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Preface

I am always doing that which I cannot do, in order that I may
learn how to do it.
Pablo Picasso
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Organization of the thesis

This thesis contains a sufficient set of strategies for implementing a template
based on-line handwriting system for recognition of words or characters from
arbitrary scripts. The outline of the thesis will follow a typical textbook ap-
proach where subproblems and the tools needed to solve them are presented in
order of need. A generalized description of the handwriting recognition prob-
lem as well as an overview of state-of-the-art techniques starts off the thesis in
Chapter 2. Preprocessing, normalization of input and segmentation strategies
are covered in Chapter 3. The simplest recognition case of isolated single char-
acters including the specific additivity concept for template distance functions
are explained in Chapter 4. Extension of the additive template distance func-
tion with graphs to handle connected script as well as noisy input is found in
Chapter 5. Many connected scripts have the characteristic that strokes belong-
ing to the same character may not always be written together. A strategy for
treating this property with the connected script recognition described in Chap-
ter 5 is found in Chapter 6. This is followed by an explanation of how to add
linguistic knowledge efficiently to the recognition process by utilizing a graph
structured dictionary in Chapter 7. Some automatic techniques for improving
the template modeling through specialized clustering algorithms are described
in Chapter 8. Since the recognition system implements the strategies presented
in Chapters 3-8, experiments have been gathered in the dedicated Chapter 9.
The final chapter contains a brief summary and provides some suggestions on
further developments to strategy presented in this thesis.
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Notation

In general the jth element X of a set will be denoted by X;. The aim has been
to maintain a consistent notation throughout the thesis using the notation listed
below. Where this is not the case the meaning of a certain notation should be
possible to derive from the context.

X
X
X7
A;
AX

p

Py

Pz
X

X
F

f

Sm
S(X)
A

M

A sample of online handwriting

A penup reordering variation of X

The jth stroke of sample X

The ith segment of X

The ith segment of stroke j in X

A point (x,y) € R? in the input coordinate sys-
tem

The vertical coordinate of a point p

The horizontal coordinate of a point p

The sample space

The sample space of class k

The set of monotone increasing functions f :
7 — 7

A point in a feature space

Feature space of dimension m

The segmentation points of the sample X

A segment arctype

A flexible model of a character
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U8 HaN4

A static template of a character

A template sequence

Space of template sequences

The set of all templates (database)
Alignment function

Segment connection € {+,U}

Graph Notation

S

NS m=2H3H"0%R

jsvjieviieviiev
STHY R~

A segmentation graph

A recognition graph

A partial distance value as for an edge
A path distance

An edge in the segmentation graph
The template corresponding to edge e
A graph node

A set of edges

A path in the recognition graph

A set of paths

Segmentation graph beam width

Segmentation graph incomplete beam width

Recognition graph beam width
Diacritic search space beam
Diacritic unmatched edge beam width



Abbreviations

ASM
DP
DTW
CRF
HMM
HWR
kNN
LVQ
MAP
ML
MLP
PCA
SCR
SOM
SVM
TDNN
UCR

vQ

Active Shape Model

Dynamic Programming
Dynamic Time Warping
Conditional Random Field
Hidden Markov Modeling
Handwriting Recognition
k-Nearest Neighbor

Learning Vector Quantization
Maximum A Posteriori
Maximum Likelihood

Multi Layer Perceptron
Principal Components Analysis
Single Character Recognition
Self-Organizing Map

Support Vector Machines

Time Delay Neural Network
Unconstrained Handwriting Recognition
Vector Quantization
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CHAPTER 1

Overview

To know that we know what we know, and to know that we do not
know what we do not know, that is true knowledge.
Nicolaus Copernicus



2 Chapter 1. Overview

OFTWARE FOR RECOGNITION of handwriting has been available for sev-
eral decades now and research on the subject has generated several
different strategies for producing competitive recognition accuracies,
especially in the case of isolated single characters. From a commer-

cial perspective, the task of producing handwriting recognition that will be
accepted and ultimately a preferential choice of input method for users of de-
vices such as mobile phones is not simple. Some crucial aspects are that (1)
recognition accuracy is a subjective matter highly dependent on the data sets
used for experiments and (2) in terms of user satisfaction, the types of errors
made by the system also affect the opinion on system performance. Typically,
users of a system are more lenient in judgement of performance in terms of
accuracy when they have more understanding of why certain characters are
confused. Such an understanding also provides users with the necessary tools
to adapt (even if the adaptation is subconscious) and use writing styles that
generate less conflicts and thus a higher recognition accuracy. Ultimately such
information could also be used to explicitly allow users to interact with the sys-
tem and decide the types of shapes that should be associated to each output
symbol. This paradigm contrasts somewhat to the methods presented during
the past decade of research, where the implicitly modeled recognizers that can
be automatically trained, tested and compared on a given data set have been
favored.

