
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Template Based Recognition of On-Line Handwriting

Sternby, Jakob

2008

Link to publication

Citation for published version (APA):
Sternby, J. (2008). Template Based Recognition of On-Line Handwriting. [Doctoral Thesis (monograph),
Mathematics (Faculty of Engineering)].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/31a7a409-a754-43f8-ae21-35f383468618

Preface

I am always doing that which I cannot do, in order that I may
learn how to do it.

Pablo Picasso

ii

List of Papers

[JS1] Jakob Sternby, Jonas Andersson, Jonas Morwing and Christer
Friberg. On-line Arabic Handwriting Recognition With Tem-
plates. In Proc. of the First International Conference on Fron-
tiers in Handwriting Recognition (2008), Accepted.

[JS2] Jakob Sternby. Graph Based Shape Modeling for On-line Char-
acter Recognition. (2008), Manuscript.

[JS3] Jakob Sternby. An Additive Single Character Recognition
Method. In Proc. of the Tenth International Workshop on
Frontiers in Handwriting Recognition (2006), pp. 417-422.

[JS4] Jakob Sternby. Prototype Selection Methods for On-line HWR.
In Proc. of the Tenth International Workshop on Frontiers in
Handwriting Recognition (2006), pp. 157-160.

[JS5] Jakob Sternby. Class Dependent Cluster Refinement. In Proc.
18th International Conference on Pattern Recognition (2006),
pp. 833-836.

[JS6] Jakob Sternby. Frame Deformation Energy Matching of On-line
Handwritten Characters. In Proceedings of the 10th Iberoamer-
ican Congress on Pattern Recognition (2005), pp. 128-137.

[JS7] Jakob Sternby. Structurally Based Template Matching of On-
line Handwritten Characters. In Proc. of the British Machine
Vision Conference 2005 (2005), pp. 250-259.

[JS8] Jakob Sternby and Christer Friberg. The Recognition Graph
- Language Independent Adaptable On-line Cursive Script
Recognition. In Proc. of the 8th International Conference on
Document Analysis and Recognition (2005), pp. 14-18.

[JS9] Jakob Sternby and Anders Ericsson. Core Points - A Frame-
work For Structural Parameterization. In Proc. of the 8th In-
ternational Conference on Document Analysis and Recognition
(2005), pp. 217-221.

[JS10] Jakob Sternby and Anders Holtsberg. Core Points for Segmen-
tation and Recognition of On-line Cursive Script. In Proceed-
ings SSBA’05 Symposium on Image Analysis (2005), pp. 37-40.

iii

[JS11] Jakob Sternby. On-line Signature Verification by Explicit so-
lution to the Point Correspondence Problem. In First Inter-
national Conference on Biometric Authentication (2004), pp.
569-576.

Organization of the thesis

This thesis contains a sufficient set of strategies for implementing a template
based on-line handwriting system for recognition of words or characters from
arbitrary scripts. The outline of the thesis will follow a typical textbook ap-
proach where subproblems and the tools needed to solve them are presented in
order of need. A generalized description of the handwriting recognition prob-
lem as well as an overview of state-of-the-art techniques starts off the thesis in
Chapter 2. Preprocessing, normalization of input and segmentation strategies
are covered in Chapter 3. The simplest recognition case of isolated single char-
acters including the specific additivity concept for template distance functions
are explained in Chapter 4. Extension of the additive template distance func-
tion with graphs to handle connected script as well as noisy input is found in
Chapter 5. Many connected scripts have the characteristic that strokes belong-
ing to the same character may not always be written together. A strategy for
treating this property with the connected script recognition described in Chap-
ter 5 is found in Chapter 6. This is followed by an explanation of how to add
linguistic knowledge efficiently to the recognition process by utilizing a graph
structured dictionary in Chapter 7. Some automatic techniques for improving
the template modeling through specialized clustering algorithms are described
in Chapter 8. Since the recognition system implements the strategies presented
in Chapters 3-8, experiments have been gathered in the dedicated Chapter 9.
The final chapter contains a brief summary and provides some suggestions on
further developments to strategy presented in this thesis.

iv

Acknowledgments

This work has been funded by the Swedish Research Council (diary nr. VR
2002-4249) and Zi Decuma and I am very thankful for the opportunity that was
given to me. I am also grateful for several generous grants from the Lannér-
Dahlgren foundation, the Kungliga Fysiografiska sällskapet as well as from
Nordqvists foundation, enabling me to attend and present my work at several
international conferences.

Obviously I would never have been able to write this thesis if it weren’t for
my inspiring supervisors, Kalle Åström and Rikard Berthilsson. They are two
of the founders of Decuma AB, where I was just recently employed when this
project started. They are notoriously enthusiastic and have provided lots of
encouragement as well as valuable input, especially during the first critical years
on this road.

The atmosphere at Decuma has been and still is truly stimulating, filled with
people thirsty for knowledge. Although I feel indebted to everyone who has
worked there during this period, the permanent staff consisting of Jonas An-
dersson, Jonas Morwing and Christer Friberg deserve special credit. Especially
during the last year they have all largely contributed to the progress of the
thesis through valuable discussions as well as hard work.

Sincere thanks also to the people in the vision group at Lund Institute of
Technology. Particularly during my first years as a PhD student, the company
of the other researchers in the vision group made the time spent reading and
studying so much more interesting.

Friends, relatives and (more recently) in-laws have always been an important
part of my life, and you all deserve credit. Many of you have motivated me by
manifesting an unwavering belief in my work despite having but a clue of what I
am doing - that is friendship. In particular I want to thank my parents, brother
and sister and their spouses for being ever supportive during this period.

Finally, and most important throughout my work, has been the continued sup-
port of my beloved wife, Hanna. Our son Viktor has certainly also contributed
to my work by constantly providing a fun and stimulating escape from the
academic reality.

Jakob Sternby

Lund, April 2008

Notation

In general the jth element X of a set will be denoted by Xj . The aim has been
to maintain a consistent notation throughout the thesis using the notation listed
below. Where this is not the case the meaning of a certain notation should be
possible to derive from the context.

X A sample of online handwriting
X A penup reordering variation of X
Xj The jth stroke of sample X
Λi The ith segment of X

ΛXj

i The ith segment of stroke j in X
p A point (x, y) ∈ R2 in the input coordinate sys-

tem
py The vertical coordinate of a point p
px The horizontal coordinate of a point p
X The sample space
Xk The sample space of class k
F The set of monotone increasing functions f :

Z → Z

f A point in a feature space
Fm Feature space of dimension m
S(X) The segmentation points of the sample X
A A segment arctype
M A flexible model of a character

vi

T A static template of a character
T A template sequence
T Space of template sequences
D The set of all templates (database)
Φ Alignment function
O Segment connection ∈ {+,∪}

Graph Notation

S A segmentation graph
R A recognition graph
d A partial distance value as for an edge
D A path distance
e An edge in the segmentation graph
Te The template corresponding to edge e
N A graph node
E A set of edges
v A path in the recognition graph
V A set of paths
BS Segmentation graph beam width
BI Segmentation graph incomplete beam width
BR Recognition graph beam width
BD Diacritic search space beam
BU Diacritic unmatched edge beam width

Abbreviations

ASM Active Shape Model
DP Dynamic Programming
DTW Dynamic Time Warping
CRF Conditional Random Field
HMM Hidden Markov Modeling
HWR Handwriting Recognition
kNN k-Nearest Neighbor
LVQ Learning Vector Quantization
MAP Maximum A Posteriori
ML Maximum Likelihood
MLP Multi Layer Perceptron
PCA Principal Components Analysis
SCR Single Character Recognition
SOM Self-Organizing Map
SVM Support Vector Machines
TDNN Time Delay Neural Network
UCR Unconstrained Handwriting Recognition
VQ Vector Quantization

viii

Contents

Preface i

List of Papers . ii

Organization . iii

Acknowledgements . iv

Notation v

Abbreviations vii

Contents ix

1 Overview 1

1.1 Contributions . 3

2 Handwriting Recognition 7

2.1 On-line Handwriting Recognition 8

2.2 Single Character Recognition Methods 11

2.3 Statistical Models . 13

2.4 Template Based Methods . 17

x Contents

2.5 Syntactic . 19

2.6 Implicit Modeling . 19

2.7 Combination Methods . 23

3 Preprocessing And Segmentation 25

3.1 Introduction . 26

3.2 Segmentation . 27

3.3 Preprocessing . 43

3.4 Experiments . 46

4 Additive Template Matching 47

4.1 The Frame Deformation Energy Model 48

4.2 Feature Space . 49

4.3 Distance Function in Fm . 54

4.4 Segmented Template Matching 55

5 Connected Character Recognition With Graphs 59

5.1 Introduction . 60

5.2 Connection Properties . 61

5.3 Segmentation Graph . 65

5.4 Noise Modeling . 72

5.5 The Recognition Graph . 75

5.6 Preprocessing Parameters . 79

6 Delayed Strokes And Stroke Attachment 81

6.1 Introduction . 82

6.2 Diacritic Modeling . 83

6.3 Pen-up Attachment . 85

6.4 Dynamic Treatment Of Diacritic Strokes 86

7 Application of Linguistic Knowledge 97

7.1 Introduction . 98

7.2 Contextual Shape . 100

Contents xi

7.3 Static Lexical Lookup . 103

7.4 Dynamic Lexical Lookup . 106

7.5 Conclusions . 106

8 Clustering And Automatic Template Modeling Techniques 107

8.1 Introduction . 108

8.2 Holistic Clustering . 109

8.3 Segmentation Definition Database 110

8.4 Forced Recognition And Labeling 110

8.5 Segmental clustering . 113

8.6 The Variation Graph . 114

8.7 Recognition with Variation Graphs 117

9 Experiments 119

9.1 Introduction . 120

9.2 Datasets . 120

9.3 Single Character Recognition . 123

9.4 Unconstrained Character Recognition 126

10 Conclusions and Future Prospects 139

Bibliography 143

Index 157

A UNIPEN Train-R01/V07-1a Allograph Content 159

A.1 Training Set Allograph Distribution 159

A.2 Test Set Allograph Distribution 162

xii Contents

CHAPTER 1

Overview

To know that we know what we know, and to know that we do not
know what we do not know, that is true knowledge.

Nicolaus Copernicus

2 Chapter 1. Overview

S
oftware for recognition of handwriting has been available for sev-
eral decades now and research on the subject has generated several
different strategies for producing competitive recognition accuracies,
especially in the case of isolated single characters. From a commer-

cial perspective, the task of producing handwriting recognition that will be
accepted and ultimately a preferential choice of input method for users of de-
vices such as mobile phones is not simple. Some crucial aspects are that (1)
recognition accuracy is a subjective matter highly dependent on the data sets
used for experiments and (2) in terms of user satisfaction, the types of errors
made by the system also affect the opinion on system performance. Typically,
users of a system are more lenient in judgement of performance in terms of
accuracy when they have more understanding of why certain characters are
confused. Such an understanding also provides users with the necessary tools
to adapt (even if the adaptation is subconscious) and use writing styles that
generate less conflicts and thus a higher recognition accuracy. Ultimately such
information could also be used to explicitly allow users to interact with the sys-
tem and decide the types of shapes that should be associated to each output
symbol. This paradigm contrasts somewhat to the methods presented during
the past decade of research, where the implicitly modeled recognizers that can
be automatically trained, tested and compared on a given data set have been
favored.

Since the work in this thesis has been conducted in cooperation with the hand-
writing recognition company Zi Decuma (with funding from Zi Decuma and the
Swedish Research Council 1), the focus has been on improving technology for
the type of recognition system described above, where the use of explicit model-
ing makes recognition limitations transparent. Other factors that are critically
important to commercial systems are memory consumption and response time,
as stated in [5]. Much through the highly competent implementations by co-
workers at Zi Decuma, the experimental results of the system presented here
are very competitive in this respect and clearly within the scope of current
hardware limitations even for simpler mobile platforms.

The problem of recognizing samples of handwriting with arbitrary connections
between constituent characters (unconstrained handwriting) adds considerable
complexity in form of the segmentation problem. In other words a recognition
system, not constrained to the isolated single character case, needs to be able
to identify the location in the sample where one letter ends and another be-
gins. In view of published results during the last decade, the most common
technique for solving this problem has been to train multi-layer networks for
partial character recognition and combine results by means of sequence oriented

1Vetenskapsr̊adet, http://www.vr.se

1.1 Contributions 3

modeling such as Hidden Markov Models. The work in this thesis will recapit-
ulate some of the simplest and most basic pattern recognition techniques and
step-by-step show how these can be extended to tackle the difficulties inherent
to the unconstrained recognition problem. Being a completely template based
approach with a possibly transparent database, there is explicit information on
the types of samples that can be correctly recognized by the system. Thus the
system provides some intuition regarding the types of errors (confusions) that
the system is prone to make.

Due to commercial requirements, the primary system reported in the experi-
mental section of the thesis was developed for Arabic unconstrained recognition,
but the underlying techniques are fully applicable to other scripts, and just re-
quire the production of another shape definition database. This versatility and
intrinsic sequential property is common to HMMs and in many respects the
work of this thesis can be viewed as a non-probabilistic exploration of sequence
based recognition.

1.1 Contributions

Although the topic and the fundamental approach taken to recognition in this
thesis is the same as in my licentiate thesis [113], there are important differences
and none of the experiments conducted for that thesis have been replicated
here. The main reason for this is that the complete recognition implemen-
tation has been reimplemented in this thesis. A preliminary version with all
components presented here was implemented mainly in matlab and with my
guidance this has been ported to ANSI c-code mainly by my co-workers at
Zi Decuma. In the experimental section some of the experiments have been
conducted in the matlab environment (single character experiments) and some
with the C-implementation. Some of my previous publications did not fit the
scope of the thesis and have not been included here [112, 117, 118]. From
my point of view the most important contributions is the additive concept for
template methods presented in [116], the diacritic handling partly included in
[120] and the variation graph concept in [119]. A complete breakdown of the
contributions for each chapter is given below. For all of the papers, the roles of
included co-authors have been confined to (1) being discussion partners or (2)
implementing a certain part of the experimental setup and they have not partic-
ipated in the writing process. In all cases the contributions of these individuals
have been specified below.

The contents of Chapter 3 mainly derive from papers [121], [115] and [114].
Segmented shape description, Dijkstra Curve Maximization and the arctype
approximation based on Dynamic Programming are the main contributions

4 Chapter 1. Overview

presented in this chapter. Of these, the segmented shape description originated
from discussions about applying Active Shape to handwriting recognition, but
the actual use of segmentation as alignment prior to PCA can be attributed to
the author.

The main contributions of Chapter 4 are the features used in recognition, es-
pecially the relative features which induce the Markov characteristic in the
sequential template matching, the noise handling, and the additive concept, all
more or less derived from [116]. Of these, the original length ratio and con-
nection angle features were initially proposed by the author while the relative
positions are complementary suggestions by Jonas Andersson derived from the
C-implementation of the core system from Matlab.

Chapters 5 and 7 originate in papers [123] and [122] and the results from these
papers were also included in my licentiate thesis [113]. In particular the first of
these papers [123], presenting a template based system with a single segmen-
tation graph with equal conceptual contributions from the author and Anders
Holtsberg later proved not to contain any remarkable findings compared to pre-
vious research, but failure to find prior art such as [50] led us to believe that a
template based segmentation graph was a new contribution. Nevertheless fur-
ther development led to the main contribution of the chapter, the dual graph
structure presented in [122], where path expansion can be done with simulta-
neous path-wise adjustments and fast lexical validation. In this last paper, the
system and ideas can be attributed to the author while the lexicon and dictio-
nary functions were implemented by Christer Friberg. In the latest incarnation
of the system the segmentation graph was implemented in C by Jonas Ander-
sson and some of the ideas of various strategies for building the segmentation
graphs not included in previous papers can be attributed to discussions with
Andersson.

The dynamic handling of the combinatorial problem of diacritic association is
the main contribution of Chapter 6. Although the core algorithms and ideas
as presented in [120] are fathered by the author, many aspects of the imple-
mentation in C were based on fruitful discussions with Jonas Morwing who
implemented the second graph structure, the recognition graph, in the C ver-
sion of the system used in the Arabic experiments.

The variation graph including the rudimentary algorithms for generative and
discriminative training is the contribution of Chapter 8 and it will also be
published as [119].

The C implementation used in the Arabic experiments in Chapter 9 has to a
large extent been implemented by Jonas Andersson, Jonas Morwing and Chris-
ter Friberg in addition to the author. The respective parts of the implemen-

1.1 Contributions 5

tations of the first two have already been mentioned above. Christer Friberg
did most of the work in designing the segment definition database (which cor-
responds to the untrained database in the experiments). In particular Jonas
Andersson has put a large effort into memory and speed optimizations of the
code, resulting in the commercially highly competitive figures presented for
various parameter settings in the experiments.

6 Chapter 1. Overview

CHAPTER 2

Handwriting Recognition

Without words, without writing and without books there would be
no history, there could be no concept of humanity.

Hermann Hesse

8 Chapter 2. Handwriting Recognition

D
espite the appearance of type-writers and other types of key-
based input systems, handwriting will surely maintain its position
as the most versatile way of recording text. It is much easier to
adapt to various kinds of recording devices and it is independent of

the script - as opposed to fixed keyboards which only work for a particular
set of characters. It is also a powerful complement to the spoken word. For
languages based on ideographic scripts, it is for instance common to explain
the meaning of a homophone by gesturing the shape of the character meant.
The historical and cultural importance goes without saying. The indisputably
weakest characteristic of handwriting which has driven the development of al-
ternative methods for recording text, such as type-writers, is the human factor.
Handwriting is so individually specific that it is even used in forensic analysis
for identification. Somewhat like English is the lingua franca of the spoken
word, normalized handwriting in form of the printed character is a common
written language recognized by writers independently of their specific hand-
writing style. This lack of ambiguity makes buttons with printed characters
indeed a very powerful way to enter text into machines. At the dawn of the
computer area there were also no reliable devices for capturing handwriting
digitally, thereby definitely not leaving handwriting as an option. Several years
of intense research rendered more reliable ways to capture handwriting, but
for the past decade the presence of handwriting as an input method for ma-
chines has been limited to high-end mobile phones and other comparatively
marginal devices such as PDAs and later tablet PCs. Recently, various forms
of handwritten input is receiving renewed attention along with the development
of more complex user interfaces and larger screens. Such visual requirements
is driving a rejuvenated search towards input alternatives that are free from
space consuming hardware such as keyboards.

2.1 On-line Handwriting Recognition

The setting of the handwriting recognition problem depends greatly on the de-
vice capturing the handwriting. The touch-sensitive screens in mobile phones,
PDAs and tablet PCs mentioned above can produce what is referred to as on-
line information implying that it contains the information of the movement of
the writing-tool. The case where the movement is unknown but the resulting
pictographic information is at hand is called off-line information. In the hand-
writing recognition community off-line handwriting recognition particularly in
the form of OCR (Optical Character Recognition) dates back to the days of
the first optical scanners, whereas the on-line recognition research began first
when the trace of the writing (the order in which the pen moved to produce
the writing) was made available through early digitizing tablets. Off-line in-

2.1 On-line Handwriting Recognition 9

On-line Capturing Device

Preprocessing

Character Recognition

Result Display

Figure 2.1: A schematic view of an on-line handwriting system

formation can always be produced easily from on-line information whereas the
opposite is much more difficult. In this aspect a recognizer used for off-line
recognition can be used for on-line recognition problems whereas the opposite
is usually not true. From a mathematical point of view the off-line writing is a
two-dimensional function of coordinate space R2 → R producing one pixel value
for every coordinate in the image, whereas on-line writing can be viewed as a
one-dimensional curve R → R2 so that each parameter value corresponds to a
coordinate. The thesis investigates the treatment of handwriting in the form
of curves and consequently it is limited to on-line handwriting. A schematic
view of an on-line handwriting system is seen in Figure 2.1.

2.1.1 On-line Parameter Space

As noted above, on-line handwriting can be seen as a one-dimensional structure
since each point (x, y) on the piecewise continuous curve λ(t) constituting the
handwriting can be described by a single parameter t i.e. λ : R → R2. As
mentioned above this can not be true in the off-line case since each pixel-
value depends both on the vertical and horizontal position of the pixel. The
parameter t above can be thought of as a time marker for the writing, where
the first value corresponds to where writing was started (usually when the tip
of the writing-tool meets the capturing surface) and the last value to where
writing was stopped. This naturally introduces the next concept in on-line
handwriting: sampling. Since the device capturing the handwriting is some

10 Chapter 2. Handwriting Recognition

form of a machine it unavoidably converts the piecewise continuous handwriting
curve λ into a finite set of discrete points X - it thereby samples the curve.
In terms of the previously mentioned parameter t it can also be said that each
such way of sampling the same curve is a parameterization of λ since for each
corresponding X = {(xs, ys)}, s = 1, . . . , n there is a non-decreasing function
f : R → R such that λ(f(s)) = λ(ts) simply because all points on any discrete
sampling of a continuous curve also exists on the original curve.

Reparameterization Since each sample of on-line handwriting consists of a
discrete set of coordinate pairs as seen above, it can also be viewed as a single
point in a high dimensional space. This provides a natural way of comparing
such objects by simply evaluating the distance between such points in the
high dimensional space. The problem with this however is that the dimension
depends on the number of sample points. For this reason it is common to
reparameterize the curve into something more suitable for recognition purposes.
Some of the most common methods are given below.

Definition 2.1.1. Arclength Parameterization
For a fixed number of n sample points and a curve γ(t) ∈ R2, t ∈ [1, n] the
arclength parameterization of γ has the property

∫ t=j+b

t=j

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

dt = kb, k > 0, b ≥ 0.

For this reason a discrete curve X = (x1, . . . , xn) is said to be parameterized
by arclength if the points are uniformly distributed on the curve. The obvious
weakness of the arclength parameterization strategy is that it fails to ensure
correspondence between points of the same index in different samples of the
same symbolic interpretation. A remedy to this problem is the versatile strategy
of DTW as presented in Section 2.4.2.

For Chinese characters it is common to exploit the fact that each character often
fits nicely into a square S[a,b,c,d] = (x, y) ∈ R2|x ∈ [a, b], y ∈ [c, d], a, b, c, d ∈ R.
This way the character can be normalized to a fixed size and the obtained
measure on relative distances can be used to perform polygonal approximation
reparameterization as defined in Definition 2.1.2.

Definition 2.1.2. Polygonal Approximation Parameterization
For a fixed value η, the polygonal approximation parameterization of γ ∈
S[a,b,c,d] has the property that there is a number nη such that

max
i∈(2,...,nη)

max
t∈[i,i+1]

|(γ(t) − γ(i)) · (γ(i + 1) − γ(i))|
‖γ(i + 1) − γ(i)‖ < η.

2.2 Single Character Recognition Methods 11

2.2 Single Character Recognition Methods

There are various ways to classify handwriting recognition strategies and, in
general, terminology suffers from inconsistent naming conventions. The naming
of one system may correspond to a technique used to solve part of a problem
in another thereby obfuscating the process of comparing different methods and
identifying their respective merits and deficiencies. The categorization provided
here is aimed at the pure shape matching techniques used within handwriting
recognition systems and not the complete systems. Therefore the discussion in
this section is limited to the SCR case.

In principle these methods can be divided into two main categories, also shown
with subcategories in Figure 2.2.

• Explicit Modeling which uses a database lookup to identify the most prob-
able recognition target.

• Implicit Modeling where the modeling is implicitly designed by the system
through a training procedure.

From a statistical point of view all recognition methods strive at finding the
optimal decision boundary in sample space. The differentiator between the two
paradigms stated above can be said to be that the explicit modeling uses a priori
information in the system design phase (i.e. when modeling the recognition
targets). As stated earlier the merit of such a design is that the implementor of
such a system has more control over the recognition procedure (i.e. recognition
target support) but naturally it may require more work to attain the maximal
a posteriori performance.

2.2.1 Modeling

The term explicit modeling for on-line pattern recognition here implies that the
targets of recognition are defined through an observable model. In other words,
each recognition target is defined through a set of properties often enabling a
graphical view of each target. Recognition is thereby conducted by compar-
ing (or matching) input to all such models. This in turn can be accomplished
through similarity (proximity) measures, distance functions or probability cal-
culations.

Depending on the method used for recognition models can be said to be static
or flexible. Static models will from now on be called templates and these will
be used directly through some form of a distance function to obtain a measure
on how well the sample matches the template. Flexible models on the other

12 Chapter 2. Handwriting Recognition

On-line Pattern Recognition

Explicit Modeling Implicit Modeling

yStatisticaly Syntactic Template Based Neural Networks SVM

HMM Subspace DTW

Figure 2.2: A classification tree of different methods used in on-line hand-
writing recognition

hand implicitly contain some variation and thus the comparison of sample will
be made to the closest variation of the flexible model.

2.2.2 Clustering

A difficulty when comparing the explicit recognition methods is that the con-
tent of the set of models has a crucial bearing on recognition performance.
Clustering algorithms are often employed to partition each target character
class into submodels usually referred to as allographs. The number of such
clusters, the choice of cluster representative (model) and the clustering method
used to arrive at them all have bearing on the recognition results.

For the dynamic modeling methods such as those covered in Section 2.3 the
clustering process is required in order to limit the shape variability modeled by a
single model, since increased modeling complexity (handling larger variability)
leads to reduced discriminatory power (in the form of larger parameter variance)
[49]. For static template comparisons it is natural to use the template distance
function also in the clustering stage, this may be more difficult for flexible
models such as HMMs [64], although it is possible to use model probability in
combination with the k-means algorithm [91].

For static template methods there are two fundamentally different approaches
to the clustering problem, where typically the complexity (and thereby dis-
criminatory power) of the discrimination function has determined the choice.

2.3 Statistical Models 13

For naive matching functions such as simple Euclidean distance requiring large
amounts of templates it is common to use template set editing schemes which
aim at removing templates of little use to the discrimination process, e.g. tem-
plates which are surrounded by templates from the same class [28]. Optimally
this will leave a template defined boundary around each class in sample space
(also called the Voronoi tesselation [49]) and in this respect the determination
of one-against-all support vectors (cf. Section 2.6.2) falls into this category. The
other approach more often used in HWR under the assumption that only a few
clusters will be used as templates is to use classical unsupervised classification
such as the k-means algorithm [56] or some hierarchical agglomerative method
[134]. Both of these methods are however generative and naturally the optimal
number of clusters k or the dendrogram threshold value T can not be deter-
mined with certainty. In lack of the optimal value, many researchers resort
to empirical determination of suitable values [8, 77] there are some methods
that try to find a reasonable value automatically [91, 93]. It is also possible
to update an initial clustering by modifying templates through LVQ [60] or by
comparing surrounding classes directly with the recognition function [117, 118].

2.3 Statistical Models

The main benefit of using a statistical model for handwriting recognition is the
possibility to describe the intrinsic variations in a compact manner through a
set of parameters that can be inferred from a training set. A weakness of many
of these models is that they are generative to their nature. In other words the
modeling for each class is conducted without influence from neighboring classes
unlike more genuine discriminative methods such as Neural Networks.

2.3.1 Markov Modeling

Hidden Markov Modeling (HMM) has been a popular approach to the
handwriting recognition problem ever since its introduction in the late 80s.
Prior to this it had been applied to speech recognition with pioneering work
of L.R. Rabiner, author of several early papers in this field as well as the
standard tutorial in [96]. A Hidden Markov Model M of a shape is defined as
a sequence of hidden states (ξ1, . . . , ξn) along with state transition probabilities
A = [aij]

n
i,j=1 where aij denote the transition from state i to j, and probability

density functions (b1, . . . , bn) such that

bj(f) = p(f|φ = ξj), j = 1, . . . , n (2.1)

corresponds to the probability of observing a feature set f given that the hidden
state φ is ξj . The recognition process of a sample X with HMMs is then

14 Chapter 2. Handwriting Recognition

M: ξ1, b1 ξ2, b2 ξ3, b3 ξ4, b4

a11 a22 a33 a44

a12 a23 a34

X : f1 f2 f3 f4 f5

Φ
∗
: Φ1 Φ2 Φ3 Φ4 Φ5a12 a22 a23 a34

Figure 2.3: A graphic view of a linear Hidden Markov Model with 4 states.
The most likely state sequence corresponding to the sample X with input se-
quence (f1, . . . , f5) is shown as Φ∗.

straightforward and and the class index I(X) of X is optimally determined
according to

I(X) = argmaxj{p(X |Mj)}. (2.2)

The solution to (2.2) can be obtained through the forward-backward algorithm
[96]. However, it has been shown that p(X |Mj) is strongly correlated to
p(X, Φ∗|Mj), where Φ∗ is the most likely state sequence of Mj given X [7].
Since the latter is effectively computed by the Viterbi algorithm [129] it is often
preferred for time complexity reasons.

A common set of allowed transitions, often referred to as a linear HMM topol-
ogy, are loop (aii > 0) and forward (ai(i+1) > 0) transitions [61, 4, 7, 53, 68].
Topologies that prevent backward state connections are called Bakis or left-
to-right models and due to the sequential nature of handwriting curves these
are probably the only topologies used in HWR. There are fewer examples of
topologies allowing state skipping (aij > 0, j > i + 1) and in these cases the
skip is usually restricted to one or two states [28, 35, 107]. So in general for
handwriting the transition matrix A has non-zero elements only in elements
within a certain proximity (depending on the number of allowed skips) of the
diagonal.

An important parameter when designing a recognition system based on HMM
is the number of hidden states. Naturally a larger number of states allow a
more exact description but such an increase in model complexity also require
more training data in order to avoid overfitting [49]. Segmentation analysis has
been proposed as one way to determine this number from training data [64].

Being a statistical model, each HMM M is dependent on training data. The
parameter estimation of each such model (referred to as the training) is usu-

2.3 Statistical Models 15

ally conducted with either the Baum-Welch algorithm (which is also called the
EM-algorithm) or through Viterbi-training [7]. The Baum-Welch training is an
iterative procedure based on the maximum likelihood (ML) criterion. Several
researchers have recognized this as an intrinsic weakness of the HMM con-
cept, as the correct training criterion from a discriminative perspective is the
maximum a posteriori (MAP) criterion [14, 83]. Another weakness of first-
order HMMs when applied to on-line HWR is the lack of a global perspective.
Models which have similar hidden states but with slightly different transition
probabilities are difficult to discriminate [4]. Hu et al. proposes an augmented
HMM system to improve this situation by adding features that capture global
characteristics of the shape [53].

In the beginning of the 90s HMM was one of the most exciting methods for
HWR and some early papers reported that HMMs were able to produce better
recognition results than DTW (cf. Section 2.4) for instance [11]. A compari-
son of state-of-the-art methods on a benchmark set of on-line digits, however,
provides no support stating that HMM based systems would provide higher
recognition accuracies than Neural Networks [97] or even modern variations of
DTW [3, 8, 77]. Instead the merits of HMMs are their intrinsically sequential
nature [28] rendering extensions to recognition of connected sequences of char-
acters straightforward [4, 53, 108]. The generative nature of the HMM training
(using the ML criterion) has inspired many to replace the shape recognition
component by Neural Networks although maintaining the HMMs to combine
partial shape recognition results [14, 22, 101, 55].

Conditional Random Fields (CRF) A recent interesting and well-cited
development which reduces some of the known problems with HMMs are Con-
ditional Random Fields [62]. CRFs are conditional models that model the
conditional probability distribution of a label sequence given the observation
sequence directly instead of modeling joint distribution of observation and la-
bel. There are still few publications of applying CRFs to the problem of HWR
but some encouraging initial results are provided in [34] showing the increased
discrimination power of modeling.

2.3.2 Subspace Based Recognition

Principal Component Analysis (PCA) is a popular method for describ-
ing shape variation. Basically this method sort the features of sample space
according to prevalence through eigenvalue decomposition. By fixing the num-
ber of Eigenvalues N used for each character class k, the explicit models Mk

can thus be defined as a subspace in the space Xk of all samples with class k

16 Chapter 2. Handwriting Recognition

as

Mk = u1, . . . , uN and λjuj = C(X, X)uj , (2.3)

where λj is the jth largest eigenvalue and uj the corresponding eigenvector to
the covariance matrix C(X, X). An intuitive way to perform recognition is then
to find the best approximating model for a sample X as the model with the
smallest orthogonal distance to the sample. It has however been observed that
the orthogonal distance is insufficient for discriminating in sample space and
one remedy has been to add a distance component to the outer bounds of the
distribution of the samples in subspace [32].

Active Shape A method closely related to PCA for modeling shape variation
is Active Shape as introduced by Cootes et al [51]. In Active Shape eigenvalue
decomposition is performed on an estimate of the covariance matrix Sk of the
samples X ∈ Xk.

An Active Shape Model (ASM) M = (µ, U) is then defined as the mean shape
µ along with the subspace spanned by N eigenvectors U = {Uj}N

j=1 of Sk

and a set of constraints ~σ0 = (σ10, . . . , σN0) on the variations corresponding
to how much the model can be extended in the direction of a certain base
(eigenvector) of the subspace. Usually the constraints are given as a number
of standard deviations. An intuitive way to use an Active Shape Model in
recognition is then to find the closest variation to sample in the constrained
subspace by searching for the parameters ~b = (b1, . . . , bN) in the constrained
volume of R

N bounded by ~σ0 realizing

~b∗ = argmin
~b,|b|≤σ0

‖X − µ − U~b‖. (2.4)

Recognition can then be achieved simply by choosing the class j with model Mj

fulfilling minj d(Mj , X) = minj ‖X − µj −Uj
~b∗j‖. It is interesting to note that

this distance function corresponds well to the modified PCA distance proposed
in [32].

