and the displacements
in all nodes are computed and visualized. The resulting geometric shape of the structure is
denoted flexibility figure. If all cable elements are in tension, the flexibility figures resembles
ellipses implying a strong linear behavior of the structure. Slackening of a cable element causes
deformation of the elliptic flexibility figures in the direction of the slack cable element. The
flexibility ellipse concept comes from Ströbel3 who shows that the flexibility ellipse can be
obtainable through analysis of the flexibility submatrix for each node. Figure 2 shows flexibility
figures for various test loads. In Fig. 2, the structure with chosen pre-stress magnitude shows
a linear behavior for a 10 kN test load and non-linear behavior for 20 and 30 kN test loads.
Unfortunately Fig. 2 cannot show which cable elements gone slack.

The aim of Fig. 3 is to show the effect of a test load on the structure. The response of each load
direction is shown in the load direction. In this way one can see the displacement deduced from
each load, and also the directions of the test loads which cause the largest displacements. Figure
4(a) shows a design load case, and Fig. 4(b) shows the flexibility figure of each unconstrained

2
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Figure 2: (a) Topology and node numberings of the two module tensegrity beam. (b) and (c) flexibility
figures for 10, 20, and 30 kN test loads. Test loads applied at node (b) 6, (c) 5.

Figure 3: Flexibility figure and displacements in test load directions (dotted line) of node 5.

node for a 2 kN incremental load acting on the loaded structure in Fig. 4(a) for two different
magnitudes of the pre-stress. The dotted line displacements show that at least one cable element
goes slack, because the flexibility figures are not elliptic. Increasing the pre-stress magnitude,
the flexibility figures are more elliptic, indicating a linear behavior.

4 CONCLUDING REMARKS

This study has taken a new look on the pre-stress problem. The pre-stress problem has
mostly been seen as finding the bases of the pre-stress considering the unilateral property of
the elements and the stability of the structure. The focus has been to find a good level of the
pre-stress with the help of flexibility figures. By providing a visual presentation of the flexibility
of all unconstrained nodes, we have a tool to determine the pre-stress magnitude considering
both slackening effect and breaking load capacity of the cable elements. The advantages of the
flexibility figures are:
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Figure 4: (a) Assumed design load case (b) flexibility ellipses for two different pre-stress magnitude. The
dotted line displacements are for the slack case.

• Better knowledge of the influence of various of external loads magnitudes, identification of
critical load combinations, and disturbances on the structure. An important consequence
is the estimation of maximum displacement of unconstrained nodes for both an unloaded
structure exposed to large external loads and a loaded structure exposed to disturbances.

• Easier identification and evaluation of the boundary between linear and non-linear struc-
tural behavior.

• Detection of very flexible nodes and directions of external loads which cause slackening or
large displacements.

• Detection of cable elements with the highest risk of slackening.

The tool is thought to be useful for both engineers who design a complex truss structure,
and researchers who evaluate the result of the form-finding process, placement of sensors and
actuators for pre-tensioning.
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[3] Ströbel.D. Die Anwendung der Ausgleichungsrechnung auf Elastomechanische Systeme. Uni-
versität Stuttgart, PhD thesis (1995).

4

 --133--



23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c©KTH, Stockholm, 2010

PREDICTION OF LONG-TERM MECHANICAL BEHAVIOR
OF GLASSY POLYMERS

SAMI HOLOPAINEN∗ AND MATHIAS WALLIN†

∗Department of Solid Mechanics
Lund University

P.O.Box 118, 22 100 Lund, Sweden
e-mail: Sami.Holopainen@solid.lth.se, web page: http://www.solid.lth.se/

†Department of Solid Mechanics
Lund University

P.O.Box 118, 22 100 Lund, Sweden
e-mail: Mathias.Wallin@solid.lth.se, web page: http://www.solid.lth.se/

Key words: Polymers, Long-term behavior, Anisotropic hardening, Computational methods.

Summary. Glassy polymers are frequently used in industrial applications and in consumer
products and the need for accurate constitutive models is evident. The microstructure of a
glassy polymer has a strong influence on the mechanical properties and it is typically described
by means of network models where the network of molecular chains is connected at physical
entanglements between macromolecules. Several network-based models for glassy polymers are
available. The most popular approach is the 8-chain BPA model, cf. Arruda and Boyce [1],
[2], where the randomly oriented molecular chains are replaced by eight interconnected polymer
chains. The BPA model is capable of capturing the monotonic loading accurately, but for un-
loading and long-term behavior, the response of the BPA model is found to deviate significantly
from the experimental data, cf. Dreistadt et al. [4]. Therefore, we suggest an extension of
the BPA model that significantly improves the predictive capability of the BPA model during
unloading and dwell.

1 INTRODUCTION

A successful and popular approach to model the nonlinear behavior of glassy polymers includ-
ing orientation hardening was proposed by Arruda and Boyce [2] (BPA-model). Even though
the BPA model depends on a few material parameters, it yields satisfactory results which has
made the model popular for industrial applications. Recently Dreistadt et al. [4] showed that
the BPA model collapses under unloading as well as long-term dwell, where the stress level is
fixed during a time interval. In the present paper we extend the 8-chain BPA model such that
the long-term behavior is significantly improved. Our model is based on the use of two separate
dashpots in series with a nonlinear Langevin spring. For that, only one new material parameter
is introduced, which results that the modified model retains the simplicity of the original BPA
model. The new concept is applied to illustrative examples, where the response of original BPA
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model and our modification for PC are compared to the experimental results by Dreistadt et al.
[4].

2 Description of the BPA model

The present study is concerned with an extension of the BPA model and therefore we will
start by briefly recapturing the fundamental ingredients in the BPA model. In the BPA model
use is made of the Kröner-Lee decomposition of the deformation gradient, i.e.

F = F
e
F

p, (1)

where F
p represents the deformation from the reference configuration to the intermediate con-

figuration and F
e represents the deformation from the intermediate configuration to the current

configuration. The stress-strain relation is given in terms of Cauchy-stress and the logarithmic
(true) strain as

σ =
1

J
L

e : lnV
e, (2)

where L
e is a constant fourth order elasticity tensor, and J is the determinant of F

e. The
incremental relations for the plastic deformation is given from

Ḟ
p

= L̄
p
F

p, L̄
p

= D̄
p
+ W̄

p
, (3)

where D̄
p

and W̄
p

are the symmetric and the skew symmetric parts of L̄
p
, and they will be

discussed subsequently.
In the BPA model the chain segment rotation is described by means of the viscous dashpot,

which enables the initial strain softening to be captured in material. The anisotropic hardening
due to reorientation of the molecular chain network is in the BPA model captured via a nonlinear
Langevin spring, and characterized by the backstress. The backstress, B̄ is taken to be coaxial
with the plastic stretch tensor, V

p and it is expressed in terms of the principal plastic stretches,
λ

p
α, α = 1, 2, 3 as

B̄α :=
CR

3λp

√
NL

−1(
λp

√
N

)
(

((λp
α)2 − (λp)2

)

, λp =
1
√

3

√

∑

i

(λp
i )

2, (4)

where CR is material parameter taking into account temperature and molecular chain density,
L
−1 is the inverse Langevin function, and N is a statistical parameter related to the limiting

value of the chain stretch. The push-forward of the backstress to the current placement by F
e

is
b

p := F
e
B̄F

e−1. (5)

The evolution for of the plastic deformation is given by

D̄
p

=
γ̇p

√
2
N , (6)

where direction of the plastic flow, N , is assumed to be aligned with the deviatoric reduced
stress, σ̄

dev, i.e.

N =
σ̄

dev

||σ̄dev||
, ||σ̄dev|| =

√

1

2
σ̄dev : σ̄dev, σ̄

dev = σ
dev − b

p, (7)
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where the superscript dev denotes the deviatoric part. The rate of plastic deformation is taken
in accordance with Argon [3] who based on a model for chain segment orientation suggested

γ̇p = γ̇0exp
(

−
Ass

T
(1 − (

τ

ss

)
5

6 )
)

, ss = s1 + αp, τ := ||σ̄dev||, (8)

where γ̇0 is pre-exponential factor, A is proportional the activation volume/Boltzmann’s con-
stant, p is pressure, α is pressure dependence factor and T is the temperature. The strain
softening is modeled by taking the athermal shear stress s to evolve to sss, which is the assumed
saturation value of s1, i.e.

ṡ1 = h1(1 −
s1

sss

)γ̇p, s1(0) = s0, (9)

where h1 and s0 governs rate of post-yield drop. To complete the plastic evolution laws an
evolution law for W̄

p
must be provided. In the original BPA model the assumption of R

e being
equal to unity was adopted. In turn, this implies that the plastic spin, W̄

p
in Eq. (3) generally

is nonzero.

3 Extension of the BPA model

Based on the experimental investigations by Dreistadt et al. [4] it can be concluded that
the original BPA model predicts a premature Bauchinger effect, and the creep during long-term
dwell is highly overpredicted by the BPA model. Motivated by these experimental findings, an
extension for the BPA model will be proposed. Contrary to the BPA-model, in our modified
model the chain segment rotation is modeled using two separate dashpots. The internal variables
corresponding to the dashpots are denoted by s1 according to Eq. (8), and a new one by s2,
which is determined as

ṡ2 = h2γ̇
p s2(0) = 0, s = s1 + s2, (10)

where h2 is an additional constitutive parameter. The purpose of the extra dashpot is to better
capture the unloading behaviour while keeping the model as simple as possible.

4 Model results

We calibrate the extended BPA model to uniaxial compression tests performed by Dreistadt
et al. [4]. Single and repeated unloading tests are simulated. During the calibration procedure
the Runge-Kutta integration scheme is used to integrate the underlying system of differential
equations, now given by Eqs. (3), (9), and (10). Further, during dwell the rate of the nominal
stress, π̇ is constant and we therefore have

π̇ :=
d

dt
(JσF

−∗) = 0 or π̇1
1 = 0 = E

d

dt

(

ln(V e1,
1 )(V 1

1 )−1
)

,

where E is the Young’s modulus. The modified model is calibrated to the experimental data
in Dreistadt et al. [4]. The athermal strength s, and its components s1 and s2 are depicted in
Fig. 1(b). As shown, the new internal variable, s2 grows with the plastic deformation in quasi
monotonic manner and induces the isotropic hardening effect in the model. Also, the maximum
level of the backstress prior the unloading is reduced using the modified model, see Fig. 1(a). It
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can be concluded that excessive evolution of the backstress leads to an overestimated recovery.
As shown in Fig. 1(a), the final simulated strain after 400 days is about 0.52 and 0.062 using
the extended and original BPA model respectively. The experimental result is 0.62 according to
Dreistadt et al. [4].
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Figure 1: a) True stress and back stress vs. true strain. b) Athermal shear strength s and its components
s1 and s2 vs. true strain.

Conclusions

The mechanical behavior of polycarbonate (PC) during complex loadings was simulated using
the BPA model. It was found that the BPA model could not properly reproduce the long-term
behavior. Motivated by that, we have modified the BPA model using an additional viscous
dashpot. The purpose of extra dashpot is to better capture the strain softening during unloading
and dwell while keeping the model simple; only one new material parameter is required. It was
found that our modified model gives a remarkable improvement of the simulated response when
compared to the experimental data of long-term dwell and unloadings.
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Summary. This paper is concerned with wave propagation in a curved elastic layer with 
rectangular cross section. By applying the classical Lamé formulation of displacements, the 
exact solutions of equations of elastodynamics for such a layer in the plane and antiplane 
formulations are compared with their counterparts for a straight layer.  Simultaneously, the 
classical Bernoulli-Euler theory for a curved beam is also used in the comparison and the 
static limit case of the Lamé decomposition is also investigated.    
 
1 INTRODUCTION 

In various industrial applications it is necessary to investigate the wave guide properties of 
circular elastic layer with rectangular cross section. To carry through this task it is reasonable 
to develop an idealized method where the wave propagation is considered as uncoupled in 
terms of in-plane and anti-plane2 motion. This simplification allows for hierarchy of models 
to be developed and analyzed whilst aiming at a model to describe out-of-plane wave motion. 

 

2 THEORY  
The displacement field in an elastic medium can be expressed in terms of longitudinal and 

transverse motion1:  

 ࢛ ൌ ࢒࢛ ൅ ࢛࢚ (1)

Eq. (1) can also be expressed in terms of potentials:  

 ࢛ ൌ ߮݀ܽݎ݃ ൅ (2) ࣒݈ݎݑܿ

Wherein ߮ and ࣒ are scalar and vector potentials, respectively.    
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3 THE ANALYSIS 

3.1 Exact solution for in-plane wave motion for straight and curved layer 
By applying Eq. (2) to derive an expression for the displacement and stress field in 

cylindrical coordinates4, it is possible formulate the dispersion equation for the straight and 
curved elastic layer, See Figure 1, with the application of different boundary conditions.  

 
Figure 1: Curved layer 

Figure 2 and Figure 3 are showing the dispersion curves for in-plane wave motion for the 
straight and curved elastic layer, respectively, in plane strain formulation. 

 
Figure 2: Dispersion curve for a straight elastic layer with 
free boundaries 

 
Figure 3: Dispersion curve for a curved elastic layer with 
free boundaries and a ratio r0/h=5  

As it is observed, there is a good agreement between the dispersion curves for the two 
different cases even though the ratio r0/h is small.  
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3.2 Exact solution for curved layer and curved beam theory 
To further analyze the exact solution of the dispersion equation for the curved layer the 

classical Bernoulli-Euler beam theory is applied3.  Figure 4 and Figure 5 illustrate the 
dispersion curves for low and high frequency range, respectively, for r0/h=5 where Ω is the 
non-dimensional frequency and ξ is the non-dimensional wave number. 
 

Figure 4: Dispersion curves, low frequency range 
 

Figure 5: Dispersion curves, low frequency range 

Both figures show good agreement between the exact and curved beam solution. The blue 
line on Figure 4 is the low frequency asymptotic expansion of the form ߦ ൌ  Ω, whereߢ3√2

ߢ ൌ ௖೗
௖బ

 , ܿ௟ is the longitudinal wave speed and ܿ଴ ൌ ට ா
ଵିఔమ

. On Figure 5 the dottet line represents 

the high frequency asymptotic for the longitudinal wave which has the form ߦ ൌ ߢ ൈ Ω and the 
blue line represents the high frequency asymptotic for the flexural wave in the form ߦ ൌ
ඥ2√3ߢΩ. The imperfections on Figure 4 at the low frequencies appear due to numerical 
instability. It indicates that the Lamé decomposition fails at the static limit. 

3.3 Anti-plane  
So far in-plane waves have been investigated in plane strain formulation. As the aim of the 

research project is to formulate the out-of plane waves, the first step is to consider the anti-
plane problem formulation. Firstly, the waves are considered as uncoupled, which allows to 
reduce the expression for the displacement field to only depend upon one scalar potential 
instead of four as shown in Eq. (1).   

The wave motion in the anti-plane problem formulation for the curved layer is a shear 
wave propagating along the curvature, see Figure 6. Displacements occur in the out-of-plane 
x-direction, but these are independent on the same coordinate and instead dependent upon the 
coordinates perpendicular to the x-direction(in-plane coordinates). The latter description is 
exactly the definition of shear wave motion in anti-plane problem formulation. 
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Figure 6: Wave direction 

 

 
Figure 7: Dispersion curves, anti-plane 

Figure 7 illustrates a comparison of the dispersion curves for shear waves in a straight and 
a curved layer with r0/h=5, where mixed boundary conditions are introduces. Thereby, it is 
stated that there is a good agreement between the two cases also with anti-plane problem 
formulation.   

4 CONCLUSION 
 Based on the comparison of dispersion curves for the straight and curved elastic layer it is 

concluded the difference is negligible even for relatively large curvatures both in plane and 
anti-plane formulation. The classical curved beam theory is validated by comparison with the 
exact solution.  

Further work on the low frequency limit for the exact solution should be carried through by 
applying asymptotic analysis. This is to avoid the numerical instability which occurs when 
frequency tends to 0. 

As an extension to this work, it should be aimed to obtain the dispersion curves with the 
Wave Finite Element Method(WFE) and compare these with the exact solution. Thereby, a 
WFE model can be tuned and applied for situations where analytical solutions would not be 
possible to carry through.  
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Summary. In this contribution a generic algorithm to simulate resin infusion in composites
manufacturing technologies such as Liquid Resin Infusion (LRI) and Resin Transfer Molding
(RTM) is developed. The most important challenge to be addressed is the migration of free sur-
face due to resin infiltration into the highly deformable fibrous preform. To do so, a compressible
two-phase porous media formulation is put forward for the problem formulation and a staggered
finite element based solution procedure is advocated for the total solution advancement. The
approach automatically monitors the free surface, whereby the monitoring of the resin front
migration using e.g. level set or front tracking control is completely avoided. The method is
exemplified using a hat stringer geometry considering both manufacturing methods.

1 INTRODUCTION

The use of advanced composite materials is now increasing dramatically. Having previously
been used predominately in low-volume high-cost products, such as spacecraft and military air-
crafts, composite materials are now being introduced on a large scale in commercial aircrafts.
This progress requires that new composites manufacturing technologies are developed and in-
dustrialized. In particular, Liquid Resin Infusion (LRI) and Resin Transfer Molding (RTM) are
the two composites manufacturing methods that have shown great potential for near future. In
the process simulation of these technologies the infiltration of resin into a deformable fibrous
preform is governed by the theory of porous media. The background theory behind this approach
has been developed during almost a century1. The main challenge in the present development
concerns tracking the flow front in combination with modeling of a deformable fibre bed dur-
ing the process. There are number of different methods used to trace the flow front, those are
moving and fix mesh methods, level-set, control volume (CV) and marker method. The present
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development is inspired by the CV method, however the method is improved by defining control
volumes by finite elements themselves (CV-FEM) instead of by Voronoi cells2. The development
by Tucker et al.2 is further improved accounting for deformable solid and compressible liquid.

The goal of this paper is to combine the theories of porous media and the concept of hyper-
elasticity with respect to resin infusion problem together with the CV-FEM. Therefore by fo-
cusing on essential properties such as liquid permeability and preform mechanics, the developed
biphasic continuum mechanical model accounts for all the relevant physical properties.

2 GOVERNING EQUATIONS AND FEM SOLUTION

To formulate the coupled problem of partially fluid saturated solid, mass balance and mo-
mentum balance is used

ρf∇ · v + nf ρ̇f = −∇ ·
(
ρfvd

)
, (1)

(σs + σf ) · ∇+ ρ̂g = 0 ∀x ∈ B. (2)

together with the Darcy law,

vd = −(
k

µ
1) ·∇p, (3)

where µ is the liquid viscosity, and k is the permeability modeled using Kozeny-Carman like
equation developed in Larsson et al.3

The governing equations are now solved by deriving weak form of (1) and (2)∫
B0

(τ − Jp1) : l[w] dV =

∫
Γ0

w · t̄1 dΓ +

∫
B0

ρ̂w · g dV ∀w ∈ P, (4)

∫
C0

τ : l[w] dV =

∫
Γ0

w · t̄1 dΓ +

∫
C0

ρ̂w · g dV ∀w ∈ P, (5)∫
B0

ηρf J̇dV +

∫
B0

ηJnf ρ̇fdV −
∫
B0

Jρf (∇η) · vddV = −
∫

Γ0

ηQdΓ ∀η ∈ S, (6)

solving them by finite element approximation

[
δût, δp̂t

]NEL
A
e=1

[
be − f ext

e

ce

]
= 0, (7)

and the Newton iteration for balancing of the FE-discretized nodal forces3.

3 CONSTITUTIVE EQUATIONS

Assuming a hyper-elastic response, the constitutive state equation of the solid reads as

S = 2ρ̂s0
∂ψ

∂C
, (8)

where S = S̄ − JC−1p is the consequent effective second Piola Kirchhoff stress in the region
due to the Terzahgi effective stress principle, and p is the intrinsic fluid pressure.
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Assuming that the same pressure p prevails in the liquid and gas constituent, the fluid pressure
may be modeled using the ideal gas law (or the Boyle-Mariotte’s law). The linearized response
of the gas phase may be represented as

ρ̇f =
ṗ

Kf
with Kf [p; ξ] =

Rθ

mg

(1− log [1− ξ]mg

Rθ
p
ρl

)2

1− log [1− ξ]
, (9)

where Kf is the compression modulus of the liquid-gas mixture and the parameter 0 ≤ ξ ≤ 1
representing the saturation degree.

4 MODELING FLOW FRONT TRACKING

The traction continuity considered across the flow front boundary is used to formulate the
coupled problem between two different continua; the fluid saturated one and the non-saturated
one-phase continuum. The location of the boundary is determined in a staggered fashion based
on the numerical solution to momentum and mass balance relations, providing e.g. vf , with
respect to a given boundary.

An element based approach is adopted for the motion of the flow front3, where migration of
the boundary is dictated by the temporal saturation increase induced by the fluid front velocity.
Hence, no tracking procedure is required in order to determine the location of the flow front
boundary. The approach consists of the assessment of the saturation degree ξ, with respect
to the liquid saturation of a finite element. The elementwise saturation degree is obtained as

ξe = M l
se

M l
e

, e = 1, 2, ..., NEL where M l
se is the element stored fluid mass and M l

e as the total

fluid mass. Thus by integration over time and elements we have

ξe[t] = − 1∫
Be
n0 dV

∫ t

0

∫
B0e

J

(
∇ ·
(
ξ
n0 + J − 1

J
v

)
+∇ · vd

)
dV dt (10)

5 NUMERICAL RESULT

Indeed, the fluid front tracking is an important issue in composite manufacturing simulations,
even for injection phenomena without the influence of the preform deformation. Hence, we
consider a hat stringer in liquid resin infusion and also in resin transfer molding, which is of
relevance in aerospace industry. Stringers, and in particular hat stringer reinforced composites
structures, are typically used to prevent skin buckling to increased compression strength and
reduced component weight.

Results are shown in figure 1 with the saturation degree and pressure distribution taken when
the flow reaches the same location in both processes. It is indicated that the generic algorithm
can be applied to both infusion and RTM simulation. The process time for infusion is about
8.3 minutes while for RTM process it takes longer time to complete and it is about 40 minutes.
Clearly the advancement of the flow front during the both processes is reflected, while for the
infusion the preform deformation is also calculated.
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(a) (b)

(c) (d)

Figure 1: Infusion, saturation (a) and pressure distribution (b) after 0.2 minutes and Resin
Transfer Molding, saturation (c) and pressure distribution (d) after 1 minutes from FE-
simulation.
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Summary. Flax fibers, which are being used as reinforcement in polymer matrix composite 
materials, exhibit highly anisotropic elastic properties due to their complex internal structure. 
The mechanical properties of fibers can be evaluated by mechanical models reflecting the 
principal morphological features of fibers. Such a FEM model is applied to estimate the 
elastic properties of a unit cell of a short-fiber reinforced composite, an elementary flax fiber 
embedded in a polymer matrix. Orientation averaging approach is used for prediction of the 
stiffness of short flax fiber reinforced polymer matrix composite. The numerical estimates of 

Young’s modulus are compared to the test results of short fiber flax/poly(ε-caprolactone) 
composite.  

1 INTRODUCTION 

Flax, as well as other bast fibers, is increasingly being used as reinforcement of short-
fiber/polymer matrix composites manufactured by such production methods as extrusion, 
resin transfer molding, injection molding etc. The elastic properties of short-fiber composites 
can be related to fiber and matrix characteristics by models of different complexity. However, 
an elementary rule-of-mixtures prediction of the Young’s modulus is almost exclusively 
employed for short bast fiber reinforced composites. It is probably related to the scarcity of 
experimental data of the elastic properties of fibers. However, fiber properties can also be 
estimated by mechanical models. 

In this study, orientation averaging approach is used in prediction of the characteristics of 
elasticity of short flax fiber reinforced polymer matrix composite. Elastic properties of a unit 
cell of such composites, an elementary flax fiber embedded in a polymer matrix, are 
determined numerically, by a FEM model accounting for the principal features of the 
structure of the fiber. Thus the anisotropy of flax fiber is incorporated in the mechanical 
response of the unit cell (UC). The model estimates of Young’s modulus are compared to the 

test results of flax/poly(ε-caprolactone) composite.  

2 NUMERICAL MODELING OF STIFFNESS  

In the subsequent Sections, models of a flax fiber and a unit cell of short fiber reinforced 
composite are presented, and the orientation averaging procedure for evaluation of composite 
stiffness described. 
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2.1 Fiber model 

An elementary flax fiber was modeled as a cylindrical body
1
. Its morphological layers 

were re-grouped for mechanical analysis, resulting in a three-layer cylinder with a lumen. The 
lumen radius was selected so that the lumen accounted for 1.5 % of the fiber cross-section 
area. The outer and inner model layer, L1 and L3, thickness was selected at 1 % of the fiber 
radius. The middle layer (L2) was treated as a unidirectional cellulose fibril composite, with 
reinforcement direction along a helix at a fixed angle to the fiber axis. 

2.2 Unit cell of the composite material 

A single fiber embedded in a block of polymer matrix, Fig. 1, was chosen as a UC of short 
fiber-reinforced composite material. The matrix was assumed to cover the fiber so that the 
surfaces of the UC were at the same distance, c, from fiber surface, see Fig. 1. Then the fiber 

volume fraction µ is related to fiber length h and radius r as follows: 

2

2

))(2(4 crch

rh

++
=

π
µ  (1) 

Treating the UC as a transversally isotropic material, its effective technical constants of 
elasticity are determined via strain energy of the UC under selected loading modes as detailed 
elsewhere

1
. 

 

Fig. 1. Unit cell of a short-fiber reinforced composite. 

2.3  Orientation averaging of stiffness 

Having determined the components of the stiffness tensor *

ijklC  using the technical 

constants of elasticity, obtained for UC, the stiffness tensor of a fiber-reinforced composite 

material can be approximately evaluated by orientation averaging of *

ijklC .  

Denoting the distribution density of fiber orientation in the composite by ( )βα ,p , where α, 
β are the elevation and azimuthal angles, composite stiffness ijklC  is expressed as follows (see 

e.g.
 2

) 

( ) ( )∫∫= βααβαβα ddpCC ijklijkl sin,,*
 (2) 
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where ( )βα ,*

ijklC  designates the stiffness tensor components, in a frame of reference 

associated to the composite material, of a UC with the principal material axis aligned with the 

direction given by α, β. 
In the case of uniform fiber direction distribution, Eq. (2) takes the form

2
 

)])(3()(2(2[
30

1
,

****

jklijlikmmnnmnmnklijmnmnmmnnijkl CCCCC δδδδδδ +−+−=  (3) 

where ijδ  is the Kronecker’s delta. 

3 RESULTS AND DISCUSSION 

Finite element modeling of fiber and unit cell was performed using finite element software 
package ABAQUS. Standart 20-node quadratic brick elements C3D20 were used. 

Flax fiber layers L1 and L3 were modeled as an isotropic material with lignin properties. 
The layer L2 was considered as a unidirectionally reinforced cellulose fibril/lignin matrix 
composite

1
.  

To evaluate the longitudinal modulus of the elementary flax fiber, the FEM model of the 
fiber with length to diameter ratio of 12.5 was loaded by a stress applied in longitudinal 
direction. Twisting of the fiber was not restricted. The model was calibrated by varying the 

angle ϕ of the principal direction of L2 layer with respect to fiber axis until the fiber effective 
modulus agreed with the average experimental value for ArcticFlax

1 
of 69 GPa. This way, it 

was determined that ϕ = 7.25°.  

The experimental data of short fiber flax/poly(ε-caprolactone) composite
3
 were used to 

verify the method. The procedure of composite properties prediction was performed in two 
steps. The first step was calculation of UC properties by the finite element model, using 
different loading scenarios

1
. The second step was evaluation of Young’s modulus and 

Poisson’s ratio of short flax fiber/poly(ε-caprolactone) composite by means of the averaging 
formula (3) which assumes random orientation fibers. 

Young’s modulus of poly(ε-caprolactone) matrix was 185 MPa as determined 

experimentally
3
. Poisson’s ratio of the matrix ν = 0.3 was assumed. Since the data concerning 

average fiber length in flax/poly(ε-caprolactone) composite were not available, this parameter 
was assessed by varying length of fiber in the unit cell until the predicted Young’s modulus of 
a composite with fiber volume fraction 0.13 was the same as the average experimental 
stiffness. This way, the fiber length was estimated at 0.72 mm which corresponds to 

length/diameter ratio 45 (for ArcticFlax fiber diameter of 16 µm). The stiffness calculations 
were performed for fiber volume fractions 0.2, 0.29, 0.38 and 0.48.  

The obtained results (Fig. 2) show good agreement with experimental Young’s modulus 
for fiber volume fractions up to 0.3. For higher fiber volume fractions, calculated modulus 
becomes considerably higher than the experimentally determined one. This disagreement 
stems from the choice of unit cell, which should be altered to better reflect the interaction of 
fibers at relatively high fiber volume fractions. Nevertheless, the proposed model provides 
accurate estimates of stiffness of short flax fiber reinforced composites at relatively low fiber 

volume fractions, up to µ ~ 0.3,  as suggested by the present results and previous research
1
. 
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 4 

 

Fig. 2. Young’s modulus of short flax fiber reinforced poly(ε-caprolactone) composite as a function of fiber 
volume fraction. 

4 CONCLUSIONS 

- A method to estimate the stiffness of short-natural-fiber composites is proposed. It 
consists of two steps: first, elastic properties of a unit cell with the appropriate fiber 
volume fraction are determined using FEM; second, the averaging procedure is 
applied to obtain elastic properties of randomly oriented short fiber composite. 

- The predicted stiffness agrees reasonably well with the experimental results up to 
fiber volume fraction 0.3. For higher volume fractions, the discrepancy of calculated 
values and experimental data becomes considerable. This disagreement is likely to be 
related to the choice of the unit cell, which should be altered to better reflect the 
interaction of fibers in a composite. 
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Summary. In this contribution, modeling and numerical aspects of gradient crystal plasticity
applied to pearlitic steel will be discussed. The goal is to capture the influence of the cementite
lamella spacing on the mechanical response.

1 INTRODUCTION

On the microscopic scale, pearlite is a two-phase material with hard and brittle cementite
lamellas that are embedded in a softer ferrite matrix. In each pearlite colony the cementite has
a preferred direction, whereas the crystallographic directions for the ferrite are the same within
a nodule. An important microstructural property of a pearlitic steel is the distance between the
cementite lamellas, i.e. the interlamellar spacing. It is well-known from experiments1,2 that a
decreased interlamellar spacing results in an increased strength of the material.

In this contribution, different modeling assumptions for predicting the dependence of the in-
terlamellar spacing will be discussed. The model adopted for the ferrite is based on crystal
plasticity with gradient hardening3,4 to predict size-dependent response for single-phase poly-
crystals. Here, an existing model framework4 will be used but extended to include more advanced
modeling of the hardening5.

In a pearlitic steel, different types of boundaries between the pearlite colonies exist: bound-
aries between the ferrite and the cementite, boundaries between colonies with the same crystal
orientation (i.e. inside a nodule) and boundaries between colonies with different crystal orien-
tation (i.e. between colonies). Clearly, the appropriate choice of boundary conditions for the
plastic slip will depend on the type of boundary. The influence of different boundary conditions
will be shown in terms of the plastic slip field as well as the homogenized stress-strain response
of the grain structure.

Another modeling issue pertains to the particular fashion in which the macroscopic deforma-
tion gradient is mapped to displacement boundary conditions on the RVE. Clearly, choosing an
entirely unrestricted fluctuation field is beneficial in the sense that fast convergence is expected

1
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for increasing RVE-size, i.e the number grains can be kept small. However, in order to limit the
computational effort it is common to employ some sort of Taylor assumption for the displacement
field. A possible approach, which is investigated in this paper, is to compute the diplacements
along the grain boundaries from the macroscopic deformation gradient in the ”Taylor spirit”.
Whatever the choice, it is always necessary to solve the boundary value problems for the plastic
slip fields including the gradient effect. The adopted algorithm employs the so-called dual-mixed
FE formulation4.

Clearly, this type of problem comprises several length scales within which certain mechanisms
occur. These length scales are schematically described, for a pearlitic steal, in the figure below.

Figure 1: Modelling approach: from macro to micro level

2 Preliminary results

The following results were obtained using a mesomodel consisting of 1 nodule with 7 colonies,
all with different lamella orientations. Using the Taylor assumtion (constant strain field) at the
meso level means that the constitutive response only needs to be solved once per colony. For
the results presented below it is assumed that the meso domain is loaded by simple shear. The
figure below shows the shear component, σ12, of the homogenised meso stress for three different
sizes of the micro model.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

200

400

600

800

1000

1200

γ

[M
P

a
]

a) Shear stress

 

 

L=4

L=2

L=3

Figure 2: Homogenised meso response, σ12, for different values of L
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Summary. A micromechanically based plasticity model for modeling of anisotropy in pearlitic
steel is investigated. The model was proposed in Johansson and Ekh [1] and takes into account
large strains as well as deformation induced anisotropy. The initially randomly oriented ce-
mentite lamellae in the pearlitic steel will tend to align with the deformation which causes a
development of anisotropy.

1 INTRODUCTION

Pearlite is a two-phase material where each grain has a preferred direction that is deter-
mined by the cementite lamellae. The hard and brittle cementite lamellae are embedded in a
softer ferrite matrix. Each grain can be considered to be transversally isotropic. The initial
random orientation of the cementite lamellae gives an isotropic pearlitic material. After shear
deformation, the orientations of individual grains tend to align with each other which causes a
development of anisotropy. In this contribution, the modelled anisotropy on the macroscopic
length scale is obtained from homogenization procedures of a micromechanical model of ”crystal
plasticity”-type, proposed in Johansson and Ekh [1], of the pearlitic microstructure. In this
model the plasticity is assumed to be driven by shear stress of the ferrite between the cemen-
tite lamellae, and the re-orientation of the cementite lamellae is assumed to be of areal-affine
type, cf. Dafalias [2] Through the homogenization procedure all grains in the microstructure
are assumed to be subjected to the same deformation gradient and the yield function of the
grains have been replaced by a macroscopic yield function motivated from the micromechanical
yield function. The macroscopic yield function is calculated by spherical integrations using an
integration formula proposed by Bažant and Oh [3]. Finally, results showing the development
of the yield surface, the reorientation of cementite lamellae and the macroscopic stress-strain
response are given.

2 MICRO-MACROMECHANICAL MODEL

The point of departure is the micromechanical yield function Φµ which is formulated as
follows:

Φµ = τ2
µ − Y 2

µ (1)

1
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where Yµ is the yield stress (taking into account hardening), and τµ is the projected shear stress
on the cementite lamella plane (or rather the ferrite in between the cementite lamellae) defined
as:

τµ = τµ : [mµ ⊗ nµ] . (2)

In this expression we introduced the Kirchhoff stress τµ and the normal to the cementite lamella
nµ. Further, the direction mµ is defined as the closest projection of the traction stress tµ =
τµ, · nµ onto the cementite lamella plane.

The evolution of the cementite lamellae is assumed to be of an areal affine type determined
by the deformation gradient, i.e.

nµ =
F−t
µ · nµ,0

|F−t
µ · nµ,0|

(3)

with nµ,0 being the initial normal to the cementite lamellae. We also propose to adopt an
isotropic elastic law of Neo-Hooke type, an associative type of evolution law for the plastic
deformation gradient, and a nonlinear hardening of the yield stress Yµ.

To compute the response of a microstructure of pearlitic steel for a given macroscopic defor-
mation gradient, a finite element analysis using the micromechanical model summarized above
with proper boundary conditions can be performed.

We homogenize the micromechanical yield function Φµ to motivate a macroscopic yield func-
tion Φ as

Φ =
[
tr
(
a · τ 2

)
− τ : B : τ

]
− Y 2, (4)

with
a = 〈aµ 〉 = 〈nµ ⊗ nµ 〉 , B = 〈aµ ⊗ aµ 〉 . (5)

The current macroscopic yield stress Y takes hardening and lamella distance into account as
discussed in Allain and Bouaziz [4]. The computational homogenization procedure to obtain
the quantaties a and B is to carry out an integration over a unit sphere. In order to save the
computational time an integration formula proposed in Bažant and Oh [3] was employed. A
good example of integration over a unit sphere using the corresponding formula can be found in
Miehe et.al. [5].

3 RESULTS

A technical application of pearlitic steel is in heavily drawn cords used for suspension of
bridges. The required cold deformation of pearlitic wires is called wire-drawing in the liter-
ature. Assume that an initially isotropic material is subjected to a severe uniaxial tension
(wire-drawing). In Figure 1 we illustrate the stress response of the model when the pearlitic
wire is drawn to a diameter 0.7 of its initial diameter. For this case, where we have assumed no
isotropic hardening.

The reorientation of the normals of cementite lamellea for the corresponding loading type is
shown in Figure 2.
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Figure 1: The stress-strain curve of pearlitic steel during wire drawing obtained from the model (com-
paring the result with evolution of anisotropy and without)
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Figure 2: Reorientation of normals of cementite lamellae
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Summary. We present an efficient model for the simulation of polycrystalline materials un-
dergoing solid to solid phase transformations. As a basis, a thermodynamically consistent,
one-dimensional phase-transformation model based on statistical physics is used. The incorpo-
ration of plasticity phenomena is established by enhancing the Helmholtz free energy functions
of the material phases considered, namely austenite and martensite. For conceptual simplic-
ity, we assume von Mises-type plasticity with linear proportional hardening, where the plastic
driving forces acting in each phase are derived from the overall free energy potential of the mix-
ture. The coupled systems of evolution equations are solved in a staggered manner, where the
change of plastic strains resulting from propagating phase fronts is considered by introducing
a physically motivated exponential-type plasticity inheritance law. The one-dimensional model
is embedded into a micro-sphere formulation1 in order to simulate three-dimensional boundary
value problems.

1 A ONE-DIMENSIONAL MODEL FOR THE INTERACTION OF PHASE-

TRANSFORMATIONS AND PLASTICITY

The one-dimensional phase-transformation model is based on mixture theory, where we make
use of the Voigt assumption, i.e. all material phases are subject to the same strain ε. Each
phase is presumed to behave thermo-elasto-plastically, thus a Helmholtz free energy function
ψα = ̂ψα(ε, εαpl, θ) of the form

ρ0ψ
α =

1

2
E
α[ε− εαtr − εαpl]

2 − ζαEα[ε− εαtr − εαpl][θ − θ0]

+ ρ0c
α
p θ

[

1− log

(

θ

θ0

)]

− ρ0λ
α
T

[

1−
θ

θ0

]

(1)
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is assigned to each phase α, with E the Young’s modulus, ε = ∇xu the total strains, εtr the
transformation strains, εpl the plastic strains, ζ the coefficient of thermal expansion, θ the current
absolute temperature, θ0 the reference temperature, cp the heat capacity, and λT the latent heat

of the respective material phase. The overall free energy of the mixture Ψ = ̂Ψ(ε, ε1dpl , θ, ξ) =
∑

α ξ
αψα, with ξ = [ξ1, . . . , ξν ] and ε

1d
pl = [ε1pl, . . . , ε

ν
pl], can directly be obtained from the free

energy contributions of the respective constituents, since the distortional energy of the phase
boundaries is neglected here. Based on this, the Gibbs potential G = ̂G(∂Ψ/∂ε, ξ, θ) is obtained
by carrying out a Legendre-transformation, i.e.

G = − sup
ε





∂ ̂Ψ(ε, ε1dpl , θ, ξ)

∂ε

∣

∣

∣

∣

∣

θ,ε1d
pl

ε− ρ0Ψ



 = − sup
ε

(

∑

α

ξαgα

)

, (2)

where gα = ĝ α(σ, ε, εαpl, θ)
def
= σε − ρ0ψ

α represents the contribution of phase α to the overall
Gibbs potential G.

For the evolution of the volume fractions ξα we use an approach based on statistical physics.
In this regard, a transformation probability matrix Qν = ̂

Qν(ξ) ∈ R
ν×ν is used2, facilitating to

derive the evolution of volume fractions as ξ̇ = ̂

Qν(ξ) · ξ, wherein the notation •̇ denotes the
material time derivative. In this work, the systems of evolution equations is numerically solved
by making use of an efficient A-stable integration algorithm3.
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Figure 1: Phase-transformations in SMA – two-phase model with ξ1 = ξA (austenite) and ξ2 =
ξM (martensite): stress-strain diagramme (a), evolution of volume fractions (b) and evolution
of plastic strains (c).

1.1 Incorporation of plasticity

To incorporate plasticity, we—for conceptual simplicity—assume von Mises-type plasticity
with linear proportional hardening. Based on the overall free energy potential, the plastic driving
force qαpl,Ψ is derived4 for each phase α. The yield function Φα = ̂Φα(Y α, qαpl,Ψ ) determining the
admissible elastic domain in phase α can then be expressed in terms of the driving force and
the current yield stress Y α, namely

̂Φα(qαpl,Ψ , Y
α) = |qαpl,Ψ − ξαbα| − ξα Y α ≤ 0 . (3)
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The current yield stress Y α = ̂Y α(γα) = Y α
0 + Hα γα is given by the initial yield stress Y α

0

being modified by Hα γα, facilitating to take into account accumulated plastic strains γα of the
respective material phase. Here, Hα denotes the constant hardening modulus of phase α. The
individual back stress ξαbα is additionally considered in order to prevent plastic flow occurring
in the initial equilibrium state.

1.2 Plastic inheritance

When the phase front of a phase α evolves through a crystal, plastic strains present in
the decreasing phase β are either inherited by the phase front of the increasing phase or not.
Conceptually speaking, a positive volume fraction increment ∆ξα = n+1ξα− nξα > 0 of phase α
transfers a specific amount of plastic strains from phase β to phase α. In general, the updated
plastic strains ε̃αpl =

̂ε̃
α

pl(
nξα,∆ξα, εαpl, ε

β
pl, Π

β→α) in phase α are determined via

ε̃αpl =
1

n+1ξα

[

nξα εαpl +Πβ→α∆ξα εβpl

]

, (4)

where Πβ→α reflects the probability of phase α inheriting the dislocations present in phase β4.
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Figure 2: Phase-transformations in SMA: change of plastic strains due to inheritance resulting
from the evolution of phases (a) and concave inheritance function (b).

2 MICRO-SPHERE APPLICATION

The one-dimensional phase-transformation model is generalized by embedding it into a kine-
matically constrained micro-sphere formulation. Here, the one-dimensional micro-strains εmic

are obtained using projections of the macro-scale strain tensor εmac with respect to the under-
lying integration directions r ∈ U

2. In particular, εmic = [r ⊗ r] : εmac represents the strain in
radial direction being transferred to the micro level.

Apart from the transfer of macroscopic strains to the micro level, the relevant quantities
computed at the micro level, i.e. stresses and volume fractions, have to be transferred back to
the macro level. The macroscropic stresses σ̂mac(σmic) and volume fractions Ξ = ̂

Ξ(ξ) can be
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Figure 3: Micro-sphere application of the plastic phase-transformation model. The results are
obtained by incrementally applying a homogeneous state of deformation ε

mac(t) = κ̂(t) 0.04 e1⊗
e1 with κ̂(t) ∈ [0, 1]. The volume fractions (b) and plastic strains (c) are visualized at the
maximum strain state, i.e. at εmac = 0.04 e1 ⊗ e1.

approximated numerically via

σ
mac ≈

nr
∑

i=1

σmic
i w̄i ri ⊗ ri and Ξα =

nr
∑

i=1

ξαi w̄i , (5)

with σmic
i the micro stress acting in i th integration direction ri, ξ

α
i the respective volume fraction

of phase α situated in this integration direction , and w̄i the weighting factors depending on the
integration scheme used.
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Summary. An implicit FE-method for rate dependent strain gradient plasticity is proposed
that takes into account the contributions from internal interfaces. The numerical procedure
is stable and the constitutive parameters can be pushed towards the rate independent limit
without loss of convergence.

