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A Linear Algebra to Minimal Approach 
Convolutional Encoders 
Rolf Johannesson, Member, ZEEE, and Zhe-xian Wan 

Abstract-This semitutorial paper starts with a review of 
some of Fomey’s contributions on the algebraic structure of 
convolutional encoders on which some new results on minimal 
convolutional encoders rest. An example is given of a basic 
convolutional encoding matrix whose number of abstract states 
is minimal over all equivalent encoding matrices. However, this 
encoding matrix can be realized with a minimal number of mem- 
ory elements neither in controller canonical form nor in observer 
canonical form. Thus, this encoding matrix is not minimal accord- 
ing to Fomey’s definition of a minimal encoder. To resolve this 
difficulty, the following three minimality criteria are introduced: 
minimal-basic e n d k g  mutrix (minimal overall constraint length 
over equivalent basic e n c d i  matrices), minimal encoding mu- 
trix (minimal number of abstract states over equivalent encoding 
matrices), and minimal encoder (realization of a minimal encoding 
matrix with a minimal number of memory elements over all 
realizations). Among other results, it is shown that all minimal- 
basic encoding matrices are minimal, but that there exist (basic) 
minimal encoding matrices that are not minimal-basic! Several 
equivalent conditions are given for an encoding matrix to be 
minimal. It is also proven that the constraint lengths of two 
equivalent minimal-basic encoding matrices are equal one by 
one up to a rearrangement. All results are proven using only 
elementary h e a r  algebra. Most important among the new results 
are a simple minimality test, the surprising fact that there exist 
basic encoding matrices that are minimal but not minimal-basic, 
the existence of basic encoding matrices that are nonminimal, and 
a recent result, due to Fomey, that states exactly when a basic 
encoding matrix is minimal. 

Index Terms- Convolufional code, basic encoding matrix, 
minimal-bask encoding matrix, minimal encoding matrix, 
minimal encoder, 

~ 

I. INTRODUCTION 
ORNEY’S landmark paper: “Convolutional codes I: Alge- F braic structures” [l] (see also [2]) constitutes an abundant 

source of important results on the algebraic structure of 
convolutional codes. After having introduced a most important 
concept, viz., a basic convolutional encoder (which has both a 
polynomial encoding matrix and a polynomial right inverse), 
Fomey defined a rate R = b / c  basic encoder to be minimal if 
its overall constraint length v is equal to the maximum degree 
p of the b x b subdeterminants of its encoding matrix. 

In this semitutorial paper, we show that there exist basic 
encoding matrices that have a minimal number of abstract 
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states and, hence, can be realized by a minimal number of 
memory elements over all equivalent encoders but are, quite 
surprisingly, not minimal according to Fomey’s definition! To 
resolve this difficulty we introduce the following three mini- 
mality criteria: minimal-basic encoding matrix (minimal over- 
all constraint length over equivalent basic encoding matrices), 
minimal encoding matrix (minimal number of abstract states 
over equivalent encoding matrices), and minimal encoder (re- 
alization of a minimal encoding matrix with a minimal number 
of memory elements over all realizations). Our definition of 
a minimal-basic encoding matrix is equivalent to Fomey’s 
definition of a minimal encoder. 

In Section 11, we introduce the controller canonical and 
observer canonical forms of a linear sequential circuit. The 
distinction between convolutional encoders and their generator 
and encoding matrices is discussed in Section 111. In Section 
IV, we discuss the equivalence of encoders and we also give 
Fomey’s definition of a basic encoder. The important concept 
of minimal-basic encoding matrices is introduced in Section V. 
In this section, we give three equivalent statements for a basic 
encoding matrix to be minimal-basic. We also prove that the 
constraint lengths of two equivalent minimal-basic encoding 
matrices are equal one by one up to a rearrangement. From 
the minimal-basic encoding matrix we proceed to introduce 
the minimality of a general encoding matrix in Section VI. 
Several equivalent conditions for a general encoding matrix 
to be minimal are given. After having defined a minimal 
encoder in Section VII, we give an example of a basic minimal 
encoding matrix that is not minimal-basic and, hence, has no 
minimal realization in controller canonical form. Finally, in 
Section VIII, we prove that every systematic encoding matrix 
is minimal. We also show a minimal realization of a systematic 
encoding matrix which has neither a minimal realization 
in controller canonical form nor one in observer canonical 
form. 

Some of our theorems are new, others can be found explic- 
itly in Fomey’s papers [1]-[3], and a few are given implicitly 
in these papers, but we have proven all results by using only 
elementary linear algebra. Most important among the new 
results are a simple minimality test, the surprising fact that 
there exist basic encoding matrices that are minimal but not 
minimal-basic, the existence of basic encoding matrices that 
are nonminimal, and a recent result, due to Fomey, that states 
exactly when a basic encoding matrix is minimal. 

11. CONTROLLER AND OBSERVER CANONICAL FORMS 

Let Fz((D)) denote the field of binary Laurent series. The 
element z ( D )  = CzD=rz;Di E F z ( ( D ) ) ,  r E Z, contains 

0018-9448/93$03.00 0 1993 IEEE 



only finitely many negative powers of D. For example, 

z ( ~ )  = 0 - 2 +  1 + 03 + 07 + P + .  . . 
is a Laurent series. 

Let Fz[[D]] denote the ring of formal power series. The 
element f(D) = CEoff;Di E Fz[[D]] is a Laurent series 
without negative powers of D. 

Apolynomial p (D)  = C z o p i D i  contains no negative and 
only finitely many positive powers of D. If po = 1 we have 
a delayfree polynomial, e.g., 

is a binary delayfree polynomial of degree 5. The set of binary 
polynomials Fz[D] is clearly a subset of F2((D)). 

Given any pair of polynomials z(D),y(D) E Fz[D], with 
y(D) # 0, we can obtain the element z(D)/y(D) E Fa((D)) 
by long division. Since sequences must start at some finite time 
we must identify, for instance, (1 + D)/D2(1  + D + D2) with 
the series D-2 + 1 + D + D3 + instead of the alternative 
series D-3 + D-5 + D-6 + . . . that can also be obtained by 
long division but which is not a Laurent series. Obviously, 
all nonzero ratios z(D)/y(D) are invertible, so they form the 
field of binary rational functions Fz(D),  which is a subfield 
of the field of Laurent series F2((D)). 

We can of course consider n-tudes of elements from 

~ 1 , ~ 2 , - . * ,  r, E 7, is an element in Fa((D))("), the n- 
dimensional vector space over the field of binary Laurent series 
F2((D)). Let r = min{rl,r2,-..,r,} and put xp) = 0 for 
i < rj, then we can express z ( D )  also as 

M 

i=r 

Thus, F2((D))(") = F!r)((D)), where F(2n)((D)) is the set of 
all Laurent series in D with coefficients in the n-dimensional 
row vector space over Fa. The elements in the field 
F2 (D)) are usually called scalars. Similarly, Fz[D](") = 
F(,nj[D],Fz[[D]](") = F(;)[[D]], etc. If z ( D )  E F(2n)[D], 
we say that z ( D )  is polynomial in D. The degree of the 
element z ( D )  = E' (zj1)zi2) . . z?))Di is defined to be 
m, provided ( z ~ ) z ~ ? .  - zk)) # (0 0. a 0). For simplicity, 
we also call elements in F(,")[(D]] formal power series when 
n > 1. 

Consider the controller canonical form of a single input 
single output linear system as shown in Fig. 1. The delay 
elements form a shift register, the output is a linear function 
of the input and the shift register contents, and the input to 
the shift register is a linear function of the input and the shift 
register contents. 