An important weakness of all PCA based methods is the alignment problem.
As will be shown later in Section 3.2.4, eigenvalue decomposition on arbitrarily
sampled characters often incorporate parameterization variations causing the
subspace of eigenvectors to include distorsions of some salient features. The
two applications of ASM found in the literature attacked this problem from two
directions. Mitoma et al. aligned samples by DTW (cf. Section 2.4) prior to the
Active Shape analysis for on-line digit recognition [77]. Sridhar et al. performed
the same operations in opposite order, in other words, started to find the best

2.4 Template Based Methods 17

set of parameters and then used DTW as the distance function between sample
and the resulting model in on-line Tamil recognition [110]. Shi et al. have used
Active Shape Models together with an image distance transform to search for
radicals in images (off-line) of Chinese handwritten characters [105].

Curve Space Invariants Another interesting method which is not based on
PCA but shares strategy of working with curve space is the invariant technology
proposed by Berthilsson et al. [15]. In very simplified terms, the idea behind
this method is to define each allograph model as a curve space, invariant to
a certain set of transformations (e.g. positive similarity transformations). As
for the PCA-based methods the projection to the curve space of the model is
calculated. Recognition is then enabled by a proximity distance µ evaluating
how similar the two spaces are through the Hilbert-Schmidt norm

µ = ‖PMQX‖HS , (2.5)

where PM and QX denote the orthogonal projections to the curve space of
model M and sample space of X respectively.

Lately, this technology has also successfully been employed for the recognition
of Cyrillic [31] and Arabic scripts [10].

2.4 Template Based Methods

Given previous explicit modeling methods it is here necessary to clarify the
meaning of Template Based as used in this thesis. Unlike the flexible statistical
models a template is a static representation of a character in sample space.
Template based methods are very intuitive and simple in this sense since all
that is required is a distance function in sample space X to construct a classifier.
The problem with handwriting recognition however is that the sample space
is a strange space which is not only of high dimension but which varies in
dimensionality from sample to sample. Traditional template based matching
methods either employ a distance function that can compare objects of different
dimensions or try to fix the dimensionality of input in some way. Usually some
combination of the two strategies are used in a template matching method.
Another problem is that the high-dimensional points may be parameterized in
different ways thereby failing to assert that the dimensions actually correspond
to each other.

18 Chapter 2. Handwriting Recognition

2.4.1 The Database

One of the major merits of the template based methods is the transparency
of the recognition process. The templates themselves are actual entities in
sample space and recognition errors can often be explained through insufficient
template coverage. In fact there are even studies showing that this renders
errors made by template based systems more intuitive than those made by
implicit modeling methods such as Neural Networks [84]. Another merit is
that the static nature of these systems enable dynamic modification of template
content, making this approach popular in adaptive systems [36, 132].

2.4.2 Dynamic Programming

A common way for static template matching methods to incorporate flexibility
is by using Dynamic Programming (DP). This technique allows for matching
samples of different dimensions as well as dynamically determining alignment
even between samples in the same space. Dynamic Programming appears in
the on-line handwriting literature under several names such as elastic matching
[124, 136], string matching [29] and Dynamic Time Warping (DTW) [3, 8,
77, 130]. Basically all of these methods share the algorithmic method of the
Viterbi [129] algorithm which in turn uses the same strategy as shortest path
algorithms such as the Dijkstra algorithm [33].

Dynamic Programming strategies differentiate the static template matching by
introducing a point-wise distance function d : F × F → R so that each point p
(or corresponding feature f) can be matched individually instead of statically
assigning alignment by index in the parameterization. Vuori has investigated
several such point distance functions in [130] but recently there seems to be
some consensus that best discrimination is achieved with the simple Euclidean
norm acting on the feature points f = (x, y, θ) consisting of the point coordi-
nates p = (x, y) complemented by the angle to the next point θ = arg(pi+1−pi).
Matching is then performed by dynamically finding the correspondence func-
tion Φ = (φX , φZ) : {1, . . . , N} → {1, . . . , |X |}×{1, . . . , |Z|}, also referred to as
an alignment, between two samples X = (pX

1 , . . . , pX
|X|) and Z = (pZ

1 , . . . , pZ
|Z|)

that minimizes the sum of the distances. This alignment is obtained implicitly
by minimizing the distance function:

min
Φ

DΦ(X, Z) =
1

C

N
∑

n=1

d(pX
φX (n), p

Z
φZ(n)), (2.6)

where Φ(1) = (1, 1), Φ(N) = (|X |, |Z|) and C a normalization constant usually
equal to N . The Sakoe-Chiba transitions are defined as Υ = {(1, 0), (0, 1), (1, 1)}

2.5 Syntactic 19

[8]. A DP function based on these transitions imply that ∆Φ = Φ(n + 1) −
Φ(n) ∈ Υ, n ∈ (1, . . . , N − 1).

Apart from the obvious time complexity issues of quadratic programming when
running recognition on a very large number of classes as in [100], there are some
issues caused by the dynamic programming. One problem is that the algorithm
takes no account of the way characters differ thus favoring character shapes with
a mean appearance such as straight strokes. A more powerful discrimination
can therefore be obtained by limiting the use of DP to the alignment problem
and using other methods specialized at discriminating between aligned samples
[77].

2.5 Syntactic

The syntactic modeling concept relies on the philosophy that handwriting are
observations of an ideal representation of characters and that recognition is
performed with reference to such instances. In this respect the syntactic ap-
proach represents the case where the system designer has most control over the
recognition process by manually designing syntactic rules for the interpretation
results of given shapes. One of the large merits of such a system is thereby that
only limited or no training data (depending on if properties of some rules are
deduced from statistical analysis) is required for such methods. The human
interaction in handwriting infallibly produces variations difficult to model with
harsh rules. For this reason syntactic systems found in the literature employ
some type of fuzzy-shape grammars to avoid harsh and premature exclusion of
recognition candidates [5, 89].

Parizeau et al. have developed a system where each syntactic model is manually
generated as a set of primitive curve segments with syntactic descriptors in the
form of fuzzy rules. Recognition is then conducted by using rules associated
with each primitive and each property to calculate the degree of membership
of the sample X to these allograph parts [89]. Anquetil et al. use a similar
process but use a decision function based on a sum-product so that the partic-
ular output of each rule is normalized by the total sum of the products of all
membership functions for all features [5].

2.6 Implicit Modeling

In implicit modeling, class boundaries can be determined a posteriori but the
actual properties of each recognition target is never explicitly defined (in the
form of a tangible class representative as in the explicit modeling methods de-

20 Chapter 2. Handwriting Recognition

scribed in above). A clear advantage of this modeling is the focus on discrim-
ination when determining class boundaries instead of the generative modeling
perspective common for explicit modeling methods such as HMM. Judging by
the number of publications during the past decade these methods are by far
the most popular to use for the on-line handwriting recognition problem. One
of the most striking arguments for using such methods apart from the quanti-
tative results in the form of high recognition accuracy, is the generality of these
methods. In particular Neural Networks (Convolutional Nets) is an extremely
versatile strategy for generic object recognition [63] and it is naturally very
favorable if all that needs to be done for a recognition task is to find training
data. Unfortunately this is also one of the major flaws of Neural Networks
as they usually require vast amounts of data to ensure that the system avoids
overfitting [106].

2.6.1 Neural Networks

Neural Network methods are among the most common methods used for pat-
tern recognition of images. Their original principal idea is a simplified model of
the human nerve system, where inputs pass through a system of nodes which,
in analogy with the human perception system, often are referred to as neurons.
From a statistical point of view a neural network corresponds to a nonlinear
statistical model [49]. Due to the intrinsic facility in which the system can be
trained for various recognition tasks it has also become one of the most popular
methods for on-line character recognition and certainly the most popular for
the off-line case [55, 74, 101, 104]. For the off-line case it has also been shown to
produce the best recognition results on the MNIST benchmark database [106].
This research area has matured significantly in the past decade and there are
several extensive and generic treatments of Neural Networks in the literature
[17, 99, 49]. A neural network consists of nodes and connections. Each node has
a weight and an activation function, usually the sigmoid σ(v) = 1

1+e−v . The
activation of each node is calculated by feeding the weighted linear combination
of the activations of connected nodes in the previous layer into the activation
function. A basic system will have three layers: an input layer where each node
is activated by a certain feature in the input sequence, a hidden layer and an
output layer with one node for every symbol or every state of a symbol that
should be recognized, see Figure 2.4.

Thus activation fhk in a node with index k in the hidden layer of the network
in Figure 2.4 for instance can be written as

fhk = σ(whk0 +
∑

j∈Ek

whkj fj), (2.7)

2.6 Implicit Modeling 21

L1 L2 L3 . . . LK

HM−1H1 HM−1H2 . . . HM−1 HM−1HM

fp−1f1 . . . fp−2 fp−1 fp−1fp

fh2 = wk20 +
∑p

j=1 wh2jfj

Figure 2.4: A graphic view of a typical three layer network with an input layer
activated by p feature functions, a hidden layer with M nodes, and an output
where activation in each of the K output nodes corresponds to a probability
for a certain symbol being matched.

where Ek denote the indexes of the connected nodes in input layer and whkj is
the weight of that particular feature connection.

Training of a neural networks thus corresponds to estimating the parameters
w for every layer. This is normally conducted by a gradient descent method
called back-propagation [55, 104] (cf. [49]).

TDNN The main neural approach applied to the on-line character recogni-
tion problem so far is the Time Delay Neural Network (TDNN) [22, 55, 101, 104]
although there are some recent results also with more basic networks such as the
multi-layer perceptron (MLP) [86]. The TDNN is a multi-layer feed-forward
architecture that has been especially successful in learning to recognize time
sequences such as those appearing in on-line HWR and speech recognition sys-
tems. Typically a TDNN has an input frame treating a time-slice of the input
data feeding into one or more hidden layers that eventually terminates in an
output layer with one output per symbol in the character set used for the cur-
sive handwriting sample. Moving the input frame along the sample will thus
generate a sequence of observations which can be interpreted and compared
to a dictionary to retrieve plausible word recognition candidates. HMM is a
popular choice of method to aid in this process [55, 101].

22 Chapter 2. Handwriting Recognition

Kohonen Maps Another interesting type of network with desirable discrim-
ination properties are Kohonen Self-Organizing Maps (SOM) [59], which in a
way are network extensions of the learning rules of LVQ [60]. The Kohonen Self-
Organizing Map can be seen as a matrix of detectors specialized at recognizing
the input of some feature. It is trained by gradually making the detector mc(t)
most similar to an input vector x(t) even more similar by applying a learning
rule of type:

mc(t + 1) = mc(t) + α(t)d(x(t), mc(t)). (2.8)

The learning rule is applied to all x(t) in a neighborhood Nc(t) of mc(t). α(t)
is a monotonically decreasing sequence of learning factors. When training is
completed the detectors will be organized spatially to reflect the topography of
the training space.

Some experiments have been conducted using Kohonen maps directly as databases
for on-line recognition [76, 78]. Essentially this corresponds to a template based
nearest neighbor recognition, but where templates are adaptively trained so
that the resulting template (node in the SOM) corresponds to a synthetic sam-
ple consisting of a linear combination of samples in the training set. SOM has
previously been used in the feature extraction stage in order to implicitly define
the set of features used in recognition [58]. It has also been implemented with
the function of sharing the emission probabilities between HMMs (cf. {bj} in
Section 2.3.1) and also to improve recognition accuracy through a simple ad-
ditional feature mapping (nearest neighbor style as above) [43]. In another
experiment self-organizing maps were used to identify inter-writer similarities
[131].

2.6.2 SVM

A pattern recognition method that has received a lot of focus in late years is
Support Vector Machines (SVM), introduced by Vapnik [126]. Support vector
machines are originally a genuine two-class discriminator that approximates
a boundary (separating hyperplane) between two classes by finding relevant
boundary samples called support vectors. In its simplest form the search for
the maximal margin hyperplane is conducted in linear space but often a kernel
can be used to map linearly inseparable data into another favorable space.
With such a kernel the SVM classifier with N support vectors {Yj}N with
labels {L}N ,L ∈ [−1, 1] can be written as in (2.9):

f(X) = sign(

N
∑

i=1

αiLiK(Yi, X) + b), (2.9)

2.7 Combination Methods 23

where K is the kernel, α weights and b an offset. Training of the SVM classifier
corresponds to finding the maximum separating hyperplane and thus the set
(Yi,Li, αi) which involves solving of a quadratic programming problem with
equality and inequality constraints. There are several publicly available pack-
ages for doing this, like libSVM.

rs

rs

rs

rs

rs
rsrs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs
rs

rs

rs

rsrsrs

rs

rs

rs

rs

rs

rs
rsrs rs

rs
rsrs

rs

rs
rs rsrs rs

rs
rs

rsrs

rs

rs
rs

rs

rs
rs rs

rs

rs

rs

rs

rs

rs

rs
rs rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrsrs

rs
rs

rs

rsrs

rs

rs rs

rs

rsrs

rs

rs

rs

rs

rs

rs

ut ut

ut

ut

ut
ut

ut

ut

ut

ut
ut

utut
ut

ut

ut

utut

ut

ut

ut

ut

ut

utut

ut

ut

ut

ut

ut

ut

ut
ut

ut

ut

ut ut

ut ut

ut

ut

ut

ut

ut
ut

utututut

ut ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

rs

rs

Figure 2.5: A graphic view of a two-class problem with separating hyperplane
(solid line) and support vectors (larger markers on dashed line).

One of the major problems with applying support vector machines to recogni-
tion of on-line HWR is the intrinsic two-class nature of the SVM. A popular
method for coping with this in on-line HWR is by voting schemes applied to
multiple two-class discriminators [1]. Another strategy is to retain the genuine
two-class application of SVM by applying these as a second stage classifier for
solving common confusion errors made by a genuine multi-class method such
as the template based methods described earlier [31, 46, 135]. In another ex-
periment Bahlmann et al. use a conventional dynamic programming distance
function (cf. Section 2.4.2) as a kernel, but somewhat surprisingly this approach
does not seem to produce better results than a genuine multi-class DP-based
classifier even in the two-class discrimination case [9].

2.7 Combination Methods

A logical continuation to the type of recognizer analysis included above is to
try to exploit the differences in a constructive manner by combining different
methods. Conceptually such an approach is very attractive and, to use a popu-
lar description, in an abstract way it corresponds to the situation of relying on
a panel of multiple experts instead of being dependent on the decision by a sole

24 Chapter 2. Handwriting Recognition

judge. In practice, it has also proven that this analogy can be extended further.
Since it has been difficult to produce reliable ways to combine the actual con-
fidence values of different classifiers, voting methods using the candidate lists
(or rank) produced by the classifiers are often an effective combination strategy
[52]. It has been used successfully to combine on-line and off-line systems in
[69] and in a more comprehensive combination method comparison by Alpaydin
et al. it produces the highest recognition accuracy for writer independent tests
[2].

Another paradigm for combining methods is the multi-stage strategy which is
more of a serial approach where the next classifier is consulted after treatment
by the first. This can work in two ways, either by (1) only consulting the next
method upon rejection by the first (cascading) or (2) by allowing each method
to narrow the search as in a coarse-to-fine search. The latter is an important
step in recognition of scripts with large character sets such as e.g. Asian scripts
[66] and can also be used analogously for dynamic lexicon reduction in cursive
word recognition for western scripts [23, 94, 104]. One type of fine search
is to discriminate between top candidates from a first recognizer (also called
a discrimination zoom) [31]. Another interesting approach is boosting (here
AdaBoost) where a composite classifier is constructed by iteratively training
classifiers to correct errors made by the current composition [42]. Although
improvements have been made to simple Neural Networks [102] there are few
published results on boosting applied to on-line handwriting recognition.

CHAPTER 3

Preprocessing And Segmentation

By failing to prepare, you are preparing to fail.
Benjamin Franklin

26 Chapter 3. Preprocessing And Segmentation

T
his chapter treats various preprocessing and segmentation meth-
ods. Popular preprocessing methods include various forms of nor-
malization in scale, position and variance as well as curve smoothing
and other resampling schemes. The latter were especially important

in the past when digitally sampled data contained a significant amount of noise
[54, 90, 125]. For the system presented in this thesis, most conventional prepro-
cessing steps can be incorporated into the recognition algorithms and therefore
focus here lies on the segmentation techniques. Many segmentation techniques
however often make the same assumptions on input data and thus they have
similar flaws.

3.1 Introduction

Various recognition methods have a varying dependency upon the preprocess-
ing step and this is yet another factor that adds to the difficulty in comparing
recognition methods on a given data set. In general preprocessing techniques
imply that some restrictions on the expected structure of the input data are
imposed with the merit of reducing the required modeling complexity. Pre-
processing and normalization is traditionally also intricately dependent on the
script to be recognized [54]. For Asian scripts, for instance, the square shape of
the characters can be exploited to reduce variance and fix scale, which in turn
enables special resampling schemes. A common such method is the recursive
polygonal approximation [66] (cf. Section 2.1.1) seen in Figure 3.3 . For most
other scripts however the shape of the input depend on the written word and
the constituent characters. For these methods it is common to normalize by
some kind of helplines as seen in Figure 3.1, often inferred from the writing
[54, 104] or assumed from the writing user interface [36].

This chapter will discuss some of the most common preprocessing methods and
what requirements would be added to the recognition algorithms if they were
to be skipped. There are quite a few strategies for segmenting on-line cursive
script [6, 19, 25, 85, 88, 111] and since segmentation of input is a required step
for the algorithms treated in this thesis some examples of implementations and
modifications will also be covered. In principle however the standpoint of this
thesis is that no segmentation method is flawless! Therefore it is crucial also to
have strategies to cope with missing or extra segmentation points. The difficulty
in producing reliable segmentation points are also a factor that has boosted the
popularity of methods with implicit segmentation. Implicit segmentation can
be realized through a sliding window of a time-delay neural network [21, 55, 101]
or through a sequence of frames with Hidden Markov Models [68, 98, 108].

Segmentation can also be interpreted as a structurally dependent shape analy-

3.2 Segmentation 27

1

Figure 3.1: An on-line sample of the cursive word adorar segmented at y-
extrema, plotted with estimated base- (solid) and helplines (dashed).

sis. It is well-known that the dimensionality of a curve can be reduced without
loss of significant morphological information by encoding structural content (i.e.
curvature) [75]. For this reason points of high curvature are also often the focus
of segmentation algorithms as well as feature point extraction [6, 36, 47, 85]
It will be shown that this fact can be exploited to tailor special features for
segmented input.

3.2 Segmentation

The problem of segmentation can be seen as a type of unsupervised classifica-
tion. Given an input sample X of a set of strokes X1, . . . , Xn each stroke shall
be analyzed and possibly divided into smaller parts, conventionally referred to
as segments, according to certain characteristics. Extending the unsupervised
classification analogy further, the segmentation problem can be described as the
problem of clustering points on each stroke into an unknown number of com-
pact clusters distinctly separated in time. Since the desired number of clusters
is unknown an applicable such segmentation method is Hierarchical Agglomer-
ative Clustering (cf. [56] and Section 2.2.2). In Hierarchical clustering clusters
are determined through a threshold in the inter-class dendrogram. Using this

28 Chapter 3. Preprocessing And Segmentation

terminology, the segmentation problem can be described as the problem of find-
ing a cluster distance function d(ci, cj) between pairs of clusters ci, cj (sets of
points) and a suitable threshold T . The set of clusters C = c1, . . . , cn can then
by defined as the minimal set of subsets of X = {p1, . . . , p|X|} satisfying (3.1).

max
ci,cj∈C

d(ci, cj) < T. (3.1)

The border between each such one dimensional cluster ci = {pij}j will be
exactly the set of segmentation points. An example of this description with a
commonly used segmentation method (vertical extreme point segmentation) is
given in Example 3.2.1.

Example 3.2.1. Vertical Extreme Point Segmentation. Define a cluster dis-
tance function by

d(ci, cj) =

∞, if |i − j| > 1

0, if ci = pi1 , cj = pj1

0, if sign(pik − pjl) = κ, ∀k, l,

and define an arbitrary threshold T ∈ R+, then this corresponds to segmentation
by local vertical extreme points. This function can be extended to handle other
and more flexible versions of extreme point segmentation.

The notation S(X i) = {pj} will be used for the set of segmentation points
of stroke X i and thus S(X i) ⊂ X i. Correspondingly {Λj} will denote the
segments in between which are one fewer than the segmentation points.

Definition 3.2.1. Two segmentations S(X),S(Y) are said to be similar S(X) ∼
S(Y) if they have the same number of strokes and the same number of segments
for each stroke.

3.2.1 Script Dependent Segmentation

It has been observed by several researchers in the past that local extreme points
orthogonal to the writing direction can be used reliably for segmentation [36, 65]
as seen in Figure 3.9a. This coarse approach will however generally miss a num-
ber of segmentation points even for natural variations in input. Furthermore
it is flawed by the fact that it is dependent both on a reliable estimate of
the writing direction (which can even vary within a handwritten word). Nev-
ertheless this type of script dependent segmentation method can be used to
evaluate other parts of a segmentation based system. Even very simple meth-
ods for complementing insufficient segmentation routines such as augmentation

3.2 Segmentation 29

1

2

3

4

(a) Y segmentation

1

2

3

4

(b) Extra segmentation

Figure 3.2: An example of an Arabic word (H. QË@) where segmentation only
in vertical extremes is insufficient. Heuristic rules as in (3.2) is a simple but
sometimes effective way of adding more segmentation points. Segmentation
points in both figures are marked with squares.

points in [85] or splitting points in [36] has been applied successfully in the
past. Modifications to the extreme point approach mentioned above to pro-
duce a segmentation method for the Arabic script, also used in the recognition
experiments of Section 9.4 is described below.

3.2.2 Segmentation Of Arabic Script

The starting point for the segmentation scheme is the same as described in
Example 3.2.1 segmenting input at the extreme points in the vertical direc-
tion. The aim of the segmentation procedure is to divide input into segments
containing at most the shape of one individual character. For Arabic cursive
script there are several cases when the primitive strategy above is insufficient
as seen in Figure 3.2a. For the system used in the experiments with Arabic
cursive recognition presented in Chapter 9, a set of simple heuristic rules has
been added to trigger additional segmentation points on a segment Λ consist-
ing of n sample points p1, . . . , pn ∈ R2. Heuristic rules are generally not very
robust but segmentation is not the focus in this thesis and good recognition
results are achieved despite this fact. Each rule consists of a set of rudimentary
comparisons with ad hoc threshold values {Tj} as in (3.2), and the result of
the implemented rules on the input in Figure 3.2a is displayed in Figure 3.2b.

30 Chapter 3. Preprocessing And Segmentation

For a segment Λ = (p1, . . . , pn), split in

pe, pf if

∆(pi)y

∆(pi)x
> T1, i = 1, . . . , e

∆(pi)y

∆(pi)x
< T0, i = e + 1, . . . , f

∆(pi)y

∆(pi)x
> T2, i = f + 1, . . . , n.

(3.2)

Another general problem with the simple segmentation at vertical extreme
points is that the placement of such points shows large variance in horizontal
placement when they are put on smooth arcs such as the ”bottom” of the
letter u. To improve this situation an energy equation can be introduced for
vertical minima points as in (3.3). This energy model will be evaluated for all
occurrences of the segmentation points corresponding to local minima in y that
are bordered by local maxima on both sides, i.e. points that are located in a
visual ”valley”. The main task is to try to center these points in the middle of
the valley (middle in terms of x w.r.t. the surrounding y-maxima points) and
this is accomplished by modeling a spring pulling the point towards the center
in x. Since the centering should be applied only for weak slants a counter-
acting force is modeled by a gravity force Fg pulling the point down towards
the y-minima. Finally a third force component is added which is related to
the curvature property of the y-minima point. The main aim of this force
component is to maintain the location of strong feature points corresponding
to very sharp turns in the y-direction and it is modeled as a spring with a
spring constant proportional to the square of the curvature.

Two things are done to determine where a y-minima segmentation point should
be moved:

1. Check if the y-minimum constitutes a point of local (w.r.t. scale) energy
equilibrium. If this is true, the point remains in its original location.

2. If the y-minimum is is not a local energy equilibrium point then it is
moved to the global energy equilibrium.

The energy Ω(p) of a given point p = (px, py) ∈ R2 on the curve segment
Λ = (p1, . . . , pn) consisting of the discrete points between the surrounding y-
maxima points (p0, pn+1) is given by:

Ω(p) ∝ R(py − p∗y) + φ(py − p∗y)
2 + (px − x)2, (3.3)

where p∗ = (p∗x, p∗y) = argminp∈Λ py and x = (p0x + p(n+1)x)/2. Here R should
be seen as the ratio of the gravity force pulling the point p toward p∗ and the
spring constant of the last term. This spring constant has thus been removed

3.2 Segmentation 31

from (3.3). The middle component is also conceptualized as a spring pulling
the segmentation point towards p∗, where the value of the spring constant is
related to φ = κ(p∗)/π, where κ : R2 → R is the curvature of p∗ measured in
radians.

The y-minimum point p∗ is defined to be a ε-local minimum if the following
statements are true:

Ω(p∗ε−) > Ω(p∗)

Ω(p∗ε+) > Ω(p∗),

where p∗ε+ is the prior point on the curve at ε distance and p∗ε− the corresponding
subsequent point.

Consequently the rule defined above for placing the segmentation point p be-
tween two y-maxima segmentation points can be written as

p =

{

p∗, if p∗ is a ε-local minimum of Ω

argminp∈Λ Ω(p), the global minimum of Ω
. (3.4)

3.2.3 Generic Segmentation

Generally the type of heuristic rules applied in Section 3.2.2 will be unreliable
as it is virtually impossible to foresee all input variations of handwritten script.
The dependency on writing direction estimation also introduces limitations on
the system as well as a new source of error. A purely shape dependent seg-
mentation technique closer to the piece-wise polygonal approximation methods
used for sampling Chinese characters in [80] would therefore be a more robust
solution to the segmentation problem. The result of typical polygonal approx-
imation for a Chinese character is shown in Figure 3.3. Such techniques have
also been developed to retrieve important feature points in on-line signature
verification [19, 47]. The rest of the segmentation based techniques presented
in this thesis will work independently on the choice of segmentation method
and consequently the quest for the ultimate segmentation method has been left
for future research.

3.2.4 Segmented Shape Analysis

In addition to being a necessary component in recognition of connected script,
segmentation also unleashes new possibilities for shape analysis. The nature of

32 Chapter 3. Preprocessing And Segmentation

1

2

(a) Original sampling

1

2

(b) Polygonal Approximation

Figure 3.3: An example of segmentation/resampling method for chinese char-
acters that utilizes the intrinsic square property of chinese characters.

handwriting is such that variations of samples portraying the same set of sym-
bols are highly non-linear and irregular. In terms of the sampling discussion
in Section 2.1.1 it is clear that a given index of a point in one sample will not
correspond to the same index in another sample. This is called the alignment
problem. As previously explained, successful recognition methods such as the
popular strategies covered in Section 2.2 all include some form of implicit rem-
edy for this discrepancy. Wakahara et al. attack the problem by introducing
local approximations into a global transformation [136]. Segmentation tech-
niques add another layer of structurally motivated alignment as defined by the
segmentation function in (3.1).

The aim of a segmentation is to identify points in an input that correspond
to a certain characteristic such as a transition between two letters. In some
respect segmentation points should therefore be consistent in this functional
respect for samples portraying natural variations of the same shape. In this
section it will be shown that it can make sense to separate variations in the
structure of the segmentation points to the variations of the curves in between
the segmentation points. For this reason the set of segmentation points will
often be referred to as the frame of a handwritten sample or a template.

Figure 3.4 depicts the thin-plate spline transformation of inter-class and intra-
class segmentation points. After the thin-plate spline has been applied, the
curve shape differences between the corresponding segments are much less
complex. This gives some visual support for the notion that the non-linear
components of handwritten character variations could be treated separately by
some distance measure on the corresponding frame transformation. Although

3.2 Segmentation 33

−0.2 −0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

−0.2 −0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) An in-class example of bending an
a to another.

−0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2 0 0.2 0.4

−0.2

−0.1

0

0.1

0.2

−0.2 0 0.2 0.4

−0.2

−0.1

0

0.1

0.2

−0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b) An inter-class example of bending
a u to an a.

Figure 3.4: Bending the frame while leaving the parameterization fixed. The
four figures in both cases display the original sample, the affine approximation
to the target sample, the thin plate spline of the frame w.r.t the target frame
and finally the target sample.

successfully applied to the field of HWR before [12], thin-plate splines are prob-
ably not a good alternative for modeling this energy since folding frequently
occurs [38], which can be seen in the lower left plot in Figure 3.4b.

−10 −5 0 5 10 15

−10

−5

0

5

10

−10 0 10 20
−15

−10

−5

0

5

10

−10 0 10 20

−10

−5

0

5

10

−10 −5 0 5 10 15

−10

−5

0

5

10

(a) Original parameterization.

−0.1 0 0.1 0.2

−0.1

−0.05

0

0.05

0.1

0.15

−0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1 0.2

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1 0.2

−0.1

−0.05

0

0.05

0.1

(b) Segmentation based parameterization.

Figure 3.5: The first four components of principal component analysis of
one segmented model of the letter n. Each plot in the figures above display
µ ± nσUj , n = 1, 2, where µ is the mean shape and Uj the jth PC eigenvector
and σ the standard deviation.

34 Chapter 3. Preprocessing And Segmentation

Using Segmentation For Reparameterization

As noted in Section 2.1.1 the terms sampling and parameterization are often
used interchangeably when discussing on-line handwriting. Given samples that
are samples of a given set of connected smooth curve segments it is therefore
not certain that a parameter, i.e. the discrete point index, corresponds to a
point on the same curve part. This in turn causes strange artefacts when an-
alyzing variance of a set of samples portraying the same curve. In particular
the popular shape variance analysis method of PCA may deform the discontin-
uous curve connections when applied to samples of just slightly varying such
parametric alignment. This may cause the effect seen in Figure 3.5 where the
first PC-component contains rounded features in samples of ’n’ never observed
in data. Since segmentation techniques in general try to extract such points
corresponding to discontinuities in otherwise smooth curves, keeping segmen-
tation points in correspondence during alignment should with this hypothesis
guarantee the preservation of these important structural features. This partial
forced alignment technique is here referred to as segmentation based reparam-
eterization.

The results of the first modes of PCA with this parameterization compared
to arclength parameterization are shown in Figures 3.5 and 3.6. It clearly
shows that the reparameterization presented here aligns samples in a way that
improves the point to point correspondences and better preserves structural
features such as discontinuities in smooth curve segments.

Parameterization Of Segments

As for unsegmented handwritten input, the most basic approach for sampling
(or reparameterizing) a segment of a curve is to sample by arclength as de-
scribed in Definition 2.1.1. Recall that the weakness of this method is that
segments may require a varied number of points in order to be described cor-
rectly under the constraint of minimizing the number of points. This basic
method will be referred to as the Segment Arclength (SA) method.

Aiming at enabling an upper bound for the required number of points on each
segment, methods that try to approximate the segment by a few number of
points have also been investigated below. In this case the segment arclength
method is not recommendable since crucial shape information such as curvature
may be randomly lost due to the placement of the interval of points.

Choosing the n points on a piece of a curve that best approximates it is an
interesting problem that has been thoroughly studied in the field of discrete
geometry [45, 127]. There it is common to refer to the best approximation in

3.2 Segmentation 35

−20 −10 0 10 20

−15

−10

−5

0

5

10

15

20

−20 −10 0 10 20

−15

−10

−5

0

5

10

15

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

(a) Original parameterization.

−0.2 −0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2 −0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.1 0 0.1 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.2 −0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) Segmentation based parameterization.

Figure 3.6: The first four components of principal component analysis of one
allograph of v.Each plot in the figures above display µ±nσUj , n = 1, 2, where µ
is the mean shape and Uj the jth PC eigenvector and σ the standard deviation.

terms of the uniform metric i.e. the n points on the (discrete) curve X = {pi}m
i=0

realizing (3.5). Let F be the set of monotone increasing functions f : Z → Z

such that f(0) = 0 and f(n) = m for f ∈ F.

Q = min
f∈F

max
f(j−1)≤i≤f(j)

1≤j≤n

dPL(pi, Lpf(j−1) ,pf(j)
), (3.5)

where dPL(pi, Lpf(j−1) ,pf(j)
denotes the Point-to-Line distance from the point

pi to the line segment Lpf(j−1),pf(j)
defined by the points (pf(j−1), pf(j)). In

accordance with the literature in discrete geometry the problem of minimizing
Q in (3.5) will be referred to as the min-ε problem.

The algorithms developed for solving (3.5) found in publications are generally
focused on speeding up the process of recursively finding the largest distances
dPL. The following section presents a fundamentally different approach for
n-point approximation of an m-point polygon. Instead of (3.5) the problem of
finding the maximum value of the segment length function is considered.

Definition 3.2.2. The linear segment length function of order n of a curve
segment γ(t), t ∈ [0, 1] is the function Γn

γ : Zn → R such that

Γn
γ (a) = d(γ(0), γ(a1)) + d(γ(an), γ(1)) +

n
∑

j=2

d(γ(aj), γ(aj−1)), (3.6)

for some metric d, and a = (a1, . . . , an) such that 0 < a1 < . . . < an < 1.

36 Chapter 3. Preprocessing And Segmentation

With a Euclidean metric the subset that maximizes the linear segment function
is:

(pf(1), . . . , pf(n)) = argmax
f∈F

n
∑

i=1

‖pf(j) − pf(j−1)‖

= argmax
f∈F

Γn
X(f(1), . . . , f(n)). (3.7)

The method of finding (pi1 , . . . , pin
) on a m-polygon according to (3.7) will be

referred to as the Dijkstra Curve Maximization (DCM) method since the set
can be found by means of a modified version of the Dijkstras shortest path
algorithm as seen in Algorithm 1.

Algorithm 1 Dijkstra Curve Maximization

1: Find (pi1 , . . . , pin
) of (3.7).