1 INTRODUCTION

Higher order strain gradient plasticity theories1,2,3 have proven to be difficult to implement
into a finite element framework in a consistent way. One of the major hurdles have been the
problem of the indeterminacy of the higher order stress tensor before plastic deformation de-
velops. One way around this problem is to make use of a computational pseudo-elastic regime
in the rate independent case4, or some similar penalty method. A constitutive assumption of
rate dependent plasticity will alleviate the underlying theoretical problem associated with this
indeterminacy. However, such an assumption have been quite restrictive since most implementa-
tions of these kind of theories have not, due to numerical difficulties, been able to drive the rate
sensitivity exponent to small enough values to closely mimic rate independent plasticity5,6,7.
Furthermore, the majority of the implementations employ an explicit forward Euler type inte-
gration and thus suffer from the need to take a large amount of load steps to accurately capture
the material response.

2 STRAIN GRADIENT PLASTICITY

The strain gradient theory of Gudmundson1 is used as the theoretical starting point for this
work. The balance of virtual work is∫

Ω

[
�ij�"

e
ij + qij�"

p
ij +mijk�"

p
ij,k

]
dV =

∫
∂Ω

[
Ti�ui +Mij�"

p
ij

]
dS, (1)

where "e
ij , "

p
ij and "p

ij,k denote the elastic and plastic strain and the gradient of plastic strain
respectively. The conjugated stress measures are the Cauchy stress �ij , the micro stress qij
and the moment stress mijk respectively. The displacements are ui, and at a boundary force
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tractions Ti and higher order tractions Mij appear. The right hand side of (1) shows that both
displacements and plastic strains are primary variables of the theory, thus leading to so called
higher order boundary conditions that prescribe either "p

ij or Mij on the boundary, in addition
to the standard displacement/force traction boundary.

The elastic strains are governed by linear elasticity and the constitutive equations for the
rate of plastic strains and their gradients are

"̇p
ij = g(�f ,Σ)qij and "̇p

ij,k = g(�f ,Σ)
3∑

I=1

mI
ijk

(ℓI)2
, (2)

where g is a viscoplastic rate potential that depend on the flow stress �f and the effective stress
measure Σ. The ℓI :s are three microstructural length scales and mI

ijk denotes the orthogonal

decomposition of the moment stress, see Gudmundson1 for details and further references therein.

2.1 INTERFACE CONTRIBUTIONS

Interfaces (here denoted by Γ) within plastically deforming bodies usually affect the plastic
strain state since they act to hinder or mediate dislocation motion and/or creation. This will
change the energetic state in the vicinity of such an interface and to model this an interface
energy,  Γ, dependent on the plastic strain is postulated. There is also a possibility to have a
relative displacement across internal boundaries, i.e. a sliding motion. The inclusion of such an
internal boundary would give contributions to the balance of virtual work according to∫

Ω

[
�ij�"

e
ij + qij�"

p
ij +mijk�"

p
ij,k

]
dV +

∫
Γ

∂ Γ

∂"pI
ij

�"pI
ij dS +

∫
Γ
Ti�⌊ui⌉dS (3)

=

∫
∂Ω

[
Ti�ui +Mij�"

p
ij

]
dS,

where ⌊ui⌉ denotes the jump in displacement (sliding displacement) across Γ.
Constitutive formulations at the interface are thus needed to complete the model. The inter-

face energy have been modeled as a function of scalar effective measures of plastic strain at the
interface. Several function forms have been investigated and quadratic, linear and exponentially
saturating have been deemed the most interesting. For the sliding a modified traction-separation
law can be used.

3 FINITE ELEMENT FORMULATION

Here an implicit FE-method for rate dependent plasticity with a consistent tangent modulus
and adaptive step size is proposed based on (3). A 3 node 1D element, 8 node plane strain,
plane stress and axisymmetric elements and a 20 node 3D brick element have been developed.
A quadratic interpolation of the displacements and a linear interpolation of the plastic strains
are used so that the total strain field and the plastic strain field have the same degree of
interpolation. The nodal degrees of freedom, the stress like quantities and the traction like
quantities are collected in vectors

d =

[
du

dp

]
, s =

⎡⎣ �
q
m

⎤⎦ , t =

[
T
M

]
. (4)
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The equilibrium equations can then be expressed as

� =

∫
Ω
BTsdV +

∫
Γ
NTtdS −

∫
∂Ω

NTtdS = 0, (5)

where N is the shape function matrix and B is the spatial gradient matrix. For the nonlinear
problem presented here (5) have to be solved incrementally. The tangent stiffness is

Ktan =
∂�

∂d
=

∫
Ω
BTDΩBdV +

∫
Γ
NTDΓNdS, (6)

where DΩ is the material point stiffness matrix and DΓ is the stiffness contribution from the
interface. The stiffness components are calculated to be consistent with the backward Euler
method. For example, the material point stiffness is

DΩ =
1

Δt

(
F + sT∂F

∂s

)−1(
I− sT∂F

∂�

)
, (7)

where F is the constitutive matrix that relates the vector of rates of strains and gradient of
plastic strains to the stress vector as �̇ = F(s, �)s and I is the unity matrix of appropriate size.

The stress update procedure for the non-standard stresses relies on the fact that the stress
components have to be co-linear with the rates of plastic strains and gradients, which can be
inferred from the need to have non-negative plastic dissipation

qij "̇
p
ij +mijk"̇

p
ij,k ≥ 0. (8)

This puts restrictions on the form of the constitutive laws and the update is performed at the
Gauss points by solving a nonlinear scalar equation for the effective stress Σ

g(�f ,Σ)− Ėp = 0, (9)

where the effective plastic strain rate Ėp is given from the equilibrium iterations and the flow
stress �f is updated according to some hardening law. Once the stress state is known a lin-
earization of (5) for increment k + 1 gives

�k+1 = �k +
∂�k

∂d
Δdk+1 = �k + KtanΔdk+1 (10)

which can be solved for the increments Δdk+1 by letting �k+1 → 0.

4 CONCLUSIONS

The method have been implemented as a Matlab version for debugging and testing as well
as a FORTRAN90/95 version for larger problems. The method was benchmarked against a well
known case of simple shear of an elastic-plastic strip8. The number of load steps to reach an
accurate solution is on the order of 102 or less, which is much less than for an explicit method.
The method was supplemented with an adaptive time step so that smaller steps were taken only
in the vicinity of rapid changes to the stress-strain curve, thus further reducing the number of
load steps needed. The algorithm was found to very stable and the viscoplastic rate sensitivity
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exponent could easily be made very small, 2×10−4 was tested without any numerical problems,
which is at least two orders of magnitude smaller than other reported cases and should be very
close to the rate independent limit.

The interface formulation have been implemented by special interface elements and gives the
possibility to prescribe more physically motivated external boundary conditions for the higher
order field variables. It also allows the modeling of internal interfaces (with regards to plastic
deformation) in an micro mechanically more appealing way.
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Summary. Modeling and efficien design of wind turbines require efficien and accurate computational
methods for dynamic analysis of the different components. In the present paper an efficien hybrid
formulation for beams in a rotating frame of reference is presented for analysis of the rotor system.
It is demonstrated that the equations of motion take a particularly simple form when starting from a
hybrid state-space in terms of local displacements relative to the rotating frame and absolute velocities
using similar interpolation. The equations of motion are formulated for small finit deformation beam
elements in terms of translational as well as rotational degrees of freedom and include the effect of
geometric stiffness. The dynamic equations are derived from Lagrange’s equation and combined with a
kinematic relation into a convenient hybrid state-space format.

1 HYBRID STATE-SPACE FORMULATION

It has recently been demonstrated for translation based (solid) elements that the equations of motion take
a particularly simple form when starting from a hybrid state-space in terms of local displacements u
relative to the rotating frame and absolute velocities v [1]. In the present paper this approach is extended
to small finit deformation beam elements with rotational degrees of freedom as well by introduction of
an additive term to the kinematic relation.

Consider a structure located in a local frame rotating around its origin with local angular velocity vector
Ω

T = [Ω1,Ω2,Ω3]. The local position of the structure is described in terms of the N nodes, which are
collected in the array xT = [xT

1
, xT

2
, . . . , xTN ]. The position vector x may be represented as a sum of the

initial position x0 and a displacement vector u

x = x0 + u (1)

For 3D beam elements accommodating translational as well as rotational degrees of freedom the dis-
placement vector is conveniently organized in the 2N block format [uT

1
,ϕT

1
, uT

2
,ϕT

2
, . . . ,uT

N ,ϕT
N ]T .

The absolute velocity of node j can then be formulated as

vj =
[

u̇j + Ω̃xj
ϕ̇j +Ω

]

, j = 1, 2, . . . , N (2)
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where Ω̃ = Ω×. The global velocity components are collected in the array vT = [vT
1
, vT

1
, . . . , vTN ],

thus the system format for the absolute nodal velocities can be obtained from (2) by utilization of the
expression (1),

v = u̇ + Ω̃Du + Ω̃Dx0 +ΩC (3)

The matrices Ω̃D and ΩC are introduced as

Ω̃D =







Ω̃

0
. . .






, ΩC =







0
Ω

...






(4)

where ⌈ Ω̃ 0 ⌋ and [ 0T Ω
T ]T are repeated for each node of the structure.

A key feature in the present formulation leading to particular simplification of the discretized equations
of motion is to use the same shape function representation for the local position xξ as well as the absolute
velocity vξ in terms of the nodal components x and v, respectively. The interpolation for the position xξ
can be expressed as

xξ = N(ξ)x = N(ξ)[x0 + u] (5)

where N(ξ) denotes a suitable interpolation in terms of the normalized initial coordinate ξ. The interpo-
lation of the absolute velocity is similarly expressed as

vξ = N(ξ)v = N(ξ)[(∂t + Ω̃D)x +ΩC ] (6)

This particular choice of interpolation leads to a formulation where the angular velocity can be extracted
from the integrals definin the inertia effects such as centrifugal and Coriolis forces for the individual
elements. It should be noted that if a direct point-wise time differentiation were used, the combined
time differentiation and convection term arising from the angular velocity of the rotating frame would
appear to the left of the shape function matrix N. As a consequence the matrices related to inertia effects
in the discretized formulation need recalculation on element level for changing angular velocity. In the
present formulation this change is accounted for by a simple pre- or post-multiplication of the system
mass matrix with the angular velocity matrix Ω̃D and the vector ΩC .

Expressing the kinetic energy T in terms of the local mass matrix, M

T = 1

2
vT Mv (7)

and the internal forces g(u) from an energy potential G(u)

g(u) =
dG(u)
duT

(8)

the equations of motion follow from Lagrange’s equations:

d

dt

(

∂T

∂u̇T

)

−
∂T

∂uT
+

∂G

∂uT
= f (9)

where f is the nodal force array.
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The equations of motion are conveniently expressed in a hybrid state-space format in terms of the local
displacements u and absolute velocities v. The dynamic equations of motion follow from (9) in the form

(

∂t + Ω̃D

)

Mv + g(u) = f (10)

For the current use the mass matrix is assumed independent of time and the kinematic equation (3) and
the dynamic equation (10) are combined into the following state space format:

[

0 M
−M 0

] [

u̇
v̇

]

+

[

g(u) + Ω̃DMv
MΩ̃

T

Du + Mv

]

=

[

f
−M

(

Ω̃
T

Dx0 −ΩC

)

]

(11)

The state space format is hybrid in the sense that u is the local displacements while v is the absolute
velocity. The discretized equations are separated into a computationally attractive symmetric and anti-
symmetric block format. The inertial terms arising from the rotation of the local frame are solely repre-
sented by two gyroscopic terms and generalization to accelerated rotation is straight forward leading to
a more general and computational attractive format compared to the classic block matrix format in terms
of local components, [2].

Using a linearized formulation in terms of the constitutive and an initial stress based geometric stiffness
matrix, the equations of motion can be solved using a very efficien two-step integration algorithm with-
out the need for internal iterations. The algorithm is based on an integrated form of the equations of
motions as proposed in [3]. The angular velocity is represented by its mean value over the time incre-
ment and the internal forces g(u) are represented in the form of end-point values supplemented by a term
involving the increment of the geometric stiffness, [4].

2 EXAMPLE: TRANSIENT ACCELERATION OF PRISMATIC BEAM

The properties and accuracy of the hybrid state space algorithm are illustrated considering a spin-up
sequence of a prismatic beam rotating about a fi ed axis. The beam is originally introduced by [5], but
parameters corresponding to [6] have been used. These are equivalent to a beam of length L = 10 m,
with a square cross-section with side-lengths b = 0.0775 m. The beam is homogeneous and isotropic
elastic with parameters E = 6.67 GPa and G = 2.00 GPa and mass density ρ = 200 kg/m3. The angular
velocity is increased over a period Ts = 15 s to it’s fina value Ωs = 6 rad/s according to

Ω2(t) =







ωs

Ts

[

t−
Ts

2π
sin

2πt

Ts

]

, 0 ≤ t ≤ Ts

ωs , t > Ts

(12)

Results illustrating the transverse displacement u1 and the axial displacement u3 of the tip as function of
time are illustrated in Fig. 2 (a) and (b). The transverse displacement shows the characteristic backward
bending during the acceleration phase and corresponds closely to the results obtained in [6]. However,
due to the applied small displacement beam formulation the results lack in capturing the apparent axial
shortening during the acceleration phase, whereas the small elongation due to the centrifugal force in the
fina near stationary phase is present. The effect of shortening due to bending may be reproduced by a
simple post-processing of the results using the beam column theory from [7] as illustrated by a dashed
line in Fig. 2 (b).
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Figure 1: Prismatic beam rotating about a fi ed axis.
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Figure 2: (a) Transverse tip displacement u1. (b) Axial tip displacement u3. Small displacement theory (–).
Beam-column approximation (- -).
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Summary. This paper describes the modeling of a rotary MR damper applying the feed-
forward back propagation neural network method. The forward and inverse MR damper 
behavior are modeled to estimate the force and to solve the force tracking task in real-time. 
The training and validation data are generated by dynamic tests of the MR damper mounted 
on a hydraulic testing machine. The training data for the forward model are velocity and 
current whereby the force is the target. The inverse modeling training data are absolute 
velocity and absolute force and the current is the target. This new approach is chosen because 
current is always positive and thereby leads to a small modeling error independently of the 
sign of velocity. The validation demonstrates that the proposed neural network approach can 
reliably represent both the forward and inverse dynamic characteristics of the rotary type MR 
damper. 

 
1 INTRODUCTION 

Magneto-rheological (MR) dampers have received considerable attention within the last 
decades mainly because of their design simplicity, low power requirements, large force range 
and robustness. Typically, a rotary type MR damper consists of a rotating disk which is 
enclosed in a rectangular metallic housing filled with the MR fluid. The MR fluid housed 
within the rotary type MR damper is operated in shear mode. The dissipative torque produced 
is transformed into a translational force through the crank shaft mechanism.  
The most common models to describe the dynamic behavior of MR dampers are the Bouc–
Wen model [1], the LuGre friction model [2] and the Dahl model [3]. These modeling 
approaches are fairly complicated due to the high degree of nonlinearities in the system under 
consideration. From a computational point of view the nonparametric neural network 
technique is very versatile in connection with most types of nonlinear problems [4]. 
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Therefore, this paper applies this method to model the dynamic behavior of the rotary MR 
damper. 

2 EXPERIMENTAL SET-UP 

The experimental test set up and its schematic diagram are shown in Fig. 1. The dSPACE 
is used to output the desired displacement going to the INSTRON controller, to output the 
desired current going to the current driver KEPCO and to acquire the measured states such as 
MR damper force, acceleration of the crank-shaft, actual displacement and current. Sinusoidal 
and triangular displacements with different frequencies from 0.5 Hz to 2.2 Hz are applied. 
Triangular displacements are used in order to perform tests at constant damper velocity. 
Constant and half-sinusoidal currents with different frequencies from 0.5 Hz to 2.2 Hz are 
also applied. The current of the MR damper under consideration is limited to 4 A and the 
maximum displacement amplitude is constraint to 10 mm due to the crank-shaft mechanism. 
The measured data is filtered to remove measurement noise and offsets in order to get the 
training data for the neural networks. 

KEPCO Current Driver

Hydraulic Actuator  

MR Damper

Load Cell 

Instron PC Unit

dSPACE
Controller Unit

Accelerometer

 

 

MR Damper

Actuator

Damper
forceLoad Cell

Current
driver

Power
Supply

Displacement
Command

dSPACE

Acceleration

Actual
Disp

 

Figure 1. Experimental set-up and its schematic view 

3 NEURAL NETWORK MODELING 

Feed forward neural network (FFNN) is capable of modeling any nonlinear behaviour with 
acceptable accuracy. One data set is use as training data and another as validation set. 

3.1 Forward MR damper modeling using FFNN 

The identification methodology for the modeling of the forward dynamics of MR damper 
using the FFNN approach is illustrated in Fig. 2. The input states are current and velocity and 
their associated delay values. The velocity is required due to its significant influence on the 
hysteretic behavior of the MR damper. It is derived by numerical differentiation of the 
measured displacement. The noise resulting from the differentiation is removed by additional 
low pass filtering. The difference between modeled and measured MR damper force, i.e. the 
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error(k), is used to adjust the weights and the biases of the neural network model until a 
defined modeling error is reached. The feed forward neural network includes 2 hidden layers 
with 12 neurons in the first layer and 6 neurons in the second. The output layer includes one 
neuron and is chosen for input-output comparison. The numbers of layers and neurons have 
been found by trial and error. The transfer functions of the neurons of the two hidden layers 
are selected as tangent sigmoid function and the transfer function of the output layer is 
selected as linear function. The training algorithm is based on the Levenberg-Marquardt 
algorithm. The detailed mathematics of the neural network method is described well in [5]. 
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Figure 2. Forward and inverse neural network modeling of MR damper 

3.2 Inverse MR damper modeling using FFNN 

The architecture of the inverse model using the FFNN method is also shown in Fig. 2. The 
number of hidden layers and their transfer functions are chosen as before but the number of 
neurons in both hidden layers is 6. The significant change compared to the forward modeling 
is that the absolute values of velocity and force are used to train the neural network to get the 
estimated current because current is always positive. This new approach leads to small 
modeling error and the modeling error does not depend on the sign of velocity and direction 
of damper displacement, respectively. 

4 MODEL VALIDATION AND DISCUSSION 

The validations of both the forward and inverse MR damper models are shown in Fig. 3. 
The error of the forward model is depicted by comparing the measured and estimated forces 
resulting from 2 A and sinusoidal displacement (0.5 Hz, 4 mm). The modeling error of the 
inverse neural network approach is shown for the case of half-sinusoidal current input 
(0.5 Hz) and sinusoidal displacement (0.5 Hz, 6 mm). The inverse neural network is tested by 
a half-sinusoidal current because this is quite close to the current time history that is expected 
when emulating linear viscous damping except that the current spike during the pre-yield 
region is missing. The validation of the forward model shows an acceptably small error. The 
current estimated by the inverse MR damper model shows spikes that result from spikes in the 
measured displacement and force due to bearing plays between crank-shaft and INSTRON 
piston. Although these spikes have been partially removed by the filters to derive the training 
data, the estimated current is still spiky. The simple approach of filtering the estimated current 
cancels the spikes but leads to a still acceptably small time delay of approximately 0.05 s. 
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5 CONCLUSIONS 

This investigation employed the back propagation feed forward neural network method to 
model the forward and inverse dynamics of an MR damper. The training data was taken on a 
prototype rotary MR damper that was connected to a hydraulic machine imposing sinusoidal 
and triangular displacements and constant and half sinusoidal current time histories. The goal 
of the forward MR damper model was to capture accurately the behavior of the MR damper 
behavior whereas the inverse MR damper model will later be used for the control force 
tracking when the MR damper will be connected to a shear frame. The novelty in the 
proposed neural network when modeling the inverse MR damper behavior is that the absolute 
values of velocity and force are used to estimate the damper current since current is always 
positive. The validations of both the forward and inverse MR damper models show that the 
applied neural network approaches capture the main MR damper dynamics with acceptable 
accuracy. However, the preliminary results demonstrate that the modeling accuracies can still 
be improved by further optimization of the filters that are used to process the measurement 
data to derive the training data for the neural network training. 
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Figure 3. Validation of forward and inverse neural network models 
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Summary. A novel ALE-formulation of a rolling wheel is presented in the context of finite el-
ement simulations. Numerical examples illustrate the proposed strategy for a two-dimensional
problem.

1 INTRODUCTION

A proper computational assessment of wheel–rail contact using the finite element method
needs to be able to handle evaluation of both contact stresses and heat transfer. Regarding
efficiency in these calculations, the standard approach based on a Lagrangian description
of motion has a number of significant disadvantages: In a wheel–rail contact setting, this
approach necessarily leads to large displacements of wheel material points. Further, it creates
a need to model the whole length of rail traversed during a simulation. Even for simulations
featuring short rolling distances this is prohibitively computationally expensive [1].

The presented approach suggests an Arbitrary Lagrangian Eulerian (ALE) [2] based for-
mulation of motion. The response of the mechanical system is divided into one part corre-
sponding to the rigid body motion (translation and rotation) and a second part capturing
the deformation. The equations of motion are formulated in a reference frame travelling with
the wheel. One key advantage of this approach is that the behavior of the system in the cho-
sen intermediate configuration can be properly linearized since the displacements are small
whenever strains are small. Furthermore, in the case of stationary dynamics, the solution is
time-independent.

2 THEORY

2.1 Proposed ALE Description of Motion

The motion of a continuum can be described by a map, x = ϕ(X, t), relating the un-
deformed configuration, ΩX 3 X, to the deformed (current) configuration, ωx 3 x. The
standard approach to solving a solid mechanics problem is the straight-forward solution of
the equations of motion based on Lagrangian kinematics, as illustrated in Figure 1.
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ΩX

ωx

ϕ

Figure 1: Illustration of the standard straight-forward approach to solving a wheel–rail contact prob-
lem.

In a wheel–rail setting however, this approach has a number of disadvantages, including
the resulting large displacements of wheel material points and the need to model the whole
length of rail traversed during a simulation. The present contribution suggests an Arbitrary
Lagrangian Eulerian (ALE) description of motion, constructed so as to avoid these problems.
In this description, two intermediate configurations are introduced, the first of which is Ω

X̂
3

X̂, where the wheel has been translated and rotated but where no deformation is included.
The second intermediate configuration is ωx̂ 3 x̂, which also includes deformation of wheel
and rail. Both configurations use a reference frame travelling with the wheel. Figure 2 shows
a schematic illustration of the four configurations, together with their intermediary maps:
X̂ = φ̂(X , t), x̂ = ϕ̂(X̂, t), x = φ̌(x̂, t) and x = ϕ(X , t).

ΩX

Ω
X̂

ωx̂

ωx

φ̂

W
φ̂

R

ϕ̂

φ̌

ϕ

Figure 2: Illustration of configurations and maps relevant to the proposed ALE description of motion.

Recognizing that the maps X̂ = φ̂(X, t) and x = φ̌(x̂, t) can be easily identified from
knowledge of the translational and rotational motion of the wheel across the rail, the problem
is narrowed down to finding the map x̂ = ϕ̂(X̂ , t). This transformation will constitute small

2
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displacements in the case of small strains and will be time independent if the dynamical
behavior of the system is stationary.

2.2 Equations of Motion

The balance of momentum equation in the standard Lagrangian formulation is

ρXa − P · ∇X = b in ΩX, (1)

where ρX is the density, a the acceleration, P the second Piola-Kirchhoff stress tensor and b

the external volume force field. ∇X is the Lagrangian gradient operator: (·)⊗∇X = ∂(·)/∂X .
In terms of the ALE description of motion, the momentum equation becomes

ρ
X̂

[
¨̄
X + dttx̂ + 2

[
(dtx̂) ⊗ ∇̂

]
· v̄ + F̂ · (Dtv̄) + Ĝ : (v̄ ⊗ v̄)

]
− P̂ · ∇̂ − b̂ = 0 in Ω

X̂
, (2)

where Dt(·) ≡ ∂(·)/∂t|X , dt(·) ≡ ∂(·)/∂t|
X̂

, dtt(·) ≡ ∂2(·)/∂t2|
X̂

, F̂ ≡ x̂⊗∇̂, Ĝ ≡ x̂⊗∇̂⊗∇̂

and X̄ is the translation of the wheel center. Furthermore, v̄ = DtX̂ is the velocity of material
points in the Ω

X̂
-configuration, implying that many of the terms appearing in the expression

for the acceleration arise due to convection of material points through X̂-coordinates.

2.3 Contact Formulation

Two types of contact formulation, subsequently described, are employed. The penalty
method introduces penalty forces at penetrating nodes that can be seen as having been
derived from an additional elastic potential energy term: Πc(u) = 1

2εN

∑nc

i=1(gsi
(u))2, where

u is the finite element displacement vector, εN is the penalty parameter pertinent to spring
stiffnesses, gsi

are gap functions and si, i = 1, 2, . . . , nc are the node numbers of penetrating
wheel nodes. The Lagrange multiplier method uses the additional elastic potential energy
term Πc(u,Λ) =

∑nc

i=1 λsi
gsi

(u), thereby introducing a set of Lagrange multipliers, λsi
, equal

in number to the number of penetrating wheel nodes, as additional unknowns of the problem.
This method allows no penetration of wheel nodes. Both methods lead to changes in both
stiffness terms and external forces in the FE formulation.

3 NUMERICAL EXAMPLES

A few example numerical results are shown below, featuring 2D linear elastic contact and
stationary dynamic response. Vertical displacements of the nodes along the inner boundary
of the wheel are fixed. Figure 3 shows the mesh dependency regarding evaluated vertical
displacement and penetration of the first contact node of the wheel. Figure 4 shows the ωx̂-
configuration resulting from a simulation using the penalty method and example geometry,
material and motion parameters. The horizontal speed of the wheel is set to 200 km/h.
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Figure 3: Dependence on mesh size of vertical displacement and penetration of the first contact node of
the wheel. Results employing the penalty method and the Lagrange multiplier method are compared.

Figure 4: Deformation plot from a simulation featuring the penalty method, fixed vertical displacement
of the inner boundary, local mesh refinement of the wheel and example geometry, material and motion
parameters.

4 CONCLUSIONS

The proposed ALE description of motion has been described and the pertinent form of
the balance of momentum equation derived. One advantage of this approach to solving the
wheel–rail contact problem is that small strains leads to small displacements, which means
that it provides a natural reference point for linearization of the response in the case of finite
strains. Preliminary numerical results have been presented, showing some features of the
numerical implementation of the FE formulation derived from the ALE momentum equation.
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Summary. Homogenization of flow in porous media is studied. The continuity equation in
conjunction with Darcy’s law as a constitutive relation on the macroscale, where the permeability
is a function of the pressure gradient, is applied to a macroscopic domain. On the heterogenous
mesoscale, a Stokes flow problem is formulated on a Representative Volume Element with a
prescribed pressure gradient and suitable boundary condition. The numerical procedure for
finite element simulations of the two-scale problem is outlined and illustrated by a few example
problems.

1 INTRODUCTION

Porous materials are present in many natural as well as engineered structures. On the
mesoscale, the material has a strongly heterogeneous composition consisting of a solid matrix
with fluid filled pores, while on the macroscale the material is often modeled as homogeneous
using an averaged constitutive relation. Due to the complexity of the mesostructure in this kind
of materials, it is difficult to make an accurate model on the macroscopic level, thus exploring
the possibilities of a multiscale approach is a natural step.

On the macroscale a Darcy flow is present which is solved using the Finite Element Method.
However, instead of using a conventional constitutive relation associating the seepage velocity
to the pressure gradient, another Finite Element problem is solved in each Gausspoint in order
to produce the velocity given the pressure gradient. The problem solved in each Gausspoint
is referred to as the mesoscale problem. This problem consists of a Stokes flow that is solved
for on a representative volume element (RVE) which is geometrically a representation of the
mesostructure of the porous medium. The solution to the mesoscale problem is homogenized
and the result is returned to the macroproblem.
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2 THE MACROSCALE PROBLEM

The macroscale problem combines the continuity equation and Darcy’s law and is stated in
strong form as

∇·w̃(∇p̃) = Q on Ω (1)

p̃ = p̃D on ΓD (2)

w̃·n = −q on ΓN (3)

where w̃ is the seepage velocity of the fluid, p̃ is the pressure,q is the inflow and Q is the
production of fluid. Introducing the shape function δp̃, the variational form of the macroscale
problem is stated as: For all δp̃ ∈ Q̃ find p̃ such that

ã (p̃; δp̃) = L̃ (δp̃) (4)

The above problem is solved using Newton-Raphson iterations until the residual is sufficiently
small. In a multiscale context, the seepage velocity w̃ is evaluated by solving another FE problem
on the lower (meso-) scale.

3 THE MESOSCALE PROBLEM

On the mesoscale, a Stokes flow is solved for on a domain that geometrically describes the
structure of the porous medium at hand. A Stokes flow can be considered a good approximation
of a flow with low Reynolds number. The mesoscale domain consists of two phases, a solid phase
that constitutes the matrix in which a fluid phase flows. Here, we consider the special case of
rigid solid. We note that the general situation with a deformable solid requires a 3D description.
Figure 1 illustrates an example of a RVE Ω� in 2D. On the surface of the obstacles (Γint

�
) a no

slip condition is imposed.

ΓF
�

ΓS
�

Γint
�

ΩS
� ΩF

�

Figure 1: RVE Ω� consisting of a solid and a fluid phase. The solid region is denoted by ΩS
�

and the fluid region is denoted ΩF
�
. The boundary separating the solid and the fluid phases is

denoted Γint
�
, while the outer fluid boundary is denoted ΓF

�
and the outer solid boundary ΓS

�
.
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The strong form of the Stokes flow is stated as:

−∇·σ = b on ΩF
�

(5)

∇·v = 0 on ΩF
�

(6)

v = 0 on Γint
� D (7)

v = vD on ΓF
�D (8)

σ·n = t on ΓF
�N

(9)

Since the macroscopic constitutive relation is dependent on the macroscopic pressure gradient
∇p̃, the mean pressure gradient on the RVE is prescribed to ∇p̃. This is achieved by introducing
an additional equation to the Stokes flow equations. To produce a non-overdetermined system
of equations, either the traction or the velocities are set as unknown constants along the edges,
thus producing a system with a unique solution. The system of equation takes on different
shapes depending on the choice of additional unknowns.

In the case of constant unknown traction along the boundaries of the RVE, the variational
form is stated as: Given ∇p̃, find the velocity v ∈ V, the pressure p ∈ Q and the unknown,
constant traction tΓ such that for all test functions δv ∈ V, δp ∈ Q and δw ∈ Rn











a�(v, δv) + b�(p, δv)− c�(tΓ, δv) = l�(δv)
b�(δp,v) = 0
〈∇p〉

ΩF
�

= ∇p̃
(10)

where tΓ is the constant unknown traction satisfying the prescribed pressure gradient. Here,
we introduce the notation 〈•〉

ΩF
�

for the volume average over the fluid domain. The constant

traction can vary in different ways along the boundary, e.g in a linear fashion.
In the case of constant velocity along the boundaries, the problem is stated as: Given ∇p̃

and ϕ̂, find the velocity v ∈ V, the pressure p ∈ Q and the unknown, constant velocity vΓ such
that for all test functions δv ∈ V, δp ∈ Q and δw ∈ Rn











a�(v + ϕ̂vΓ, δv) + b�(p, δv) = l�(δv)
b�(δp,v) = 0
〈∇p〉

ΩF
�

= ∇p̃
(11)

where vΓ is the unknown constant velocity along the boundary of Ω�. The scalar ϕ̂ is a weight
that scales the constant velocity such that it appears to have the shape of fully developed
laminar flow in a pipe to prevent large velocity gradients. ϕ̂ is computed in such a fashion that
the continuity equation is fulfilled.

4 NUMERICAL RESULTS

Special attention is paid to how convergence of the solution depends on the choice of boundary
conditions and the size of the RVE. Results show that choosing unknown constant velocity results
in much faster convergence than in the case of unknown constant traction. Figure 2 shows the
two scales where the magnification is the mesoscale solution at a specific Gauss point. On the
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left side boundary of the macroscale domain, a flux q is prescribed while on the right side the
pressure p is prescribed.

�

�

Figure 2: Illustration of the two scales.

5 CONCLUSIONS AND OUTLOOK

A novel two-scale formulation of porous media has been presented. The algorithm has been
implemented in 2D using two-scale finite element analysis, so-called FE2. Future work includes
the extension to a deformable solid matrix.
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1 INTRODUCTION

The inverse Poisson problem is an important prototype of an indirect measurement problem,
when the underlying physics can be modeled as a diffusion process. Important examples of
this type include inverse heat transfer problems, electrocardiography problems as well as inverse
problems of elasticity.

The model describing how the measured quantity depends on the quantity of interest is
called the forward problem. The inverse problem can be described as the inverse of the forward
problem. The inverse Poisson problem is ill-conditioned in the sense that a small perturbation in
the measured quantity can cause an arbitrarily large change in the quantity of interest. Because
of this nature, prior knowledge regarding the behavior of the quantity of interest is needed. Often
the quantity of interest is assumed to be a smooth function. The solution is then obtained as a
regularized inverse of the forward problem.

Since in general not even the forward Poisson problem can be solved exactly, only an approx-
imation to the inverse solution is obtainable. It is due to discretizing the quantity of interest and
using a FE-approximation of the forward problem. Both the discretization and the use of an
approximate forward problem cause a certain amount of error. The effects of both error sources
are investigated.

2 STATEMENT OF THE PROBLEM

2.1 The forward problem

Using the terminology of heat transfer problems, the problem we consider is the problem of
reconstructing the heat sources based on a number of temperature measurements.

The model for the transfer of heat is the Poisson equation

∇ · (σ∇u) = f in Ω (1)

u = uD on ∂Ω

where u is the temperature of the material, f describes the heat sources in the domain Ω, uD is
a fixed temperature on the boundary and σ is the heat conductivity of the material.
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With suitable additional assumptions, there exists a unique solution to this problem for each
f ∈ L2(Ω). Let K be the solution operator to the problem, such that u = K−1f . Let K−1

h be
the finite element solution operator with mesh density parameter h, and the corresponding FE
solution uh = K−1

h f .
The temperature measurements are modeled as linear functionals on the temperature field.

That is, the measurement is a vector m such that

m = [(h1, u), (h2, u), . . . , (hN , u)]T = Hu = HK−1f. (2)

For technical reasons, the measurement functionals are assumed to be square integrable, i.e.
h1, . . . , hN ∈ L2(Ω).

2.2 Inverse problem

In the inverse problem, the heat sources f are reconstructed from a measurement m. Unfor-
tunately, the relation in equation (2) is not generally uniquely invertible. By injecting additional
information to the problem, for instance by using the method of statistical inversion or gener-
alized Tikhonov regularization, a reconstruction can be obtained as the following minimization
problem1

f r = argmin
f∈F

{
‖HK−1f −m‖2 + b(f − f̄ , f − f̄)

}
. (3)

As we are interested in enforcing the smoothness of the reconstruction, the space F is chosen
to be the Sobolev space H1(Ω). The bilinear form b(·, ·) acts as a cost function, enforcing the
reconstruction f r to have suitable properties. We assume the bilinear form b(f, g) to be (i)
continuous and (ii) coercive in F , i.e.

(i) |b(f, g)| ≤ C‖f‖1‖g‖1 ∀f, g ∈ F, (4)

(ii) b(f, f) ≥ c‖f‖21 ∀f ∈ F. (5)

The term b(f − f̄ , f − f̄) in the minimization thus enforces that f is close to f̄ and that the
difference f − f̄ is smooth.

This minimization problem can be written in variational form as: find f r ∈ F such that

a(f r, g) = l(g) ∀g ∈ F, (6)

where
a(f, g) = (HK−1f)T (HK−1g) + b(f, g) and l(g) = mT (HK−1g) + b(f̄ , g). (7)

The bilinear form a(·, ·) is continuous and coercive in F , so the problem does have a unique
solution. However, because both a(·, ·) and l(·) contain the solution operator K−1 of the forward
problem, they cannot be directly evaluated, and thus the problem cannot be directly discretized.
To remedy this, we modify the problem to use the FE solution operator K−1

h instead.

The modified problem is then: find f̂ r ∈ F such that

â(f̂ r, g) = l̂(g) ∀g ∈ F, (8)

where
a(f, g) = (HK−1

h f)T (HK−1
h g) + b(f, g) and l(g) = mT (HK−1

h g) + b(f̄ , g). (9)
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Since the bilinear form â(·, ·) is continuous and coercive in the space F , the variational problem
(8) has a unique solution. The problem can then be discretized by choosing a suitable finite
subspace Fh ⊂ F and solving the variational equation in that space: find f̂ rh ∈ Fh such that

â(f̂ rh, g) = l̂(g) ∀g ∈ Fh. (10)

3 ERROR ANALYSIS

The error of the approximate solution f̂ rh can be broken down into two components

‖f r − f̂ rh‖ = ‖f r − f̂ r + f̂ r − f̂ rh‖ ≤ ‖f r − f̂ r‖+ ‖f̂ r − f̂ rh‖. (11)

The first part, the term ‖f r− f̂ r‖, is due to using the FE-approximation of the forward problem
instead of the exact solution. We refer to this error source as the consistency error. The second
part, ‖f̂ r − f̂ rh‖, is the discretization error of limiting the solution to a finite subspace.

To estimate the consistency error, we define two operators

Ea(f, g) = a(f, g)− â(f, g) ∀f, g ∈ F and El(g) = l(g)− l̂(g) ∀g ∈ F. (12)

The operator El(·) can be estimated as

|El(g)| = |l(g)− l̂(g)| = |mT (H(K−1 −K−1
h )g)| ≤ ‖m‖‖H(K−1 −K−1

h )g‖
≤ ‖m‖‖H‖L2(Ω)→RN ‖K−1g −K−1

h g‖L2(Ω) ≤ Ch2‖m‖‖g‖L2(Ω), (13)

where the last inequality is due to the Aubin-Nitsche L2-error estimate of the finite element
solution2,3. The operator Ea(·, ·) can be estimated similarly to give

|Ea(f, g)| ≤ Ch2‖f‖L2(Ω)‖g‖L2(Ω). (14)

Due to the coerciveness of a(·, ·) we can estimate the consistency error as

1

c
‖f r − f̂ r‖21 ≤ |a(f r − f̂ r, f r − f̂ r)| = |El(f

r − f̂ r)− Ea(f̂ r, f r − f̂ r)| (15)

≤ |El(f
r − f̂ r)|+ |Ea(f̂ r, f r − f̂ r)| ≤ Ch2(‖m‖+ ‖f r‖L2(Ω))‖f r − f̂ r‖1.

To estimate the discretization error, we note that since â(·, ·) is continuous and coercive in
the space F , then Cea’s lemma holds true. It states that the discrete solution f̂ rh is the best

approximation of f̂ r up to a constant C, i.e. for any f ∈ Fh

‖f̂ r − f̂ rh‖1 ≤ C‖f̂ r − f‖1 ≤ C(‖f r − f̂ r‖1 + ‖f r − f‖1). (16)

Plugging in the previous estimate for the consistency error and using known interpolation results
as well as the Aubin-Nitsche lemma2,3, the errors in H1-norm and L2-norm can be estimated as

‖f̂ r − f̂ rh‖1 ≤ Ch‖f r‖2 + Ch2(‖m‖+ ‖f r‖L2(Ω)) ≤ Ch‖f r‖2 (17)

and ‖f̂ r − f̂ rh‖0 ≤ Ch‖f̂ r − f̂ rh‖1 ≤ Ch2‖f r‖2. (18)

Combining the consistency error and the discretization error, the following estimates hold

‖f r − f̂ rh‖1 ≤ Ch2(‖m‖+ ‖f r‖L2(Ω)) + Ch‖f r‖2 ≤ Ch‖f r‖2 (19)

and ‖f r − f̂ rh‖0 ≤ Ch2(‖m‖+ ‖f r‖2). (20)
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4 NUMERICAL EXPERIMENTS

Numerical tests were run in the rectangular domain Ω = (0, 4) × (0, 1). The measurements
were average temperatures over discs of radius 0.1, which were scattered in a uniform grid over
the domain. The bilinear form b(·, ·) was chosen to be b(f, f) = 10−3‖f‖21. A highly refined
numerical solution acted as the exact solution against which the error was computed.

Figure 1: Approximate solutions of the inverse problem with an increasing number of DOFs
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Figure 2: L2 and H1 errors of the approximate solution with different values of h. The convergence rates
correspond well with the rates estimated a priori in equations (19) and (20)

5 CONCLUSIONS

Surprisingly, the smoothness regularized inverse Poisson problem is very similar to the stan-
dard Poisson problem in what comes to analysis. Also, it turns out that the error due to
replacing the exact forward problem with a finite element approximation is at most the same
order of magnitude as the discretization error.
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Summary. Free vibrations of beams with non-uniform cross-sections and elastic end constraints
are studied in the present paper. The Chen-Chiao Haar wavelet method is applied to different
types of cross-sections and end constraints. Euler-Bernoulli theory of bending is used to describe
motion of the beam. The computations carried out with the aid of the proposed method are
compared with the cases described in literature.

1 INTRODUCTION

Non-uniform beams provide a better distribution of strength and mass along the structure
in comparison to uniform beams. Moreover, non-uniform beams satisfy special architectural
and functional requirements. The transverse vibrations of non-uniform Euler-Bernoulli beams
have been extensively studied by several authors. The governing equation for the free vibrations
of non-uniform Euler-Bernoulli beam is a fourth-order linear differential equation with variable
coefficients. The analytical solutions have been found only for some special cases including
tapered beams. These solutions involve Bessel functions1, orthogonal polynomials or hypergeo-
metric functions2, and Frobenius method3. Hsu, Lai and Chen4 applied the Adomian modified
decomposition method to the vibrating beams with linearly varying breadth and depth. The
Rayleigh-Ritz method has been applied by Zhou and Cheung5 to the vibrating beams with
breadth and depth varying proportionally to the arbitrary power of space coordinate. A special
case of exponentially varying cross-section has been considered by Ece, Aydogdu, Taskin6. In
the present paper, the Haar wavelet method7,8,9 is adjusted to the free vibration of beams with
arbitrary varying cross-sections. The paper is divided into four parts. In section 2, the formulas
for calculating the integrals of the Haar wavelets are provided. In section 3, the solution to the
problem is described. In section 4, a numerical example is presented.

2 INTEGRATION OF HAAR WAVELETS

The Haar wavelets belong to the special class of discrete orthonormal wavelets. The latter
wavelets generated from the same mother wavelet form a basis whose elements are orthonormal
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to each other and are normalized to unit length. This property allows each wavelet coefficient
to be computed independently of other wavelets. The Haar wavelet family is a group of square
waves:

hi(x) =



1 for x ∈ [ km ,
2k+1
2m ] ,

−1 for x ∈ [2k+1
2m , k+1

m ] ,

0 elsewhere.

(1)

Integer m = 2j(j = 0, 1, . . . J) is a factor of scale; k = 0, 1, . . .m−1 is the factor delay. Integer
J determines the maximal level of resolution. Index i in (1) is calculated as i = m+ k + 1; the
minimal value for i is two (if j = 0, then m = 1, k = 0); the maximal value of i is 2M , which is
2J+1. If index i is equal to one, the corresponding scaling function is h1(x) = 1 if x ∈ [0, 1], and
h1(x) = 0 elsewhere.

For further studies, the integrals of the wavelets

pα,i(x) =
∫ x

0
pαi−1,i(x)dx (2)

are required. In (2) p0,i(x) = hi(x). These integrals are calculated analytically9. In case i = 1,
the integral of wavelet is pα,1(x) = xα/α!, and in case i > 1

pα,i(x) =



0 for x < k
m ,

1
α!(x−

k
m)α for x ∈ [ km ,

2k+1
2m ] ,

1
α! [(x−

k
m)α − 2(x− 2k+1

2m )α)] for x ∈ [2k+1
2m , k+1

m ] ,

1
α! [(x−

k
m)α − 2(x− 2k+1

2m )α) + (x− k+1
m )α] for x > k+1

m .

(3)

The values pα,i(0) and pα,i(1) should be calculated in order to satisfy boundary conditions.