From Fig. 1, it follows that 

where 
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g ( D )  = go + giD + * .  . + gmDm (2) realizations of the same rational transfer function. 

- v  

... ... 

... -5) 
Fig. 1. The controller canonical form of a rational transfer function. 

I 

... 

... 

... 

V 

O Q  I 
1 1 J 

Fig. 2. The observer canonical form of a rational transfer function. 

and 

q(D) = 1 + q1D + * . *  + q a m .  (3) 

Let t ( D )  = g(D) /q (D) ,  then w(D) = u(D) t (D)  and we 
say that t ( D )  is a rational transfer function which transfers 
the input u(D) into the output w(D). From (l), it follows 
that every rational function with a constant term 1 in the 
denominator polynomial q(D) (or, equivalently, with q(0) = 1 
or, again equivalently, with q(D)  delayfree) is a rational 
transfer function that can be realized in the canonical form 
shown in Fig. 1. Every rational function g(D) /q(D) ,  where 
q(D) is delayfree, is called a realitablefunction. 

In general, a matrix G(D)  whose entries are rational func- 
tions is called a rational transfer function matrix. A rational 
transfer function matrix G(D)  for a linear system with many 
inputs and/or many outputs whose entries are realizable func- 
tions is called realizable. 
In practice, given a rational transfer function matrix we have 

to realize it by linear sequential circuits. It can be realized in 
many different ways. For instance, the realizable function 

(4) 

has the controller canonical form illustrated in Fig. 1. On the 
other hand, Since the circuit in Fig. 2 is linear, we have 

which is the same as (1). Thus, Fig. 2 is also a realization of 
(4). In this realization the delay elements do not in general 
form a shift register as these delay elements are separated 
by adders. This is the so-called observer canonical form 
of the rational function (4). The controller and observer 
canonical forms in Fig. 1 and 2, respectively, are two different 
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111. "VOLUTIONAL CODES AND W I R  ENCODERS 
We are now prepared to give a formal definition of a 

convolutional transducer. 
Definition: A rate R = b/c (binary) convolutional trans- 

ducer over the field of rational functions F2(D)  is a linear 
mapping 

p2((m --+ Fc,((D)) 
40) v (D) ,  (6) 

which can be represented as 

= W ) G ( D ) ,  (7) 
where G ( D )  is a b x c transfer function matrix of rank b with 
entries in F2(D)  and u(D) is called a code sequence arising 
from the information sequence ~(0). 

Obviously we must be able to reconstruct the information 
sequence u(D) from the code sequence u(D) when there is no 
noise on the channel. Otherwise the convolutional transducer 
would be useless. Therefore we require that the transducer 
map is injective, i.e., the transfer function matrix G(D) has 
rank b over the field F2(D). 

Definition: A rate R = b/c convolutional code C over 
F2 with the b x c matrix G(D)  of rank b over F2(D) as 
its generator matrix is the image set of a rate R = b/c 
convolutional transducer with G(D)  as its transfer function 
matrix. 

It follows immediately from the definition that a rate R = 
b /c  convolutional code C over F2 with the b x c matrix G(D)  
of rank b over F z ( D )  as a generator matrix can be regarded 
as the F 2 ( ( D ) )  row space of G(D) .  Hence, it can also be 
regarded as the rate R = b/c  block code over the infinite field 
of Laurent series which has G(D)  as its generator matrix. 

We call a realizable transfer function matrix G(D)  delayfree 
if at least one of its entries g(D) /q(D)  has g(0) # 0. If G(D)  
is not delayfree it can be written as 

G(D)  = DiGd(D), (8) 

where i 2 1 and Gd(D) is delayfree. 
Definition: The generator matrix of a convolutional code 

over F2 is called an encoding matrix of the code if it is 
(realizable and) delayfree. 

Definition: A rate R = b/c convolutional encoder of a 
convolutional code with encoding matrix G(D)  over F 2 ( D )  
is a realization by a linear sequential circuit of a rate R = b/c 
convolutional transducer whose transfer function matrix is 

Theorem 1: Every convolutional code C has an encoding 
G(D)* 

matrix. 

Proofi Let G ( D )  be any generator matrix for C. The 
nonzero entries of G(D)  can be written 

DSt3 gij (D)/qij (D), (9) 

where sij is an integer such that gij(0) = qij(0) = 1, 1 5 
i 5 b, 1 I j 5 c. The number sij is called the start of the 
sequende 

@) = DSr3gij(D)/qij(D) 
= D"*J + ts,3+1DS*3+1 + . .. . (10) 

u+i!Lv(') ,,(a) 

Fig. 3. A rate R = 1 /2 convolutional encoder with en@ing matrix Go (D) .  

,,(a) 

Fig. 4. A rate R = 1/2 systematic convolutional encoder with feedback 
and encoding matrix G l ( D ) .  

Let s = mini,j{sij}. Clearly 

is both delayfree and realizable. Since D-" is a scalar in 
F z ( ( D ) ) ,  both G ( D )  and G'(D) generate the same convo- 
lutional code. Therefore G'(D) is an encoding matiix for the 
convolutional code C. 0 

Including nondelayfree generator matrices in the set of 
convolutional encoders would only clutter up the analysis 
without any benefits. 

A given convolutional code can be encoded by many 
essentially different encoders. For example, consider the rate 
R = 1/2, binary convolutional code with the basis vector 
uo(D) = (1 + D + D2 1 + D2) .  The simplest encoder for this 
code has the encoding matrix 

Go(D) = (1 + D + D2 1 + D2) .  (12) 

Its controller canonical form is shown in Fig. 3. 
If we choose the basis to be q ( D )  = al(D)uo(D), where 

the scalar ~ ( 0 )  is the rational function ul(D) = 1/( 1 + D + 
D2) ,  we obtain the encoding matrix 

G 1 ( D ) = ( 1  *I, (13) 

which is a systematic encoding matrix for the same code 
(Fig. 4). When a rate R = b/c  convolutional code is encoded 
by a systematic encoding matrix, the b input sequences appear 
unchanged among the c output sequences. 

For example, the output sequence u(D)= ( d l ) ( D )  d 2 ) ( D ) )  
of the systematic convolutional encoder with encoding matrix 
G1(D) shown in Fig. 4 can be written as 

"(1)(D) = u p )  

If a convolutional code C is encoded by a systematic encoding 
matrix we can always permute its columns and obtain an 
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&) 

?JP) 

Fig. 5. A rate R = 1/2 catastrophic convolutional encoder with encoding 
matrix G z ( D ) .  

encoding matrix for an equivalent convolutional code C’ such 
that the b information sequences appear unchanged among 
the first c code sequences. Thus, without loss of generality, 
a systematic encoding matrix can be written 

= ( I b  R ( D ) ) ,  (15) 

where Ib is a b x b identity matrix and R ( D )  a b x (c  - b) 
matrix whose entries are rational functions of D. 

Being “systematic” is an encoding matrix property, not a 
code property. Every convolutional code has both systematic 
and nonsystematic encoding matrices. 

If we further change the basis to u2(D) = a2(D)uo(D), 
where a2(D) E F2(D) is chosen as ~ ( 0 )  = 1 + D, we 
obtain a third encoding matrix for the same code, viz., 

Gz(D) = (1 + D3 1 + D + D2 + 0’). (16) 

In Fig. 5, we show its controller canonical form. 

Theorem 2: Every convolutional code C has a polynomial 
encoding matrix. 