Since the work in this thesis has been conducted in cooperation with the hand-
writing recognition company Zi Decuma (with funding from Zi Decuma and the
Swedish Research Council !), the focus has been on improving technology for
the type of recognition system described above, where the use of explicit model-
ing makes recognition limitations transparent. Other factors that are critically
important to commercial systems are memory consumption and response time,
as stated in [5]. Much through the highly competent implementations by co-
workers at Zi Decuma, the experimental results of the system presented here
are very competitive in this respect and clearly within the scope of current
hardware limitations even for simpler mobile platforms.

The problem of recognizing samples of handwriting with arbitrary connections
between constituent characters (unconstrained handwriting) adds considerable
complexity in form of the segmentation problem. In other words a recognition
system, not constrained to the isolated single character case, needs to be able
to identify the location in the sample where one letter ends and another be-
gins. In view of published results during the last decade, the most common
technique for solving this problem has been to train multi-layer networks for
partial character recognition and combine results by means of sequence oriented

IVetenskapsradet, http://www.vr.se
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modeling such as Hidden Markov Models. The work in this thesis will recapit-
ulate some of the simplest and most basic pattern recognition techniques and
step-by-step show how these can be extended to tackle the difficulties inherent
to the unconstrained recognition problem. Being a completely template based
approach with a possibly transparent database, there is explicit information on
the types of samples that can be correctly recognized by the system. Thus the
system provides some intuition regarding the types of errors (confusions) that
the system is prone to make.

Due to commercial requirements, the primary system reported in the experi-
mental section of the thesis was developed for Arabic unconstrained recognition,
but the underlying techniques are fully applicable to other scripts, and just re-
quire the production of another shape definition database. This versatility and
intrinsic sequential property is common to HMMs and in many respects the
work of this thesis can be viewed as a non-probabilistic exploration of sequence
based recognition.

1.1 Contributions

Although the topic and the fundamental approach taken to recognition in this
thesis is the same as in my licentiate thesis [113], there are important differences
and none of the experiments conducted for that thesis have been replicated
here. The main reason for this is that the complete recognition implemen-
tation has been reimplemented in this thesis. A preliminary version with all
components presented here was implemented mainly in matlab and with my
guidance this has been ported to ANSI c-code mainly by my co-workers at
7Zi Decuma. In the experimental section some of the experiments have been
conducted in the matlab environment (single character experiments) and some
with the C-implementation. Some of my previous publications did not fit the
scope of the thesis and have not been included here [112, 117, 118]. From
my point of view the most important contributions is the additive concept for
template methods presented in [116], the diacritic handling partly included in
[120] and the variation graph concept in [119]. A complete breakdown of the
contributions for each chapter is given below. For all of the papers, the roles of
included co-authors have been confined to (1) being discussion partners or (2)
implementing a certain part of the experimental setup and they have not partic-
ipated in the writing process. In all cases the contributions of these individuals
have been specified below.

The contents of Chapter 3 mainly derive from papers [121], [115] and [114].
Segmented shape description, Dijkstra Curve Maximization and the arctype
approximation based on Dynamic Programming are the main contributions
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presented in this chapter. Of these, the segmented shape description originated
from discussions about applying Active Shape to handwriting recognition, but
the actual use of segmentation as alignment prior to PCA can be attributed to
the author.

The main contributions of Chapter 4 are the features used in recognition, es-
pecially the relative features which induce the Markov characteristic in the
sequential template matching, the noise handling, and the additive concept, all
more or less derived from [116]. Of these, the original length ratio and con-
nection angle features were initially proposed by the author while the relative
positions are complementary suggestions by Jonas Andersson derived from the
C-implementation of the core system from Matlab.

Chapters 5 and 7 originate in papers [123] and [122] and the results from these
papers were also included in my licentiate thesis [113]. In particular the first of
these papers [123], presenting a template based system with a single segmen-
tation graph with equal conceptual contributions from the author and Anders
Holtsberg later proved not to contain any remarkable findings compared to pre-
vious research, but failure to find prior art such as [50] led us to believe that a
template based segmentation graph was a new contribution. Nevertheless fur-
ther development led to the main contribution of the chapter, the dual graph
structure presented in [122], where path expansion can be done with simulta-
neous path-wise adjustments and fast lexical validation. In this last paper, the
system and ideas can be attributed to the author while the lexicon and dictio-
nary functions were implemented by Christer Friberg. In the latest incarnation
of the system the segmentation graph was implemented in C by Jonas Ander-
sson and some of the ideas of various strategies for building the segmentation
graphs not included in previous papers can be attributed to discussions with
Andersson.