3 TRANSVERSE VIBRATIONS OF NON-UNIFORM EULER-BERNOULLI BEAMS

Let us consider an isotropic beam with a variable cross-section of length L. Introducing the
quantities:

ξ =
x

L
, k4 =

ρA0ω
2L4

EI0
, (4)

the equation of motion for transverse vibrations is given by:

d2

dξ2
[I(ξ)

d2w(ξ)
dξ2

]− k4A(ξ)w(ξ) = 0, ξ ∈ [0, 1], (5)

2

 --186--



Helle Hein and Ljubov Feklistova

where w(ξ) is the transverse deflection, A(ξ) is the cross-sectional area at position ξ, I(ξ) is the
moment of inertia of A(ξ). In (4), ρ is the mass density of the beam material, E is the Young’s
modulus, k is the dimensionless natural frequency, A0 and I0 are the reference cross-section area
and the moment of inertia at ξ = 0, respectively. The boundary conditions in the presence of
translational and rotational spring constraints at ξ = 0 are presented as4:

d

dξ
[I(ξ)

d2w(ξ)
dξ2

] + ktw(ξ) = 0, (6)

I(ξ)
d2w(ξ)
dξ2

− kr
dw(ξ)
dξ

= 0. (7)

In (6) and (7), the non-dimensional translational and rotational spring coefficients kt and kr
are

kt =
KTL

3

EI0
, kr =

KRL

EI0
. (8)

The boundary conditions at ξ = 1 are formulated analogically. The fourth derivative of the
solution (5)-(7) is sought in the form:

w′′′′ =
2M∑
i=1

aihi(ξ), (9)

where ai are the unknown wavelet coefficients. Integration of (9) four times, results in

w′′′ =
∑2M
i=1 aip1,i(ξ) + C1,

w′′ =
∑2M
i=1 aip2,i(ξ) + C1ξ + C2,

w′ =
∑2M
i=1 aip3,i(ξ) + 0.5C1ξ

2 + C2ξ + C3,

w =
∑2M
i=1 aip4,i(ξ) + (1

6)C1ξ
3 + 0.5C2ξ

2 + C3ξ + C4.

(10)

Substituting (10) into (5) - (7) and evaluating I(ξ) and A(ξ) at the collocation points, the
linear homogeneous system of equations for determination of natural frequencies and mode
shapes is obtained.

4 NUMERICAL EXAMPLE

Consider a truncated at α tapered beam5 with parabolic-taper width b(ξ) = b0
√
ξ and linear-

taper height h(ξ) = h0ξ. The first three eigenfrequency parameters for boundary conditions (on
the left end kr = kt = 0 and on the right end kr → ∞, kt → ∞) with J = 5 are presented in
Table 1. The calculated results correspond well to the previous works.

5 CONCLUSIONS

The main advantages of the Haar wavelet method are its simplicity and small computational
costs: high accuracy is obtained by a small number of grid points. The method is convenient to
solve boundary value problems since the boundary conditions are taken into account automati-
cally.
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α Ω1 Ω1 Ω2 Ω2 Ω3 Ω3

Present Ref 5 Present Ref 5 Present Ref 5

0.1 5.8383 5.8382 16.6901 16.696 34.8190 34.854
0.3 4.7574 4.7577 17.5988 17.600 41.6669 41.660
0.5 4.2101 4.2100 18.9250 18.922 47.9306 47.907
0.8 3.7303 3.7301 20.8437 20.838 56.4426 56.453

Table 1: The first three eigenfrequency parameters Ωi = k2 for a beam with parabolic-taper width and
linear-taper height
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Summary. Guided projectile terminal phase against target at ground level is investigated 

using a simplified Adjoint simulation. A pseudo-optimal projectile navigation gain is looked 

for against a target disturbing the projectile guidance. The use of counter-measures is 

modeled as a sudden target position shift and velocity change when the true target is finally 

detected. The miss distances obtained are studied and the “optimal” navigation gain is 

chosen based on the maximum tolerated miss distance. 

 
1 INTRODUCTION 

Beside the time-forward direct simulations the Adjoint technique is often utilized in guided 
weapon end-game analysis. The method has particularly merit to quickly give performance 
projections of linear time-variant systems. So far the method has not been used as widely as 
one would expect based on its flexibility and application potential1. The objective of this 
paper is to study the capability of the method to predict the end-game miss distance. 

 

2 ADJOINT SIMULATION MODEL 

The baseline projectile guidance loop at the background of the Adjoint model is depicted in 
Fig 1. In this study the guided projectile systems model consists simply of five first order lags 
in series. The first two are the seeker-head lags (τSH for seeker-head and τN for noise filter) 
and the third one is for the autopilot. The two remaining are modeling the projectile inertia 
(τAF). The time constants are 0.1 s for each component modeled giving the total time constant 
τtot = 0.5 s. 

Projectile maneuvering capability was not limited to maintain the system linearity. The 
standard proportional navigation algorithm was used in this study. The closing speed Vc was 
chosen to be 300 m/s. No aerodynamic data was explicitly present in the computations. 

 --189--



Timo Sailaranta and Ari Siltavuori. 

 2 

 
Figure 1: The time-forward missile guidance loop used in this study. The Adjoint model is based on this original 

system. 
 
In the traditional presentation with the inverted block-diagram signal flow the original 

system output of interest (the miss distance) is seen to become an impulsive input to the 
Adjoint system. Correspondingly the original system input turns into an Adjoint output1. 
However, the traditional Adjoint construction is not performed in this study. Instead of that, 
the presentation follows the text of reference2 with the Adjoint method derived in the general 
setting of state-space models. 

The block diagram of Fig 1system can be written in state space form  
 

)()( tBtA uxx   
(1) 

)(tCxy    
 

and we obtain by inspection 
 

 

(2) 

 

The input to system is the target maneuvering nT(t) which is taken to be 0 in this study. 
Variable tgo = tF, where tgo is the time-to-go from the impulse initiation (= resolution of the 
target location and speed) to the interception and tF is the final time or the time of flight. The 
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seeker-head turning angle is denoted as λ. 
The initial state vector xo is 
 

  Twx 000000   
(3) 

 

where the terms w and Δ are the target lateral velocity change and position shift. The miss 
distance is wished as the result and the output is chosen to be 

 

 

































2

1

0000010

AF

AF

AP

N

SH

a

a

a

y 











 (4) 

 

where the matrix C is  
 

 0000010C  (5) 
 

The Adjoint of the time-forward state-space model is 
 

adjTadj

go

A
t

xx 
d

d

 

(6) 

Tadj C)0(x   

 

The miss distance ξ due to the target step-like shift is obtained from 
 

)()( 2 oF

adj

F ttxt 
 

(7) 
 

and the miss distance due to the target initial lateral velocity w is 
 

)()( 1 oF

adj

F ttwxt 
 

(8) 
 

Since the original system is now reversed the term adj
x1 is obtained as an integral of adj

x2  
 

END-GAME GEOMETRY 

The target is at ground and is disturbing the terminal phase of the projectile flight. The 
projectile resolves the true target at some point and this is seen as the sudden target lateral 
shift (10 m) and/or velocity (±10 m/s). The discontinuously appearing changes are defined to 
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be positive to East (right, see Fig 2). The projectile is approaching about from above and only 
the three final seconds are investigated. The projectile pitch and yaw guidance loops are 
identical and can be studied separately if wished. 

 

 
 

Figure 2: The end game geometry studied. The projectile is flying towards North from about 900 m altitude and 
the apparent target is located at the Origin at ground level 0 m. The true target at right is detected at some point 
of the terminal phase. In the Adjoint simulations the sudden lateral shift 10 m and velocity change (±10 m/s) will 
take place at all tgo -values in one run. 

 

RESULTS 

The obtained miss distances are depicted in Fig 3 as a function of time-to-go tgo. It 
indicates the true target location/velocity observation time before the interception. The benefit 
of the Adjoint model is capability to give all the results as a function of tgo in a single run. 
Only four runs were needed to get the results depicted in Fig 3. The combined results were 
obtained by summing the contributions of the lateral shift and velocity. The miss distance is 
defined to be positive here when the true target position is to right (east) from the projectile 
impact point. 

The hit-criterion in this paper is defined to be 2 meters or less. The tgo –windows to hit for 
different navigation gains N (0, 1, 2 and 3) are compared. Based on this very limited study it 
seems that the case with N=2 gives most hit opportunities if the true target is detected at the 
end of the projectile trajectory. 

It is worth of noting that the projectile accelerations obtained at small tgo-values are fairly 
high (up to 25 g) and may exceed some true maneuvering capability available. However it is 
also interesting to note that a projectile with saturated acceleration may sometimes have a 
smaller miss distance than a projectile with “unlimited” maneuvering capacity1. Particularly 
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the small tgo -miss distances with high gain N might be overestimated in this study. 
 

a)   b)  

c)   d)  
 

 

Figure 3: The miss distances obtained for the cases. a) N=0: The projectile is now ballistic and will only hit the 
target if the target moves towards the impact point. b) N=1: The gain is too small to make the projectile 
maneuver enough to hit the target. c) N=2. d) N=3. 

 

CONCLUDING REMARKS 

The Adjoint method was used to obtain the miss distances against a target located at 
ground. The navigation gain N was varied and the “optimal” value was found to be 2 for the 
weapon systems and end-game case studied. With some simplifications and assumptions on 
mind the method proves to be capable to produce the projectile performance projections 
quickly. The case studied was very limited and the method flexibility allows investigating far 
more complex systems.  
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Summary: Failure of composite materials by the formation of kinkbands is a non-linear 
phenomenon involving interacting non-linear effects of material behavior of the matrix 
materials and fiber buckling. A constitutive model for unidirectional layered materials is 
implemented as User Material (UMAT) user subroutine in ABAQUS/Standard for analyzing 
the kinkband formation in the fiber composites under compressive loading within the 
framework of large deformation kinematics. This computational model analyses the effects of 
misalignment on elastic plastic deformation under plane strain conditions based on the 
smeared-out, plane constitutive numerical model. The model is successful in simulating the 
transition of the failure mode by buckling of long, slender beams to material instability by the 
kink band mechanism for short plate panels. 

1 INTRODUCTION 

Despite of high tensile strength of continuous fiber composite materials, their failures under 
compression is a design-limiting feature. The carbon fibers in an epoxy matrix possess 
excellent tensile strength and often fail in compression by plastic microbuckling at stresses of 
about 60% of their tensile strength1. It has also been found that the compressive strength is 
governed by plastic yielding in the matrix2, and furthermore, that small misalignments of the 
fibers have a large influence on the compressive strength3. In these investigations the post-
buckling response is also studied, and it is shown that the localized deformation into a well-
defined band of bent fibers which is called as kinkband. Kinkband formation in fiber 
reinforced materials was investigated4,5, where a plane constitutive model for perfectly 
bonded layered materials was introduced. 

2 CONSTITUTIVE MODEL 
The constitutive model was framed on the following assumptions: 
1. The fibers and the material lines which are parallel to each other are subjected to a 

common stretching/compression and rotation  
2. Transmission of identical tractions in the planes parallel to the fibers 
3. The constituents materials are elastic or elastic-plastic 
The general relation between the Cauchy stress and the strain rate in the three dimensions is 
given by 

 ij ijkl klL   (1) 

where ijklL are the plastic elastic-plastic tangent moduli. The strain rates are given by 

  , ,

1

2ij i j j iv v    (2) 

where ,i jv  is the velocity gradient of iv . 
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The two dimensional constituent equations implemented in ABAQUS/Standard in the form of  
 ,ij ijkl l ks C v  (3) 

where ijs are the nominal stress rate components, ijklC nominal moduli tensor components 

which can be used to determine and is detailed in4 

 
1 1 1 1

2 2 2 2ijkl ijkl il kj ik lj il kj ik ljC L              (4) 

The nominal moduli tensor components are calculated by combined material properties of 
constituent’s fiber and matrix in the composite structure. Ramberg-Osgood relation for the 
constituents as yielding condition that defines natural logarithmic strain considering the 
hardening index n  is given by 

 
3

7

ny

yE E

  

    
 

 (5) 

3 IMPLEMENTATION IN ABAQUS/Standard 

The material law is implemented computationally in UMAT as a user subroutine in a 
commercially available FEA code ABAQUS/Standard to simulate the kinkband formation in 
the unidirectional fiber composites under compressive loading. Figure (1-a) demonstrates in 
detail the implementation and the functionality of the UMAT subroutine. 

 
Figure 1: a) Implementation of UMAT subroutine in ABAQUS/Standard UMAT. b) Description of Kinkband 

geometry in normal structure without any voids. 

The model is defined with 9 material properties, Young’s moduli of fiber and matrix 
fE and mE , Poisson’s ratio of the fiber and matrix f and m , initial yield stresses f

y and m
y , 

hardening parameters of the fiber and matrix fn and mn , the volume fraction fc . In the current 
investigation the volume fraction remains constant throughout the deformation process. The 
kinkband geometry is defined in Figure (1-b).The direction of the fibers outside the band is 
given by the angle  and in the kinkband region the angle is considered as , which can be 
estimated from the following  

  1 2 1 2

1 2 cos
, cos ( tan 1

2 mx x x x
b

             
 (6) 

To satisfy the following boundary conditions an initial value m of to the imperfection is 

added to fiber angle    

 1 10 at 
2

L
u x    (7) 

 2 1 20 at ( , ) ( , )
2 2

L H
u x x     (8) 

b)a) 

 --195--



Badrinath Veluri and Henrik M Jensen 

 3

4 RESULTS AND DISCUSSION 

Considering the following material properties to simulate the kinkband formation, fiber 
volume fraction 0.6fc  , hardening parameters for fiber 2.5fn  and the matrix 

4.5mn  with the ratios of the Young’s moduli of the fiber to matrix as 35 and 100f mE E  . 

The study has been done with varying matrix hardening parameter mn . From Figure (6) the 
peak stress and the post critical response of the composite structure is observed to be very 
sensitive to the hardening component mn . 

 
Figure 3: Post-kink Load-Deflection response for various values of matrix hardening parameter mn . 

  
Figure 4: Contour plot of effective plastic strain of the matrix and the fiber misalignment imperfection contour 

plot for 35f mE E   

Figure (4) demonstrates the formation of the kinband and the contour of effective plastic 
strain in the matrix material and imperfection for moduli ratios of 35f mE E   with a fiber 

misalignment 2o
m  . Figure (6) shows the kinkband formation is simulated for two different 

values of moduli ratio f mE E . The calculations have been performed to observe the 
sensitivity of the peak load by varying the misalignment angle of the fibers which is shown in 
Figure (7). 

  

Figure 6: a) Post-Kink Load-Deflection response for various values of varying fiber to matrix ratio f mE E . b) 

Post-Kink Load-Deflection response for varying fiber misalignment angle m for matrix ratios 35 and 100f mE E  . 

Calculations have been performed on the structural components made from long fiber 
composites typically having the uncontrollable manufacturing defects like voids, containing 
fastener holes and sometimes to lighten the structure that may suffer in-service damage. The 
kinkband formation in the complex structure having a varying size of void or cutout in 
circular shape is discussed for a ratio of 35f mE E  . Figure (8) shows the contour plot of the 
effective plastic strain of the matrix and fiber misalignment imperfection plot for a structure 

a) b) b)
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with a void/cutout of circular hole with a radius of 0.5. Figure (9) shows the load-deflection 
response and variation of the maximum failure loads for different values of the ratio r w . 
Depending upon the degree of orthotropy the compressive composite structure with the large 
cylindrical hole will be reduced 20% 6. 

  
Figure 8: Contour plot of effective plastic strain of the matrix and the fiber misalignment imperfection contour 

plot for 35f mE E  for a composite structure with a circular void/cutout of 0.5mm radius. 

 

Figure 9: post-kink Load-Deflection response and Variation in the strength of the composite structure during the 
kinkband formation with a circular void/cutout 

5 CONCLUSIONS 

The constitutive model was verified numerically for the consistency, convergence and 
stability in order to simulate the kinkband formation in the unidirectional fiber composites. 
The model shows a good consistency in simulating the kinkband formation numerically which 
demands the experimental validation. The imperfection of the composite material applied in 
the present study is an assumed band of material of a specified width in which the fiber 
orientation gradually changes from the orientation outside the band to a maximum deviation 
from this and back to the original orientation again. The band may be arbitrarily oriented 
relative to the fiber direction. No variation of fiber rotations has been assumed in the direction 
of the band although this is not a general restriction in the model. 
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Summary. We study the effect of piston motion on the in-cylinder swirling flow in a low speed,
large two-stroke marine diesel engine. The work involves experimental, and numerical simulation using
OpenFOAM platform, Large Eddy Simulation was used with three different models, One equation Eddy,
Dynamic One equation Eddy, and Ta Phouc Loc model, to study the transient phenomena of the flow.
The results are conducted at six cross sectional planes along the axis of the cylinder and with the piston
displaced at four fixed piston positions covering the air intake ports by 0%,25%, 50%, and 75% respec-
tively, for the fully opened case LES model with 8/12 million mesh points were used. We find that the
flow inside the cylinder changes as the ports are closing, from a Rankine/Burger vortex profile to a solid
body rotation while the axial velocity profiles change from a wake-like to a jet-like profile.

1 Introduction

In two stroke engines, compared to 4-stroke engines, the removal of exhaust gases and supply of fresh
air for the next cycle is carried out simultaneously using the scavenging process. Scavenging is carried
out using air entering the cylinder from intake ports at the cylinder liner walls near the bottom dead
centre and scavenging the exhaust gases from cylinder through the exhaust port. The scavenging process
removes the exhaust gases, provides fresh air to the engine , and provides the necessary swirl to the flow
in which the diesel fuel is to be injected. This makes the scavenging process very important for engine
performance and efficiency both in terms of fuel consumption and emissions. Swirling flows are widely
used in industrial applications e.g. cyclone separators, swirl combustors etc. Previous studies1 2 3 involve
swirl generators using guide vanes that divert the radially incoming flow and impart the tangential com-
ponent. In the present study we focus on the swirling flow in the presence of an obstructing piston and
the resulting in-cylinder confined swirling flow.
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2 Numerical Methods

2.1 Large Eddy Simulation

We study the swirling flow numerically using large eddy simulations. The governing equation are the
spatially filtered Navier-Stokes equations:

∂ ū j

∂x j
= 0 (1)

∂ ūi

∂ t
+

∂ ūiū j

∂x j
=− 1

ρ

∂ p̄
∂xi

+ν
∂ 2ūi

∂x2
j
− ∂τSGSi j

∂x j
(2)

τi j = ρ̄ ũiu j− ρ̄ ũiũ j (3)

where t denotes the time, ui is the velocity component in Cartesian coordinates, ρ is the density, p is the
pressure, and ν is the kinematic viscosity. As a result of the spatial filtering the subgrid-scale-stresses
(SGS) stress tensor τSGSi j is introduced into the momentum eq. (2), where τ

SGSi j
i j = uiu j− ūiū j.5 6 7 8 9 10 11

We apply three different models. The one equation eddy model where the kinetic energy k is solved
while another scale is estimated, so if the k is solved then the turbulent velocity u is estimated by u∗ ∼√

k 5. Eddy viscosity µi =Cµ ρ̄k
1
2 l∗, where Cµ is a constant, l∗ is the turbulent length scale.

The dynamic k-equation eddy-viscosity model, where the model constants are recalculated during the
simulation rather than to be pre-calculated, the model stress tensor eq. (3)12 which can be modeled as

τi j−
1
3

δi jτkk =Cαi j C =
Li jMi j

MklMkl
(4)

where C is the model parameter, Mi j is the minimum error, Li j is a stress resolved tensor. αi j is the term
needed to be modeled.5 12

αi j =−2ρ̄∆
2(2S̃kl S̃kl)

1
2 S̃i j (5)

where S̃i j is the filtered strain tensor.
The Ta Phouc Loc model, which is based on the velocity-vorticity (v-ω) formulation of the Navier-

Stokes equations. Two spatial filters are used, the first filter denoted by (−) is used on the fine mesh, and
the second ’test filter’ denoted by (∼) which is used on the coarse mesh. From eq. (2) we find that

τi j = ŪiŪ j =UiU j = (ŪiŪ j−ŪiŪ j)− (ŪiU j
′+Ui

′Ū j)−Ui
′U j
′ (6)

where the fluctuations are defined as Ui
′ =Ui−Ūi.

The turbulent stresses are modeled as

τi j = vt

(
∂Ūi

∂x j
+

∂Ū j

∂xi

)
− 2

3
kδi j (7)

The eddy viscosity vt is determined by the mixed-scale turbulence model introduced by L.Ta Phouc13

vt =C |ω̄|α k(1−α)/2
∆
(1+α) (8)

where ω is the vorticity, ∆ = (∆x∆y∆z)
1
3 is an average grid size, k is the turbulent kinetic energy, α is a

parameter which takes a value between 0 and 1. From a previous study14 it was found that the model
performs best when α = 0.5.
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The turbulent kinetic energy is estimated from the test filter (∼) as

k =
1
2

3

∑
j=1

(U j−Ū j)
2 ≈ 1

2

3

∑
j=1

(
Ū j− ˜̄U j

)2
(9)

where U j is the unfiltered velocity field and ˜̄U j is the doubled filtered velocity field obtained by applying
the second filter on the resolved velocity Ū j.13 14 15

2.2 Computational domain and results

The computational domain is shown in Fig. 1 and consists of an inlet section (swirl generator), a
cylinder and an outlet section. At the inlet of the computational domain a uniform radial and tangential
velocity is defined and at the outlet a zero-gradient boundary condition is applied.

(a)

Figure 1: 3D cross sectional view showing the velocity magnitude, vorticity contours (in white) and streamlines.

The results shown in Fig. 2 show that generally there is a good agreement between computational
and experimental particle image velocimetry (PIV) results that have been measured previously4. The
models capture the wake and jet like profiles of the axial velocity but both are not as pronounced as in
the experimental results.
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Figure 2: (a) (c) Time averaged axial velocity profiles for the 100%,50% open ports, (b) (d) Time averaged tan-
gential velocity profiles for the 100%,50% open ports, at the axial position z/D = 2.016
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Summary. We compare different approaches for the computation of the curvature at the
interface. The first method computes the curvature at the grid points by approximating the
derivatives of the conservative level set function. Then the curvature is interpolated to the
interface position. The second method uses a distance function which is computed from the
conservative level set function by a fast marching method to approximate the derivatives at
the grid points. The third method computes the curvature directly at the interface position
by fitting a local polynomial through neighboring grid intersections. In our test the method
which computes the curvature from approximated derivatives and then interpolates it to the
intersections is the most accurate.

1 INTRODUCTION

Computations of two phase flows often use the continuum surface tension approach to handle
the surface tension. In order to obtain a smooth solution the jump in the density and viscosity
is smeared over multiple grid points around the interface and the singular force resulting from
the surface tension is applied as a volume force around the interface. As a result the jump in
the pressure is smeared as well. A more accurate description of the jumps at the interface can
be obtained using the Ghost Fluid Method (GFM)1. It applies the surface tension force directly
at the interface and the finite difference stencils are corrected to accommodate the jumps at the
interface.

The conventional level set method using a distance function does not conserve the mass of
the fluids. To address this problem we use the conservative level set method (CLSM)2. The
signed distance function is replaced by a hyperbolic tangent function. This allows to write the
reinitialization as a conservation law.

The combination of the GFM and the CLSM leads to challenges in the computation of the
curvature. Since the surface tension force is applied directly at the interface by the introduction
of a jump in the pressure, the curvature has to be computed at the intersections of the interface
and the grid lines. These intersection points are obtained by a linear interpolation of the level
set function and are therefore second order accurate. To judge whether a method to compute

1
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the curvature is applicable to the GFM, the accuracy of the curvature computation has to be
assessed at the intersection points.

2 Curvature computation

2.1 Computation using finite difference approximations

The simplest approach to get the curvature at the intersection points is to approximate the
derivatives of the conservative level set function at the grid points. That can be done by using
e.g. central finite differences. Then the curvature at the grid points is given as

κ =
φ2

xφyy − 2φxφyφxy + φ2
yφxx

(φ2
x + φ2

y)3/2
. (1)

This is the standard method to compute the curvature in level set applications. Finally the
curvature has to be interpolated to the intersection points which can be done by the same linear
interpolation method used to find the intersection points.

2.2 Least squares approximation from distance function

If the conservative level set function is advected using certain discretisation schemes, it will
develop spurious oscillations, which will lead to problems for the approximation of the interface
normals and curvature. To avoid these problems Desjardins et al.3 propose to first recompute
a signed distance function ψ from the conservative level set function φ using a fast marching
method (FMM). Then the derivatives in equation (1) are approximated from ψ. Because the
FMM is at most second order accurate, the curvature will not converge if the derivatives are
computed with finite differences. By using the least squares approach4 first order convergence
is observed.

2.3 Curve fitting through the intersection points

Since all intersection points of the interface with the grid lines are known we can use those
to compute the curvature directly. Suppose there is a parameterised curve ~x(s) = (x(s), y(s))
trough the intersection points. The curvature at a intersection point is then given by

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
, (2)

where ẋ and ẍ first and second derivatives, respectively, with respect to the parameter s. To
approximate the derivatives at an intersection point ~x0 = (x0, y0) we use two additional inter-
section points ~xm and ~xp which are located before and after ~x0 on the interface, respectively.
Assuming that the difference of the parameter s is the same on both sides we can use simple
finite difference stencils to compute the derivatives, e.g. ẋ0 = (xp − xm)/2.

It was only possible to obtain converging curvature estimates if the linear interpolation of
the intersection points was replaced by a more accurate cubic interpolation. We got the best
results by setting ~xm and ~xp to the neighbouring points where the interface intersects a parallel
grid line to the one in ~x0. At certain points where two intersection points are located extremely
close to a grid point this approach will lead to large errors and the curvature will not converge

2
 --204--



Claudio Walker

as the grid is refined. To find a remedy the symmetry factor q of each curvature approximation
stencil is computed as

q =
δm + δp − 2

√
δmδp

2
√
δmδp

, (3)

where δm = |~xm − ~x0| and δp = |~xp − ~x0| respectively. q will be zero if the stencil is perfectly
symmetric. If the symmetry factor of the approximation in a certain intersection point is 10
times higher than the average of his two neighbours, the curvature at this point will be linearly
interpolated from the adjacent points which have a more symmetric stencil.

3 Numerical test

To test the presented methods for the curvature, we place a circle with radius r = 1/3 into
the center of a square domain of size [−1, 1] × [−1, 1] with n grid points in each direction. We
initialise the conservative level set function with

φ =
(
1 + ed/ε

)−1
, (4)

where ε = 0.2
√

2/n is the parameter for the slope of φ at the interface, and d is the analytical
distance form the interface. Then the reinitialisation equation is solved to steady state to
ensure that we test the curvature comptation on a level set function which can be expected in a
two phase solver. This reinitialized conservative level set function is then used to compute the
curvature κ at each intersection point. To test the least squares approximations from the distance
function (section 2.2) we used the FMM from the LSMLIB5 with second order upwinding to
obtain ψ from d. The error of the curvature is then calculated by

e =

(
1
m

m∑
i=1

(κi − 3)2
)1/2

(5)

where m is the number of intersection points.
The results are presented in Figure 1. If the finite difference method (section 2.1) is used

the error in the curvature reduces with second order, which is consistent with both the finite
difference and the interpolation schemes. The curve fitting at the intersection points (section
2.3) leads to a convergence which is between first and second order. At a low resolution 2nd
order can be observed. The lower convergence rate at higher resolution stems from the high
frequency oscillations which are illustrated on the right of Figure 1. Those oscillations originate
from the variance in the stencil quality for each intersection point. The error could be further
reduced by low pass filtering the curvature along the interface. The curvature which is computed
from ψ using a least squares approximation of the derivatives (section 2.2) is the most accurate
one at the lowest resolution, but it does not converge as the grid is refined. The reason for this
behavior is that ψ which is computed with the FMM is only second order accurate at the lowest
resolution. As the grid is refined the accuracy of the FMM deteriorates to first order.

4 Conclusions

We tested alternative methods to compute the curvature from a conservative level set func-
tion. If the curvature is computed by fitting a curve through the intersection points of the
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Figure 1: Error of the curvature computation on the left, curvature for n = 100 on the right

interface with the gird lines, the intersection points have to be interpolated with at least cubic
interpolation to obtain convergent results. The method which fits a curve through the inter-
section points is less accurate than the method using finite differences, but it converges faster
than the least square approximation of the derivatives of a distance function computed by the
FMM. In our tests the least squares approximation is not consistent with grid refinement. If an
accurate curvature is important, one should try to keep the conservative level set function free
from oscillations, e.g. by using WENO schemes for the advection and frequent reinitialisation,
such that the curvature can be computed by finite difference from the conservative level set
function.
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Summary. We present direct numerical simulations (DNSs) of turbulent channel flow with
passive polymer additives tracked in the flow. We study the statistics of polymer elongation
for both the Oldroyd-B model (for Weissenberg number Wi < 1 ) and the FENE model. For
the Oldroyd-B model we find that the PDF of polymer extensions shows power-law behaviour
irrespective of the wall-normal coordinate of the polymer molecule, but the range of scaling does
depend on the wall-normal coordinate.

1 INTRODUCTION

Turbulent flows with polymer additives have been an active field of interest since the early
experiments of Toms1 which showed the phenomenon of drag reduction on the addition of small
amounts (few parts per million) of long-chained polymers to turbulent wall-bounded flows. At
a very basic level the mechanism of polymeric drag reduction is that in flows with strong shear
the polymers can go through coil-stretch transition; the stretched polymers can then make
significant contribution to the Reynolds stresses and this can result in drag-reduction2,3. Hence
a basic ingredient of drag-reduction mechanism is the coil-stretch transition. The polymers make
important contribution to the Reynolds stresses only when they are significantly stretched, hence
it is important to find out the statistics of polymer extensions in a turbulent flow. This problem
in its full generality is not an easy task due to several reasons which we list below. Firstly in
experiments it is quite difficult, if not impossible, to accurately measure the extensions of the
polymer molecules. Analytical theories have no way of dealing with realistic turbulent flows.
Direct numerical simulations (DNSs) are limited by two important constraint, small Reynolds
number and small Weissenberg number (ratio of characteristic time scale of polymer relaxation
to the characteristic strain rate). In this paper we describe our attempts to make an inroad to
this problem. We perform DNS of channel flow at moderate Reynolds number but relatively high
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Weissenberg number by the virtue of using Lagrangian model of the polymer molecules instead
of the more widely used Eulerian model. The downside of this approach is that the present
method ignores the back-reaction of the polymers to the flow, in other words our polymers are
considered passive. Below we first describe in brief the equations we solve and the numerical
methods we use to solve them. Next we present preliminary results about the PDF of polymer
extensions.

2 Model

The fluid is assumed to be described by the Navier–Stokes equations,

∂tu + u ·∇u = ν∇2u + ∇p (1)

with the incompressibility constraint, ∇ · u = 0. Here u is the fluid velocity, ν the kinematic
viscosity and p the pressure. We use no-slip boundary condition at the walls and periodic
boundary condition at all other boundaries. The x axis of our coordinate system is taken along
the stream-wise direction, the y axis along the wall-normal direction and z axis along the span-
wise direction. The turbulent Reynolds number Reτ = U∗L/ν = 180 is defined by the friction
velocity U∗ =

√
σw and L ≡ Ly/2, the half-channel width, where σw ≡ ν ∂U∂y |wall is the shear

stress at the wall4. We non-dimensionalise velocity and distance by U+ ≡ U/U∗ and y+ ≡ y/y∗
respectively, using the friction length y∗ = ν/U∗. We solve Eqs. (1) by using the SIMSON5

code which uses a pseudo-spectral method in space (Chebychev-Fourier). For time integration
a third-order Runge-Kutta method is used for advection and uniform pressure gradient forcing
term. The viscous term is discretized using a Crank-Nicolson method. In addition to the fluid
velocity, we track Np = 2 × 105 Lagrangian passive tracers. The Lagrangian velocity of a
particle, which is generally at an off-grid point, is obtained by tri-linear interpolating5 from
Eulerian velocity at the neighbouring grid points and time-stepping is done by a third order
Runge-Kutta scheme. To model the polymers we assume each of the Np Lagrangian tracers to
carry a vector Rj which represents the end-to-end distance of a polymer molecule. The evolution
equation for Rj is modelled by an over-damped Brownian oscillator with a external driving force
coming from the velocity stress tensor7, i.e.,

∂tR
j
α(t) = σjαβR

j
β + f(Rj) +

√
2R2

0

3τP
Bj
α. (2)

Here σjαβ = ∂βv
j(t|t0, rj0)α, f(Rj) is the restoring force of the polymer, τP is the characteristic

decay time of the polymer and Bj is a Gaussian random noise with 〈Bα〉 = 0 and 〈Bα(t)Bβ(t′)〉 =
δαβδ(t−t′). The prefactor of the random noise is chosen such that in absence of external flow, i.e.,

σjαβ = 0, the polymer attains thermal equilibrium. 〈Rj
αR

j
β〉 = R2

0δαβ. For the Oldroyd-B model

f(R) = −R/τP. For the FENE model f(R) = −R/τP{1−(R/Rmax)2}. Eq. (2) is also solved by a
third order Runge-Kutta scheme except for the noise which is integrated by an Euler-Marayuma
method8. More details about the code validation can be found in Ref6. To the best of our
knowledge such Lagrangian simulations of polymer where first performed in Ref.9. An equivalent
Eulerian description of the equation for the polymers can be obtained. The numerical solution
of such an equation has certain disadvantages10,11,12,13. Lagrangian methods14,15 are able to
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avoid such numerical pitfalls and can attain higher Weissenberg number but have difficulties
when the back-reaction of the polymer to the flow needs to be incorporated14,15.

3 Results

Here we summarise preliminary results from our simulations. We calculate the cumulative
probability distribution function (PDF) of the polymer extensions for different wall-normal coor-
dinates. For Weissenberg number less than unity we use the Oldroyd-B model. The cumulative
PDF s for different Wi are shown in Fig 1(a). The cumulative PDF shows a power-law tail
with an exponent that depends on Wi. But this exponent does not depend on the wall-normal
coordinate, see Fig 1(b) . We next compare this model with the FENE model. If the maximum
extension of the polymers allowed in the FENE model is large enough a small power-law range
emerges here too. But for polymers used in experiments this range will be too small to detect.
The exponent of the power law matches with the theoretical study in Ref.16. Details of this
comparison which requires calculation of the finite-time Lyapunov exponent of the flow will be
presented elsewhere. For Wi > 0 no stationary state can be obtained for the Oldroyd-B model.
The FENE model shows coil-stretch transition.

Figure 1: (Color online) (a) The cumulative PDF Qc(R) of the polymer extensions R as a function of
R for different values of Wi, v.i.z, Wi = 0.05(•), 0.1(◦), 0.2(�), 0.3(M), and 0.5(♦). (b) The cumulative
PDF Qc(R) of the polymer extensions R as a function of R for different y+, v.i.z, y+ = 8(◦), 74(M), and
180(�). (c) The cumulative PDF Qc(R) of the polymer extensions R as a function of R for the Oldroyd-B
model (◦), Oldroyd-B model with all polymers with R/Rmax > Rcutoff removed with Rcutoff = 104(•)
and Rcutoff = 100(�), FENE model with Rmax/R0 = 103(M) and with Rmax/R0 = 102(N).
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Summary. The wave-like patterns in planetary rings close to a moon are analysed. It is found 
that an expansion of the Newtonian gravitational potential give transient solution. To obtain a 
harmonic oscillating solution, a diffusion type condition relating the relative motion and the 
density gradient, is applied. 

 
 
1 INTRODUCTION 

In planetary rings, there are small gaps, in which a moon rotates with the ring system. One 
such planetary system is Saturn, with the moon Daphnis, in the Keeler Gap. The paper 
adresses the wave-like pattern in the rings close to the moon in the gap. 

 

Figure 1: ‘The Keeler Gap is a 42-kilometre-wide gap in the A Ring, approximately 250 kilometres from the 
ring's outer edge. The small moon Daphnis, discovered 1 May 2005, orbits within it, keeping it clear. The moon 
induces waves in the edges of the gap. Because the orbit of Daphnis is slightly inclined to the ring plane, the 
waves have also a component that is perpendicular to the ring plane, (from wikipedia). 

 
Models are proposed and the in-plane-wavelength in the pattern, is related to the parameters 
that describe the geometry and masses of the planetary system. The objective is to describe 
the nature of the motion, qualitatively, and quantitatively. Transients, derived from 
considering only Newtonian gravitational potentials, give a solution where relaxation length 
in the orbit are longer than those observed in the wave pattern. Therefore, additional 
assumptions are considered in a description with continuum mechanics. Mass of orbiting 
bodies are modeled with density fields, and an interaction between parts in the planetary 
system appears as a momentum supply, derived from continuum mixture theory1. 
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From the data for Daphnis in wikipedia, the mean density is in the interval [500,5000] kg/m3. 
The moon is dense in 3-dim. and the thin planetary ring has a smaller density, and therefore a 
magnified density gradient is present at the location of Daphnis. The oscillations appear in the 
model as a harmonic oscillator, when assuming a diffusion-type law. The diffusion constant 
can be related to the universal G, and with some assumptions, the wave-length in the orbit 
depends on the masses and radius, but not on gravity G. Also, solutions with long wave-
length will be discussed. 

2 PROPERTIES OF MATERIAL PARAMETERS 

Approximate magnitudes of mass, density and lengths give that mass of Saturn is 
Ms=5.7*1026 kg , the radius R=136504 km, the ratio of mass to Daphnis Ms/MD=ca1012-1013, 
Half gap=20 km, radius of Daphnis rD=4 km, mass MD=5-50*1013kg, thickness of planetary 
ring t=20m. The moon is located closer to the outer ring. The distance to the inner ring; a=25 
km. From the figure, the wave length in orbit denoted s, measurement for the inner ring gives 
s=(7-8)a. The system in another view [wiki.se Daphnis] provides somewhat different data.  
Angular velocity Daphnis, from 0.59d is 1.2*10-4 rad/s, The ratio R/a=0.5*104, quotient 
Q=(Ms/MD)(a/R)3=8-80 and universal G=6.7*10-11Nm2/kg2

 . 

2 MODEL 

To determine an eigen-frequency, and expose other characteristics, two approaches are 
considered, both within the framework of (generalized) continuum mixture theory1. 
The forces acting on the planetary ring; constituent 2, are a momentum supply, partly derived 
from continuum mixture theory, which include the main gravitational force, and other forces 
from neighbor systems. The momentum supply is due to 

• a relative velocity between the mixture and the particles in wave pattern 
• a particle redistribution (absent particles) in the centerline of the orbit in the planetary 

ring, at the wave pattern 
• a density gradient because of the more dense moon. 

 
The equation of motion for constituent 2 reads 
Balance of mass ρ2,t +div(ρ2 v2)=c2 
Balance of momentum ρ2 a2=p2+ fD 

 
For constituent 1, it is assumed that p1=0, c1=0. Hereby p2=- c2u2, where u2 is the relative 
velocity for constituent 2. 
Constitutive assumption. A diffusion law relating the relative velocity to the density gradient, 
is established as u2=Egrad ρ2 
 
The equations will be applied to  
1. a mixture of a general orbiting ring of planets and primary, to calibrate  
2. a mixture of the planetary ring with magnified density gradient, and Saturn 
3. a mixture of the planetary ring and Daphnis, with the constitutive assumption  
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4. a mixture planetary ring and Daphnis, in a kinematic approach with p1=0 and the exact 
expression p2=- c2(v2- v1);  

w  
Kinematics. Velocity and acceleration at the ring are v2=wp(R+r), a=a0+wp

2r+r,tt, where p is 
the angular velocity of the ring, r is a small deviation from the central orbit, with radius R, and  
r,tt is the relative acceleration from point 0, at the ring.  

2.1 Calibration 

To calibrate, the parameter E is determined from a derivation to achieve the Newtonian 
gravitational potential for a planet orbiting a star with mass Ms, when assuming gradρ2=ρ2/R. 
Hereby, identification gives wpE=(R2/ρ2)GMs/R

3. 

2.2 Planetary ring, specified density field  

At the ring, the density gradient is scaled with the volume fraction, to achieve a consistent 
format comparing an orbiting dense planet with a thin planetary ring.  
Hereby, grad ρ2=(rD/t)e ρ2/R, where t/rD is the volume fraction and e is the ratio between the 
absolute densities of ring and Daphnis (approximately 20). The material constant E can either 
be invoked in the format wE, where w is the angular velocity, or as E. The choice defines the 
material behavior. Here, the first will be denoted a wE-material ring. 

2.3 Planetary ring, mixture with Daphnis  

Consider a constitutive assumption as in 1, with G replaced by G1, since not a steady state 
rotation around Daphnis. Further, the density gradient, and the angular velocity around 
Daphnis, needs to be specified.  
The density gradient is estimated with an increased participating mass q, gradρ2=qρ2/a. The 
angular velocity, from that the ring is about to switch to an orbit around Daphnis, is denoted 
w3.  Note that for an wE-material ring, this need not be specified. 

2.4 Kin. approach 

Additional assumptions needs to be invoked to obtain the small wave length solution. 

2.5 'Tidal wave'-type-solution 

Equation of motion about Saturn, without refined assumptions for density and density 
gradient, gives solutions with long wave length, where centripetal acceleration is of the same 
magnitude as the forces. 

3 RESULTS  

3.1 Results for planetary ring, model 2  

fD and w2r are neglected since small. Then r satisfies the equation of an harmonic oscillator 
with (eigenfrequency)2=wE(rD/t)2e2ρ2/R

2. Remaining constant term is large compared with 
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Newtonian gravity, and acts locally in vicinity of Daphnis. It is assumed that a small part of 
the constant give the angular velocity of the ring, as a centrifugal force, and the remaining 
part give transients for the time-dependent density field ρ2(t,r) in the central line of the orbit, 
(and out-of-plane-components of density and velocity). Thus, the angular velocity of the ring, 
may differ to that of Daphnis, as indicated in Figure-caption. When they are almost equal (and 
a wE-mtrl ring), the wave-length in orbit is, s = 2πR/(erD/t), approximately 8a. When not wE-
mtrl ring, the wave-length in orbit reads w-1/2(GMS/R3)1/42πR/(erD/t), and may depend on G. 

3.2  Comparison of the solutions to 2, and 3 

To investigate if G1 is smaller or larger than G, and if there is a threshold, model 2 and 3 are 
compared. When the eigen-frequencies are equal, a relation between G1 and G is given by 
G1/G=Q(wD/w3)(rD/t)2e2(1/q)2 
This is a functional expression for G1 at non-orbiting state. Assuming w3 and q are bounded 
by w3<wD and q<(R/a) gives G1>G. If valid, the larger G1 when not steady state rotation, 
results in a modified Roche-limit, and magnified tidal force. To further evaluate, additional 
assumption could be added. 

12 CONCLUSIONS 

- A continuum model with increased density gave accurate bounds for the wave length.  
A constitutive assumption for the relative velocity u2 was assumed in the format 
u2= u2(F2, gradF2, skew(L2)), where F2 is the deformation gradient and L2 is the velocity 
gradient. Dependency on F2 is through density ρ2=detF2. The format with volume fraction 
was adopted from an example in Comsol, describing droplet break up in a T-junction. 
-   Comparison with data for angular velocity of ring and moon, and other systems, 
would reveal if there are bifurcations, and validity of the present model. Then, from measured 
wavelength, bounds for masses and other data may be refined. The formula for wavelength is 
in agreement with pattern in the Encke-gap due to shepherd Pan, when thickness of ring is 
assumed 30 m. 

- Other issues are to compare with results from a generalization of the Roche limit2, 
particular solutions to orbit equations2 and relate to potentials with anisotropy and density 
fields3.  
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Summary. We seek to create patient specific models of the human cardiovascular system, in 
particular arteries, in order to understand age related changes in structure and function as well 
as early detection of cardiovascular diseases such as atherosclerosis and dilatation. We utilize 
the basic principles of applied mechanics as well as the modelling and simulation capabilities 
from computational engineering and high performance computing in combination with 
modern imaging modalities and image processing.  

