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Abstract

We study non-invertible piecewise hyperbolic maps in the plane. The Haus-
dorff dimension of the attractor is estimated from below in terms of subshifts
of finite type contained in the shift space. Some explicit esimates are done for a
specific class of maps.

1 Introduction

A general class of piecewise hyperbolic maps was studied by Pesin in [8]. Pesin proved
the existence of skB-measures and investigated their ergodic properties. Results from
Pesin’s article and Sataev’s article [9] are described in Section 2. The assumptions in [8]
and [9] did not allow overlaps of the images. Schmeling and Troubetzkoy extended in
[10] the theory in [8] to allow maps with overlaping images.

Using the results of Pesin and techniques from Solomyak’s paper [11], the author
of this paper proved in [6] and [7] that for two classes of piecewise affine hyperbolic
maps, there exists, for almost all parameters, an invariant measure that is absolutely
continuous with respect to Lebesgue measure, provided that the map expands area.
The main difficulty that arises for these classes of maps is that in difference from the
fat baker’s transformation the symbolic space associated to the systems, changes with
the parameters, and also the srB-measure changes in a way that is hard to control. By
embedding all symbolic spaces into a larger space it was possible get sufficient control
to prove the result.

Solomyak’s proof in [1] uses a transversality property of power series. The proofs
in [6] and [7] uses that iterates of points under the maps can be written as power series
with such a transversality property. For the possibility of writing iterates as power
series, it is important that the directions of contraction is maped onto each other
throughout the manifold. The method in [6] and [7] is therefore not good for proving
similar results for more general maps. It should also be noted that this method only
gives results that holds for almost every map, with respect to some parameter.



2 2 Piecewise Hyperbolic Maps

Tsujii studied in [12] a class of area-expanding solenoidal attractors and proved
that generically these systems has an invariant measure that is absolutely continuous
with respect to Lebesgue measure. Tsujii also used a transversality condition, but in
a different way. Instead of transversality of power series, Tsujii used transversality of
intersections of iterates of curves. This technique makes it possible to show the exis-
tence of an absolutely continuous invariant measure for a fixed system, provided that
the appropriate transversality condition is satisfied. Tsujii proved that this transversal-
ity condition is generically satisfied.

In this paper we will use the method from Tsujii’s article [12] to estimate the di-
mension of the attractor from below for some piecewise hyperbolic maps and show
how this estimate can be applied to a particular class of systems.

In Section 2 we present the general theory of piecewise hyperbolic maps. In Sec-
tion 3 we introduce a transversality condition. Under the assumtion that this transver-
sality condition holds, a theorem that estimates the dimension from below is stated in
Section 4. This theorem is proved in Section 6 and Section § contains explicit examples
of maps that satisfy the asumptions of this theorem.

2 Piecewise Hyperbolic Maps

The first systematical study of piecewise hyperbolic maps was Pesin’s article [8]. He
studied maps of the following form.

Let M be a smooth Riemannian manifold with metic 4, let K C M be an open,
bounded and connected set and let V C K be a closed set in K. The set /V is called
the discontinuity set. Let f: K\ N — K.

Put

Kt ={x€K:f"®x) g NUOK,n=0,1,2,...},
D= ()f&H.

neN

The attractor of f is the set A = D.
The maps studied in [8] were assumed to satisfy the following conditions.

f: K\ N — f(K\ N) is a C>-diffeomorphism. (A1)
There exists C > 0 and o > 0 such that (A2)
|d2f || < Cd(x, NT)~%, Vx e K\ N,
|d2¢F )| < Cdxe, N7)~°, Vx € f(K \ N),

where NT = N U 0K and

N~ Z{yeK:Elzn,zeN+:zn—>z7f(zn)_>y}.
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One might want to think of N~ as the image of N although f is not defined on
NT.

Fore>0and/=1,2,...,let (A3)

DY ={x e K" d(f"(x),NY) > "' neN},
Dy ={xeA:d{f™"),N)>I"'e" neN},
D¢ = Jof,nDg).
>1

The set DY is not empty for sufficiently small € > 0.