The dynamic handling of the combinatorial problem of diacritic association is
the main contribution of Chapter 6. Although the core algorithms and ideas
as presented in [120] are fathered by the author, many aspects of the imple-
mentation in C were based on fruitful discussions with Jonas Morwing who
implemented the second graph structure, the recognition graph, in the C ver-
sion of the system used in the Arabic experiments.

The variation graph including the rudimentary algorithms for generative and
discriminative training is the contribution of Chapter 8 and it will also be
published as [119].

The C implementation used in the Arabic experiments in Chapter 9 has to a
large extent been implemented by Jonas Andersson, Jonas Morwing and Chris-
ter Friberg in addition to the author. The respective parts of the implemen-
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tations of the first two have already been mentioned above. Christer Friberg
did most of the work in designing the segment definition database (which cor-
responds to the untrained database in the experiments). In particular Jonas
Andersson has put a large effort into memory and speed optimizations of the
code, resulting in the commercially highly competitive figures presented for
various parameter settings in the experiments.



Chapter 1. Overview




CHAPTER 2

Handwriting Recognition

Without words, without writing and without books there would be
no history, there could be no concept of humanity.
Hermann Hesse



8 Chapter 2. Handwriting Recognition

ESPITE THE APPEARANCE of type-writers and other types of key-
based input systems, handwriting will surely maintain its position
as the most versatile way of recording text. It is much easier to
adapt to various kinds of recording devices and it is independent of

the script - as opposed to fixed keyboards which only work for a particular
set of characters. It is also a powerful complement to the spoken word. For
languages based on ideographic scripts, it is for instance common to explain
the meaning of a homophone by gesturing the shape of the character meant.
The historical and cultural importance goes without saying. The indisputably
weakest characteristic of handwriting which has driven the development of al-
ternative methods for recording text, such as type-writers, is the human factor.
Handwriting is so individually specific that it is even used in forensic analysis
for identification. Somewhat like English is the lingua franca of the spoken
word, normalized handwriting in form of the printed character is a common
written language recognized by writers independently of their specific hand-
writing style. This lack of ambiguity makes buttons with printed characters
indeed a very powerful way to enter text into machines. At the dawn of the
computer area there were also no reliable devices for capturing handwriting
digitally, thereby definitely not leaving handwriting as an option. Several years
of intense research rendered more reliable ways to capture handwriting, but
for the past decade the presence of handwriting as an input method for ma-
chines has been limited to high-end mobile phones and other comparatively
marginal devices such as PDAs and later tablet PCs. Recently, various forms
of handwritten input is receiving renewed attention along with the development
of more complex user interfaces and larger screens. Such visual requirements
is driving a rejuvenated search towards input alternatives that are free from
space consuming hardware such as keyboards.

2.1 On-line Handwriting Recognition

The setting of the handwriting recognition problem depends greatly on the de-
vice capturing the handwriting. The touch-sensitive screens in mobile phones,
PDAs and tablet PCs mentioned above can produce what is referred to as on-
line information implying that it contains the information of the movement of
the writing-tool. The case where the movement is unknown but the resulting
pictographic information is at hand is called off-line information. In the hand-
writing recognition community off-line handwriting recognition particularly in
the form of OCR (Optical Character Recognition) dates back to the days of
the first optical scanners, whereas the on-line recognition research began first
when the trace of the writing (the order in which the pen moved to produce
the writing) was made available through early digitizing tablets. Off-line in-
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| On-line Capturing Device |

| Preprocessing |

| Character Recognition |

| Result Display |

FIGURE 2.1: A schematic view of an on-line handwriting system

formation can always be produced easily from on-line information whereas the
opposite is much more difficult. In this aspect a recognizer used for off-line
recognition can be used for on-line recognition problems whereas the opposite
is usually not true. From a mathematical point of view the off-line writing is a
two-dimensional function of coordinate space R? — R producing one pixel value
for every coordinate in the image, whereas on-line writing can be viewed as a
one-dimensional curve R — R? so that each parameter value corresponds to a
coordinate. The thesis investigates the treatment of handwriting in the form
of curves and consequently it is limited to on-line handwriting. A schematic
view of an on-line handwriting system is seen in Figure 2.1.