 
 
1 INTRODUCTION 

From a basic physiological point of view we are interested in why, how and where 
atherosclerosis occurs whereas in the clinical setting we may ask the same questions for 
diagnosis, intervention planning and follow-up. The combined approach of patient specific 
geometry with individual blood flow and pressure wave forms, individual viscosity and,  
individually estimated parameters of arterial wall mechanics enables even an analysis of flow-
induced gene expression on an individual basis in the near future. The proportion of older 
persons in the communities of the western world is rapidly increasing, and cardiovascular 
disease (CVD) is the number one cause of death and the most serious health threat (National 
Center of Health Statistics and National Heart Lung and Blood Institute, USA). The forces 
created by flow and pressure dictate a continuous remodelling to create the most optimal form 
and function of the cardiovascular system. It is probable that they are of vital importance in 
the pathophysiology of both occlusive (atherosclerotic) and dilating (aneurysmal) disease, and 
they determine the structural and functional consequences of wall repair in response to 
injury1. Few reliable and consistent means of measuring these forces, as well as their effects 
on the arterial wall have been available so far. Interaction of fluids (e.g. blood) with their 
surrounding vessels (e.g. arteries or the heart wall) is crucial for determining normal 
physiology and patho-physiology as well as how well artificial devices (eg stents) may 
perform when used as implants. These new and exciting techniques may in the future be used 
for patient specific diagnostics, intervention planning and follow-up. 

 

2 BACKGROUND 

    Wall Shear Stress (WSS), the frictional load from the blood on the vessel wall, and its role 
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in the genesis and progression of atherosclerosis have been subject for numerous studies since 
the late 1960’s2,3. It is believed to influence the function of the endothelial cells4; a functional 
endothelium is of crucial importance to maintain hemodynamic stability, and dysfunctional 
endothelial cells may for example enhance uptake of lipoproteins and leukocyte  
adhesion5, thus promoting initiation of an atherosclerotic plaque. Several studies have found 
regions with low and/or oscillating WSS to be more prone to the development of disease. 
Recent findings also suggest different properties of atherosclerotic lesions depending on 
whether WSS is low or oscillating. Furthermore, if an atherosclerotic plaque ruptures or 
erosion injures the covering endothelial cell layer, a coagulation process initiates to heal the 
damaged wall. High shear stress now stimulates thrombosis at the site of the injury6, and the 
growing thrombus may eventually occlude the entire vessel causing severe ischemic disease 
or infarction. Hence, WSS may play different roles during atherogenesis, plaque formation, 
and thrombosis. Recent findings by us suggest, however, a complex interplay between the 
blood flow and the endothelium. Therefore, alongside FSI, new tools for high-fidelity 
simulations of the flow, such as Large Eddy simulations (LES), have been utlilized. These 
tools offer a new window for the investigation of complex flow patterns and wall shear stress, 
see Figure 1. 

Figure 1: Flow field of a simplified aorta in the vicinity of an arterial stenosis, color coded streamlines depict the 
complexity of the flow and WSS magnitude on the arterial wall. Note the size of the disturbed flow region 

 

3 METHOD 

    Patient specific models are created using MRI for geometrical models as well as blood flow 
velocity information (Phase-Contrast MRI). Using computational fluid dynamics (CFD) the 
wall shear stress can be calculated on the vessel wall. The segmentation is done using semi-
automatic procedures. This has been shown as proof-of-concept in Renner9. WSS is (simply) 
the shape of the velocity profile at the wall (the wall shear rate) multiplied by the viscosity. 
However, no practical and robust method exists today. The Hagen-Poiseuille equation 
describes steady flow of a Newtonian fluid in a long straight tube which is very far from the 
situation encountered in the aorta. Despite this, WSS-HP has unfortunately been used 
extensively in the literature due to its simplicity.  
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    We utilize MRI to obtain patient specific geometries (static as well as dynamic) and wall 
thickness. The segmentation process has been automated. The boundary conditions are 
measured using 3D cine phase-contrast MRI. Both time-dependent geometry and time-
dependent wave propagation must also be taken into account. Modelling time-dependent 
wave propagation in a patient specific model of the aorta requires also a coupling of the three-
dimensional model of the aorta to a one-dimensional and/or lumped model of the heart and 
the systemic circulation. We have pioneered the development of three-dimensional time-
resolved phase-contrast MRI for quantification of blood flow and cardiac kinematics7,8 and 
recently extended it to non-invasive WSS estimation using computational fluid dynamics and 
high performance computing9. The most recent development utilizing MRI includes the 
measurement of turbulence10. We have also developed a way of looking at WSS by 
introducing a decomposition of the WSS into a mean part and an oscillatory part in analogy 
with a Reynolds-like decomposition11.  
    MRI data are used to construct a patient specific geometry and to set the flow velocity at 
the inlet boundary. Geometric information is extracted and segmented from MRI images with 
3D level set algorithm. Hexahedral computational meshes were constructed and used for both 
the fluid and the solid geometries. In the solid domain a linear-elastic wall model is used, with 
a Young’s modulus of 1 MPa and a Poisson’s ratio of 0.49. The fluid was modeled as a 
Newtonian fluid with blood-like material properties, and was assumed to be laminar.  
    As boundary conditions at the inlet as well as the three upper outlets, specified mass flow 
rates was prescribed, based on MRI measurements. To get a physiologically realistic pressure 
in the fluid domain, the pressure at the lower outlet was computed with a Windkessel model, 
which describes a relationship between the aortic outflow and pressure. We have developed 
models for the mechanical behaviour of arteries and other biological tissues12.  
    Figure 2 shows the coupling between the global, local and micro mechanics. Figure 3, 
right, shows the wall shear stress gradient (WSSG) for different locations along the pipe; time 
is on the vertical axis. It is clearly seen that WSSG have very different behaviour: at Z= 4D 
there is a significant back flow and the WSSG is mostly stretching/compressing the 
endothelium whereas at Z=5D (in the middle of the complex flow) WSSG is mostly shearing 
the endothelium. The size of the square boxes are 10 x 10 endothelial cells. 

 
Figure 2: The upper left color panel shows pathlines in a deformable model of the aorta during peak systole 
whereas the upper right panel shows the Wall Shear Stress Gradient (WSSG) 
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Summary. Gravity induced sedimentation of slender fibers in a viscous fluid is investigated by
large scale numerical simulations. The fiber suspension is considered at a microscopic fiber-level
and the flow is described by the Stokes equations in a three dimensional periodic domain. Numer-
ical simulations are performed to study in great detail the time evolution of the micro-structure
in the suspension during sedimentation, and how the micro-structure affects macroscopic prop-
erties like the sedimentation velocity.

1 INTRODUCTION

In this work we are concerned with numerical simulations of a slowly sedimenting fiber sus-
pension made up of identical slender and rigid fibers in a Newtonian fluid. The velocity is
small, so inertial effects can be neglected and the dynamics of the fluid phase can accurately be
modeled by the Stokes equations.

Despite the simplicity of the Stokes equations, the dynamical problem with many moving and
interacting fibers is not an easy problem to model and solve numerically. Many of the character-
istic quantities of the sedimentation process such as mean sedimentation velocity and velocity
fluctuations depend strongly on the micro-structure (i.e. the relative position and orientation
of the fibers) of the suspension. The strong coupling between long-range hydrodynamic interac-
tions and the micro-structure induces a complex dynamical behavior of the fibers which needs
to be accurately captured in the modelling and the simulations in order to predict a correct
behavior of the sedimentation process.

With this in mind, we have designed an accurate mathematical model and numerical method
based on a boundary integral formulation and slender body asymptotics. It is a particle-based
method that computes the dynamics of all individual fibers in the suspension and their interac-
tion with the surrounding fluid.

Using numerical simulations, we are able to successfully reproduce many of the characteristic
features of a sedimenting fiber suspension such as e.g. creation of flocs and fibers aligning
with the direction of gravity. Furthermore, we have also conducted a detailed study of how the
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micro-structure in the suspension evolves during the sedimentation process and how it influences
macroscopic properties of the suspension.

2 MATHEMATICAL MODEL AND NUMERICAL TREATMENT

We consider a suspension of M immersed slender, rigid fibers in a three dimensional periodic
domain. We model the flow using the Stokes equations for which boundary integral equations and
a class of numerical techniques, boundary integral methods, can be used to solve the problem.
Their great advantage over grid-based numerical methods is the reduction of dimensionality.
Instead of solving a three-dimensional PDE in the whole computational domain for the motion
of the fibers and the velocity of the fluid, a two-dimensional boundary integral equation is solved
over the surfaces of the fibers for a distribution of unknown densities (or strengths) of Stokes
singularities.

For slender particles like fibers, a non-local slender body approximation,1 , can be used to
reduce the dimensionality of the problem even further. The main idea is that for a slender fiber,
the dynamics of the problem can accurately be approximated by a line distribution of Stokes
singularities placed along the centerline of the fiber. The slender body approximation yields a
system of one-dimensional integral equations relating the force on the fibers to the velocity of
the fiber centerline and include the nonlocal interaction of the fiber with itself as mediated by
the fluid. The accuracy of the final equation for the center-line velocities of several interacting
fibers is of order O(ε), where ε = a/2L << 1, is the slenderness parameter, a is the fiber radius,
and 2L is its length. The slender body approximation, but to a lower order of accuracy, has also
been used by e.g. Saintillan et al.2 modelling sedimenting fiber suspensions and by Fan et al.3

for fibers in a shear flow.
To compute the force distribution on the fibers for a given configuration of fibers (position

and orientation), the system of integral equations is discretized using a combination of a high
order Gauss quadrature formula together with analytical integration for certain parts of the
integrals. A linear system of equations is assembled and solved using GMRES. Once the forces
are obtained, the position and orientation of the fibers can be updated by numerically solving
two ordinary differential equations relating the forces on the fibers to their translational and
rotational velocities.

To assemble the linear system of equations, like in any multi-body problem, all fiber-to-fiber
interactions need to be accounted for. This is extremely time consuming for a large number
of fibers and in order to speed up the computations, this part of the numerical algorithm is
parallelized using MPI.

For a detailed description of the model and the numerical treatment, see Tornberg and
Gustavsson4.

3 NUMERICAL RESULTS

A large number of simulated data has been analyzed and compared to other studies, both
experimental and numerical, see Gustavsson and Tornberg5 and references therein. In Fig. 1,
we present results from a simulation with 800 sedimenting fibers in a periodic domain. Here, we
display only one third of the total box height. At the initial time, t = 0, Fig. 1(a), the fibers
are randomly distributed in the periodic box. At the later time, t = 500, the results show, in
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agreement with experimental data, that the suspension has formed large scale inhomogeneities in
the fiber distribution. At this point, the suspension consists of one elongate fiber-dense streamer
surrounded by channels of clear fluid. The large streamer and the clear fluid channels spans the
whole height of the box, which can be seen in the lower figure in Fig. 1(b), where we display a
top view of the full-height box.

t=0 t=500

(a) Side view

t=0

t=500

(b) Top view

Figure 1: 800 fibers sedimenting in a periodic box. The fiber configuration is displayed at the initial time
and at a later time.

As can be seen in Fig 1. (a), the streamer consists of a number of small distinct clusters of
high concentration of fibers. The clusters sediment faster than surrounding single fibers and the
fast downward flow of the clusters create a strong backflow in the fluid channels. Occasionally,
some of the fibers in the outer region of the streamer are even carried upward by the fluid. This
has also been observed in experiments,6.

The clusters within the streamer are created and dispersed in a repetitive fashion during
sedimentation. We have observed a strong correlation between this repetitive cycle and the
velocity fluctuations in the sedimentation velocity of the suspension. Another effect of the
clustering is an increase of the sedimentation velocity above the maximum settling speed of one
isolated fiber.

Another interesting observation is that two simulations with the same macroscopic properties
(fiber concentration and periodic box geometry) but with different random initial distribution
of fibers can produce mean sedimentation velocities that differ remarkably, with up to 50 %,
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during the sedimentation. A detailed study of two cases revealed that the dynamical behavior
of the fibers were indeed very different; in both cases a streamer with distinct clusters were
formed and the mean sedimentation velocity of the suspension increased. In one of the cases
the streamer and clusters persisted during the whole sedimentation process whereas in the other
case, the streamer dissolved into smaller clusters randomly distributed in the box and a large
drop of the sedimentation velocity was observed.

4 CONCLUSIONS AND FUTURE WORK

One of the great advantages with our model and numerical method is its ability to produce
accurate data on a very detailed level. We have exploited this fact by conducting a careful study
of the evolution of the micro-structure in the suspension during the sedimentation process. We
have found that the micro-structure indeed has a large effect on certain quantities often used to
characterize a suspension, such as mean sedimentation velocity and velocity fluctuations.

So far, we have considered the fiber suspension confined to a periodic 3D computational
domain with no boundaries and our findings agree to a large extent with reported experimental
results. However, the situation in a physical experiment can be quite different. The suspension
is confined to a container with bounding walls and some of the interesting features are affected
by the presence of walls. E.g. it has been observed in sedimentation experiments, where the
fibers eventually settles at the bottom of the container, that the velocity fluctuations decay over
time. This is something that is not captured in our simulations.

Motivated by this we are currently investigating different ways of including wall boundary
conditions in our simulated system. Using boundary integral methods, this is not as straight-
forward as in the case with ordinary grid based methods.

REFERENCES

[1] Johnson, R. An improved slender-body theory for Stokes flow. J. Fluid Mech. 99, 411–431
(1980).

[2] Saintillan, D., Shaqfeh, E. S. G. & Darve, E. The growth of concentration fluctuations in
dilute dispersion of orientable and deformable particles under sedimentation. J. Fluid Mech.

553, 347–388 (2006).

[3] Fan, X., Phan-Thien, N. & Zheng, R. A direct simulation of fibre suspensions. J. Non-

Newtonian Fluid Mech. 74, 113–135 (1998).

[4] Tornberg, A.-K. & Gustavsson, K. A numerical method for simulations of rigid fiber sus-
pensions. J. of Comput. Phys 215, 172–196 (2006).

[5] Gustavsson, K. & Tornberg, A.-K. Gravity induced sedimentation of slender fibers. Phys.

Fluids 21, 123301–1 (2009).

[6] Metzger, B., Guazzelli, E. & Butler, J. E. Large-scale streamers in the sedimentation of a
dilute fiber suspension. Phys. Rev. Lett. 95, 164504 (2005).

4
 --222--



23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c⃝KTH, Stockholm, 2010

A WALL TREATMENT FOR CONFINED STOKES FLOW

OANA MARIN, KATARINA GUSTAVSSON AND
ANNA-KARIN TORNBERG
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Summary. The development and validation of a wall treatment based on a boundary inte-
gral formulation for Stokes flow is described. The confinement is discretized using high-order
quadratures for the resulting singular integrals. This approach offers an alternative to the clas-
sical method of images. In order to assess the properties of the model we have used the classical
problem of the sedimentation of a sphere for which an analytical expression is available.

1 INTRODUCTION

The study of bodies immersed in Stokes flow arises in various microfluidic applications. An
efficient numerical method is to recast the equations as boundary integrals thus reducing three-
dimensional problems to two-dimensional integral equations to be discretized over the surface
of the submerged objects. The presence of a wall is in this setting most commonly modeled by
the method of images. Although efficient and robust, a main drawback is the lack of generality.
The method of images was originally developed for one infinite flat wall. There are analytical
expressions available also for two parallel walls, however they include cumbersome infinite series
with slow convergence which are not well suited for numerical computations.

The present work focuses on the development and validation of a wall treatment where the
wall is discretized in the same fashion as the immersed bodies.

2 PROBLEM DESCRIPTION

Consider a computational domain where periodic boundary conditions are imposed in the x
and y directions, with periods Lx and Ly respectively, where a flat plate, Γ, is placed in the
xy plane at z = z0. Above this plate a sphere S is moving downward towards the plate due to
gravity.

Using a boundary integral formulation for Stokes flow we have that the flow velocity at any
point x0 is given by

u(x0) =
1

8πµ

∫
S
G(x− x0)fs(x)dSx +

1

8πµ

∫
Γ
G(x− x0)fw(x)dΓx , (1)

where fs and fw are the force densities on the sphere and wall, respectively. Here µ is the fluid
viscosity and the fundamental solution G is composed of the free-space component G0 and the
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periodic remainder Gp derived as in1, together yielding

G(x− x0) = G0(x− x0) +Gp(x− x0) , G0(x− x0) =
I

|x̂|
+

x̂⊗ x̂

|x̂|3
. (2)

where x̂ = x − x0 and Iij = δij the identity matrix i, j = 1, .., 3. In order to determine the
unknown force distributions fs and fw we need to impose4 boundary conditions on the two
interacting objects. Thus we distinguish two cases according to whether the pole x0 is located
at the wall or at the sphere. At the wall, x0 ∈ Γ, a no slip condition is imposed and we
obtain the first equation of the system by setting in (1): u(x0) = 0. The second equation is
obtained by using the requirement that the sphere performs a rigid body motion, i.e. by setting
u(x0) = V + Ω × (x0 − xc) for x0 ∈ S in equation (1). Here xc is the center of mass of the
sphere, V and Ω represent the translational and rotational velocity.

Additional constraints are required to close this system. The integrated force F over the
sphere must balance the buoyancy force given by the product of the density difference ∆ρ,
volume of the object V and gravity force geg. At the same time the integrated torque L must
vanish since no external torques are applied. Thus yields

F =

∫
S
fs(x)dSx = ∆ρV geg , L =

∫
S
(x− xc)× fs(x)dSx = 0 . (3)

As a consequence of periodicity the integrated forces over the wall are undetermined and we
therefore require ∫

Γ
(fw)i(x)dΓx = 0 , i = 1, .., 3 . (4)

This constraint on the forces is included as a Lagrangian multiplier. The complete system to
solve is (1) with u(x0) = 0 when x0 ∈ Γ and u(x0) replaced by u(x0) = V+Ω×(x0 − xc), when
x0 ∈ S, together with the constraints (3), (4). For legibility we shall denote the terms arising
from the discretization of the integrals in equations (1) by I followed by a subscript denoting
the pole and a second subscript that designates the domain of integration, therefore we have
Iss, Isw for x0 on the sphere and Iws, Iww for x0 on the wall.

3 NUMERICAL TREATMENT

The periodic Stokeslet of (2) has a smooth component Gp whose numerical integration poses
no numerical problems while the free-space component G0 is singular for poles x0 that belong
to the integration domain. Thus a special treatment of the singularity must be considered when
evaluating Iss and Iww.

The wall is discretized on a uniform grid in x ∈ [−Lx/2, Lx/2) and y ∈ [−Ly/2, Ly/2) with
grid resolution h. A special quadrature has been developed in order to accurately perform the
integral over the wall despite the singular nature of the integrand. This rule Qp

h is based on the
’punctured’ trapezoidal rule where the singular point is skipped, T 0

h , and a correction operator
Ap

h which incorporates the singularity into the weights in a small vicinity of the singularity as
given below

Qp
hG0(x)fw(x) = T 0

hG0(x)fw(x) +Ap
h(G̃0fw), G̃0 = |x̂|G0 , (5)
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with

Ap
h(fw) = h

p∑
q=0

[q/2]∑
m=0

ωm
q

∑
|β|=q

fw(βh) , β ∈ Z2 .

Details about the values of the weights ωm
q and discretization points β are given in2. The

parameter p determines the accuracy of the method and we choose p = 4. This provides a
method of O(h11) accuracy.

The integration of Iss on the sphere is based on the singularity subtraction method decom-
posing the free-space Stokeslet G0 as∫

S
G0(x− x0)fs(x)dSx =

∫
S
G0(x− x0)(fs(x)− fs(x0))dSx + fs(x0)

∫
S
G0(x− x0)dSx . (6)

where the latter integral can be evaluated analytically to be 16/3πrI, with I being the identity
matrix. By isolating the singular part of the integral (6) the middle term can be evaluated
numerically in spherical coordinates with θ ∈ [0, 2π), ϕ ∈ [0, π] by means of the trapezoidal rule
yielding a second order error.

The coupling terms Isw, Iws are non-singular. The term Isw, which integrates the wall for
poles x0 on the sphere, can be evaluated with spectral accuracy due to the periodic boundary
conditions at the boundaries of the wall. The corresponding integral, Iws, for poles x0 on the
wall is evaluated in spherical coordinates. The accuracy in the non-periodic direction can be
improved by using boundary corrections as in3 and we have used a rule that is O(h8ϕ) accurate.

The algebraic solution of the system is computed by using the Schur complement method
where the matrix block arising from the term Iww is inverted at the first time-step and stored
throughout the computation. This is possible since the wall is immobile and the block Iww does
not change its values over time thus rendering the computations more efficient.

4 METHOD VALIDATION AND EFFECTS OF PERIODICITY

Although the wall model developed here is meant to be used in conjunction with any kind of
bodies immersed in Stokes flow we have chosen a sphere for validation. The sedimentation of a
sphere is a classical test case for which an analytical expression is provided by the Stokes law
correction as described in4. The classical theory offers a relationship between the drag force, F,
and the sedimentation velocity U of the sphere, as given by

F = 6πµrλ(H/r)U ,

where the function λ(H/r) includes the wall effect, assuming an infinite wall. Here, H/r is the
distance to the wall from the center of the sphere scaled by the radius of the sphere. Since
the drag force F is known (needs to balance the gravitational force) we can compute U =
F/(6πµrλ(h/r)) using the expression for λ from4.

In our set-up, the domain is periodic in the wall-parallel directions, with periodic length
Lx = Ly = L. To study the effect of periodicity, and to validate that our results approach the
results for an infinite domain as the periodic box size is increased, we perform a sequence of runs
with L/r ranging from 10 to 25, see Fig. 1. The radius of the sphere is kept fixed at r = 0.2,
while L is varied. The grid sizes used were h = 0.1 and hθ = 0.314, hϕ = 0.157.
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It is clear that far away from the wall the periodicity has a stronger influence on the drag on
the sphere leading to a slower velocity as compared to the unbounded case, while closer to the
wall the effect that dominates is the wall influence and the numerical results closely approach
the analytical one, also for a small periodic box.

H/r

U
/U

0

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 1: Sedimentation velocity U = |U| versus wall distance H, normalized by the free-space velocity
U0 = |U0| and sphere radius r: (solid) analytic solution4, (dashed) simulations. In direction of arrow
increasing periodic box size from L/r = 10 to L/r = 25.

5 DISCUSSION AND CONCLUSIONS

In this note, we have introduced a wall treatment which is based on an actual discretization
of the wall. We have developed high order quadrature rules to handle the integration of the
singular Stokeslet kernel over the wall, and the solution of the coupled system has been expedited
by the use of a Schur complement algebraic treatment. We have used this method to study the
effect of periodicity on the classical problem on a sphere sedimenting down towards a wall, and
we have shown that we closely reproduce the analytical results for an infinite wall as the periodic
domain is increased.

Straight-forward extensions of this work include multiple bodies of different shapes inter-
acting with one or two parallel walls in this doubly periodic three-dimensional setting. Future
extensions of this type of approach to wall discretization involve more complicated geometries.
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Summary. In several biologically relevant situations, cell locomotion occurs in polymeric fluids
with Weissenberg larger than one. Here we present results of three-dimensional numerical simu-
lations for the steady locomotion of a self-propelled body in a model polymeric (Giesekus) fluid
at low Reynolds number. Locomotion is driven by steady tangential deformation at the surface
of the body (so-called squirming motion). In the case of a spherical squirmer, we show that
the swimming velocity is systematically less than that in a Newtonian fluid, with a minimum
occurring for Weissenberg numbers of order one. The rate of work done by the swimmer always
goes up compared to that occurring in the Newtonian solvent alone, but is always lower than the
power necessary to swim in a Newtonian fluid with the same viscosity. The swimming efficiency,
defined as the ratio between the rate of work necessary to pull the body at the swimming speed
in the same fluid and the rate of work done by swimming, is found to always be increased in
a polymeric fluid. Our computational results are also extended to prolate spheroidal swimmers
and smaller polymer stretching are obtained for slender shapes compared to bluff swimmers.
The swimmer with an aspect ratio of two is found to be the most hydrodynamically efficient.

1 Introduction

Small organisms displaying the ability to move usually do so in the presence of a viscous fluid1.
This is the case, in particular, for swimming cells such as bacteria, protozoa, or spermatozoa,
which exploit the viscous forces induced by the movement of appendages such as flagella or cilia
in order to propel themselves in a fluid environment2. One topic of renewed interest concerns the
locomotion of biological cells in complex (non-Newtonian) fluids. In many instances eukaryotic or
prokaryotic cells move in fluids displaying time-dependent and nonlinear rheological properties.
Examples include the progression of spermatozoa through the cervical mucus of mammals and
along the mucus-covered fallopian tubes, or the locomotion of bacteria through host mucus and
tissues. Bacteria in biofilms are also embedded in a viscoelastic matrix.

In this paper we present results of numerical simulations for a steady spherical squirmer free-
swimming in a model (Giesekus) polymeric fluid. Locomotion is achieved by steady tangential
surface deformation of the cell, which displays no shape change. It is thus a model for locomotion
by cells which swim using the propulsion generated by large arrays of short cilia, and is akin to
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the spherical envelope approach first proposed by Blake3. In this approximation, an effective
non-homogenous boundary condition is imposed at a fixed outer surface, which is impermeable
to the fluid. For the simulations presented in this paper, the surface velocity is assumed to be
axisymmetric and time independent. The surface velocity on our squirmer is uθ(θ) = B1 sin θ,
and has its maximum surface velocity located at the equator. For the simulations of the prolate
organisms we assume the same boundary condition for the velocity component tangential to the
surface of the ellipsoid. To the best of our knowledge, the results we present below are the first
three-dimensional simulations for self-propelled motion in a complex fluid.

2 Polymeric fluid dynamics

For incompressible low-Reynolds number flow in a viscoelastic fluid, the momentum and
continuity equation are written as

−∇p+∇ · τ = 0, (1)
∇ · u = 0, (2)

upon nondimensionalizing velocity with B1, length with the diameter of the squirmer D, time
with D/B1, and pressure and stresses with ηB1/D, where η is the solution viscosity. The
deviatoric stress τ can be splited into two components, the viscous solvent stress (τ s) and the
polymeric stress (τ p); τ s is thus given by

τ s = β(∇u +∇uT ), (3)

where β < 1 represents the ratio of the solvent viscosity, ηs, to the total zero shear rate viscosity,
η. To complete the model, a transport equation for the polymeric stress τ p is required. Here we
adopt the nonlinear Giesekus model4, which, in addition to shear-thinning material properties,
provides two important features, namely saturation of polymer elongation, and a non-negative
entropy production during the time evolution of the polymers. The nondimensionalized consti-
tutive equation can be written as

τ p

We
+

O
τ p +

α

1− β
(τ p · τ p) =

1− β
We

(∇u +∇uT ), (4)

where upper-convected derivative,
O
A, defined for a tensor A, is given by

O
A =

∂A
∂t

+ u · ∇A−∇uT ·A−A · ∇u. (5)

In the expression above, We is the Weissenberg number, defined as We = λB1/D where λ is the
polymer relaxation time. The so-called mobility factor α is introduced in the nonlinear stress
term representing an anisotropic hydrodynamic drag on the polymer molecules, and it limits the
extensional viscosity of the fluid. We fix it to be 0.2 in all our simulations. The finite-element
code Femlego, developed at KTH5 is used in our simulations.
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U η

WeWe

Figure 1: Left: Swimming speed U in the polymeric fluid divided by that of the Newtonian swimmer,
versus Weissenberg number, We, for three values of the viscosity ratio, β: 0.1 (red squares), 0.3 (green
circles), 0.6 (blue triangles). Right: Swimming efficiency, η, in a polymeric fluid: ratio between the power
needed to pull the spherical body at the velocity equal to its swimming speed and the power required to
swim in the same fluid. Efficiency is displayed as a function of We for three values of β. Inset: Value of
the efficiency at large We as a function of β (log-log plot); the line is a guide for the eye showing a 1/3
power law.

3 Results

Simulations are performed with different values of the Weissenberg number, We, and for
three values of the viscosity ratio, β (0.1, 0.3, and 0.6). The swimming speed in the polymeric
fluid divided by that of the Newtonian swimmer is displayed in Fig. 1 as a function of We. We
see that the swimming speed of the squirmer decreases for low Weissenberg numbers, reaches its
minimum value near We = 1, and then slowly recovers with increasing polymeric elasticity (or
We). The largest decrease in swimming speed is observed for the lowest value of β considered,
i.e. for the largest polymer viscosity under investigation. It is interesting to note that the
minimum speed is always obtained when the polymer relaxation time is approximately equal to
the time it takes for the swimmer to swim its own length. The swimming efficiency, η, is also
shown in Fig. 1 as a function of We. The efficiency is defined here as the ratio between the
power needed to pull the spherical body at the swimming velocity of the squirmer and the power
required to swim in the same fluid. The efficiency is seen to always be larger in the viscoelastic
fluid than in a Newtonian fluid, which is one of the main results of our work. This is in agreement
with the findings of Teran et al.6 who simulated a two-dimensional swimming sheet finite length
in an Oldroyd B-fluid, as well as the results by Leshansky7 who considered the locomotion of a
squirmer in a suspension of rigid spheres. The efficiency is seen to remain essentially constant
beyond We & 3. By considering the averaged values of the efficiency in the large-We limit, the
relation between the viscosity ratio and the asymptotic efficiency is examined. As shown by
the inset in the figure, there seems to be a power-law relationship with exponent close to 1/3,
η ∼ β−1/3.

After considering spherical bodies, we extend our results to the case of prolate swimmers of
different aspect ratios. We assume the body to be an axisymmetric prolate spheroid with an
aspect ratio, AR > 1, defined as the ratio between its major (symmetry) axis, and its minor axis.
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Figure 2: Left: Swimming speed in the polymeric fluid with We = 7 and β = 0.3 divided by that of the
spherical Newtonian swimmer for the prolate microorganism sharing the same volume but with different
aspect ratio AR. Right: Swimming efficiency of the prolate squirmer in a polymeric fluid as a function
of aspect ratio AR, with We = 7 and β = 0.3.Squirmers of different aspect ratio have the same volume.

In order to present a proper comparison between organisms of different shapes, we keep their
volume fixed. In Fig. 2 we show the variation of the swimming speed with the prolate aspect
ratio. We plot the results in the Newtonian case (black squares) as well as the polymeric case
with We = 7 and β = 0.3 (red circles). The swimming speed is normalized with the swimming
velocity of the spherical Newtonian squirmer, and is seen to decrease with the aspect ratio.
The swimming efficiency is also displayed in Fig. 2. We find that the swimmer of aspect ratio
AR ≈ 2 is the most efficient, a result which is valid both in the Newtonian and non-Newtonian
limit. In addition, a robust increase in efficiency in the viscoelastic fluid is also evident.
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Summary. Three experimental studies that demonstrate different aspects of fibre suspension
flows are presented. The flow cases are fibres in a confined shear flow, turbulent mixing of a fibre
suspension and fibres near a wall under a turbulent flow. The experiments provide quantitative
data on fiber suspension flow that can pose as validation data for modelling work.

1 INTRODUCTION

Paper is made by spraying a fairly dilute (typical mass concentrations are 1% or less) sus-
pension of water and cellulose fibres onto permeable bands. As the water is drained through
the band (various methods can be used in order to drain the water as efficient as possible), the
fibres remain on the band and a fibre network, or paper, is obtained. The general process is
similar for various end applications, such as printing paper, tissue paper or packaging board.

During papermaking, it is desirable to control aspects such as fibre orientation and concen-
tration, and their variations. Chemical additives are mixed into the suspension in order to either
improve the quality of the final paper product or increase the runnability of the process. Fur-
thermore, the fibres are modified by chemical or mechanical treatment prior to the papermaking
as such.

In this contribution, three experiments that are generalisations of flow situations occuring
during papermaking or suspension preparation are presented. The results provide either quanti-
tative data on the behaviour of fibres as such, or measurements of how the fibres alter the flow,
compared to pure water flow. The data from these experiments show drastic effects of fibre and
flow variations and provide flow cases that can be used as benchmark cases for simulations.

2 METHODS

Three experiments will be reviewed:
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Figure 1: Left: image of fibres in between two parallell disks rotating with rotating velocities having the
same amplitude but opposite signs. Right: Probability density distributions of the fibre occurences as
function of orientation and ReH = 2ΩRH/ν where Ω is the absolute rotational velocity of one disk, R
the radial position, H the distance between the disks and ν is the kinematical viscosity of the fluid. The
distance between the disks is 0.2, 0.3, 0.4 and 0.5 fibre lengths from (a) to (d).

1. fibres in the flow between counter rotating disks1,

2. turbulence in a mixing flow with and without cellulose fibers2 and

3. fibres on a wall under a turbulent wall shear layer3.

In all experiments, water is used as liquid. The fibres are synthetic cellulose acetate fibres in case
(i),(iii) and pulp fibres in case (ii). The measurements are performed by taking images of the
fibres and use image analysis to detect fibre positions and orientations in case (i) and (iii). In case
(ii), one of the streams is doped with salt and the difference in conductivity is used together with
a micro-conductivity probe to make time resolved measurements of the mixing in the opaque
and particulate flow. Further details on the experiments are found in the references1,2,3.

3 RESULTS

3.1 Fibres in between counter-rotating disks

Figure 1 shows fibres in between two parallel, counter rotating disks. The visualization to
the left shows several features. At some radii, the fibres tend to organize themselves in well
defined structures, which we have denoted as fibre trains. Furthermore, the fibres seem to prefer
different orientations depending on radial position. The orientation-position distribution is also
a function of the distance between the disks, as shown to the right where it is seen that for
small gaps in (a), the fibres tend to be oriented in the radial direction (θ = 0, as in the trains)
whereas more and more fibres are found to be oriented in the tangential direction (θ = 90◦) as
the gap is increased from (a) to (d). The distributions in (a) to (d) show several quantitative
features that are still to be captured in simulations. This flow case has been studied on detail
in a recent licentiate thesis from KTH Mechanics1
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Figure 2: Left: visualization of a dyed water (top) and fibre suspension (bottom) jet issuing into still
water (Bark et al.4). Right: spectra from turbulent mixing flow of two water and fibre suspension streams,
respectively. The spectra are measured on the centreline 30 mm downstream of a round pipe (diameter
10 mm) issuing into a surrounding flow with the same velocity as the mean velocity of the jet.

3.2 Turbulent mixing

The addition of fibres have drastic effects on turbulent mixing. An example of this is seen
to the left in figure 2 where visualizations4 are illustrating this phenomenon. A quantitative
measurement, obtained with a micro conductivity probe in the mixing of two coflowing fibre sus-
pension streams, is shown to the right. The spectra show the frequency content of conductivity
variations that occur since one of the streams is doped with salt. The spectra clearly shows that
the high frequency content decreases as fibres are added to the flow already at concentrations
as low as 0.09%. This effect on the spectra is in agreement with the visualization to the left; as
fibres are added, the visualization shows a considerable lack of generation (and possibly survival)
of the smallest scales. Further details can be found in a licentiate thesis2.

3.3 Fibres on a wall under a turbulent shear layer

Another challenging aspect is the interaction of fibres with a wall. Figure 3 (left) shows fibres
that have sedimented down to a wall under a turbulent wall layer3. Note that the fibres tend to
organise themselves in streaks and orient themselves in different directions. As an example of a
quantified measurement that can serve as validation data for simulations, orientation distribu-
tions for different aspect ratios rp of the fibres (at similar crowding factors nl3 where n is the
number density and l the fiber length) are shown to the right. Note that the long (rp = 28) fibres
tend to orient themselves in the streamwise (β = 0) direction whereas the shorter ones (rp = 7)
have wider distributions that are centred around β = 0, i.e. normal to the flow direction.

4 CONCLUSIONS

Proper modelling of fibre suspension flows is necessary for optimization and development
in many applications where non-spherical particles are present. In addition to papermaking,
ketchup production, natural gas processing, wear in nuclear power plants and particle motion
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Figure 3: Left: visualization of fibres on a flat plate under a turbulent wall layer. Right: orientation
distributions for different fibre aspect ratios rp of the fibres on the wall.

in the respiratory system are examples that illustrate the width of applicability.
Three examples of fundamental fibre suspension flows have been shown: fibres in confined

shear flow, turbulent mixing of fibre suspensions and fibres on a wall under a turbulent wall
layer. Considerable effects of running conditions, fibres as such and fibre aspect ratio have
been observed and quantified in a manner that makes comparisons with numerical simulations
possible.
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1 INTRODUCTION 

MAX-lab is a national laboratory operated jointly by the Swedish Research Council 
and Lund University. The Max project consist of three facilities (three storage rings): Max I, 
Max II, Max III and one electron pre-accelerator called Max Injector. A new storage ring is 
needed to improve material science, such as nanotechnology. MAX-IV will be 100 times 
more efficient than already existing synchrotron radiation facilities, i.e. it is planned to be the 
next generation Swedish synchrotron radiation facility. The second source will be the Linac 
injector that will provide short pulses. The Linac will be built as an underground tunnel next 
to the main ring1. The floor of the MAX IV building will mainly be constituted of a concrete 
structure that is built on soil consisting of mostly clay till. The inner and the outer radius of 
the main building are approximately 70 m and 110 m respectively, see Figure 1. The structure 
is exposed to both to harmonic and transient excitations. The harmonic excitation is typically 
working machines and transient excitations are typically traffic from the nearby roads and 
other human activities in the building such as walking, closing doors and dropping objects. A 
very strict vibration requirement is put on the structure of 26 nm RMS during 1s. 

 

Figure 1: Main building – MAX IV. 
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2 OBJECTIVE AND METHOD 

The MAX IV was analysed by the finite element method2. In that report it was concluded 
from the analyses that the material parameters of the soil have a significant influence on the 
vibration levels of the magnet foundations and more reliable material parameters are needed 
to get more reliable results from the finite element analyses. 

The main objective of this study is to study vibrations is the soil. The aim is to establish 
realistic finite element models that predict vibrations with high accuracy.  

Vibration measurements were performed at site. A comparison between finite element 
analysis and the measurements was performed. The model contains the bedrock, the soil and 
the road were the excitation point was located. The vibrations are analysed by the finite 
element method with dynamic analysis. 

3 MEASUREMENTS 

The measurements were performed at the location of MAX IV. To simulate the load from 
heavy traffic from nearby roads a Falling Weight Deflectometer (FWD) from KUAB was 
generating a pulse on a nearby road. The FWD applies a known pulse load with a peak force 
of 72 kN and a duration of 0.07 s, see Figure 2. The measurements were performed with 
accelerometers placed 20, 40, 60 and 80 m from the excitation point. Measured data is then 
integrated twice to obtain the displacements, see Figure 3. 

Figure 2: Pulse load from FWD 
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Figure 3: Example of measured displacement in nm 80 meters from the FWD, from Brian Jensen. 

3 MATERIALS 

The model consists of a road, divided into asphalt and UGM, two soil layers and a bedrock 
layer. The soil consists of two different layers with different tills. The upper layer consists of 
4 m Low Baltic till clay and the lower layer consists of 10 m Northeast till. The soil rests on 
the bedrock consisting of shale and mudstone. The first estimate of the material properties of 
the layers are given in Table 1. The damping ratio and the Poisson’s ratio of the upper clay till 
are the most uncertain parameters and were therefore varied to investigate its influence. 

 
Table 1: Properties of the materials. 

  Depth [m] MOE [MPa] Poisson’s ratio Density [kg/m3] Damping ratio 
Asphalt 0.15 5000 0.25 2600 2% 
UGM 0.5 315 0.2 2300 5% 
Upper clay 4 250 0.2-0.45 2100 2-6% 
Lower clay 10 1400 0.2 2300 2% 
Bedrock 50 8300 0.2 2400 2% 

 

4 FE-MODEL 

An axisymmetric model was made to investigate if the estimation of the soil properties was 
valid, Figure 4. The excitation was applied as a distributed load at the 150 mm closest to the 
symmetry axis. The force-time history shown in Figure 2 was enforced. The model reached to 
a radius of 150 m. Symmetry boundary conditions was applied at the symmetry axis and fixed 
boundary conditions was applied at the bedrock base. 

 

  
 

Figure 4: FE-model (not showing the full extension of the bedrock layer). 
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5 RESULTS 

Several analyses were made to investigate the influence of damping and Poisson’s ratio. 
Figure 5 and 6 show examples of resulting displacements 80 m from the pulse load. The 
displacement amplitudes and the frequency content correlates fairly well to the experimental 
data shown in Figure 2. The influence of various depth of the bedrock was also investigated. 
The analyses show that the depth of the bedrock must be at least 50 m to not influence the 
displacements amplitudes.  

 

 
Figure 5: Vertical displacements 80m from the pulse. 

 

 
 

Figure 6: Vertical displacements at 0.40 s after the pulse 
 

6 CONCLUSIONS 

More calculations are needed to ensure that the material properties of the FE-model are 
consistent with the measurements data. The goal is then to investigate the influence of 
changes of the structure or stabilizations of the soil that can be investigated with high 
accuracy by the FE-model.   
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Summary. The investigation presented in this  paper  deals with the vibration analysis inside 
the Linac tunnel at the f uture synchrotron facility MAX IV in Lund. It was done by means of 
the Finite Element Method considering both steady-state and transient analysis. 
 
 
1 INTRODUCTION 

MAX-lab is  a national laboratory operated jo intly by the Swedish Research Council and  
Lund University. Nowadays it consists of three storage rings and one electron pre-accelerator. 
Due to the improvement of  nanotechnology, a new storage r ing is needed.  Hence,  MAX IV 
will be 100 times more efficient than already existing synchrotron radiation facilities, 
becoming a leading facility for studies of particles at a nano-level4. 

As s hown in Figure 1,  M AX I V consists basically in one circular-storage-ring and one  
linear under ground tunnel (Linac) next to it.  B oth the ring and the Linac converge at one  
point, where the electrons have already almost reached the speed of light after being  
accelerated along the tunnel and  are then shot into the r ing so they can begin to spin around. 
The beam line is then bent with magnets in order to produce the so-called synchrotron light.  
 
 
2 OBJECTIVE AND METHOD 

In this investigation, the vibration levels at the Linac were analyzed. Since this  
construction will be used for high precision measurements, it will be asked to have a very 
strict vibration requirement where only very low vibration levels will be  allowed.  Thus, the  
technical condition states that only an RMS value of  100 nm during 1 second will be  
permitted in the vertical direction under the foundations supporting the beam line. 
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Real finite element models of the Linac were established in order to analyze the influence 
of the surrounding vibration sources on the tunnel . To achieve this  purpose both steady-state 
and transient analysis were performed. In the first case, a parameter study was  made by 
varying material properties and checking their influence on the  model. Likewise and since a 
bridge for bus  tr affic was supposed to be built over the Linac, a simulation of the dynamic  
component of  a bus load was performed as well.  For the transient loading, a realistic 
irregularity on the road was assumed  

 

 

              Figure 1: MAX IV                                                       Figure 2 : Finite Element Model 
 
 
3 FINITE ELEMENT MODEL 

The Linac was modeled as  a unique section made of concrete extruded along its way, not 
distinguishing between the different shapes of the cross-sections due to their negligible 
influence on the results. The cavity on the left (Figure 2) is intended for installations and  
pedestrian traffic while the right cavity is where the beam line will be accelerated. It is indeed 
under the foundations of  the right cavity supporting the beam line where the technical 
requirement must be fulfilled. 
    A concrete bridge for bus traffic was  planned to be built over the Linac, being the major 
external source of vibrations due to the road traffic. At its both sides, a road was modeled too 
as its continuation. 
   The soil is manly boulder clay and it was divided vertically in 8 different equal thick layers 
since its modulus of elasticity varies with the depth3. 

 
 

4    MODELLING RESULTS 
 

The technical requirement is  meant to be  fulfilled at the  magnets where the  beam will be  
mounted. Therefore, all  the displacement amplitudes  were evaluated under  the beam line 
along the Linac, at the bottom of  the f oundations supporting it since they are really stiff and 
the vibration levels on top of them will be the same as at their bottom. 
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4.1 Parameter Study 
Several analyses were done in order to investigate the influence of  several parameters in 

the model. A harmonic concentrated force with amplitude of 1 kN was applied in the middle  
point of the walking path carrying out a frequency sweep from 0 to 50 Hz in 1 Hz steps. This 
load is very high and may not be realistic but since the response is linear the vibration levels 
obtained may be scaled to the load applied. 