The attractor is called regular if (A3) is satisfied. For a given map, it is usually not
apperent whether the condition (A3) is satisfied or not. There exist however conditions
that implies (A3) and are such that it easily can be checked if they hold true. These
conditions are given in the end of this section.

There exists C > 0 and 0 < A < 1 such that for every x € K \ N* (A4)
there exists cones C*(x), C%(x) C 7. M such that the angle between
C*(x) and C"(x) is uniformly bounded away from zero,

LF(C* () C CH(F ) Vx € K\ NT,
d(f"NCW) C CF(x) Vx € f(K\NT),

and forany n > 0

ldof"@)|| > CA77||v]], Vx € KT, Yo e C'x),
ldof " (@)|| > CA77||v]], Vx € fH(KT), Vo € C(x).

The last assumption makes it possible to define stable and unstable manifolds,
W*(x) and W"(x) as well as local ones for any x € Dg.
The condition

There exists a point x € Dg and C,z,00 > 0 such that for any (A3
0<d6<dpandanyn >0

W(FM(UB,NT)) < CF,

where V! is the measure on the local unstable manifold of x, in-
duced by the Riemannian measure, and U(5, N*) is an open -
neigbourhood of NV +.

implies condition (A3). Pesin proved the following theorem.
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Theorem 2.1 (Pesin [8]). Assume thatf satisfies the assumptions (A1)—(A4) and (A3').
Then there exists an f-invariant measure {4 such that A can be decomposed A =

Ujen Ai where
o AiNA=0,ifi#j,
o u(Ag) =0, uA;) >0ifi>0,

o f(A) = Ay, fla, is ergodic,

o fori > 0 there exists n; > 0 such that (f™
shift.

A;» 4) Is isomorphic to a Bernoulli

The metric entropy satisty

) = [ 3260 duto),

where the sum is over the positive Lyapunov exponents y;(x).

The measure u in Theorem 2.1 is called srkB-measure (or Gibbs u-measure). For
piecewise hyperbolic maps the skB-measures are characterised by the property that
their conditional measures on unstable manifolds are absolutely continuous with re-
spect to Lebesgue measure and the set of typical points has positive Lebesgue measure.

For a somewhat smaller class of maps Sataev proved in [9] that the ergodic com-
ponents of the srB-measure (the sets A, in Theorem 2.1) are finitely many.

The maps studied by Pesin and Sataev are all invertible on their images. Schmeling
and Troubetzkoy generalised in [10] the results of Pesin to non-invertible maps: If

the set K \ IV can be decomposed into finitely many sets K; such (A5)
that f: K; — f(K;) can be extended to a diffeomorphism from K;

to f(Kj)

and f satisfies the assumptions (A2)—(A4) and (A3'), then the statement of Theo-
rem 2.1 is still valid. Note that f(K;) N f(K)) is allowed to be non-empty so that
f: K\ N — f(K\ N) is not a diffeomorphism. Schmeling and Troubetzkoy proved
their result by lifting the map and the set K to a higher dimension; Let K =Kx [0, 1],
K = K; x [0, 1] and

where T < 1 and p is the number of sets K;. The map f is then invertible if 7 is
sufficiently small and then f satisfies the assumptions of Theorem 2.1, in particular
there is an skRB-measure { on the lifted set K. The projection of this measure to the

set K was shown to be an srB-measure of the original map £, in the sence that the set
of typical points with respect to the projected measure has positive Lebesgue measure.

Ki:(x,t)n—>(f(x),rt+i/p), i=0,1,...,p—1,
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It is often hard to check whether (A3’) holds. It is proved in [10] that if # satisfies
(A2), (A4), (A5) and the asumptions (A6)—(A8) below, then f satisfies condition (A3’),
and hence also (A3).

The sets 0K and N are unions of finitely many smooth curves (AG)
such that the angle between these curves and the unstable cones are
bounded away from zero.