Proofi Let G(D)  be any encoding matrix for C and let 
q(D)  be the least common multiple of all the denominators in 
(9). Since q(D) is a delayfree scalar in F2((D)), 

G” = q(D)G(D) (17) 

is a polynomial encoding matrix for C. 0 

An encoder whose encoding matrix is polynomial is called 
a polynomial encoder. 

For convolutional codes, the choice of the encoding matrix 
is of great importance. 

Definition: A generator matrix for a convolutional code is 
catastrophic’ [4] if there exists an information sequence u(D)  
with infinitely many nonzero digits, w ~ ( u ( D ) )  = CO, that 
results in codewords u(D)  with only finitely many nonzero 
digits, w ~ ( u ( D ) )  < CO. 

The third encoding matrix for the convolu- 
tional code given above, viz., 

Example I :  

G ~ ( D ) = ( ~ + D ~  ~ + D + D ~ + D ~ )  

is catastrophic since u( 0) = 1/ (1  + 0) = 1 + D + D2 + a  

W H ( U ( D ) )  = CO but u(D) = u ( D ) G ~ ( D )  = ( 1 + D + D 2  1+ 
D2)  = (1 1) + (1 0)D + (1 1)D2 h a  W H ( U ( D ) )  = 5 < CO. 

When a catastrophic encoding matrix is used for encoding, 
finitely many errors (five in the previous example) in the 
estimate G(D) of the transmitted codeword u(D)  can lead to 

‘The term “catastrophic” does not actually appear in [4]; it seems to have 
been introduced by hiassey in a seminar in 1969. 

has 

Fig. 6. A rate R = 2/3 convolutional encoder. 

infinitely many errors in the estimate G(D) of the informa- 
tion sequence u(D)-a “catastrophic” situation that must be 
avoided! 

Being “catastrophic” is a generator matrix property, not a 
code property. Every convolutional code has both catastrophic 
and noncatastrophic generator matrices. 

We define the constraint length for the ith input of a 
polynomial convolutional encoding matrix as [ 11 

the memory m of the polynomial encoding matrix as the 
maximum of the constraint lengths, i.e., 

m = max{v;}, 
l < i < b  

(19) 

and the overall constraint length as the sum of the constraint 
lengths [l] 

b 

v = vi. 
i=l 

The polynomial encoding matrix can be realized by a linear 
sequential circuit consisting of b shift registers, the ith of 
length vi, with the outputs formed as modulo-2 sums of the 
appropriate shift register contents. For example, in Fig. 6 we 
have shown the controller canonical form of the polynomial 
encoding matrix 

1 + D  D 
G(D)  = ( D2 1 

whose constraint lengths of the 1st and 2nd inputs are 1 and 
2, respectively, and whose overall constraint length is 3. 

The number of memory elements required for the controller 
canonical form is equal to the overall constraint length. 

We define a physical state of a realization of a rational 
encoding matrix G(D) at some time instant to be the contents 
of its memory elements. If G(D)  is polynomial, then the 
dimension of the physical state space of its controller canonical 
form is equal to the overall constraint length v. 

For a rational encoding matrix G( 0) we define the abstract 
state a(D) associated with an input sequence u(D) to be the 
sequence of outputs at time 0 and later, which are due to that 
part of u ( 0 )  that occurs up to time -1, and to the all zero 
inputs thereafter. The abstract state depends only on G(D)  
and not on its realization. Distinct abstract states must spring 
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from distinct physical states at time 0. Clearly, the number 
of physical states is greater tlian or equal to the number of 
abstract states. 

Let P be the projection operator that truncates sequences to 
end at time -1, and Q = 1 - P the projection operator that 
truncates sequences to start at time 0, i.e., if 

u(D) = U d D d  + U d + l D d + l +  * * , 
then 

I - y(3) 

Fig. 7. Controller canonical form of the encoding matrix G’(D). 
u(D)P = { ; ; D d + * * * + ~ - 1 D - ’ ,  d < 0 ,  d 2 0, 

(22) 

P + Q = 1 .  (24) 

Thus, the abstract state s(D) of u(D) can be written concisely 
as 

s (D)  = u(D)PG(D)Q. (25) 

Note that in an observer canonical form of a polynomial 
encoding matrix the abstract states are in 1 - 1 correspondence 
with the physical states since the contents of the memory 
elements are simply shifted out in the absence of inputs. 

Since the abstract state does not depend on the realization 
we have the same abstract states in the observer canonical 
form as in the controller canonical form. 

Iv. EQUIVALENCE OF ENCODERS AND BASIC ENCODERS 
In a communication context it is natural to say that two 

encoders are equivalent if they generate the same code C. It 
is therefore important to look for encoders with the lowest 
complexity within the class of equivalent encoders. 

Definition: TWO convolutional encoding matrices G(D)  
and G’(D) are called equivalent if they encode the same 
code. ’ h o  convolutional encoders are called equivalent if their 
encoding matrices are equivalent. I 

Theorem3: TWO rate R = b / c  convolutional encoding 
matrices G(D)  and G’(D) are equivalent, if and only if there 
is a b x b nonsingular matrix T ( D )  over F z ( D )  such that 

G(D) = T(D)G’(D). (26) 

Proofi If (26) holds, then clearly G(D) and G’(D) are 
equivalent. 

Conversely, suppose that G(D)  and G’(D) are equivalent. 
Let g i (D)  E Fz(D)(“)  be the ith row of G(D). Then there 
exists a ~ ( 0 )  E FZ((D)>(~) such that 

g;(D)  = ui(D)G’(D). (27) 

Let 

G(D)  = T(D)G’(D), (29) 

where T ( D )  is a b x b matrix over F z ( ( D ) ) .  Let S’(D) 
be a b x b nonsingular submatrix of G’(D) and S ( D )  be 
the corresponding b x b submatrix of G(D).  Then S ( D )  = 
T(D)S’(D).  Thus T ( D )  = S(D)S’(D)-’ and, hence, T ( D )  
is over F2(D). Since G(D), being an encoding matrix, is of 
rank b it follows that T ( D )  is also of rank b and, hence, is 

Example 2: By Theorem 3 the encoding matrix for the rate 

nonsingular. 0 

R = 2/3 convolutional encoder shown in Fig. 6 

l + D  D ( D2 1 1 + D + D 2  G(D)  = 

is equivalent to the encoding matrix 

since there is a nonsingular matrix 

such that G’(D) = T(D)G(D).  The controller canonical form 
of G’(D) is shown in Fig. 7. Since G(D) and G’(D) are 
equivalent, the encoders in Figs. 6 and 7 encode the same 
code. 

Definition: (Fomey [ 11) A convolutional encoding matrix 
is called basic if it is polynomial and it has a polynomial 
right inverse. A convolutional encoder is called basic if its 
encoding matrix is basic. 

Next, we consider the invariant-factor decomposition of a 
rational matrix [l], [5]. 

Invariant-Factor Theorem: Let G(D)  be a b x c, b 5 c, 
binary rational matrix of rank T .  Then G(D) can be written 
in the following manner: 
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where A ( D )  and B(D) are b x b and c x c, respectively, binary 
unimodular matrices and where r ( D )  is the b x c matrix 

0 
%# 

in which O(*tcbb) is a b x (c- b) zero matrix, a z ( D )  and p;(D) 
are nonzero binary polynomials satisfying a,(D) I ai+l(D) 

A square binary polynomial matrix is called unimodular if 
its determinant is 1. The unimodular matrices are uniquely 
characterized as the square polynomial matrices that have 
polynomial inverses. In an invariant-factor decomposition the 
unimodular matrices A ( D )  and B(D) are not unique, although 
the B 7 s  are uniquely determined by G(D)  and are called 
the invariant factors of G(D) .  