Several parameters such as the modulus of  elasticity of  the concrete and the thickness of  
the concrete floor were varied between reasonable values, not having them a large influence 
in the r esponse of the structure. However, when varying the damping ratio of the soil due to  
the uncertainness of  its  properties, it turned out that it does have  a great inf luence on the  
displacement amplitudes. Therefore, it can be concluded that the soil is the main influence on 
the structure. 

 

4.2 Dynamic Component of a Bus Load 
 

     The purpose of this investigation was to simulate the behavior  of the structure when a bus  
crosses through an even road ( no irregularities). To achieve that, a sinusoidal harmonic 
concentrated force of 0.7 kN was placed on four points representing each wheel and then the 
frequency sweep was carried out. The loads were taken from measurements of a bus2. Various 
analyses were made trying to f ind the worst scenario. The maximum displacement amplitude 
was for this case 301 nm, at a frequency of around 2 Hz, and 100 nm at 10-15 Hz. 

4.3 Road irregularity. Bus Load 
It is well known  that most severe traffic vibrations are created by heavy vehicles moving 

rapidly along roads. And even more if the road has any kind of  irregularity. Therefore and in 
order to take into account all the cases, a calculation with a road irregularity was performed. 

Due to the lack of traffic measurements in the future location of the Linac, data from 2 was 
taken. The load resulting from a bus or truck hitting a road surface irregularity is composed of 
an initial impact f orce and a oscillating force from the subsequent “axle hop” of  the vehicle.  

 

   Figure 3 : Vibration levels in the tunnel for          
different damping ratios of the soil. 

 
 
 

Figure 4 : Time record of dynamic load component  
of a bus passing over a Word plank 
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The “pulse load” was modeled only taking into account the f irst initial impact of the recorded 
wheel-load versus time diagram2, Figure 4. 
     Three dynamic/transient forces were placed in different locations trying to f ind the worst 
scenario, having for this case an RMS value in the vertical direction of 365 nm, a much higher 
value than the one allowed (100 nm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 CONCLUSIONS 
- As proved in the parameter study, the properties regarding the soil have a great 

influence of the vibration levels of the floor, specially the damping ratio.  As it is  the 
key on the model, it is of vital importance their determination through on site tests. 

- Regarding a bus  passing a road that  is constituted of smooth asphalt, it was proved 
that the requirement may be reached in that case. 

- However, small irregularities on the road  at the bridge will result in pulse loads that 
will always occur if the road is not in perfect conditions or if, for instance, ice, snow, 
potholes or objects like branches, soil or small rocks exist on the road. They will  
create vibration levels  that are too high and the quality of the  measurements at the 
MAX IV will be affected.  

- Since the probability of not always having a smooth road is rather high,  especially 
during the winters, it was recommended that the bridge is  avoided and  finally as  
result of this study the road will be relocated to not crossing the Linac. 
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Figure 5 : Displacement amplitudes on the beam floor 

 
 

       Figure 6 : Location of the road irregularities 
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Summary.  A submerged floating tunnel moored at a limited number of mooring locations is 
studied. The mooring system consists of sets of inclined taut mooring elements. Possible 
unacceptable response of a mooring element is studied by analytical and numerical modeling. 
Loading from swell sea states will introduce parametric excitation to the mooring system. 
Results from the analytical solution coincide well with corresponding results from the 
numerical model for a range of different swell waves where possible conditions of very large 
increase in mooring element response level may be identified. 
 
1. INTRODUCTION 

Submerged floating tunnels represent an attractive strait crossing concept, particularly for 
long spans. The present study considers a fjord crossing of 1500 m and a maximum water 
depth of 550 m. A submerged floating tunnel moored at a limited number of mooring 
locations is investigated.  

The purpose of the study is to identify possible swell sea states that may cause very large 
increase in lateral dynamic motion of mooring lines during parametric excitation. The 
excitation is imposed as end displacements at the tunnel mooring connection as well as wave 
loading on the mooring line itself. Possible unacceptable response of a mooring element is 
studied by analytical and numerical modeling considering a range of swell waves, possible 
conditions of very large increase in mooring element response level may be identified.  

2. SOLUTION OF THE PARAMETRIC EXCITATION EQUATION BY 
GENERALIZED COORDINATES [1, 2, 3] 

To solve the parametric excitation the differential equation of motion is established in 
Eq. (1) for the cable motion with distributed loading, q, in the lateral direction on the cable.  

22 2
0

2 2 2
( ( )) ( ) ( , )

yy d y dy
N N t N t m c q x t

dtx x dt


       

 
 (1) 
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Here N is the initial axial force, N is the variation of the axial force due to variation in the 
end displacement at the tunnel, m is the mass per unit length of the cable and c is the 
damping. We assume a displacement function of the form 

( , ) ( ) ( )y x t Y t x  (2) 

where 
0

( ) sin( )
x

x
L

   is chosen with a harmonic time variation 1 2( ) sin( ) cos( )Y t Y t Y t   . 

Equation (1) with Eq. (2) inserted, multiplication with (x) and integrated over the length of 
the cable gives 

 
02

0 0 0

0 0 00

16
( ) ( ) ( ) ( ) ( ) ( , )sin

2 2 2

L
mL cL a x

Y t Y t N N t Y t N t q x t
L L L

 


 
        

 
   (3) 

In Eq. (3) Lo is the initial length of the cable, and ao is the maximum value of the initial 
lateral displacement. For a selected ratio between the excitation frequency,  (frequency of 
harmonic change in axial force, N), and the fundamental mooring line frequency, , we can 
now find a solution. A special case is found when  = 2ωo. When the frequency ratio and the 
phase conditions are satisfied, the conditions for extreme response amplification exist. If the 
equations are made non-dimensional by introducing the quantities 

0 1 2
0 0 1 2

0 0 0 0 0 0 0 0
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2 x y
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n Y Y

L m m EA L L L L L
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 

 
           

where EA is the axial stiffness of the cable, we find the equation system 
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  


 
 (4) 

Other relationships between  and o may give a right hand side with cable end excitation 
terms and thus definite response solution. For the special case shown given in Eq. (4) above 
will a possible unstable solution exist when the determinant of the coefficient matrix equals 
zero. This solution will then be of the form 

2

2

2

cos( )

A B
 

 
  (5) 

Here A and B are products from the coefficient matrix and α is the angle between the cable 
and the horizontal at bottom level. 

The above solution is plotted for a number of parameter sets in Fig. 1 shown below. 
Solutions for ao = 0 with  = 1 % and 10 % respectively are plotted as broken lines with 
minimum values as expected at 2  . The thin solid line in Fig. 1 corresponds to ao = 5 m, 
with  = 4.5 %. The minimum value now occurs for  /o approximately equal to 3.2. This is 
associated with a fundamental frequency being lower than o for this maximum value of ao. 
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The case plotted with bold solid represents actual damping,  = 4.5 % and the sag ao = 0.5m 
from the longest cable set in the FE-analyses. The natural frequency is only slightly lower 
than for a straight cable and thus the minimum value occurs for   being slightly larger 
than 2. 

 

 
Figure 1: Theoretical results from parametric excitation given as lines and numerical results given as point 

values. 

3. NUMERICAL VERIFICATION OF POSSIBLE INSTABILITY AS INDICATED 
BY PARAMETRIC EXCITATION 

To investigate possible unstable response of the structure a 3D FE-model has been 
implemented in Abaqus [4]. The model includes both axial bending- and geometrical stiffness 
contributions. Mooring lines are connected to the midpoint of the tunnel wall thickness by 
stiff connecters to the centerline of the tunnel cross section. Furthermore, structural damping 
is assumed low, in the order of 0.5 %. Thus most of the damping is hydrodynamic. 

 The numerical investigation uses the Abaqus/aqua module where the structure is exposed 
to gravity forces as well as buoyancy forces in addition to wave loads. The waves are defined 
by the use of Stokes 5th order wave theory, as optional to linear Airy wave theory. 

It is chosen to run numerical simulation for a number of swell sea states with three 
different values of the excitation frequency, . The selected values correspond to ratios  /o 
of 1.54, 2.02 and 2.25. At each of the selected excitation frequencies, various sea states are 
chosen to give displacement values on both sides of the bold solid line presented in Fig. 1. 
The sea states are neither chosen as design sea states nor to represent any one single bridge 
location, rather as options to capture possible sea states from swell waves selected to 
investigate possible unstable response.  

Time domain results from the numerical investigations are presented below. In Fig. 2 is a 
stable solution from the present mooring line shown. The response shows frequency peaks at 
0.045 Hz, which is in the vicinity of its first natural frequency, as well as the sea state wave 
frequency of 0.071 Hz (wave period of 14s) corresponding also to the tunnel section response.   
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Figure 2: Numerical results for a stable solution at midpoint on present mooring line. Two first peaks at 

0.045 Hz and 0.071 Hz representing the natural frequency and the wave load respectively. 

A mooring line response with dramatic increase in amplitude is shown in Fig. 3 below, 
corresponding to the numerical simulation case indicated by the point in Fig.1 above the bold 
stability curve for  /o = 2.25. The direction of this amplified response will be in the 
inclined plain with axes in the bridge direction and along the cable. 

 

 
Figure 3: Numerical results for transverse unstable solution at midpoint on present mooring line. The peak 

frequency at 0.051 Hz corresponds with the expected one half of the excitation frequency. 

4. CONCLUSIONS 

Possible dynamic instability of mooring lines of a submerged floating tunnel has been 
investigated by analytical methods and verified by a full three dimensional finite element 
numerical analysis. The solutions to the parametric excitation equations of motion give 
indications of boundaries between stable and unstable domains. The numerical solutions 
confirm these bounds. The analytical method will then represent a convenient mean of 
preliminary check of instability conditions. It should be noted that other sea states than the 
selected ones could also cause dynamic instability for other sets of mooring lines along the 
bridge.   
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Summary. This paper considers numerical simulation of rock fracture in percussive drilling. 
An explicit dynamics based FE procedure is presented, including a constitutive model for 
rock and a method for bit-rock interaction based on parametrization of the constraint 
manifold. The performance of the constitutive model is demonstrated at a material point level 
and the bit-rock interaction is simulated in axisymmetric case. 
 
1 INTRODUCTION 

Rock drilling is widely used, e.g. in open pit mines, quarries and construction sites. A 
thorough understanding of the bit-rock fracture mechanisms is of considerable importance in 
developing rock drilling machines, especially in drill bit design. During the past few decades 
numerical modelling has become an increasingly popular method due to the computational 
power now available.  

In this paper a method for dynamic bit-rock interaction simulation is presented. The 
method includes a constitutive model presented in [1,2] and a method for simulating the bit-
rock interaction. The contact constraints are eliminated through parametrization of the contact 
manifold. The constitutive model is implemented in explicit dynamics FEM. The rock 
heterogeneity, as it has a substantial influence on the rock fracture processes, is taken into 
account at the mesoscopic level by a statistical approach based on the Weibull distribution. 
The performance of the constitutive model is demonstrated in confined compression test 
simulation at the material point level. The developed method is applied to a simulation of 
dynamic bit-rock interaction under axisymmetric conditions.  

2  THEORY OF THE MODEL 

2.1 Constitutive model for rock under dynamic loading 
The constitutive model is presented in detail in [1,2]. It is based on a combination of the 

viscoplastic consistency model, an isotropic tensile damage model and rate-independent 
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compression cap plasticity model. The viscoplastic yield surface consists of Drucker-Prager 
yield function, Modified Rankine criterion (tension cut-off) and a parabolic compression cap 
illustrated in Fig. 1a. Viscoplasticity provides a localization limiter under dynamic loading 
and thus retains the initial/boundary value problem involving strain softening well-posed. It 
naturally accommodates strain rate effects, such as strain rate hardening, being thereby ideal 
method for the present application. 

(a) (b)  

Figure 1: The combined yield surface (a) and the principle of the bit-rock interaction method (b). 

In low-confined compression region a viscoplastic strain softening law calibrated using the 
degradation index concept by Fang & Harrison [3] governs the material behavior while in 
tension the softening is due to an isotropic damage model driven by viscoplastic strain. Upon 
reaching the brittle-to-ductile transition pressure in compression the parabolic cap hardening 
plasticity is activated. The stress integration method is based on the generalized cutting plane 
algorithm.  

The microstructural heterogeneity of rock has a major influence on its failure processes. 
Here, a statistical method based on the Weibull distribution is selected for characterising the 
rock strength heterogeneity at the mesoscopic level.  

2.2 Bit-Rock interaction method 
The principle for modelling the bit-rock interaction is illustrated in Fig. 1b. The drill bit is 

considered as a rigid body by idealizing its buttons as nodes. Thence, the button geometry can 
be defined by kinematic contact constraints specifying the distances bi between the virtual 
button surface and the nodes on the rock surface (see Fig. 1b).  

Contact constraints, i.e. the displacement inequalities, generate a contact manifold with a 
boundary. When a contact constraint is active the solution lies on the boundary of the contact 
manifold. The contact problem can be solved with the elimination of additional degrees of 
freedom. This elimination technique can be viewed as a parameterization of the contact 
manifold. The solution procedure begins with the detection of the contact: Gu b 0 .   

If any contact constraint is active, say i, then this nodal displacement iu  is eliminated by 
solving the active constraint equation with respect to iu , yielding ,i bit y iu u b . Moreover, the 
velocity and acceleration for i are equalled, i.e. vi = vbit,y and ai = abit,y. Thus, the degrees of 
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freedom  of  the  problem  reduce  in  one  for  every  active  constraint.  Finally,  the  detection  of  
separation of the active contact constraint can be examined via the nodal internal forces. The 
separation occurs when the nodal internal force is a tractive force. The tractive force converts 
the active constraint inactive. 

The impact-induced compressive wave travelling in the rod and forcing the bit penetration 
into the rock is simulated as an external stress pulse applied to the button node. Viscous 
dashpots are applied on the boundaries of the rock domain and at the button node in order to 
prevent the stress wave reflections. The Modified Euler explicit time integrator is chosen for 
solving the spatially discretized equations of motion. 

3 NUMERICAL SIMULATIONS 
First, the performance of the constitutive model is demonstrated at a material point level 

using a single 8-node hexahedral element. The results in the confined compression test for 
Carrara marble are shown in Fig. 2c. Below the brittle-to-ductile transition level (68.5 MPa) 
the model response is linear elastic up to peak strength and linearly softening until the 
residual strength. Therefore, the nonlinear response of the laboratory size specimen cannot be 
captured at the material point level. The peak and residual strengths are, however, matched 
with a good accuracy. In contrast, at level 165 MPa of confinement, when the non-linear cap 
hardening plasticity is active, the experimental curve for Carrara marble is very accurately 
matched. 

(a)     (b)   (c)  
Figure 2: CST-mesh for the initial hole simulation (a), axisymmetric model (b), and the prediction of the 
constitutive model at the material point level in confined compression for Carrara marble (dashed line). 

Next, the bit-rock interaction is simulated with and without the initial hole shown in Fig. 
2a. The stress pulse parameters are chosen as A = 200 MPa, trise = 1 10-5 s and tdur = 1 10-4 s. 
This corresponds to an impact of 300 mm long piston with the velocity of 10 m/s. A 
hemispherical  bit-button  with  a  radius  of  10  mm  is  used.  The  results,  shown  in  Fig.  3,  are  
plotted at the end of unloading in the form of tensile damage, t, and minor (in-plane) 
viscoplastic strain, vp2, distributions and force-penetration curve for the half space case. With 
the initial hole (50 mm deep) a button radius 100 mm is used. Moreover, the surface nodes are 
displaced by magnitude of 0.2 mm to model the surface asperities in a real in-situ bore hole.  
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(a) (b) (c)  

(d) (e) (f)  

Figure 3: Simulation results : t (a), vp2 (b) with homogeneous material, force-penetration curves (c), t (a), 
vp2 (b)  with heterogeneous material, t for the initial hole case (f) (heterogeneous material). 

The main features of the results are similar for both the heterogeneous and homogeneous 
case, i.e. both display clear side and median cracks (see Fig. 3a,d) and spherical crushed zones 
(see Fig. 3b,c). The edge of the bottom in the initial bore hole cause long side cracks to 
propagate horizontally. In addition, the elements at the bore hole bottom surface have failed in 
tensile mode simulating the crushing of surface asperities.      

4 CONCLUSIONS 
- An explicit dynamics FE based method to simulate the bit-rock interaction during 

percussive drilling was presented in this paper.  
- The simulations predicted the typical features of fracture patterns occurring in the 

laboratory experiments. Moreover, the results were quantitatively realistic as the bit 
penetration-force curves are close to those reported in the experiments.  

- The statistical method to account for the rock strength heterogeneity adds to the 
reality  of  the  simulation  results.  Indeed,  the  presence  of  weaker  elements  results  in  
isolated failure events which simulate the micro-cracking of real rocks. 
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Summary. Assuming that the deformations are non-axisymmetric vibrations of stepped 
cylindrical shells are studied. A simple tool for the vibration analysis of shells accounting for 
the influence of cracks is presented. The changes of flexibility of the shell near cracks are 
prescribed by means of the compliance coupled with the stress intensity factor defined in the 
linear elastic fracture mechanics. The shell wall has an arbitrary number of steps and circular 
cracks of constant depth.  

 
 

1 BASIC EQUATIONS 

     Let us consider a cylindrical shell of  length l,as shown in Fig.1, where x and θ are surface 
coordinates and z is the inward normal to the reference surface. The origin of the coordinate 
system is located on the middle surface of the shell, and the radius of the middle surface is 
denoted by R.      
 

 
Fig.1: Circular cylindrical shell: coordinate 

system and dimensions. 
 

     A cylindrical coordinate system (x, θ, z) 
is used in order to take advantage from the 
axial symmetry of the structure, the origin 
of the reference system is located at the 
centre of left end of the shell.The shell 

thickness is h(x)=hj for ),a(ax 1jj +∈  , where 

j=0,...,n. Here the quantities  hj  (j=0,...,n) 
stand for fixed constants. Similarly, aj 
(j=0,...,n+1) are given constants whereas it 
is reasonable to use notations  ao=0, an+1=l 
.In Fig.1 three displacement fields are 
represented: axial u(x, θ, t), circumferential 
v(x, θ, t), and radial w(x, θ, t), where t is 
time. 

     Assume that the ends of the shell are simply supported. 
     A system of displacement equilibrium equations, based on Donnell’s approximations, is 
used to investigate the vibrational characteristics of  a cylindrical shell [1], in  which uj(x,θ,t), 
vj(x,θ,t) and  wj(x,θ,t) are the displacements of the jth ring segment in the x, θ, and radial 
directions, ρ is the mass density of the shell, E is the Young’s modulus and ν is the Poisson’s 
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ratio. Donnell has obtained from the system of equilibrium equations by using special 
function φ a following equation for wj [1] 
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Substituting  
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where n – number of waves in a circumferential direction;   
          ω – the circular natural frequency. 
One obtains the characteristic equation  
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The equation (3) has following roots: 

                                                

,
1

                        ,
1 2

2

2

1 n
h

Ra

R
rn

h

Ra

R
ir

j

j

j

j

j

j +=−±=

                                  (4) 

 where aj=kjR, i
2
=-1. 

The value of kj can be a real or a complex number α+iβ. 

We can write general solution in the form 

         
,sinsin)coshsinhcossin(),,( 24231211 tnxrAxrAxrAxrAtxw jjjjjjjjj ωθθ +++=
       (5)

 

where A1j, A2j, A3j, A4j - unknown constants; 
 

     The solution (5) has to meet appropriate boundary conditions at both ends with the four 

continuity and jump conditions. The determinant of the resulting 4×4 matrix will give the 

roots λm=am/β, where β=h/R. 

It follows from equation (3)   
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Let the vibration frequency ω be expressed in terms of a non-dimensionalized frequency 
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2 JUMP AND BOUNDARY CONDITIONS 

 

     Let us study a cylindrical shell with a step at the section x=a. Assume that there exists 
a circumferential surface crack with uniform depth c in the cylindrical shell at x=a. 

     Let the segments adjacent to the crack have thicknesses h0 and h1, respectively (Fig.2).

 
 

Fig. 2: Circular cylindrical shell with crack 
and a unique step. 

 
Fig. 3: Geometry of an element of cracked 

shell.

     For the simplicity sake we assume that these flaws are stable circular surface cracks. 
To avoid confusion, it is assumed that the surface crack is always open. A longitudinal 
element of unit width of the shell is shown in Fig. 3. 
     The surface crack in the shell can be modeled as a distributed line spring [2]. The presence 
of the crack in the shell will cause the local flexibility, which is taken into account by means 
of the compliance at the current section coupled with the stress intensity factor know in the 
fracture mechanics. 
The continuity and jump conditions at x=a are [2] 
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 where  w0, D0 and w1, D1 stand for the quantities w and D in the segments with thickness h0 
and h1, respectively, and 
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The boundary conditions for a cylindrical shell simply supported at the ends are 
                                                       w=0,                    Mx=0. 
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3 NUMERICAL  RESULTS  

     Numerical analyses for simply supported shells with one-step thickness variation and a 
crack are carried out in the case when: h1=0,009m; l=1,2m; R=0,12m; a/l=0,5; γ=h1/h0 ; ν=0,3. 
The influence of the crack length c/h on the fundamental frequency parameters of simply 
supported circular cylindrical shells with one step of the thickness variation is depicted in 
Figs. 4 and 5.     

 
Fig.4: Frequency parameters Ω for simply 

supported shells, the case n=4; m=1. 

 
Fig.5: Frequency parameters Ω for simply 

supported shells, the case n=2; m=1. 
 

 

4 CONCLUDING REMARKS 
 
     Calculations carried out showed that the eigenfrequency of the free vibrations of the shell 
decreases when the crack depth increases as might be expected. 
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Summary. The spatial discretization of elastic continuum by finite element method intro-
duces the dispersion error to numerical solutions of stress wave propagation. For higher order
Lagrangian finite elements there are the optical modes in the spectrum resulting in spurious
oscillations of stress and velocity distributions near the sharp wavefront. Furthermore, the high
mode behaviour of classical finite elements is divergent with the order of approximation of a field
of displacements. B-spline based finite element method has a potencial of this disadventage
of classical finite element method to eliminate. Moreover, the high mode behaviour of B-spline
based finite elements is convergent with the order of approximation.

1 INTRODUCTION

The numerical solution of a fast transient elastodynamics problem by the classical La-
grangian type of the finite element method1 (FEM) is influenced by the dispersion errors caused
by both spatial and temporal discretizations2. These parasitic effects do not exist in ’ideal’
continuum. Furthermore, the FE mesh behaves as a frequency filter. In seismology the spec-
tral finite elements3 appeared recently. Spectral finite elements are of h-type finite elements,
where nodes have special positions along the elements corresponding to the numerical quadrature
schemes, but the displacements along element are approximated by the Lagrangian interpolation
polynomials.

A modern approach in the finite element analysis is the isogeometric analysis4, where the shape
functions are based on varied types of splines. For examples, Bézier curve, B-spline, NURBS,
PB-spline, T-spline, LR-spline, PHT-spline and other are used for spatial discretization. This
approach has an advantage that the geometry and approximation of the field of the solution is
prescribed by the same technique. Another benefit is that the aproximation is smooth.

Dispersion of B-spline based finite elements was established for the same recurrent B-spline
functions. It was shown, that the optical modes did not exist5. Next, dispersion errors were
reported to decrease with increasing order of B-spline shape functions. This is very a good
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results for the explicit dynamics, where critical time step is bounded by the highest eigen-
frequency of the whole system. In this paper, the dispersion of B-spline based finite element will
be determimed for a one-dimensional elastic wave propagation problem.

2 PROPAGATION OF ELASTIC WAVES IN ONE-DIMENSIONAL CASE

The classical equation governing elastic wave propagation in one-dimensional case6 without
the loading source is given by

c2
0

∂2u

∂x2
− ∂2u

∂t2
= 0, (1)

where c0 denotes the wave propagation speed, u(x, t) is the displacement field, x is position
and t is time. For a elastic bar, the speed is given by c0 =

√
E/ρ, where E denotes the Young’s

modulus and ρ is the mass density.

3 B-SPLINE BASED FINITE ELEMENT METHOD

For a given knot vector, the B-spline basis functions are defined recursively starting with
piecewise constants (p = 0)

Ni,0 (ξ) =
{

1
0

if ξi ≤ ξ ≤ ξi+1,
otherwise.

(2)

For p = 1, 2, 3, . . . , they are defined by

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (3)

This is referred to as the Cox-de Boor recursion formula7. A knot vector in one dimension
is a non-decreasing set of coordinates in the parameter space, written Ξ = {ξ1, ξ2, ..., ξn+p+1},
where ξi ∈ R is the i-th knot, i is the knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial
order, and n is the number of basis functions used to construct the B-spline curve.

Figure 1: Scheme for spatial discretization of one-dimensional space by B-spline based FE

The approximation of the displacement field uh by the B-spline approach is given by

uh(ξ) =
n∑

i=1

Ni,p (ξ) uB
i , (4)
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where uB
i is the component of the vector of control variables–displacements corresponding

to the control points. A scheme of a admissible progress of a one dimensional displacement
field based on B-splines is presented in Figure 1.

In the following text, the Galerkin method1 for the solution of partial differencial equations
is used and the stiffness and consistent mass matrices1 are computed numerically by the Gauss-
Legendre quadrature formula1.

4 DISPERSION ANALYSIS

The complex wavenumber dispersion analysis was performed for a one-dimensional FE8,
where the nodal displacement uh

i corresponds to given spatial discretization is prescribed in the
form of wave solution

uh
i = Aie

i(ωt−khxi), (5)

where Ai is displacement amplitude, ω is angular velocity, imaginary unit i =
√
−1, the discrete

(numerical) wavenumber equals to the real part Re kh and imaginary part Im kh has the meaning
the attenuation intensity and xi is the nodal or control point position. The assumed solution (5)
is inserted to the equation (1) and the dispersion relation ω = f(kh) is obtained. The dispersion
errors can be measured by numerical phase velocity defined as ch = ω/Re (kh).

It can be derived, that the dispersion error is also influenced by the basic functions Ni,p

defined near to the patch domain boundary, where the shape function are not homogeneous.
From this reason, the band gaps9 exist also for the B-spline based element method.

Generally, the dispersion for the discretization by B-splines can be controlled by a) length
of element patch (h-refinement), b) order of spline (p-refinement), c) the number of control
points (k-refinement), d) positions of control points e) multiplicity of knot in the knot vector Ξ,
f) Cm continuity between patches, m < p− 1 order of continuity.

5 RESULTS OF DISPERSION ANALYSIS FOR B-SPLINE BASED FEM

In this paper, the influence of the number of control points and order p of splines is tested
for C0 continuity between B-spline identical patchs with an uniform knot vector and a linear
parametrization. For example, dispersion errors ch/c0 of the quadratic (p = 2) and cubic (p = 3)
B-spline based FE with different number of control points are depicted in Figure 2, where h
denotes the patch length (see Figue 1). The vertical jump corresponds to the decay solution
with non-zero attenuation. These parts of the dispersion dependences detect the passing and
band gaps in the frequency range9.

6 CONCLUSIONS

It was shown that the dispersion errors of B-spline based FE for increasing number of control
points converge to the continuum solution. The solution with high number of control points is
almost the same as to the solution with homogeneous B-spline shape functions5. On the other
hand, its progress is shaked from the reason of existing of passing and band gaps. Moreover,
the spurious modes are reduced by the B-spline based spatial discretization with high number
of the control points. B-splines as the shape functions have a potencial for using in high perfor-
mance finite element analysis of elastic wave propagation by the explicit direct time integration.
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Figure 2: Normalized dispersion errors for quadratic (on the left) and cubic (on the right) B-spline based
FE with different number of control points. The red line corresponds to homogeneous shape functions5.
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Summary. A large deflection, semi-analytical method for response propagation analysis of
stiffened plates with a free edge is presented. The formulations derived are implemented into a
FORTRAN computer program, and numerical results are compared with fully nonlinear finite
element analyses. Good agreement is obtained.

1 INTRODUCTION

A semi-analytical method [1] for pre- and postbuckling analysis of stiffened elastic plates is
presented, and its ability to analyse complex plate responses, such as snap-through and snap-
back problems, is demonstrated. Geometric nonlinear finite element analysis (FEA) can also
be used for such predictions, but for some applications, these are often too time consuming to
prepare, run and post-process.

2 THEORY

The method is capable of studying rectangular plates such as those in Fig. 1. The plates
may have one edge that is free or provided with an edge stiffener, and supported in the out-of-
plane direction at the three other edges. Two opposite supported edges, perpendicular to the
free edge, are subjected to an external in-plane stress Sx. The assumed displacement fields are
defined by

w = wa + wb, u = ua + ub + uc, v = va + vb + vc (1)

Here, u, v and w are in the x-, y- and z-direction (parallel and perpendicual to the free edge,
and out-of-plane), respectively, and

wa(x, y) =

Mwa
∑

i=1

wa
i

y

b
sin(

πix

L
); wb(x, y) =

Mwb
∑

i=1

Nwb
∑

j=1

wb
ijsin(

πix

L
)sin(

πjy

b
) (2)

ua(x, y) =

Mua
∑

i=1

uai
y

b
sin(

πix

L
); ub(x, y) =

Mub
∑

i=1

Nub
∑

j=1

ubijsin(
πix

L
)sin(

πjy

b
); uc(x, y) = uc

x

L
(3)
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Figure 1: (a) Section of a typical stiffened girder with an edge provided with an stiffener, and (b) a free
edge example of a flange outstand of a channel beam.

va(x, y) =

Mva
∑

i=1

vai
y

b
cos(

πix

L
); vb(x, y) =

Mvb
∑

i=1

Nvb
∑

j=1

vbijsin(
πix

L
)sin(

πjy

b
); vc(x, y) = vc

y

b
(4)

Here wa
i , w

b
ij , u

a
i , u

b
ij, u

c, vai , v
b
ij , v

c are amplitudes, L is the plate length and b the plate width.
By using a solution procedure discussed in detail elsewhere (Steen[2], Brubak and Hellesland[3],

Steen, Byklum and Hellesland[4]), the model is able to trace the pre- and postbuckling response,
and consequently, it may be used in studies of reserve strengths (beyond the elastic buckling
load) typical for slender plates. The Rayleight-Ritz method is used to establish equilibrium equa-
tions on the rate form. These equations are solved incrementally using an arc length parameter
η. In the common matrix notation, the final set of equations can be given by

Kḋ+GΛ̇ = 0 and Λ̇2 +
1

t2
ḋT ḋ = 1 (5)

where, K is a generalised, incremental (tangential) stiffness matrix, −GΛ̇ is a generalised, in-
cremental load vector, d is the displacement amplitudes and Λ is the load factor. A dot above
a symbol means differentiation w.r.t. η. The incremental stiffness matrix, load vector and
displacement vector can be divided into submatrices and subvectors and given by

K =





Kuu Kuv Kuw

Kvu Kvv Kvw

Kwu Kwv Kww



 , G =





Gu

Gv

Gw



 , d =





u
v
w



 (6)

where the displacement amplitude vector d is an assembly of all the displacement amplitudes.
At each increment (step) there are two possible solutions. They have the same numerical

value, but opposite signs. One solution is in the direction of an increasing arc length and the
other in the opposite direction. The correct solution corresponds to that giving a continuous
increase of the arc length. This is assumed to be the solution which results in the smoothest
equilibrium curve. In the same manner as in Steen [2], this is expressed by the requirement that
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the absolute value of the angle between the tangents of two consecutive states (“k−1” and “k”)
in the load-displacement (Λ− dj/t) space is smaller than 90 degrees. Thus, for the correct sign
of the load rate Λ̇k at state “k”, the following criterion must be satisfied:

Λ̇k(
(Qk)T ḋk−1

t2
+ Λ̇k−1) > 0 where Q = −K−1G (7)

When the solution of Eq. (5) at a stage “k” is computed, the displacement amplitudes and
load parameter at the next stage “k+1” are then obtained from a linear Taylor series expansion
as

dk+1 = dk + ḋk∆η; Λk+1 = Λk + Λ̇k∆η (8)

In this manner, the solution propagation is continued until a specified limit, or a given strength
criterion, is reached. The present solution procedure is capable of passing limit points, including
tracing of snap-through and snap-back equilibrium curves. A more detailed presentation of the
method is given by Brubak [1].

3 SNAP-BACK RESPONSE EXAMPLE

The present semi-analytical method has been applied to a number of different plate cases
[1, 5, 6]. To demonstrate its capability of tracing complex response curves, a snap-back problem
[6] is considered for an unstiffened, initially imperfect plate. The plate has a length L = 3000
mm, width b = 1000 mm, thickness t = 14 mm, an imperfection shape taken equal to the first
eigenmode of the plate, and a maximum imperfection (at the midlength of the free edge) equal
to 5 mm. The eigenmode has one half-wave in the x-direction (parallel to the free edge).

The load-shortening response computed by the present model (using a very small arc length
increment of ∆η = 0.005) and by the FEA (by ABAQUS) is presented in Fig. 2(a). The
agreement between the curves is very good. It can been seen that the response is very unstable,
and at a certain load level, both the load and the plate shortening decrease. This is characteristic
for a snap-back equilibrium curve.

Initially, the deflection shape will be similar to the imperfection shape (one half wave in the
x-direction). At some load stage, the deflection shape changes into several half waves, thereby
causing a snap-back. The deflection shapes before and after the snap-back are shown in Fig.
2(b) and (c), respectively.

It should be noted that a snap-back response occurs very late in the post-buckling region, and
it is therefore of more academic than practical interest. The intention was to demonstrate that
such complex responses are well captured by the present solution procedure. Usually, if material
yielding is accounted for, the ultimate strength is reached before snapping occurs. Typically,
ultimate strength is reached when the plate shortening ∆x is about εY L (or ∆x/εY L ≈ 1). In
comparison, for this case, snapping occurs at a plate shortening ∆x of about 2.5 εY L.

4 CONCLUDING REMARKS

An efficient computational model is presented for large deflection analysis of rectangular,
stiffened elastic plates with an edge being free or provided with an edge stiffener. The applica-
bility of the method has been documented by comparison with finite element analysis results.
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Figure 2: (a) A snap-back load-shortening response computed by the semi-analytical model and FEA,
and the deflection shape (b) before and (c) after snap-back of an unstiffened plate with a free edge.
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Summary. Ultimate strengths of stiffened plates with a free or stiffened edge is considered. A
large deflection, semi-analytical model for pre- and postbuckling calculations is used in combi-
nation with a proposed strength criterion. Strength estimates are compared with finite element
analyses (FEA) results, and good agreement is found.

1 INTRODUCTION

Ultimate strengths of rectangular elasto-plastic, stiffened plates with a free or stiffened edge
are considered. Such strengths may be computed using fully non-linear FEA (finite element
analyses). These FEA may become very time consuming, both w.r.t. modelling and execution,
when a large range of cases are considered. A significantly more efficient approach for such cases,
is adopted here. It is based on an elastic, semi-analytical pre- and postbuckling model [1], in
combination with a proposed strength criterion [2] presented here.

2 SUMMARY OF ELASTIC THEORY

The rectangular plates studied are defined in Fig. 1 (a) and (b). Only one stiffener is shown
in each direction, but the number of stiffeners and stiffener spacings can be arbitrary.

The semi-analytical approach is based on a Rayleigh-Ritz discretisation of the displacements,
and the equilibrium equations are solved using an incremental procedure with arc length control,
as presented in Steen, Byklum and Hellesland [3]. Similar formulations were used in the semi-
analytical model for simply supported stiffened plates developed by Brubak and Hellesland
[4, 5]. All the displacement components (u, v, w) are included in the current formulation. The
displacement fields consist of three parts, one representing an unstiffened plate with a free
edge (a), one representing a simply supported stiffened plate (b), and one representing uniform
elongation (compression) (c). Mathematically, the assumed displacement fields are defined as
follows:

1
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Figure 1: (a) Uniaxially loaded stiffened plate with a free or stiffened edge, (b) cross section of an eccentric
stiffener, (c) reduction of stiffener area due to yielding, (d) stiffener stress distribution due to bending in
the positive z-direction and (e) in the negative z-direction.

w = wa + wb, u = ua + ub + uc, v = va + vb + vc (1)

where u, v and w are the displacements in x-, y- and z-direction, respectively, as defined elsewhere
[1, 2]. The resulting incremental stiffness relationship can, on matrix form, be given by:

Kḋ + GΛ̇ = 0 (2)

where K is a generalised incremental stiffness matrix, −GΛ̇ is a generalised incremental load
vector, d denotes a vector consisting of displacement amplitudes and Λ is the load factor. The
incremental solution propagation is described elsewhere [1, 2, 4].

3 SELECTED STRENGTH CRITERION

The ultimate strength criterion selected for stiffened plates is defined by:

(σpm
e )max + βmod · σ̄

pb
e = fY (3)

where (σpm
e )max is the maximum von Mises membrane stress, σ̄

pb
e is the average von Mises

bending stress along the line in the y-direction on which the maximum von Mises membrane
stress is located, and fY is the yield stress of the material. The factor βmod is given by:

βmod = βmod(σ̄e) =

{

Bmod ·
(

σ̄e−fY

fY

)

, σ̄e > fY

0, σ̄e ≤ fY

(4)

where σ̄e denotes the average of the total von Mises stress (at the outer fibres) along the same

line that σ̄
pb
e was calculated, and Bmod is defined as follows:

Bmod =

[

1 + tanh

(

4π
wt,edge

wt,max

− 2π

)]

(5)

where wt = w(x, y) + w0(x, y) is to be taken as the absolute values of the deflections.
The criterion shall be checked on the line, perpendicular to the free edge, that is most critical

(i.e., that gives the largest left hand side in Eq. (3)). For cases with symmetrical bending shapes
in the x-direction, this “critical line” is defined by x = L/2. For more details, see ref. [2].
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A stiffener height reduction criterion [5] is applied to the stiffeners in order to account for
yielding in the stiffeners. This criterion removes the parts of the stiffener where yielding has
occurred. The cross section is reduced over the entire stiffener length with respect to the cross
section with the most yielding. This scheme for reducing the stiffener height is illustrated in
Fig. 1 (c) - (e).

4 ULTIMATE STRENGTH ESTIMATES

Ultimate strength limit (USL) estimates by the proposed model are presented here and com-
pared with FEA results, obtained using the ABAQUS software program. The first elastic buck-
ling mode, with a maximum amplitude of 5 mm, is used as imperfection shape. Steel properties
with Young’s modulus E = 208000 MPa, Poisson’s ratio ν = 0.3 and yield strength fY = 235
MPa, are used.

Stiffened plates with three equally spaced flatbar stiffeners (hf = tf = 0) are considered.
Dimensions are defined in Table 1, and the general plate geometry in Fig. 4 (d).

Table 1: Plate and stiffener dimension

Plate L (mm) b (mm) t (mm) tw (mm) hw (mm)

1000X1000 1000 1000 12 10 16-116

2000X1000 2000 1000 30 10 25-165

2400X2523 2400 2523 11 12 45.5-205.5

Results for varying stiffener heights are presented in Fig. 4 (a) - (c). The ultimate strength
limit (USL) estimates are generally seen to be in good agreement with the FEA results. Some
conservative deviations are encountered for large ratios of stiffener heights to web thickness
(Figs. 4 (a), (c)). Elastic buckling limits (ESL) are also included in the figures.

Similar results were also found for cases with one and two stiffeners [2]. Furthermore, USL
results for “combined” imperfections shapes, obtained by combining both a local and a global
mode, has also been considered and found to be in good agreement with FEA results [2].

A transition from a global (approximately unstiffened) to a local deflection shape is observed
for the plate cases studied, as the stiffener heights become large and thus increasingly resist the
out-of-plane deflections under stiffeners. As this happens, a simple support condition will, as
expected, be approached at the stiffened edge.

5 CONCLUDING REMARKS

A semi-analytical model for estimating the ultimate strength limit (USL) of stiffened plates
with a free or partially stiffened edge is developed and presented. It provides USL estimates
that compare very well with FEA (ABAQUS) results.

In practical cases, it may be preferable to incorporate combined local and global imperfections
into the analyses, in particular when local and global elastic buckling loads are close. Such
imperfections are used by DNV in their PULS design code.
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Figure 2: Ultimate strength limit (USL) and elastic buckling strength limit (ESL) vs. stiffener hight for
(a) 1000X1000 plate, (b) 2000X1000 plate and (c) 2400X2523 plate; (d) plate geometry and plate cross
section.
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1 INTRODUCTION 

The Sandwich Plate System (SPS), developed by Intelligent Engineering, has steel faces 
and elastomer core. The ultimate strength of SPS panels has been studied for in-plane shear 
loading combined with other loading types, and interaction curves and formulae have been 
developed for clamped and simply-supported, rectangular panels. The sandwich lay-ups and 
dimensions considered are shown in Table 1, in which a and b are the panel length and width 
and tf and tc are the face and core thicknesses. Only cases with equal faces are considered. The 
geometries include the extreme cases from a study by Kennedy et al.1 that considered 
combined lateral pressure and in-plane compression (uni-axial and bi-axial). 

Table 1: Layups and dimensions of SPS panels analysed 

Panel no. SPS  layup tf-tc-tf (mm) b x a (mm) Comment 
1 SPS 10-35-10 2000 x 2000  
2 SPS 10-15-10 3200 x 6400  
3 SPS 10-15-10 2000 x 2000  
4 SPS 7-35-7 3200 x 6400  
5 SPS 5-32-5 1200 x 1800 Tested by Little2 

6 SPS 3-35-3 3200 x 6400  
7 SPS 3-35-3 2000 x 2000  
8 SPS 3-15-3 3200 x 6400  

2 NON-LINEAR FINITE ELEMENT MODELLING 

Non-linear finite element (FE) modelling was performed with ABAQUS Version 6.9 3. In 
all cases the panel edges were allowed to “pull in”, but were constrained to remain straight.  
The steel faces are assumed to be ideally elastic-plastic with Young’s modulus 206 GPa and 
yield stress σYf = 355 MPa. The elastomer core is assumed linear-elastic, with modulus 
750 MPa, up to a stress of 0.75 MPa; beyond this non-linear elastic-plastic behaviour is 
assumed, with ultimate tensile strength and strain of approximately 39 MPa and 30%. 

A study of modelling strategies, including comparison with laboratory test results reported 
by Little2, showed that use of thick shell elements S4R with reduced integration and a mesh 
with 100x100 elements gave consistently good results for the relevant responses. 
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 2

3 LATERAL PRESSURE LOADING 

Jones4 presents both upper and lower bound plasticity solutions for collapse of rectangular 
plates under uniform lateral pressure loading. These are summarised in Table 2, in which Mp 
is the plastic moment per unit length, which for a sandwich plate is given by 

 cffYfp tttM    (1) 

The contribution of the core to Mp is neglected. For simply supported panels, the upper and 
lower bound solutions are identical for square panels and differ by only 1% for b/a = 0.5. 

Non-linear FE analysis for lateral pressure loading showed that: 
 Relatively thick or small panels (e.g. panels 1, 3 and 7) display a “knee” in the response 

that is reasonably well bounded by the upper and lower bound solutions (as Figure 1 left). 
 Slender panels (e.g. panels 2 and 8) do not display a clear failure load or “knee” but 

continue to deform with increasing membrane stiffening effects (as Figure 1 right). 

Table 2: Upper and lower bound collapse loads cited by Jones4 

Boundary conditions 
Upper bound Lower bound 

PYU kaU PYL kaL 
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2

8

b

kM aUp  

 
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16

b
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b
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Figure 1: Load-deflection curves for Panel 1 (left) and Panel 8 (right) with clamped edges, under uniform lateral 
pressure loading, obtained by nonlinear FEA. Upper and lower bound plasticity solutions are also shown.  