The cone families C"(x) and C*(x) depends continuously on x € K; (A7)
and they can be extend continuously to the boundary.

There is a natural number ¢ such that at most L singularity curves of (A8)
f7 meet at any point, and @7 > L + 1 where

a= inf inf [df (@)
~EK\N v€Cu(x) |

3 A Transversality Condition

Lete > 0and 0 < 6 < 1. We will say that an intersection of two smooth curves
y1 and y; is (€, 0)-transversal if for any balls B; and B, of radius € and centre in y;
and v, respectively, there exist points x; € B; N vy and x, € By N v, such that the
following holds true. If 4, and d, are the induced metrics on y; and y, respectively,
then the intersection of the open sets

U  Bu,0dita,y), i=1,2,

JEYINB(x;,€)

is empty. The symbols B(x, ) denotes the open ball of radius  around x. Note that if
y1 and y; intersect (g, 0)-transversal then the intersection y; N v, can be empty.

Definition 3.1. We will say that a piecewise hyperbolic system f: K\ N — K satisfies
condition (T) if

there exists numbers €,6 > 0 such that if y; and y, are two smooth (T)
curves such that every tangent lies in the unstable cone field, and y;N
y2 = 0 then the curves f(y1) and f (y2) intersect (&, 0)-transversal.

4 Dimension of the Attractor

Consider a map f: K \ N — K C R? that satisfies the conditions (A2), (A4) and
(A5)—(A8). We denote by y*(x) < 1 < y"(x) the two Lyapunov exponents at the point
x if they exist. If A is and ergodic component of the attractor, then the Lyapunov
exponents are constant almost everywhere and we write y*(x) = y* and y*(x) = ) for
almost every x.

Let A; be an ergodic component of the attractor. We introduce a coding of the
systemf: A; — A, Ifz € A, then there is a unique sequence $(x) = {7} 4z such
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that f k(x) € K;, for every k € Z. We let X (/i/) be the set of all such sequences, that
is $(A)) = 3(A).

Theorem 4.1. Suppose that f: K\ N — K C R? is a piecewise hyperbolic map
that satisfies the conditions (T), (A2), (A4) and (A5)—(A8). Let A; be an ergodic

component of the attractor. Then the Hausdorff dimension of A; satisfies

/7top (Xtnice)

imyg A; > 1
dlm]—[ 1 = + DU—DS s

where

1
D, = limsup ~ log sup sup |d.(F")(®)|,

n—00 x€A ‘1}|:1

1
D = liminf —log inf inf |d.(f")(v)],
imin nglenAl |;\n:1‘ )]

n—oo 7

and Yg i € X (Ay) is a subset of finite type and hiop(Xnice) denotes the topological

entropy of YXice-

Theorem 4.1 is proved in Section 6.
Note that in [10], it is proved that dimy A; < 1 — y,/ys. Hence, under the
assumptions of Theorem 4.1, dimpy A, satisfies

/7to Enite u
Mﬁdim}[/hﬁl—x—, (1)
Du _Ds Xs

where the supremum is over all subshifts of finite type contained in X (Ay).

s An Example

Theorem 4.1 is not of explicit nature. In this section we give an example of maps
satifying the assumptions of Theorem 4.1, and estimate the supremum in (1).

Let K = (—1,1) x (—1,1) be a square. Take —1 < 4/ < 1 and let N =
{(x1,x2) € K : x; = kx1 } be the singularity set. Take p # 0 and let ¢; and ¢, be
two C? functions, such that ||, || < py < |o|/2. We take parameters § < A < 1,
1 < v <2,a,a, b and b such that the map f defined by

(Axy + a1 +exp + Gi(e), yxo+b1) ifxy > kx

fley ) = { (Ax1 + ax + a(x2), yx2 + b)) ifxy > kxy @

maps K \ N into K. The case p # 0, ¢ = ¢/ = 0 and y = 2 is threated in [4].
There is a picture of f in Figure 1.
We will use Theorem 4.1 to prove the following two theorems.