Consider a rational encoding matrix G(D)  with invariant- 
factor decomposition G(D)  = A(D)I’(D)B(D) and let G’ 
(D) be an encoding matrix consisting of the first b rows of 
B(D) .  Then 

and /3;+l(D) I /3i(D), i = 1 , 2 , * * .  ,T  - 1. 

. ,  
where a;(D)  and p;(D) are polynomials satisfying ai (D)  I 
a i+l(D) and Pi+l(D) 1 &(D), i = 1,2, , b  - 1. Since 
both A ( D )  and 

are nonsingular matrices over Fz(D) it follows from Theorem 
3 that G(D)  and G’(D) are equivalent. But G‘(D) is polyno- 
mial and since B ( D )  has a polynomial inverse, it follows that 
G’(D) has a polynomial right inverse (consisting of the first b 
columns of B-l(D)).  Therefore, G’(D) is basic and we have 
the following algorithm. 

An Algorithm to Construct a Basic Encoding Matrix Equiv- 
alent to a Given Encoding Matrix: 

1) Compute the invariant-factor decomposition 
G(D)  = A(D)I’(D)B(D). 

2) Let G’(D) be the first b rows of B(D) .  G’(D) is a basic 
encoding matrix equivalent to G(D) .  

We summarize these results in Theorem 4. 

Theorem 4: (Fomey [ 13) Every rational encoding matrix is 

Now, we have the following. 

Theorem 5: (Fomey [l]) WO basic convolutional encod- 
ing matrices G(D)  and G’(D) are equivalent if and only if 
G’(D) = T(D)G(D) ,  where T ( D )  is a b x b polynomial 
matrix with determinant 1. 

Proof: Let G’(D) = T(D)G(D) ,  where T ( D )  is a 
polynomial matrix with determinant 1. By Theorem 3, G(D)  
and G’(D) are equivalent. 

Conversely, suppose that G’(D) and G ( D )  are equiva- 
lent. By Theorem 3, there is a nonsingular b x b matrix 
T ( D )  over Fa(D) such that G’(D) = T(D)G(D) .  Since 
G(D) is basic it has a polynomial right inverse G-l(D).  
Then, T ( D )  = G‘(D)G-~(D)  is polynomial. We can re- 
peat the argument with G ( D )  and G’(D) reversed to obtain 
G ( D )  = S(D)G’(D) for some polynomial matrix S(D) .  
Thus, G(D)  = S(D)T(D)G(D) .  Since G(D)  is of full rank, 
we conclude that S(D)T(D) = 16 .  Finally, since both T ( D )  
and S ( D )  are polynomial, T ( D )  must have determinant 1 and 

Let G ( D )  = A(D)I’(D)B(D) be an invariant-factor de- 
composition of a basic encoding matrix G(D). Then G(D)  = 
A(D)G‘(D) where G’(D) is the b x c polynomial matrix 
that consists of the first b rows of the matrix B(D). Since 
the matrix A(D)  is a b x b unimodular matrix it follows 
from Theorem 5 that G(D)  and G’(D) are equivalent basic 
encoding matrices. 

equivalent to a basic convolutional encoding matrix. 

the proof is completed. 0 

v. MINIMAL-BASIC ENCODING “I‘RICES 

We shall now show that among all equivalent encoding 
matrices there exists a basic encoding matrix whose con- 
troller canonical form requires a minimal number of memory 
elements. 

First, we shall consider only basic encoding matrices. The 
following definition is equivalent to Fomey’s definition of a 
minimal encoder [l]. 

A minimal-basic encoding matrix is a basic 
encoding matrix whose overall constraint length v is minimal 
over all equivalent basic encoding matrices. 

Let G(D)  be a basic encoding matrix. The positions for 
the row-wise highest order coefficients in G(D) will play a 
significant role in the sequel. Hence, we let [G(D)]h be a 
(0, 1)-matrix with 1 in the position ( i , j )  where deggij(D) = 
vi and 0, otherwise. 

Definition: 

Let us write 

where 
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Then, all entries in the ith row of Go(D) are of degree 
< v,. Clearly the maximum degree p among the b x b 
subdeterminants of G(D)  is 5 v. 

Theorem 6: Let G(D)  be a b x c basic encoding matrix with 
overall constraint length v. Then, the following statements are 
equivalent. 

a) G(D)  is a minimal-basic encoding matrix. 
b) The maximum degree ,U among the b x b subdeterminants 

of G ( D )  is equal to the overall constraint length v. 
c) [G(D)]h is of full rank. 

Proofi It follows immediately from (33) that b) and c) 
are equivalent. Thus we need only prove that a) and b) are 
equivalent. 

a)+b): Assume that G ( D )  is minimal-basic. 

Suppose that p < v, i.e., rank [G(D)]h < b. Denote the 
rows of G(D)  by rl,r2,-.-,rb and the rows of [G(D)]h by 
[rl],  [r2], - , [.a]. Then there is a linear relation 

[r,l] + [riz] + . + [rid] = 0. (34) 

The ith row of G1(D)  is D”*[ri]. Without loss of generality 
we can assume that vid 2 vij, j = 1,2, .  - .  , d  - 1. Adding 

to the idth row of G l ( D )  reduces it to an all zero row. 
Similarly, adding 

D”’d-”’lrl + DvidduiZr2 + . . . + D u a d - v a d - l  r i d - l  (36) 

to the idth row of G(D)  will reduce the highest degree of 
the idth row of G(D)  but leave the other rows of G(D)  
unchanged. Thus we obtain a basic encoding matrix equivalent 
to G(D)  with an overall constraint length which is less than 
that of G(D) .  This is a contradiction to the assumption that 
G(D)  is minimal-basic and we conclude that p = v. 

b)+a): Assume that p = v. 

Let G’(D) be a basic encoding matrix equivalent to G(D) .  
From Theorem 5 follows that G’(D) = T(D)G(D) ,  where 
T ( D )  is a b x b polynomial matrix with determinant 1. 
Since det T ( D )  = 1, the maximum degree among the b x b 
subdeterminants of G’(D) is equal to that of G(D) .  Hence, p 
is invariant over all equivalent basic encoding matrices. 

Clearly p is less than or equal to the overall constraint length 
for all equivalent basic encoding matrices and it follows that 

0 

Corollary 7: Let G(D)  be a b x c basic encoding matrix 
with maximum degree p among its b x b subdeterminants. 
Then G(D)  has an equivalent minimal-basic encoding matrix 
whose overall constraint length v = p. 

Proofi Follows from the proof of Theorem 6 and the fact 
that p is invariant over all equivalent basic encoding matrices. 

0 

G(D)  is a minimal-basic encoding matrix. 

Example 3: Consider the encoding matrix for the encoder 
in Fig. 7, vu., 

The rank of 

is one. Hence, G’(D) cannot be a minimal-basic encoding 
matrix. 
On the other hand, G’(D) has the following three b x b 

subdeterminants: 

1 + D + D3, 1 + D2 + D 3 , 1  + D + D2 + D3 

and, thus, p = 3. Hence, any minimal-basic encoding matrix 
equivalent to G’(D) has overall constraint length v = 3. 

