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The yrast sequence of states for high angular momenta is studied. The modified-oscillator field with the inclusion
of an wJy, term to describe the effects of nuclear rotation forms the basis for the calculation of microscopic energies.
The macroscopic energies are provided by surface and Coulomb energies, and the rotational energy corresponding

to rigid rotation.

In the deformed regions the “yrast” band squence
of states for even-even nuclei is so far well established
up to I of the order of 207%. The region of backbend-.
ing occurs for I-values usually between 10 and 207.
In most cases it appears that backbending is associated
with the decoupling or rotation alignment of specific
orbitals [1]. The reduction in pairing seems to be sig-
nificant but not dramatic in the beginning of the back-
bending region. All through this region the nucleus is
usually stably prolate. However, as pointed out by
Bohr and Mottelson [2], the decoupling mechanism
obviously involves the breaking of axial symmetry.
Detailed Bogolyubov type calculations in this region,
e.g. those performed by Fissler [3], imply mean de-
formations into the gamma plane of 5—10° for I 2
207. The decoupling also implies a weakening in the
pair correlation energy. Beyond 20—30 units of angu-
lar momentum the pair coupling scheme appears to
have collapsed. The gamma transitions that precede
the known yrast band appear to involve collective
bands associated with triaxial rotors [2].

From liquid-drop calculations (with the drop rota-

ting rigidly) Cohen, Plasil and Swiatecki [4] in 1973 pre-

dicted the following behaviour of the nuclear shape as
a function of the rotational angular momentum. For
I=0 the equilibrium shape of the uncharged liquid
drop is obviously a sphere. For increasing I the sphere
flattens at the poles, hereby increasing the moment of
inertia. The inertia can then be increased additionally
by a lifting of the axial symmetry. The equilibrium
point thus moves into the gamma plane and ultimately

the equilibrium shape degenerates into a needle prolate.
This behaviour with 7 is expected to be significantly
modified by the inclusion of shell structure. To the
sum of liquid-drop and rigid rotational energy is to
be added the shell correction energy, which latter is
a function of the rotational frequency.

The basis of static (/= 0) shell energy calculations
is the assumed existence of a single-particle field

Hy= 2ohy 1)
where

ﬁ2
ho=—5—-A+V, @)

with wave functions
hod;=e;9; . (3)

For I'#0 we have to add an auxiliary condition to
the generator Hamiltonian

Hy,=Hy—wl,= 2h,, , )
with
hw =h0'_0)jx s (5)

where we thus assume that the rotation takes place
around the x-axis, which for 0 <y < 60° (apart from
possible shell fluctuation) is the axis for which the in-
ertia is maximum. Furthermore we assume that the
quantum mechanical wobbling may be neglected for
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Fig. 1. Single-proton energies e measured in the rotating sys-
tem as functions of the rotation frequency w. The figure refers
to the pure oblate case € = 0.20,v= 60° with the x-axis being
the rotation and symmetry axis.

the high angular momenta in question.

One may also look at the Hamiltonian H,, as the
Hamiltonian in the rotating system. The wJ, term
then takes the role of the Coriolis and centrifugal cor-
rection terms. Let us denote the corresponding single-
particle energy el?” and wave function ¢;.*’

h, oy = e’ of - (6)

It is to be noted that for the rotating field the time-
reversal degeneracy is broken (see fig. 1).

Each orbital is associated with an angular momentum
expectation value

(mp =44 gl 857) - 7

Obviously {m;) is not a constant of the motion and it
need not be half-integer, except for the case of 7= 60°.
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For any given configuration the corresponding un-
corrected energy is given as

By = 2007 o167 = Lep, ®)

where (e;) obviously is not an eigenvalue. In fact we
have

el =(ep — mpw, )
and

Byy=2a¢0 +wM, (10)
where

[=M=22(mp, (11)

is the required total angular momentum.

Eq. (8) expresses a relation between the total energy
and the rotational frequency w, while the relation be
tween I (or M) and ¢ is given by (11). Through (8)
and (11) we may obtain the required relation between
E andl.

The difficulties encountered in the evaluation of
the total energy through the summation of single-
particle energies for the I=0 case are present also in
the I # 0 problem. As in the former case a successful
resolution is provided by the use of the shell-correc-
tion method [5], which thus can be adapted also to
the 770 case. We will here follow the formulation
given by Jennings [6]. (Cf. also Badhuri and Ross 71,
Brack [8] and Hamamoto [91.)