4 IN-PLANE SHEAR LOADING 

For pure in-plane shear loading of an idealised panel with perfect geometry and homogen-
eous, isotropic materials, yielding will occur throughout the face sheets and core when the 
applied shear load reaches the value: 

 cYcfYfcYcfYfY ttttQ   2
3

1
2  (2)

where τYf is the yield stresses of the face sheets in shear and σYc and τYc are the yield stresses of 
the core in tension and shear, respectively. Critical values of applied shear force per unit 
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 3

length, Qcrit, for elastic buckling were obtained by FE eigenvalue analysis. For simply 
supported, slender SPS panels (Panels 2 and 8) Qcrit < QY. For the very slender Panel 8 this 
also applies with clamped edges. For all other cases considered, QY < Qcrit. 

Non-linear FEA has been applied with a small initial imperfection in the shape of the first 
buckling mode. For the cases where QY < Qcrit the yield load QY is found to be a good estimate 
of the ultimate load. For cases where Qcrit < QY collapse occurs close to, or slightly above, 
Qcrit, the induced buckles leading to extensive yielding with little further increase of loading. 

5 COMBINED LATERAL PRESSURE AND IN-PLANE SHEAR LOADINGS 

Ultimate loads for cases with two loading components in combination can be presented in 
terms of interaction curves or formulae. An interaction curve consists of a graph in which the 
two axes represent the two load magnitudes, and each combined failure condition is 
represented by a single point. The interaction curve should meet the axes at the ultimate 
strengths for the separate loading cases, and these points are important for defining the curve. 
As indicated in Section 3, for the SPS panels the ultimate strength for lateral pressure is in 
many cases not well defined. Thus the interaction curve is also difficult to define in the region 
where lateral pressure dominates. This has been confirmed with both proportionally 
increasing load and when the lateral pressure is applied first and the shear load after. In order 
to define a curve, the use of the bound solutions for ultimate pressure load has been 
investigated. 

An interaction curve that gives a conservative estimate for the combination of in-plane 
shear Q and uniform lateral pressure p for those cases where QY < Qcrit (as Figure 2, left) is  

1
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For cases with QY > Qcrit the interaction curve has a different form as in Figure 2 (right). 
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Figure 2: Interaction curves for Panel 1 (left) and Panel 8 (right) for combined lateral pressure loading and in-
plane shear loading, with simply supported edges, obtained by nonlinear FEA. 

6 LATERAL PRESSURE WITH IN-PLANE COMPRESSION AND SHEAR 

For panel no. 5 (for which elastic critical load for in-plane compression is much higher 
than the yield load), a three-way interaction surface has been obtained for combined lateral 
pressure, in-plane uni-axial compression (N) and in-plane shear loadings: 

 --269--

anderi
Rectangle



Brian Hayman and Jostein Fladby 

 4

(4)

7 LIMITATIONS IMPOSED BY OTHER CONSIDERATIONS 

7.1 Shear strength of core and face-core bond 

Teixeira de Freitas et al.5 have shown that the bond between the elastomer core and the 
steel faces can only withstand a shear stress of about 6 MPa (though this may depend on the 
surface preparation). This presents a more severe limitation than failure of the core itself. The 
bond shear stress is mainly determined by the lateral loading so the effect on the interaction 
curves will be a panel-dependent cut-off at a specific value of pressure p. 

7.2 Acceptable deflections 

For the relatively slender panels the lateral pressure loading does not give a clearly defined 
collapse load. If such panels are used in practice it is likely that a limit will be applied to the 
maximum deflection; typically limits of 1-3% of the panel width b are specified in design 
codes. Unless Q is close to Qcrit, this is mainly determined by the lateral pressure p and the 
influence on the interaction curves is similar to that described in Section 7.1. 

7.3 Reduction of face sheet yield strength 

In many practical applications a lower strength steel is used, e.g. σYf = 235 MPa. Then: 
 A clearer “knee” is seen in the load-displacement curve for lateral pressure loading. 
 The deformation is smaller when the ultimate capacity is reached so membrane effects are 

less significant. 
 The deformation, core shear and debonding limits are less likely to be determining factors. 
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Summary. Computation of critical points on an equilibrium path requires solution of a non-
linear eigenvalue problem, for which solution several techniques exist. Their algorithmic treat-
ment is usually focused for direct linear solvers and thus use the block elimination strategy. Due
to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition,
for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical
point and additional stabilization is required in order to quarantee the quadratic convergence
of the Newton’s method. Depending on the normalizing condition, convergence to a critical
point with negative load parameter value can happen. The form of the normalizing equation is
critically discussed and an alternative form is proposed.

1 INTRODUCTION

Determination of a critical point is the primary problem in structural stability analysis. Math-
ematically it means solution of an eigenvalue problem, which in general is non-linear, together
with the equilibrium equations. However, if the pre-buckling displacements are negligible, it is
usually sufficient to solve the linearized eigenvalue problem, where the linearization is performed
with respect to the undeformed configuration.

The non-linear stability eigenvalue problem constitutes of solving the equilibrium equations
simultaneously with the criticality condition. First appearance of this idea seems to be from
1973 by Keener and Keller1. In their approach the criticality condition is augmented as an
eigenvalue equation, such approach has been used also in Refs.2,3,4,5. Another approach uses a
scalar equation indicating the criticality6,7 or expansion to a higher order polynomial eigenvalue
problem8,9.

In computational structural analysis, direct solution of the critical points along the equilib-
rium path requires complete kinematical description of the underlying kinematical model. In

1
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particular, for dimensionally reduced models, like beam- and shell models, the description has
to be capable to handle large rotations. Development of a geometrically exact model with large
rotations is not a trivial task10,11,12.

2 STABILITY EIGENVALUE PROBLEM

The problem of finding a critical point along an equilibrium path can be stated as: find the
critical values of q, λ and the corresponding eigenvector φ such that

{
f(q, λ) = 0

f ′(q, λ)φ = 0
(1)

where f is a vector defining the equilibrium equations and f ′ denotes the Gateaux derivative
(Jacobian matrix) with respect to the state variables q, i.e. the stiffness matrix. At the critical
point the equilibrium equations (1)1 has to be satisfied at the same time with the criticality
condition (1)2, which states the zero stiffness in the direction of the critical eigenmode φ. Such
a system is considered in Refs.3,13,5.

The equilibrium equation (1)1 constitutes the balance of internal forces r and external loads
p, which is usually parametrized by a single variable λ, the load parameter, defining the intensity
of the load vector:

f(q, λ) ≡ r(q) − λpr(q). (2)

If the loads does not dependent on deformations, like in dead-weight loading, the reference load
vector pr is independent of the displacement field q.

The system (1) consists of 2n + 1 unknowns, the displacement vector q, the eigenmode φ

and the load parameter value λ at the critical state. Since the eigenvector φ is defined uniquely
up to a constant, the normalizing condition can be added to the system (1). In addition some
stabilizing conditions might also be needed. In general, the full augmented system can be written
as

g(q,φ,λ) =




f̂(q,λ) ≡ f(q, λ) + f0(q,λ) = 0

h(q,φ,λ) ≡ f ′(q,λ)φ + h0(φ,λ) = 0

c(q,φ,λ) = 0,

(3)

where λ is a vector of control and auxiliary parameters and c is a vector of constraint or
stabilizing equations, dimension of these vectors is p ≥ 1. The additional functions f0 and h0

are chosen such that f0 = h0 = 0 at the solution point. The Newton step can be written as


 Kf 0 P

Z Kh N

Cq Cφ Cλ






δq
δφ
δλ


 = −




f̂

h

c


 , (4)

where

Z =
[
f ′φ

]′
, Cq = c′ =

∂c

∂q
, Cφ =

∂c

∂φ

, Cλ =
∂c

∂λ

. (5)

Kf = K + f ′0, Kh = K +
∂h0

∂φ

, P =
∂f

∂λ

and N =
∂h

∂λ

(6)
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Computation of the matrix Z requires second order derivatives of the residual. In the literature
these are usually obtained by numerical differentiation. For the geometrically exact Reissner’s
beam model analytical derivation of the Z-matrix is given in14.

If the system (4) is solved by using a direct solver, the block elimination scheme is a feasible
choice. Partitioning the iterative steps δq and δφ as

δq = qf + Qpδλ, δφ = φh + Φnδλ, (7)

where the vectors qf ,φh and the n × p matrices Qp,Φn can be solved from equations

Kfqf = −f̂ , KfQp = −P, (8)

Khφh = −h− Zqf , KhΦn = −N− ZQp. (9)

The iterative change of the control parameters can be solved from the constraint conditions
resulting in

δλ = −(Cλ + CqQp + CφΦn)−1(c + Cqqf + Cφφh). (10)

The specific choice by Wriggers and Simo5 yields Kh = Kf , which is computationally very
attractive. Solution of the augmented system (4) by the block elimination method requires fac-
torization of one matrix of order n, reductions and backsubstitutions of 2(1+p) r.h.s.-vectors. An
alternative procedure suitable for the use of preconditioned iterative linear solvers is presented
in15.

For the eigenvector normalization the following constraints can be used:

‖φ‖2 − 1 = 0, (11)

λ‖φ‖2 − 1 = 0, (12)

eT
i φ − 1 = 0, (13)

λ(eT
i φ)2 − 1 = 0, (14)

where ei is a unit vector having the element 1 at i:th component. The constraint (13) is used by
Wriggers and Simo5. Constraints (12) and (14) guarantees that the iteration will converge to a
solution with a positive critical value of the load parameter λ. A proper scaling of the constraint
equation is also important. For the constraint equation (12) the best numerical performance
is obtained when the initial scaling of the eigenvector approximation is of order ‖φ‖ ∼ λ−1

cr .
Numerical experiments indidate that the constraint (12) results in slightly more efficient scheme
than (11).
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Jari Mäkinen, Reijo Kouhia and Antti Ylinen

[4] Wriggers, P., Wagner, W. & Miehe, C. A quadratically convergent procedure for the
calculation of stability points in finite element analysis. Computer Methods in Applied

Mechanics and Engineering 70, 329–347 (1988).

[5] Wriggers, P. & Simo, J. A general procedure for the direct computation of turning and
bifurcation problems. International Journal for Numerical Methods in Engineering 30,
155–176 (1990).

[6] Abbot, J. An efficient algorithm for the determination of certain bifurcation points. Journal

Computational and Applied Mathematics 4, 19–27 (1987).

[7] Battini, J.-M., Pacoste, C. & Eriksson, A. Improved minimal augmentation procedure for
the direct computation of critical points. Computer Methods in Applied Mechanics and

Engineering 192, 2169–2185 (2003).

[8] Huitfeldt, J. & Ruhe, A. A new algorithm for numerical path following applied to an
example from hydrodynamic flow. SIAM Journal on Scientific and Statistical Computing

11, 1181–1192 (1990).

[9] Huitfeldt, J. Nonlinear eigenvalue problems - prediction of bifurcation points and branch
switching. Tech. Rep. 17, Department of Computer Sciences, Chalmers University of tech-
nology (1991).

[10] Cardona, A. & Huespe, A. Evaluation of simple bifurcation points and post-critical path in
large finite rotation problems. Computer Methods in Applied Mechanics and Engineering

175, 137–156 (1999).
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omKey words: me
hani
s of �exible pipes, bu
kling of armour wiresSummary. This paper introdu
es the 
on
ept of lateral bu
kling of the armour tendons of�exible pipes. A model for predi
tion of the equilibrium state of a single tensile armour wireembedded in a surfa
e subje
ted to bending and axial loadings is presented as basis for a globalpipe analysis.1 INTRODUCTIONFlexible riser pipes are widely used in the o�shore industry for extra
tion of oil or gas fromsubsea reservoirs at large water depths. In order to obtain a stru
tural design 
apable of resistingexternal and internal pressure, axial loads and large de�e
tions, �exible pipes are 
onstru
tedas 
omposite stru
tures 
omprised by a number of di�erent layers, usually of steel and polymermaterials. Due to the extreme loadings, whi
h �exible pipes may be exposed to at large waterdepths, numerous failure modes are identi�ed and 
an be predi
ted by engineering analysis. Anumber of failure modes are, however, still subje
t of a
ademi
 and industrial resear
h, sin
e
omputational models for predi
tion have not yet been developed. Among those are bu
kling ofthe tensile armour layers, whi
h are 
omprised by two layers of heli
ally wound steel wires. Thisspe
i�
 failure mode has been observed during installation of �exible pipes in ultra deep waters.In the installation s
enario, �exible pipes are exposed to axial 
ompression due to hydrostati
pressure, sin
e the pipe is empty, and repeated bending 
y
les due to vessel movements, wavesand 
urrent. The failure mode is 
hara
terized by very large lateral de�e
tions of the armourwires, see �gure 1. Though the failure me
hanism 
annot be predi
ted, it is possible to reprodu
eby laboratory experiments, see [1℄. In order to obtain a model 
apable of predi
ting the lateralbu
kling failure mode, the me
hani
s of a single tensile armour wire must be analyzed, before aglobal model 
an be formulated. The single wire model will be based on equilibrium of 
urvedbeams, see [2℄ and [3℄ and di�erential geometry of 
urves on surfa
es, see [4℄ and [5℄.2 METHODSThe analysis of a single tensile armour wire will be 
arried out 
onsidering a heli
ally woundrod on a 
ylindri
al surfa
e, whi
h is deformed into a torus. This 
orresponds to that the �exiblepipe is bent to a 
onstant radius of 
urvature, R = 1

κ
, see �gure 2. The underlying surfa
e will1
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Figure 1: Lateral bu
kling of armour wires Figure 2: Tensile armour wire on torus surfa
ebe 
onsidered fri
tionless sin
e the analysis aims to determine the wire equilibrium limit state
orresponding to an in�nite number of bending 
y
les having been applied to the pipe. Whilethe 
urvature 
omponents of a single tensile armour wire in the analysis are allowed to be large,the axial strain of the wire is assumed su�
iently small to determine using Cau
hy's de�nitionof strain. It will furthermore be assumed that the 
urvature 
omponents 
an be determined onbasis of the geometry of an inextensible 
urve due to small axial strains. A torus surfa
e 
an bede�ned as
x(u, v) =





(

1
κ

+ r · cosv
)

cos(κu) − 1
κ

(

1
κ

+ r · cosv
)

sin(κu)
r · sinv



 (1)on whi
h a 
urve is 
onstru
ted by de�ning a relation between the u, v-
oordinates. Assumingthat a 
urve α(s) is de�ned and parametrized by ar
length s, a 
urvilinear 
oordinate triad ofunit length 
an be atta
hed to the 
urve, see �gure 2. The triad ve
tors are given by
t =

dα

ds
n =

xu × xv

‖xu × xv‖
b = t × n (2)in whi
h xu = ∂x

∂u
and xv = ∂x

∂v
. The triad ve
tors and their �rst order derivatives in ar
length
an now be related by the normal 
urvature κn, geodesi
 
urvature κg and torsion τ of the wire

d

ds





t

n

b



 =





0 κn −κg

−κn 0 τ
κg −τ 0









t

n

b



 (3)A tangent to the wire 
an alternatively be de�ned as a linear 
ombination of the normed surfa
ederivatives with respe
t to the torus 
oordinates. In order for this to be 
onsistent with thede�nition given in equation 2, the following equations governing the tangent geometry must hold
du

ds
= (1 + ǫ)

cosφ

‖xu‖
dv

ds
= (1 + ǫ)

cosφ

‖xv‖
(4)in whi
h the tangent ve
tor 
an be observed to be subje
t of a small deformation due to axialstrains. The 
urvature 
omponents 
an now, on basis of de�nitions given in [4℄ and [5℄ be de�ned2
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κn = − κcosv

1 + rκcosv
cos2φ − 1

r
sin2φ (5)

κg =

(

κsinv

1 + rκcosv
cosφ +

dφ

ds

) (6)
τ =

(

κcosv

1 + rκcosv
− 1

r

)

cosφsinφ (7)in whi
h φ denotes the angle between xu and α
′(s). The derived expressions 
an be shown to be
onsistent with the de�nition given in equation 3. Ve
torial equations of equilibrium for a 
urvedrod 
an be derived by 
onsidering a 
urved beam segment of in�nitesimal length, see [2℄ and [3℄.Applying equation 3, the ve
tor equlibrium equations 
an be written on 
omponent form

dPt

ds
− κnPn + κgPb + pt = 0

dPn

ds
+ κnPt − τPb + pn = 0 (8)

dPb

ds
− κgPt + τPn + pb = 0

dMt

ds
− κnMn + κgMb + mt = 0 (9)

dMn

ds
+ κnMt − τMb − Pb + mn = 0

dMb

ds
− κgMt + τMn + PN + mb = 0 (10)The 
onstitutive relations, linking se
tional moments to 
hanges of 
urvature and se
tional axialfor
e to axial strain, will be assumed linear. This is reasonable sin
e the wire dimensions are small
ompared to both major and minor radius of the torus. A system of �eld equations 
an now bederived. Sin
e the torus surfa
e is 
onsidered fri
tionless, the distributed loads on a wire in thetangent plane and the distributed moments in the normal and binormal dire
tions are negle
ted,hen
e, pt = pb = 0 and mn = mb = 0. Now 
onsidering the tangent geometry in equation 4, thede�nition of the geodesi
 
urvature in equation 6, the tangential and binormal for
e equilibriumand the normal moment equilibrium in equation 8, a 
onsistent sixth order system of di�erentialequations in u, v, φ, Pt, Pb and Mn is obtained in whi
h Pn 
an be determined by analyti
almeans.3 RESULTSApplying boundary 
onditions 
orresponding to pres
ribed displa
ements and rotations ina

ordan
e with the physi
al system being modeled, the system of equations 
an be solved usinga 
ommer
ially available solver. Initially, by rede�ning the angular torus 
oordinate v as anar
length-
oordinate w = vr, and setting r = R = ∞, a straight simply supported beam 
an bemodeled in the plane. In order to 
onstru
t a test 
ase for the algorithm, it will be examined ifthe Euler-load 
an be predi
ted. Adding an imperfe
tion representing the �rst mode of bu
klingdire
tly to the geodesi
 
urvature and applying 
ompression in steps, the system 
an be solved.

κg =
Mn

EIn
+ γamp · sin

(πx

L

) (11)Setting γamp = 0.001m−1, the displa
ement of the beam midpoint and the applied for
e 
anin �gure 3 be observed to exhibit the expe
ted physi
al behavior 
orresponding to softeningapproa
hing the bu
kling load PE = π2EI
L2 . Now a pipe with bending radius R = 10m and a3
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L

= −0.001 applied in steps to a 3 × 10mm steel wire with 5 pit
hes of length
Lpitch = 1.263m, and with pipe radius r = 0.1006m is 
onsidered. The axial for
e in the loadedend of the pipe is given by

Pu = Ptcosφ + Pbsinφ (12)With no applied imperfe
tion the relation between axial loads and pipe strain presented in �gure4 obtained by solving the equations exhibit signi�
ant softening behavior.
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urve for wire4 CONCLUSIONSA 
omputational model 
apable of predi
ting the equilibrium state of a heli
ally wound wireon a 
ylindri
al surfa
e subje
ted to bending and axial loads has been presented. The modelmay serve as basis for further studies leading to an algorithm whi
h 
an predi
t the limit loadof an entire �exible pipe stru
ture. A global model 
an be validated against lateral bu
klinglaboratory experiments and may serve as an engineering tool for �exible pipe design.REFERENCES[1℄ M.P. Braga, P. Kale�. Flexible pipe sensitivity to bird
aging and armor wire lateral bu
kling.Pro
eedings of OMAE, 2004.[2℄ A.E.H. Love. A treatise on the Mathemati
al Theory of Elasti
ity. Dover Publi
ations, In
.,N.Y, 1944.[3℄ E. Reissner. On �nite deformations of spa
e-
urved beams. Journal of Applied Mathemati
sand Physi
s (ZAMP), Vol. 32, 1981.[4℄ M P. do Carmo. Di�erential Geometry of Curves and Surfa
es Prenti
e Hall, 2008.[5℄ J. Oprea. Di�erential Geometry and its Appli
ations Prenti
e Hall, 1997.4
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Summary. A method for determining stress intensity factors for bolt fixed laminated glass
balustrades is suggested. With the aid of a graphical representation of the stress intensity
factors, the maximum principal stresses of the structure could be determined.

1 INTRODUCTION

It is becoming increasingly common to use glass as a structural material. When constructing
with bolt fixed laminated glass, there are few methods and guidelines on how to perform stress
predictions. Current methods on stress predictions mainly involve guidelines for finite element
analyses, which requires decent knowledge of the finite element method. In this work, a method
for determining stress intensity factors for stress prediction of laminated glass balustrades with
2 + 2 bolt fixings with non-fixed positions is developed. When developing the method, finite
element simulations are made. The simulations are based on previous work by the authors2,3.

2 PRINCIPAL STRESSES FOR A LAMINATED GLASS BALUSTRADE WITH-
OUT HOLES

In this work, a method for determining the stress intensity factors, α, for bolt fixed lami-
nated glass balustrades is developed. α relates the nominal stress value, σNom, to the maximum
(positive) principal stress value, σ, as σ = ασNom. σNom is defined as the maximum (posi-
tive) principal stress for the case of a laminated glass structure of the same dimensions as the
balustrade, but without holes. The boundary conditions as well as the load are symmetric,
which means that the balustrade without holes can be modelled as a simply supported beam
that is subjected to a bending moment. The maximum principal stresses could thus be deter-
mined analytically1. Figure 1 shows the geometry of the beam model applied to the balustrade
consisting of two layers of glass with a PVB interlayer.

The load is a uniformly distributed line load, P , applied at the top of the balustrade in the
direction normal to the glass pane. Multiplying the line load with the width, w, of the glass
pane gives the total load, PTot.

1
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R2

Glass

Glass

R1 PTot

PVB

lb la

x

Figure 1: Geometry of beam model

In the work of Carrick and Vasur1, a differential equation that governs the behavior of the
laminated beam problem is derived

d2

dx2
N(x)− c2N(x) = c1MExt(x), (1)

where N(x) is the normal force in the upper glass ply and MExt(x) is the external moment .

c1 = kPV B
ht

EgI1 +EgI2
, c2 = kPV B(

1

EgA1
+

1

EgA2
+

h2t
EgI1 +EgI2

), (2)

where

kPV B =
GPV Bw

tPV B
, ht = tg/2 + tg/2. (3)

Eg is the elastic modulus of glass, (I1, I2) are the moments of inertia of cross sections of the
upper and lower glass panes respectively, (A1, A2) are the cross section areas of the upper and
lower glass panes, GPV B is the shear modulus of PVB, tPV B is the thickness of the PVB layer
and tg is the glass pane thickness. The glass panes have equal cross section geometries, and thus
I1 = I2 = I and A1 = A2 = A are used in the following. The total solution to (1), invoking the
appropriate boundary conditions1, is given by

N(x) =
c1R2la

c2
√
c2(la + lb) cosh(

√
c2lb)

sinh(
√
c2x)−

c1R2lax

c2(la + lb)
. (4)

In Carrick and Vasur1, it is shown that the following relations holds for this case

M(x) ≡ M1(x) = M2(x) =
1

2
(MExt(x) + htN(x)). (5)

From Navier’s formula, the normal stresses in the x-direction of one glass pane can be com-
puted. The maximum tensile stress occurs at the lower edge of the laminate. The tensile stresses
at the lower edge of the laminate are equal to the maximum (positive) principal stresses, and
thus equal to σNom (evaluated at the location x = lb). Thus,

σNom =
M(lb)
wt2g
6

− N(lb)

wtg
. (6)
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Note that equation (6) is valid for glass panes with rectangular cross sections only and the
equation is only valid on the interval 0 ≤ x ≤ lb.

3 STRESS INTENSITY FACTORS FOR A BOLT FIXED BALUSTRADE

When σNom has been determined, the case of a balustrade with bolt fixings can be considered.
It remains to find the stress intensity factor, α. Finite element simulations are used in order to
determine σ and thus α may be determined. α is represented graphically in design charts for
all relevant combinations of the geometry parameters. The in-plane geometry of the balustrade
is displayed in Figure 2. The bore hole has the diameter dh and the bolt head has the diameter
db. The height of the balustrade, la, and the vertical position of the bolts, lc, are set to fixed
values. A standard value is used for tPV B. In the finite element model, only the EPDM bush
between the bolt head and the glass pane is included and its thickness is denoted tEPDM . Table
1 summarizes the relevant geometry parameters and states whether the parameters are fixed or
variable.

aw

w

lb

lc

la

Figure 2: Geometry of balustrade

Fixed parameters Variable parameters

la = 1.25 m lb = [0.2, 0.4, 0.8] m

lc = 0.24 m aw = [0.1 : 0.025 : w/2− 0.1] m

tPV B = 0.76 mm w = [0.9 : 0.3 : 2.7] m

tEPDM = 3 mm dh = [15 : 5 : 40] mm

tg = [6, 8, 10, 12] mm

db = 60 mm

Table 1: List of geometry parameters

The material parameters used are Eg = 78 GPa, νg = 0.3, EPV B = 6 MPa, νPV B = 0.43,
EEPDM = 20 MPa, and νEPDM = 0.45.
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4 DESIGN CHARTS FOR DETERMINATION OF STRESS INTENSITY FAC-
TORS

One design chart is made for each possible combination of [tg, w, db, dh]. As an example, the
design chart for the parameter combination [tg = 6 mm, w = 0.9 m, db = 60 mm, dh = 15 mm]
is shown in Figure 3.

0.1 0.15 0.2 0.25 0.3 0.35
2.2

2.25

2.3

2.35

2.4

2.45

a
w

 (m)

α

 

 
lb = 0.2 m

lb = 0.4 m
lb = 0.8 m

Figure 3: Example of design chart for tg = 6 mm, w = 0.9 m, db = 60 mm and dh = 15 mm

Given that the corresponding value of σNom has been determined, σ can be computed and
used in the design process.

5 CONCLUSIONS

A method for determining stress intensity factors for two ply laminated glass balustrades with
2 + 2 bolt fixings has been developed. With the use of the stress intensity factors, maximum
principal stresses of the balustrade can be determined without using advanced mathematics or
finite element analysis.
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Summary. This paper aims to outline the mixed Eulerian-Lagrangian approach to simulations 
of dilute suspensions of spherical particles in turbulent fluid flows. An extension to non-
spherical particles will also be discussed. Both one-way coupled and two-way coupling 
schemes will be addressed. Examples from ongoing research work at NTNU will be given.  

 
 
1 INTRODUCTION 

Dilute suspensions of solid particles in a turbulent gas or liquid flow offer problems of 
greater complexity than mono-phase turbulence, but are nevertheless of immense practical 
concern both in natural flows and in industry. The vast majority of investigations have 
naturally focused on the behaviour of spherical particles in a fluid flow and occasionally also 
on how the flow field is affected by the presence of the particles. The recent review article by 
Balachandar and Eaton¹ provides a useful introduction to the state-of-the-art in this vast area 
of research. 

The particle-laden flows considered are either homogenous in space or of the shear-flow 
type like in boundary layers, channels and pipes. In the majority of applications, the fluid flow 
is turbulent and therefore inherently unsteady and three-dimensional. If the suspension is 
sufficiently dilute, the carrier fluid is unaffected by the presence of the particles and the focus 
is on the translational motion of the particles. It is known beyond any doubt¹ that spherical 
particles tend to concentrate in the near-wall region of a wall-bounded shear flow and 
furthermore that the particles are not evenly distributed but rather accumulate in preferred 
areas. For somewhat larger particle concentrations, the fluid flow is influenced by the solid 
particles embedded in the flow field. The current understanding of such particle-fluid 
interactions was summarized by Soldati2.   

Suspensions of non-spherical particles are also encountered in practice, for instance in the 
fields of aerosol science, phytoplankton dynamics, dispersion of carbon nano-tubes (CNTs), 
and transport of cellulose fibers in the pulp and paper industry.  As far as the dynamics of 
non-spherical particles is of concern, not only their translational motion is of importance, but 
their rotational motion and their orientation become essential.   
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2 COMPUTATIONAL MODELLING APPROACH 
A variety of different approaches have been taken to numerically simulate suspensions of 

solid particles in a fluid flow. Each approach has its own advantages and limitations. Here, we 
follow the mixed Eulerian-Lagrangian approach. Both the particle dynamics and the fluid 
motion are governed by the fundamental laws of mechanics and the modeling is therefore in 
accordance with so-called ‘first principles’.  

2.1 Eulerian representation of the flow field 
Since we are concerned with turbulent flow fields, the fluid motion is governed by the full 

Navier-Stokes equation. As long as the Reynolds number is not too high, the discretized 
Navier-Stokes equation is integrated on a three-dimensional mesh and in time. It is essential 
that the mesh sizes do not exceed the size of the smallest turbulent eddies, i.e. the 
Kolmogorov scales, since no turbulence models are to be used.  Such direct numerical 
simulations (DNSs) are considered as true realizations of turbulent flow fields and serve as 
reliable computer experiments. 

2.2 Lagrangian particle dynamics 
The motion of the particles is governed by the Lagrangian equation of motion: 

mdv/dt=K(u-v). (1)

Here, v and u denote the velocity vector of the particle and the fluid, respectively.  The 
physical quantities involved are the particle mass m, the fluid viscosity  and the resistance 
parameter K. Assuming that the particle Reynolds number based on the particle diameter 2a 
and the slip velocity │u - v│is smaller than unity only Stokes drag is taken into account. For 
spherical particles these three quantities combine into the particle response time: 

 =m/K=2Da2/9 (2)

where D  is the ratio between particle and fluid densities.  

3 COUPLING BETWEEN PARTICLES AND FLUID 
The presence of solid particles in a turbulent flow is known to affect the flow field. A point 

force from each and every particle in accordance with Newton’s third law is added to the 
Navier-Stokes equation which governs the fluid flow. In such two-way coupled  simulations 
the amount of feedback from the particles on the carrier fluid depends on the particle size, 
shape and concentration. Recent two-way coupled simulations of spherical particles in 
turbulent channel flow by Zhao et al.3 showed pronounced turbulence modulations 
accompanied by a significant drag reduction. Figure 1 shows the uneven distribution of 
spherical particles in a turbulent channel flow obtained in a two-way coupled simulation.  

4 NON-SPHERICAL PARTICLES 
If non-spherical rather than spherical particles are considered, the Lagrangian equation of 

translational motion is still valid but the resistance parameter K in eq. (1) is then a tensor 
rather than a scalar. The particle response time  in eq. (2) is no longer dependent only on the 
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particle radius a but also on the particle aspect ratio   
Even more important is the fact that the rotational motion becomes of major concern and 

determines, for instance, the instantaneous orientation of a given particle relative to the 
primary flow direction. The rotational motion of a solid particle is given, for instance, by  

xx dx/dt - yz (Iyy – Izz) =Nx. (3)

Here, x is the x-component of the angular velocity of a particle with principle moments of 
inertia Ixx, Iyy, and Izz. Nx is the x-component of the torque on the particle and involves the spin 
of the particle relative to the fluid vorticity. The equations of translational and rotational 
particle motion (1) and (3) are integrated forward in time in a reference frame attached to the 
particle whereas the Navier-Stokes equation for the fluid flow is solved in a fixed frame of 
reference; see Zhang et al.4 Three independent Euler angles specify the transformation 
between these two  coordinate systems. In practice, however, we adopted the four Euler 
parameters (quaternions) instead of the Euler angles. We first used this approach to study the 
spin of spherical particles and observed that the particle spin deviated from the fluid vorticity 
(Mortensen et al.5) 

As a protype model of a non-spherical particle we consider a spheroid which is 
characterized not only by the equatorial radius a but also by its aspect ratio . Results from 
one-way coupled turbulent channel flow simulations of prolate spheroids with some different 
aspect ratios and particle response times were presented by Mortensen et al.6, 7 Figure 2 gives 
a first impression of the different orientations of prolate spheroids in a turbulent flow field.  

5 CLOSING REMARKS 
Our current investigations are proceeding along two different paths. We are continuing our 

investigations of two-way coupled simulations of spherical particles with the view to explore 
how the turbulence modulation is affected by the particle response time and the particle 
loading. In this context the energy exchange between the fluid and the particles is investigated 
by means of conditional averages. In parallel two-way coupled simulations of non-spherical 
particles are underway. For that purpose a novel method to account for torque-coupling 
between the fluid and the particles is explored. 
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Figure 1: Contours of the streamwise velocity component in a wall-parallel X-Y plane (left) and a cross-sectional 
Y-Z plane (right).  The black dots represent the instantaneous particle positions. 
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 4

  

Figure 2: Instantaneous orientation of non-spherical particles in a turbulent channel flow. The orientation of the 
prolate spheroids varies in time and with position. A perspective view is shown to the left and a planar view to 

the right. Statistics of the particle orientations are deduced from the instantaneous orientations. 
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Summary. Views on the role of spray as a multiphase flows is given using the implicit Large-
Eddy Simulation approach and the Lagrangian Particle Tracking approaches. Effect of droplet
size, or the Stokes number, on mixing is quantified.

1 INTRODUCTION

The fuel spray has a key role in the formation of emissions in diesel engines. The strength of
the coupling between the turbulent scales and a spectrum of droplet sizes determines the quality
of mixture. The mixture homogeneity determines the level of emissions and engine efficiency. In
modern engine concepts, such as low temperature combustion, this picture becomes even more
enhanced. From the literature it is known that small droplets mix remarkably better than the
larger droplets. This paper focuses on numerically investigating the physics of droplet dispersion
better.

The state-of-the-art computational diesel engine research relies still much on the Reynolds-
Averaged Navier-Stokes (RANS) approach. However, as RANS is a time averaged approach,
Large-Eddy Simulation (LES) or Direct Numerical Simulation (DNS) are needed in order to gain
detailed information on the local spray mixture quality. In fact, to date, only very few research
papers have been published on the LES and DNS of diesel sprays. Hence, basic research is
required which discuss the potential of LES in engine spray simulations. The present research
paper summarizes some of our recent work published elsewhere1,2,3,4.
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2 COMPUTATIONS

2.1 The Governing Equations

In the present work LES is applied to solve the full, compressible Navier-Stokes equations
in the low Mach number regime using a standard pressure correction approach2. A spray
momentum source term is used in order to account for the spray-turbulence coupling. The
energy source term is neglected as the effect of the droplets on the enthalpy fluctuations is
assumed to be small. Droplets are modeled as point particles that obey a standard equation of
motion1.

2.2 The Numerical Tool - OpenFOAM

OpenFOAM is one of the most rapidly growing opensource CFD softwares. Importantly,
OpenFOAM provides a compact notation to express the governing equations of fluid dynam-
ics within the finite volume framework on unstructured grids. Parallelization is automatically
adopted as a field property and hence the user does not oftenmost need to consider this compli-
cated aspect at all. An example of the OpenFOAM syntax is given of the continuity equation
which may be discretized and solved as follows:

solve(fvm::ddt(rho) + fvc::div(phi, rho) == 0),

where ’rho’ is the fluid density and ’phi’ is the flux of velocity interpolated linearly to the cell
face. OpenFOAM is in key role when carrying out computations in unstructured grids since the
field operations are very conveniently imbedded into the package.

3 RESULTS

3.1 Spray Shape

It is well known that droplets of small diameter (d) mix better with turbulence than the

large droplets due to their smaller timescale τp =
ρpd2

18ρgνg
with respect to the flow timescale τf .

Hence they have a small Stokes number Stp = τp/τf . What has currently not been very clear
to the automotive engineering community is how to actually simulate the dispersion effect in a
physically realistic way. Usually a stochastic random walk dispersion model is applied in order to
achieve this objective in the RANS computations. Using LES, we have carefully demonstrated
the dispersion effect as a function of droplet size and created a post-processing algorithm for
spray visualization. As a result, the simulated sprays can not be visually distinguished from
their experimental counterparts as can be seen from Fig. 1.

3.2 The Fuel Spray Structure

As a result of droplet-turbulence coupling the fuel spray structure may be highly heteroge-
nous. Fig. 2 shows how the smaller droplets mix better than the larger droplets. The effect
can be from the spray shape, internal structure and droplet group mixing. We have studied the
heterogenous mixing in detail and we have shown that the small droplets mix remarkably better
than the large droplets3. As in real sprays droplets break, the role of droplet breakup influences
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droplet size and thereby the Stokes numbers. We have demonstrated certain a priori aspects of
droplet breakup by developing a novel stochastic breakup model4.

Figure 1: Qualitative comparison on the spray shapes as obtained with LES (left) and shadowgraphy
(right). In the LES the initial part of the spray is not simulated. Adopted from2.

Figure 2: Droplet size increases from from left to right having values 2, 5 and 10µ . Row 1: Spray cloud
visualization. Row 2: Internal spray structure. Row 3: Visualization of only certain droplet groups3.

3.3 The Fundamental Mixing Indicator

Our findings indicate that conventional means of studying mixing in a spray using e.g. average
droplet concentration or a passive scalar might not give good enough picture on the level of
mixing. Hence, we adopted a straighforward approach to study mixing by labeling all the
droplets and studying how the configuration of the droplets changes: the larger/smaller the
change, the larger/smaller the standard deviation of droplet index number στ = στ (Stp, x, y, z, t)
(both, locally averaged over a small length scale and globally averaged over the whole spray), and
the better/worse the mixing. In fact, this can be considered to be a basic definition of mixing
and applies to all turbulent flows. The PDF of στ is shown in Fig. 3. It is seen how the effect of
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droplet size (Stokes number) on mixing is clearly distinguished and a thorough discussion has
been given in3. The average of στ quantifies clearly how small droplets mix better than the
larger droplets. In fact, this might be one of the first attempts to rigorously quantify mixing in
a spray. In general, we have noted that as it would be very difficult to take the anisotropy and
transient nature of the spray problem into account, the mentioned statistics and averages are
simply calculated over the whole spray.
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Figure 3: Left: PDF of local standard deviation of droplet age. Right: Average standard deviation of
droplet age i.e. the droplet index number. Adopted from1,2,3.

4 CONCLUSIONS AND OUTLOOK

An extensive LES study on fuel spray development has been carried out and quantitative
measures for mixture quality have been developed. Our current studies are focusing on improving
the OpenFOAM environment to the simulation of fully explicit, density based Runge-Kutta
solvers with complex chemistry.
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Summary. In this paper we present a numerical model, based on a free energy formulation, to
simulate the dynamics of the impact, spreading and absorption of a liquid droplet impinging on
a porous material. This model consists of the Navier-Stokes equations with the Cahn-Hilliard
equation. This system allows us to simulate the motion of a free surface in the presence of surface
tension of droplets upon the surface and inside the porous medium. The porous substrate
is modeled using the solid boundary of fiber-like obstacles. Numerical results with different
chemical surface of the porous material and its structure are presented. We demonstrate the
influence on the droplet penetration and spreading characteristics by varying these parameters.

1 INTRODUCTION

The behaviour of droplets impacting onto porous media finds its importance in a myriad
of applications and processes, varying from environmental applications to inkjet printing tech-
nology. Due to the complexity of such phenomena, involving droplet impact and absorption
onto the porous medium, it is still not completely understood although it have been subject for
intensive investigation.

When a liquid droplet is impinged onto a paper coated with a porous layer it experiences
evaporation, expansion of the droplet base diameter and imbibition into the porous matrix, as
illustrated in Figure 1. The drying time of liquid droplets on a permeable substrate is set by
the liquid evaporation rate and the imbibition rate, and that the relative importance of these
processes strongly depends on the substrate characters such as porosity and surface energy as
well as on the degree of liquid volatility.

In this work, a numerical model is used to study the dynamics of the impact/absorption of a
liquid droplet on a porous medium. This problem addresses a more complicated set of physical
phenomena than impingement of liquid droplets on non-permeable surfaces, as presented in
our previous work1. Here, not only the axial momentum of the droplet transformed to radial
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Figure 1: Illustration (not to scale) of spreading and imbibition of a liquid droplet impinged on a paper
coated with a porous layer consisting of pigment particles of different shapes and a binder (red lines).

momentum, but also the pressure at the impact point also forced the liquid to move through
the permeable surface and into the substrate. Furthermore, the capillary effects and wettability
tended to draw the liquid into the porous substrate.

2 RESULTS

The modelled used for the numerical analysis demonstrate how local structural variations
reflect on wetting behaviour and imbibition dynamics on e.g. coated inkjet papers as shown in
Figure 2. For more information, please refer to2.

Figure 2: A sequence of images showing a droplet impinged on a matte coated paper: 230g/m2, photo
supreme double-sided matte, staples (A); and on a gloss coated paper: 240g/m2, photo plus gloss, staples
(B).

The numerical simulations were carried out using femLego3, a symbolic tool to solve partial
differential equations with adaptive finite element methods. The partial differential equations,
boundary condition, initial conditions, and the method of solving each equation are all specified
in a Maple worksheet. The Cahn-Hilliard equation is treated as a coupled system for the chemical
potential and the composition. Both the chemical potential and the composition equations are
discretised in space using piecewise linear functions. The coupled nonlinear algebraic system
of the chemical potential and the composition is solved by an exact Newton’s method. Within
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each Newton iteration, the sparse linear system is solved by GMRES method.
Fig.(3) shows the droplet shapes of a liquid ink impact into three different paper substrate.

The chemical energy of those porous medium is 10◦ for case (A); 90◦ for case (B) and 150◦ for
case (C). In this figure, we observed the volume of liquid ink that penetrates into the porous
medium depend on its chemical energy.

Figure 3: Numerical simulation of a droplet impact and spreading on the different wettable porous
medium: (A) the wetting contact angle θ = 10◦; (B) θ = 90◦ and (C) θ = 150◦.

3 CONCLUSIONS

We adopt the Phase Field method to numerically investigate the impact of an ink-droplet
onto the porous medium. The case studied here consists of a multiphase flow of air-liquid along
with the interaction between a solid structure and an interface. By only changing the wettability
of the porous material, droplets were either deposited on the surface or could bounce off. Several
porous medium structures are used to investigate the absorption behavior of liquid droplets into
the porous medium. This identifies the wettability to be key parameter to control the absorption
process.
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Summary.

1 INTRODUCTION

The introduction of particles (solid phase) to a gas phase may result in a change of properties
of the motion of either or both phases. From a modelling perspective this can be separated into
different levels of approximation. If the particle-fluid volume ratio is low and the ratio between
average inter-particle distance and particle diameter is large (typically greater than 10) then
one can assume that only the the dispersion effects of the gas phase turbulence on the particles
is of importance, i.e. one-way coupling. However, when the number of particles is sufficiently
large the particle influence on the gas phase can no longer be neglected (two-way coupling).
Furthermore, one may also account for inter-particle collisions, which can, even for fairly low
volume fractions have an effect on the motion. The present study is focused on investigating the
effects of accounting for aerodynamic interaction on the modelling of two-way coupling, i.e. the
effects arising from that a particle will locally affect the flow field which in turn may influence
the force loading on particles in close proximity.

2 MATHEMATICAL AND NUMERICAL FORMULATION

2.1 Modelling of the continuous phase

In LES, the large scales which are containing most of energy in turbulent flows are resolved,
whereas the small scales, more universal in nature, are modelled using a suitable sub-grid scale
(SGS) model. Here we use the concept of implicit SGS modelling, which means that the effects
of the unresolved turbulent scales are accounted for by the dissipative nature of the third order
upwind scheme used to discretise the convective terms of the momentum equations.

2.2 Particle equation of motion

Lagrangian particle tracing (LPT) is based on solving the equation of motion for each particle,
i.e.

m
~dUp

dt
= ~F (1)
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where m is the particle mass and ~F is the force acting on the particle. The force can be
decomposed into contributions originating from different physical effects (cf. Maxey and Riley1).
However, if the density of the particles is much larger than the density of the fluid (in our case
tha ration is 2000) one may neglect all contributions except drag and gravity. Reformulating
the equation of motion on non-dimensional form one may write the drag contribution as

~F ∗
D = −

3

4

ρc

ρp

1

d∗p
CDfd | U

∗
r | U∗

r (2)

Here CD is is the drag coefficient, which is calculated using the correlations given by Shiller
and Naumann2. The coefficient fd is used to account for aerodynamic interaction (three-way
modelling). Also, the particle interaction will result in a lift force which is accounted for using
the following expression:

~F ∗
L =

3

4

ρc

ρp

1

d∗p

~CL | ~U∗
r | ~U∗

r (3)

The corrections (fD and ~CL) are computed based on the relative position of the particles3,4,5.
The data from these studies is tabulated for a wide range of particle Reynolds numbers, particle
separation distances and angles. As the drag and the lift corrections are calculated for a fixed
particle pair, the direction of motion of two particles must be close to parallel for the corrections
to be applied.