Theorem §.a. Ifay, ay, —by = by = (y — 1) and

(v, ko) €{ (v, M ko) iy >2), p#0}



On the Hausdorfl Dimension of Far Generalised Hyperbolic Attractors 7

vd

Figure 1: A picture of f with p = 0.1, ¢y = )b =0,y = 1.8, A = 0.3, £ = 0.1,
al :aQZOand—bl 252:0.8

are numbers such that f: K \ N — K, then f: K \ N — K defined by (2) has an

attractor /A with dimension

log y
logy —logA — ®)

1
+ logA’

imgA<1-—

where ¢(v, k) is continuous and ¢(y, k) — 0 ask — 0.

Let¢1:¢2:0,1<}/<2,0<A< 1,2, = ap = 0 and &, :—52:1—}/.
Then if o = 0, the attractor is A = {(x1,x) : x1 = 0, |x] < y— 1}, and
so dimg A = 1. If p # 0 and y > 22 then the dimension dimy A satisfies the
inequalities in (3). The dimension can be made arbitrarily close to 2 by choosing A
close to 1.

Proof of Theorem 5.1. We claim that if y > 21 and p # 0 then f satisfies condition
(T). Let us prove this claim. It is clear that the cone spanned by the vectors

G5 = (55

defines an unstable cone family at any point of K \ N. Denote this cone by C".

Ifo; C KN{xy > kx;} and 0, C K N{x; < kx; } are two curves such that if
and v, are two tangent vectors of the curves, then v;, v, € C". The vectors v and v,
are mapped by d,f to

ulz[g s;+¢1<xz>]yl nd ”2:[3 fzocz)}yz
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respectively. One checks that #; is contained in the cone spanned by

A e—py A ptey
- + 1) and  ((o+ + 1
(et 5701) md (e + )

and #; is contained in the cone spanned by

(_"WYA— ) ad (("“’%(yx—A)*P_j’l)

The intersection of these two cones is trivial if

A e — Py ey

_ + > (0 + py) +—= & > 2.
= TR Ty !
This proves the claim.
By Theorem 4.1 it now follows that
/70 ’) nite .
1 Sp Prop(inie) iy <y 0BT
log y — log A log A

It remains to estimate the supremum of /op (Ynice) Where Xgpice is a subshift of finite
type contained in the shift X' generated by the map.

Fix all parameters except for 4. The map defined by (2) with parameter 4 will
be denoted f;. For each % we let X, denote the shift generated by the map f;. Let
ko > 0 be fixed. For any £ such that |£| < ko the maps f; and f;,, coincide on the set
K\ {(x1,%) : |x2| > ko }. Let I, be the set of points in A such that the orbit has
empty intersection with the set { (x1,x2) : |x2] < ko }.

We will describe the subshifts of finite type that lie inside I'y,. For this purpose
we can consider the map f;, instead of f;, since they coinside on Iy, .

We note that x € { (x1,x2) : |x2| < ko } if and only if

ﬂo(x) QKko = [_17 1] X [_1 +k0‘}/7 1- k() ]
Hence -
F/m:mf/;z({(xlyxZ)GA:_f/;g”(xlyxZ)el(/eoa VmZO})

n=1

Since the dynamics of (f;,, I';,) is determined by the second coordinate, we are led
to study the map ¢: / — [/ where / = [—(y — 1),y — 1] and

. yx —(y—1), ifx>0,
& yx+(y—1), ifx<0.

Hence g is the restriction of f; to the second coordinate, and I, corresponds to the
set

Ap={xcl:=(y=D+rvk < g'x) < (y—1) = vk }.
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Welet; =IN{x>0}and 7_; = I N{x < 0}. Forx € I we let s(x) denote
the sequence {s,}52,, where g”(x) € I,, for all » > 0. It is easy to see that

() ==s() = {{su}520: —s(r — 1) < {s.}320 < s(y— 1 },

where the inequalities are in the sence of the lexicographic order of {—1,1}5° with 1
larger than —1. Moreover

St (7) = 5(Ag) = { {sn}n2o : —s(y — 1 — vko) < {sn};20 < s(y — 1 — vko) }.