2: % Calculate distances
3: Set Di,k = 0, i = 0, . . . , n, k = 1, . . . , m
4: for k = 2, . . . , m − n + 1 do
5: for i = 1, . . . , min(m, n) do
6: Di,k = minl=i−1,...,k−1 Di−1,l

7: Pi,k = argminl=i−1,...,k−1 Di−1,l

8: end for
9: end for

10: % Trace path backward
11: t = m
12: for l = n, . . . , 1 do
13: il = Pn,t

14: t = Pn−1,il

15: end for

First some properties of the simplest types of curve segments with n = 1 will
be shown for the continuous case. The following discussion is restricted to
curves in R2 since this work is focused on handwritten characters. All curve
segments are also assumed to be parameterized by arclength with significantly
more points. The curve has been rotated so that it starts in the origin and
and ends in γ(1) = (x(1), 0). It is also assumed that no curve is a straight line.
For the first property the case where the x-values are monotone-increasing are
considered. In this case the notation γ = (a, f(a)), a ∈ [0, x(1)] will be used.

3.2 Segmentation 37

Lemma 3.2.1. Let γ(t) = (t, f(t)). If f is a constant function in the interval
a ∈ (0, x(1)) such that |f(a)| > 0, a ∈ (0, x(1)) then Γ1

γ(a)(0, x(1)) obtains it
maximum at a = x(1)/2.

Proof. Let f(a) = δ, a ∈ (0, x(1)). Then

Γ1
γ(a)(0, x(1)) = Γ(a) =

√

a2 + δ2 +
√

(x(1) − a)2 + δ2.

This gives

dΓ

da
(a) =

a√
a2 + δ2

+
a − x(1)

√

(x(1) − a)2 + δ2
.

Then clearly dΓ
da

∣

∣

a=x(1)/2
= 0 and a sign study reveals that this is a global

maximum.

It is easy to deduce that the solution to the min-ε problem is the same as the
solution to the longest path problem given in Lemma 3.2.1. This shows that
these curve approximations are similar under some circumstances. One equally
easily realizes that there are many cases when they differ. One interesting
example are the respective solutions of the min-ε approach and the DCM to
picking one point on a sinus curve on the interval [0, 2π]. Here the DCM has
two optimal solutions lying close to the respective extreme points, whereas the
min-ε approach will choose the middle point. In particular one easily observes
that their behavior differ when the number n is less than the number of ε-local
extreme points p = argmin p∈γ(t)

t1−ε≤t≤t1+ε

py on the curve. The DCM gets many

solutions in this case, all aiming at choosing one of the prominent features of
the curve whereas the min-ε solution gives the mean path. Examples of the
extracted sample points with DCM on some connected character sequences are
shown in Figure 3.7. Apparently the DCM provides a nice and smooth curve.

Especially for handwritten characters where both the number n and m are
comparatively small, the execution of DCM will not require a significant amount
of processing power. Elementary calculations lead to the following statement:

Theorem 3.2.1. The DCM algorithm for finding the set of n-points realizing
max(p1,...,pn)⊂(1,...,m) Γn

X(xp1 , . . . , xpn
) terminates after

(n − 2)(m − n + 1) +
(m − n + 1)(m − n + 2)

2

distance calculations.

38 Chapter 3. Preprocessing And Segmentation

1

1

(a) Spanish word coda

1

2

34

5

6
7

8

1

2

34

5

6
7

8

(b) Arabic word ú
æ.
	£ñK. @

Figure 3.7: Two cursive words with the original sampling above and the
structurally reparameterized words below. Here the DCM technique with n = 3
of Section 3.2.4 is used to parameterize each segment. The segmentation points
are the local vertical extremes of the curve.

Proof. Denote the number of intermittent points by n∗ = n − 2. Let k be the
indexes of the point xk and consider the required number of distance calcu-
lations to points with indexes larger than k. For the case when k < n∗ + 1,
only distances up to index m − (n∗ − (k − 1)) need to be computed since
n∗ are required and at most k − 1 can be used up to index k. This implies
m−(n∗−(k−1))−k = m−n∗−1 distance calculations based on point xk. In to-
tal this contributes with (n∗)(m−n∗−1) distance calculations. When k ≥ n∗+1
all distances to subsequent points i.e. m−k needs to be computed. The number

of such calculations is an arithmetic sum 1+. . .+m−(n∗+1) = (m−n∗−1)(m−n∗)
2 .

Replacing n∗ by n − 2 gives the sought time complexity.

3.2 Segmentation 39

Figure 3.8: An example of a selection of segment arc types used to normal-
ize shape of segments in template database and sample to speed up distance
calculations.

Discretization Of Curve Types

Another interesting property of segmented handwriting is that the variability
in segment shape is significantly less than that of complete characters. Since
in general, shape comparisons are computationally expensive, this has inspired
to the possibility of discretizing the curve shape space, i.e. limiting the number
of possible curve shapes to a fixed number of normalized arctypes as defined in
Definition 3.2.3.

Definition 3.2.3. An arctype A will here be defined as any curve segment
A(t) ∈ R2, t ∈ [0, 1] such that A(0) = (0, 0), A(1) = (1, 0).

In order find the best approximating arctypes for a given curve, a distance
function for segment shape is needed. The alternative used for the segmented
shape comparisons in this thesis is presented in Section 3.2.4 below. Examples
of arctypes can be seen in Figure 3.8 and some samples forced into this space of
discrete segment shapes for Arabic and cursive alphabetic script can be seen in
Figure 3.9. Note how well the word arroz written by a Spanish native can be
reconstructed using a limited set of 100 arctypes, generated from Arabic script
samples, in Figure 3.9a.

40 Chapter 3. Preprocessing And Segmentation

This type of discretization of segment shape space has similarities with the type
of structural reconstruction and analysis of on-line cursive script performed
in the early 90’s [87]. Parizeau et al. developed a programming language in
which input was analyzed an reconstructed using segmentation points and fixed
shapes in between [87, 88].

1

1

(a) Spanish word arroz

12

3

4

12

3

4

(b) Arabic word ¡J.Ë @

Figure 3.9: An example of arctype discretized cursive word samples. The top
figures show the original samples and the bottom the samples restored with a
limited set of arctypes. Both approximated from an arctype database generated
from Arabic script with 105 arctypes.

Segmented Shape Distance

The curve distance function presented here is called DCM-DTW since it is a
DTW (cf. Section 2.4.2) influenced distance function developed to discriminate
well between curves parameterized according to the DCM method presented
in Section 3.2. Points placed with DCM are spaced unevenly on the curve as
this method focuses on retaining the shape information and not on providing

3.2 Segmentation 41

a smooth parameterization. For this reason a dynamic programming method
matching two such point configurations need to allow Point-to-curve matching
in addition to traditional Point-to-point matching. Furthermore as the num-
ber of points are few compared to traditional arclength parameterizations, the
directional vector used in many implementations [3, 77], is no longer a stable
feature. Instead DCM-DTW makes use of the intermittent angle θp of a point
p defined as

θp = arg(pε+ − p) − arg(p − pε−), θp mod 2π ∈ [0, 2π), (3.8)

where pε+, pε− denote the next and the previous points at a distance ε on the
curve and arg(p) is the angle of the vector p relative to the horizontal axis.

To accomplish the desired flexible Point-to-Curve matching, the closest point
on each line segment of the opposing curve is calculated for each point. Let

Lj(t) = tpj−1 + (1 − t)pj , t ∈ [0, 1]

denote the line segment between points pj−1, pj on curve P = {pk}. Let

tLj
qi

= argmin
t∈[0,1]

‖Lj(t) − qi‖ (3.9)

for a line segment Lj(t) on P and a point qi on a compared curve Q. With this
notation the pseudo points xj,r on the curve P w.r.t. the curve Q, both with n

points are defined as xP,Q
j,r = Lj(t

Lj
qr).

A basic distance function between points or pseudo points p, q ∈ R2 is intro-
duced as

g(p, q) = ‖p − q‖ + kθ|θp − θq|, (3.10)

where kθ is a normalization constant for balancing angle distance with coordi-
nate distance. Notice that the angle values from (3.8) can be interpreted as a
signed curvature as seen in the example below.

Example 3.2.2. Given two curves γ1(x), γ2(x) along the x-axis such that
γ1(0.5) = 1, γ1(x) = 0, x 6= 0.5 and γ2(0.5) = −1, γ2(x) = 0, x 6= 0.5, then
|θγ1(0.5) − θγ2(0.5)| will attain the maximal value of 2π.

A dynamic programming distance function based on this premise has an align-
ment function Φ(k) = (φp(k), φq(k)) and transitions (1, 0), (1, ξ), (ξ, 1), (0, 1),
(1, 1) where the novel (1, ξ) and (ξ, 1) transitions mark the transition to or
from the pseudo points in P or Q respectively. The alignment function has
the requirements that Φ(1) = (1, 1), Φ(m) = (n, n). When adding transitions
to the alignment functions the addition of two ξ is defined by ξ1 + ξ2 = 1.

42 Chapter 3. Preprocessing And Segmentation

The alignment state (φp(r), φq(r)) = (k + ξ, j) is defined as (pφp(r), qφq(r)) =

(pk+ξ, qj) = (xP,Q
k+1,j , qj). The distance function dDCM can now be formulated

as

dDCM (P, Q) = min
Φ

m
∑

i=1

g(pφp(i), qφq(i)), (3.11)

where only the transitions (0, 1), (ξ, 1) are valid from states (φp(r), φq(r)) =
(k + ξ, j), k, j = 1, . . . , n and similarly (1, 0), (0, ξ) are valid from states

(φp(r), φq(r)) = (k, j + ξ), k, j = 1, . . . , n.

Notice also that the definition of the addition of the ξ transition to a ξ state
implies that only ξ = 0.8 will be allowed for transition (ξ, 1) from a state
(k + 0.2, j) for instance.

As pointed out in [77] conventional DP-algorithms for matching handwritten
characters suffer from over-fitting the template to the sample, and to improve
the situation the simple distance function g has been updated with a weight
function f : R → R which also considers the context in which the points
differ. The over-fitting problem for conventional DTW arises from the fact
that samples of classes with very curved strokes such as the digit ’3’ differ
much more than classes with straight strokes such as the digit ’1’.

0 0.5 1 1.5 2 2.5 3 3.5

0
0.5

1
1.5

2
2.5

3
3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ = 1

κ = 2

κ = 3

Figure 3.10: A plot of the relief function f1 with (a = −0.2, b = 1.1, c = 1)
defined in (3.13) for the possible input values. The plot shows the appearance
for κ ∈ (1, 2, 3).

In this thesis the central feature distance function g in (3.10) has been modified
slightly by introducing continuous relief functions f1, f2 designed to cope with
this problem. This is done by diminishing large feature differences between
samples that have a similar feature profile as seen in the definition of g in (3.12).
A graphic view of these functions is included in Figure 3.10.

3.3 Preprocessing 43

Define the height value ph as the distance from the point p to the base line of
the segment P = {pj}n

j=1, which in turn correspond to the line through p1, pn.

g(p, q) = f1(θp, θq) · |θp − θq|2+
f2(θp, θq, ph, qh) · ‖p− q‖2.

(3.12)

f1(θp, θq) =

aα2/κ + bα/κ + c, θp, θq ≤ π

aβ2/κ + bβ/κ + c, θp, θq ≥ π

c, otherwise

, (3.13)

where α = (π − max(θp, θq))/π) and β = (min(θp, θq) − π)/π. The constant
κ can be used to alter the appearance of the relief function whereas c is the
default angle feature weight value.

f2(θp, θq, ph, qh) =

(aα2 + bα)κ(ph, qh) + c, θp, θq ≤ π, y1, y2 ≥ T

(aβ2 + bβ)κ(ph, qh) + c, θp, θq ≥ π, ph, qh ≥ T

c, otherwise

, (3.14)

where

κ(ph, qh) =
min((min(ph, qh) − T, λ)

λω

with T being a threshold parameter for ph, qh. The length of between first and
last point is λ and ω a weight parameter for this function, which in Figure 3.10
corresponds to κ.

The complete algorithm between two segments P = {pj}n
j=1 and Q = {qj}n

j=1

can now be formulated as in Algorithm 2.

3.3 Preprocessing

This section provides a brief overview of some common preprocessing techniques
for on-line handwriting recognition.

3.3.1 Smoothing

In early versions of hardware with the aim of capturing electronic ink, the trace
of the pen movement was often inexact causing several obstacles obstructing
the recognition process. Often the curve sampling of the handwriting samples

44 Chapter 3. Preprocessing And Segmentation

Algorithm 2 DCM-DTW

for i, j := 1, . . . , n do
if i < n then

d(iξ, j) := g(xP,Q
i,j , qj) + min

d(i, j − 1)

d(iξ, j − 1)

d(i, (j − 1)ξ)
end if
if j < n then

d(i, jξ) := g(pi, x
Q,P
j,i) + min

d(i − 1, j)

d(i − 1, jξ)

d((i − 1)ξ, j)
end if

d(i, j) := min

d(i − 1, j) + g(pi, qj)

d(i − 1, (j − 1)ξ) + 2g(pi, qj)

d(i, (j − 1)ξ) + g(pi, qj)

d(i, j − 1) + g(pi, qj)

d((i − 1)ξ, j − 1) + 2g(pi, qj)

d((i − 1)ξ, j) + g(pi, qj)

d(i − 1, j − 1) + 2g(pi, qj)
end for
dDCM (P, Q) := d(n, n)/2n

would be very jagged curves [47]. For isolated single character recognition the
arclength resampling progress has the implicit side effect of a low-pass filter.
Even though the hardware for capturing online handwriting is much more re-
liant nowadays smoothing techniques could still be applicable for handwriting
under extremely shaky conditions. Most segmentation methods would benefit
from smoothing under such circumstances as they are sensitive to discontinu-
ities in the curve. The DCM parameterization itself is also sensitive to high
frequency noise in that it always maximizes the path length. Garutto et al. at-
tacks the problem by extracting salient feature points in multiple scales [111].

3.3.2 Helpline Estimation

With segmentation methods such as the one described in Section 3.2 a reliable
estimate of the writing direction is absolutely crucial since this is the basis
for the extracted set of segmentation points. An intuitive user interface can
somewhat remove the dependency of reliable helpline estimation by guiding the

3.3 Preprocessing 45

writer to write in a certain direction or even by explicitly inserting helplines
[36]. Often the estimated helplines may also serve as input to further scale and
slant normalization as described in Sections 3.3.3-3.3.4.

3.3.3 Scale Normalization

For template matching strategies but also for feature generators feeding sta-
tistical recognition methods, scaling of input is often an important part of the
preprocessing stage. Features dependent on coordinate values such as hori-
zontal and vertical displacement between certain feature points are intuitive
and powerful features included in many recognition systems [36, 50, 85]. For
horizontally written scripts, the scale normalization is often approximated by
scaling to certain inferred help-lines [20, 36, 55, 90, 101]. LeCun et al. report
achieving better recognition results for normalization based on global helpline
estimation than character level normalization [13].

It is also possible to make a recognition system invariant to global scale differ-
ences in input by simply assuring that all features are scale-invariant. Examples
of some such features will be provided in Section 4.2.

3.3.4 Slant Correction

For handwriting, especially horizontally written scripts, a typical writer depen-
dent consistent shape perturbation is the grade of slanting of the writing. This
may differ not only between writers but also depending on the writing style.
Especially for cursive handwriting recognition, it is common to infer the slant
of the input sample to limit the between-writer variability and thus facilitate
modeling by removing the skew correction from the recognition stage [47, 109].
Severe slanting may also cause inconsistent placement of segmentation points
for some segmentation methods such as the naive segmentation method in Sec-
tion 3.2. Slant correction can therefore be beneficial to recognition methods
based on such segmentation strategies.

The great merit of deslanting techniques in template based systems for hand-
writing recognition are that they may remove some of the global template
variations and thus reduce the need for some modeling. On the other hand
these techniques generally also make assumptions based on the mean slant of
all segments in a sample and may thereby cause some misinterpretations. In
particular for connected sequences of characters a global deslanting process will
fail to capture variations in slant within a word.

46 Chapter 3. Preprocessing And Segmentation

3.4 Experiments

In this section some quantitative results for the DCM segment shape approx-
imation technique described in Section 3.2.4 will be given. It is difficult to
evaluate parts that will be components in a larger context, such as the segmen-
tal shape comparisons made here, but to get some results, the single segment
digits i.e. all samples X such that |S(X)| = 2 were extracted from the train and
test sets of the UNIPEN/1a dataset (cf. Section 9.2.2). These were then used
in a recognition experiment such that all samples in the training set were used
as templates. The comparison is made to the standard mass center normalized
DTW (cf. Section 2.4.2). The top-n results denote that the correct class was
among the n best. Although this is a very limited test, it does show that Algo-
rithm 2 works and that it provides competitive results in a simple recognition
setting.

Method Top-1 Top-2

DCM-DTW 98.93% 100%
DTW (MC) 97.87% 99.79%

Table 3.1: Recognition results on the single segment samples of the
UNIPEN/1a data set (includes 469 single segment test digits of ’1’,’2’,’3’,’5’,
’7’ and ’9’)

CHAPTER 4

Additive Template Matching

I have had my results for a long time, but I do not yet know how I
am to arrive at them.

Carl Friedrich Gauss

48 Chapter 4. Additive Template Matching

T
emplate matching schemes for on-line handwriting recognition are
essentially the techniques for comparing objects in the form of dis-
cretely sampled curves. In recent years template matching methods
have mainly been applied to the problem of recognizing single char-

acters implying that each such curve object corresponds to a single symbol,
but some previous work on applications to template sequences can be found
in [36, 50]. This chapter presents a template matching scheme especially de-
signed to work with segmented input by applying similar object recognition
methods to the set of curve parts resulting from the segmentation strategy. In
subsequent chapters it will be shown that this design creates a suitable frame-
work for easy extension of single character recognition to connected character
recognition. In this chapter however, focus is on the task of comparing two
segmented objects, i.e. the search for a suitable distance function applicable
to segmented input. It will also be shown that this particular design enables
exploitation of some other beneficial traits of segmented input.

4.1 The Frame Deformation Energy Model

Inspired by the possible consistency of certain key feature points in the set of
samples portraying a given handwritten character shape, the starting point for
the search of a suitable distance function will be based on the segmentation
points of a sample. To simplify the discussion somewhat, the targets of recog-
nition in this chapter are limited to single characters, i.e. input portraying one
isolated character. The subset of points of a template (i.e. model) correspond-
ing to the structurally significant segmentation points will here be referred to
as the frame of the character template. Given two samples X, Y with similar
segmentations S(X) ∼ S(Y), i.e. same number of segments and points per
segment it is possible to define a transformation T : X → Y . In particular this
transformation can be written as

T(X) = Tframe(X) +

|S(X)|
∑

i

ΓSi
(Tframe(Λ

X
i) − ΛY

i), (4.1)

where Tframe has the property that Tframe(S(X)) = S(Y) and each function
ΓSi

takes the points on the transformed segments Tframe(Λ
X) in the frame to

the corresponding points on ΛY in the target sample. This splitting creates an
intuitive scenario for application of a classic coarse-to-fine recognition strategy.
The coarse part of the recognition process can be to evaluate the magnitude of
Tframe and the fine part to compare the residuals Tframe(X) − Y .

In this thesis the magnitude of Tframe will be assessed by introducing an analogy

4.2 Feature Space 49

with a mechanical framework of stretchable coils and springs. Each segment in
a frame (consisting of two segmentation points) can be exactly transformed into
a segment in a second frame by translating, rotating and scaling. Translation
of a segment is not relevant unless there are intermediate lifts of the pen in the
handwriting and for now this can be ignored. Scaling and rotating a two-point
segment fits well into such an analogy since it can be modeled mechanically
by a spring and a coil. After performing this transformation on the first pair
of segments, the first two segmentation points will coincide. This removes
the need for further translation and the third segmentation point will coincide
after application of suitable rotation and scaling. This way the whole frame
transformation process can be seen as twisting the coils and springs of each
segment of the frame successively. The mechanical analogy is fairly popular and
has for instance been used for describing a word normalization process in the
past [13]. Another way of illustrating the magnitude of such a transformation
is to plot a deformation grid as for the thin-plate spline transformation in
Figure 3.4.

4.2 Feature Space

Although the choice of distance function for a template matching problem is
of critical importance for maximizing recognition accuracy, even very simple
distance functions can produce great results if operating in a feature space
suitable for the matching problem. Many researchers have stressed the im-
portance of the feature space in the past [85]. Lots of time has been devoted
to the design of features aimed at treating a specific discrimination problem
in handwriting. Apart from the dominant features also used in single char-
acter recognition, namely vertical and horizontal positioning along with local
direction [8, 29, 77] the most common features include Fourier coefficients [36],
curvature [70, 55, 85, 101], speed [70, 101] and the hat feature [35, 70, 55, 101]
aimed at detecting diacritical marks. Jaeger et al. and Liwicki et al. have de-
fined even more features but in an attempt to optimize the selection Liwicki
found that a subset of only five features was enough to produce competitive
results [55, 70]. One way to include the strengths of off-line systems (the in-
sensitivity to coordinate sequences) into an on-line system is to add off-line
features such as context maps [55].

In view of the two-step strategy of the Frame Deformation Energy concept
described in Section 4.1 the features used in this thesis can also be divided into
two categories:

• Frame features corresponding to the magnitude of the stress on ”coils”
and ”springs” on the frame when bending.

50 Chapter 4. Additive Template Matching

• Segmental features corresponding to the difference between two segments
with common start and end (i.e. with frame deformation removed)

To simplify notation a point of m features in feature space Fm will be denoted
by f and the jth feature by fj .

4.2.1 Frame Features

Since the modeling concept for the frame deformations are based on the mutual
relations of length and angles between subsequent segments in the frame, the
two natural features corresponding to this are of course relative length and
angle of the segments. This feature is not new as is, relative length has been
used in a system based on HMM in the past [35], but then without the type
of normalization described in Section 4.2.1. A complete list of frame features
used within this thesis can be found in Table 4.1. An interesting comparison
is Duneau et al. who use the segment angle and length as features, enabled
through a scale normalization enforced by a restrictive user interface [36]. One
of the key features of the frame features in this thesis is the correlation between
subsequent segments through the relative features. This concept of relating
subsequent segments through relative shape is an intuitive way to extend a
single character recognition function to connected script [79].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: A plot of the normalization function H(r) for logarithmic ratio
values log(r) in the range (-2, 2).

4.2 Feature Space 51

Frame Features

Name Description
Angle, φ The angle of the segment between

pi, pi+1 as calculated in the input co-
ordinate system pi = (pix, piy) i.e.

arctan(
p(i+1)y−piy

p(i+1)x−pix
).

Relative Length, λ The length of a segment (pi, pi+1) in re-
lation to the length of a subsequent seg-
ment (pi+1, pi+2). Calculated through a

normalizing function H(‖pi+1−pi‖
‖pi+2−pi+1‖

) as

described in Section 4.2.1.
Relative Horizontal Position, Rx The relative displacement of the mean

horizontal value compared to previous

segment, as in
Λ̄x

i −Λ̄x
i+1

NX
, where Λ̄x

i is the
mean horizontal value for segment i and
Nx is a normalization constant.

Relative Vertical Position, Ry The relative displacement of the mean
vertical value compared to previous seg-

ment, as in
Λ̄y

i −Λ̄y
i+1

NY
, where Λ̄y

i is the
mean vertical value for segment i and
Ny is a normalization constant.

Table 4.1: A table of the frame features used within this thesis.

Ratio Normalization

Some features e.g. angular values are intrinsically limited by their periodic
nature. Weights can be used to balance magnitude of different features but
this is an insufficient remedy for balancing bounded and unbounded features.
To handle this problem a normalization function H : R → [a, b] that takes
unbounded values to a bounded interval has been introduced. For the features
covered in this thesis this applies to the relative length features λ. The aim of
the function design is that it should be tolerant to small differences and reach
a maximum value comparable to periodic features such as the angular values.
The values for ratios in the interval (0.01, 100) can be seen on a logarithmic
scale in Figure 4.1.

H(r) =

{

(2 arctan(3 ln(r)
2π))3, if |(2 arctan(3 ln(r)

2π))3| < 1

sign(ln(r)), otherwise.
(4.2)

52 Chapter 4. Additive Template Matching

4.2.2 Segmental Features

The primary objective of this set of features is to discriminate between hand-
writing samples of different classes that display similar shape variations in
frame. A typical example of this are the differences between samples of the
letters U and V as seen in Figure 4.2. The complete set of segmental features
used within this thesis can be found in Table 4.2.

Segmental Features

Name Description
Arctype, A The curve shape of the segment from

Definition 3.2.3 (cf. Section 3.2.4).
Connection Angle, θ The local angle between subsequent

curve types at the connection point as
seen in Figure 4.2.

Table 4.2: A table of the segmental features used within this thesis

θ

b

b

b b

b

b

θ

Figure 4.2: Two handwritten characters u and v with identical frame features.
The connection angle θ is calculated as the angle between local subsequent
arctypes and this is still significantly different.

4.2 Feature Space 53

Pen-up Modeling

A pen-up movement is actually the act of non-writing and thereby corresponds
to movement which is not recorded by the sampling device. But although there
is no information on exactly how the writer has moved the pen in between
two pen-down movements, the actual points where the pen-tip has entered or
exited the sampling device are significant. The difference between a pair of
such pen-up and pen-down movements correspond to a translation and will
here be referred to as a pen-up segment. For consistency the same modelling as
for the actual writing has been applied to these segments with the exception
of non-relevant features such as the Arctype in Table 4.2.

4.2.3 Virtual Reference Segments

Since the features of size and position as described in Section 4.2 are relative
they will be undefined for the first segment in a match making it impossible
to discriminate between shapes with common appearance but different size or
position. To enable the inclusion of such properties it is possible to add virtual
segments to the template matching both before and after the sample to be
recognized as seen in Figure 4.3 if there is such information available in the
user interface. With the aid of such segments it is possible to include size
and position in the features of the first segment indirectly. In particular this
design enables easy application of helpline information when available, without
making the system helpline dependent.

1

2

3Reference Start Reference End

Figure 4.3: A cursive word sample plotted with virtual reference segments
in solid bars before and after the words. The dotted lines mark the pen-up
segments in the sample.

54 Chapter 4. Additive Template Matching

4.3 Distance Function in Fm

Despite the attractive appearance of thin-plate deformed grids and some suc-
cessful applications of thin-plate splines to the character recognition problem in
the past [12], it is not suitable to use this model for frame deformation distance
calculations. The main problem is that common variations in handwritten pat-
terns involves points on the extension of a line being distributed on either side
of the line causing folding of the thin-plate spline.

Instead a more straightforward implementation of the Frame Deformation En-
ergy concept described in Section 4.1 will be used to define a distance function in
Fm. If each bending operation on the frame could be done independently of the
others then the energy required would be a simple sum of the components. It
is therefore natural to introduce a linear distance function acting in this space.
More importantly, as seen in the tables of features in Tables 4.1 and 4.2, sev-
eral of the features themselves depend on their segmental context. Keeping the
distance function linear in features also enable separation of context-dependent
(relational) and context independent features. Since the context-dependent fea-
tures are relevant whenever there is context, i.e. the current segment is followed
by one or more other segments, this distance component is called connective
distance dC . Similarly the context independent part will be referred to as
segmental distance dS . A linear function in feature space Fm can be written

d(X, Y) =

p
∑

j

wpdf(f
X
j , fYj) =

∑

j∈Rel

wjdC(fXj , fYj) +
∑

k∈Seg

wkdS(fXk , fYk), wj ≥ 0. (4.3)

The greatest problem with this distance function is the question of optimality
and the difficulty in optimizing the function with respect to recognition feature
weights wk. This discussion will be temporarily disregarded and it is just noted
that even simple ad-hoc values can produce great results given well-balanced
features. For now it is assumed that the feature values themselves have been
balanced and that the weights are set to unit size, wj = 1.

Viewing the variables fX , fY of samples X, Y as sequences of points in feature
space Fm it follows that (4.3) actually correspond to a weighted norm (fX −
fY)T W (fX − fY) when the functions dC , dS also are sum of squares. Observe
that this is a template independent normalization of feature space and not
related to weighting through feature distribution analysis as performed in [50].

4.4 Segmented Template Matching 55

4.4 Segmented Template Matching

With a distance function acting in the segmented feature space Fm as defined in
Section 4.3 the process of segmented template matching is now straightforward.
Given a template T and a sample X with the same number of segments, the
distance between these two can be calculated simply as

G(T, X) =

|S(T)|−1
∑

j

d(ΛT
j , ΛX

j), (4.4)

where d(ΛT
j , ΛX

j) is the distance function from (4.3), and ΛT , ΛX the segments
of T, X respectively.

4.4.1 Additivity

Enabling fair comparison of an input sample to various sequences of templates
imposes requirements on the distance function. By fair is here meant that the
distance value is independent on the number and position of connection points
in the template sequence, and only on the combined shape. Some new ter-
minology is introduced below to simplify the discussion and to show that the
template distance function in (4.4) indeed has this property. An interesting
comparison is the intrinsically sequential Hidden Markov Modeling technique,
which given that segmental matching probabilities are unconditionally inde-
pendent, can utilize the Viterbi algorithm to find the modeling sequences that
maximizes the probability of generating input [108] (cf. Section 2.3.1).

Segmentations of two different sets of equal number of n strokes (X, Y) are said
to be similar, S(X) ∼ S(Y) if |S(Xj)| = |S(Y j)|, j = 1, . . . , n. With respect to
the pen-up modeling described in Section 4.2.2 this means that the similarity
of two sequences will be valid if and only if the pen-up segments are in the
same place.

To clarify the process of comparing sequences of templates, two operations in
sample space X are introduced. The additive operator + is used for adding
two separate samples P, Q by letting the first point of the second sample
constitute the starting point of a new stroke. The concatenation operator
∪ will denote the connection of two samples P, Q by attachment of the first
point of the second segment to the last point of the first. The difference be-
tween these operations are illustrated in Figure 4.4. As seen in the figure, the
+ operation differs to the ∪ operation by the introduction of a pen-up seg-
ment as described in Section 4.2.2. Let the partitioning P(X) = (O, I) of a
sample X be defined as an operation O ∈ {+,∪} and an index I such that

56 Chapter 4. Additive Template Matching

P1 (’a’)

b

b

b

b

P2 (’e’)

b

b

b

b
P1 + P2 (’ae’)

b

b

b

b
b

b

b

b

P1 ∪ P2 (’ae’)

b

b

b

b

b

b

b

+

∪

Figure 4.4: The difference between addition + and concatenation ∪ of two
samples P1 and P2 with the resulting samples and their class labels to the right.

O({ΛX
j }I−1

j=1 , {ΛX
j }|S(X)|−1

j=I) = X .

Definition 4.4.1. A distance function G : X×X → R is additive if for any two
samples X, Y ∈ X such that S(X) ∼ S(Y) and any partitioning P = (O, I) the
difference

G(X, Y) − G({ΛX
j }I−1

j=1 , {ΛY
j }I−1

j=1)−
G({ΛX

j }|S(X)|−1
j=I , {ΛY

j }|S(Y)|−1
j=I) = α(P , X, Y) (4.5)

does not depend on the partial matches G({ΛX
j }I−1

j=1 , {ΛY
j }I−1

j=1) or

G({ΛX
j }|S(X)|−1

j=I , {ΛY
j }|S(Y)|−1

j=I).

Example 4.4.1. The conventional DTW distance GDTW with mass center
normalization is a typical example of a distance function which is not additive
according to Definition 4.4.1. Since alignment is performed it is very likely
that the complete match GDTW(X, Y) would differ in alignment on the subpart
{pX

j }I−1
j=1 ⊂ X from the alignment obtained with GDTW({pX

j }I−1
j=1 , {pY

j }I−1
j=1).

Thus GDTW(X, Y) can not be calculated from the partial matches without know-
ing the alignment of the partial matches. This implies that α depends on
GDTW({pX

j }I−1
j=1 , {pY

j }I−1
j=1).

The following theorem follows immediately from this Definition 4.4.1 but is
included for completeness:

4.4 Segmented Template Matching 57

Theorem 4.4.1. The template distance function in (4.4) is additive according
to Definition 4.4.1.

Proof. Let X, Y be two samples such that S(Y) ∼ S(X) and let P = (∪, I),
then

G(Y, X) =

|S(X)|−1
∑

d(ΛX
j , ΛY

j) =

|S(X)|−1
∑

[
∑

k∈Rel

wkdC(fXjk, fYjk) +
∑

l∈Seg

wldS(fX
jl , fYjl)] =

I−1
∑

j

d(ΛX
j , ΛY

j) +

I+1
∑

i=I

[
∑

k∈Rel

wkdC(fXik, fYik) +
∑

l∈Seg

wldS(fXil , fYil)]+

|S(X)|−1
∑

i=I+1

d(ΛX
i , ΛY

i) = G({ΛY
j }I−1

j=1 , {ΛX
j }I−1

j=1) + G({ΛY
j }|S(Y)|

j=I , {ΛX
j }|S(X)|

j=I)+

I+1
∑

i=I

∑

k∈Rel

wkdC(fXik, fYik) +
∑

l∈Seg

wldS(fXIl , f
Y
Il).

Evidently α in (4.5) is independent of G({ΛY
j }I−1

j=1 , {ΛX
j }I−1

j=1) since it can be de-

fined as
∑I+1

i=I

∑

k∈Rel wkdC(fXik, fYik) +
∑

l∈Seg wldS(fXIl , f
Y
Il). Similar operations

can be done to show the same thing for P = (+, I).

58 Chapter 4. Additive Template Matching

CHAPTER 5

Connected Character Recognition With Graphs

If I were to awaken after having slept for a thousand years, my
first question would be: Has the Riemann hypothesis been proven?

David Hilbert

60 Chapter 5. Connected Character Recognition With Graphs

T
his chapter treats the tools needed to extend the template match-
ing scheme presented in Chapter 4 to additive recognition of arbitrary
sequences of connected or non-connected characters. By using an ad-
ditive distance function such as the one presented in Section 4.4 for

the segmental template matching, graph techniques become powerful tools for
evaluating partial template matches.