2.1.1 On-line Parameter Space

As noted above, on-line handwriting can be seen as a one-dimensional structure
since each point (z,y) on the piecewise continuous curve A(t) constituting the
handwriting can be described by a single parameter ¢ i.e. A : R — R2. As
mentioned above this can not be true in the off-line case since each pixel-
value depends both on the vertical and horizontal position of the pixel. The
parameter ¢t above can be thought of as a time marker for the writing, where
the first value corresponds to where writing was started (usually when the tip
of the writing-tool meets the capturing surface) and the last value to where
writing was stopped. This naturally introduces the next concept in on-line
handwriting: sampling. Since the device capturing the handwriting is some
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form of a machine it unavoidably converts the piecewise continuous handwriting
curve A\ into a finite set of discrete points X - it thereby samples the curve.
In terms of the previously mentioned parameter ¢ it can also be said that each
such way of sampling the same curve is a parameterization of A since for each
corresponding X = {(zs,ys)},s = 1,...,n there is a non-decreasing function
f R — Rsuch that A(f(s)) = A(ts) simply because all points on any discrete
sampling of a continuous curve also exists on the original curve.

Reparameterization Since each sample of on-line handwriting consists of a
discrete set of coordinate pairs as seen above, it can also be viewed as a single
point in a high dimensional space. This provides a natural way of comparing
such objects by simply evaluating the distance between such points in the
high dimensional space. The problem with this however is that the dimension
depends on the number of sample points. For this reason it is common to
reparameterize the curve into something more suitable for recognition purposes.
Some of the most common methods are given below.

Definition 2.1.1. Arclength Parameterization
For a fixed number of n sample points and a curve y(t) € Rt € [1,n] the
arclength parameterization of v has the property

t=j+b
/‘;2 ]

For this reason a discrete curve X = (z1,...,2,) is said to be parameterized
by arclength if the points are uniformly distributed on the curve. The obvious
weakness of the arclength parameterization strategy is that it fails to ensure
correspondence between points of the same index in different samples of the
same symbolic interpretation. A remedy to this problem is the versatile strategy
of DTW as presented in Section 2.4.2.

dl‘dt:kb,k>0,b20.
dt

For Chinese characters it is common to exploit the fact that each character often
fits nicely into a square Sy, p.c.q) = (2,y) € R?|z € [a,b],y € [¢,d],a,b,c,d € R.
This way the character can be normalized to a fixed size and the obtained
measure on relative distances can be used to perform polygonal approximation
reparameterization as defined in Definition 2.1.2.

Definition 2.1.2. Polygonal Approximation Parameterization
For a fixed value 7, the polygonal approximation parameterization of v €
Sa,b,c,d) has the property that there is a number n, such that

max  max (O =20)-(G+1) — ()]
1€(2,...,ny) tE[i,i+1] v+ 1) —~()|

<.
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2.2 Single Character Recognition Methods

There are various ways to classify handwriting recognition strategies and, in
general, terminology suffers from inconsistent naming conventions. The naming
of one system may correspond to a technique used to solve part of a problem
in another thereby obfuscating the process of comparing different methods and
identifying their respective merits and deficiencies. The categorization provided
here is aimed at the pure shape matching techniques used within handwriting
recognition systems and not the complete systems. Therefore the discussion in
this section is limited to the SCR case.

In principle these methods can be divided into two main categories, also shown
with subcategories in Figure 2.2.

e FEzxplicit Modeling which uses a database lookup to identify the most prob-
able recognition target.

o Implicit Modeling where the modeling is implicitly designed by the system
through a training procedure.

From a statistical point of view all recognition methods strive at finding the
optimal decision boundary in sample space. The differentiator between the two
paradigms stated above can be said to be that the explicit modeling uses a priori
information in the system design phase (i.e. when modeling the recognition
targets). As stated earlier the merit of such a design is that the implementor of
such a system has more control over the recognition procedure (i.e. recognition
target support) but naturally it may require more work to attain the maximal
a posteriori performance.

2.2.1 Modeling

The term explicit modeling for on-line pattern recognition here implies that the
targets of recognition are defined through an observable model. In other words,
each recognition target is defined through a set of properties often enabling a
graphical view of each target. Recognition is thereby conducted by compar-
ing (or matching) input to all such models. This in turn can be accomplished
through similarity (proximity) measures, distance functions or probability cal-
culations.

Depending on the method used for recognition models can be said to be static
or flexible. Static models will from now on be called templates and these will
be used directly through some form of a distance function to obtain a measure
on how well the sample matches the template. Flexible models on the other
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| On-line Pattern Recognitionl

| | |
| Explicit Modeling | | Implicit Modelingl

| |
| Statistical " Syntacticl | Template Basedl | Neural Networksl | SVM |

| HMM | | Subspace | | DTW |

FIGURE 2.2: A classification tree of different methods used in on-line hand-
writing recognition

hand implicitly contain some variation and thus the comparison of sample will
be made to the closest variation of the flexible model.

2.2.2 Clustering

A difficulty when comparing the explicit recognition methods is that the con-
tent of the set of models has a crucial bearing on recognition performance.
Clustering algorithms are often employed to partition each target character
class into submodels usually referred to as allographs. The number of such
clusters, the choice of cluster representative (model) and the clustering method
used to arrive at them all have bearing on the recognition results.