We note that the natural extension of S(y) to a two-sided infinity shift is the shift
Yo, and the extension of Sy, (y) is contained in ....

The shift S(y) is of finite type if and only if s(y — 1) is periodic. Moreover
hiop(S(y)) = log ¥ for any y > 1.

We now use that if s, (y—1—1v%) = s, (vo—1) for some yo, then S (v) = S(v0).
The fact that the function s, is continuous in the product topology of {—1, 1}§°, now
provides us with the existence of a funcion ¢ with the properties in the theorem. This

finishes the proof. U

Let us end this section with an explicit estimate of the attractor of the map in
Figure 1. We will use the notations from the proof of Theorem §.1. For this map, we

have
ity i = s (y—1—yk) = 1,1,=1,1,—1,1,1,...
If g is such that
jOajl)' ce = '—‘YO(YO - 1) = 17 (17 _1)00
then yy is the unique positive root of the equation
o/
Y=Z71. (4)
n=0

Moreover, gYO(}/o -1 < QY(Y — 1 — yk), and this implies that S(yy) C Si(y). Hence
log y — ¢(y, k) > log yo > log 1.414. The dimension of the attractor satisfies

1.193 < dimpy A < 1.489.

There is a picture of the attractor A in Figure 2. Similarly, if we had # = 0 then
@(y, k) = 0 and we get the stronger estimate

1.328 < dimpyg A < 1.489.

Since ¢(y, k) does not depend on A, we can estimate the dimension of A when
y=18,A=0.5and £#= 0.1, by

1.270 < dimy A < 1.848.
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Figure 2: The attractor A of the map in Figure 3: The attractor A of the map in
Figure 1. Figure 1, with A = 0.5.

A picture of this attractor is in Figure 3.
We can strengthen these estimates as follows. Since

FIK\N) C (=2~ lel, A+ ) x (=1,1),

we may consider the seqence s, (y — 1 — y(A + p)k) instead of 5, (y — 1 — yk) in the
estimates above. For the attractor in Figure 2, we get

sty =5 (y—1— YO+ 0B =1,1,1,—1,—1,1,=1,1,....
Hence, if ¥y is such that
]’07]'17"' = EYO(YO - 1) - 17 17(17_17_1)00

then yg is the unique positive root of the equation (4) and s, (yo — 1) <s,(y — 1 —
Y(A+p)k). As above we can use this to estimate log y — ¢(y, £) > log yo > log 1.618.
This implies that the attractor in Figure 2 satisfies

1.269 < dimy A < 1.489.

6 Proof of Theorem 4.1

Assume that f satisfies condition (T) with (gg, 6)-intersections.
Let f be the lift of /" as described in Section 2. We let A denote the attractor of f.
Let

Y ={aec{1,2,...,p}% : 3% € K such that f*(%) € K,,, Vk€ Z},
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as defined in Section 4. Then there is an one-to-one correspondance p: X' — K,
defined in the natural way. Let 1: K — K be the projection n(x,y) = x. A cylinder
is a set of the form

k[é_l]/::{éeztbi:di, Vi:/e,k—l—l,...,/}.

We assume that £ is ergodic with respect to the skB-measure. (If not, we can just
take an ergodic component.) We let Xy be a subshift of finite type contained in X (A).

Let 2 € Y. Then there is a unique point x € A such that £ = e(@). Let x = n(x).
Then for any sequence b € X, there is a point j = g(c) € A), such that

In
I

B2, A_1,40,21,42y - -,

A2, A-1,80, 41,42, - - M, bo,y b1y

I
Il

That is, y is contained in the unstable manifold of x. Since X is of finite type, this
can be done for any point x € Ay := AN 7(e(2))), with uniform bounds on M.
The uniform bound on M provides a bound from below of the length of the unstable
manifold around a point x € A. This proves that there exists a number 4 > 0 such
that there exists a local unstable manifold VVZ(L)‘(x) of length /y around x, for any x € A,.
We take /4 so small that /y < &.