We define the level distribution functions in e space:

g1(ev)= f dmg(e®,m)= Z)&(‘e“’ - e?") ., (12)
—oo 4

and correspondingly an angular-momentum density

gy(e¥) = f mdmg(ew,m)= Z)(mi)ﬁ(e‘*’ -ef),
oo ! (13

starting from the two-dimensional level distribution in
(m,e®) space. One can now obtain from the discrete
distributions g1 (e*) and g5 (ew) the continuous ones

g1(e®) and gy(e¥) aseg.

fe)= [ SEew—ef)gi(ef)det s (14)
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Fig. 2a—f. Total energy (and no pairing) for l‘égSm for a) I=0, b) I=407, c¢) I=50%, d) I=60%, e) I =707, f) I=807. Cross shaded

(14)

area marks ground-state minimum. Numbers on contour lines denote energy (in MeV) relative to the minimum point.
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Fig. 3a—d. Sequence of deformations reached by the nuclei

where S(e%” — e"’) is the Strutinsky smearing function.
Based on the sharp population of the unsmeared distri-

butions we have

where S(e® — e‘*’) is the Strutinsky smearing function.
Based on the sharp population of the unsmeared dis-
tributions we have

A

I=M= fg2d6w= E(ml), (15)
— 00 l
A

Eg= [gewdevtoM=2ieP oM. (16)
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158,160,162,166 v}, 35 functions of angular momenta.

For the smeared level distributions the corresponding
equations transform into

A
1—M=f g, dew 17
X
E= fglew dew + &M, (18)

The auxiliary quantities w, @, A and N are determined
s0 as to obtain the quantities Eg, (I)and EW), both
defined for the same /. The dlfference E Sp(I )— E 08)
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represents the shell-correction energy. The uncorrected
eriergy E, includes the rotational energy. Similarly

Eg 1 obviously includes fluctuations in the rotation
energy. The quantity Egy includes shell corrections
both to the intrinsic and rotational energy. It is thus
calculated as

Eshe]l= Ee‘”-ﬂo[-—EN .

With the shell energy available for each I-value the
total energy is obtained from the sum of the shell
.nergy, the (rigid) rotational energy and the liquid-
drop surface and Coulomb energies:

2
E()=Egqen) +Ey g, + %12 ;

rig
where Jﬂg is the rigid inertia for the shape defined by
€ and v (the principal value). It is to be noted that by
this procedure we have replaced the smooth rotational
energy obtained from £ (I) by the smooth rotational
energy corresponding to a rigid body of the same shape.

Technically, the calculation is carried out as follows.

A set of w-values in steps of 0.01 wq from w =0 to
w=0.12 w( (where wy is the oscillator frequency) is

chosen, furthermore a set of grid points in the €, vy plane.

(As pointed out to us by Nergaard [10] it is important
to go somewhat below 0° in the gamma plane, allowing
for rotations around a principal axis with 4 moment of
inertia classically smaller than the maximal one. How-
ever, the preliminary calculations reported here were
confined to the y =0 to 60° sector of deformations.)
For these grid points the shell energy is calculated for
€4 =0 only, due to computer time limitations. How-
ever, for the rotational and liquid-drop energies an €4
variation was permitted so as to minimize the sum of
liquid-drop and rotational energy.

Furthermore for each w a value of I and E,, is cal-
culated from (11) and (8). As £ is found to be a very
smooth and almost linear function in /2, E for any
arbitrary I-value is readily obtained through an inter-
polation in I? between the calculated points.

In this way for each grid point in € and 7 a value of
Egen is obtained for a small number of I-values, which
obviously are not the same for the different grid
points, One of the major approximations in the calcu-
lation is then that values of g g for the final I-values,
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I'=40, 50, 607 etc., are obtained through interpola-
tions from the calculated points, which latter corre-
spond presently to, all in all, ten different co-values.

A few of the results are summarized in figs. 2a—f
and 3a—d. Thus in fig. 2a—e we exhibit a map in the
€,y plane of E(I) as a function of € and v for /=0, 40,
50, 60, 70 and 807 for the neutron deficient nucleus
14‘6Sm, which is found to be favourable for the esta-
blishment of stable dynamical oblate shapes. In fig. 3a—
d we give the loci of equilibrium shapes as a function
of spin for the nuclei 158,160,162,166 yp

The simultaneous occurence of large negative shell
energies and liquid-drop minima for certain values of
w (and corresponding I-values) opens the possibility
of yrast traps connected with those spin values. How-
ever, this latter phenomenon requires a more detailed
investigation. More complete results will be available
in a forthcoming publication.
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