5.1 Introduction

The by far most common strategies for recognizing on-line cursive script in
the literature is to conduct recognition on subparts of the input using a neural
network [55, 82, 101, 104] or network of HMMs [68, 107]. The main motiva-
tion behind the popular Neural Network based approach is that it avoids the
reliance on explicit segmentation points [104]. In these methods the Neural
Network produces a detection score for each letter and each time frame, thus
generating what is often referred to as a detection matrix in time and letter
(See Section 2.6.1). Classification with Neural Networks in each frame is a
fairly quick operation and it seems that a large part of the time complexity
here derives from lexical post-processing. Most of these methods base the fi-
nal recognition hypothesis on searching through the detection matrix for given
dictionary words and will thus not produce any results without dictionary [82]
although it is possible to retrieve non-dictionary results simply as the most
probable path through the detection matrix [101]. Limiting the problem to
the search for the best recognition hypothesis from a dictionary enables other
holistic feature approaches for dictionary reductions which can produce good
results efficiently but may be less robust for large variations in input [36, 94].

One of the major merits of a template based system compared to these con-
ventional methods is that template based systems can produce better results
when training data is scarce (lesser risk for overtraining). Furthermore the
additivity of the template matching distance in Chapter 4 seems to make it
easier to separate pure shape matching from linguistic processing. There are
very few examples of template based systems for on-line cursive script in the
literature and it seems that this type of segment and recognize approaches were
more or less abandoned in the mid-90’s [50, 90]. In one of the first accounts of
on-line cursive script recognition, however, Tappert employs a template based
system [124]. Tappert does not make use of segmentation points and instead
dynamically matches input to complete sequences of possible templates. The
three-dimensional lattice fed to dynamic programming however is computation-
ally costly and for practical use required limitations in form of letter transitions
as well as segmentation points. Segmentation graphs have also been used for

5.2 Connection Properties 61

structurally defined templates but the actual pattern matching ranking criteria
used differs greatly from conventional distance functions acting in feature space
[89]. The previous work on template based matching with graphs which seems
to bear most resemblance to the strategy presented in this thesis are Ford et
al. [50], Duneau et al. [36] and Oh [85]. Ford et al. use statistically derived
segmental matching scores. Duneau et al. apply a template matching scheme
but use a dictionary driven search for word hypothesises. Oh applies Fischer
discriminant analysis at the letter recognition stage and builds word hypoth-
esises by evaluating a lattice structure with properties similar to that of the
detection matrix used in the classical neural network approach [101]. Graphs
have also been used for recognition of off-line cursive script [26, 39, 44, 71]
and many aspects such as the dictionary structure and several graph search
algorithms can be used for both settings.

An important property of the methods based on implicit segmentation is the
possibility to produce confidence scores (albeit low) even for severely degraded
samples of characters. The template matching scheme in the most basic form
presented in this chapter requires each template to have a similar segmentation
to the part it is matched against. In other words for each template T there has

to be a subset of segments XT = {ΛX
j }a+|S(T)|−2

j=a in X = {ΛX
j }|S(X)|−1

j=1 such

that S(T) ∼ S(XT). This is equivalent to finding the sequence of concatenated
templates in the database that approximates the input best. In turn this means
that input where some of the constituent characters have degraded so that they
are illegible out of context, such as the samples seen in Figure 5.1, are also not
recognizable by the system.

The remainder of the chapter is organized as follows: First the concept of con-
nection properties for templates will be discussed in Section 5.2. This is the
fundamental concept needed for defining the space of available template se-
quences implicitly defined through allowing recurrent connections in the tem-
plate database. The next section presents the segmentation graph and finally
Section 5.5 presents the secondary graph structure producing the actual recog-
nition hypothesis.

5.2 Connection Properties

It is well-known that the shapes of characters in a connected character se-
quence are affected by surrounding characters [137]. In this section it will be
shown how such context dependent shape information can be introduced into
a template based recognition strategy through a template connectivity func-
tion. These restrictions serve two purposes, (1) limitation of the possible set
of combinations reduces time complexity and (2) avoiding sample input to be

62 Chapter 5. Connected Character Recognition With Graphs

1

2

(a) Missing letter shapes for ng in frame.

1

2

3

4

(b) Segmentation error missing points for n.

Figure 5.1: Two examples of degenerate cursive writing with letter shapes
generally not included in a segmentation based template database.

compared to a template sequence corresponding to a non-existent handwrit-
ten pattern (which could possibly be similar to an existing pattern for another
set of templates as seen in Figure 5.2b). Prohibiting connections of characters
that would correspond to an invalid shape by imposing constraints in model-
ing connections has been evaluated for networks of HMM for Korean script in
the past [107]. As stated there, optimally the pen-down connection between
characters, here called ligatures1, should optimally be modeled individually for
each pair of characters. A reason for this is that some ligatures suitable for
some character connections may cause an unobserved shape when combined
with other characters as in Figure 5.2, where ’c’ in combination with a ligature
turns into the shape of the letter ’e’. By introducing restrictions on connections
it is possible to selectively choose the type of ligatures that should connect to
a certain character. The tradeoff of such manual control over the recognition
system similar to the strategy of syntactical recognition is the extra effort put
into template design [87].

In order to control whether two templates may connect to each other using one
of the operations +,∪ defined in Section 4.4.1 a set of connection properties
Cs, Ce can be assigned to each template. Since connection may occur both
before and after each template separate connection properties will be given to

1In other work often also called a letter-join[50]

5.2 Connection Properties 63

u1

b

b

b

b

c1

b

b

Lig1

b

b

(a) Database

Lig1 ∪ c1

fconn(Ce(Lig1), Cs(c1), C(∪))

b

b

b

Lig1 ∪ u1

b

b

b

b

b

(b) Implicit template sequences

Figure 5.2: An example of connective properties for templates in the
database. Figure 5.2b shows some template sequence shapes implicitly defined
by allowing connections between all templates.

the starting point Cs(T) and the end point Ce(T) of each template T .

Connectivity may also be dependent on the connective operation, denoted by
O ∈ {+,∪} used to connect the templates. The case of the adding (+) op-
eration adds an intermittent pen-up segment unlike the concatenation (∪).
The connectivity properties of the operation are written as C(O) in correspon-
dence with earlier notation. For a more compact representation the functional
join] dependent on the operation is introduced as an alternative segmen-
tal breakdown of a sample X . With this representation X can be written as
X =]j(Λ

X
j , Oj), where {ΛX

j } is the segment sequence corresponding to S(X).
With this notation the Connectivity Function for templates in a database can
be defined as in Definition 5.2.1.

Definition 5.2.1. Let Cs(T), Ce(T) denote the sets of connective properties of
the template T at the start and endpoint respectively. Then the binary non-
commuting connective function between two templates T1, T2 and a connective
operation O is defined as:

fconn(T1, T2, O) =

{

1, if Ce(T1) ∩ Cs(T2) ∩ C(O) 6= ∅
0, otherwise.

(5.1)

64 Chapter 5. Connected Character Recognition With Graphs

Example 5.2.1. The connectivity property is best illustrated by an exam-
ple. Based on the templates seen in Figure 5.2, create and assign the con-
nection properties listed in Table 5.1. From Definition 5.2.1 it is now clear
that fconn(T1, T2, O) = 1 for the following triplets: (c1,Lig1,∪), (u1,Lig1,∪),
(Lig1, u1,∪), (c1, u1, +), (u1, c1, +), (c1, c1, +), (u1, u1, +).

Set Properties

Cs(Lig1) C_L_1

Ce(Lig1) C_L_2

Cs(c1) C_L_3, C_U_1
Ce(c1) C_L_1, C_U_1
Cs(u1) C_L_2, C_L_3, C_U_1
Ce(u1) C_L_1, C_U_1
C(+) C_U_1

C(∪) C_L_1, C_L_2, C_L_3

Table 5.1: An example of a set of connective properties for the templates
seen in Figure 5.2.

5.2.1 Ligaturing

The pen-down movement between two letters in a cursive word is often referred
to as a ligature [108]. In this section the same word will also be used for
pen-up connections corresponding to the + operation between two individual
letters. The reason for sharing terminology is that with the modeling of pen-
up movements as described in Section 4.2.2 the functional part of these non-
symbolic shape parts are very similar. During the recognition phase they will
however be treated quite differently.

Pen-down ligatures will be modeled explicitly just as other shapes portray-
ing symbols and the connection properties backward and forward governs the
template sequences they can exist in. Pen-down ligatures have shape and will
thus also contribute to the shape part of the approximation distance for the
best word hypothesis.

Pen-up ligatures correspond to the modeling of the lift of the pen between
two templates. These ligatures will not be modeled explicitly but instead cal-
culated dynamically through the templates before and after the lift of the pen.

5.3 Segmentation Graph 65

b

b

b

b
xa

a(Tn)

b

b

b

b

xb

b(Ta)

Figure 5.3: An example of dynamically calculated pen-up ligature (dotted
line) between a template Tn of the character ’n’ and a template Ta representing
an ’a’ according to the template properties in (5.2).

By defining the properties after_separation a(T),before_separation b(T)
for a template T the dynamic pen-up ligature between two templates T1, T2 is
calculated as

~l = (a(T1) + xa(T1) + b(T2) + xb(T2), yb(T2) − ya(T1)) ∈ R
2, (5.2)

xa, xb are relative x-values denoting the offsets for the reference points from
where the dynamic pen-up calculation should be done. The variables ya, yb

denote the absolute y-values of the reference points used for calculating the
dynamic pen-up. A graphic view of the calculation between two templates of
n and a is shown in Figure 5.3.

5.3 Segmentation Graph

This section will show how to use the segmental distance function in (4.3) to
build a graph containing the template matching information. The segmentation
graph for a template based system can be characterized by Definition 5.3.1.

Definition 5.3.1. A Segmentation Graph SD(X) = (N, E) for a sample X
with segmentation points S(X) = {pk} constructed by a database D, is a
graph such that each node n ∈ N corresponds to a segmentation point pk and
each edge ei→j ∈ E to the properties of matching a template in D between
segmentation points pi and pj .

For simplicity any edge ending in point pj will be denoted by e→j and with
ei→ is implied any edge starting in point pi. When talking about recogni-
tion between two given nodes in the segmentation graph, different recognition

66 Chapter 5. Connected Character Recognition With Graphs

1

2

3

4

5

6

7

1 2 3 4 5 6 7

”, 5, (5) ’c’, 72, (38)

’e’, 53, (53)

”, 70, (10)

’d’, 125, (95)

’l’, 95, (15)

’k’, 153, (78)

”, 120, (7) ’c’, 160, (34)

’e’, 183, (72)

Figure 5.4: An example of constructing a segmentation graph for the Swedish
word ’ek’. The edge values are the best cumulative distance for that edge, given
edges to start node. The template distance for the isolated part of input is
included within parenthesis.

candidates can use different number of edges. The set of edges in node Ni corre-
sponding to segmentation point pi will be denoted by Ei. Any such sequence of
edges will here be called a path. For notational convenience alignment between
a sample X and a template sequence T = (T1, . . . , TQ) is introduced as

Φ(X, T) = (Φk1 (X, T1), . . . , ΦkQ
(X, TQ)), (5.3)

where Φk(X, Tq) = {pφTq (j)}|S(Tq)|
j=1 so that φTq

(j) gives the index of the segmen-

tation point in S(X) that corresponds to segmentation point j in template Tq

and k denotes the index of the first segmentation point in X that corresponds
to the first segmentation point in Tq. Thus φTq

(|S(Tq)|) = φTq+1 (1) when
OφTq (|S(Tq)|) = ∪, but differ when the + connects Tq, Tq+1 and k = φTq

(1).

Example 5.3.1. Figure 5.5 shows an example of a template sequence T sim-
ilar to a sample X (S(X) ∼ S(]jTj , Oj)). In this example the alignment
function Φ(X, T) becomes (Φ1(X, Te), Φ3(X, TLig), Φ4(X, Tk), Φ8(X, Ta)) and
for instance Φ4(X, Tk) = {pi}7

i=4 ⊂ X.

Definition 5.3.2. The complete graph S∗
D
(X) of a sample X with segmenta-

tion S(X) = {pk}|S(X)|
k=1 and database D is the segmentation graph s.t. for every

5.3 Segmentation Graph 67

X:

1

2

3

4

5

6

7

8

9

10

11

T :

1

2

3

Te

1

2

TLig

1

2

3

4

Tk

1

2

3

4

Ta

Figure 5.5: An example of an input sequence X and a template sequence
T = (Te, TLig, Tk, Ta).

template T ∈ D, ∃ei→i+|S(T)|−1, ∀i such that S(T) ∼ S(Φi(X, T)).

Especially when introducing a limiting connectivity function as specified in Def-
inition 5.2.1 another question arises, and that is the existence of a sequence of
templates with a segmentation matching the input sequence. A template can
only be matched to a segmentation similar part of input and this in conjunc-
tion with connectivity restrictions could potentially cause the situation that
no sequence of templates connected with the +,∪ operations is similar to in-
put. To describe this situation the term segmentability of an input sample by
a database D is introduced in Definition 5.3.3.

Definition 5.3.3. A sample X is segmentable by a database D if there is
a sequence of m templates and connection operations {Ti}m, {Oi}m−1 s.t.
fconn(Ti, Ti+1, Oi) = 1, i = 1, . . . , m − 1 and S(]m−1

i (Ti, Ti+1, Oi)) ∼ S(X).

The complete graph as defined in Def. 5.3.2 will contain paths for all template
sequences that matches every segment in input. In terms of computational

68 Chapter 5. Connected Character Recognition With Graphs

complexity as well as memory usage, it is normally however not a good idea to
work with the complete graph. Various strategies that aim at calculating only
a limited and effective set of edges are discussed in the next section.

5.3.1 Building A Segmentation Graph

When building an acyclic graph for handwriting recognition it is very common
to do this with the graph search algorithm to be applied in mind. The Viterbi
algorithm used for HMM and DTW can best be viewed as a graph search
algorithm but it is so intricately connected to the method used to analyze
the graph that the graph terminology seldom appears in those cases [129].
Since the Viterbi algorithm is very much a specialization of graph search for
a sequence with probabilistic edge length values [40] the more general shortest
path algorithm by Dijkstra is seen as the starting point for the graphs discussed
in this chapter [33]. In the dual graph strategy proposed in this chapter the
purpose of the segmentation graph is not to produce the best complete paths of
templates corresponding to the input sample. Instead the objective of this first
graph is to produce a graph with the most relevant templates matching to each
part of input. Since a complete path may contain a varied number of edges,
the edge distance in itself is inadequate for determining how well a certain edge
matches to a certain part of input. Instead, the complete best path distance
including the last edge will be used when comparing the qualification of edges.

There are two main strategies to consider when adding edges to the segmenta-
tion graph. Edges can be added either

segment-by-segment so that all matches against one segment in the input
sample are completed before matching the next segment,

or it can be

template-by-template so that all starting segments of all valid templates
are matched from each segmentation point.

Both of the strategies are presented in Algorithms 3 and 5. Although it will be
shown later that the segment-by-segment strategy has certain other favorable
traits one distinct difference can be made here. The segment-by-segment strat-
egy is by definition harsher at segment level and thus risks eliminating paths
upon a large matching distance on a single segment whereas the template-
by-template strategy is less sensitive to peaks in segmental distance. On the
other hand the template-by-template strategy can be more sensitive when the
global match of the template is less accurate. Naturally the construction of the

5.3 Segmentation Graph 69

complete graph in Def. 5.3.2 is completely independent of which of these two
strategies are used since all valid edges are kept.

Additivity Requirement

The Dijkstra shortest path algorithm is a very simple but effective algorithm
to dynamically calculate the shortest path through a graph [33]. This algo-
rithm however only works if the path distance is independent on the number
of nodes used and only dependent on the edge distances - but this is exactly
the additivity concept as in Definition 4.4.1.

Tappert [124] also mentions additivity as a concept but in that case additivity
refers to the point matching which in his case corresponds to DTW as solved
with the Viterbi algorithm. Unlike template matching the additivity of the log-
arithm of conditional probabilities has driven the design of that algorithm [40].
Without this property recognition results would potentially be dependent on
the length of the individual templates used in the complete template sequence
matched.

Edge Connection Distance

The template distance function defined in Section 4.4 does not contain the
features connecting forward from a given segmentation point and therefore
connection calculations treating these features need to be treated when find-
ing the total distance for a sequence of edges. These connection calculations
are precisely the function α specified in Definition 4.4.1. In other words, in
order to calculate a complete distance value for the best path backwards when
adding a new edge, the best connection to edges in the starting point of the
current match need to be calculated. Including the edge connection operation
Oi for connection two edges in point i, the edge connection distance g for edges
e→i, ei→ can be written as in (5.4).

g(Te→i , Tei→ , Oi, X) =

∑

Rel

dC(f(Te→i ,+), fXi)+

dC(f(+,Tei→), fXi+1)

, if Oi = +

∑

Rel dC(f(Te→i ,T
ei→), fXi), otherwise

(5.4)

where f(Te→i ,T
e→i) is a feature value between the templates corresponding to

edges e→i, ei→ and f(Te→i ,+) is a feature value corresponding to connection
between template and the pen-up segment induced by the + operation. With

70 Chapter 5. Connected Character Recognition With Graphs

this function at hand it is now possible to formulate the segmentation graph
construction algorithm as in Algorithm 3.

Algorithm 3 Segmentation Graph SD(X), Template by template

1: % Initialize
2: Ek = ∅, k = 1, . . . , |S(X)|
3: for k = 1, . . . , maxT∈D|S(T)| do
4: for T ∈ D, |S(T)| = k do
5: if fconn(∅, T, +) = 1 then
6: Set d(e1→k

T) = G(T, Φ1(T, X))
7: Ek = Ek ∪ e1→k

T

8: end if
9: end for

10: end for
11: % Loop segmentation points
12: for i = 2, . . . , |S(X)| − 1 do
13: % Loop database templates
14: for k = 1, . . . , |D| do
15: if Ek

i = {e ∈ Ei|fconn(Te, Tk, Oi) = 1} 6= ∅ then
16: Set ď = G(Tk, Φi(Tk, X))

17: Set d(e
i→(i+|S(Tk)|−1)
Tk

) = ď + mine∈Ei
k
d(e) + g(Te, Tk, Oi, X)

18: % Add to edges in node N(i+|S(Tk)|−1)

19: E(i+|S(Tk)|−1) = E(i+|S(Tk)|−1) ∪ e
i→(i+|S(Tk)|−1)
Tk

20: % Apply beam width
21: if |E(i+|S(Tk)|−1)| > BS then
22: E(i+|S(Tk)|−1) = E(i+|S(Tk)|−1) − argmaxe∈E(i+|S(Tk)|−1)

d(e)

23: end if
24: end if
25: end for
26: end for

Since Algorithm 3 is the well-known Dijkstra algorithm applied to graph build-
ing with an additive template distance function, it follows immediately by con-
struction [33]. An example of constructing the segmentation graph from a
simple database can be seen in Figure 5.4. Let TD(X) = {T |S(T) ∼ S(X)} be
the set of segmentable sequences T =]j(Ti, Oi), Ti ∈ D of X . Let the sequence
with the smallest cumulative distance be defined as in

T ∗ = argmin
T ∈TD(X)

|T |
∑

i

G(Ti, ΦφTi
(1)(Ti, X)) +

|T |−1
∑

i=1

g(Ti, Ti+1, Oi, X). (5.5)

5.3 Segmentation Graph 71

Algorithm 4 Finding best path v1→|S(X)| in S∗
D

1: Set n = N|S(X)|

2: Set v = {}
3: while n > 1 do
4: Set ei→n = argmine∈En

d(e)
5: v = v ∪ ei→n

6: n = i
7: end while

Theorem 5.3.1. Relax the beam constraint on line 21 in Algorithm 3. Then
Algorithm 4 can be used to find T ∗ in (5.5) by tracing SD(X) produced by
Algorithm 3 from node N|S(X)|.

Proof. Clearly the best path (template sequence) needs to end in N|S(X)| or it
would not be a sequence that segments X . Then the theorem follows from the
cumulative distance property of d(e) in Line 17 of Algorithm 3.

5.3.2 Limiting the Graph Size

As seen in Algorithm 3 the computations required for the construction of the
segmentation graph are bounded by the number of database template |D| and
the number of segmentation points |S(X)|. The actual time complexity is how-
ever also dependent on the connectivity function fconn and on the positions of
the pen-up segments corresponding to the + operation in template space, since
these factors have impact on the number of template sequences that are similar
to the segmentation of input. In this respect a large number of unnecessary
computations have already been avoided in the construction phase. The prob-
lem with estimating the bounds of a general time complexity is thus that the
number of sequences that can be expanded from any given segmentation point
will depend tremendously on input. It is however equally clear that an exhaus-
tive search among all possible combinations of all templates is an extremely
time consuming task.

From this perspective, putting a constraint BS on the number of sequences
that can be expanded from a given point is thus desirable. This procedure
is very common in both offline and online cursive handwriting recognition as
well as speech recognition and usually goes by the name BEAM search [39].
With this limitation the number of connective distance calculations in every
node would be bounded by this value (instead of D) as seen on in Alg. 3.21.
The normal edge distance calculations are bounded by |D| from every node

72 Chapter 5. Connected Character Recognition With Graphs

and the total number of distance calculations during construction will thus be
bounded by O(|D|BS(|S(X)| − 1)). So in order to be computationally efficient
the strategy is predetermined to deal with various ways of limiting BS. In
practice, however, limiting BS also puts constraints on the templates that
connect via fconn and thus the actual average number of calculations will be
significantly smaller than |D|. The effect of varying BS for time complexity,
memory and recognition accuracy can be seen in Table 9.9.

It is here important to stress that Algorithm 3 only works with the complete
graph S∗

D
(X) and the reason for this is simply the Markovian characteristic of

its construction. In other words, the last edge in the best path to a given node
is not necessarily the edge used by the best path from the same node. Therefore
limiting BS will invalidate Theorem 5.3.1 and it can no longer be asserted that
the best path through SD(X) will correspond to the sequence of templates best
approximating the input. In practice, however, this does not invalidate the use
of the algorithms, but it will limit performance since sequences corresponding
to the best approximation to input are likely not to be available in SD(X) with
BS for some samples.

5.4 Noise Modeling

As opposed to many other template matching techniques, segmented template
matching requires a more explicit treatment of possible noise in input. By
noise here, is meant, either involuntary parts of strokes such as those often
appearing at the start of a stroke if the writer slips with the pen, or other
segmentation artifacts. Some such artifacts, usually at the beginning and end
of strokes caused by immature hardware, have previously been the focus of
preprocessing techniques [47]. Generally noise will be treated as parts of shape
that don’t match particularly well to anything. In the recognition process this
can be handled in a number of ways:

• Introducing a noise template, possibly with special matching character-
istics

• Introducing a fixed distance value for a noise segment

• Using heuristics to introduce a dynamic template, which depends on in-
put, that models some known type of noise

Noise templates The largest problem encountered when trying to model
noise by a fixed template is naturally that noise can have the appearance of
anything that is dissimilar to a real shape. This strategy is therefore very

5.4 Noise Modeling 73

Algorithm 5 Segmentation Graph SD(X), Segment by segment

1: % Initialize
2: Ek, Ik = ∅, k = 2, . . . , |S(X)|
3: Ek

1 = {∅}, k = 1, . . . , |D|
4: % Loop segmentation points
5: for i = 1, . . . , |S(X)| − 1 do
6: % Loop database templates
7: for k = 1, . . . , |D| do
8: if Ek

i = {e ∈ Ei|fconn(Te, Tk, Oi) = 1} 6= ∅ then
9: Set ď = G(T 1

k , Φi(T
1
k , X))

10: Set d(e
i→(i+1)

T 1
k

) = ď + mine∈Ei
k
d(e) + g(Te, T

1
k , Oi, X)

11: % Add to edges in node Ni+1

12: if |S(X)| > 1 then

13: I(i+1) = I(i+1) ∪ e
i→(i+1)

T 1
k

14: % Apply incomplete beam width
15: if |I(i+1)| > BI then
16: I(i+1) = I(i+1) − argmaxe∈I(i+1)

d(e)
17: end if
18: else
19: Add edge e

i→(i+1)

T 1
k

as in Alg. 3.19

20: end if
21: end if
22: end for
23: % Continue incomplete matches
24: for eT j ∈ Ii do
25: Set ď = G(T (j+1), Φi(T

(j+1), X))

26: Set d(e
i→(i+1)

T (j+1)) = ď + d(eT j) + g(T j, T
(j+1)
k , Oi, X)

27: if j + 1 < |S(T)| then

28: I(i+1) = I(i+1) ∪ e
i→(i+1)

T
(j+1)
k

29: Apply beam as in Line 14
30: else
31: E(i+1) = E(i+1) ∪ e

(i+1−|S(T)|)→(i+1)
T

32: Apply beam as in Alg. 3.19
33: end if
34: end for
35: end for

unlikely to succeed well. Since the aim of the noise distance is to enable stepping

74 Chapter 5. Connected Character Recognition With Graphs

past segmentation points without matching templates from the database using
a fixed distance is probably a more suitable solution.

Fixed noise distance A weakness of the fixed distance strategy is that the
acceptable distance values for noise depend on how well modeled other tem-
plates in the database are. When the average distance values become smaller
as variation in database modeling increases this also implies that the average
value of a non-match decreases, thus affecting the matching properties of noise
with a fixed distance. The intrinsic robustness against various forms of noise
has been one of the key arguments for using network based methods without
explicit segmentation. Since the sliding window principle of such methods cor-
responds to a more global template match these are less sensitive to small noise.
In one realization, the detection of nil letters in the detection matrix could also
correspond to matching noise [101].

Dynamic noise modeling This has been the choice of method for the im-
plementations covered in this thesis and can be interpreted as a combination of
the previous two strategies. In this method noise is modeled by some observed
heuristics, but instead of using a fixed template, the template adapts to input
in some predetermined way. This will imply that those particular observations
in input will match fairly well to input whereas other types of noise not fit-
ting into the heuristic model will have large matching distance. To balance
these two possibilities and assuring that noise is indeed a database element
that does not match particularly well to anything, the matching distance can
be truncated as in (5.6).

G(Tnoise, X) =

dmin, if G(Tnoise, X) < dmin,

G(Tnoise, X), if dmin ≤ G(Tnoise, X) ≤ dmax,

dmax, otherwise.

(5.6)

When matching noise to the segmentation graph there is also another consid-
eration, that of adding noise as separate edges or incorporating noise segments
in the database templates. The choice of strategy is here mostly dependent on
the edge addition strategy. For a template-by-template strategy it is natural
to add noise as separate edges connecting to everything, i.e.

fconn(Tnoise, T, O) = fconn(T, Tnoise, O) = 1, ∀T ∈ D, O ∈ {+,∪} (5.7)

since one would otherwise have to evaluate a very large number of noise com-
binations with each template. For the segment-by-segment strategy, however,
noise can be added either as a new edge or to an existing edge in the set of
incomplete edges in each node.

5.5 The Recognition Graph 75

(a) Sample

(b) Approximating template sequence

Figure 5.6: An example of the recognition of a sample of the word change.
The aligned parts of the input sample corresponding to the best matching
template sequence shown concatenated in Figure 5.6b is shown in Figure 5.6a
with matching colors.

5.5 The Recognition Graph

The aim of the segmentation graph is to quickly conduct all relevant shape
comparisons and store this in a compact format. The segmentation graph also
allows easy access to the best path backward from any given node. Unfortu-
nately however, this is not the case for the second or n-best results. Simon [71]
has studied the application of path algebras for fast retrieval of such results
from a segmentation graph, but the distance values in that case are multiplica-
tive (i.e. probabilities) instead of additive as in the template matching case

76 Chapter 5. Connected Character Recognition With Graphs

and rely on that they are independent of each other. Unfortunately there is
no simple way to retrieve such candidates from the complete graph S∗

D
(X),

and to make sure that elements are returned in order of distance, only lossless
exhaustive search methods can be applied. Not only may the variation from
the best sequence of matching templates alter the segmentation (and thus not
correspond to just changing one edge), but the connection distance g(e→i, ei→)
is just the best connection distance and thus needs to be recalculated for every
path except the best.

The pragmatic approach taken in this thesis to attack the problem has been
named the dual graph approach since it involves a second graph - the Recog-
nition Graph. In practice this means that beam searching techniques will be
applied in two levels - first to prune shape matching results and then to expand
partial results to complete word hypothesis. This second graph produces the
actual recognition hypothesis and thereby correspond to the actual path ex-
pansion in other work. In this chapter this will basically amount to summing
the edge distance values, but further merits of this structure will be shown in
subsequent chapters. In other work, averaging has been proposed as a proce-
dure for summing sequential distance values [85]. In this implementation this
has not been considered to be a good option since it fundamentally changes
the additivity principles.

Definition 5.5.1. A Recognition Graph RD(S, X) = (N, V) for a segmenta-
tion graph S of a sample X with segmentation points {pij} constructed by
a database D, is a graph such that each node n corresponds to a segmenta-
tion point pk and each edge v1→j to the properties of matching a sequence of
templates in D between segmentation points from the beginning to j.

The recognition graph uses both the matching information in a segmentation
graph as well as the corresponding sample and database to produce a set of
symbols that, in view of the distance function used, are the most similar to the
input sample.

5.5.1 Recalculated Pen-up Movements

When pen-up connections are calculated in the segmentation graph only the
best edge can be considered and naturally only the last segment can therefore
be taken into account. Since the aim of the matching process is to find the
best approximating sequence of templates in the database the match of noise
should in a modeling respect be disregarded. For this reason, when matching
noise, one noise → noise segment connection distance should be replaced by
the correct template → noise segment. This is done by remodeling a pen-up

5.5 The Recognition Graph 77

translation between strokes in the input sample so that the starting point of
the compared pen-up movement corresponds to the lift of the pen between
two actual template matching edges as shown in Figure 5.7. Depending on
the segmentation graph such recalculations may or may not be possible due to
the Markovian characteristic (i.e. there may be a multitude of preceding noise
edges), but the modeling of complete paths always enables such recalculations
in the recognition graph.

b

b

b

b

b

’h’

noise

b
b

b

b

b

noise

’a’

Figure 5.7: An example of pen-up recalculation (dotted line) in sample due
to matched noise edges.

5.5.2 Building A Recognition Graph

The major computations required when adding the edges in the segmentation
graph to obtain path candidates for the recognition graph are those conducted
for the connection distance. The beauty of the additivity concept explored in
this thesis is how the complete path hypothesis propagation in its initial form
basically consists of expanding the compact segmentation graph into a Trie
structure [41] with nodes sorted by their complete distance as seen in Figure 5.8.
Ad hoc summation procedures for ranking complete paths as common for most
other methods is thereby avoided [89].

5.5.3 Connection Distance Calculation

For each new edge from the segmentation graph added to the recognition graph
a new pen-up movement or concatenation distance calculation is conducted.
The connection distance of (5.4) calculated for the segmentation graph only
accounts for the connection corresponding to the best path backward for the
given edge. To get the real connection value when adding another arbitrary
edge from the segmentation graph to a path in the recognition graph this

78 Chapter 5. Connected Character Recognition With Graphs

connection distance must therefore often be recalculated. Furthermore it is
possible to incorporate better pen-up modeling information since the complete
path from the first node is fixed for the elements in the recognition graph. For
this reason the path distance Dv for a set of edges e1→j2

1 , . . . , e
jn→jn+1
n can be

recursively defined as

Dv(v1→jk) = Dv(v
1→jk−1) + d(ejk−1→jk)+

ĝ(Tejk−2→jk−1 , Tejk−1→jk , Ojk−1 , X), Dv(v
1→j1) = d(e1→j1), (5.8)

where ĝ is the distance in (5.4) but with corrected path pen-up modeling as
described in Section 5.5.1.

Algorithm 6 Creation of the Recognition Graph RD(X)

1: % Initialize
2: Set Vi = {}, i = 1, . . . , |S(X)|
3: for k = 1, . . . ,S(X) do
4: Set Vk = Ek

⋂{e1→}
5: end for
6: % Expand Trie structure
7: for k = 1, . . . ,S(X), r = 1, . . . , |Ek| do
8: Let ik be the start node of edge er ∈ Ek

9: for q = 1, . . . , |Vik
| do

10: Set v = (v1→ik
q , eik→k

r)
11: Set Dv(v) according to (5.8)
12: Vk = Vk ∪ v
13: % Apply Beam width
14: if |Vk| > BR then
15: Vk = Vk − argmaxv∈Vk

Dv(v)
16: end if
17: end for
18: end for

5.5.4 Time Complexity Considerations

The time complexity for building a recognition graph depends more than any-
thing on two factors: 1) the number of edges in each node of the segmentation
graph, 2) the number of paths in each node of the recognition graph as lim-
ited by the recognition graph beam width BR. For the segment-by-segment
strategy, naturally also the incomplete beam width BI has impact on the time
complexity.

5.6 Preprocessing Parameters 79

1 2 3 4 5 6 7

”, 5, (5) ’c’, 72, (38)

’e’, 53, (53)

”, 70, (10)

’d’, 125, (95)

’l’, 95, (15)

’k’, 153, (78)

”, 120, (7) ’c’, 160, (34)

’e’, 183, (72)

1-1 2-1 3-1

3-2

4-1

4-2

5-1

5-2

5-3

6-1

6-2

6-3

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

”, 5, (5)
’c’, 72, (38)

’e’, 53, (53)

”, 70, (10)

”, 95, (10)

’d’, 125, (95)

’l’, 120, (15) ”, 145, (7)

”, 150, (7)

’k’, 153, (78)

’k’, 178, (78)

’c’, 160, (34)

’c’, 190, (34)

’e’, 183, (72)

’e’, 208, (72)

’e’, 213, (72)

”, 120, (7)

’c’, 185, (34)

7-2

’l’, 95, (15)

Figure 5.8: A graphic view of expanding the matching information in the
segmentation graph as in Figure 5.4 into the Trie structure of the recognition
graph.