The equivalent basic encoding matrix for the encoder in 
Fig. 6 

has 

with full rank and, hence, is a minimal-basic encoding matrix. 
Clearly we can use the technique in the proof of Theorem 

6 to obtain a minimal-basic encoding matrix equivalent to the 
basic encoding matrix C’(D) for the encoder in Fig. 7. We 
simply multiply the first row of G’(D) by D”2-”1 = D2 and 
add it to the second row: 

l )  ( d 2  ; ) (1>i%3 i + D + 0 2 + 0 3  0 
D 

D =(Y 1 + D + D 2  & ) a  

Thus, the minimal-basic encoding matrix equivalent to a given 
basic encoding matrix is not necessarily unique. 

In general, we have [l] the next algorithm. 
A Simple Algorithm to Construct a Minimal-Basic Encoding 

1) IF [G(D)]h has full rank, THEN G ( D )  is a minimal-basic 
encoding matrix and we STOP; ELSE GO TO next step. 

2) Let [rill, [ r ia] ) .  . . , [rid] denote a set of rows of [G(D)]h 
such that vid 2 vi3, 1 5 j < d, and 

[rill + [riz] + - . + [rid] = 0. 

Matrix Equivalent to a Given Basic Encoding Matrix: 

Let ril, ti,, . . . , rid denote the corresponding set of rows 
of G(D) .  Add 

DYad-”$1rl + D V I d - ”  * z r 2  + . . . + D ” a d - ” a d - l r .  2 d - 1  

to the idth row of G(D) .  
Call the new matrix G(D)  and GO TO step 1. 
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Corollary 8 (Forney [l]): Every encoding matrix is equiv- 
alent to a minimal-basic encoding matrix. 

The physical state space of a controller canonical form of 
an encoding matrix of overall constraint length v contains 
2" states. This type of realization plays an important role in 
connection with minimal-basic encoding matrices as we shall 
see in the sequel, but first we prove a technical lemma. 

Lemma 9: Let G ( D )  be a minimal-basic encoding matrix 
and let 

n 

u(D) = ("i(QUZ(2) . . . "i(b))Di, (37) 
i=-m 

where m is the memory of G(D)  and n 2 -m. If 
u(D)G(D)Q = 0, then u(D)  = 0. 

Proof: Let 

u(D)  = u(D)G(D) .  (38) 

Then, by assumption, 

u(D)Q = u(D)G(D)Q = 0. (39) 

Thus each coefficient of Di, i 2 0, in u(D) must be 0. Write 
G(D)  as in (32), then we have 

= u(D)Go(D) 

Without loss of generality, we can assume that 

m = v1 = . ' .  = Vl > vl+1 2 * * .  2 v b .  (41) 

Then the coefficient of Dm+", where m + n 2 0, in u(D)  is 

("2) "p) . . . "p 0 . . . O)[G(D)lh, 

which must be 0. Since G ( D )  is a minimal-basic encoding 
matrix, [G(D)]h is of rank b. Hence, U;') = d2) = . - .  = 
U:) = 0. Proceeding in this way, we can prove that u(D) = 0. 

0 
(Lemma 9 also follows from the predictable degree property 

Theorem 10: Let G(D) be a minimal-basic encoding ma- 

introduced in [l].) 

trix whose overall constraint length is v. Then' 

#{abstract states} = 2". (42) 

Prmf: Consider the controller canonical form of the 
minimal-basic encoding matrix G( 0). Clearly input sequences 
of the form 

(43) 

will carry us to all physical states at time 0. Then we have 
the abstract states 

= u(D)G(D)Q, (44) 

where u(D)  is of the form given in (43). Every abstract state 
can be obtained in this way and we have 

#{abstract states} 5 2". (45) 

To prove that the equality sign holds, it is enough to show that 
u(D)  = 0 is the only physical state that produces the abstract 

0 
We shall conclude this section by proving that the constraint 

lengths are invariants of equivalent minimal-basic encoding 
matrices. First we need the following 

Lemma 11: Let V be a k-dimensional vector space over 
a field F and let {al,a2,. . .  , a k }  be a basis of V. 
Let {f11,f12,.- . , f12} be a set of I ,  I < k, linearly 
independent vectors of V. Then there exist k - 1 vectors 

that {pl, p2,. . . , pl, a,,,, , . . , aZb} is also a basis of V. 

Prmf: Consider the vectors in the sequence pl, 02, - , 
pl, a1 , a 2 ,  . , one by one successively from left to right. 
If the vector under consideration is a linear combination of 
vectors to the left of it, then delete it; otherwise keep it. 
Finally, we obtain a basis pl, p2, , aik, 

0 

Theorem 12: The constraint lengths of two equivalent 
minimal-basic encoding matrices are equal one by one up to 
a rearrangement. 

Proof: Let G(D)  and G'(D) be two equivalent minimal- 
basic encoding matrices with constraint lengths VI, v2, * - . , v b  

and vi, vi, + , vi, respectively. Without loss of generality, we 
assume that v1 5 v2 5 ... 5 Vb and vi 5 vi 5 

are not equal for all i, 1 5 i 5 b. 
Let j be the smallest index such that vJ # vi. Then, without 
loss of generality, we assume that vJ < v;. From the sequence 
gl, g2, . . , gi, 9'1, gk, . . . ,g1, we can according to Lemma 11, 
obtain a basis 91 7 g2, . , gJ , g:,,, , 9:,+, 9 ,gtb of C. These 
b row vectors form an encoding matrix G"(D) which is 
equivalent to G'(D). Let 

state s ( D )  = 0. This follows from Lemma 9. 

% + l 7  ai,,, ,. . . , a z k  9 1 5 i l + l  < '&+2 < e * *  < ik 5 k, Such 

. , pl, ai,,, , az l f2 , .  
1 5 il+l < - .  . < ik 5 k, of v. 

5 v:. 
Now suppose that vi and 

g:, . * * 7 91) \ {g;J+l , g:J+2 7 * * . 7 91, } = {d, 7 7 * 7 d3 1. 
(46) 

From our assumptions, it follows that 

(47) 
1=1 k 1  1=1 

where v' and U" are the overall constraint lengths of the 
'#{.} denotes the cardinality of the set {.}. encoding matrices G'(D) and G"(D), respectively. 
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From Theorem 3, it follows that there exists a b x b 
nonsingular matrix T ( D )  over F z ( D )  such that 

G”(D) = T(D)G’(D). (49) 

Since G’(D) is basic it has a polynomial right inverse G’-l (D) 
and it follows that 

T ( D )  = G”(D)G’ -~(D)  (50) 

is polynomial.. Denote by p’ and p” the maximum degrees 
among the b x b minors of G’(D) and G”(D), respectively. 
It follows from (49) that 

pN = deg I T ( D )  I +p’. (51) 

Clearly v” 2 p” and, since G‘(D) is minimal-basic, v’ = p’ 
by Theorem 6. Thus, 

v” 2 deg I T ( D )  I +v’ 2 v’, (52) 

which contradicts (48) and the proof is completed. 0 

Corollary 13: Tivo equivalent minimal-basic encoding ma- 

The statement in Theorem 12 is equivalent to a classical 
trices have the same memory. 

result of Kronecker [6]; see also Fomey [7]. 

VI. ‘MINIMAL ENCODING MAnuc~s 

We shall now proceed to show that a minimal-basic encod- 
ing matrix is also minimal in a more general sense. 

Definition: A convolutional encoding matrix is minimal if 
its number of abstract states is minimal over all equivalent 
encoding matrices. 

Before we can show that every minimal-basic encoding 
matrix is also a (basic) minimal encoding matrix we have to 
prove the following lemmas. 

Lemma 14 (Forney [l], [3]): Only the zero abstract state 
of a minimal-basic encoding matrix G(D)  can be a codeword. 