For the dynamic modeling methods such as those covered in Section 2.3 the
clustering process is required in order to limit the shape variability modeled by a
single model, since increased modeling complexity (handling larger variability)
leads to reduced discriminatory power (in the form of larger parameter variance)
[49]. For static template comparisons it is natural to use the template distance
function also in the clustering stage, this may be more difficult for flexible
models such as HMMs [64], although it is possible to use model probability in
combination with the k-means algorithm [91].

For static template methods there are two fundamentally different approaches

to the clustering problem, where typically the complexity (and thereby dis-
criminatory power) of the discrimination function has determined the choice.
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For naive matching functions such as simple Euclidean distance requiring large
amounts of templates it is common to use template set editing schemes which
aim at removing templates of little use to the discrimination process, e.g. tem-
plates which are surrounded by templates from the same class [28]. Optimally
this will leave a template defined boundary around each class in sample space
(also called the Voronoi tesselation [49]) and in this respect the determination
of one-against-all support vectors (cf. Section 2.6.2) falls into this category. The
other approach more often used in HWR under the assumption that only a few
clusters will be used as templates is to use classical unsupervised classification
such as the k-means algorithm [56] or some hierarchical agglomerative method
[134]. Both of these methods are however generative and naturally the optimal
number of clusters k or the dendrogram threshold value 7' can not be deter-
mined with certainty. In lack of the optimal value, many researchers resort
to empirical determination of suitable values [8, 77] there are some methods
that try to find a reasonable value automatically [91, 93]. It is also possible
to update an initial clustering by modifying templates through LVQ [60] or by
comparing surrounding classes directly with the recognition function [117, 118].

2.3 Statistical Models

The main benefit of using a statistical model for handwriting recognition is the
possibility to describe the intrinsic variations in a compact manner through a
set of parameters that can be inferred from a training set. A weakness of many
of these models is that they are generative to their nature. In other words the
modeling for each class is conducted without influence from neighboring classes
unlike more genuine discriminative methods such as Neural Networks.

2.3.1 Markov Modeling

Hidden Markov Modeling (HMM) has been a popular approach to the
handwriting recognition problem ever since its introduction in the late 80s.
Prior to this it had been applied to speech recognition with pioneering work
of L.R. Rabiner, author of several early papers in this field as well as the
standard tutorial in [96]. A Hidden Markov Model M of a shape is defined as
a sequence of hidden states (&1, .. .,&,) along with state transition probabilities
A = laj;]} ;= where a;; denote the transition from state i to j, and probability
density functions (b1, ...,b,) such that

bi(f) =p(flo =&),j=1,...,n (2.1)

corresponds to the probability of observing a feature set § given that the hidden
state ¢ is &. The recognition process of a sample X with HMMs is then
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FIGURE 2.3: A graphic view of a linear Hidden Markov Model with 4 states.
The most likely state sequence corresponding to the sample X with input se-
quence (f1,...,fs) is shown as ®*.

straightforward and and the class index Z(X) of X is optimally determined
according to
I(X) = argmaz;{p(X|M;)}. (2.2)

The solution to (2.2) can be obtained through the forward-backward algorithm
[96]. However, it has been shown that p(X|M;) is strongly correlated to
p(X, ®*|M;), where ®* is the most likely state sequence of M; given X [7].
Since the latter is effectively computed by the Viterbi algorithm [129] it is often
preferred for time complexity reasons.

A common set of allowed transitions, often referred to as a linear HMM topol-
ogy, are loop (as; > 0) and forward (a,(;11) > 0) transitions [61, 4, 7, 53, 68].
Topologies that prevent backward state connections are called Bakis or left-
to-right models and due to the sequential nature of handwriting curves these
are probably the only topologies used in HWR. There are fewer examples of
topologies allowing state skipping (a;; > 0,j > ¢ + 1) and in these cases the
skip is usually restricted to one or two states [28, 35, 107]. So in general for
handwriting the transition matrix A has non-zero elements only in elements
within a certain proximity (depending on the number of allowed skips) of the
diagonal.

An important parameter when designing a recognition system based on HMM
is the number of hidden states. Naturally a larger number of states allow a
more exact description but such an increase in model complexity also require
more training data in order to avoid overfitting [49]. Segmentation analysis has
been proposed as one way to determine this number from training data [64].