5.6 Preprocessing Parameters

Another potentially powerful property of template matching with explicit seg-
mentation is the ease with which global shape parameters can be localized.
With global shape parameters is here implied reference line position, scaling
and other global features often normalized at a preprocessing stage [47]. Se-

80 Chapter 5. Connected Character Recognition With Graphs

quential template matching opens up the possibilities to assess these param-
eters locally and adding a suitable distance component to g, ĝ for modeling
local changes in these global features. The relative length ratio in Table 4.1,
is such a feature as differences in length only has a one-segment memory and
thus the scaling cost of a template equals to the scaling of the first segment of
the template.

CHAPTER 6

Delayed Strokes And Stroke Attachment

It is not worth an intelligent man’s time to be in the majority. By
definition, there are already enough people to do that.

G. H. Hardy

82 Chapter 6. Delayed Strokes And Stroke Attachment

I
n Chapter 5 it is shown how the template distance function defined in
Chapter 4 can be used to create a recognition system for connected charac-
ter input. However, this strategy makes an oversimplifying and sometimes
incorrect assumption in that all coordinates belonging to a character are

written together. This is certainly not true for western cursive writing nor
Arabic, scripts which both contain diacritic marks commonly written after all
other letters have been entered.

6.1 Introduction

An obvious problem that on-line recognition methods encounter when applied
to connected characters is the presence of delayed strokes. There are various
strategies for coping with this problem and most solutions are closely related
to the type of recognition method used. Recognition of Chinese characters is
often compared to the task of recognizing cursive words for other alphabets
[54]. In this field stroke-order invariance is a thoroughly studied phenomenon
which is handled considerably well with Dynamic Programming algorithms
[136]. For the recognition of on-line cursive script the problem has not received
as much attention and diacritical removal with simple heuristics seems to be
the most common approach although some strategies use explicit stroke re-
ordering and insert probable diacritic strokes at a spatially decided point in
time [16, 107, 124]. Often the removed information is used to boost confidence
in the final hypothesis evaluation in combination with a dictionary look-up
[50, 90, 104]. In recent work a more frequent approach is to convert the re-
moved stroke into a hat-feature added to the features of the spatially under-
lying strokes as introduced by Guyon et al. [55, 68, 101]. Since this problem
is particular to on-line methods treating the sequence of points chronologically
rather than space-oriented, it is possible that the merits of adding off-line tech-
nology may be somewhat owed to the intrinsic stroke-order invariance of the
off-line recognition setting. Nevertheless some off-line methods also try to find
an explicit association of diacritics with base shapes [30, 37]. From a problem
description standpoint the delayed strokes introduce a third complexity layer
to recognition of connected characters by adding the ambiguity of each entered
stroke can be a modifier of already entered characters. The possible confusion
cases will now be:

• Segment subpart misinterpretation - this corresponds to recognition er-
rors in conventional isolated character recognition, see Chapter 4.

• Segmentation errors - this corresponds to an error in recognized segmen-
tation. The implied letter borders in the recognition results do not cor-

6.2 Diacritic Modeling 83

respond to the correct set of letter borders in input, see Chapter 5.

• Diacritic errors.

The last set of new Diacritic errors and a proposed algorithm for dealing with
such is the focus of this chapter. The proposed algorithm avoids the problem
of previously proposed systems with heuristically determined diacritic removal
and insertion schemes and instead match diacritic parts of characters in the
same way that other templates are treated. Previous work in trying to include
diacritics dynamically into the recognition process involves successive associa-
tion of delayed diacritics to letters earlier in the hypothesis through a best-first
paradigm [103]. The algorithm proposed in this chapter will enable a complete
beam search of the combinatorial possibilities to associate multiple diacritics
with one hypothesis as well as introduce a way to account for unmatched in-
formation in a fair manner.

In short diacritic errors can be said to belong to one of three types

1. Letter confusion - a diacritic mark has been matched as a normal letter
or vice versa.

2. Association error - a correctly recognized diacritic - such as a point - has
been associated as a modifier to the wrong part of input.

3. Diacritic confusion - a diacritic mark has been interpreted as the wrong
type of diacritic mark.

Here the diacritic confusion corresponds to shape matching errors such as those
that would arise in normal recognition with a template distance function on
isolated characters. The other two confusion cases are however particular to
how the writing of a diacritic is modeled compared to previous writing as shown
in Section 6.4.

6.2 Diacritic Modeling

Diacritic strokes are defined as the small strokes such as accents and dots added
to some letters to distinguish between similar words. In the template database
presented in this system the diacritic components and the letters they modify
are distinctly separated. The actual writing of diacritics may, just like the
ordinary set of letters, vary considerably between writers. In order to simplify
modeling, the preliminary assumption that a delayed stroke is added one at
a time is made in Definition 6.2.1. In cases when a diacritic is composed of
multiple strokes this means that each such stroke will be treated separately.

84 Chapter 6. Delayed Strokes And Stroke Attachment

1

2

diacritic pen-up

anchor point

base shape

diacritic template

(a) ’Tah’ template

1
2

diacritic pen-up

diacritic template

anchor point

base shape

(b) ’Kaf’ template

Figure 6.1: A plot of the pen-up modeling for attaching diacritics to tem-
plates.

Definition 6.2.1. A diacritic shape is a part of a character that is written
distinctly separated into a single stroke.

Templates corresponding to letters without diacritic marks will here be called
base shapes. All letters with variations in diacritic marks but with the same
base shape will share this template. The modeling of the position of the dia-
critic relative the base shape is done by associating a pen-up movement (i.e.
translation) from a designated point in the template, called the anchor point
as seen in Figure 6.1. Let %T

a denote a pen-up attached to point index a of tem-
plate T . As diacritic marks appear both below, above and even in the middle
of characters, the endpoint of this movement may correspond to min, max or
center value of the diacritic stroke. Two samples with pen-up movements in
opposite directions connected to the vertical minimum of the diacritic template
are shown in Figure 6.1.

In the case when the anchor point corresponds to the last point in the template
and the diacritic in input is the next stroke after the base shape, recognition will
correspond simply to connected character recognition as described in Chapter 5
of a base shape template and a diacritic template. For diacritics in connected
writing however, this is almost never the case and therefore a more elaborate
modeling as described in Section 6.3 is required to make sure that previous
assumptions on additivity used for the connected character recognition are
sensible.

6.3 Pen-up Attachment 85

6.3 Pen-up Attachment

The system for recognition of on-line sequences of connected characters pre-
sented in previous chapters is Markovian in the sense that recognition of a new
part of a sample only depends on the recognition of the immediate predeces-
sor. There is no way to associate delayed strokes to base shapes. This section
describes a new stroke attachment paradigm to cope with this problem. In the
discussion in previous chapters it has been assumed (although not explicitly
mentioned) that characters in the connected character sequence in input fol-
low a chronological order. This means that the pen-up segments discussed in
Section 4.2.2 can be used directly for recognition. In view of the frame energy
concept of Section 4.1 each such pen-up movement corresponds to the bar con-
necting two strokes. To provide a suitable basis for good recognition results
these pen-up movements need to be stable features in input with as small vari-
ance as possible, and from this standpoint the chronological pen-up modeling
is not always a good choice. Consider the chronological pen-up segments of the
Arabic word 	¡ 	®k in Figure 6.2 for instance. It is quiet clear that some of the
pen-up movements in input corresponding to the diacritic attachment depends
on the width of other characters. To improve this situation two new concepts
for modeling stroke connections in input are introduced and the corresponding
pen-up attachments are shown in Figure 6.2.

Recalculated pen-up This term has already been introduced in Section 5.5.1
and corresponds to changing the modeling of the attachment point be-
tween base shape templates.

Diacritic pen-up This remodeling is often accompanied by a recalculated
pen-up since it only models the pen-up movement from the anchor point
in the template to the diacritic template and never from the diacritic
template.

6.3.1 Input Segmentation

Clearly as seen in Figure 6.2 the proposed remodeling schemes only modify
the pen-up movements between strokes. How does this impact on the task
of comparing and ranking the approximating sequences of templates to input?
Since each pen-up remodeling corresponds to another set of pen-up segments
in X it is natural to introduce a remodeling function X : S(X) → S(X),
where the space S(X) consists of all variations in pen-up modeling of identical
segmentation points S(X) so that even though S(X) = {p} is constant, the

resulting segments {Λ}|S(X)|−1
i=1 will differ. In the view of the optimization

86 Chapter 6. Delayed Strokes And Stroke Attachment

Chronological pen-up

recalc. pen-up diacritic pen-up

recalc. pen-up

diacritic pen-up

Figure 6.2: Some examples of pen-up reorderings and reassociations in a
sample containing diacritic strokes for the Arabic word 	¡ 	®k.

problem of finding the best approximating template sequence. This will add
X as a subject of minimization and the best approximating sequence in this
respect will now be the solution to

argmin
T ,X

|T |
∑

i=1

G(Ti, ΦφTi
(1)(Ti,X (X))) +

|T |−1
∑

i=1

ĝ(Ti, Ti+1, Oi,X (X)). (6.1)

6.4 Dynamic Treatment Of Diacritic Strokes

In view of (6.1) it is clear that Algorithm 6 needs modification in order to handle
the problem of finding the best template sequence. The actual pen-up remod-
eling implications to template distance is easily handled by the recalculated
distance function in (5.4), the chronological dispersion of diacritics from their
base shapes however, will cause problems. The reason for this is the sharing
of diacritic templates for the base shapes. Since a base shape may correspond
to several different symbols solely differing by their diacritic variations, not

6.4 Dynamic Treatment Of Diacritic Strokes 87

including the diacritic information in matching the base shape may cause a
combinatorial explosion of possible symbol sequences and without the diacritic
matching information each such symbol sequence will have the same distance.
There are a few intuitively direct ways to attack this problem.

1. Insert heuristically designated delayed strokes into a chronological point
sequence [16, 124].

2. Handle symbol ambiguity at a path level to avoid the combinatorial ex-
plosion of symbol sequences. This corresponds to matching completely
without diacritics only applying such knowledge in a postprocess to dis-
criminate between ambiguous words [36, 50, 90, 104].

3. Include the future diacritic matching information in the path calculation.
This strategy is the most common for HMM and neural network based
methods where all delayed strokes are removed by simple heuristics and
incorporated into the feature sequences through the hat feature [55, 68,
101].

Only the second method is covered in this thesis, and this choice is motivated
by two strong arguments. Firstly, handling ambiguity at the symbol sequence
level would still not aid in taking early decisions as to whether a complete
template with a diacritic matches well. Thus it would force the recognition
graph to store more paths in every node to handle sequences that would be
very unlikely given the complete input with diacritics. An example of this
in English for instance is the recognition of a sample of the word minimum
as shown in Figure 6.3. Since the letter ’i’ without a dot here matches well to
parts of ’n’ and ’m’ the recognition graph will have to keep track of lots of paths
that have a very large matching distance if the required diacritic matching were
to be included. An example of such a sequence that would be unlikely given
a priori diacritic associations is the segmentation corresponding to template
sequence ’iciininciun’ shown in Figure 6.3b. The other argument for including
diacritic matching information in the path calculations involves the interaction
with lexical knowledge presented in Chapter 7.

6.4.1 Diacritic Matching

The diacritic templates themselves are not treated as ordinary base shapes
and the main difference are the implementational aspects of Definition 6.2.1.
This definition implies that matching of diacritic templates to input should be
restricted so that diacritic edges containing the match of one diacritic always
start at the first node of a stroke and ends in the last node of the same stroke.

88 Chapter 6. Delayed Strokes And Stroke Attachment

1

2 3

(a) Sample

(b) Segmentation from template sequence

Figure 6.3: A sample of the cursive word minimum demonstrating the typ-
ical problem with diacritic association, here shown with a different template
segmentation.

Thus only the best path containing precisely one diacritic is calculated for each
stroke j, i.e.

Sj = argmin
v

i1→i
|S(Xj)|

Dv(vi1→i|S(Xj)|), (6.2)

where |S(Xj)| is the number of nodes in stroke j, and i1, i|S(Xj)| denote the
indexes of the first and last segmentation points of stroke j respectively. The
best path for a diacritic template T in (6.2) will be referred to as a diacritic

edge eXj

T . Let d̂(eXj

T) denote the distance for the diacritic edge of template
T matched to stroke j. To denote the category of templates matched from
the template database D the notation DD, DB for the diacritic and base shape
templates is introduced respectively. The set Si can be calculated using Al-
gorithm 6 with D = DD and with restrictions on symbol sequences so that it

6.4 Dynamic Treatment Of Diacritic Strokes 89

contains precisely one edge corresponding to a diacritic template (but possibly
multiple noise edges).

The best paths at stroke level for non-diacritic matches are also stored thus
providing a set of conditional best stroke-level paths Si|D=DB

, Si|D=DD
.

6.4.2 Diacritic Attachment

The diacritic stroke paths are added to the segmentation graph as extra edges
between start and end-point but with specific connection properties which also
involve stroke pen-up reattachment as seen in Figure 6.2. Unlike the connection
properties in (5.1) the connection properties for a diacritic stroke path depend
on the complete previous path and the diacritic properties of its matched base
shape template. Let Da(e) denote a diacritic property with anchor point a of
the base template for the symbol corresponding to the edge e. The distance
for a complete diacritic edge match is complemented by the matching of the
diacritic pen-up as

d(eT,a) = d̂(eT) + ğ(%T
a , Te,X%T

a
(X)). (6.3)

Now every path v will contain not only the set of matched edges {ek} but
possibly also a set of unmatched templates {Da(e)} = U . With this notation
in mind the connective function in (5.1) can be extended to act on diacritic
edges e corresponding to template T and path v corresponding to template

sequence T = {Tj}|v|j=1 as

f̂conn(v, T, O) =

fconn(T|v|, T, O), if T ∈ DB

1, if T ∈ DD, T ∈ U(v), O = +

0, otherwise

. (6.4)

Limitations to the diacritic modelings searched introduces a diacritic beam BD.
Here this beam is defined as the size of the set of diacritic edges {eXj

T,a} for each
stroke j. This set can be ordered according to the complete diacritic edge dis-
tance d(eXj

T,a) and limited so that only the BD edges with smallest distance are
kept. Since the set of possible stroke reattachments X change only the pen-up
movement between strokes, matching characteristics will differ only after a pen-
up segment has been passed during the construction of the recognition graph.
Thus for every such path expansion (adding an edge after pen-up segment)
the set of matching reattachments going forward will depend on if the chrono-
logical, some recalculated pen-up or diacritic pen-up was used for the pen-up

90 Chapter 6. Delayed Strokes And Stroke Attachment

matching. After the final pen-up has been matched the particular reattachment
used will be unique. In order for the previous discussions of approximating best
template sequences with graph techniques covered in Chapters 4 and 5 to be
valid the compared input sample must remain the same. This is no longer true
for stroke reattachments since each reattachment alters the pen-up segments.
In view of the Frame Energy concept the stroke attachments can be seen as a
way to model input and in this sense the comparison of path scores resulting
from different stroke attachments will correspond to comparing different graphs
each corresponding to a unique model as seen in Figure 6.6. The corresponding
recalculated connection distance will also depend on the attachment and takes
the form of

Dv(v
1→k) = Dv(v1→j) + d(ej→k) + ĝ(T|v1→j |, Tej→k ,Xv1→j (X)), (6.5)

where Xv1→j (X) is the set of stroke attachments that contain the pen-up seg-
ments matched in v1→j . With this notation at hand, there are a number of
issues to attend to before presenting the dynamic diacritic recognition algo-
rithm. First of all is the validity in comparing different version of input. In
terms of finding the template sequence and stroke attachment fulfilling (6.1)
this proposed strategy simply corresponds to sequential optimization of the dis-
crete variables X and T and thus the solution will be found with an exhaustive
search. The proposed algorithm will merely bound this search in time.

6.4.3 Attachment Point Invariance

In the introduction of the additivity concept it is stated that template sequences
should be treated fairly i.e. independently of their segmentation when matched.
It is possible to define a similar property for the stroke attachments.

Definition 6.4.1. A pen-up segment distance function is attachment point
invariant if its output depends only on the relative position of the pen-down
parts on either side of the pen-up and not on the actual pen-up segment itself.

It is clear that the conventional distance function with the frame features pre-
sented in Section 4.2.1 will produce different distance values for the case seen
in Figure 6.4 as the difference in angle is very small for the case of match-
ing the template with anchor point a2 to attachment X2 and quite large when
comparing the template with anchor point a1 to attachment X1. Lacking this
property the matching properties for diacritical marks will depend not only on
their position (including the diacritic pen-up as seen in Figure 6.1) but also
on their anchor points. Due to the angular feature a harsher handling will be

6.4 Dynamic Treatment Of Diacritic Strokes 91

b

b

b

b

b

b

X1

X2

(a) Sample

b

b

b

b

bb

b

a1

a2

(b) Diacritic template

Figure 6.4: An example of the attachment point invariance problem. Even
though the two attachment points a1, a2 result in identical templates, the tem-
plate distance to the corresponding stroke reorderings X1,X2 of sample in 6.4a
may differ due to the differing differences between pen-up segments.

achieved by minimizing the length of the diacritic pen-up segments as seen in
the comparison of the anchor points a1, a2 in Figure 6.4.

6.4.4 Graph Handling

Not only does the pen-up recalculation dependency in ĝ of (6.5) imply that
paths corresponding to different reattachments of the input sample compete in
the same graph. In order to suppress the size of the beam when building the
recognition graph, i.e. the number of kept paths in each node, some kind of
preliminary attention must be given to the set of unmatched edges U(v1→). To
accomplish this, the branch-and-bound strategy from combinatorial optimiza-
tion is introduced. For each path it is possible to compute the best possible
path forward by utilizing the best stroke-level paths as determined by (6.2) and
further conditioned by U . This way the list of best paths in Algorithm 7 can
always be sorted by the best possible distance from start to end, albeit some-
what optimistic. This combined distance is referred to as the sorting distance
Dsort as defined in (6.6).

92 Chapter 6. Delayed Strokes And Stroke Attachment

5

6 7

8

1

2

3

4

9

10

11

12

pc
1

pc
2

pc
3

pr
1

6

8

1 3

pd
1

pd
2

pd
3

pd
4

X1 = pc
1, p

c
2, p

c
3

X2 = pd
1, p

d
2, p

r
1

X3 = pd
1, p

d
3, p

r
1

X4 = pd
1, p

d
4, p

r
1

X5 = pd
2, p

d
3, p

r
1

X6 = pd
2, p

d
4, p

r
1

X7 = pd
3, p

d
4, p

r
1

(a) Sample

1 2 3 4 5 6 7 8 9 10 11 12

’c’

’i’

”

’a’

’i’ ’c’

’DOT’

’c’

’DOT’ ’l’

’n’

(b) Simple segmentation graph

Figure 6.5: A graphic display of Algorithm 7 showing the gradual decrease
in number of stroke attachment models evaluated during graph expansion.

Dsort(v
1→k, U(v1→k)) = Dv(v

1→k)+

S
∑

m=s+1

min
eXm∈U(v1→k)

(d(Sm)|DB
, d(eXm

)), (6.6)

where S are the number of strokes in input and s is the index of the stroke
containing node k.

Another issue is what to do with the set U when no suitable diacritics are found.
The simple intuitive approach to this case taken in this thesis is to introduce
a penalty to each path as soon as it becomes clear that an element of U(v1→)
is impossible to match given the remainder of the input sample. This is called

6.4 Dynamic Treatment Of Diacritic Strokes 93

X1,X4,X5

1 2-1

2-2

3-1

3-2

4-1

4-2

4-3

4-4

6-1

6-2

6-3

6-4

8-1

8-2

8-3

8-4

10-1 12-1

12-2

12-3

12-4

’a’

’ä’,D1, D3

’c’

’i’,D1

”

”,D1

’i’,D3

’i’,D1, D3

’c’,X1

’D1’, X4, D3

’D3’, X5, D1

’D1’, X4, D3

’D3’, X5, D1

’D1’, X4, D3

’D3’, X5, D1

’c’,X1

’D3’, X4

’D3’, X4

’D3’, X4

’n’,X1

’n’,X4

’n’,X4

’n’,X4

Figure 6.6: Recognition graph expansion of the segmentation graph in Fig-
ure 6.5b.

missing diacritic punishment and is added as fpen(U(v1→)) to (6.6).

Ambiguous Path Expansion

Another difficulty with the unmatched edges is the embedded ambiguity which
result in that the path expansion with a diacritic edge is ambiguous (unlike the
base shape case as seen in Figure 5.8. The ambiguity is caused by two factors:

• One template with diacritics can have several alternative ways of doing
this, such as two dots converted into one ’two-dot’ stroke.

• If there were several unmatched edges corresponding to the same diacritic
template, the same diacritic edge can be added in different places for the
same sequence of edges resulting in identical paths apart from stroke
attachment. A symbol requiring two dots can for instance use either
stroke for each of the dots.

94 Chapter 6. Delayed Strokes And Stroke Attachment

The first ambiguity implies that the same path can have several alternative

sets of unmatched edges denoted by U(v1→) = {Um(v1→)}|U(v1→)|
m=1 , and thus

contain many alternative futures. The second ambiguity is not an ambiguity in
a real sense since the stroke attachments differ and thus the distance values. On
the other hand with respect to the performance of the beam search conducted
by the recognition graph algorithm, there should not be multiple paths in the
graph corresponding to exactly the same edges. To cope with this problem a
secondary beam search within the set of identical edges sequences is performed
by simply limiting the set for every new diacritic edge (corresponding to such
an expansion), so that at most the best BU different stroke attachments X are
stored per sequence as seen in Figure 6.6 and in Algorithm 7.24. Note also that
each such stroke attachment will carry its own set of unmatched edges which
is thus also conditioned by the stroke attachment U(v1→,X).

Time Complexity Considerations

The two time consuming part of the added diacritic handling is searching for
attachment points whenever a new diacritic edge is encountered and recalcula-
tions of the sorting distance. Each stroke attachment alternative carries its own
set of unmatched edges and each of these must be searched for possible ways
to attach the new edge. Similar operations are performed for determining the
sorting distance as the minimum stroke distance with a diacritic in the future
will depend on if that diacritic can attach to an attachment points amongst
the unmatched edges. As seen in the experiments conducted in Section 9.4.1
the memory and speed effect of the two diacritic related beams BD and BU is
marginalized by the other beam sizes in the graph structures.

6.4 Dynamic Treatment Of Diacritic Strokes 95

Algorithm 7 Constructing RD({X i}S
i=1) with dynamic diacritic handling

1: Create a segmentation graph according to Algorithm 3 or 5
2: Determine Si|D=TB

, i = 1, . . . , S
3: for r = 1, . . . , S do
4: k =

∑r
j=1 |S(Xj)| % k is the index of the last node in stroke r

5: Set Ek = Ek ∪ {eXr

i }BD

i=1 % Add diacritic edges
6: end for

7: % Initialize recognition graph
8: Set Vk = {e1→k|e1→k ∈ Ek}, k = 1, . . . , |S(X)|
9: % Loop strokes

10: for r = 1, . . . , S do

11: % Loop segmentation points per stroke
12: for j = s1, . . . , s|S(Xr)| do

13: for k = 1, . . . , |Ej | do
14: Set ik to start node of eik→j

k

15: if ik < s1 then % This is a new stroke
16: Update Xv(X), v ∈ Vik

17: end if

18: for l = 1, . . . , |Vik
| do

19: if f̂conn(v1→ik

l , T
e

ik→j

k

, Oik
) = 1 then

20: Calculate Dv(v
1→j
lk)

∣

∣

∣

X
, ∀X ∈ Xv1→j

lk
(X)

21: end if

22: Update U(v1→j
lk ,Xv1→j

lk
(X))

23: Set D∗
sort(v

1→j
lk) = minX∈X

v
1→j
lk

(X)

U∈U(v1→j ,X)

Dsort(v
1→j , U)

24: Limit |U(v1→j
lk ,Xv1→j

lk

(X))| ≤ BU

25: Vj = Vj ∪ v1→j
lk

26: if |Vj | > BR then% Apply beam width
27: Vj = Vj − argmaxv∈Vj

D∗
sort(v)

28: end if

29: end for

30: end for

31: end for

32: end for

96 Chapter 6. Delayed Strokes And Stroke Attachment

CHAPTER 7

Application of Linguistic Knowledge

Acorns were good until bread was found.
Francis Bacon

98 Chapter 7. Application of Linguistic Knowledge

A
part from the superposed complexity of segmentation and dia-
critic association problems, another difficulty with connected char-
acter recognition is that the nature of such writing is prone to pro-
ducing less distinct individual letters within the word. This type

of shape degradation makes purely shape based recognition insufficient for the
task of recognizing connected cursive script and all state-of-the-art recognition
methods have added linguistic components to the modeling in order to achieve
acceptable word recognition results [104].

7.1 Introduction

It is commonly known that humans possess an exceptional ability to read even
severely misspelled text and given just the first and last letter of every word in
place even phrases such as

’Tihs is an eaxxplme of sverelly dgrdaded txeet! ’

can be correctly deciphered. The reason for this is of course that humans
use more information than just the visible sequence of letters when reading a
text. Three typical categories for this extra linguistic information are Seman-
tic, Grammatical and Lexical. Handwriting recognition systems today are still
not as good to decipher writing as humans and it is likely that a large part
of the difference is owed to the ingenious utilization of such extra information
layers in humans. Some researchers have tried to explicitly remove these layers
when comparing humans and computers, and although the actual results are
very much dependent on their particular handwriting solutions as well as the
datasets used, it is interesting (but expected) that humans also make a con-
siderable amount of errors when stripped of these extra reading accuracy tools
[79, 88].

The application of linguistic knowledge in the on-line handwriting community
so far has mainly been focused the lexical part [92]. Previous work addressing
the other categories usually model this jointly and implicitly by employing some
form of N -gram statistical analysis of word contexts [68, 95]. The handwrit-
ing community however, has seemingly reached the unanimous conclusion that
lexical knowledge is utterly important when recognizing cursive script. Some
systems have exploited this fact completely and use a lexically determined set
of words as input to the matching process [36, 94]. Systems producing results
without a dictionary can filter the list of possible word hypothesis through a
dictionary [50, 85, 107]. The filtering can also be conducted on the basis of
some fuzzy string matching algorithm. DP-based methods utilizing handwrit-
ing recognition customized versions of the Damerau-Levenshtein metric [24] are

7.1 Introduction 99

examples of this. Seni et al. construct a segmentation graph of the detection
matrix and checks the edit distance of paths from this graph with a reduced
word list [104], a procedure also used for off-line word recognition [27]. Schenkel
et al. use a similar strategy but start off with the best string from the detection
matrix and then calculates the complete HMM-paths from the set of words
with a fixed edit distance to this initial hypothesis [101]. A big problem with
evaluating complete continuous word-level HMMs for each hypothesis is that
the computation time scales with dictionary size. This situation can be greatly
improved by a beam search in combination with a tree-based lexicon structure
[73, 98].

Filtering lists of candidates from a graph structured word hypothesis list such
as those produced by the recognition graph is particularly efficient. Previous
work for the on-line case is comparatively scarce [50, 104], but there has been
work with segmentation graphs also in the off-line case [26, 44, 71]. Surprisingly
it seems as though only Lucas realized (possibly Ford but details are scarce)
that maintaining tree structure in the dictionary enables dictionary filtering
with time complexity bounded by the alphabet size and independent of dic-
tionary size [72]. Unfortunately these results are not applicable to the dual
graph strategy presented in Chapter 5 since it makes assumptions on a multi-
plicative edge connection distance as well as the probabilistic independence of
edges. This is obviously not true in the recognition graph approach since the
connection distance requires recalculation of all edge to edge connections. The
time complexity properties of the actual lexical validation is however the same
as for the simple procedure presented later in this chapter. For this reason it is
possible to check results in very large dictionaries, something which has been
a crucial problem for other on-line methods in the past [98, 104].

Another issue which has received some attention and is of particular interest
for lexical strategies dependent on dictionary size is the task of dynamic lexicon
reduction. In the field of Chinese character recognition this goes by the name
of coarse classification. This is an important task in terms of time complexity
since most methods for recognizing Chinese script are model based [66]. Lexicon
reduction methods for cursive alphabetic script also make use of simple holistic
features stored for each lexicon word, and compare input features with lexicon
to produce a reduced list of words [23, 94, 104].

The lexical processing presented in this chapter is strictly confined to being
a postprocess in no way interfering with the shape matching algorithms in
Chapters 4 and 5. Lexical processing is designed to take care of the aspects of
connected character recognition that doesn’t involve the actual shape matching
itself. As shown in previous research it should be possible to construct a system
that performs well without a dictionary given neat writing [89]. Given the

100 Chapter 7. Application of Linguistic Knowledge

lexical and possibly higher level linguistic processing it should also be possible to
recognize writing that does not even portray the letter sequence intended by the
writer such as the above typing example. Although the actual implementation
of linguistic processing for the strategy in this thesis has been limited to a
simple lexical lookup it is a good baseline for further innovation.

1

(a) An ambiguous sample of the word
thread. Without linguistic context the
word can be interpreted as tluearl.

1

2

(b) An ambiguous sample of the word un-

der. The ’n’ is here a typical contextual
shape that has a shape appearance in be-
tween ’n’ and ’u’.

Figure 7.1: Two typical samples of writing that is ambiguous due to the
writing style of the connected characters.

7.2 Contextual Shape

As mentioned in the introduction it is very common for unconstrained con-
nected handwriting not to portray the exact sequence of symbols (shape-wise)
that the writer intended to write. Here parts of handwriting such that the
recognition problem is simply not solvable with just shape matching methods
will be referred to as contextual shape. The main reasons that a writer will
produce samples with contextual shape are:

• The particular sequence of character (in the users writing style) is am-
biguous when connected, containing parts such as cl�d and lc�k or even
hr�lu as seen in Figure 7.1a.

• Sloppy writing that degrades the shape appearance so that it is unrecog-
nizable or even non-existent (flat part of word) such as the deformation
seen in Figure 7.2.

• Misspelling

7.2 Contextual Shape 101

In addition to these cases the segmentation algorithms may also inhibit the
actual shape information by adding extra segments or missing segmentation
points (causing the boundary between two characters to disappear).

1

2

34

5

(a) Legible sample of
�èPAJ
�

1

2

34

5

(b) Contextual sample of
�èPAJ
� with missing parts of the letter �

(’Seen’).

Figure 7.2: Two samples of the same Arabic word
�èPAJ
� where the shape

information within the box is missing in Figure 7.2b.

In terms of the string matching procedures required to cope with the above
problems there are four distinct operations conventionally used in the dictionary
interaction in the literature:

102 Chapter 7. Application of Linguistic Knowledge

i Static. No string operations on the hypothesis sequence.

ii Replacement. Exchanging one character for another in the hypothesis se-
quence.

iii Insertion. Adding a character to the hypothesis sequence without the sup-
port of shape matching.

iv Deletion. Skipping a part of input and the character representing it result-
ing in a deleted character in the hypothesis sequence.

The last three of the above operations involve some form of added fuzzyness to
the recognition algorithm since they aim at recognizing more than the shape
information contains. In this thesis only the first static part has been tested
in the framework presented. Work with the other three are however clearly
possible and is a subject that will be pursued in the near future. A short
discussion on how to proceed is included in Section 7.4.

In previous chapters it has been shown how the dual graph structure effec-
tively stores the best paths with some constraints on template connectivity
serving the purpose of excluding sequences of templates that would not oc-
cur in writing. Since that solution puts no linguistic constraints on the best
path it is equivalent to checking the resulting strings with an infinite dictio-
nary containing all symbolic sequence combinations of arbitrary length. The
connectivity function for templates uses heuristic shape context information to
exclude certain sequences. This section will define a similar function but acting
on linguistic context instead.

Definition 7.2.1. The linguistic connectivity function L({li}k, q) between a se-
quence of symbols {li}k and new symbol q is a binary function s.t. L({li}k, q) =
1 if the new sequence (l1, . . . , lk, q) constitute a linguistically valid sequence and
0 otherwise.

Definition 7.2.1 makes use of the term linguistically valid and by this is simply
meant a linguistic rule such as an ordinary dictionary or truncation of letter
connection probabilities. The linguistic connectivity function will not induce
any difference in the actual distance values when validating a symbol sequence,
but merely provide exclusion of non-words from a linguistic perspective.

Note that this definition is independent of the actual shape matching graph
used. It can therefore be used regardless of whether the symbolic input derives
from shape matching directly or through some form of string edit as in [23] or
through zero length edges in the segmentation graph as in [72].

7.3 Static Lexical Lookup 103

1,∅

2,’d ’

3,’e’

4,’s ’

5,’e’

6,’l ’

7,’k ’

8,’n’

9,’i ’

10,’a’

11,’v ’

Figure 7.3: A simple example of a Trie dictionary containing the words
’de’,’el’,’ek’,’eka’,’en’,’siv’. Nodes corresponding to end of words are shaded
in lightgray.

7.3 Static Lexical Lookup

The linguistic connectivity function defined in Def. 7.2.1 can be inserted directly
into the connectivity check in Algorithm 6 to limit results to an ordered list of
linguistically valid strings. All this does however is to exclude non-valid strings
and it does not impose any probability-driven punishment on string retrieval.
The stance taken in this thesis is that given a context of only the word, just
like a human reading an isolated word, the only applicable linguistic process is
the exclusion of non-dictionary words.

Given the combinatorial nature of graphs, the effectiveness of string validation
through a dictionary is utterly important. One intuitive way of guaranteeing
such efficacy is to represent the dictionary in a suitable format. For the dual

104 Chapter 7. Application of Linguistic Knowledge

graph approach it will be shown that one suitable such format for the dictionary
is a Trie structure [41] as for many previous systems [50, 72, 73]. This is a
structure almost identical to the segmentation graph in that edges correspond
to some symbol (although it can be an ambiguous symbol) and that common
edges are shared, see Figure 7.3.