Proof: We can assume that the abstract state s(D) arises 
from an input u(D) which is polynomial in D-l and of degree 
5 m and without a constant term, i.e., u(0) = 0. Thus, 

s (D)  = u(D)G(D)Q. (53) 

Then, it follows that 

u(D)G(D) = w(D)  + s (D) ,  (54) 

where w(D) is polynomial in D-l without a constant term. 

~’(0) E F z ( ( 0 ) )  such that 
Assume that s (D)  is a codeword, i.e., there is an input 

s (D)  = u’(D)G(D). (55) 

Since s (D)  is polynomial and G(D)  has a polynomial inverse 
it follows that u’(D) E F2[D].  

Combining (54) and (55) we have 

(u(D) + u’(D))G(D) = ~(0). 

(~(0) + u’(D))G(D)Q = 0. 

(56) 

Consequently 

(57) 

By Lemma 9, 

u(D)  + u’(D) = 0 (58) 

and, hence, ~‘(0) = 0. It follows from (55) that s(D) = 0. 
0 

Lemma 15: Let G(D)  and G’(D) be equivalent encoding 
matrices. Then, every abstract state of G(D)  can be expressed 
as a sum of an abstract state of G’(D) and a codeword. 
Furthermore, if G’(D) is minimal-basic, then the expression 
is unique. 

Proof: Assume that G(D)  = T(D)G’(D),  where T ( D )  
is a b x b nonsingular matrix over F2(D).  Any abstract state 
of G(D) , sc (D) ,  can be written in the form u(D)G(D)Q, 
where u(D) is polynomial in D-l without a constant term. 
Thus, we have 

SG(D) = u(D)G(D)Q = u(D)T(D)G’(D)Q 

= u ( D ) W ) ( P  + Q)G’(D)Q 
= U( D)T( D)PG’ (0) Q + U( D)T( 0) QG’ (0) Q. 

(59) 

Since u(D)T(D)P is polynomial in D-l without a constant 
term it follows from (25) that 

’ S G ~ ( D )  = u(D)T(D)PG’(D)Q (60)’ 

is an abstract state of G’(D). Furthermore, u(D)T(D)Q is a 
formal power series, and so is u(D)T(D)QG’(D). Hence, 

~ ( D ) ~ ~ ~ ( D ) T ( D ) Q G ’ ( D ) Q  
=u(D)T(D)QG’(D) (61) 

is a codeword encoded by G’(D). Combining (59), (60), and 
(61) we obtain 

8G(D) = 8G’(D) + v ( D )  (62) 

and we have proved that every abstract state of G(D)  can be 
written as a sum of an abstract state of G’(D) and a codeword. 

Assume now that G’(D) = G,b(D) is minimal-basic. To 
prove uniqueness, we assume that 

SG(D)  = s,b(D) + u(D) = &,(D) + v’(D), (63) 

where smb(D),skb(D) are abstract states of G,a(D), and 
u(D),u‘(D) are codewords. Since the sum of two abstract 
states is an abstract state and the sum of two codewords is a 
codeword it follows from (63) that 

&(D) = sm@) + SLb(D) = u(D)  + d ( D )  = u”(D) 
(64) 

is both an abstract state of Gmb(D) and a codeword. From 
Lemma 11 we deduce that 

Skb(D) = 0 (65) 

%b(D) = sLb(D), (66) 

and, hence, that 
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and 

u(D)  = u'(D), (67) 

which completes the proof. 0 

Theorem 16 (Forney [I]): Let G ( D )  be any encoding ma- 
trix equivalent to a minimal-basic encoding matrix G,b(D). 
Then 

#{abstract states of G(D)}  
2 #{abstract states of G,b(D)}. (68) 

Proof: Consider the following map: 

4 : {abstract states of G ( D ) }  -+{abstract states of G,b(D)} 

sG(D) " S r n b ( D ) ,  

where 

S G ( D )  = srnb(D) + V(D) ,  (69) 

in which u(D)  is a codeword. From Lemma 15, it follows 
that 4 is well-defined. 

By the first statement of Lemma 15 we can prove that every 
abstract state Smb(D)  can be written as a sum of an abstract 
state of G(D)  and a codeword. Hence, we conclude that 4 is 

0 

Remark: The map 4 in Theorem 16 is clearly linear. 
Moreover, if G(D)  is a minimal encoding matrix, then 4 is 
necessarily an isomorphism of abstract state space of G(D)  
and that of Gmb(D). 

surjective which proves the theorem. 

From Theorem 16, Corollary 17 follows immediately. 
Corollary 17: Every minimal-basic encoding matrix is a 

Next, we shall prove the following little lemma. 
Lemma 18: Let G(D)  be a b x c matrix of rank b whose 

entries are rational functions of D. Then a necessary and 
sufficient condition for G(D)  to have a polynomial inverse 
is: for each u(D)  E P2(D) satisfying u(D)G(D)  E F2[D] 
we must have u(D) E P2[D]. 

Proof: Since the necessity of the condition is obvious we 
shall prove only the sufficiency. Let us assume that G ( D )  does 
not have a polynomial inverse. Then, from the invariant-factor 
decomposition 

(basic) minimal encoding matrix. 

Hence, we have proved our lemma. 0 

We are now well prepared to prove the following theorem 
on minimal encoding matrices. 

Theorem 19 (cj [l]): Let G ( D )  be an encoding matrix and 
Gmb(D) be an equivalent minimal-basic encoding matrix. 
Then, the following statements are equivalent. 

a) G(D)  is a minimal encoding matrix. 
b) # {abstract states of G ( D ) }  = # {abstract states of 

c) Only the zero abstract state of G(D)  can be a codeword. 
d) G ( D )  has a polynomial right inverse in D and a poly- 

Proof: It follows immediately from Theorem 16 that a) 

Next, we prove that b) and c) are equivalent. In the proof 

Grnb (D)}. 

nomial right inverse in D-l .  

and b) are equivalent. 

of Theorem 16, we have defined a surjective map 

follows that ab(D) # 1. Clea 

but 

4 : {abstract states of G ( D ) }  +{abstract states of G,b(D)} 

S G ( D )  " S r n b ( D ) ,  

where 

S G ( D )  = S m b ( D )  + V(D) ,  (73) 

in which u(D)  is a codeword. Clearly, 4 is injective, if and 
only if b) holds, and if and only if c) holds. Hence, b) and 
c) are equivalent. 

It remains to prove that c) and d) are equivalent. 

c)+d): Suppose that c) holds. First we shall prove that 
G(D)  has a polynomial right inverse in D-l .  Let u(D) E 
Fb2(D) and assume that u(D) = u(D)G(D) is polynomial in 
D-l. Then D-lu(D) is polynomial in D-l without a constant 
term, i.e., 

D-'u(D)Q = 0. (74) 

But 

D-'u(D)Q = D-lu(D)(P + Q)G(D)Q 
= D - ~ ~ ( D ) P G ( D ) Q  + D- '~ (D)QG(D)Q 
= 0, (75) 

where 

D - ~ ~ ( D ) Q G ( D ) Q  = D - ~ ~ ( D ) Q G ( D )  (76) 

is a codeword. Hence, from (75) and (76) it follows that the 
abstract state D-lu(D)PG(D)Q is a codeword and, then, 
since c) holds, it is the zero codeword. Thus, 

D - ~ ~ ( D ) Q G ( D )  = o (77) 

D-lu(D)Q = 0 (78) 

and, since G(D)  has full rank, 

or, in other words, u(D)  is polynomial in D-l .  Since every 
rational function in D can be written as a rational function 
in D-l ,G(D)  can be written as a matrix whose entries are 
rational functions in D-l .  We can apply Lemma 18 and 