Being a statistical model, each HMM M is dependent on training data. The
parameter estimation of each such model (referred to as the training) is usu-
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ally conducted with either the Baum-Welch algorithm (which is also called the
EM-algorithm) or through Viterbi-training [7]. The Baum-Welch training is an
iterative procedure based on the mazimum likelihood (ML) criterion. Several
researchers have recognized this as an intrinsic weakness of the HMM con-
cept, as the correct training criterion from a discriminative perspective is the
mazimum o posteriori (MAP) criterion [14, 83]. Another weakness of first-
order HMMs when applied to on-line HWR is the lack of a global perspective.
Models which have similar hidden states but with slightly different transition
probabilities are difficult to discriminate [4]. Hu et al. proposes an augmented
HMM system to improve this situation by adding features that capture global
characteristics of the shape [53].

In the beginning of the 90s HMM was one of the most exciting methods for
HWR and some early papers reported that HMMs were able to produce better
recognition results than DTW (cf. Section 2.4) for instance [11]. A compari-
son of state-of-the-art methods on a benchmark set of on-line digits, however,
provides no support stating that HMM based systems would provide higher
recognition accuracies than Neural Networks [97] or even modern variations of
DTW [3, 8, 77]. Instead the merits of HMMs are their intrinsically sequential
nature [28] rendering extensions to recognition of connected sequences of char-
acters straightforward [4, 53, 108]. The generative nature of the HMM training
(using the ML criterion) has inspired many to replace the shape recognition
component by Neural Networks although maintaining the HMMs to combine
partial shape recognition results [14, 22, 101, 55].

Conditional Random Fields (CRF) A recent interesting and well-cited
development which reduces some of the known problems with HMMs are Con-
ditional Random Fields [62]. CRFs are conditional models that model the
conditional probability distribution of a label sequence given the observation
sequence directly instead of modeling joint distribution of observation and la-
bel. There are still few publications of applying CRF's to the problem of HWR
but some encouraging initial results are provided in [34] showing the increased
discrimination power of modeling.

2.3.2 Subspace Based Recognition

Principal Component Analysis (PCA) is a popular method for describ-
ing shape variation. Basically this method sort the features of sample space
according to prevalence through eigenvalue decomposition. By fixing the num-
ber of Eigenvalues N used for each character class k, the explicit models My,
can thus be defined as a subspace in the space Xj of all samples with class k
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as

M =u1,...,uny and Aju; = C(X, X)u;, (2.3)

where ); is the jth largest eigenvalue and u; the corresponding eigenvector to
the covariance matrix C'(X, X). An intuitive way to perform recognition is then
to find the best approximating model for a sample X as the model with the
smallest orthogonal distance to the sample. It has however been observed that
the orthogonal distance is insufficient for discriminating in sample space and
one remedy has been to add a distance component to the outer bounds of the
distribution of the samples in subspace [32].

Active Shape A method closely related to PCA for modeling shape variation
is Active Shape as introduced by Cootes et al [51]. In Active Shape eigenvalue
decomposition is performed on an estimate of the covariance matrix Sy of the
samples X € Xj.

An Active Shape Model (ASM) M = (u, U) is then defined as the mean shape
v along with the subspace spanned by N eigenvectors U = {Uj}évzl of Sk
and a set of constraints 6o = (010,...,0n0) on the variations corresponding
to how much the model can be extended in the direction of a certain base
(eigenvector) of the subspace. Usually the constraints are given as a number
of standard deviations. An intuitive way to use an Active Shape Model in
recognition is then to find the closest variation to sample in the constrained
subspace by searching for the parameters b= (b1,...,bn) in the constrained
volume of RY bounded by & realizing

b* = argmin | X — u — Ub. (2.4)
gvlb‘SUO

Recognition can then be achieved simply by choosing the class j with model M;
fulfilling min; d(M;, X) = min; || X — p; — Ujgj*H It is interesting to note that
this distance function corresponds well to the modified PCA distance proposed
in [32].

An important weakness of all PCA based methods is the alignment problem.
As will be shown later in Section 3.2.4, eigenvalue decomposition on arbitrarily
sampled characters often incorporate parameterization variations causing the
subspace of eigenvectors to include distorsions of some salient features. The
two applications of ASM found in the literature attacked this problem from two
directions. Mitoma et al. aligned samples by DTW (cf. Section 2.4) prior to the
Active Shape analysis for on-line digit recognition [77]. Sridhar et al. performed
the same operations in opposite order, in other words, started to find the best
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set of parameters and then used DTW as the distance function between sample
and the resulting model in on-line Tamil recognition [110]. Shi et al. have used
Active Shape Models together with an image distance transform to search for
radicals in images (off-line) of Chinese handwritten characters [105].