The governing equations of the continous phase are discretised on a Cartesian staggered
grid using the third order upwind scheme by Rai and Moin6 for the convective terms and a
fourth order central scheme for other terms. The equations are solved using a split solver,
the momentum equations are solved using a Runge-Kutta type scheme while the the pressure
correction equation solver uses a multi-grid accelerated Gauss-Seidel scheme. The disperse phase
solver is based on the same Runge-Kutta type scheme as for the continous phase.

3 PROBLEM SET-UP

A rectangular computational domain of [8, 24, 8]DN (DN is the diameter of the nozzle) cor-
responding to [X,Y,Z] direction is used. The jet enters at the center of the X − Z plane and
flows in the Y (stream-wise) direction. The jet Reynolds number is 13000. At the inflow, fluctu-
ations in the radial velocities are introduced as ±10% of the axial velocity and no slip boundary
conditions at walls. At outflow Neumann boundary conditions are applied. The investigation
is carried out using several Stokes numbers and particle mass loadings. However, here we only
show results for a Stokes number of 10 since that is where we observe the largest effects of
three-way coupling.

4 RESULTS

Fig. 1a shows a comparison of the particle mean axial velocity along the centerline for a
mass loading ζ = 0.12. In case of three-way coupling (considering only drag), there is a slight
tendency for the centre line particle mean axial velocity to be higher beyond Y = 9DN , whilst
including also the lift will not result in any change compared to the two-way coupled case.
However, considering the axial velocity fluctuations (shown in Fig. 1b) the three-way coupled
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case has lower values than the two-way case, which might be caused by the lower drag for
three-way which in turn results in a lower momentum transfer from the continous phase. The
experimental results of Hardalupas et al.7 show high levels of fluctuations already at the nozzle,
which we are not able to capture. However beyond the jet core region (DN > 7), the results are
in good agreement.

Figure 1: Particle mean axial velocity (a) and rms of its fluctuations (b) along the centreline of the jet
for ζ = 0.12.

Increasing the mass loading by a factor of about 6 to 0.86, gives an overall increase in mean
particle centre line velocity. Also, the difference in particle mean axial velocity along centre line
between two-way and three-way coupling s larger and at Y = 15DN it is approximately 7%
(Fig. 2a). The particles gain higher mean axial velocities since the drag on particles generally
decreases when corrections are applied. The particle velocity fluctuations follows the same trend
as for the lower mass loading (Fig. 2b). Althouth the experimental data has too few points to
draw any conclusions, a rough comparison with the results of Hardalupas et al.7 shows that
simulations for all cases over estimates the the rms. of the fluctuations.

Figure 2: Particle mean axial velocity (a) and rms of its fluctuations (b) along the centreline of the jet
for ζ = 0.86.

The difference in the continuous phase velocities along the centre line between two-way and
three-way cases is as can be senn in Fig 3a negligible. As the particles are accelerated by the
gas, the gas looses momentum to the particles. This implies that in three-way coupling case,
one might expect the continuous phase velocity to be higher compared to the two-way case.
However, this is not the case. A propable explanation for this is that in the three-way coupling
case the jet have a somewhat larger spreading rate which causes the axial velocity along the
centre line to decay faster.
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Figure 3: Gas phase mean axial velocity (a) and rms of its fluctuations (b) along the centre line of the
jet for ζ = 0.86.

5 CONCLUSIONS

The maximum effect of the three-way aerodynamic modelling is observed at relatively lower
Stokes number of 10 and mass loading of 0.86. An increase of approximately 7% in the particle
mean axial velocity compared to two-way coupling is observed when three-way coupling consid-
ering only drag and both drag and lift is applied. The continuous phase velocity fluctuations
are observed to be higher in three-way coupling along the axis of the jet resulting in higher
radial velcoity. The spread of the jet is larger in three-way coupling compared to the two-way
case. The aerodynamic three-way coupling is strongly dependent on Stokes number and particle
number density.
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†Linné FLOW Centre, KTH Mechanics
Osquars Backe 18, SE-100 44 Stockholm, SWEDEN

e-mail: pschlatt@mech.kth.se - Web page: http://www.mech.kth.se

Key words: Lagrangian Particles in Turbulence, Direct Numerical Simulation, Turbulent
Channel Flow.

Summary. Spatially inhomogeneous turbulent flows induce peculiar phenomena on the trans-
port of a dispersed phase of intertial particles. In channel flows the most striking effect is the
spatial segregation of particles that may achieve a concentration at the wall largely exceeding
that in the bulk. Here, we approach the issue by considering direct numerical simulations in a
channel seeded with different populations of diluted, tiny particles. The structures found in the
fully developed turbulent stage of the process show strong spanwise correlations more intense
than those found in the corresponding eloganted structures of low and high speed fluid. For a
standard domain size, the spanwise organisation is extremely regular, corresponding to a mean
spacing of about 120 plus units. The simulations with an increased box size highlight some
significant differences in the correlation of particle concentrations. We note the these DNS at
Reτ = 180 have been performed using the largest domain size so far. A possible explanation of
this feature can be related to large-scale structures of the velocity field, which might carry a con-
siderable amount of energy. Correlations between turbulent events such as sweep and ejections,
and the particle motions towards and from the wall will be discussed.

1 INTRODUCTION AND METHODS

The dynamics of small intertial particles transported by a turbulent flow is crucial in many
engineering applications, for instance internal combustion engines or pollutant transport in pipes.
Small, diluted particles, much heavier than the carrier fluid, are essentially forced only by the
viscous drag. Hence their velocity v is determined by v̇ = (u − v)/τp, where τp = d2

pρp/(18ρν)
is the Stokes response time (dp, ρp are the particle diameter and density respectively; ρ and
ν are the fluid density and viscosity). In this model Lagrangian fluid particles are recovered
in the limit of vanishing Stokes time. The opposite limit of ballistic particles is achieved for
τp tending to infinity. The difference between particle velocity v and fluid velocity u produces

1
 --298--

gaetano.sardina@uniroma1.it
http://dma.dma.uniroma1.it/dima/
pschlatt@mech.kth.se
http://www.mech.kth.se


G. Sardina, F. Picano, P. Schlatter, L. Brandt and C.M. Casciola

various widely discussed anomalous phenomena such as small-scale clustering or preferential
accumulation at the wall (turbophoresis) even for incompressible flows, see among others1,2.

The latter phenomenon (see Fig. 1 below) is represented by the non-uniform instantaneous
particle configurations at the wall. Particles at the wall seem to accumulate in preferential
structures which are extremely long and aligned along the mean velocity direction. The specific
nature and dynamics of these structures is still not completely understood, so the aim of our
work is to investigate the origin of these phenomena and in particular their link with turbulent
large-scale motions2.

The simulations in the channel-flow geometry were performed using an adapted version of
the general spectral Navier-Stokes solver SIMSON3. The code is parallelized using MPI over the
spanwise direction, and can therefore be used efficiently on computer clusters. We are considering
two different simulation domains. The smaller domain is of size 4π × 2 × 4π/3, see Ref.4, with
a total of 128 × 129 × 128 modes. In order to study the effect of limiting box size, we have also
studied a substantially larger domain with effective size 12π×2×4π. The number of grid points
is increased accordingly by a factor of 3 in both the streamwise and spanwise directions. For
both domain sizes, the same Reynolds number Reτ = 180 is considered, maintained by a fixed
mass flux Reb = 2800. A total of five populations of inertial particles (St+ = 0.2, 1, 5, 10, 50) and
one of tracers (St+ = 0) are considered, every run evolves 200, 000 and 1, 800, 000 particles per
population respectively, in order to keep equal the mean concentration inside the box domain.
We remark that the second simulation is performed in the largest domain among those we have
found in literature for multiphase flow.
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Figure 1: Instantaneous particle visualization (St+ = 10) of particles near the wall. Left and right panels

represent times t+ = 450 and t+ = 17000 respectively.

2 RESULTS AND DISCUSSION

The transient phases of the particle evolution in turbulent channel flow are shown in Fig. 1.
Initially seeded randomly in a developed turbulent flow, particles begin to move towards the
wall without having preferential localization or correlation to certain fluid events. However, af-
ter reaching statistical stationarity for later times, particles tend to persist in preferential zones
organized in long streaky patterns, and the homogeneous wall distribution is lost during this
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Figure 2: Spanwise two-point correlation coefficients of particle concentration fluctuations at y+ = 1.
The two panels are for the small (left) and large (right) simulation domains, respectively. The symbols
correspond to different Stokes numbers.

phase. The localization of particles in these patterns is associated with slow fluid departing
motions. This feature, enhancing the particle migration from the wall, may balance the tur-
bophoretic drift and may lead to equilibrium conditions, i.e. zero particle wall normal flux. This
behavior suggests a strong connection between the asymptotic particle accumulation level and
the large scale structures of the flow. It is noteworthy that in the channel the asymptotic state
is reached only after long times depending on the Stokes number (up to 10000 viscous time units
for St+ = 10.

To investigate more quantitatively the accumulation structures at the wall we use the spanwise
two-point correlation coefficient of the Eulerian concentration c. By defining a binning size, one
may evaluate the number of particles found in a certain binning volume centered around a
given wall-normal position y, exploiting the wall-parallel homogeneity of the flow. Naturally,
the Eulerian concentration is dependent on the binning size2. Figure 2 reports the spanwise
correlation coefficient Fz(y, ∆z) = F (y, ∆z êz) in the near wall region, (y+ = 1), for the both the
large and the small channel simulations. In both boxes, particles with a small Stokes number do
not show appreciable correlation neither in the streamwise nor in the spanwise direction. Heavier
particles are instead much more correlated as shown by the oscillatory correlation coefficient in
the spanwise direction. The characteristic length of these oscillations is ∆z+ ≈ 120, featuring
a similar spacing as the turbulent velocity streaks measured by spanwise two-point correlation
of the streamwise velocity. However, unlike velocity correlations, the oscillations in the particle
concentration correlation persist at larger separations, e.g. at twice the basic separation ∆z+ ≈
2 · 120. This clearly indicates that the particle patterns are much more regular and straight
than the corresponding velocity streaks. Clear multiple maxima and minima imply that particle
streaks are moving in a much more collaborative manner than velocity.

Like the smaller one, the simulation in the larger domain shows a negative peak in the
spanwise correlation. However the oscillatory trend for large separations is clearly attenuated.
We infer that the very regular and temporally invariant accumulation pattern found for the
smaller box is essentially due to a restricting effect of the boundary conditions.

It is interesting to note that the position of the first minimum is nevertheless unchanged
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between the small and the large simulation domain. This suggests that the local structure of
single streaks is unaffected by the boundary conditions, while their collective behavior is instead
strongly influenced.

As far as the streamwise correlations of the particle phase is concerned (not shown here),
the lighest particles show again no significant correlation irrespective of the domain size. For
St+ > 5 the long structures visible in Fig. 1 above give rise to positive correlations even for large
streamwise displacements (i.e. order or 1000 plus units), certainly not reaching zero (streamwise
independence) in the case of the smaller domain size. In the longer box, values close to zero are
obtained for the largest separations2.

As mentioned above, the present use of a binning procedure to compute the correlation
coefficients gives a natural dependence on the exact choice of the binning parameters. This can
be avoided by considering more complex observables which allow the investigation of the particle
structure without referring to Eulerian binning.

3 CONCLUSIONS

Particles transported in fully turbulent wall-bounded flow predominantly form narrow, but
very long streamwise patterns, located preferably along low-speed streaks of the velocity field1,
characterized by an outward wall-normal motion. However, a closer analysis of the streamwise
two-point correlations of the particle concentration in the near-wall region clearly shows that the
length of these particle streaks is significantly larger than the corresponding velocity structures
in a turbulent channel flow. In particular, it is documented that for the smaller channel box (a
box similar to what has been commonly used in all other studies) the spanwise organization of
the particle streaks is extremely regular even for larger separations and corresponds to a mean
spacing of about 120 plus units. In addition, the streamwise two-point correlation of the particle
concentration does not reach zero at the ends of the domain. This clearly indicates that such a
domain is not large enough for the particles to freely move about. To what extent the limiting
box sizes considered so far have an influence on physical conclusions drawn from simulations is
part of current work.

REFERENCES

[1] Picciotto, M., Marchioli, C. & Soldati, A. Characterization of near-wall accumulation regions
for inertial particles in turbulent boundary layers. Phys. Fluids 17 (2005).

[2] Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C. M. Large-scale accumulation
patterns of inertial particles in wall-bounded turbulent flows. Flow Turbulence Combust.

(2009). Submitted.

[3] Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. simson - A Pseudo-Spectral
Solver for Incompressible Boundary Layer Flows. Tech. Rep. TRITA-MEK 2007:07, KTH
Mechanics, Stockholm, Sweden (2007).

[4] Moser, R. D., Kim, J. & Mansour, N. N. Direct numerical simulation of turbulent channel
flow up to Reτ = 590. Phys. Fluids 11, 943–945 (1999).

4
 --301--



23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c©KTH, Stockholm, 2010

STRESS CONCENTRATION AND DESIGN OF
SPLINE SHAFT

NIELS L. PEDERSEN
Dept. of Mechanical Engineering, Solid Mechanics

Technical University of Denmark
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Summary. Spline connection of shaft and hub is commonly applied when large torque capacity is
needed together with the possibility of disassembly. The designs of these splines are generally controlled
by different standards. In view of the common use of splines, it seems that few papers deal with splines
and the subject of improving the design. The present paper concentrates on the optimization of splines
and the predictions of stress concentrations, which are determined by finite element analysis (FEA).

Using different design modifications, that do not change the spline load carrying capacity, it is shown
that large reductions in the maximum stress are possible. Fatigue life of a spline can be greatly improved
with up to a 25% reduction in the maximum stress level. Design modifications are given as simple ana-
lytical functions (modified super elliptical shape) with only two active design parameters and therefore
the designs are practical realizable.

1 STRESS CONCENTRATION OF SPLINED SHAFTS (ISO14/DIN 5462)
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Figure 1: An example of a spline connection, the dimensions correspond to DIN ISO 14 (7× 28× 32 light series),
i.e. b = 7mm, d1 = 28mm, d2 = 32mm and the number of teeth N = 6. The specific design of, e.g. the tooth
root shown to the right is taken from the outdated DIN 5462.

In Figure 1 a standard spline that follows ISO 14 light series is shown. The loading of the spline is
restricted to pure torsion, and the relative dimensions are controlled by the standard. In the present work
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the maximum allowable value of e according to the standard has been selected. Due to symmetry we
need only consider half a tooth as seen in Figure 2. The full mathematical formulation of the torsional

a) b)

Figure 2: The figures are for one twelfth of the shaft given in Figure 1. a) Example of a finite element mesh, the
shown mesh is with 953 elements. b) Iso lines of resulting stress level, indicating the stress concentration at the
corner, the result is obtained with a higher number of elements 8529 (400 elements along the circular part with the
highest stress concentration) to achieve convergence of maximum stress.

problem can be found in [1]. The torsional moment is given by

Mt = GJ
φ

l
(1)

where G is the shear modulus of elasticity, J is the cross sectional torsional stiffness factor, φ angular
rotation of torsional cross section and l it the shaft length. It is assumed that a prismatic shaft is aligned
with a Cartesian coordinate system with the x-, y- and z-directions such that the shaft axis is aligned
with the z-direction. Saint-Venant have introduced the warping function Ψ(x, y) by which the shaft
displacement under torsion is given by

vx = −yz
φ

l
vy = xz

φ

l
vz = Ψ(x, y)

φ

l
(2)

With zero volume force the force equilibrium gives the Laplace differential equation that the warping
function must fulfill

∆Ψ = 0 (3)

By formulating the torsional problem as (3) with suitable boundary conditions it is possible to use a
standard PDE solver. In the present work the program COMSOL [2] is used. In Figure 3 the stress
concentration is given along the splined shaft outer boundary shown in Figure 2. From an optimization
point of view it is clear that this is not optimal because the stress should be constant along major boundary
parts in order for the design to be optimal, see e.g. [3]. The nominal stress used in the definition of the
stress concentration is defined relative to the inner diameter d2. Using the geometry as specified by
ISO14 the stress concentration with the nominal stress defined relative to the outer diameter d1 is shown
in Figure 4. The presented factors correspond nicely to the reported values in [4], except for a shift down
in the overall size, this is probably due to the selected radii values. From Figure 4 it is noticed that the
values are relative constant facilitating a simple linear curve fit.
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Figure 3: The figure is for the cross sectional part of the shaft shown in Figure 2. It shows the stress concentration as
a function of the arc length around the outer boundary starting from the lowest point until the top point. Maximum
value for this specific case, where the radius at the stress concentration is selected to r = 0.7mm, is Kts,d2

= 3.03.
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Figure 4: The stress concentration factor of a splined shaft as a function of the outer diameter d2. The nominal
stress is defined relative to the inner diameter, i.e. τnom = 16Mt
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. Also shown are the linear curve fit to the result.

2 SPLINE OPTIMIZATION
A simple design modification to ISO14 is given in Figure 5. Teeth height is unchanged and at the root

a quarter of a super ellipse is used instead of a circle. The super ellipse continues in a straight shoulder
(length L3) that finally ends at the inner diameter. The super ellipse (with super elliptical power η) is in
parametric form given by

X = − L1 + A cos(θ)(2/η), θ ∈ [0 :
π

2
], A 5 Amax = L1 −

d1

2
cos(

π

N
) (4)

Y = L2 − B sin(θ)(2/η), θ ∈ [0 :
π

2
], B 5 Bmax =

d1

2
sin(

π

N
) −

b

2
(5)

There are in principle three design parameters for this revision, the two half axis A and B and the super
elliptical power η. For this parameterization it is found that A = Amax is optimal so there is only two
active design parameters. Using this design revision we find the optimized stress concentration factors
seen in Figure 6. The average stress reduction is 24.3%.
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Figure 5: Design parameterization of design revision I. Design parameters are half axis A and B and the super
elliptical power η, here shown for the specific case η = 2.
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Figure 6: Stress concentration factors of splined shafts for the ISO14/DIN5462 standard and for the optimized
values given in Table 1.

d1/mm 23 26 28 32 36 42 46 52 56 62 72 82 92 102 112
B/mm 1.74 2.18 2.18 1.44 1.58 1.96 2.13 2.27 2.70 2.80 1.93 2.64 2.93 3.23 3.27

η 1.55 1.55 1.55 1.58 1.56 1.56 1.56 1.55 1.55 1.55 1.58 1.58 1.58 1.58 1.58

Table 1: Optimized values of design parameters, it should be noted that A = Amax for all designs.
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Summary. Problems of control in the coefficients of partial differential equations (PDEs)
arise as a popular approach for solving optimal design problems, and is often known under the
names of topology optimization through homogenization or material distribution. With a long
term goal of solving topology optimization problems within application domains where finite
volumes methods (FVMs) constitute a standard approach to discretizing PDEs, most notably
computational fluid dynamics, we rigorously investigate a convergence of a cell based FVM
applied to a model problem of control in the coefficients. We illustrate our approach with
numerical examples.

1 INTRODUCTION

Utilizing control in the coefficients of PDEs for the purpose of optimal design, or topology
optimization, is a well established technique in both academia and industry1. Advantages of
using control in the coefficients for optimal design purposes include the flexibility of the induced
parametrization of the design space that allows optimization algorithms to efficiently explore it,
the ease of integration with existing computational codes in a variety of application areas, and
the simplicity and efficiency of sensitivity analyses.

Finite volume methods (FVMs) constitute a very mature and versatile technique for discretiz-
ing partial differential equations in the form of conservation laws of varying types2. Advantages
of FVMs include the simplicity of implementation, their local conservation properties, and the
ease of coupling various PDEs in a multi-physics setting. Among various flavours of FVMs,
cell based approaches, where all variables are associated only with cell centers, are particularly
attractive, as all involved PDEs on a given domain are discretized using the same and the lowest
possible number of degrees of freedom. In spite of their numerous favourable advantages, FVMs
have seen very little adoption within the topology optimization community, where the absolute
majority of numerical computations is done using finite element methods (FEMs). Despite some
limited recent efforts3,4, we have not even scratched the surface as far as our understanding of
the interplay between the control in the coefficients and FVMs is concerned.
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To illustrate the issues arising when FVM is applied to control in the coefficients problems,
let us informally consider the following example steady-state conservation law:

div(F (u,∇u;αF )) + s(u;αs) = 0, in Ω, (1)

where Ω is a polygonal domain in Rd, d ∈ N, u : Ω→ R is a sought solution of the conservation
law (1), F : R × Rd × R → Rd and s : R × R → R defines the flux and the source terms of the
law, and finally αF : Ω → R, αs : Ω → R are controllable coefficients entering the flux and the
source terms. Let us now apply an FVM discretization to (1). We decompose Ω into polygonal
control volumes K ∈ T , integrate over each control volume while applying Gauss–Ostrogradsky
theorem to the flux term; we finally arrive at the following formulation:∫

∂K
F (u,∇u;αF ) · ndx+

∫
K
s(u;αs) dx = 0, ∀K ∈ T , (2)

where n is an outwards directed normal for the control volume K. Suddenly we see the distinct
rôles which αF and αs play in the FVM discretization: αF is involved in the boundary integrals
with respect to d − 1-dimensional Lebesgue measure, whereas αs only enters volume integrals
w.r.t. d-dimensional Lebesgue measure. Of course, small w.r.t. d-dimensional Lebesgue measure
perturbations to αF may introduce very large changes to the flux integrals involved in (2), see
Figure 1. Therefore, a study of the interplay between the FVM discretization and the control
in the coefficients approach, where the control coefficient enters the flux integral, is warranted.

H

L

h
H

L

h

Figure 1: Modifying a control coefficient αF or αs on a small set of d-dimensional Lebesgue measure
hL (h → 0) introduces a small perturbation of the order O(hL∆α) to the volume integrals involved in
conforming FEM discretizations of (1). However, the same change to αF introduces a finite perturbation
of the order O(L∆α) to the boundary integrals involved in the FVM discretization (2).

2 MODEL PROBLEM

A typical setup found in the engineering optimization problems is as follows. Let Ω be
polygonal domain in Rd, d ∈ N with a boundary ∂Ω = Γ. Further, let G ⊂ M(Ω) be a given
subset of measurable functions γ : Ω → [0, 1] closed with respect to a.e. convergence on Ω. We
will be interested in numerically approximating solutions to the following minimization problem:

minimize c(γ) :=

∫
Ω
C(x, γ(x), uγ(x),∇uγ(x)),

subject to γ ∈ G,
(3)
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where uγ ∈ H1
0 (Ω) is the unique solution of the BVP

− div[α(γ)∇uγ ] = f, (4)

f ∈ L2(Ω), α : [0, 1] → [α, α] is a continuous mapping of the “design space” G to the space of
the diffusion coefficients, 0 < α ≤ α < +∞.

Additionally, assuming that G is convex and α ∈ C1([0, 1]), and C is independent from ∇u,
we can write the stationarity conditions for (3) as

Dc(γ∗; γ − γ∗) =

∫
Ω

∂C
∂γ

(x, γ∗, uγ∗)(γ − γ∗) dx+

∫
Ω
α′(γ∗)(γ − γ∗)∇uγ∗ · ∇λγ∗ dx,≥ 0, (5)

∀γ ∈ G, where Dc(γ∗; γ − γ∗) is the Fréchet derivatie of c at γ∗ in the direction γ − γ∗ and
λγ ∈ H1

0 (Ω) is the unique solution to the adjoint problem

− div[α(γ)∇λγ ] = −∂C
∂u

(x, γ, uγ). (6)

3 MAIN THEORETICAL RESULTS

We consider a sequence of admissible2 FVM discretizations Tn of Ω such that the mesh size hn
goes to zero. and a sequence of finite-dimensional optimization problems Pn obtained by applying
cell-based FVM-discretization to (3), (4). We establish that every limit point (with respect to
a.e. convergence in Ω) of globally optimal solutions to Pn must be a globally optimal solution of
the original continuous problem (3) under the assumption that discrete approximations of the
admissible set G are “good enough.” Under similar assumptions, limit points of sequences of
first-order stationary points to Pn must satisfy the stationarity conditions (3).

Finally, we consider a different approach to stationarity. Namely, we apply a cell-based FVM
discretization to (5), (6), in line with “continuous adjoint” approach3 to topology optimization.
Under the same assumptions as above, we show that limit points of the sequence of FVM-
discretized stationarity conditions must be solutions to (5), that is stationary in (3).

4 NUMERICAL EXAMPLE

We consider a benchmark problem of distributing a limited amount of a material with high
heat conductivity in a uniformly heated domain, which is insulated everywhere on the boundary
apart from a small heat sink at the bottom where a fixed temperature is prescribed; see Figure 2.
Using the developed cell based FVM discretization approach we obtain results that qualitatively
match those obtained using a FEM discretization approach.

5 CONCLUSIONS AND FUTURE WORK

We have rigorously analyzed the use of cell based FVMs for discretization of control in the
coefficients problems. In addition to the difficulties illustrated in Sections 1 we have to deal with
the fact that finite difference approximations of fluxes are evaluated across the boundaries of
the control volumes where the diffusion coefficients have jumps. Surprisingly, in spite of these
difficulties we have been able to obtain certain convergence results regarding limits of global
optimal solutions and stationary points, see Section 3.
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Figure 2: Top: A comparison of FEM and FVM discretizations of a benchmark problem. From left to
right: optimized material layout of highly conductive material (black) within a low conductor (white)
and a corresponding temperature distribution obtained using a FEM discretization; same for the FVM
discretization. Bottom: a 3D equivalent of the benchmark problem discretized using a cell-based FVM.
From left to right: iso-surface corresponding to interface between two conductors, coloured with the
corresponding temperature values; two cutting planes throught the material distribution.
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Summary. This paper focuses on nonlinear buckling optimization of multi-material laminated
composite structures, where sensitivity to geometric imperfections is taken into account. The
optimization method proposed performs gradient based buckling load optimization on a “worst”
case shape imperfect geometry where the “worst” shape imperfections are also determined using
gradient based optimization techniques. The approach is demonstrated on several examples.

1 INTRODUCTION

The design problem of maximizing the load capacity of compressively loaded laminated com-
posite structures is challenging due to the complex structural performance of general purpose
engineering structures. The laminated composites are typically thin-walled shell-like structures
that are sensitive to geometric imperfections when loaded in compression. In this work focus is
put on this design problem using a gradient based optimization approach, and the formulation
includes the determination of the “worst” shape imperfection, see Section 3. The laminate design
problem is solved using the Discrete Material Optimization (DMO) approach, see [1, 2], where
the discrete problem of optimal distribution of different materials in multi-layered composite
shell structures is converted to a continuous problem by introducing interpolation functions
with penalization. In this way material properties can be computed as weighted sums of candi-
date materials, and the topology design problem can be solved using standard gradient based
optimization techniques.

2 NONLINEAR BUCKLING ANALYSIS AND DESIGN SENSITIVITY ANA-
LYSIS

The analysis and optimization procedure for nonlinear buckling load optimization described
in [3] is applied, i.e. optimization w.r.t. stability is accomplished by including the nonlinear
response by a path tracing analysis, after the arc-length method, using the Total Lagrangian
formulation.

Structural stability/buckling is estimated in terms of geometrically nonlinear analyses and
restricted to limit point instability, despite that the presented formulas also work well for bi-
furcation points. In addition, bifurcation instability is in many cases transformed into limit
point instability with the introduction of small disturbances/imperfections to the system. The
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proposed procedure for nonlinear buckling analysis, considering limit points, is schematically
shown in Fig. 1 and consists of the steps stated in Algorithm 1.

Algorithm 1 Pseudo code for the nonlinear buckling analysis

1: Geometrically nonlinear (GNL) analysis by arc-length method
2: Monitor and detect limit point during GNL analysis
3: Re-set all state variables to configuration at load step just before limit point
4: Perform eigenbuckling analysis on deformed configuration at load step before limit point
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analysis on deformed geometry

Figure 1: Detection of limit load in step 2 and chosen equilibrium point for the nonlinear buckling
problem.

The nonlinear path tracing analysis is stopped when a limit point is encountered and the
critical load is approximated at a precritical load step by performing an eigenbuckling analysis
on the deformed configuration by extrapolating the nonlinear tangent stiffness to the critical
point.

Design sensitivities of the critical load factor are obtained semi-analytically by either the
direct differentiation approach or the adjoint approach on the approximate eigenvalue problem
described by discretized finite element equations.

3 OPTIMIZATION FORMULATION

The determination of the “worst” imperfection for a given structure is formulated as an
optimization problem whereby imperfections are directly introduced in the analysis model, see
also [4] where the approach is applied in connection with fiber angle optimization of composite
structures. By including geometric imperfections, unstable bifurcation points, if present, are in
general avoided and converted into limit points. The “worst” imperfection is in this study defined
as the “worst” case imperfection shape for a structure, i.e. an imperfection shape which yields
the lowest limit load. The imperfections are represented by a linear combination of base shapes
Ψl where the base shapes in this study are constructed from a number of buckling modes. The
geometry of the imperfect structures is thus described by finite element nodal point coordinates
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X as

X = Xp +X where X =
N

∑

l=1

αlΨl (1)

Xp is the initial perfect geometry, αl are the unknown shape parameters, Ψl are the base
shapes, and X the total imperfection vector. The unknown shape parameters αl are obtained
as a solution to following the optimization problem.

The mathematical programming problem for minimizing the lowest critical load and deter-
mining the “worst” imperfection shape is a min-min problem which is solved directly using the
following optimization formulation:

Objective : min min
α

γcj , j = 1, 2, . . .

Subject to : state equations
∣

∣X
m∣

∣ ≤ em0 ...m ∈ [n1, n2, ..., ncp]

αl ≤ αl ≤ αl, l = 1, . . . , N

where αl, l = 1, . . . , N are the shape design variables and the lowest of the critical load factors,
γcj , j = 1, 2, . . ., is minimized. The maximum amplitudes of the total imperfections are limited

by em0 , where m refers to the mth constraint, typically obtained from manufacturing experience.
The mathematical programming problem is solved by the Method of Moving Asymptotes (MMA)
by Svanberg [5].

In the optimization approach the “worst” imperfection problem is solved first, and then a
max-min problem of maximizing the load factor is solved for the laminate design variables xi,
while the “worst” imperfect geometry is fixed. This problem is formulated using the bound
formulation [6] where the artificial variable and objective function β is introduced:

Objective : max
x, β

β

Subject to : γcj ≥ β, j = 1, . . . , Nλ

state equations

xi ≤ xi ≤ xi, i = 1, . . . , I

By introducing the bound parameter β the lowest Nλ eigenvalues are considered when solv-
ing the max-min problem of maximizing the lowest eigenvalue, and the possibility of crossing
eigenvalues (mode switching) and creation of multiple eigenvalues is taken into account dur-
ing the optimization process. The min-min problem seems to have less problems with crossing
eigenvalues during the design optimization process and thus no precautions are taken.

4 EXAMPLE

The optimization approach has been demonstrated for several engineering examples including
nonlinear buckling load optimization of parts of wind turbine blades. One example considered
is a main spar as illustrated on Fig. 2.
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Figure 2: Left: the definition of the main spar design problem and the patches used for the laminate
parameterization. Right: “worst” shape imperfections (scaled with a factor of 25) for the initial design.

It is interesting to note for this example that the scaling factor α1 on buckling mode 1 is
nearly zero when solving for the “worst” imperfection shape. Thus, the common approach of
considering the “worst” imperfection shape as a scaling of the lowest bifurcation mode would
not give the most critical shape in this case. For this example the DMO optimization approach
is used for the laminate optimization problem. In the first iteration, the limit load factor γc1 is
reduced from 1.91 to 1.60 by “worst” shape imperfection for fixed DMO variables. Next the
limit load factor γc1 is increased from 1.60 to 3.16 by DMO optimization while fulfilling mass
and compliance constraints for the problem. This optimization process of switching between
the two subproblems can be continued, and in general convergence is reached within 3-4 global
iterations, see examples in [4]. This procedure leads to robust designs, i.e. optimal laminate
designs that are least sensitive to geometric imperfections.

REFERENCES

[1] J. Stegmann and E. Lund, Discrete material optimization of general composite shell struc-
tures. Internation Journal for Numerical Methods in Engineering, 62(14):2009–2027, 2005.

[2] E. Lund, Buckling topology optimization of laminated multi-material composite shell struc-
tures. Composite Structures, 91:158–167, 2009.

[3] E. Lindgaard and E. Lund, Nonlinear buckling optimization of composite structures. Com-

puter Methods in Applied Mechanics and Engineering, 199(37-40): 2319–2330, 2010.

[4] E. Lindgaard, E. Lund and K. Rasmussen, Nonlinear buckling optimization of composite
structures considering “worst” shape imperfections. International Journal of Solids and

Structures, 47:3186–3202, 2010.

[5] K. Svanberg, Method of moving asymptotes - a new method for structural optimization.
Internation Journal for Numerical Methods in Engineering, 24:359–373, 1987.

[6] M. P. Bendsøe, N. Olhoff and J. Taylor, A variational formulation for multicriteria structural
optimization. Journal of Structural Mechanics, 11:523–544, 1983.

4

 --313--



23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c©KTH, Stockholm, 2010

A PHASE FIELD BASED TOPOLOGY OPTIMIZATION
SCHEME

M. WALLIN∗, M. RISTINMAA† AND H. ASKFELT†

∗ † Department of Solid Mechanics
Lund University
SE-21100 Lund

e-mail: Mathias.Wallin@solid.lth.se, web page: http://www.solid.lth.se/

Key words: Topology optimization, Phase-field, Cahn-Hilliard.

Summary. A topology optimization method allowing for perimeter control is presented. The
procedure is based on a functional in terms of the material density distribution and the dis-
placement field. The optimum of the functional is found by using the Cahn-Hilliard phase-field
model. To solve the problem use is made of the finite element method.

1 Introduction

The SIMP (Simple Isotropic Material Penalization) formulation used for topology optimiza-
tion is known to have the major deficiency of lacking the existence of a solution for the continuum
problem. In a numerical implementation using the finite element method this deficiency appears
as a severe mesh-dependence, i.e. the optimized structure will tend to be finer as the finite el-
ement mesh is refined. The remedy to this problem is to introduce a length scale into the
formulation.

In the current paper we will present a topology optimization procedure that is based on
minimizing a functional that in addition to the strain energy also includes the cost for creation
of new surfaces as well as the cost for having a diffuse material distribution. Moreover, the
constraints of preserving the total amount of material as well as satisfying the equilibrium is
introduced in the functional via two Lagrangian multipliers. This minimization problem is solved
using the Cahn-Hilliard framework in conjuction with an adaptive finite element method.

2 Formulating a new method

In this paper the stiffness of a structure within the domain Ω is taken as the objective of the
optimization. The maximum stiffness approach can be reformulated as a minimization of the
(macroscopic) structural compliance C defined as

C =

∫
∂Ωt

tiuidS +

∫
Ω
biuidV (1)

where ti is the traction vector and bi the body force vector. The displacement vector is denoted
ui and ∂Ωt being the part of the boundary where the traction is applied. The minimization
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of the compliance can upon using Cauchy’s formula and Gauss’s theorem be expressed as a
minimization of the strain energy since

C =

∫
Ω
w(ρ, ǫij)dV where w(ρ, ǫij) = ǫijDijklǫkl (2)

where ρ represents the density. To avoid singularities in the mechanical problem the stiffness
tensor Dijkl is defined as

Dijkl = g(ρ)D0
ijkl (3)

where g(ρ) captures a linear dependence for ρ > 0 while leaving a residual stiffness for small
and negative ρ < 0, g(ρ) is illustrated in Fig 1.a.

In order to avoid diffuse designs intermediate values of ρ are penalized. The penalization is
here performed by introducing a ”cost” for designs where ρ is not equal to 0 or 1. The cost
function F is taken as a double well function and is illustrated in Fig 1.b.

0 1

1

ρ

g(ρ)

a)

0 1
ρ

F (ρ)

b)

Figure 1: Illustration of the residual stiffness function g and cost function F

A consequence of introducing the cost function F is that the method becomes mesh depen-
dant. To resolve this issue we introduce another penalization which aims to penalize all gradients
ρ,i, i.e.

∫
Ω
ρ,iρ,idΩ (4)

Combining the objective function with the penalizations we end up with the new objective
functional E

E(ρ, ui) =

∫
Ω

(
F (ρ) +

γ

2
ρ,iρ,i

)
dV + η

∫
Ω
w(ρ, ǫij)dV (5)

Here the parameter γ introduces a length-scale into the formulation and thereby allowing control
over the total perimeter of the design. For γ = 0 a problem similar to the SIMP problem is
recovered. The parameter η defines the influence of the strain energy on the objective functional.
When minimizing E the following constraints are imposed
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• The total amount of material that is available for the design is given by V0, i.e. the material
density function is subject to the constraint

∫
Ω
ρ(x)dV − V0 = 0 (6)

• The local form of the static equilibrium equations should be fulfilled i.e.

σij,j + bi = 0, ∀x ∈ Ω (7)

where σij is the Cauchy stress tensor and bi is the body force vector.

Combining the objective functional E (cf. (5)) with the constraints (6) and (7) allow us to
construct a functional Ψ for which we will seek a stationarity point

Ψ(ρ, ui, λ
e
k, λ

c) =E(ρ, ui) +

∫
V

λei (σij,j + bi) dV + λρ
(∫

V

ρdV − V0

)
(8)

where the vector field λei is a Lagrangian multiplier field that enforces equilibrium and λρ is a
Lagrangian multiplier that enforces the total volume of the body being equal V0.

3 Solution procedure

An extremum to (8) can be found by using the Cahn-Hilliard phase-field model which de-
scribes the diffusion of material over time. The Cahn-Hilliard model is defined by:

ρ̇+ Jj,j = 0 (9)

ρ,jnj = µ,jnj = 0 along ∂Ω (10)

where the flux vector Jj here is defined as Jj = −µ,j and µ = δψ
δc

Application of the Cahn-Hilliard model to the current problem results in that the rate of the
functional Ψ becomes

Ψ̇ = −

∫
Ω
µ,iµ,idV ≤ 0 (11)

With (11) we conclude that the Cahn-Hilliard model will guide us to a state that minimizes the
functional (5). It should be noted that the present approach only provides a local minimum and
not a global minimum to the structural optimization problem. This feature is, however, shared
between most structural optimization formulations.

Numerically we solve this problem by a mixed finite element formulation using the field
variables ρ, µ and the displacements ui. The time discretization is based on a backward-Euler
scheme and the residual equations are solved using the Newton-Raphson scheme.

4 Results

To demonstrate the presented scheme we apply the procedure to a well-known problem. The
structure considered consists of a cantilever beam loaded with a point load F , cf. Fig. 2a. The
initial material distribution is shown in Fig. 2b.
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Figure 2: a) Illustration of the design space, b) Initial material distribution

a) b)

Figure 3: a) Finite element mesh after optimization b) Material distribution after optimization

As can be seen in Fig. 3b the optimized density distribution is close to ρ ∈ {0, 1} with
exception in the thin interface between regions of ρ = 1 and ρ = 0. Moreover from Fig. 3a it can
be seen that the interface is resolved using approximately 10 elements. At the point where the
load is applied a density slightly above 1 can be observed. In Fig. 3b the optimal structure is
shown where the underlying finite element mesh consists of approximately 30000 elements and
the mesh is adaptively chosen to follow the interface.
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Summary. In this paper, we analyze a non-standard �nite element method for the Brinkman
equation for viscous porous �ow. We present complete a priori and a posteriori results along
with some numerical examples.

1 Introduction

In soil mechanics, the Brinkman equations describe the �ow of a viscous �uid in a porous
matrix. Typical applications lie in the modelling of oil reservoirs, groundwater �ow and in �ltra-
tion technology. Mathematically, the Brinkman model is a parameter-dependent combination of
the Darcy and Stokes �ow models. Inclusion of viscosity plays a paramount role in the presence
of large vugs or cracks, both of which are typical in oil reservoirs, in particular. We study the
application of H(div)-conforming �nite elements designed for the Darcy problem to the more
complicated Brinkman problem. This constitutes a non-standard approximation of the Brinkman
problem. To obtain a stable method, the so-called Nitsche's method �rst introduced in1 is used.

In addition, we use a postprocessing scheme to increase the accuracy of the pressure approxi-
mation to match that of the velocity approximation. This allows us to introduce a residual-based
a posteriori estimator, which is both reliable and e�ective. We will verify the results numerically.
Proofs for all the theoretical results can be found in2 and the references therein.

2 The Brinkman model

For a derivation of the Brinkman equations, see e.g.3. The main di�erence to the simpler
Darcy model is the introduction of viscosity to the equations. Let u be the velocity �eld of the
�uid, p the pore pressure, and Ω ∈ Rn, with n = 2, 3. Denoting by the parameter t the e�ective
viscosity of the �uid, the Brinkman equations are

−t2∆u+ u+∇p = f , in Ω, (1)

div u = g, in Ω. (2)
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3 The mixed method and the norms

Mixed �nite element discretization of the problem is based on �nite element spaces Vh×Qh ⊂
H(div,Ω)× L2

0(Ω) of piecewise polynomial functions with respect to Kh. We will focus here on
the Brezzi-Douglas-Marini (BDM) family of elements4.

To assure the stability and conformity of the approximation, we use Nitsche's method5,1 with
a suitably chosen stabilization parameter α. We de�ne the following mesh-dependent bilinear
form

Bh(u, p;v, q) = ah(u,v)− (div v, p)− (div u, q), (3)

in which

ah(u,v) = (u,v) + t2
∑
K∈Kh

(∇u,∇v)K (4)

+ t2
∑
E∈Eh

{ α
hE
〈[[u· τ ]], [[v· τ ]]〉E − 〈{

∂u

∂n
}, [[v· τ ]]〉E − 〈{

∂v

∂n
}, [[u· τ ]]〉E}.

Then the discrete problem is to �nd uh ∈ Vh and ph ∈ Qh such that

Bh(uh, ph;v, q) = (f ,v) + (g, q), ∀(v, q) ∈ Vh ×Qh. (5)

We introduce the following mesh-dependent norms for the problem. For the velocity we use

‖u‖2t,h = ‖u‖2 + t2

 ∑
K∈Kh

‖∇u‖20,K +
∑
E∈Eh

1
hE
‖[[u· τ ]]‖20,E

 , (6)

and for the pressure

|||p|||2t,h =
∑
K∈Kh

h2
K

h2
K + t2

‖∇p‖20,K +
∑
E∈Eh

hE
h2
E + t2

‖[[p]]‖20,E . (7)

Note that both of the norms are both mesh- and parameter-dependent.

4 Postprocessing method

In this section we present a postprocessing method for the pressure in the spirit of6. We seek
the postprocessed pressure in an augmented space Q∗h ⊃ Qh, de�ned as

Q∗h = {q ∈ L2(Ω) | q|K ∈ Pk+1(K) ∀K ∈ Kh}. (8)

The postprosessing method reads: Find p∗h ∈ Q∗h such that

Php
∗
h = ph (9)

(∇p∗h,∇q)K = (t2∆uh − uh + f ,∇q)K , ∀q ∈ (I − Ph)Q∗h|K . (10)

For the postprocessed solution, we have the following a priori estimate. Note, that at the
Darcy limit we get one extra order of convergence.