7.3.1 Trie dictionary implementation

A small Trie dictionary containing 6 words is shown in Figure 7.3. As the figure
shows, the Trie dictionary is a directed acyclic graph structure GL = (NL, EL),
where each node corresponds to a letter and each edge implies that the end-node
may follow after the start node. Each node in the Trie structure corresponds
to the last letter of a uniquely defined start sequence and will be denoted by
nk

l = n({l1, . . . , l}) where k is an index and l the last symbol. An edge between
two nodes will be denoted by ek→p, where k, p are the node indexes. When a
Trie dictionary or similar graph-like dictionary structure is used for checking
the linguistic validity of adding a symbol to a sequence the linguistic connective
function can be simplified into (7.1).

L({li}L, q) =

{

1, if ∃nk
lL

= n({li}L), ni
q ∈ NL, ek→i ∈ EL

0, otherwise.
(7.1)

The extra computation time required by linguistic validation with a dictionary
thus amounts to checking the succeeding nodes from a node corresponding to
the last letter in the path in the recognition graph. As reported in Lucas im-
plementation of path algebras [72] this means that the validity check of this
technique is independent of the dictionary size. As seen in Figure 7.4 the im-
plementation is simply accomplished by associating a Trie node index to every
expanded path. For every new symbol added to the sequence only the edge
forward from the given Trie node index need to be checked. However, the num-
ber of strings to check in each node is of course dependent upon the dictionary
size - the fewer words in the dictionary the larger number of strings can be dis-
carded. Something which is of course even more useful when excluding strings
with only slightly differing sorting distances in Algorithm 7.

To further optimize the size of the dictionary dynamically, the shortest and
longest succeeding path endnodes (complete words) can also be stored for each
node in the Trie. Let W (nk

l) = {w} be all words in the Trie dictionary passing
through node nk

l . Then write the number of symbols (nodes) in each such
word by |w|. The largest Rmax and smallest Rmin possible number of edges
forward from a given path in the recognition graph can also be calculated by

7.3 Static Lexical Lookup 105

1-1 2-1 3-1

3-2

4-1

4-2

5-1

5-2

5-3

6-1

6-2

6-3

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

”(1), 5, (5)
’c’, 72, (38)

’e’ (3), 53, (53)

”(3), 70, (10)

”, 95, (10)

’d’ (2), 125, (95)

’l’, 120, (15) ”, 145, (7)

”(2), 150, (7)

’k’ (7), 153, (78)

’k’, 178, (78)

’c’, 160, (34)

’c’, 190, (34)

’e’, 183, (72)

’e’, 208, (72)

’e’ (5), 213, (72)

”(6), 120, (7)

’c’, 185, (34)

7-2

’l’ (6), 95, (15)

Figure 7.4: The recognition graph expansion from Figure 5.8 reproduced with
added lexical constraints using the Trie dictionary of Figure 7.3. The dashed
edges and nodes correspond to lexically invalid path expansions and the Trie
node indexes for the valid paths are included within parenthesis.

analyzing the edges in the segmentation graph and possibly also fuzzy criteria
for handling missing edge information. This means that the Trie connective
function in (7.1) can be updated with the extra constraint (7.2).

Llength({li}L, q) =

{

1, if maxw∈W (nk
l
)|w| > Rmin, minw∈W (nk

l
)|w| < Rmax

0, otherwise.

(7.2)

106 Chapter 7. Application of Linguistic Knowledge

7.4 Dynamic Lexical Lookup

The static lexical lookup treated in the previous section only performs ex-
clusions of lexically invalid strings in the recognition graph and thus will not
enable recognition of symbols corresponding to shape sequences not present
in the segmentation graph. To enable such fuzzy matching, the string edit
operations listed in the beginning of this chapter, i.e. replacement, insertion
and deletion must be treated. To some extent the last of these has already
been treated with the noise handling described in Section 5.4. Deletion implies
moving forward shape-wise in the input sample without matching this to a
letter,i.e. without stepping forward in the dictionary. The difficult task here is
therefore a matter of tuning the noise distance parameters to a desirable level.
Replacement means replacing one edge by another and thus is something not
handled by the segmentation graph when the edge of the desired hypothesis
is discarded in the beam-limitation in the segmentation graph. A typical such
case could be the letter ’n’ written as an ’n’ in Figure 7.1b. A reasonable way
to treat this problem is to calculate and store such fuzzy edit costs for each such
pair of confusion pairs. The most difficult case to treat is probably insertion of
letters not corresponding to shape in the input sample. This could be caused
by flattened shapes such as in Figure 7.2 or by misspelling. It is probable that
it is best to use whatever shape information that is available, such as matching
a character to a flat stroke, descending stroke etc, and make some assessment of
how much it should cost to transform a given shape (template) from a sequence
into each such coarse shape descriptor.

So although such dynamic lexical lookup operations are yet to be implemented
and experimented with for the system presented in this thesis, the system itself
contains all the necessary characteristics to enable such operations.

7.5 Conclusions

In this chapter it has been shown that the recognition graph presented in Chap-
ter 5 can be searched efficiently for dictionary entries. It has been shown that
such a search can be independent of dictionary size and in fact it is possible
to control the computational speed by setting BR on the candidates for each
node in the recognition graph as presented in Section 5.5. Since a dictionary
check severely limits the space of possible template sequences it is possible to
run recognition with a lower value of BR than when using Algorithm 6 without
the linguistic connectivity function.

CHAPTER 8

Clustering And Automatic Template Modeling Techniques

The reasonable man adapts himself to the world; the unreasonable
one persists in trying to adapt the world to himself. Therefore all

progress depends on the unreasonable man.
George Bernard Shaw

108 Chapter 8. Clustering And Automatic Template Modeling Techniques

F
or implicit modeling methods such as those presented in Sec-
tion 2.6 the availability of a training set of decent size and quality
is absolutely vital. This is one of the strong arguments for template
based methods. It does however not mean that recognition methods

based on template matching are indifferent to training data. This chapter will
deal with methods for improving the template modeling scheme presented in
previous chapters by incorporating observations from a training set.

8.1 Introduction

It goes without saying that a set of templates based completely on one per-
sons handwriting will have a strong bias towards that persons specific writing
style and in that sense will suffer from overtraining. Adaptive classifiers can
therefore also easily be constructed for template matching methods by simply
adjusting the template set by incorporating templates of the current writer as
in [36, 50, 94, 132]. For several reasons, a writer independent system is how-
ever generally preferable. One of the more striking problems with adaptation
is that it somehow relies on the users intuition of how the system works. The
reason for this is that writers may not be aware of the fact that they write
two letter shapes identically for instance. When adapting the system to such
writing there is a risk that the recognition accuracy for such letters will drop
rather than increase when conducting adaptation.

In the quest for a writer independent system, one in general seeks to model
each template so that it corresponds to some form of mean shape with respect
to the feature space used and the distance function used to discriminate. For
on-line handwriting recognition this research is often categorized under the
somewhat misleading term clustering [8, 56, 134] (cf. Section 2.2.2). Originally
the term is used in pattern recognition to denote the process of unsupervised
classification, i.e. the problem of dividing observations into classes without prior
class knowledge [56]. So what does this mean when applying clustering to a set
of handwriting samples where the classes (i.e. the symbol labels) are already
known? For template based recognition this amounts to the task of finding a
set of templates corresponding to salient shape variations for the given symbol.
Such significant variations in writing the same letter, i.e. different templates
corresponding to the same symbol are often referred to as allographs.

Since template matching schemes in the past have been applied mainly to the
single character recognition problem the clustering techniques for on-line char-
acters have generally employed the same globally defined distance function to
conduct clustering. The main clustering strategies used to achieve this have
been Hierarchical Agglomerative Clustering as in [7, 134] and the k-means al-

8.2 Holistic Clustering 109

gorithm [56, 91]. The k-means algorithm is robust but suffers from the fact
that the number of clusters need to be statically predetermined. The hier-
archical algorithm on the other hand suffers from the requirement to find a
suitable threshold value. If the goal is to produce clusters (allograph sets) that
maximize recognition performance it makes sense to inspect the bearing that
the choice of allographs has on recognition accuracy. The above two methods
belong to the category of generative clustering methods in that they solely take
the class to be modeled into account when generating clusters. There are other
methods for clustering which also examine the effects of cluster choices in the
neighboring clusters of other symbols such as [117]. These belong to the group
of discriminative clustering methods. Since the discriminative methods aim at
producing optimal class borders in sample feature space they are indeed very
close conceptually to SVM [126] and LVQ [60]. Indeed the generative nature of
HMMs and template methods is often posed as an argument that makes intrin-
sically discriminative neural networks more suited for handwriting recognition
[22]. This is especially true for genuinely discriminative networks like Kohonen
maps [59].

This chapter will present some clustering techniques specialized for the seg-
mented template matching strategy presented in this thesis.

8.2 Holistic Clustering

In contrast to the segmental operations treated in this thesis the conventional
type of single character clustering will here be referred to as holistic clustering
since it treats one complete shape at a time. By extending the support of the
distance function so that it can compare samples with dissimilar segmentations
it is natural to use this function also for clustering with segmented samples.
A natural such extension would be to set G(X, Y) = ∞ unless S(X) ∼ S(Y).
When applying holistic clustering techniques to a set of segmented samples
with that kind of a strategy, naturally it will also generate separate clusters
for samples that incorporate noise segments. It is not a good idea to try to
keep models of all possible combinations that noise segments can be added
to templates and as expected such clustering techniques fail to provide good
results for a segmented distance function [116].

By removing all such clusters that correspond to allographs with incorporated
noise, a good initial candidate for a definition of supported noise-free allographs
is acquired. In other words for segmented input, holistic clustering may be a
useful tool for extracting an initial collection of templates with varying seg-
mentation. Improvements to such a database that makes more explicit use of
the segmentation will be discussed in the remainder of this chapter.

110 Chapter 8. Clustering And Automatic Template Modeling Techniques

8.3 Segmentation Definition Database

The segmentation definition database of a segmented template matching system
is a set of templates designated to define the supported set of segmentations for
each template. Originally such a database could be generated from automat-
ically some kind of clustering process as described in Section 8.2, it could be
hand-built or a combination of both. In this database the actual discriminatory
power of each template does not have to be great, the main objective here is
that it contains all the desired allograph and segmentation variations for each
character. The allograph corresponds to perceptually different ways of writing
a character whereas the segmentations are different segmentations that may be
observed within each such class of allographs as seen in Figure 8.1.

In a way this segmentation definition database can be interpreted as a dynamic
way of defining the type of syntactic rules used in the recognition by synthesis
paradigm such as the AHD language (cf. [89]) or RecifMOT [6]. In the context
presented here rules are implicitly defined by the matching properties of the
elements in the database.

8.4 Forced Recognition And Labeling

In order to present algorithms specialized at training segmented templates,
some new terminology needs to be introduced. Let the set of all available
samples be X and the subset with the known class index i be denoted by Xi.
This can be further divided into which allograph (which in turn corresponds
to a template in the database) each sample adheres to. Denote this by adding
an extra template index so that X(i,j) denotes all samples of class i which are
closest in shape to template Tj . Furthermore let X(i,k,s) = {Λs ∈ X, X ∈ X(i,k)}
Normally the class label of a sample is known in training data whereas the
template index depends on the database and can therefore not be assigned by
writers that are unaware of the underlying recognition system. This poses a
new challenge in how to find X ∈ X(i,j) such that S(X) � S(Tj). A very simple
way of obtaining such a set by means of a database is by running recognition
with a dictionary as described in Chapter 7 and restricting the dictionary only
to contain the known class label. This will force the recognition system to
find the best path with a template of the correct class to be associated with
each sample. In particular this enables extraction of samples which are part
of connected script. For Arabic for instance this is crucial for training since
characters vary in shape depending on the placement in the word. Figure 8.2
shows one such example of automatically extracting a medial (the form of a

character when connected on both sides) ª of the character ¨.

8.4 Forced Recognition And Labeling 111

1
1

1

1

1

1
1

1 1

1

1

1 1

Allograph A′2′

1

Allograph A′2′

2

Allograph A′2′

3

Figure 8.1: An example of a segmentation definition database content for
the class ’2’ showing 3 distinct allographs each with a number of different
segmentation definitions.

8.4.1 Erroneous Training Data

There are mainly three types of errors that the forced recognition process needs
to cope with.

1. Mislabeled samples

2. Samples with extraneous noise

3. Partial samples or otherwise severely deformed samples.

Samples with extraneous noise in the form of extra segments can be handled
simply by enabling the noise handling described in Section 5.4 during the forced
recognition. An example of this noise filtering process is seen in Figure 8.3.

112 Chapter 8. Clustering And Automatic Template Modeling Techniques

12
3

4

5 6

1
2

3

4

5 6

123
4

5

6

1

2
3

4

5 6

7
8

123

4

56

78

1
2

3

4

5 6

7 8

Figure 8.2: An example of forced recognition followed by allograph labeling

and extraction of the Arabic characterª from a set of word samples.

An intuitive way to handle other types of errors bearing some resemblance
to the dynamic handling of threshold values in hierarchical clustering, is to
set some form of a distance threshold value and simply discard any samples
with a total matching distance exceeding this (not including noise parts) from
the training set. This can also be used to automatically sift out contextual
allographs as discussed in Section 7.4. It may however be very difficult to
determine such a threshold and it is most likely that a zero false acceptance
rate would discard many samples displaying large variations. A different way
to handle this explored in this thesis is to add non-class templates with the
aim of catching mislabeled and severely deformed samples. Such templates can
easily be discarded before actually using the generated database for recognition.
An obvious flaw of this technique is of course that such templates need to be
manually determined, furthermore they need to be very dissimilar from the true
templates. Nevertheless this technique manages to easily extract and discard
mislabeled samples from the training set.

8.5 Segmental clustering 113

1

2

3

(a) Sample (b) Template (c) Extract

1

2

3

(d) Sample (e) Template (f) Extract

Figure 8.3: Examples of extraneous noise in UNIPEN/1a (cf. Section 9.2)
automatically removed through allograph labeling with forced recognition as
described in Section 8.4.

8.5 Segmental clustering

A problem with the vast space of synthetic samples from the combinatorial ex-
pansion of the sample segmentation is that the space quickly becomes too large
for conventional holistic clustering methods. Due to the graph nature of the
modeling, however, there is also a naive alternative for clustering, which has
been utilized in the experiments of Chapter 9 - clustering segment-by-segment.
By clustering segment-by-segment, the complete set of synthetic samples are
implicitly included in the clustering procedure, while still avoiding the imprac-

114 Chapter 8. Clustering And Automatic Template Modeling Techniques

tical issues of the immense set of data. Various data set expansion methods
have been studied before and for neural networks this has been shown to im-
prove recognition results [106]. The obvious set back of this is of course that
a large part of the distance value attributes to the actual connection between
segments as seen in (4.3) on page 54. For a more optimal clustering in terms
of the trade off recognition accuracy/database size/time complexity it is prob-
able that some allographs would benefit from a varied clustering precision per
segment. This is not in the scope of this thesis, however, and is left as an open
topic for future research.

In order to cluster segment-by-segment the connective distance component from
(4.3) can not be used. However the equivalents of the features direction ~d,
length λ, connection angle α and the curve segment shape S can be compared
at segment level. Here these features have been used to produce a clustering of
the segmental variations.

Effectively the segmental distance function used to cluster the segments used
here is, just like in (4.3), a linear combination of the squared differences and
can be written as

dseg(X, Y) = w~ddangle(~d(X) − ~d(Y))2 + wλdλ(λ(X) − λ(Y))2

+ wα(dangle(α
−(X) − α−(Y))2 + dangle(α

+(X) − α+(Y))2)+

wSdS(X, Y), w ≥ 0, (8.1)

where dangle is an angle distance function and the α− and α+ denotes the
previous connection angle and the subsequent connection angles. dS is the
same as in the template distance function in (4.3).

8.6 The Variation Graph

Given previous graph techniques for segmented recognition, a natural way to
combine the segment clusters produced by segmental clustering is to construct
a graph. This graph is called the Variation Graph since it contains the model
variations for each segment of a given allograph template. To distinguish a

variation graph template the notation Ai
k = (N

(i,k)
A , E

(i,k)
A) will be used for

the variation graph modeling allograph k of class i. Just as for segmented
samples S(Ai

k) denotes the segmentation of this graph model. A particular
variation of a segment s from Ai

k is written as n(i,k,s). In the variation graph
each node corresponds to such a variation and an edge em→r

s corresponds to a

link between variations n
(i,k,s−1)
m and n

(i,k,s)
r . Let N (i,k)

A = (n1, . . . , n|S(Ai
k
)|−1)

denote a sequence of variation nodes in Ai
k and let N

(i,k)
A be the set of all such

8.6 The Variation Graph 115

possible sequences. The set of edges Er
s of variation v

(i,k,s)
r in the graph will

thereby correspond to the indexes of the set of variations from segment s − 1
that can connect forward.

rs

rsrs

rsrs

rs

rs
rsrs

rsrs
rs

rs

rs

v = 1

rs
rs

v = 2

s = 1

rs

rs

v = 1

rs

rs

v = 2

s = 2

v = 1

rs

rs

rs
rs

v = 2

s = 3

(a) Graph base and segment variations

rs

rsrs

rsrs

rs(1,1,1)
rs

rsrs

rsrs

rs(2,1,1)
rs

rsrs

rsrs

rs(1,2,1)
rs

rsrs

rsrs
rs(1,1,2)

rs

rsrs

rsrs
rs(1,2,2)

rs
rsrs

rsrs

rs(2,2,1)
rs

rsrs

rsrs
rs(2,1,2)
rs

rsrs

rsrs
rs(2, 2,2)

(b) All variation sequences

Figure 8.4: An example of a variation graph based on two samples and all
sequences of the fully connected graph.

116 Chapter 8. Clustering And Automatic Template Modeling Techniques

8.6.1 Generative Training

The generation of variation graphs described here assumes an available set of
allograph labeled samples as described in Section 8.4.

Given the segmental distance function in (8.1) the generation of the variation
graph can be conducted through Algorithm 8. Each segment is clustered with a
generative clustering algorithm such as Hierarchical Agglomerative clustering
[7] or k-Means [56] and a choice of n cluster representatives are chosen as
variations for each segment.

The mixture of segments of different samples may however correspond to seg-
ment shapes that are not representative of the class. To cope with this problem
the closest variation sequence is found for each sample in the training set. All
such observed variation connections in the training set can be recorded and
after that the edges between variations not observed in the training set can be
excluded. Figure 8.4 shows all the possible variation sequences when mixing
two arbitrary samples of the same allograph (and segmentation) of the digit
’2’.

Algorithm 8 Generative Variation Graph Training

1: for Ai
k ∈ D do

2: for s = 1, . . . , |S(Ai
k)| do

3: Generate clusters (c1, . . . , cn), ci ∈ X(i,k,s)

4: for p = 1, . . . , n do

5: Set n
(i,k,s)
p = cp in Ai

k

6: if s > 1 then
7: Es

p = (1, . . . , n) % Initialize edges
8: rj(E

s
p) = 0, j = (1, . . . , n) % Initialize edge counter

9: end if

10: end for

11: end for

12: for X ∈ X(i,k) do

13: Set N ∗ = argmin
N∈N

(i,k)
A

G(X,N)

14: Set I = (i1, . . . , i|S(Ai
k
)|−1) to the indexes of N ∗

15: for s = 2, . . . , |S(Ai
k)| do

16: ris−1(E
s
is

) = ris−1(E
s
is

) + 1 % Increment edge counter
17: end for

18: end for

19: Update Es
p = {j ∈ (1, . . . , n)

∣

∣rj(E
s
p) > T }, ∀s, p

20: end for

8.7 Recognition with Variation Graphs 117

8.6.2 Discriminative Training

The procedure for generating a variation graph described in Section 8.6.1 is
a generative approach to modeling not taking the possible conflicts with sur-
rounding classes into account. The experiments in Section 9.3 however show
that the variation graph could benefit from a second layer of more discriminative
methods such as CDCR [117], LVQ [18, 60] or SVM [1, 9] since top-2 recogni-
tion candidates are significantly better than the best candidate. This section
presents another approach to dealing with this problem already at the template
design phase. The basis for the rudimentary algorithm presented here is that
the cause for many of the top candidate confusions is that the contributions
of discriminative features between two very similar classes often drown in the
general noise caused by the normal variations of other feature values. The strat-
egy of the simple algorithm proposed here is therefore quite intuitive and aims
at assimilating similar parts of confused characters while the discriminative
parts are accentuated. The full algorithm, here referred to as Discriminative
Assimilation (DA), is schematically described in Algorithm 9. For notational
purposes some new terminology is introduced. Let V i

k(X) = argmin
N∈N

(i,k)
A

and let {Λj}|S(X)|−1
j=1 be the sample segments of X . For each segment s asso-

ciate the sample segments in X(i,k,s) according to the closest variation in Ai
k as

X
(i,k,s)
p = {Λs|n(i,k,s)

p ∈ V i
k(X)} and order by the distance value as determined

by the function in (8.1). The algorithm will skim through the feature space of
every segment and determine a new sequence of variations to add for one of
the two variation graphs being discriminatively compared. Let the ff operator
denote the retrieval of feature f from a variation or a set of sample segments.
One iteration of the algorithm is defined as allowing each allograph to get such
an update one time if the number of errors caused by the neighboring class
exceeds a certain threshold.

8.7 Recognition with Variation Graphs

Just as the linguistic properties optimally are modeled with a graph when
graph structures are used with recognition as shown in Chapter 7, this is also
a very efficient way to match multiple templates. As seen in Figure 8.4 each
variation graph can contain a vast amount of templates through the multitude
of variation sequences, but the segmental nature of the recognition process
described in previous chapters enables sharing of partial recognition results. In
particular the same beam search paradigms can be used within the variation
graph match to find the best sequence of variations matching input. In the
segment-by-segment approach of Algorithm 5 this is handled by the incomplete

118 Chapter 8. Clustering And Automatic Template Modeling Techniques

Algorithm 9 Discriminative Assimilation (DA) graph Ai
k w.r.t Aj

m

1: Find most common sequence Vj
m(X) s.t. G(Aj

m, X) < G(Ai
k, X), X ∈ X(i,k)

2: for s = 1, . . . , |S(X)| − 1 do

3: Find X
(i,k,s)
[j,m,p] = {Λs ∈ X |X ∈ X(i,k),Vj

(m,s)(X) = n
(j,m,s)
p }

4: Find X
(j,m,s)
p

5: for f = 1, . . . , dimF do

6: if Span of feature f in X
(i,k,s)
[j,m,p] overlaps that of X

(j,m,s)
p then

7: Set as
f = ff (n

(j,m,s)
p)

8: else
9: Find m as middle of margin δ between ff (X

(i,k,s)
[j,m,p]) and

ff (X
(j,m,s)
p)

10: Set

as
f =

{

m − δ/2, if δ > max
F∈ff (X

(i,k,s)

[j,m,p]
)
F

m + δ/2, otherwise

11: end if
12: end for
13: end for
14: if At least one feature of one segment differs then

15: Add segment variation sequence a = {as}|S(X)|−1
s=1 to Ai

k

16: end if

beam BI which is common for all templates. For the template-by-template
strategy of Algorithm 3, BI is instead the number of sequences allowed to
continue to the next segment per template. Unlike the segment-by-segment
strategy partial templates do not compete for space within the beam. Since
each such sequence may have common segment variations the effective number
of matches need to be made during the segmentation graph construction scales
well with the total number of sequences enabled through the variation graph.
A potential flaw of this property is that the Markov characteristic (edges only
between successive segments) will also make it impossible to directly exclude
some sequences, since an edge between two segment variations will allow such a
connection for all segment variations in the future. This could cause problems
for characters that have distinctly different appearances in a non-connected
part (i.e. with at least one intermittent segment). In these cases such allograph
types can be separated into two variation graphs in order to allow exclusion of
disallowed interconnections.

CHAPTER 9

Experiments

The training of children is a profession, where we must know how
to waste time in order to save it.

Jean Jacques Rousseau

120 Chapter 9. Experiments

O
ne of the satisfactory things about handwriting recognition re-
search is the possibility of instant quantitative feedback. It is how-
ever always important to keep in mind that such results by no means
are absolute in their judgement. There are lots of aspects to con-

sider. Different datasets contain different types of data posing varying problems
which may be handled differently by different strategies. This chapter will be-
gin with a short general discussion on recognition experiments with on-line
characters followed by experiments conducted with the algorithms presented in
the thesis.

9.1 Introduction

The complexity of the handwriting recognition problem is largely due to the
notable variance in shape that samples of handwriting display. Thus the sig-
nificance of experimental recognition results is also utterly dependent on the
content of the data set used. In the early days of on-line handwriting recog-
nition capturing devices were not as reliable and various preprocessing steps
focusing on noise removal were mandatory elements of the recognition systems
[20, 47, 125]. The lack of publicly available data sets along with hardware de-
pendency thus made it virtually impossible to make quantitative comparisons
of recognition experiments. Today capturing devices are much more reliable
and sampling artifacts can generally be attributed to the human factor. A
shaky writing environment can cause jagged curves and a slip of the pentip can
still cause extra noise segments (cf. Section 5.4).

9.2 Datasets

In the past fifteen years this situation has been greatly improved starting
off with the ambitious UNIPEN project in the mid-90’s [48]. Unfortunately
this project started off when the digitizing tablets used for collection were
somewhat unreliable and does contain fair amounts of noisy data [97]. The
UNIPEN dataset is divided into a training set Train-R01/V07 and a test set
DevTest-R01/V02. Regrettably only the train set has been available for public
use so far, even though some recent work has been conducted to automatically
clean the DevSet in order to simplify comparison of recognition performance
[133]. Other public datasets now include the MIT database [57], the IRONOFF
database [128], the Ethem-Alpaydin data set [2] for digits and the Kuchibue
database for on-line Japanese characters [81]. Recently Liwicki et al. also made
a publicly available set of on-line handwritten sentences [67]. The author has
also contributed with a dataset collected with audio-playback. The writers

9.2 Datasets 121

were instructed to write the words provided through audio feedback instead of
showing the words to be written visually [113]. The aim of this technique is
not to influence the writers style of writing by showing a particular font, and
it was also used for collecting the MIT data set [57]. Unfortunately there are
no actual results showing if this has any effect.

9.2.1 Dataset Partitions

Datasets are often partitioned into 2 or 3 sets (train, test, validation). These
partitions can be either single-writer,multi-writer or omni-writer [97]. In most
cases the last two are the most interesting from a recognition perspective. The
multi-writer case implies that there are multiple writers both in the train and
test set whereas the omni-writer case also implies writer independency, i.e. that
no data from a writer in the test set can be part of the train set. With the aim
of a general handwriting solution naturally the omni-writer case will be the
common case for a commercial system, since no system will be able to contain
training data from all possible users. For partitioning of fixed datasets how-
ever, it is often recommendable to use some kind of a multi-writer partitioning
scheme, since the limited size of data may otherwise cause some allographs for
some classes to be absent in either train or test set.

9.2.2 Allograph Distribution Analysis

Apart from the influence of the hardware used for capturing on-line information,
the writing styles of the writers contributing to the collection is also of great
importance for the properties on the data set. The discrimination power of
different recognition strategies depend greatly of the problem and the type of
salient features. For this reason it is of interest not only to know the data
set used, but also the distribution of styles (or allographs) contained in the
set. The success of different recognition methods on a certain partition into
training and testing set may depend greatly on the correspondence of allograph
distribution between these two sets.

By making use of the allograph labeling scheme developed for training noise
free models of segmented characters in Section 8.4, it is also possible to directly
analyze the distribution of the labels. Such allograph content analysis has been
conducted in the past [57] but no previous results have been found for the
noise-free allograph analysis shown here. In recent years a data set used often
when comparing the state-of-the-art in on-line single character recognition is
the digit collection in the UNIPEN Train-R01/V07 data set, i.e. UNIPEN/1a
[48]. Furthermore many researchers have used a similar way to divide this set

122 Chapter 9. Experiments

into multi-writer 2:1 ratio of train and test data [77, 97]1. The same 2:1 ratio of
train/test multi-writer data but with a different partitioning scheme has been
employed in other experiments [3, 8]. By conducting forced recognition on both
the test set and the train set the allograph distributions can be compared. The
most frequent allographs for the symbols 0, 2 for the different sets are shown
in Tables 9.1 and 9.2. The complete lists are included in Appendix A.

Class |X| Allographs

0 1059

b
1

b
1

b
2

b
1

b
2

71.6%(758) 11.9%(126) 5.8%(61)
b rs

rsrs

rsrs

rs

(311)

b rs

rsrs

rs

(276)

brsrsrs

rsrs

rs

(104)
brsrsrs
rsrs

rsrsrs

(67)

b rs

rsrs

rs
brs

rs

(62)

b rs

rsrs

rsrs

rs

brs

rs

(33)

b rsrsrs
rsrs

rs brs

rs

(31)

brsrsrs
rsrs

rs

brs

rs

(27)

brs

rsrs

rsrsrs

brs

rs

(22)

b rs

rsrs

rs

brs

rs

(12)

2 1107

b
1 b

1 b
1

63.3%(701) 25.8%(286) 5.5%(61)
b rs rsrs

rsrs rs

(361)

b rs rsrs

rs

(84)

brs

rsrs rs

(77)
brs

rs

(75)

b rs rsrs

rsrs rs

(74)

brs
rsrs rs

(30)

brsrsrs

rsrs
rsrs

rs

(240)

b rs

rsrs rsrs rs

(17)

brs rsrs

rsrs
rs

(12)
brs

rsrs
rs

(10)

b rs rsrs

rsrs
rsrs
rsrs rs

(7)

b rs rsrs

rsrs rs

(61)

Table 9.1: The three most common allographs with their respective segmen-
tations for the classes 0,2. The complete table is found in Appendix A.1

1Dataset partition through utils2compareHWR tools, http://www.alphaworks.ibm.com/
tech/comparehwr

9.3 Single Character Recognition 123

Class |X| Allographs

0 565

b
1

b
1

b
2

b
1

b
2

74.7%(422) 10.8%(61) 6.2%(35)
brs

rsrs

rs

(160)

b rs
rsrs

rsrs

rs

(152)

b rsrsrs

rsrs

rs

(58)
b rs

rsrs

rsrs

rsrsrs

(52)

b rs

rsrs

rs brs

rs

(33)

b rs

rsrs

rsrs

rs

brs

rs

(16)

brsrsrs

rsrs

rs
brs

rs

(12)

brsrsrs

rsrs

rs

brs

rs

(13)

brs

rsrs

rs

brs

rs

(11)

brs

rsrs

rsrsrs

brs

rs

(11)

2 534

b
1 b

1 b
1

59.4%(317) 30.0%(160) 5.6%(30)
brs rsrs

rsrs rs

(155)

b rs rsrs

rs

(45)

b rs rsrs

rsrs rs

(38)
b rs

rs

(35)

brs

rsrs
rs

(34)

b rs

rsrs rs

(10)

b rs rsrs

rsrs
rsrs

rs

(130)

brs

rsrs
rsrs

rs

(10)

brs

rsrs
rs

(10)
brs rsrs

rsrs
rsrs

rsrs rs

(5)

b rs
rsrs

rsrs rs

(5)

b rs rsrs

rsrs
rs

(30)

Table 9.2: The three most common allographs in the test part of the UP1a
data with their respective segmentations.

9.3 Single Character Recognition

Single character recognition experiments have been conducted both on the dig-
its in the UNIPEN/1a dataset and on a proprietary set of isolated Arabic single
characters supplied by Zi Decuma.

Digits The UNIPEN/1a was divided into the training and test set with multi-
writer paradigm as described above. The training set was used to alter the
modeling of the observed segmentation in the manually defined segment defi-
nition database with variation graphs as described in Chapter 8. For the digit
set both the generative and discriminative variation graph modeling methods
are tested, whereas only the generative approach has been tested on the Ara-
bic single character problem. The digit experiments were conducted using the
template-by-template matching strategy (cf. 5.3.1) during the segmentation

124 Chapter 9. Experiments

k top-1 top-2 top-3

0 (org) 84.8% 94.3% 97.0%
5 92.9% 97.2% 98.2%
10 94.0% 97.7% 98.3%
15 94.3% 97.5% 98.2%

Table 9.3: The effect of varying number of clusters for generative training on
the independent test set

k top-1 top-2 top-3

0 (org) 86.0% 94.5% 97.0%
5 93.9% 97.9% 98.7%
10 95.7% 98.4% 98.9%

Table 9.4: The effect of varying number of clusters for generative training on
the training set

graph construction and for all these experiments the beam width BI for the
variation graph matching was set to 15. The beam sizes used for the segmen-
tation and recognition graphs (i.e. the number of edges in each node in the
segmentation graph and the number of paths in each node in the recognition
graph) were large enough (BS = 10, BR = 15) not to have a large impact on
the recognition accuracy of isolated digits. Recognition results are reported as
top-n results for various n, each indicating that the correct interpretation is
among the n best matching template classes.

The recognition results in Table 9.3 are a few percent lower than the best
reported in the literature for this split into training and test data [3, 77]. There
is however a significant difference for the top-2 results, and these results are
very close to the best recognition results reported in the literature. There are
several possibilities to improve upon the recognition results conducted here.
Firstly, recognition parameters (i.e. weights in (4.3 on page 54) have only been
set uniformly to 1. The recognition on the digit set does not include the relative
x and relative y features from Table 4.1 which give improvement in the Arabic
case below. The noise distance thresholds are also ad hoc values and so are the
parameters (constants) in the dcmDTW function of Section 3.2.4. Furthermore
it is possible that the ratio normalization function in Figure 4.1 on page 4.1
can be optimized further to improve recognition accuracy.

A minor improvement can be achieved by applying discriminative training with
Algorithm 9. Results of a few iterations with this algorithm on the databases

9.3 Single Character Recognition 125

k-base nIter top-1 top-2 top-3

5 1 92.6% 97.3% 98.2%
5 5 93.7% 97.3% 98.2%
10 1 94.1% 97.7% 98.3%
10 2 94.2% 97.7% 98.3%
10 4 94.4% 97.7% 98.3%

Table 9.5: The effect of additional discriminative training. The error thresh-
old was set to 3 and only single stroke allographs were regarded.

trained with the generative approach for 5, 10 cluster centers are shown in
Table 9.5. As expected the improvement is greater for the base of 5 generative
segmental clusters. In total only 5 extra sequences are needed for improving
hitrates with 0.4%, which corresponds to an error reduction of 15%. A compli-
cation in running the naive feature by feature optimization of Algorithm 9 on
the set of features presented in Section 4.2 is that they depend on each other.
This was particularly limiting in the system implemented for the experiments
shown in Table 9.5 since each feature was recalculated from each segment thus
making it impossible to give values to dependent features that would cause
conflicts in the segment shape representation.