Take € > 0 and a constant C such that for any 7 and any x € A holds.

sup sup |d.(F")(@)| < CE(D”+E)}1,

X Jol=1

mf‘1|nf A (F) ()| > €719

We estimate the dimension of Aj. For this purpose we define measures u,, with
support in Ay.
For a cylinder _,[a]lp C Xy take a point x(_,[a]o) € n(e(—,lalo N Xp)). Then
fa Wi (x(_4[alo)) exists. We let W, be the collection of such unstable manifolds. Let

1 Z
{Jn = un’
#W lo
" WREW,

where vy is the normalised Lebesgue measure on the set W
0

By taking a subsequence we can achieve that yu,, converges weakly to a measure u
with support in Ay.
We will use the following method, originating from Frostman [§], to estimate the

dimension of Ag. If
// dy(x dy(y) < o0,
lx — g

then dimpy A > dimyy Ay > 5. For a proof of this, see Falconer’s book [3].
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Let M be a number. Then

// mm{ | }dun(x)d(un(}’)
— // max{ | }dy(x)dy(y) as 7 — 00,
and

) 1
[ i g o

// X
—
\XC VViH thCrCfOl‘C Cstimate

E(n,M) = //mm{ | }dyn( Ydu,(y).

It is clear that E(n, M) < M. By the definition of the measure y, we immediately get
that

), asM — oo.

Ey(n, M)

} dvy(x)dv (). (5)

=X % oy /[

wWew, vew, { |

We rewrite (5) as
E(n) =+ )

with

= > / / mm{ |}de<x>dvW<y>

wew,

L= > Y (#W EIAE //mm{ P }dvv( )dvi ().

Wew, VEW

To estimate J; we note that

// mm{ ‘ }de/(x)de(y) < M.

Hence

and so /1 — 0 as n — o0.
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We will now estimate J2. First we estimate that if m = m(W, V) is the largest
number such that ,_,,[4], = ,_,.[6], then

// I — dVv(X)dvW(y) < Goe Lo DA 2e) = m(W, V) ©)

where Cy does not depend on V' and W. Indeed, if m = m(W, V), then V and W
intersect (g9, C 2(Du=Dit26)m 5 _ransversal and we can estimate

// dvv(x dVW(_)/ < Co/ !
| — v 1=l

where y1 and y; are the curves

Yl = {(X17X2) X1 = 0 ’x2’ < [0}
Yz :{(x17x2 |X2| < l() Xy = C2 Du DS+2€)m5X }

and C is a constant, that depend only on the second derivative of the map. To prove
(6), one easily checks that there exists a constant C; such that

CO/ ;5 dXd}/ é Cle(D“_DS"'ze)(S_l)m.
11V 72 [x — g

Since X is of finite type there is a constant C, such that for W € W,
HV eW, :m(W,V) =k} < ClorD0=h

This yield

n—1

> Y @i/ mm{ y|}dvv<x>dvW<y>

k=0 WeW, Vew,
m(W,V)=Fk

1
< C LPa=Dst2e) (= m(W, V)
PP CTAE

n—1
< Y 1 CPnlZnpenln—b) Du=Dik 2006-Dk !

k=0

This sum is bounded, uniformly over 7, if hop(20) > (Dy — D + 2e)(s — 1), or
equivalently

€l7mP (X0)2n*

/7top (20)
D, — D, +2¢’
We conclude that, if s satisfies (7) then the integral

/ / mm{ }dM(X)dN(}’)
yl

s<1+ 7)
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is uniformly bounded and hence converges as M/ — oo. This proves that

1
I 5 i <

if (7) holds true. Hence

/]top (EO)

di A > di N >14H —M—M——.
my A > dimyg Ag > +Du—DS—|-2€

Lete — 0.
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