= (0 * * 0 1 0 * O)B(D) E F2[D]. (72) . conclude that G ( D )  has a polynomial right inverse in D-I 
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Next, we shall prove that G ( D )  has a polynomial right 
pseudo-inverse in D. (By a polynomial right pszdo-inverse 
of G(D)  wLmean a c x b polynomial matrix G-l(D)  such 

Let GI:(D)  be a right inverse of G ( D )  whose entries are 
polynomials in D-l. Then 

that G(D)G-'(D) = D"Ib for some s 2 0.) Let G I : ( D )  
be a polynomial right inverse in D-' of G(D).  Then there 

G(D)D"Gz:(D) = D"&, (79) 

U( D) G( D)GI : ( D) + D) G( D) PG:; (0) 
= U'( D)G( D)GI; ( D) , (88) 

exists an integer s 2 0 such that D"GI:(D) is a polynomial 
matrix in D and which can be simplified to 

+ U ( ~ ) ~ ( ~ ) ~ ~ ~ ; ( ~ )  = d ( ~ ) .  (89) 
i.e., D"GI;(D)  is a polynomial right pseudo-inverse in D of 
G(D). 

Finally, We shall Prove that G(D)  has also a Polynomial 
right inverse in D. Let u(D> E pz(D) and assume that 
u(D) = u(D)G(D)  is polynomial in D. Then, 

Since u(D)G(D)P is polynomial in D-' without a constant 
term, it follows that u(D)G(D)PGI:(D)  is polynomial in 
D-' without a constant term. Furthermore, u(D)  is polyno- 
mial in D-l without a constant term and d ( D )  is a formal 
power series. Thus, we conclude that ~ ' ( 0 )  = 0 and, hence, 

v (D)  = u(D)PG(D)  + u(D)QG(D),  (80) that ~ G ( D )  = 0. 0 

u(D)PG(D)  = 0. (82) 
has a polynomial right pseudo-inverse. Hence, our corollary 

0 follows immediately from Theorem 19. 

The following simple example shows that not all basic 

Example 4: Consider the basic encoding matrix 

Since G ( D )  has full rank, 

u(D)P = 0 (83) encoding matrices are minimal. 

or, in other words, u(D)  is a formal power series. 

matrix in D it follows that 
Since u(D) is polynomial and D"GI:(D) is a polynomial G ( D )  = (l,, lL), (90) 

Gmb(D) = (: y ) ,  (91) 

which has p = 0 but v = 2. Clearly, it is not minimal-basic. U (  0) D" G I  : (0) = U( 0) G( 0) D" G I  : (0) 
= u(D)D" (84) The equivalent minimal-basic encoding matrix, 

is polynomial, i.e., u(D)  has finitely many terms. But u(D)  is 

in D. By Lemma 18, G ( D )  has a polynomial right inverse in 
D. 

d)*c): Assume that the abstract state SG(D) of G ( D )  is a 

a formal power series, hence, we conclude that it is polynomial 

has only one abstract state, viz., 8mb = ( O , O ) ,  and can, Of 

course, be realized without any memory element. 
Since G ( D )  has two abstract states, viz., SO = (0,O) and codeword. That is, 

81 = (1, l), it is not minimal! 
SG(D) = u(D)G(D)Q Moreover, G ( D )  is invertible and its unique inverse is G ( D )  

= u'(D)G(D),  (85) itself. But 

where u(D) is lynomial in D-l but without a constant term 

and G(D) has a polynomial right inverse, it follows that u'(D) 
is also a formal power series. 

Let us use the fact that 

and u'(D) E Fg" !((D)). Since SG(D) is a formal power series 

Q = l + P  (86) 

G-l(D)  = G ( D )  

=(%, 1L) 

and rewrite (85) as follows: which is not a polynomial matrix in D-l.  By Theorem 16 we 
deduce again that G ( D )  is not minimal. 

Before we state a theorem on when a basic encoding matrix 
= u'(D)G(D). (87) is minimal, we shall prove two lemmas. 

SG(D)  = u(D)G(D)  + u(D)G(D)P 
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Lemma 21: Let f l ( D ) ,  f2(D), . . , fr(D) E Fz[D] with 

( f l ( D ) ,  fZ(D), * a .  7 f@)) = 1, 

Lemma 22: Let G(D)  be a basic encoding matrix and 
let T and s be the maximum degree of its b x b minors 
and (b - 1) x (b - 1) minors, respectively. Then the b-th 
invariant factor of G(D)  regarded as a matrix over F z ( 0 - l )  

(93) 

where ( f i ( D ) ,  f z ( D ) ,  
mon divisor of f 1  (D), f2 (D), 

, f i (D) )  denotes the greatest com- is 1/D-('-'). 

Proof: Let G ( D )  = (gij(D)), 1 5 i-5 b, 1 5 j 5 c, 
and let n = maxi,j(deggij(D)). Write G(D)  as a matrix 

, fi (D), and let 

= max(degfl(D),degfz(D),"' 7 d e g f f ( D ) ) '  (94) Over F2(D-1) as follows: 

Then for m L n D-"f1(D),D-"f2(D), 
E FZ [D-'1 and 

(D-"f l (D) ,  D-"fz(D), * .  e ,  D-"f@)) = D-("-"). 
(95) where 

Proof: Let 

f ; ( D )  = D"'g;(D), i = 1,2, * * ,Z, (96) 
is a matrix of polynomials in D-l .  

since G(D)  is basic it follows, by definition, that it has a 
polynomial right inverse. Hence, it follows from the invariant- 
factor decomposition (70) that 

where si is the start of f,(D) and gi(D) E F2[D] is delayfree. 
From (93) follows 

a l ( D )  = az(D)  = ' . *  = Qb(D) = 1 (105) 
min(sl,s2,...,sl) = 0 (97) 

and 
(all &(D) are trivially 1 for a polynomial matrix). Let 
A,(G(D))  be the greatest common divisor of the i x i minors 
of G(D) .  Since [5] 

(98) (91 (D), 92(0) ,  . * * , 9f (D) )  = 1. 

For m 2 n 
Ai(G(D))  = al(D>az(D)***~i(D), (106) 

D-"fi(D) = D-"D"*g;(D) 
we have in particular 

ga (D)) - D-("-s,-degg,(D)) D- d e g g , ( D )  

&(G(D))  = Ab-i(G(D)) = 1. (107) 
( - 

i =  1 , 2 , . * * , 1 ,  
An i x i minor of G-1 (D) is equal to the corresponding minor 
of G(D)  multiplied by Wni. Hence, by Lemma 21, we have (99) 

where the last equality follows from the fact that Ab(G-l(D)) = D-(nb-') (108) 

degfi(D) = si +deggi(D), i = 1,2 , - . - ,Z .  (100) and 

Since D-degg*(D)gi(D), i = 1,2 , .  ,Z, are delayfree it &,-1(G-1(D)) = D-("(b-')-"). (109) 

(D-"fl(D),  D-"fZ(D>, * *  * ,  D - " f i ( q  

follows from (99) that 
Thus the bth invariant-factor of G-l (D)  is [5] 

(110) 
- - D-("-")(~-d"gS1(D)gl(~),~-deggz(D)g2(~), . . . , Ab(G-l(D)) - D-" 

&-i(G- i (D))  D-('-") * 

D- deg 91 ( D ) g l  ( D ) )  . 
(101) From (103) and (110), it follows that the bth invariant factor 

of G(D) ,  regarded as a matrix over Fz[D-l], is 

1 - 1 D-" -.--- D-n p ( T - 8 )  D-('-") e 

0 

We are now ready to prove the following new theorem 
and the proof is completed. -0 which was recently formulated by Fomey [9]. 
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Fig. 8. Minimal encoder for the encoding matrix G’(D)  given in (111). 