Arabic Single Characters The Arabic single character set training set con-
tained 27 writers and 2150 samples- The writer independent test set consisted
of 12 writers and a total of 948 samples. This means that this is an omni-writer
setting as opposed to the multi-writer case for the UNIPEN set above. The
most important difference in the actual recognition settings for the UNIPEN
digit experiment above are: (1) the use of virtual reference segments to deter-
mine size and position (cf. Section 4.2.3); (2) use of the segment-by-segment
strategy for the segment graph construction (cf. Section 5.3.1); (3) the use of
the Relational x, y features from Table 4.1 on page 51 and (4) the beam widths
- in particular the diacritic beam since there are no delayed strokes in the iso-
lated digit set. Unfortunately the data set used for testing is a proprietary data
set supplied by Zi Decuma and it is not publicly available, but a recent Master
Thesis with a current state-of-the-art recognition technique has enabled recog-
nition performance comparison [10]. In this test the strategy presented here
provides comparable recognition accuracy (94.1%) to the state-of-the art tech-
nique (94.4%) based on similarity matching (cf. Section 2.3.2) complemented
with a multi-stage combination paradigm (cf. Section 2.7) as seen in Table 9.6.
It remains to be seen whether this means that the settings used for the Arabic

126 Chapter 9. Experiments

k-Means top-1 top-2 top-3

0 91.9% 96.7% 97.6%
5 94.1% 96.5% 97.7%

Table 9.6: Recognition results for isolated Arabic single characters test set

k-Means Dictionary top-1 top-2 top-3

5 65k 87.5% -% -%
5 ∞ 54.9% -% -%

Table 9.7: Recognition results for online Arabic cursive words with varying
dictionary sizes and for two different databases on the training independent set
of data

single characters have superior discriminative power or whether the segmental
matching of this thesis is naturally better at the slightly more complex problem
of Arabic single characters as opposed to Latin digits.

9.4 Unconstrained Character Recognition

Unconstrained character recognition here means that data was collected by
instructing users to write a specific word without imposing restrictions on how
to write (as opposed to the single character case). For Arabic this in principle
means that unconstrained character recognition is the same as cursive Arabic
handwriting recognition. Since dynamic linguistical methods (cf. Section 7.4)
have not yet been implemented in the experimental system used here, the
dataset was filtered only to contain writing such that each individual character
was discernible. This implied removal of about 28% of the original set of 2513
samples from 66 words and 39 writers. The tests performed on the remaining
set were multi-writer so that a set of 17 words (408 word samples) were used
purely for testing and parts of the remaining words were used for training.
Word recognition was conducted both with and without the application of
lexical knowledge according to the procedure described in Chapter 7. Running
recognition without a dictionary corresponds to an infinite dictionary size in
Tables 9.7 and 9.8. As for the single character recognition case, experiments
have been conducted both with the segment definition database and with a
database segment-wise clustered with k-Means (k = 5).

It is interesting to note that the segmental clustering technique effectively clus-

9.4 Unconstrained Character Recognition 127

k-Means Dictionary top-1 top-2 top-3

0 65k 78.6% 86.6% 87.9%
0 ∞ 40.9% 54.2% 58.9%
5 65k 85.4% 89.8% 90.9%
5 ∞ 57.6% 69.8% 74.4%

Table 9.8: Recognition results for online Arabic cursive words with varying
dictionary sizes and for two different databases on the complete set of data
(including word samples in training set)

ters characters from the much larger space of all combinatorial variations of
segments as previously seen in Figure 8.1. For this reason it is conceivable
that the training procedure will be less dependent on the training set. This is
given some support from the experiments where in fact recognition accuracy is
higher on the test set of word samples not used in training (using a 65k word
dictionary).

9.4.1 Varying the beam widths

The three graph algorithms (Alg. 3, 6, 7) in Chapters 5 and 6 all contain
parameters in the form of beam widths to limit time complexity and memory
consumption in the graph structures. This section will deal with experiments
conducted with various settings for these parameters. Since word recognition is
the most complex problem in view of the graph algorithms only this recognition
setup has been used in this experiment and results are reported for tests on the
complete data set as in Table 9.8. In view of commercial applications the triplet
of recognition accuracy, memory consumption and recognition response time
(speed2) have all been analyzed as functions of various values for the different
beam widths. Both memory consumption values and speed measurements are
reported with mean and max values. Naturally a larger beam width imply a
slower response time and a more extensive memory consumption. The impact
on recognition accuracy is not, however, as straightforward. Since memory and
speed consumptions are also extremely dependent on the quality of the actual
implemented code itself as well as the architecture of the platform used for
testing, the values should not be used as absolute values, but merely values
that enable comparison of the effects of different beam widths.

2The absolute speed calculated on 4 word representative samples on a ARM9TDMI, 208
MHz processor, comparable to that of many mobile platforms

128 Chapter 9. Experiments

The segmentation graph beam BS

The segmentation graph beam BS limits the number of edges allowed to each
node in the segmentation graph and thereby the size of the set of shape matches
ending in the corresponding segmentation point. The effect of varying BS while
keeping all other beam widths fixed is shown in Table 9.9. As expected memory
and response time increases with increasing beam size while there seems to be
a fairly protrudent optimum in terms of recognition accuracy both with and
without a dictionary. It is likely this decrease in recognition accuracy after the
optimum value is reached is caused by increased competition of hypothesis in
the recognition graph.

BS Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
10 226 510 460 620 83.0% 87.1% 87.6% 88.4%
20 311 648 557 720 85.3% 89.8% 90.9% 92.0%
28 314 722 607 780 85.4% 89.8% 90.9% 92.2%
40 350 760 657 820 84.9% 89.5% 90.9% 92.4%
60 401 878 703 870 84.0% 88.9% 90.4% 92.2%

Dictionary size = ∞
10 242 579 433 570 55.8% 67.6% 71.0% 76.7%
20 289 693 480 620 58.0% 70.0% 73.9% 80.7%
28 316 740 503 640 57.6% 69.8% 74.4% 81.1%
40 349 811 530 670 57.5% 69.8% 74.1% 81.4%
60 396 877 553 700 57.5% 69.6% 73.8% 80.7%

Table 9.9: The effect of varying the SG beam width BS while fixing other
parameters (BR=80, BI=200,BD=15,BU=4) on the complete data set.

The recognition graph beam BR

The beam in the recognition graph limits the number of allowed hypothesis in
each node corresponding to the height of the Trie structure shown in Figure 5.8.
Increasing this size therefore reduces the risk that the correct hypothesis is
prematurely excluded. As seen in Table 9.10 this is more of a problem for
recognition with an infinite dictionary as the competition in the recognition
graph depends on the size of the set of allowed hypothesis.

9.4 Unconstrained Character Recognition 129

BR Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
20 184 350 457 590 82.3% 85.9% 86.9% 87.6%
40 227 468 513 660 84.3% 88.5% 89.3% 90.4%
60 271 589 570 730 85.0% 89.6% 90.5% 91.7%
80 314 722 607 780 85.4% 89.8% 90.9% 92.2%
100 357 842 653 820 85.5% 90.0% 91.2% 92.6%
120 400 967 693 880 85.5% 90.0% 91.2% 92.7%
140 462 1145 740 930 85.5% 90.1% 91.3% 92.7%

Dictionary size = ∞
20 181 357 430 550 55.0% 65.0% 67.9% 71.1%
40 225 492 450 580 56.8% 68.1% 72.2% 77.2%
60 271 628 480 620 57.4% 69.5% 73.8% 79.8%
80 316 761 503 640 57.6% 69.8% 74.4% 81.1%
100 362 890 527 680 57.9% 70.0% 74.7% 81.6%
120 407 1019 557 720 57.9% 70.2% 74.8% 82.0%
140 476 1204 587 760 58.1% 70.3% 75.0% 82.4%

Table 9.10: The effect of varying the RG beam width (BR) while fixing other
parameters (BS=28, BI=200,BD=15,BU=4) on the complete data set.

The incomplete beam BI

The incomplete beam regulates the set of incomplete hypothesis maintained
within the segmentation graph. For Algorithm 5 on page 73 implemented for
the cursive word recognition all partial matches including noise segments com-
pete in this beam. As seen in Table 9.11 the width of the incomplete beam
needs a to be of considerable size (80) not to cause a drastic drop in recognition
accuracy. Since the incomplete beam can be reused for every segment (there is
no need to store incomplete edges since they are only used as input to contin-
ued matching), an increase in the incomplete beam has virtually no effect on
memory size but seems scale approximately linearly with response time after
the crucial value of 80 has been reached.

BI Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
40 302 685 517 670 78.6% 82.4% 83.5% 84.9%
80 306 700 553 710 82.8% 87.0% 88.1% 89.3%
continued on next page

130 Chapter 9. Experiments

continued from previous page

BI Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

120 309 702 573 730 84.1% 88.6% 89.7% 90.8%
160 311 709 590 750 85.0% 89.4% 90.4% 91.8%
200 314 722 607 780 85.4% 89.8% 90.9% 92.2%
240 316 718 627 800 85.5% 90.0% 91.1% 92.3%

Dictionary size = ∞
40 306 728 423 550 54.9% 66.7% 70.3% 75.4%
80 309 742 450 580 57.0% 68.8% 72.8% 79.0%
120 312 750 463 590 57.0% 69.4% 73.6% 79.7%
160 314 755 483 620 57.5% 69.8% 74.1% 80.8%
200 316 761 503 640 57.6% 69.8% 74.4% 81.1%
240 318 750 520 660 57.5% 69.8% 74.1% 80.8%

Table 9.11: The effect of varying the incomplete beam width (BI) while fixing
other parameters (BS=28, BR=80,BD=15,BU=4) on the complete data set.

The diacritic beam BD

The diacritic beam width is an interesting parameter which has virtually no
bearing on recognition speed and only negligible effect on memory consumption.
Like for the incomplete beam the recognition accuracy quickly levels off after a
certain width (10 in Table 9.12). But for the diacritic beam there also seems to
be a local optimum for recognition with infinite dictionary not present for the
65k case. This shows the clear connection between the diacritic beam and the
recognition graph beam. Increasing the diacritic beam allows more edges to
utilize strokes as diacritics and thereby obtain a lower sorting distance as seen
in (6.6) on page 6.6. This increases the competition in the recognition graph
of strings by reducing the distance values for a large number of hypothesis.
From Table 9.12 it is clear that this does not cause problems for the limited
hypothesis space of the 65k dictionary, but certainly for the case with an infinite
dictionary.

BD Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
5 302 684 613 790 68.1% 74.9% 78.0% 83.7%
10 308 697 610 780 82.5% 87.5% 88.8% 90.9%
15 311 716 610 790 85.4% 89.9% 90.9% 92.2%
continued on next page

9.4 Unconstrained Character Recognition 131

continued from previous page

BD Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

18 313 724 607 780 85.4% 90.2% 91.1% 92.0%
20 314 728 610 790 85.6% 90.3% 91.1% 92.1%
25 316 730 610 790 85.8% 90.5% 91.3% 92.3%
30 317 739 610 780 86.0% 90.6% 91.3% 92.3%
35 318 740 610 790 86.0% 90.5% 91.3% 92.1%

Dictionary size = ∞
5 304 718 513 670 46.5% 54.8% 58.2% 65.1%
10 337 746 530 640 56.7% 68.3% 72.4% 79.3%
15 313 754 503 640 57.7% 70.0% 74.5% 81.2%
18 315 757 503 640 57.8% 70.1% 74.3% 81.2%
20 316 756 503 640 57.5% 69.9% 74.1% 80.3%
25 318 768 507 650 57.2% 69.1% 73.0% 79.0%
30 319 765 503 640 57.2% 69.0% 72.8% 78.6%
35 320 766 503 640 57.0% 68.8% 72.5% 78.1%

Table 9.12: The effect of varying the diacritic beam width (BD) while fixing
other parameters (BS=28, BR=80, BI = 200, BU = 3) on the complete data
set.

The unmatched edge beam BU

The unmatched edge beam width BU corresponds to the number of alternatives
for a fixed set of diacritic edges to be used within a given hypothesis. This could
correspond to swapping anchors for multiples of the same diacritic for instance
as described in Section 6.4.4. As seen in Table 9.13 this parameter has negligible
effect both on memory and response time. Although its existence (setting
BU > 1) gives an increase in recognition accuracy, increasing the parameter
further does not provide better recognition accuracy in these experiments.

BU Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
1 307 704 607 780 83.2% 88.2% 90.0% 92.1%
2 309 711 607 780 85.3% 89.7% 90.9% 92.2%
3 311 716 607 780 85.4% 89.9% 90.9% 92.2%
4 314 722 607 780 85.4% 89.8% 90.9% 92.2%
6 318 733 610 780 85.4% 89.8% 90.9% 92.2%

continued on next page

132 Chapter 9. Experiments

continued from previous page

BU Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = ∞
1 308 741 497 620 56.4% 67.9% 71.4% 79.7%
2 311 748 500 630 58.0% 70.0% 74.3% 81.2%
3 313 754 503 640 57.7% 70.0% 74.5% 81.2%
4 316 761 503 640 57.6% 69.8% 74.4% 81.1%
6 322 773 507 650 57.6% 69.8% 74.4% 81.1%

Table 9.13: The effect of varying the diacritic unmatched alternative beam
width (BU) while fixing other parameters (BS=28, BR=80, BI = 200, BD =
15) on the complete data set.

9.4.2 Optimizing performance

Given the effects of various beam width parameters, it would clearly be prefer-
able to have a system for optimizing such parameters given a set of require-
ments. Different platforms may have different requirements in terms of compu-
tational power and storage. If the requirements are not limiting to the system
(like on a PC for instance) it would be beneficial to know the parameter setting
to reach optimal recognition accuracy. For other platforms this may be condi-
tioned on memory and/or response time. In this thesis no work has been put
into deriving automatic methods to answer these questions but some general
directions can be given by studying Table 9.14.

BS/BI/BR/BD Memory(kB) Speed(ms) top-1 top-2 top-3 top-10
mean max mean max

Dictionary size = 65k
10/40/10/5 91 165 310 420 71.0% 73.1% 73.5% 73.6%
10/40/10/10 96 164 307 420 71.1% 73.2% 73.6% 73.4%
20/40/10/10 125 219 340 450 72.9% 75.3% 75.9% 76.2%
20/80/10/10 128 229 360 470 76.6% 79.5% 80.0% 80.3%
10/40/20/10 114 206 300 400 74.8% 77.6% 78.3% 78.7%
10/80/20/10 116 215 343 460 78.5% 82.0% 82.5% 83.0%
10/120/20/10 118 217 363 480 79.0% 82.7% 83.2% 83.7%
10/120/40/10 152 303 387 510 81.1% 85.0% 85.4% 86.1%
20/80/40/10 191 390 387 510 81.1% 84.7% 85.7% 87.0%
10/120/60/10 185 384 407 540 81.8% 85.9% 86.3% 87.2%
20/80/60/15 237 508 467 620 83.1% 87.0% 87.8% 88.6%
20/160/60/20 243 507 503 660 85.2% 89.4% 90.0% 91.0%
20/200/60/25 246 533 517 680 85.5% 89.5% 90.4% 91.3%
20/120/80/15 280 638 520 670 84.3% 88.5% 89.4% 90.4%
20/80/100/15 320 764 530 680 83.0% 87.4% 88.5% 89.4%
30/120/60/15 272 583 537 690 83.7% 88.4% 89.4% 90.4%
20/160/80/20 284 650 543 710 85.5% 89.9% 90.4% 91.6%
20/200/80/25 288 639 557 730 85.9% 90.1% 90.9% 92.0%
30/80/80/10 309 689 560 720 79.6% 84.4% 85.4% 88.1%

continued on next page

9.4 Unconstrained Character Recognition 133

continued from previous page
BS/BI/BR/BD Memory(kB) Speed(ms) top-1 top-2 top-3 top-10

mean max mean max

20/200/100/35 331 762 597 780 85.9% 90.2% 91.1% 92.2%
30/240/80/25 327 756 637 810 86.0% 90.9% 91.6% 92.5%
30/200/100/35 372 883 660 840 86.3% 90.7% 91.5% 92.6%
30/240/100/40 375 892 677 860 86.4% 91.1% 91.8% 92.8%
40/200/100/30 402 924 700 870 86.2% 90.9% 91.7% 92.8%
40/280/100/40 410 949 743 920 86.4% 91.1% 91.9% 92.8%
40/240/120/40 453 1074 760 950 86.6% 91.4% 92.1% 93.2%
40/280/120/30 453 1077 790 980 86.5% 91.4% 92.1% 93.2%
50/240/120/30 486 1105 797 990 86.7% 91.7% 92.5% 93.5%
40/240/140/30 500 1203 813 1020 86.6% 91.4% 92.3% 93.4%
40/280/140/40 506 1216 840 1040 86.6% 91.4% 92.3% 93.4%
50/240/140/40 537 1239 850 1060 86.8% 91.6% 92.5% 93.5%
50/240/160/40 584 1369 903 1030 86.8% 91.6% 92.5% 93.5%

100/320/400/100 1303 3179 1893 2390 87.1% 92.2% 93.3% 94.4%
Dictionary size = ∞

10/40/10/5 95 162 297 380 48.9% 55.8% 57.0% 58.6%
10/40/10/10 92 167 293 380 49.0% 55.8% 57.1% 58.7%
20/40/10/10 120 225 323 420 49.9% 57.2% 58.9% 61.1%
20/80/10/10 122 230 343 440 51.8% 59.5% 61.2% 63.6%
10/40/20/10 113 222 320 440 52.2% 61.0% 63.2% 65.5%
10/80/20/10 114 267 327 430 53.8% 62.9% 65.3% 68.3%
10/120/20/10 117 232 343 440 53.9% 63.1% 65.5% 68.6%
10/120/40/10 155 339 367 470 55.3% 66.2% 69.3% 74.0%
20/80/40/10 190 428 367 470 56.5% 67.4% 70.8% 76.2%
10/120/60/10 194 443 383 490 56.0% 67.5% 70.6% 76.2%
20/80/60/15 240 574 403 520 57.2% 68.4% 71.9% 77.6%
20/160/60/20 245 565 437 560 56.8% 68.4% 71.5% 77.5%
20/200/60/25 249 580 457 590 56.9% 68.1% 71.6% 77.0%
20/120/80/15 287 696 443 570 57.4% 69.3% 73.0% 79.3%
20/80/100/15 330 836 453 590 57.8% 69.3% 73.1% 79.2%
30/120/60/15 272 626 447 570 56.6% 68.8% 72.8% 78.5%
20/160/80/20 290 691 460 590 57.9% 69.5% 73.1% 79.5%
30/80/80/10 312 740 450 580 54.9% 65.7% 69.5% 76.3%
20/200/80/25 294 707 480 620 57.6% 69.1% 72.8% 78.9%
20/200/100/35 341 835 500 650 57.9% 69.6% 73.3% 79.2%
30/240/80/25 329 790 523 680 57.1% 69.1% 73.3% 79.3%
30/200/100/35 376 917 537 690 57.4% 69.3% 73.3% 79.3%
30/240/100/40 379 925 547 700 57.2% 69.2% 73.3% 79.2%
40/200/100/30 403 957 557 700 57.7% 69.6% 73.6% 80.3%
40/280/100/40 410 975 587 740 57.2% 69.2% 73.0% 93.2%
40/240/120/40 456 1103 597 750 57.7% 69.7% 73.9% 80.4%
40/280/120/30 455 1105 617 780 57.9% 70.0% 74.3% 81.1%
50/240/120/30 486 1137 617 780 57.9% 70.0% 74.5% 81.5%
40/240/140/30 505 1244 623 780 58.1% 70.0% 74.5% 81.8%
40/280/140/40 510 1225 640 810 57.8% 69.8% 74.2% 81.1%
50/240/140/40 587 1410 670 850 58.0% 70.2% 74.6% 81.6%

100/320/400/100 1313 3189 1183 1550 58.2% 70.7% 75.0% 83.0%

Table 9.14: The effect of varying graph beams simultaneously on the complete
data set.

As seen in Figure 9.1, the plots of recognition accuracy as a function of memory
usage clearly levels off at an early level. Since memory usage is approximately
proportional to response time as seen in Figure 9.5, it is expected that the
curve levels off for corresponding values in recognition accuracy. Even though

134 Chapter 9. Experiments

the beam widths are increased to significantly larger numbers as seen in the
last rows of dictionary and non-dictionary results in Table 9.14, recognition
accuracy only improves marginally. These upper limitations are not caused
by restrictive hypothesis beam search. Instead, the upper limit especially of
top-10 results should be interpreted as the limitations put on recognition ac-
curacy of other components in the recognition system. These may range from
preprocessing and segmentation errors (failing to find a segmentation point)
to missing database coverage, unfavorably initialized distance function weights
and noise distance parameters. From a performance perspective it is therefore
quite assuring to see that the graphs in Figures 9.1-9.4 level off quickly, since
this gives indications that it is possible to achieve a higher hitrate with the
strategy presented in the thesis without compromising memory and speed per-
formance. The points in the plots corresponding to the maximization of hitrate
while minimizing memory and/or speed have been marked with a red frame in
Table 9.14.

0 200 400 600 800 1000 1200 1400
70

75

80

85

90

95

Figure 9.1: Plot with recognition accuracy as a function of memory usage for
recognition with a dictionary of 65k words. The three markers are the different
recognition accuracy levels (Triangle) Top-1, (Square) Top-2 and (Star) Top-10.

9.4 Unconstrained Character Recognition 135

0 200 400 600 800 1000 1200 1400
45

50

55

60

65

70

75

80

85

Figure 9.2: Plot with recognition accuracy as a function of memory usage for
recognition without a dictionary. The three markers are the different recogni-
tion accuracy levels (Triangle) Top-1, (Square) Top-2 and (Star) Top-10.

136 Chapter 9. Experiments

200 400 600 800 1000 1200 1400 1600 1800 2000
70

75

80

85

90

95

Figure 9.3: Plot with recognition accuracy as a function of response time for
recognition with a dictionary of 65k words. The three markers are the different
recognition accuracy levels (Triangle) Top-1, (Square) Top-2 and (Star) Top-10.

9.4 Unconstrained Character Recognition 137

200 400 600 800 1000 1200
45

50

55

60

65

70

75

80

85

Figure 9.4: Plot with recognition accuracy as a function of response time for
recognition without a dictionary. The three markers are the different recogni-
tion accuracy levels (Triangle) Top-1, (Square) Top-2 and (Star) Top-10.

138 Chapter 9. Experiments

0 200 400 600 800 1000 1200 1400
200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 9.5: Plot with memory as a function of response time.

CHAPTER 10

Conclusions and Future Prospects

I think and think for months and years. Ninety-nine times, the
conclusion is false. The hundredth time I am right.

Albert Einstein

140 Chapter 10. Conclusions and Future Prospects

I
t has been shown in this thesis that it is possible to construct a fast and
effective recognition system with an additive template matching applica-
ble to the unconstrained handwriting recognition problem. Neither the
algorithms and the system presented here nor the experimental results

should be thought of as the products of optimizations maximizing the full po-
tential of the proposed recognition strategy. On the contrary, each part of the
strategy has just been defined in its most simple realization. The aim of this has
been to produce all required parts of a complete system within a limited time
frame. Yet, the experimental part reveals surprisingly powerful recognition re-
sults even with a completely hand-built template database. In the early days
of on-line handwriting recognition, template based methods were very popular
but have lately grown out of fashion. This is especially true for the connected
character recognition problem. Although some recognition systems in the past
have used templates for recognition of cursive writing it is increasingly difficult
to deduce the exact recognition settings from older publications. Hopefully the
work presented in this thesis can inspire rejuvenated efforts in this area.

As stated above, several parts of the recognition system have just been defined
in their most simple form and this leaves several obvious areas of improvements
for future research. Some of the most striking items are listed below:

• The segmentation strategy. In the strive for a completely script inde-
pendent recognition engine (apart from template database properties),
the segmentation strategy has to be able to deal with alternative writing
directions. This in turn imposes a requirement on a more generic way
of finding segmentation points, possibly such as those used to identify
feature points in on-line signature verification.

• Dynamic lexical lookup as sketched in Section 7.4. The current system
can not handle degraded shapes in samples. The reason for this is that the
recognition hypotheses are restricted to the shape matching information
made available by the segmentation graph.

• Optimization of weights in the segmental distance function in Section 4.3

• Tuning of settings for the noise distance in Section 5.4

• Inclusion of various parameters used in preprocessing, such as baseline
adjustment and slant correction, into the recognition system at a local
template level.

Successful treatment of the above mentioned issues will not only increase recog-
nition accuracy and relax constraints on neatness of writing, compared to the

141

system in this thesis. It would also provide a versatile and script independent
system for applications to any on-line shape sequence segmentation problem.

142 Chapter 10. Conclusions and Future Prospects

Bibliography

[1] Ahmad, A. R., Khalia, M., Viard-Gaudin, C., and Poisson, E.

Online handwriting recognition using support vector machine. In TEN-
CON 2004. 2004 IEEE Region 10 Conference (2004), vol. A, pp. 311–314
Vol. 1.

[2] Alimoglu, F., and Alpaydin, E. Combining multiple representations
and classifiers for pen-based handwritten digit recognitio. In Proc. of
the 4th International Conference on Document Analysis and Recognition,
Ulm, Germany (Washington, DC, USA, August 1997), IEEE Computer
Society, pp. 637–640.

[3] Alon, J., Athitsos, V., and Sclaroff, S. Online and offline char-
acter recognition using alignment to prototypes. In Proc. of the 8th In-
ternational Conference on Document Analysis and Recognition (2005),
pp. 839–843.

[4] Andersson, J. Hidden markov model based handwriting recognition.
Master’s thesis, Dept. of Mathematics, Lund Institute of Technology,
Sweden, 2002.

[5] Anquetil, E., and Bouchereau, H. Integration of an on-line hand-
writing recognition system in a smart phone device. In Proc. 16th In-
ternational Conference on Pattern Recognition (Washington, DC, USA,
2002), vol. 3, IEEE Computer Society, p. 30192.

144 Bibliography

[6] Anquetil, E., and Lorette, G. Perceptual model of handwriting
drawing application to the handwriting segmentation problem. In Proc. of
the 4th International Conference on Document Analysis and Recognition,
Ulm, Germany (Washington, DC, USA, 1997), IEEE Computer Society,
p. 112.

[7] Bahlmann, C. Advanced Sequence Classification Techniques Applied to
Online Handwriting Recognition. PhD thesis, Albert-Ludwigs-Universität
Freiburg, 2005.

[8] Bahlmann, C., and Burkhardt, H. The writer independent on-
line handwriting recognition system frog on hand and cluster generative
statistical dynamic time warping. IEEE Trans. Pattern Analysis and
Machine Intelligence 26, 3 (Mar. 2004), 299–310.

[9] Bahlmann, C., Haasdonk, B., and Burkhardt, H. On-line hand-
writing recognition with support vector machines - a kernel approach. In
Proc. of the Eighth International Workshop on Frontiers in Handwriting
Recognition (August 2002), pp. 49–54.

[10] Bakhtiari-Haftlang, C. Arabic online handwriting recognition. Mas-
ter’s thesis, Dept. of Mathematics, Lund Institute of Technology, Sweden,
2007.

[11] Bellegarda, E. J., Bellegarda, J. R., Nahamoo, D., and

Nathan, K. A fast statistical mixture algorithm for on-line handwriting
recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 16,
12 (1994), 1227–1233.

[12] Belongie, S., Malik, J., and Puzicha, J. Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Analysis and
Machine Intelligence 24, 24 (2002), 509–522.

[13] Bengio, Y., and LeCun, Y. word normalization for on-line handwrit-
ten word recognition. In Proc. 12th International Conference on Pat-
tern Recognition (Jerusalem, October 1994), IAPR, Ed., vol. II, IEEE,
pp. 409–413.

[14] Bengio, Y., LeCun, Y., Nohl, C., and Burges, C. Lerec: a
nn/hmm hybrid for on-line handwriting recognition. Neural Comput.
7, 6 (1995), 1289–1303.

[15] Berthilsson, R., and Åström, K. Extension of affine shape. J. Math.
Imaging Vis. 11, 2 (1999), 119–136.

Bibliography 145

[16] Biadsy, F., El-Sana, J., and Habash, N. Online arabic handwrit-
ing recognition using hidden markov models. In Proc. of the Tenth In-
ternational Workshop on Frontiers in Handwriting Recognition (2006),
pp. 85–90.

[17] Bishop, C. Artificial Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, 1995.

[18] Bote-Lorenzo, M. L., Dimitriadis, Y. A., and Gómez-Sánchez,

E. A hybrid two-stage fuzzy artmap and lvq neuro-fuzzy system for on-
line handwriting recognition. In ICANN ’02: Proceedings of the Inter-
national Conference on Artificial Neural Networks (London, UK, 2002),
Springer-Verlag, pp. 438–443.

[19] Brault, J.-J., and Plamondon, R. Segmenting handwritten signa-
tures at their perceptually important points. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 15, 9 (1993), 953–957.

[20] Brown, M., and Ganapathy, S. Preprocessing techniques for cursive
word recognition. Pattern Recognition 16, 5 (1983), 447–458.

[21] Caillault, E., and Viard-Gaudin, C. Using segmentation con-
straints in an implicit segmentation scheme for on-line word recognition.
In Proc. of the Tenth International Workshop on Frontiers in Handwrit-
ing Recognition (2006), pp. 607–612.

[22] Caillault, E., Viard-Gaudin, C., and Ahmad, A. R. Ms-tdnn with
global discriminant trainings. In Proc. of the 8th International Conference
on Document Analysis and Recognition (Washington, DC, USA, 2005),
IEEE Computer Society, pp. 856–861.

[23] Carbonnel, S., and Anquetil, E. Lexical post-processing optimiza-
tion for handwritten word recognition. In Proc. of the 7th International
Conference on Document Analysis and Recognition (2003), pp. 477–481.

[24] Carbonnel, S., and Anquetil, E. Lexicon organization and string
edit distance learning for lexical post-processing in handwriting recog-
nition. In Proc. of the Ninth International Workshop on Frontiers in
Handwriting Recognition (Washington, DC, USA, 2004), IEEE Computer
Society, pp. 462–467.

[25] Casey, R., and Lecolinet, E. A survey of methods and strategies
in character segmentation. IEEE Trans. Pattern Analysis and Machine
Intelligence 18, 7 (July 1996), 690–706.

146 Bibliography

[26] Chen, D. Y., Mao, J., and Mohiuddin, K. M. An efficient algorithm
for matching a lexicon with a segmentation graph. In Proc. of the 5th
International Conference on Document Analysis and Recognition (1999),
pp. 543–546.

[27] Chen, M., Kundu, A., and Srihari, S. Variable duration hidden
markov model and morphological segmentation for handwritten word
recognition. IEEE Trans. Image Processing 4, 12 (December 1995), 1675–
1688.

[28] Connell, S. Online Handwriting Recognition Using Multiple Pattern
Class Models. PhD thesis, The Michigan State University, 2000.

[29] Connell, S. D., and Jain, A. K. Template-based online character
recognition. Pattern Recognition 34, 1 (2001), 1–14.

[30] Costin, H., Ciobanu, A., and Todirascu, A. Handwritten script
recognition system for languages with diacritic signs. In Proceedings
of The 1998 IEEE International Joint Conference on Neural Networks
(1998), pp. 1188–1193.

[31] Danowsky, D. Cyrillic handwriting recognition using support vector
machines. Master’s thesis, Dept. of Mathematics, Lund Institute of Tech-
nology, Sweden, 2006.

[32] Deepu, V., Madhvanath, S., and Ramakrishnan, A. G. Principal
component analysis for online handwritten character recognition. In Proc.
17th International Conference on Pattern Recognition (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 327–330.

[33] Dijkstra, E. W. A note on two problems in connexion with graphs.
Numerische Mathematik 1 (1959), 269–271.

[34] Do, T. M. T., and Artiéres, T. Conditional random fields for online
handwriting recognition. In Proc. of the Tenth International Workshop
on Frontiers in Handwriting Recognition (2006), pp. 197–202.

[35] Dolfing, H., and Haeb-Umbach, R. Signal representations for hidden
markov model based on-line handwriting recognition. In ICASSP ’97:
Proceedings of the 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’97) -Volume 4 (Washington,
DC, USA, 1997), IEEE Computer Society, pp. 3385–3388.

[36] Duneau, L., and Dorizzi, B. Online cursive script recognition: A
user-adaptive system for word identification. Pattern Recognition 29, 12
(December 1996), 1981–1994.

Bibliography 147

[37] Elgammal, A., and Ismail, M. A. A graph-based segmentation and
feature-extraction framework for arabic text recognition. In Proc. of
the 6th International Conference on Document Analysis and Recognition
(Washington, DC, USA, 2001), IEEE Computer Society, pp. 622–626.

[38] Eriksson, A. P., and Åström, K. On the bijectivity of thin-plate
splines. In Proceedings SSBA’05 Symposium on Image Analysis (Malmö,
March 2005), A. Heyden, Ed., SSBA, pp. 109–112.

[39] Favata, J. T. Offline general handwritten word recognition using an
approximate beam matching algorithm. IEEE Trans. Pattern Analysis
and Machine Intelligence 23, 9 (2001), 1009–1021.

[40] Forney, G. D. The viterbi algorithm. In Proc. of the IEEE (1973),
pp. 268–278.

[41] Fredkin, E. Trie memory. Communications of the ACM 3, 9 (Sept.
1960), 490–499.