Curve Space Invariants Another interesting method which is not based on
PCA but shares strategy of working with curve space is the invariant technology
proposed by Berthilsson et al. [15]. In very simplified terms, the idea behind
this method is to define each allograph model as a curve space, invariant to
a certain set of transformations (e.g. positive similarity transformations). As
for the PCA-based methods the projection to the curve space of the model is
calculated. Recognition is then enabled by a prozimity distance u evaluating
how similar the two spaces are through the Hilbert-Schmidt norm

p=|PmQxl as, (2.5)

where Ppnq and Qx denote the orthogonal projections to the curve space of
model M and sample space of X respectively.

Lately, this technology has also successfully been employed for the recognition
of Cyrillic [31] and Arabic scripts [10].

2.4 Template Based Methods

Given previous explicit modeling methods it is here necessary to clarify the
meaning of Template Based as used in this thesis. Unlike the flexible statistical
models a template is a static representation of a character in sample space.
Template based methods are very intuitive and simple in this sense since all
that is required is a distance function in sample space X to construct a classifier.
The problem with handwriting recognition however is that the sample space
is a strange space which is not only of high dimension but which varies in
dimensionality from sample to sample. Traditional template based matching
methods either employ a distance function that can compare objects of different
dimensions or try to fix the dimensionality of input in some way. Usually some
combination of the two strategies are used in a template matching method.
Another problem is that the high-dimensional points may be parameterized in
different ways thereby failing to assert that the dimensions actually correspond
to each other.
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2.4.1 The Database

One of the major merits of the template based methods is the transparency
of the recognition process. The templates themselves are actual entities in
sample space and recognition errors can often be explained through insufficient
template coverage. In fact there are even studies showing that this renders
errors made by template based systems more intuitive than those made by
implicit modeling methods such as Neural Networks [84]. Another merit is
that the static nature of these systems enable dynamic modification of template
content, making this approach popular in adaptive systems [36, 132].

2.4.2 Dynamic Programming

A common way for static template matching methods to incorporate flexibility
is by using Dynamic Programming (DP). This technique allows for matching
samples of different dimensions as well as dynamically determining alignment
even between samples in the same space. Dynamic Programming appears in
the on-line handwriting literature under several names such as elastic matching
[124, 136], string matching [29] and Dynamic Time Warping (DTW) [3, 8,
77, 130]. Basically all of these methods share the algorithmic method of the
Viterbi [129] algorithm which in turn uses the same strategy as shortest path
algorithms such as the Dijkstra algorithm [33].

Dynamic Programming strategies differentiate the static template matching by
introducing a point-wise distance function d : § X § — R so that each point p
(or corresponding feature f) can be matched individually instead of statically
assigning alignment by index in the parameterization. Vuori has investigated
several such point distance functions in [130] but recently there seems to be
some consensus that best discrimination is achieved with the simple Euclidean
norm acting on the feature points f = (x,y,0) consisting of the point coordi-
nates p = (z,y) complemented by the angle to the next point 8 = arg(p;+1—p;)-
Matching is then performed by dynamically finding the correspondence func-
tion ® = (¢px,0z) : {1,...,N} = {1,...,|X|} x{1,...,|Z]|}, also referred to as
an alignment, between two samples X = (py, ... ,pfg(l) and Z = (p7,... 7p|ZZ\)
that minimizes the sum of the distances. This alignment is obtained implicitly
by minimizing the distance function:

N
. 1
m£nD¢(X7 Z) = C Z d(pé(x(n)’pgz(n))’ (2:6)
n=1

where (1) = (1,1),®(N) = (|X],|Z|) and C a normalization constant usually
equal to N. The Sakoe-Chiba transitions are defined as T = {(1,0), (0,1),(1,1)}
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[8]. A DP function based on these transitions imply that A® = &(n + 1) —
d(n)eT,ne(l,...,N—1).

Apart from the obvious time complexity issues of quadratic programming when
running recognition on a very large number of classes as in [100], there are some
issues caused by the dynamic programming. One problem is that the algorithm
takes no account of the way characters differ thus favoring character shapes with
a mean appearance such as straight strokes. A more powerful discrimination
can therefore be obtained by limiting the use of DP to the alignment problem
and using other methods specialized at discriminating between aligned samples
[77].

2.5 Syntactic

The syntactic modeling concept relies on the philosophy that handwriting are
observations of an ideal representation of characters and that recognition is
performed with reference to such instances. In this respect the syntactic ap-
proach represents the case where the system designer has most control over the
recognition process by manually designing syntactic rules for the interpretation
results of given shapes. One of the large merits of such a system is thereby that
only limited or no training data (depending on if properties of some rules are
deduced from statistical analysis) is required for such methods. The human
interaction in handwriting infallibly produces variations difficult to model with
harsh rules. For this reason syntactic systems found in the literature employ
some type of fuzzy-shape grammars to avoid harsh and premature exclusion of
recognition candidates [5, 89].