Theorem 23: A basic encoding matrix G(D) is minimal if 
and only if the maximum degree of its b x b minors is not less 
than the maximum degree of its (b - 1) x (b - 1) minors. 

Proof: From Theorem 19, it follows that a basic encoding 
matrix G(D) is minimal if and only if it has a polynomial right 
inverse in D-l. By the invariant factor decomposition G( 0) 
has a polynomial right inverse in D-l if and only if the inverse 
of its bth invariant factor, regarded as a matrix over Fz[D-~] ,  
is a polynomial in D-l. By applying Lemma 22, the theorem 
follows. 0 

This theorem follows also from Fomey ’s global invertibility 
test [7]. 

VII. MINIMAL ENCODERS 

Notice that the minimal realization shown in Fig. 8 is 
neither in controller canonical nor observer canonical form! 
This particular minimal encoding matrix does not have a 
minimal controller canonical form, but it has, of course, an 
equivalent minimal-basic encoding matrix whose controller 
canonical form (Fig. 6) is a minimal encoder for the same 
convolutional code. 

VIII. SYSTEMATIC ENCODERS 
In a rate R = b /c  convolutional code encoded by a sys- 

tematic encoding matrix, the b information sequences appear 
among the c output sequences. Without loss of generality, 
we assume that the first b output sequences are the exact 
replicas of the b input sequences. Systematic convolutional 
encoding matrices are simpler to implement, have trivial right 
inverses, but unless we use rational encoding matrices, i.e., 
allow feedback in the encoder, they are, as we know (see 
e.g., [lo]), in general, less powerful when used together with 
maximum likelihood decoding. 

A basic encoding matrix has the greatest common divisor 
of all b x b minors equal to 1 [l]. Thus, it follows that every 
basic encoding matrix must have some b x b submatrix whose 
determinant is a delayfree polynomial, since otherwise all 
subdeterminants would be divisible by D. Remultiplication 
by the inverse of such a submatrix yields an equivalent 
systematic encoding matrix, possibly rational. Thus, we have 
the following. 

We shall now return to our favorite encoding matrix given Theorem 25 (Costello [ll]): Every convolutional encoding 
matrix is equivalent to a systematic rational encoding matrix. in Example 2, viz., 

G’(D) = D 1). (111) 

In Example 3, we showed that G’(D) is not minimal-basic, 
i.e., p < v. Its controller canonical form (Fig. 7) requires 
four memory elements but the controller canonical form of 
an equivalent encoding matrix (Fig. 6) requires only three 
memory elements. However, G‘(D) is a basic encoding matrix 
and, hence, it has a polynomial right inverse. Furthermore, it 

. has a polynomial right inverse in D-l, viz., 

1 + D-1+ 0 - 2  + 0 - 3  D-l 

0 - 2  + 0 - 3  D-1 
1 + D - l +  D-3 D-’) . (112) 

Example6: Consider the rate R = 213 nonsystematic 
convolutional encoder illustrated in Fig. 6. It has the minimal- 
basic encoding matrix 

with p = v = 3. Let T ( D )  be the matrix consisting of the 
first two columns of G(D): 

We have det(T(D)) = 1 + D + D3, and 

Thus, from Theorem 19, we conclude that G’(D) is indeed a 

Definition: A minimal encoder is a realization of a minimal 
minimal encoding matrix! T-~(D)  = 

Theorem 24 (Forney [I]): The controller canonical form 
of a minimal-basic encoding matrix is a minimal encoder. Gs,s(D) =T-l(D)G(D) 

1 - Proof: The proof follows immediately from Corollary 7 - 
0 1 + ~ + 0 3  

1 + D  D 
and Corollary 17. 

Example 5: The realization shown in Fig. 8 of the minimal 
encoding matrix G’(D) given in (111) is a minimal encoder. 
(This realization was obtained by minimizing G’(D) using a 
standard sequential circuits minimization method.) 0 1  



1232 IEEE TRANSACTIONS ON INFORMAITON THEORY, VOL. 39, NO. 4, JULY 1993 

Fig. 9. Observer canonical form of .the systematic encoding matrix in 
Example 6. 

Its observer canonical form requires a linear sequential circuit 
with feedback and p = 3 memory elements as shown in Fig. 9. 

The systematic encoding matrix in the previous example 
was realized with the same number of memory elements as 
the equivalent minimal-basic encoding matrix (Example 3). 
Hence, it is a minimal encoding matrix. Every systematic 
encoding matrix can be written (15) 

G(D)  = ( l a  R(D))7 (113) 

where I b  is a bx b identity matrix and R(D)  a b x  (c-b) matrix 
whose entries are rational functions of D. Such a systematic 
encoding matrix G ( D )  has a trivial right inverse, viz., the 
c x b matrix 

G-l (D)  = (5 ) .  
which is polynomial in both D and D-'. Hence, it follows 
from Theorem 19 that this minimality holds in general. 

Theorem 26 (Forney [I]): Every systematic encoding ma- 
trix is minimal. 

An Algorithm to Construct a (Minimal) Systematic Encod- 
ing Matrix Equivalent to a Given Minimal-Basic Encoding 
Matrix: 

1) Find a b x b nonzero minor of the minimal-basic encoding 
matrix G ( D )  and let it be the determinant of the b x b 
submatrix T ( D )  of G(D) .  

2) Compute 

T- l  ( W P )  7 

which is a (minimal) systematic encoding matrix equiv- 
alent to G(D) .  

3 )  IF T- l (D)G(D)  # (la R(D) ) ,  THEN permute the 
columns of T- l (D)G(D)  and form G,,,(D) = 
(la R(D)) ,  where G,,,(D) is a (minimal) systematic 
encoding matrix that encodes a convolutional code 
which is equivalent to the code that G ( D )  encodes. 

Example 7: Consider the rate R = 214 minimal-basic 
encoding matrix 

D 1 D 1 + D  
1 + D  D 1 G ( D )  = 

with p = v = 2. Let 

- y(4) 

Fig. 10. Minimal realization of the systematic encoding matrix in Example 7. 

Then, we have 

-(' - D 

1+D+D2 1+D+D 
Clearly, Gsys (0) has neither a minimal controller canonical 
form nor a minimal observer canonical form but by standard 
minimization techniques for sequential circuits we obtain the 
minimal realization shown in Fig. 10. 

IX. CONCLUSION 

In this semitutorial paper, we have given a summary of some 
of Fomey's previous work along with a few new contributions. 
Most important among the new results are Theorem 19d), the 
surprising fact that there exist basic encoding matrices that 
are minimal but not minimal-basic, the existence of basic 
encoding matrices that are nonminimal, and a recent result, 
due to Fomey, which states exactly when a basic encoding 
matrix is minimal (Theorem 23). 

X. COMMENTS 

Current work on minimal encoders over groups (e.g., For- 
ney and Trott [12], Loeliger and Mittelholzer [8]) constructs 
canonical minimal encoders from a set of shortest linearly 
independent code sequences ("trellis-oriented generators"), a 
type of construction that may have been first published by 
Roos [13]; see also Piret [14]. In Fomey [7], the approach of 
[l] is extended to generalized minimal encoders that are in 
controller canonical form but not necessarily polynomial. 
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