[42] Freund, Y., and Schapire, R. E. A decision-theoretic generalization
of on-line learning and an application to boosting. J. Comput. Syst. Sci.
55, 1 (1997), 119–139.

[43] Funada, A., Muramatsu, D., and Matsumoto, T. The reduction
of memory and the improvement of recognition rate for hmm on-line
handwriting recognition. In Proc. of the Ninth International Workshop
on Frontiers in Handwriting Recognition (2004), pp. 383–388.

[44] Gader, P. D., Keller, J. M., Krishnapuram, R., Chiang, J.-

H., and Mohamed, M. A. Neural and fuzzy methods in handwriting
recognition. IEEE Computer 30, 2 (1997), 79–86.

[45] Goodrich, M. T. Efficient piecewise-linear function approximation us-
ing the uniform metric: (preliminary version). In SCG ’94: Proceedings
of the tenth annual symposium on Computational geometry (New York,
NY, USA, 1994), ACM Press, pp. 322–331.

[46] Gran, F. Pattern recognition using support vector machines. Mas-
ter’s thesis, Dept. of Mathematics, Lund Institute of Technology, Sweden,
2002.

[47] Guerfali, W., and Plamondon, R. Normalizing and restoring on-line
handwriting. Pattern Recognition 26, 3 (1993), 419–431.

148 Bibliography

[48] Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., and

Janet, S. Unipen project of on-line data exchange and recognizer bench-
marks. In Proc. 12th International Conference on Pattern Recognition
(Jerusalem, Israel, October 1994), pp. 29–33.

[49] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of
Statistical Learning. Springer, New York, 2001.

[50] Higgins, C., and Ford, D. On-line recognition of connected hnadwrit-
ing by segmentation and tempalte matching. In Proc. 11th International
Conference on Pattern Recognition (1992), pp. 200–203.

[51] Hill, A., Cootes, T. F., and Taylor, C. J. Active shape models and
the shape approximation problem. Image Vision Comput. 14, 8 (1996),
601–607.

[52] Ho, T. K., Hull, J. J., and Srihari, S. N. Decision combination in
multiple classifier systems. IEEE Trans. Pattern Analysis and Machine
Intelligence 16, 1 (1994), 66–75.

[53] Hu, J., Lim, S., and Brown, M. K. Writer independent on-line hand-
writing recognition using an hmm approach. Pattern Recognition, 33
(2000), 133–147.

[54] Jäger, S., Liu, C.-L., and Nakagawa, M. The state of the art
in japanese online handwriting recognition compared to techniques in
western handwriting recognition. IJDAR 6, 2 (2003), 75–88.

[55] Jäger, S., Manke, S., and Waibel, A. Npen++: An on-line hand-
writing recognition system. In Proc. of the Seventh International Work-
shop on Frontiers in Handwriting Recognition, Amsterdam, Netherlands
(September 2000), pp. 249–260.

[56] Jain, A. K., Murthy, M. N., and Flynn, P. J. Data clustering: A
review. Tech. Rep. MSU-CSE-00-16, Department of Computer Science,
Michigan State University, East Lansing, Michigan, August 2000.

[57] Kassel, R. A Comparison of Approaches to On-Line Handwritten Char-
acter Recognition. PhD thesis, Massachussetts Institute of Technology,
1995.

[58] Klassen, T., and Heywood, M. Towards the on-line recognition of
arabic characters. In Proceedings of the 2002 International Joint Con-
ference on Neural Networks IJCNN’02 (Hilton Hawaiian Village Hotel,
Honolulu, Hawaii, 12-17 May 2002), IEEE Press, pp. 1900–1905.

Bibliography 149

[59] Kohonen, T. The self-organizing map. Proc. IEEE 78, 9 (1990), 1464–
1480.

[60] Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., and

Torkkola, K. Lvq pak: The learning vector quantization program
package. Technical Report A30 FIN-02150, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science, Espoo, Fin-
land, 1996.

[61] Kosmala, A., and Rigoll, G. Tree-based state clustering using self-
organizing principles for large vocabulary on-line handwriting recogni-
tion. In Proc. 14th International Conference on Pattern Recognition
(Washington, DC, USA, 1998), vol. 2, IEEE Computer Society, p. 1313.

[62] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. Condi-
tional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning (2001), pp. 282–289.

[63] LeCun, Y., Huang, F.-J., and Bottou, L. Learning methods for
generic object recognition with invariance to pose and lighting. In Pro-
ceedings of CVPR’04 (2004), IEEE Press.

[64] Lee, J. J., Kim, J., and Kim, J. H. Data-driven design of hmm topol-
ogy for on-line handwriting recognition. In Proc. of the Seventh Interna-
tional Workshop on Frontiers in Handwriting Recognition, Amsterdam,
Netherlands (September 2000).

[65] Li, X., Parizeau, M., and Plamondon, R. Segmentation and re-
construction of on-line handwritten scripts. Pattern Recognition 31, 6
(1998), 675–684.

[66] Liu, C.-L., Jäger, S., and Nakagawa, M. Online recognition of
chinese characters: The state-of-the-art. IEEE Trans. Pattern Analysis
and Machine Intelligence 26, 2 (2004), 198–213.

[67] Liwicki, M., and Bunke, H. IAM-OnDB – an on-line English sentence
database acquired from handwritten text on a whiteboard. In Proc. 8th
Int. Conf. on Document Analysis and Recognition (2005), vol. 2, pp. 956–
961.

[68] Liwicki, M., and Bunke, H. HMM-based on-line recognition of hand-
written whiteboard notes. In Proc. 10th Int. Workshop on Frontiers in
Handwriting Recognition (2006), pp. 595–599.

150 Bibliography

[69] Liwicki, M., and Bunke, H. Combining on-line and off-line systems
for handwriting recognition. In ICDAR ’07: Proceedings of the Ninth In-
ternational Conference on Document Analysis and Recognition (ICDAR
2007) (2007), vol. 1, pp. 372–376.

[70] Liwicki, M., and Bunke, H. Feature selection for on-line handwriting
recognition of whiteboard notes. In Proc. 13th Conf. of the Int. Grapho-
nomics Society (2007), pp. 101–105.

[71] Lucas, S. Efficient best-first dictionary search given graph-based input.
In Proc. 15th International Conference on Pattern Recognition (Piscat-
away, NJ, 2000), vol. 1, IEEE Press, pp. 434–437. Barcelona, Spain,
September 3–8, 2000.

[72] Lucas, S. Efficient graph-based dictionary search and its application
to text-image searching. Pattern Recognition Letters 22 (April 2001),
551–562(12).

[73] Manke, S., Finke, M., and Waibel, A. A fast search technique for
large vocabulary on-line handwriting recognition. In Proc. of the Inter-
national Workshop on Frontiers in Handwriting Recognition (IWFHR)
(Colchester, 1996).

[74] Marinai, S., Gori, M., and Soda, G. Artificial neural networks for
document analysis and recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence 27, 1 (2005), 23–35.

[75] Marshall, S. Review of shape coding techniques. Image and Vision
Comp. 7, 4 (1989), 281–294.

[76] Mezghani, N., Mitiche, A., and Cheriet, M. A new representation
of character shape and its use in on-line character recognition by a self-
organizing map. In IEEE International Conference on Image Processing
(ICIP’04) (Singapore, October 2004), pp. 2123–2126.

[77] Mitoma, H., Uchida, S., and Sakoe, H. Online character recogni-
tion based on elastic matching and quadratic discrimination. In Proc. of
the 8th International Conference on Document Analysis and Recognition
(2005), pp. 36–40.

[78] Morasso, P., Barberis, L., Pagliano, S., and Vergano, D. Recog-
nition experiments of cursive dynamic handwriting with self-organizing
networks. Pattern Recognition 26, 3 (1993), 451–460.

Bibliography 151

[79] Morwing, J. Recognition of cursive handwriting. Master’s thesis, Dept.
of Mathematics, Lund Institute of Technology, Sweden, 2001.

[80] Nakagawa, M., Akiyama, K., Tu, L. V., Homma, A., and Ki-

gashiyama, T. Robust and highly customizable recognition of on-line
handwritten japanese characters. In Proc. 13th International Conference
on Pattern Recognition (Washington, DC, USA, 1996), IEEE Computer
Society, pp. 269–273.

[81] Nakagawa, M., Higashiyama, T., Yamanaka, Y., Sawada, S., Hi-

gashigawa, L., and Akiyama, K. On-line handwritten character pat-
tern database sampled in a sequence of sentences without any writing
instructions. In Proc. of the 4th International Conference on Document
Analysis and Recognition, Ulm, Germany (1997), pp. 376–381.

[82] Neskovic, P., and Cooper, L. Neural network-based context driven
recognition of on-line cursive script. In Proc. of the Seventh Interna-
tional Workshop on Frontiers in Handwriting Recognition, Amsterdam,
Netherlands (September 2000), pp. 353–362.

[83] Neskovic, P., Davis, P. C., and Cooper, L. Interactive parts model:
an application to recognition of on-line cursive script. Advances in Neural
Information Processing Systems (2000), 974–980.

[84] Niels, R. Dynamic time warping - an intuitive way of handwriting
recognition? Master’s thesis, Radboud University Nijmegen, 2005.

[85] Oh, J. An On-Line Handwriting Recognizer with Fisher Matching, Hy-
potheses Propagation Network and Context Constraint Models. PhD the-
sis, New York University, 2001.

[86] Parizeau, M., Lemieux, A., and Gagne, C. Character recognition
experiments using unipen data. In Proc. of the 6th International Confer-
ence on Document Analysis and Recognition (Los Alamitos, CA, USA,
2001), vol. 00, IEEE Computer Society, pp. 481–485.

[87] Parizeau, M., and Plamondon, R. A handwriting model for syntactic
recognition of cursive script. In Proc. 11th International Conference on
Pattern Recognition (August 31 to September 3 1992), vol. II, pp. 308–
312.

[88] Parizeau, M., and Plamondon, R. Machine vs humans in a cursive
script reading experiment without linguistic knowledge. In Proc. 12th
International Conference on Pattern Recognition (1994), pp. 93–98.

152 Bibliography

[89] Parizeau, M., and Plamondon, R. A fuzzy-syntactic approach to
allograph modeling for cursive script recognition. IEEE Trans. Pattern
Analysis and Machine Intelligence 17, 7 (1995), 702–712.

[90] Pawalka, R. K. An algorithm toolbox for on-line cursive script recog-
nition. PhD thesis, The Nottingham Trent University, 1995.

[91] Perrone, M., and Connell, S. K-means clustering for hidden markov
models. In Proc. of the Seventh International Workshop on Frontiers
in Handwriting Recognition, Amsterdam, Netherlands (September 2000),
pp. 229–238.

[92] Plamondon, R., and Srihari, S. On-line and off-line handwriting
recognition: A comprehensive survey. IEEE Trans. Pattern Analysis and
Machine Intelligence 22, 1 (January 2000), 63–84.

[93] Prevost, L., and Milgram, M. Modelizing character allographs in
omni-scriptor frame: a new non-supervised clustering algorithm. Pattern
Recognition Letters 21, 4 (2000), 295–302.

[94] Qian, G. An engine for cursive handwriting interpretation. In Pro-
ceedings of the 11th International Conference on Tools with Articificial
Intelligence (nov 1999), pp. 271–278.

[95] Quiniou, S., and Anquetil, E. Use of a confusion network to detect
and correct errors in an on-line handwritten sentence recognition system.
In ICDAR ’07: Proceedings of the Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007) (Washington, DC,
USA, 2007), vol. 1, IEEE Computer Society, pp. 382–386.

[96] Rabiner, L. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proc. IEEE 77, 2 (1989), 257–286.

[97] Ratzlaff, E. H. Methods, report and survey for the comparison of
diverse isolated character recognition results on the unipen database.
In Proc. of the 7th International Conference on Document Analysis and
Recognition (Los Alamitos, CA, USA, 2003), vol. 01, IEEE Computer
Society, pp. 623–628.

[98] Rigoll, G., Kosmala, A., and Willett, D. A Systematic Compari-
son of Advanced Modeling Techniques for Very Large Vocabulary On-line
Curisve Handwriting Recognition. World Scientific, 1999, ch. 2, pp. 69–78.

[99] Ripley, B. Pattern Recognition and Neural Networks. Press Syndicate
of the University of Cambridge, Cambridge, 1996.

Bibliography 153

[100] Rowley, H., Goyal, M., and Bennett, J. The effect of large train-
ing set sizes on online japanese kanji and english cursive recognizers. In
Proc. of the Eighth International Workshop on Frontiers in Handwrit-
ing Recognition (Washington, DC, USA, 2002), IEEE Computer Society,
p. 36.

[101] Schenkel, M., and Guyon, I. On-line cursive script recognition using
time delay networks and hidden markov models. Machine Vision and
Applications 8 (1995), 215–223.

[102] Schwenk, H., and Bengio, Y. Adaboosting neural networks: Appli-
cation to on-line character recognition. In ICANN ’97: Proceedings of
the 7th International Conference on Artificial Neural Networks (London,
UK, 1997), Springer-Verlag, pp. 967–972.

[103] Seni, G., and Seybold, J. Diacritical Processing Using Efficient Ac-
counting Procedures in a Forward Search. World Scientific, 1999, ch. 2,
pp. 49–58.

[104] Seni, G., Srihari, R. K., and Nasrabadi, N. Large vocabulary
recognition of on-line handwritten cursive words. IEEE Trans. Pattern
Analysis and Machine Intelligence 18, 7 (1996), 757–762.

[105] Shi, D., Gunn, S. R., and Damper, R. I. A radical approach to hand-
written chinese character recognition using active handwriting models. In
CVPR (1) (2001), pp. 670–675.

[106] Simard, P., Steinkraus, D., and Platt, J. C. Best practices for con-
volutional neural networks applied to visual document analysis. In Proc.
of the 7th International Conference on Document Analysis and Recogni-
tion (2003), pp. 958–962.

[107] Sin, B.-K., Ha, J.-Y., Oh, S.-C., and Kim, J. H. Network-based
approach to online cursive script recognition. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B 29, 2 (1999), 321–328.

[108] Sin, B.-K., and Kim, J. H. Ligature modeling for online cursive script
recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 19,
6 (1997), 623–633.

[109] Slav́ık, P., and Govindaraju, V. Equivalence of different methods
for slant and skew corrections in word recognition applications. IEEE
Trans. Pattern Analysis and Machine Intelligence 23, 3 (2001), 323–326.

154 Bibliography

[110] Sridhar, M., Mandalapu, D., and Patel, M. Active-dtw:a genera-
tive classifier that combines elastic matching with active shape modeling
for online handwritten character recognition. In Proc. of the Tenth Inter-
national Workshop on Frontiers in Handwriting Recognition (La Baule,
France, October 2006), vol. 1, pp. 193–196.

[111] Stefano, C. D., Garutto, M., and Marcelli, A. A saliency-based
multiscale method for on-line cursive handwriting shape description. In
Proc. of the Ninth International Workshop on Frontiers in Handwriting
Recognition (2004), pp. 124–129.

[112] Sternby, J. On-line signature verification by explicit solution to the
point correspondence problem. In First International Conference on Bio-
metric Authentication (july 2004), pp. 569 – 576.

[113] Sternby, J. Core points - variable and reduced parameterization for
symbol recognition. Tech. rep., Centre for Mathematical Sciences, 2005.
Licentiate Thesis in Mathematical Sciences 2005:7.

[114] Sternby, J. Frame deformation energy matching of on-line handwritten
characters. In Proceedings of the 10th Iberoamerican Congress on Pattern
Recognition (Havanna, Cuba, 2005), pp. 128–137.

[115] Sternby, J. Structurally based template matching of on-line handwrit-
ten characters. In Proc. of the British Machine Vision Conference 2005
(2005), pp. 250–259.

[116] Sternby, J. An additive single character recognition method. In Proc.
of the Tenth International Workshop on Frontiers in Handwriting Recog-
nition (2006), pp. 417–422.

[117] Sternby, J. Class dependent cluster refinement. In Proc. 18th Inter-
national Conference on Pattern Recognition (Los Alamitos, CA, USA,
2006), vol. 2, IEEE Computer Society, pp. 833–836.

[118] Sternby, J. Prototype selection methods for on-line hwr. In Proc. of the
Tenth International Workshop on Frontiers in Handwriting Recognition
(2006), pp. 157–160.

[119] Sternby, J. Graph based shape modeling for on-line character recogni-
tion. Manuscript.

[120] Sternby, J., Andersson, J., Morwing, J., and Friberg, C. On-
line arabic handwriting recognition with templates. In Proc. of the
First International Conference on Frontiers in Handwriting Recognition
(2008). Accepted.

Bibliography 155

[121] Sternby, J., and Ericsson, A. Core points - a framework for struc-
tural parameterization. In Proc. of the 8th International Conference on
Document Analysis and Recognition (2005), pp. 217–221.

[122] Sternby, J., and Friberg, C. The recognition graph - language inde-
pendent adaptable on-line cursive script recognition. In Proc. of the 8th
International Conference on Document Analysis and Recognition (2005),
pp. 14–18.

[123] Sternby, J., and Holtsberg, A. Core points for segmentation and
recognition of on-line cursive script. In Proceedings SSBA’05 Symposium
on Image Analysis (Malmö, March 2005), A. Heyden, Ed., SSBA, pp. 37–
40.

[124] Tappert, C. Cursive script recognition by elastic matching. IBM Jour-
nal of Research and Development 12 (1982), 765–771.

[125] Tappert, C. C., Suen, C. Y., and Wakahara, T. The state of the
art in online handwriting recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence 12, 8 (1990), 787–808.

[126] Vapnik, V. N. The Nature of Statistical Learning Theory (Information
Science and Statistics). Springer, 1995.

[127] Varadarajan, K. R. Approximating monotone polygonal curves using
the uniform metric. In SCG ’96: Proceedings of the twelfth annual sym-
posium on Computational geometry (New York, NY, USA, 1996), ACM
Press, pp. 311–318.

[128] Viard-Gaudin, C., Lallican, P. M., Binter, P., and Knerr, S.

The ireste on/off (ironoff) dual handwriting database. In Proc. of the 5th
International Conference on Document Analysis and Recognition (Wash-
ington, DC, USA, 1999), IEEE Computer Society, p. 455.

[129] Viterbi, A. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory
13, 2 (1967), 260–269.

[130] Vuori, V. Adaptation in on-line recognition of handwriting. Master’s
thesis, Helsinki University of Technology, 1999.

[131] Vuori, V. Clustering writing styles with a self-organizing map. In
Proc. of the Ninth International Workshop on Frontiers in Handwriting
Recognition (2004), pp. 345–350.

156 Bibliography

[132] Vuori, V., Laaksonen, J., Oja, E., and Kangas, J. On-line adap-
tation in recognition of handwritten alphanumeric characters. In Proc. of
the 5th International Conference on Document Analysis and Recognition
(September 1999), pp. 792–795.

[133] Vuurpijl, L., Niels, R., van Erp, M., Schomaker, L., and Rat-

zlaff, E. Verifying the unipen devset. In Proc. of the Ninth Interna-
tional Workshop on Frontiers in Handwriting Recognition (Washington,
DC, USA, 2004), IEEE Computer Society, pp. 586–591.

[134] Vuurpijl, L., and Schomaker, L. Finding structure in diversity:
a hierarchical clustering method for the categorization of allographs in
handwriting. In Proc. of the 4th International Conference on Document
Analysis and Recognition, Ulm, Germany (1997), pp. 387–393.

[135] Vuurpijl, L., and Schomaker, L. Two-stage character classification:
A combined approach of clustering and support vector classifiers. In
Proc. of the Seventh International Workshop on Frontiers in Handwriting
Recognition, Amsterdam, Netherlands (Sept. 2000).

[136] Wakahara, T., and Odaka, K. On-line cursive kanji character recog-
nition using stroke-based affine transformation. IEEE Trans. Pattern
Analysis and Machine Intelligence 19, 12 (1997), 1381–1385.

[137] Wang, J., Wu, C., Xu, Y.-Q., and Shum, H.-Y. Combining shape
and physical models for online cursive handwriting synthesis. IJDAR
(2004).

Index

active shape, 16
alignment

function, 41
problem, 32

allographs, 108
arclength, see parameterization
arctypes, 39

beam
diacritic, 89, 130
incomplete, 129
recognition graph, 128
search, 71
segmentation graph, 72, 128
unmatched, 94, 131

boosting, 24

clustering, 12, 108
discriminative, 109
generative, 109

combination
multi-stage, 24
multiple experts, 23

CRF, 15

database, 70

DCM-DTW, 40
Dijkstra

Curve Maximization, 36
shortest path, 69

distance
additive, 55
function, 54
sorting, 91

Dynamic Programming, 18
Dynamic Time Warping, 10, 18

Elastic Matching, 18

feature
frame, 50
segmental, 52
space, 49

features, 22
frame, 32

deformation energy, 48

graph
recognition, 75
segmentation, 65
trie, 104
variation, 114

158 Index

handwriting
off-line, 8
on-line, 9

helpline
estimation, see preprocessing

Hidden Markov Models, 13, 21
HWR, 7

ligature, 64
pen-down, 64
pen-up, 64

medial form, 110
modeling

diacritic, 83
explicit, 11
implicit, 11
noise, 72
pen-up, 53
syntactic, 19

Neural Networks, 20
Self-Organizing Maps, 22
Time Delay Network, 21

normalization
ratio, 51
scale, see preprocessing

overtraining, 108

parameterization, 10
arclength, 10, 44
by segmentation, 34
polygonal approximation, 10, 32

PCA, 15, 34
pen-up

attachment, 85
diacritic, 85
recalculated, 85

preprocessing, 43
helpline estimation, 44
parameters, 79

scale normalization, 45
slant correction, 45
smoothing, 43

recognition
graph, 75

relief function, 42
reparameterization, 34

sampling, 9
SCR, 11
segment, 27

virtual reference, 53
segmentation, 27

generic, 31
graph, 65, 65
script dependent, 28
similar, 28, 55, 71

slant correction, see preprocessing
smoothing, see preprocessing
spline

thin plate, 33
SVM, 22

template, 11, 48
alignment, 66
based, 17
connectivity, 61
database, 18
segmented matching, 55

thin plate spline, see spline
trie, 128

dictionary, 104, 105

variation graph, 114

APPENDIX A

UNIPEN Train-R01/V07-1a Allograph Content

This appendix contains the complete tables of the 3 most common allographs,
including the different segmentations as defined in the datasbase used in the
experiments on the UNIPEN\1a dataset in Section 9.3. The dataset was divided
into a writer-independent train and test with the tools suggested in [97].

A.1 Training Set Allograph Distribution

Class |X| Allographs

0 1059

b
1

b
1

b
2

b
1

b
2

71.6%(758) 11.9%(126) 5.8%(61)
brs

rsrs

rsrs

rs

(311)

brs

rsrs

rs

(276)

b rsrsrs

rsrs

rs

(104)
brsrsrs
rsrs

rsrsrs

(67)

brs

rsrs

rs
brs

rs

(62)

brs

rsrs

rsrs

rs

brs

rs

(33)

b rsrsrs
rsrs

rs brs

rs

(31)

b rsrsrs
rsrs

rs

brs

rs

(27)

brs

rsrs

rsrsrs

brs

rs

(22)

brs

rsrs

rs

brs

rs

(12)

continued on next page

160 Chapter A. UNIPEN Train-R01/V07-1a Allograph Content

continued from previous page

Class |X| Allographs

1 1130

b
1

b
1

b
1

56.2%(635) 18.6%(210) 7.5%(85)
brs

rs

(635)

b rs
rsrs

rs

(210)

brs

rsrs
rs

(85)

2 1107

b
1 b

1 b
1

63.3%(701) 25.8%(286) 5.5%(61)
b rs rsrs

rsrs rs

(361)

b rs rsrs

rs

(84)

brs

rsrs rs

(77)
brs

rs

(75)

b rs rsrs

rsrs rs

(74)

brs
rsrs rs

(30)

brsrsrs

rsrs
rsrs

rs

(240)

b rs

rsrs rsrs rs

(17)

brs rsrs

rsrs
rs

(12)
brs

rsrs
rs

(10)

b rs rsrs

rsrs
rsrs
rsrs
rs

(7)

b rs rsrs

rsrs rs

(61)

3 1061

b
1 b

1
b

1

64.6%(685) 14.4%(153) 6.8%(72)
b rs rsrs

rsrsrs

(303)

brs rsrs

rs

(159)

brs

rs

(149)
b rs

rsrsrs

(74)

b rs rsrs

rs

(98)

b rs rsrs

rsrsrs

(54)

brs rsrs rsrs

rsrs
rs

(1)

brs rsrs

rsrs rsrs

rsrs
rs

(52)

b rs rsrs

rsrs rsrs

rs

(20)

4 1052

b
1

b
2

b
1

b
2

b
1

53.8%(566) 33.8%(356) 3.5%(37)
b rs
rsrs rs
brs

rs

(495)

brs
rsrs rs

brs

rs

(40)

brs
rsrs rs
brs

rs

(31)

b rs

rs

brs
rs

(169)

brs
rsrs rs

brs

rs

(169)

brs

rs

brs
rsrs rs

(17)
brs

rs

brs

rsrs
rsrs rs

(1)

brs
rsrs

rsrs

rs

(30)

b rs
rsrs

rsrs

rs

(7)

continued on next page

A.1 Training Set Allograph Distribution 161

continued from previous page

Class |X| Allographs

5 1021

b
1
b

2
b
1 b

1b2

40.7%(416) 23.1%(236) 18.4%(188)

brs rsbrs

rsrsrs

(368)

brs rsbrs
rsrs rsrs

rsrsrs

(45)

b rs rsrs rsbrs

rsrs
rs

(3)

b rs

rsrsrs

(77)

brsrsrs

rsrsrs

(53)

b rs

rs

(52)
b rs

rsrs
rsrs

rs

(25)

brs
rsrs
rsrs

rs

(14)

b rsrsrs

rs

(14)
b rsrsrs

rsrs rsrs

rsrsrs

(1)

brs

rs

brs rs

(115)

brs
rsrs rsrs

rsrsrs

brs rs

(44)

brs rsbrs
rsrs rsrs

rs

(27)
b rsrsrs

rsrsrs

brs rs

(2)

6 1004

b
1

b
1

b
1

93.6%(940) 4.2%(42) 1.8%(18)
b rs

rsrs
rsrs

rs

(773)

b rs

rsrs
rs

(122)

brs rsrs

rsrs

rsrsrs

(45)

brs

rsrs
rsrs

rsrs rs

(42)
b rs

rsrs
rsrsrs

(18)

7 1020

b
1

b
1

b
2

b
1

49.5%(505) 33.2%(339) 4.8%(49)
brs rsrs

rs

(294)

brs

rs

(208)

b rs rsrs rsrs

rs

(3)

b rs

rs

brs rs

(172)

brs rsrs

rs
brs rs

(105)

b rs rsrs

rs

brs rs

(62)

b rs
rsrs

rs

(21)

brs
rsrs

rsrs

rs

(20)

brs rsrs

rs

(8)

8 1046

b
1

b
1

b
1

b
2

43.2%(452) 31.5%(329) 15.0%(157)
brs

rsrs

rs

(233)

brsrsrs

rsrs

rs

(149)

b rs

rsrs

rsrs
rs

(64)
brs

rsrs

rsrsrs

(6)

brsrsrs

rsrs

rs

(255)

brs
rsrs

rsrs

rs

(37)

b rs
rsrs

rsrs

rs

(37)

b rs
rsrs

rs

brs
rsrs
rs

(115)

brs
rsrs

rsrsrs
brs
rsrs

rsrsrs

(36)

brsrsrs
rsrs

rsrsrs brs
rsrs

rs

(4)
b rsrsrs

rsrs

rs

brsrsrs
rsrs

rs

(2)

9 1036

b
1

b
1

b
1

61.0%(632) 22.0%(228) 5.4%(56)
b rs
rsrs

rsrs
rsrs

rs

(492)

b rs
rsrs

rs

(90)

b rs
rsrs

rs

(43)
brs rsrs
rsrs

rs

(7)

brs
rsrs
rsrs

rs

(141)

b rs
rsrs rsrs

rs

(73)

b rs

rs

(14)

brs
rsrs

rsrs

rs

(46)

brs
rsrs

rs

(10)

continued on next page

162 Chapter A. UNIPEN Train-R01/V07-1a Allograph Content

continued from previous page

Class |X| Allographs

Table A.1: The three most common allographs with their respective segmen-
tations.

A.2 Test Set Allograph Distribution

Class |X| Allographs

0 565

b
1

b
1

b
2 b

1

b
2

74.7%(422) 10.8%(61) 6.2%(35)
brs

rsrs

rs

(160)
brs
rsrs

rsrs
rs

(152)

b rsrsrs

rsrs

rs

(58)
brs

rsrs

rsrs

rsrsrs

(52)

brs

rsrs

rs brs

rs

(33)

brs

rsrs

rsrs

rs

brs

rs

(16)

b rsrsrs
rsrs

rs
brs

rs

(12)

b rsrsrs

rsrs

rs

brs

rs

(13)

brs

rsrs

rs

brs

rs

(11)

brs

rsrs

rsrsrs

brs

rs

(11)

1 608

b
1

b
1

b
1

58.9%(358) 19.7%(120) 6.1%(37)
b rs

rs

(358)
brs

rsrs

rs

(120)

b rs

rsrs
rs

(37)

2 534

b
1 b

1 b
1

59.4%(317) 30.0%(160) 5.6%(30)
brs rsrs

rsrs rs

(155)

b rs rsrs

rs

(45)

b rs rsrs

rsrs rs

(38)
brs

rs

(35)

b rs

rsrs rs

(34)

b rs

rsrs rs

(10)

brs rsrs

rsrs
rsrs

rs

(130)

b rs

rsrs
rsrs

rs

(10)

b rs

rsrs
rs

(10)
brs rsrs

rsrs rsrs rsrs rs

(5)

brs
rsrs

rsrs rs

(5)

brs rsrs
rsrs

rs

(30)

3 521

b
1 b

1
b

1

66.0%(344) 15.9%(83) 7.7%(40)
b rs rsrs

rsrsrs

(137)

b rsrsrs

rs

(88)

brs

rs

(84)
brs

rsrsrs

(35)

b rs rsrs

rs

(53)

b rs rsrs

rsrsrs

(30)

brs rsrs
rsrs rsrs

rsrsrs

(32)

brs rsrs
rsrs rsrs

rs

(8)

continued on next page

A.2 Test Set Allograph Distribution 163

continued from previous page

Class |X| Allographs

4 543

b
1

b
2

b
1

b
2

b
1

50.6%(275) 32.8%(178) 5.9%(32)
brs
rsrs rs
brs

rs

(241)

brs
rsrs rs

brs

rs

(24)

b rs
rsrs rs
brs

rs

(10)

b rs

rs

brs
rs

(88)

brs
rsrs

rs

brs

rs

(80)

brs

rs

brs
rsrs rs

(10)

b rs
rsrs

rsrs

rs

(22)

brs
rsrs
rsrs

rs

(10)

5 497

b
1

b
2 b

1 b
1

b
2

39.8%(198) 24.1%(120) 17.9%(89)

brs rsbrs

rsrsrs

(181)

brs rsbrs
rsrs rsrs

rsrs
rs

(15)

brs rsrs rsbrs

rsrs
rs

(2)

brs

rs

(33)

brsrsrs

rsrsrs

(33)

brs

rsrsrs

(33)
b rsrsrs

rs

(8)

b rs
rsrs rsrs

rs

(7)

brs
rsrs rsrs

rs

(5)
brsrsrs

rsrs rsrs

rsrsrs

(1)

b rs

rs

brs rs

(60)

b rs
rsrs rsrs

rsrsrs

brs rs

(15)

brs rsbrs
rsrs rsrs

rs

(13)
brsrsrs

rsrs
rs

brs rs

(1)

6 504

b
1

b
1

b
1

93.8%(473) 4.6%(23) 1.2%(6)
brs

rsrs
rsrs

rs

(387)

brs

rsrs

rs

(66)

b rsrsrs

rsrs
rsrsrs

(20)

brs

rsrs

rsrs
rsrs rs

(23)
brs

rsrs
rsrsrs

(6)

7 520

b
1

b
1

b
2

b
1

49.0%(255) 32.1%(167) 6.3%(33)
brs rsrs

rs

(152)

brs

rs

(101)

b rs rsrs rsrs

rs

(2)

brs

rs
brs rs

(90)

brs rsrs

rs

brs rs

(50)

brs rsrs

rs

brs rs

(27)

b rs
rsrs

rsrs

rs

(15)

b rs
rsrs

rs

(9)

b rs
rsrs

rs

(9)

8 500

b
1

b
1

b
1

b
2

46.0%(230) 29.0%(145) 15.2%(76)
brs

rsrs

rs

(122)

brsrsrs

rsrs

rs

(67)

brs

rsrs

rsrs
rs

(41)

b rsrsrs

rsrs

rs

(115)

brs
rsrs

rsrs

rs

(18)

brs
rsrs

rsrs

rs

(12)

b rs
rsrs
rs

brs
rsrs

rs

(49)

b rs
rsrs
rsrsrs
brs
rsrs

rsrsrs

(23)

brsrsrs
rsrs

rsrsrs

brs
rsrs

rs

(4)

continued on next page

164 Chapter A. UNIPEN Train-R01/V07-1a Allograph Content

continued from previous page

Class |X| Allographs

9 500

b
1

b
1

b
1

65.2%(326) 18.0%(90) 6.0%(30)
b rsrsrsrsrs
rsrs

rs

(258)

b rs
rsrs

rs

(43)

b rs
rsrs

rs

(23)
brs rsrs
rsrs

rs

(2)

brs
rsrs
rsrs

rs

(48)

brs
rsrs
rsrs

rs

(37)

b rs

rs

(5)

b rs
rsrs
rsrs

rs

(27)

brs
rsrs

rs

(3)

Table A.2: The three most common allographs of 0,2 in the test part of the
Train-R01/07-1a data with their respective segmentations. The complete table
is included in Section A.2.