‖u− uh‖t,h + |||p− ph|||t,h ≤ Chk+1(‖u‖k+1 + t‖u‖k+2). (11)
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5 A posteriori estimates

In this section we present a residual-based a posteriori estimator for the postprocessed solution.
It should be noted that the postprocessing procedure is vital for a properly functioning estimator.
We divide the estimator into two distinct parts, one de�ned over the elements and one over the
edges of the mesh. The elementwise and edgewise estimators are de�ned as

η2
K =

h2
K

h2
K + t2

‖ − t2∆uh + uh +∇p∗h − f‖20,K + (t2 + h2
K)‖g − Phg‖20,K , (12)

η2
E =

t2

hE
‖[[uh· τ ]]‖20,E +

hE
h2
E + t2

‖[[p∗h]]‖20,E +
hE

h2
E + t2

‖[[t2∂uh
∂n

]]‖20,E . (13)

The global estimator is

η =

 ∑
K∈Kh

η2
K +

∑
E∈Eh

η2
E

1/2

. (14)

Note, that setting t = 0 gives the estimator for the Darcy problem6. In2 it is show, that the
estimator is both an upper and a lower bound for the error in the displacement uh and in the
postprocessed pressure p∗h, uniformly in the parameter t.

6 Numerical results

Figure 1: Relative error in the mesh dependent

norm for β = 3.1
Figure 2: Converge rate for di�erent values of t
for β = 3.1

In polar coordinates (r,Θ) the pressure is chosen as

p(r,Θ) = rβ sin(βΘ) + C, (15)

where the constant C is chosen to give a zero-mean pressure. Now we have p ∈ H1+β(Ω), and
hence u ∈ [Hβ(Ω)]n. In the following, we have tested the convergence with a wide range of
di�erent parameter values, and the results are plotted with respect to the ratio of the viscosity
parameter t to the mesh size h. Our aim is to demonstrate numerically, that the change in the
nature of the problem indeed occurs at t = h, and that the convergence rates are optimal in both
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Figure 3: Relative error in the mesh dependent

norm for β = 1.52
Figure 4: Converge rate for di�erent values of t
for β = 1.52

of the limiting cases. We choose β = 3.1 (Figures 1 and 2) and β = 1.52 (Figures 3 and 4)to test
the convergence rates. Evidently, we have the convergence rates predicted by the theory for both
cases, and in particular the problem type changes when the parameter equals the mesh size.

7 Conclusions

We derived both a priori and a posteriori bounds that are both optimal and robust in t by
using a simple elementwise post-processing technique. In additions, our numerical results verify
the performance of the method for all parameter values.
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Summary. Mass transfer in the heterogenous micro-structure of concrete is modeled, as a key
feature in establishing a multiscale model. The macro-scale properties are then obtained by
suitable homogenization of the micro-scale response. Numerical results are presented for the
micro-scale setup.

1 INTRODUCTION

Chloride ion ingress in concrete is of great concern for concrete structures as the ions can
initiate corrosion of embedded reinforcement bars. The micro-scale constituents of concrete
are the cement paste and gravel, and the porosity of the cement paste allows for transport
of the chloride ions. Furthermore, the transport of chloride ions within the cement paste is
nonlinearly coupled to the transport of moisture. Due to the inherent coupling, and the strongly
heterogenous micro-structure of concrete, it is of interest to find a suitable homogenization tool
in order to simulate mass transfer on the macro-scale level.

2 PROBLEM FORMULATION

The principle of mass balance requires that the change of any conserved quantity in an
arbitrary domain, Ω�, must equal the flux of that same quantity across the boundaries of Ω�.
This leads to the initial boundary value problem, stated on the micro-scale as

dtΦv + qv · ∇ = 0 inΩ� × [0, T ] (1)

dtΦC + qC · ∇ = 0 in Ω� × [0, T ] (2)

where Φv(v) is the moisture content, ΦC(C) is the chloride content, qv(∇v,∇C; v,C) is the flux
of moisture and qC(∇v,∇C; v,C) is the flux of chloride ions. Eqs. (1) and (2) are complemented
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Figure 1: Image showing the strongly heterogenous micro-structure of concrete. The visible pores of the
cement paste matrix allow for mass transfer.

with appropriate boundary values and initial conditions. It thus follows from the formulation
that the vapor content, v = v(x, t), and the chloride concentration, C = C(x, t), are the two
primary unknown scalar fields of interest.

The explicit choice of constitutive relations for the flux vectors is taken as1

qv = −(εCDC∇C + Dv∇v) (3)

qC = −(DC∇C + εvDv∇v) (4)

where Dv(v) and DC(v,C) are diffusion coefficients and εv and εC are coupling parameters.
Hence, the choice of constitutive relations cross-couples eqs. (1) and (2). Constitutive rela-
tions for the moisture content, Φv(v), and chloride content, ΦC(C), have been taken from the
literature2,3.

2.1 Variational formulation

By employing the cG(1)dG(0) method for solving eq. (1) and (2), the variational problems
read: Find v(x, t), C(x, t) ∈ Ω such that

Rv(
nv, nC)

def
=

(

nΦv, δv
)

−
(

n−1Φ, δv
)

− ∆t
(

n
qv,∇δv

)

+ ∆t

∫

Γ

nqnδvdΓ = 0 (5)

RC(nv, nC)
def
=

(

nΦC , δC
)

−
(

n−1Φ, δC
)

− ∆t
(

n
qC ,∇δC

)

+ ∆t

∫

Γ

nqnδCdΓ = 0 (6)

where (•, •) denotes the inner product and R• is the residual, for each time step, in terms of the
conserved quantities v and C. Additionally, δv and δC denote a variation of vapor and chloride
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concentration, respectively. Eqs. (5) and (6) are linearized and solved using Newton’s method,
where Newton iterations are performed until pre-defined tolerance levels of the residuals, Rv

and RC , are reached.

2.2 FE- discretization

Eqs. (5) and (6) are FE- discretizised in standard fashion with proper account of the het-
erogenous micro-structure of concrete. In this model, the cement paste matrix and the ballast
are separated between in terms of conservation properties and diffusion coefficients. In practice,
the storing capacity and diffusion in the ballast are ignored. Thus, the transport of moisture
and chloride ions only take place in the cement paste matrix.

Additionally, the interface between cement paste and ballast, in the literature called ITZ, is
accounted for in the model. The interface is of importance as it consists of cement paste with
locally much greater porosity, allowing for higher diffusion rate. In the model, the interface is
represented as 1D elements having a numerically higher diffusion coefficient than the remaining
cement paste matrix.

2.3 Numerical results

Figure 2: Numerical results for vapor content and chloride concentration. Convective boundary conditions
are applied to the lower boundary. All other boundaries are insulated.
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In Figure 2, numerical results are presented for different setups of micro-structures. The left
domain shows a micro-structure including cement paste and ballast, the middle one includes
the ITZ, while the fare right micro-structure contains cement paste only. The initial values
and boundary conditions were the same for all domains. It is notable how the micro-structure
influences the diffusion process, and how the ITZ can increase the rate of diffusion. It follows
that having a physically realistic setup of the micro-structure is crucial in order to execute proper
diffusion simulations.

3 CONCLUSIONS

1. By employing the cG(1)dG(0) method, modeling of diffusion processes in the micro-
structure is enabled. The method allows to separate between the micro-scale constituents
both geometrically and in terms of material properties in the constitutive relations. In
this way, studying how the micro-structure’s composition effects the diffusion process is
possible. Compositional effects of interest can be ballast- content, distribution and shape.

2. The numerical results show the importance in having a realistically modeled micro-structure.
The next step is to employ the micro-structural analysis on a Representative Volume Ele-
ment (RVE) as part of computational homogenization within a FE2- strategy.
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Summary. The purpose of this work is to present results from an ongoing study on how the
presence of surfaces influences the buckling properties of nanowires. This study is performed
using molecular statics simulations where the interatomic interaction is modelled using an em-
bedded atom potential (EAM) fitted to gold properties. The considered nanowires have rect-
angular cross sections with cross sectional dimensions spanning from 2-6 nm and aspect ratios
between 20-50. Three different crystallographic orientations have been considered; [100]/{100},
[100]/{110} and [110]/{110}{100}. The simulations show that depending on how the crystal
is oriented the critical load may increase or decrease in comparison with the bulk counterpart.
The [100] systems display decreases in the critical forces in comparison with the bulk, whereas
for the [110] system the relative critical force increases.

1 INTRODUCTION

Nanowires are one dimensional structures characterized by their small dimensions spanning
from hundreds down to only a few nanometers. Due to the large surface to volume ratios, they
tend to display many deviant physical properties from those of macroscopic structures, which
makes them suitable as building blocks for the development of next generation electronics, opto-
electronics, and sensor systems. This has triggered a great deal of interest from the research
community to explain and to model the nanoscale properties accurately1.

Elastic properties of nanowires are experimentally obtained, mainly, through two different
methods; either through beam bending experiments or through dynamic resonant experiments2,3.
However, one more method has recently emerged for determining the elastic properties experi-
mentally, and that is by studying at which amount of force the buckling instability of nanowires
occurs in compression and then to relate the critical force to existing continuum relations from
which the elastic properties are extracted4.
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Molecular dynamics (MD) and molecular statics (MS) has been a popular simulation tool
for simulating the elastic properties and mechanical response of nanowires, and has revealed
that the surface stress induces relaxation strains for small structures. In fact, it has been found
that the surface stresses have been sufficiently large to induce phase transformations and to
cause the core to contract which induces nonlinear elastic effects. These contractions may cause
Young’s modulus either to decrease or increase depending on the crystallographic orientation5,6.
MD simulations have also been employed for studying buckling behaviour of nanowires and
nanotubes and has revealed many interesting features such as significantly large buckling strain
and increment dependent critical strains7,8. The purpose of this work is to study how the
presence of surfaces influences the buckling properties of nanowires.

2 MS SIMULATIONS

MS simulations are performed for the numerical part of this work. The simulations are
displacement controlled and in order to trigger the instability, a perturbation was employed to
break the symmetry. This was done by adding small additional external forces acting on the
free atoms, so that the resulting force on the free atoms is written as

Fi = −
∂Φ

∂ri
+ δF (1)

where Φ denotes the total potential energy and the vector δF = (0, δF, δF ) is a perturbation
which is employed to disturb the symmetry of the system. In the simulations the perturbations
were chosen to be of the order 10−9

< δF < 10−11 eV/Å which was found to be sufficiently large
to get the nanowires to buckle and small enough not to influence the response notably. The
interaction between the atoms is modelled using an EAM potential for gold. All the considered
nanowires are biclamped and have rectangular cross sections. Three different crystallographic
orientations have been considered; [100]/{100}, [100]/{110} and [110]/{110}{100}.

3 RESULTS AND DISCUSSION

In traditional Bernoulli-Euler beam theory the critical force for a biclamped beam is written

Pcr =
4π2

EI

L2
(2)

where EI and L denote the flexural rigidity and length of the nanowire, respectively. In Figs. 1
and 2 we have compared the ratios between the obtained critical forces from the MS simulations
and those of the ideal bulk for nanowires with the respective aspect ratios 20 and 40. It is
seen that the critical force increases with decreasing size for the [110]/{110}{100} orientation
whereas it decreases with decreasing size for the [100]/{100} and [100]/{110} orientations. These
findings do agree with results from previous researchers who have observed that Young’s mod-
ulus increases with decreasing size for [110]/{110}{100} and decreases for the other considered
orientations9.

There are, however, some indications implying that Eq. (2) fails to describe the buckling
behavior accurately. In Fig. 3 we have compared the ratio between the scaled critical forces of
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Figure 1: Ratio between the measured critical force from the MS simulations and the corresponding bulk
value for nanowires with the aspect ratio 20.
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Figure 2: Ratio between the measured critical force from the MS simulations and the corresponding bulk
value for nanowires with the aspect ratio 40.
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Figure 3: The ratio of scaled critical forces for nanowires with aspect ratios 20 and 40.

nanowires with the same cross section but with different lengths, i.e.,

(PcrL
2)i

(PcrL
2)j

=
(EI)i
(EI)j

(3)
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which should be equal to 1 for nanowires with identical cross sections. However, close inspection
of Fig. 3 reveals that the ratios differ from 1. The deviations are up to about 5% when nanowires
with aspect ratios 20 and 40 are considered. These are, of course, different when other aspect
ratios are compared, but they do deviate from 1, which does suggest that Eq. (2) loses validity
at small dimensions.

4 CONCLUSIONS

In this abstract we have presented results from an ongoing study on buckling properties of
nanowires. So far we have found that the critical force can both increase or decrease with
decreasing cross sectional size. Moreover, we have found that there are implications suggesting
that the traditional Bernoulli-Euler buckling expressions loses validity at small dimensions.
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Summary. A one-dimensional-in-space mathematical model of an amperometric biosensor is
presented in this paper. The modelling biosensor comprises two compartments, an enzyme layer
and an outer diffusion layer. In order to integrate microscopic chaotic motions we consider an
apparent diffusion coefficient function. In this paper, the effect of an apparent diffusion coeffi-
cient on the response of biosensor is studied and compared to the constant diffusion coefficient.
The stated problem is solved numerically using the finite difference method.

1 INTRODUCTION

The biosensors are small analytical devices used in various fields, including clinical, industrial
and agricultural analyses [1]. A biosensor is composed of biologically responsive material, mostly
enzymes, and the electrode. An enzyme interacts with a target substance yielding a product.
This process is usually described by Michaelis - Menten kinetics of the enzymatic reactions [2].
Amperometric enzyme electrodes are based on the measurement of the Faraday current when a
constant potential is kept. The current on the electrode appears due to the direct oxidation or
reduction of an electroactive spieces. The solution cannot be regarded still either because of mac-
roscopic motions (RDE, polarography, wall jet, density gradients, etc.) or because of ubiquitous
convection [3, 4]. In order to integrate microscopic chaotic motions we consider an apparent
diffusion coefficient function. In this paper, the effect of an apparent diffusion coefficient on the
response of biosensor is studied and compared to the constant diffusion coefficient.

2 MATHEMATICAL MODEL

We consider the simplified model of enzyme-catalysed reaction, where the enzyme (E) binds
to the substrate (S) producing the product (P) [1],

S
E−→ P. (1)

We assume the symmetrical geometry of the electrode and homogeneous distribution of the
immobilized enzyme in the enzyme membrane. The dynamics in the enzyme membrane is
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described coupling the enzyme-catalyzed reaction with the one-dimensional-in-space diffusion,
described by Fick’s second law [5]. Transport by diffusion takes place in the diffusion layer,

∂Se

∂t
= DSe

∂2Se

∂x2
− VmaxSe

KM + Se
, 0 < x < d, (2)

∂Pe

∂t
= DPe

∂2Pe

∂x2
+

VmaxSe

KM + Se
, 0 < x < d, (3)

∂Sb

∂t
=

∂

∂x

(
D∗

Sb

∂Sb

∂x

)
, d < x < d + δ, (4)

∂Pb

∂t
=

∂

∂x

(
D∗

Pb

∂Pb

∂x

)
, d < x < d + δ, (5)

where Se(x, t) and Sb(x, t) (Pe(x, t), Pb(x, t)) are the concentrations of the substrate (product) in
the enzyme membrane and the diffusion layer, respectively, t stands for time and x - for space,
KM is the Michaelis-Menten constant, Vmax is the maximal enzymatic rate attainable when the
enzyme is fully saturated with substrate, d is the thickness of the enzyme membrane, δ stands
for the thickness of the diffusion layer. The diffusion coefficients DSe and DPe of the substrate
and the product in the enzyme membrane are assumed to be constant. In the diffusion layer
we apply the corresponding diffusion coefficients (D∗

Sb and D∗
Pb) as functions of the distance x

from the electrode,

D∗
Ab = DAb(1 + 1.522((x − d)/δconv)

4, A ∈ (S,P ), (6)

where δconv stands for the thickness of the convection-free layer [3, 4]. A solution cannot be
regarded as being immobile at the microscopic level, except in the very near vicinity of cell
walls and electrode surfaces. Therefore we assume that enzyme layer is convection-free and this
immobile layer extends to 0.05-0.1 µm above the enzyme layer. Let x = 0 represent the electrode
surface, while x = d is the boundary between the enzyme membrane and the diffusion layer.
The biosensor operation starts when some substrate appears on the boundary of the diffusion
layer,

Se(x, 0) = Pe(x, 0) = 0, 0 ≤ x ≤ d,

Sb(x, 0) = 0, d ≤ x < d + δ, Sb(d + δ, 0) = S0,

Pb(x, 0) = 0, d ≤ x ≤ d + δ,

(7)

where S0 stands for the concentration of substrate in the bulk solution. In the bulk solution the
concentrations of the substrate and the product remain constant (t > 0),

Sb(d + δ, t) = S0, Pb(d + δ, t) = 0. (8)

In the case of amperometric enzyme electrodes, due to the electrode polarization, the concen-
tration of the reaction product at the electrode surface is being permanently reduced to zero.
The substrate does not react at the electrode surface,

∂Se

∂x

∣∣∣
x=0

= 0, Pe(0, t) = 0. (9)
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On the boundary between two regions having different diffusivities, we define the matching
conditions (t > 0),

DAe
∂Ae

∂x

∣∣∣
x=d

= DAb
∂Ab

∂x

∣∣∣
x=d

, Ae(d, t) = Ab(d, t), A ∈ (S,P ). (10)

The measured current is accepted as a response of the amperometric enzyme electrode in a
physical experiment. The current depends upon the flux of the reaction product at the electrode
surface, i.e. at the border x = 0. Consequently, the density I(t) of the current at a time t can
be obtained by

I(t) = neFDPe
∂Pe

∂x

∣∣∣
x=0

, (11)

where ne is a number of electrons, involved in charge transfer at the electrode surface, and F
is the Faraday constant [1]. We assume that the system (2)-(10) approaches a steady state as
t → ∞,

I∞ = lim
t→∞

I(t), (12)

where I∞ is the equilibrium current density.

3 RESULTS AND DISCUSSION

The mathematical model of the enzyme electrode can be solved numerically using explicit
finite difference method [6]. The program was implemented in Java programming language [2, 7].
We assume the biosensor response IP calculated at the moment TP as the steady state response,

IP = I(TP ) ≈ I∞, TP = min
j>0, Ij>0

{
τj :

Ij − Ij−1

Ij
< ε

}
, τj = τj, (13)

where τ stands for the size of time step. We used ε = 10−5 for the calculations.
The following values of the model parameters were employed for the simulation,

S0 = KM = 100µM, Vmax = 100µM/s, ne = 2, d = 0.1µm, δ = 1µm,

DSe = DPe = 3 × 10−10m2/s, DSb = DPb = 6 × 10−10m2/s.
(14)

Fig. 1 shows the dependance of the biosensor response on the normalised substrate concen-
tration (S0/KM ). It is apparent that the current saturation level is reached at the smaller
substrate amounts when spontaneous convection occurring in the diffusion layer is introduced
in the modelling. This could be explained by the substrate flux towards and from the electrode
which establishes the saturation current at smaller concentrations of S0 and reduces the final
current level.

4 CONCLUSIONS

The mathematical model (2)-(11) can be used to simulate the biosensor with spontaneous
convection occurring in the diffusion layer. It was observed that the response of the bioelectrode
changes drastically when spontaneous convection is taken into account. This highlights the
necessity to consider the spontaneous convection in the modelling of biosensors even in the
macroscopically still solutions.
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Figure 1: The dependence of the biosensor response IP on the dimensionless substrate concentration
(S0/KM ) at constant diffusion coefficients DSb, DPb (1) and at apparent diffusion coefficient D∗

Sb
, D∗

Pb

(2). The curve 3 shows the difference of the responses.
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Summary. In this contribution, we discuss the multiscale modeling of sintering of hard metal,
which is composed of hard particles (WC) with a melted binder (Co). Numerical results are
shown for a coupled FE2 analysis involving homogenization of the consolidating compact.

1 INTRODUCTION

The sintering phenomenon on the mesoscale is driven by surface tension on the melted binder,
and the homogenized effect of the surface tension is the so-called sintering stress. From the
macroscopic perspective, the specimen (green body) shrinks due to this volumetric sintering
stress. In the case of inhomogeneous initial density in the green body, the sintering can result
in unwanted final deformations.

2 THEORY

Finite elements and computational homogenization have been applied to a Representative
Volume Element (RVE) of the mesoscale. The melted binder is modeled as a Stokes flow, with
surface tension potential energy on the free surface. Hard inclusions are modeled by applying
a high viscosity. Different choices of boundary conditions are available on the RVE for the
prolongation. The advantage of the multiscale approach is that it can capture the complex
behavior of sintering with simple material models with measurable parameters.

The surface tension load can be expressed by a traction t on the free surface as

t = 2κγn (1)

where κ is the Gaussian curvature of the surface, γ is the surface tension coefficient and n is
the surface normal. Since the traction is geometry dependent, a tangent with respect to the
displacement also appears in the equations. Using the divergence theorem one can avoid the
second derivative in the FE-formulation, but the incompressible Stokes flow requires higher order
basis functions.

For the homogenization, extra care has to be placed on the formulation to fulfill the Hill-
Mandel condition. Since the internal boundary potential on the mesoscale gives rise to a discon-
tinuous stress, the common derivations for stress/strain homogenization do not apply directly.
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3 PRELIMINARY RESULTS

Numerical examples are evaluated for a 2D, fully coupled, FE2 problem as a proof of concept.
Taylor-Hood elements for the linear Stokes flow, and quadratic edge elements for the surface
tension, are employed for the mesoscale analysis. Linear triangular elements with one integra-
tion point are used on the macroscopic scale. Dirichlet boundary conditions are used for the
prolongation of the macroscopic strain rate. The geometry is deformed at the end of each time
step in the framework of an updated Lagrangian formulation. The model contains only two
material parameters, the viscosity ν and the surface tension γ, both set to unit value as they
will only scale the linear response.

The finite elements for both meso- and macroscale have been implemented in the open source
finite element code OOFEM1, and extensions will be available in future releases. The multiscale
step is carried out by implementing a special constitutive driver for the macroscopic scale.
This driver calls and solves a subscale finite element problem for the given macroscale strain,
whereafter the homogenized stress is calculated. This approach fits cleanly into the OOFEM
framework, and could be used to recursively perform any number of multiscale computations.

−1

0

1

P
re

ss
u

re

Figure 1: Evolution of the free surface within an RVE and the corresponding pressure field

The first example, shown in Figure 1, concerns an RVE at a single macroscale integration
point. The outer boundary is fully prescribed and the liquid/binder-pore surface can be seen to
evolve. The negative pressure is represented as the sintering stress on the macroscale.

Figure 2: FE2 analysis of the constrained sintering of a specimen; “snapshots“ of two RVE’s at the start
and end of the process.

The second example concerns a coupled FE2-analysis, shown in Figure 2, where the lower
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boundary has been fully prescribed. Since the initial density can never go lower than around
0.84 in a 2D representation of this microstructure, the possible macroscale volume change is
quite limited.

4 DISCUSSION

A major obstacle is the representation of the evolving geometry. Remeshing is required to
keep a nice representation despite topological changes. To keep track of the multiple boundaries,
level sets are commonly used in free surface flows.

REFERENCES
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Summary. The aim of the present work is to investigate different aspects of high-velocity
compaction (HVC) process using the discrete element method (DEM). The focus is on the
elasto-plastic shock wave propagation, its influence on the compaction process and to investigate
numerically the advantages of relaxation assists which are projectile supports.

1 INTRODUCTION

The discrete element method (DEM) is used to investigate different aspects of high-velocity
compaction (HVC) process. High-velocity compaction is a rapid production technique with im-
proved compact properties. In HVC powder is compacted by shock waves in less than 0.01 s
compared to a conventional compaction which is about 1 s. In the present work, the dynamic
response of the particles is modeled by extending the well-established quasi-static compaction
models. The compaction model is a one-dimensional assembly of spherical metal particles and
contact between particles is modeled using elastic and plastic loading, elastic unloading. Of
particular interest is to study the elasto-plastic shock wave; its development, transmission and
reflection through chain of particles. First a homogenous chain of spherical aluminum particles
is considered and then heterogeneity is introduced by changing the size and material of the par-
ticles and considering voids between them. The compaction process is simulated by considering
the typical loading parameters i.e., impact velocity and mass of the hammer.
Although the compaction model is one-dimensional, simulation results yield the information on
contact between particles, particle velocity and deformation during compaction process. Particle
velocity, duration of its motion and its deformation are mainly dependent on shock propagation.
It is shown that disturbance caused by changing the size or material of the particles produces a
reflected shock in the material. Propagation of both main and reflected shocks and their com-
bined effects on compaction process are also simulated. Effects of changing loading parameters
on the compaction process are also discussed. The DEM is also used to investigate HVC process
with relaxation assists. Relaxation assists are the parts of the piston and act as a projectile
supports. The simulation results yield the information that relaxation assists better lock the
compact during compaction process.
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2 Basic contact equations

This section describes the equations for the contact between particles and between particles
and die ends during loading, unloading and reloading stages. Here the particles are assumed to
be perfectly plastic and having no strain hardening. For two particles in contact labeled 1 and
2; effective radius R0, equivalent elastic modulus E∗ and yield stress at contact σy are given by

1

R0
=

1

R1
+

1

R2
, (1)

E∗ =

(
1− ν21
E1

+
1− ν22
E2

)−1

, (2)

σy = min (σ1, σ2). (3)

In the beginning of the compaction process, normal force follows the Hertzian law1 for small
values of overlap

Fe =
4

3
E∗
√

R0h
3
2 , (4)

where h is the overlap or indentation between the particles. Normal contact force Fp in the
plastic regime is given by2,3

Fp = 6πc2σyR0h, (5)

with the material invariant c2 = 1.43 for ideally plastic material behavior. The contact radius a
is defined as

a2 = 2c2R0h. (6)

At the end of plastic loading stage; contact force, contact radius and overlap are denoted by
F0, a0 and h0, respectively. The uniform pressure at the contact is p0 = 3σy.

The overlap recovered hu during unloading stage, is given by4,1

hu =
2p0a0
E∗

√
1−

( a

a0

)2
. (7)

During unloading stage, Eq. (7) can be used to find contact radius a while normal contct force
Fu is given by4,5

Fu = 2p0a
2
0

[
arcsin

( a

a0

)
− a

a0

√
1−

( a

a0

)2 ]
. (8)

3 Model

The discrete element method is used to simulate high-velocity compaction process. The
contact forces are determined by the contact laws as described in the previous section. The
time step used is 2.5 ns which is sufficient to ensure numerical stability during calculations. The
compaction models are one-dimensional assemblies of homogeneous and heterogeneous spherical
particles. For simulation, one hundred aluminum particles of diameter 100 micron are used.
Heterogeneity is introduced by changing the size and material of particles and considering voids
between them.The impact velocity used for hammer is 10 m/s which along with different choices
of hammer mass result in compaction energy of 1 J/g to 6.5 J/g.
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3.1 Results

During compaction process as hammer moves forward to compact the material, particles
overlap each other and thus contact forces are developed. The difference between contact forces
results in a net force on the particle. This disturbance or shock travels from first particle to the
last particle, reflected from the dead end and moves back from last particle to the first one. When
shock moves from hammer end to dead end, particles start moving and finally gain hammer
velocity. Similarly when shock moves back from dead end to hammer end, particles velocity
decreases and eventually become zero resulting in particles deformation. The movement of the
shock also effects the kinetic enemy of the hammer. First a homogenous chain of aluminum
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Figure 1: The dynamic loading of a symmetric chain of aluminum and steel particles. (a) Particle
velocity. (b) Particle deformation.
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particles is studied and simulations show the effects of shock wave on compaction process,
especially on contact between particles, their velocity and deformation.
The effects of non homogeneity due to size and material of the particles and voids between the
particles are also investigated. Figure 1 shows a symmetric case of aluminum and steel particles
during dynamic loading. When shock passes through aluminum particles, they are compacted
and start moving with hammer velocity. However, when shock hits the steel particles and since
they have large contact stiffness and more mass, therefore they are less compacted and gain less
velocity. It reduces the velocity of aluminum particles and creates a reflected shock in aluminum
particles. Both particle velocity and its deformation are dependent on main and reflected shocks.
Even a single steel particle effects the shock and hence the particles compaction. Disturbance
caused by large size particles is of similar nature as that of different material particles. Gap or
void between particles also effects the shock propagation. Sudden increase or decrease in the
velocity creates shock fluctuations which also propagates like a normal shock. Discrete element
method is also used to investigate HVC process with relaxation assists. Relaxation assists are
parts of the hammer with same material and diameter as that of the hammer. Simulations show
that use of these relaxation assists better lock the material during compaction process and thus
supporting the experimental work.

4 CONCLUSIONS

1. The discrete element method is an efficient tool to study the high-velocity compaction
process.

2. Simulation results show the propagation and reflection of elasto-plastic shock wave and
its influence on compaction process, e.g., contact between particles, their velocity and
deformation.

3. Disturbance caused by heterogeneity due to size and material of particles can be simulated.

4. It is also shown that by using relaxation assists, particles can be better locked which
improves the compact properties.
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Summary. This paper describes the main steps on how to model the geometry of a wind
turbine blade by using NURBS as basis functions in both design and analysis.

1 INTRODUCTION

In the article1 T.J.R. Hughes et. al presented how to construct an exact geometric model
with a coarse discretization by employing non-uniform rational B-spline, also known as NURBS.
In the article they claim that one may do a seamless transfer of models between design and
analysis by using NURBS as basis functions in both design and finite element analysis. As a
part of the ICADA (Integrated Computer Aided Design and Analysis) project, we have tested
this hypothesis by modelling the geometry of an offshore 5MW baseline wind turbine developed
by NREL (the National Renewable Energy Laboratory)2. In this paper we will explain how to
model a wind turbine blade step by step before discussing results from an eigenvalue analysis
performed on the blade.

2 MAIN STEPS TO MODEL THE GEOMETRY

2.1 Proceeding input data and making the spline curves

Our input data consists of seven different airfoils given in xy-coordinates as well as a table
describing the geometry of the blade. An example of input data is shown in Table 1. To convert
the xyz-coordinates of the wing profiles into splines we used C++ and a CAD drawing program
called Rhinoceros. First we wrote a program which reads and proceeds the input data. The
program locates, scales and rotates the profiles according to the table describing the geometry.
As output we get a file containing all xyz-coordinates of all wing profiles. The file is written in
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RNodes(m) AeroTwst(deg) Chord(m) AeroCent(-) AeroOrig(-) Airfoil

8.3333 13.308 4.1676 0.1883 0.38 Cylinder
11.7500 13.308 4.557 0.1465 0.30 DU40
15.8500 11.480 4.652 0.1250 0.25 DU35

Table 1: Example on input data. The blade we modelled was described by 19 such wing profiles.

Figure 1: The profiles the blade consists of.

a way that makes Rhinoceros able to read it. In Rhinoceros we can easily make spline curves
by interpolating the given points. To later be able to create a topological consistent volume we
have divided each profile into two spline curves. Figure 1 shows the input data after processing.

2.2 Creating the spline surfaces

We also use Rhinoceros to create the spline surfaces. The surface model is made by lofting
the wing profile curves. As each profile consists of two curves, we perform the lofting such that
the blade consists of two separate surfaces, as shown in Figure 2. In Rhinoceros we may choose
different options for lofting, making us able to decide the accuracy and the number of control
points. Notice that the knot vectors of the surfaces must coincide at the interfacing edges.

Figure 2: After lofting in Rhinoceros we have two surfaces, here shown in blue and green.
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Figure 3: Final volume ready for analysis

2.3 Creating the spline volume

A shortage in todays CAD drawing programs is the possibility to make full 3D volumes. As
we are not able to make the final volume in Rhinoceros, we once more need to make use of
C++. More exactly, we use a program called GoTools3. GoTools is a C++ program developed
by SINTEF ICT which consists of routines to handle spline objects. Before we can process
the surfaces in GoTools, we must convert the file made in Rhinoceros to a file that GoTools
actually can read. We do that by applying a converting program written by K.A. Johannessen.
In GoTools we now create the final volume by exploiting an linear interpolation between the two
surfaces, all done by one command line. Visualization of the final volume is done in SplineGUI,
a program also written by K.A. Johannessen. The final volume is shown in Figure 3.

2.4 Performing analysis

Before we can do a finite element analysis on the blade, we have to assign physical properties
(material characteristics and boundary conditions) to it. For this purpose, we have created
another C++ application that lets the user select topological entities on the model and assign
various properties to them. In addition, this application processes the topology of the model,
identifying where we will have coalescing control points due to degeneration and periodicity, etc.
Such points should share the same nodal degrees of freedom to maintain continuity in the finite
element solution.

We now have all the model data needed to perform the analysis with NURBS as basis func-
tions. Herein, we have done an eigenvalue analysis of the blade only, so no load specification is
needed.

3 RESULTS

We first perform a free vibration analysis of the blade model without any boundary conditions,
in order to verify that the model is topological consistent and numerically sound. The results in
Table 2 show that we do get the six rigid body modes with associated eigenvalues close to zero,
and then the deformation modes from Mode 7 and upwards.
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Mode 1-6 7 8 9 10

Eigenfrequency [Hz] O(10−5) 1.06432 2.95142 4.14656 5.99797

Table 2: Free vibration analysis: The 10 first eigenvalues.

Mode 1 2 3 4 5 6

Eigenfrequency [Hz] 0.63275 1.71422 2.00121 4.13529 5.57076 7.3828

Table 3: Vibration analysis with fixed ends: The 6 first eigenvalues.

Figure 4: Vibration analysis with fixed ends: Deformed shapes for eigenmodes 1 and 6.

Next, we do a similar analysis but with the end face at the blade root fixed. The results from
this analysis is presented in Table 3 and some of the mode shapes are depicted in Figure 4. In
lack of more realistic material properties for this wind turbine blade, we have assumed standard
steel properties in these analyses (E = 2.05 × 1011, ν = 0.3 and ρ = 7850.0).

4 CONCLUDING REMARKS

By using NURBS we were able to represent the geometry exact by few data points. What
amazed us the most was how quickly the analysis was executed and how easy the whole process
of geometry modeling became. When the input data is set, the whole process from reading
the input files to obtaining the results from the analysis only took a few minutes. Based on
this work we therefore conclude that using the same geometry in design as well as in analysis
reduces the man-hours spent on the preanalysis phase severely, gives more accurate results and
executes the analysis much faster. When working with topological consistent geometric models
it is consequently adequate to use NURBS as basis functions in finite element analysis.

REFERENCES

[1] Hughes, T., Cottrell, J. & Bazilevs, Y. Isogeometric Analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Computational methods in applied mechanics and
engineering 194, 4135–4195 (2005).

[2] Jonkman, J., Butterfield, S., Musial, W. & Scott, G. Definition of a 5-MW Reference
Wind Turbine for Offshore System Development. Tech. Rep., National Renewable Energy
Laboratory (2009).

[3] GoTools. URL http://sintef.org/Projectweb/Geometry-Toolkits/GoTools/.

4
 --344--

http://sintef.org/Projectweb/Geometry-Toolkits/GoTools/


23rd Nordic Seminar on Computational Mechanics
NSCM-23

A. Eriksson and G. Tibert (Eds)
c©KTH, Stockholm, 2010

THE SPLITTING FINITE-DIFFERENCE SCHEMES FOR
TWO-DIMENSIONAL PARABOLIC EQUATION WITH

NONLOCAL CONDITIONS
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Summary. We construct and analyse the splitting finite-difference schemes for a two-dimen-
sional parabolic equation with nonlocal integral conditions. The main attention is paid to the
stability of the methods. We apply the stability analysis technique which is based on the investi-
gation of the spectral structure of the transition matrix of a finite-difference scheme. Depending
on the parameters of nonlocal conditions the proposed schemes can be stable or unstable.

1 INTRODUCTION

We consider the two-dimensional parabolic equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), 0 < x < 1, 0 < y < 1, 0 < t 6 T, (1)

subject to nonlocal integral conditions

u(0, y, t) = γ1

∫ 1

0
u(x, y, t)dx+ µ1(y, t), (2)

u(1, y, t) = γ2

∫ 1

0
u(x, y, t)dx+ µ2(y, t), 0 < y < 1, 0 < t 6 T, (3)

boundary conditions

u(x, 0, t) = µ3(x, t), u(x, 1, t) = µ4(x, t), 0 < x < 1, 0 < t 6 T, (4)

and initial condition
u(x, y, 0) = ϕ(x, y), 0 6 x 6 1, 0 6 y 6 1, (5)

where f(x, y, t), µ1(y, t), µ2(y, t), µ3(x, t), µ4(x, t), ϕ(x, y) are given functions, γ1, γ2 are given
parameters, and function u(x, y, t) is unknown.

The stability of implicit and explicit finite-difference schemes for a corresponding one-dimen-
sional parabolic problem with more general nonlocal integral conditions is investigated in the
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paper of M. Sapagovas1. The alternating direction implicit (ADI) and locally one-dimensional
(LOD) finite-difference schemes for the two-dimensional differential problem (1)–(5) has been
proposed in the previous papers of the author2,3,4. The present work is devoted to the splitting
finite-difference schemes for the two-dimensional differential problem (1)–(5).

2 THE SPLITTING FINITE-DIFFERENCE SCHEMES

To solve the two-dimensional differential problem (1)–(5) numerically, we apply the finite-
difference technique. Let us define discrete grids with uniform steps,

ωh1 = {xi = ih1, i = 1, 2, . . . , N1 − 1, N1h1 = 1}, ωh1 = ωh1 ∪ {x0 = 0, xN1 = 1},
ωh2 = {yj = jh2, j = 1, 2, . . . , N2 − 1, N2h2 = 1}, ωh2 = ωh2 ∪ {y0 = 0, yN2 = 1},

ω = ωh1 × ωh2 , ω = ωh1 × ωh2 ,

ωτ = {tk = kτ, k = 1, 2, . . . ,M,Mτ = T}, ωτ = ωτ ∪ {t0 = 0}.

We use the notation Ukij = U(xi, yj , tk) for functions defined on the grid ω×ωτ or its parts, and

the notation U
k+1/2
ij = U(xi, yj , tk + 0.5τ) (some of the indices can be omitted).

Now we explain the main steps of the splitting finite-difference schemes for the numerical
solution of problem (1)–(5). First of all, we replace the initial condition (5) by equations

U0
ij = ϕij , (xi, yj) ∈ ω. (6)

Then, for any k, 0 6 k < M − 1, the transition from the kth layer of time to the (k+ 1)th layer
can be carried out by splitting it into two stages and solving one-dimensional finite-difference
subproblems in each of them:

(1) For each xi ∈ ωh1 , solve system
U
k+1/2
ij − Ukij

τ
= (1− σ)Λ1U

k
ij + σΛ2U

k+1/2
ij + σf

k+1/2
ij , yj ∈ ωh2 ,

U
k+1/2
i0 = (µ3)i,

U
k+1/2
iN2

= (µ4)i;

(7)

(2) For each yj ∈ ωh2 , solve system
Uk+1
ij − Uk+1/2

ij

τ
= σΛ1U

k+1
ij + (1− σ)Λ2U

k+1/2
ij + (1− σ)fk+1

ij , xi ∈ ωh1 ,

Uk+1
0j = γ1

(
1, U

)k+1

j
+ (µ1)k+1

j ,

Uk+1
N1j

= γ2

(
1, U

)k+1

j
+ (µ2)k+1

j ;

(8)

where

Λ1Uij =
Ui−1,j − 2Uij + Ui+1,j

h2
1

, Λ2Uij =
Ui,j−1 − 2Uij + Ui,j+1

h2
2

,

µ3 = σ
(
(µ3)k+1 − τσΛ1(µ3)k+1

)
+ (1− σ)

(
(µ3)k + τ(1− σ)Λ1(µ3)k

)
,

µ4 = σ
(
(µ4)k+1 − τσΛ1(µ4)k+1

)
+ (1− σ)

(
(µ4)k + τ(1− σ)Λ1(µ4)k

)
,
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(1, U) = h1

(
U0 + UN1

2
+
N1−1∑
i=1

Ui

)
.

Every transition is finished by calculating

Uk+1
i0 = (µ3)k+1

i , Uk+1
iN2

= (µ4)k+1
i , xi ∈ ωh1 . (9)

If σ = 1 or σ = 1/2, we have LOD or ADI methods, respectively. The finite-difference scheme
is fully-explicit for σ = 0.

The finite-difference schemes (6)–(9) can be written in the form

Uk+1 = SUk + F
k
, (10)

where S =
(
E + στA1

)−1(
E − (1− σ)τA2

)(
E + στA2

)−1(
E − (1− σ)τA1

)
, F

k is the vector of
dimension (N1−1)·(N2−1), E is the identity matrix of order (N1−1)·(N2−1), A1 = −EN2−1⊗Λ̃1,
A2 = −Λ̃2⊗EN1−1, EN is the identity matrix of order N , A⊗B denotes the Kronecker (tensor)
product of matrices A and B,

Λ̃l = h−2
l



−2 + αl 1 + αl αl · · · αl αl αl
1 −2 1 · · · 0 0 0

0 1 −2
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . −2 1 0

0 0 0 · · · 1 −2 1
βl βl βl · · · βl 1 + βl −2 + βl


are (Nl − 1) × (Nl − 1) matrices, l = 1, 2, α1 = γ1h1/D, β1 = γ2h1/D, α2 = β2 = 0, D =
1−h1(γ1+γ2)/2. We assume that the existence of the matrices

(
E+στA1

)−1 and
(
E+στA2

)−1

is ensured by the formulation of the considered two-dimensional differential problem and the
proposed finite-difference schemes. We also assume that h1 is chosen so that D > 0.

3 ANALYSIS OF THE STABILITY

In order to analyse the stability of the finite-difference schemes (10), we use the sufficient
stability condition ρ(S) = maxλ(S) |λ(S)| < 1, where λ(S) are the eigenvalues of the transition
matrices S. To be precise, one can prove that if (−Λ̃1) is a simple-structured matrix and
λi(−Λ̃1) > 0 or Reλi(−Λ̃1) > 0, where λi(−Λ̃1), i = 1, 2, . . . , N1 − 1, are real or complex
eigenvalues of the matrix (−Λ̃1), then:

• LOD and ADI finite-difference schemes are unconditionally stable;

• fully-explicit finite difference scheme is stable under condition τ < 2 min
{

1/ρ(A1), 1/∆2

}
,

∆2 = maxλ(A2) λ(A2) = max16j6N2−1 λj(−Λ̃2) = λN2−1(−Λ̃2) = 4h−2
2 cos2 (πh2/2).

The eigenvalue problem for the matrix (−Λ̃1) has been investigated by M. Sapagovas5. When
γ1 + γ2 6 2, then all the eigenvalues of the matrix (−Λ̃1) are non-negative and algebraically
simple real numbers: λi(−Λ̃1) > 0, i = 1, 2, . . . , N1− 1. If γ1 + γ2 > 2, then there exists one and
only one negative eigenvalue of the matrix (−Λ̃1).
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4 NUMERICAL RESULTS

In order to demonstrate the efficiency of the considered finite-difference schemes and practi-
cally justify the stability analysis technique, a particular test problem was solved. In our test
problem, functions f(x, y, t), µ1(y, t), µ2(y, t), µ3(x, t), µ4(x, t) and ϕ(x, y) were chosen so that
the function u(x, y, t) = x3 + y3 + t3 would be the solution to the differential problem (1)–(5).
The finite-difference schemes where implemented in a stand-alone C application. All numerical
experiments were performed using the technologies of grid computing.

Numerical experiments and calculations of the maximum norm of computational errors allow
us to estimate the accuracy of the numerical solution. We identify the ranges of the values of
parameters γ1 and γ2 such that the proposed schemes are stable. The stability domains are
rather wider than the ranges of such the values of γ1 and γ2 that all real eigenvalues of the
matrix

(
−Λ̃1

)
are non-negative or real parts of all complex eigenvalues are non-negative.

5 CONCLUSIONS

We developed the splitting finite-difference schemes for the two-dimensional parabolic equa-
tion with nonlocal integral conditions. Applying quite a simple technique allow us to investigate
the stability of these schemes. The technique is based on the analysis of the spectrum of the
transition matrix of a finite-difference scheme. The results of numerical experiments with a
particular test problem justify theoretical results. We demonstrate that the proposed schemes
can be stable or unstable depending on the parameters of nonlocal conditions.

The results can be generalized for the corresponding two-dimensional differential problem
with more general integral or other type nonlocal conditions.
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