Parizeau et al. have developed a system where each syntactic model is manually
generated as a set of primitive curve segments with syntactic descriptors in the
form of fuzzy rules. Recognition is then conducted by using rules associated
with each primitive and each property to calculate the degree of membership
of the sample X to these allograph parts [89]. Anquetil et al. use a similar
process but use a decision function based on a sum-product so that the partic-
ular output of each rule is normalized by the total sum of the products of all
membership functions for all features [5].

2.6 Implicit Modeling

In implicit modeling, class boundaries can be determined a posteriori but the
actual properties of each recognition target is never explicitly defined (in the
form of a tangible class representative as in the explicit modeling methods de-
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scribed in above). A clear advantage of this modeling is the focus on discrim-
ination when determining class boundaries instead of the generative modeling
perspective common for explicit modeling methods such as HMM. Judging by
the number of publications during the past decade these methods are by far
the most popular to use for the on-line handwriting recognition problem. One
of the most striking arguments for using such methods apart from the quanti-
tative results in the form of high recognition accuracy, is the generality of these
methods. In particular Neural Networks (Convolutional Nets) is an extremely
versatile strategy for generic object recognition [63] and it is naturally very
favorable if all that needs to be done for a recognition task is to find training
data. Unfortunately this is also one of the major flaws of Neural Networks
as they usually require vast amounts of data to ensure that the system avoids
overfitting [106].

2.6.1 Neural Networks

Neural Network methods are among the most common methods used for pat-
tern recognition of images. Their original principal idea is a simplified model of
the human nerve system, where inputs pass through a system of nodes which,
in analogy with the human perception system, often are referred to as neurons.
From a statistical point of view a neural network corresponds to a nonlinear
statistical model [49]. Due to the intrinsic facility in which the system can be
trained for various recognition tasks it has also become one of the most popular
methods for on-line character recognition and certainly the most popular for
the off-line case [55, 74, 101, 104]. For the off-line case it has also been shown to
produce the best recognition results on the MNIST benchmark database [106].
This research area has matured significantly in the past decade and there are
several extensive and generic treatments of Neural Networks in the literature
[17, 99, 49]. A neural network consists of nodes and connections. Each node has
a weight and an activation function, usually the sigmoid o(v) = H% The
activation of each node is calculated by feeding the weighted linear combination
of the activations of connected nodes in the previous layer into the activation
function. A basic system will have three layers: an input layer where each node
is activated by a certain feature in the input sequence, a hidden layer and an
output layer with one node for every symbol or every state of a symbol that
should be recognized, see Figure 2.4.

Thus activation frx in a node with index k in the hidden layer of the network
in Figure 2.4 for instance can be written as

fuk = o(wako + > waksf;), (2.7)

JEE



2.6 Implicit Modeling 21

FIGURE 2.4: A graphic view of a typical three layer network with an input layer
activated by p feature functions, a hidden layer with M nodes, and an output
where activation in each of the K output nodes corresponds to a probability
for a certain symbol being matched.

where E), denote the indexes of the connected nodes in input layer and wpy; is
the weight of that particular feature connection.

Training of a neural networks thus corresponds to estimating the parameters
w for every layer. This is normally conducted by a gradient descent method
called back-propagation [55, 104] (cf. [49]).

TDNN The main neural approach applied to the on-line character recogni-
tion problem so far is the Time Delay Neural Network (TDNN) [22, 55, 101, 104]
although there are some recent results also with more basic networks such as the
multi-layer perceptron (MLP) [86]. The TDNN is a multi-layer feed-forward
architecture that has been especially successful in learning to recognize time
sequences such as those appearing in on-line HWR and speech recognition sys-
tems. Typically a TDNN has an input frame treating a time-slice of the input
data feeding into one or more hidden layers that eventually terminates in an
output layer with one output per symbol in the character set used for the cur-
sive handwriting sample. Moving the input frame along the sample will thus
generate a sequence of observations which can be interpreted and compared
to a dictionary to retrieve plausible word recognition candidates. HMM is a
popular choice of method to aid in this process [55, 101].
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Kohonen Maps Another interesting type of network with desirable discrim-
ination properties are Kohonen Self-Organizing Maps (SOM) [59], which in a
way are network extensions of the learning rules of LVQ [60]. The Kohonen Self-
Organizing Map can be seen as a matrix of detectors specialized at recognizing
the input of some feature. It is trained by gradually making the detector m.(t)
most similar to an input vector z(t) even more similar by applying a learning
rule of type:

me(t+ 1) = me(t) + a(t)d(z(t), m.(t)). (2.8)

The learning rule is applied to all z(¢) in a neighborhood N,(t) of m.(t). «(t)
is a monotonically decreasing sequence of learning factors. When training is
completed the detectors will be organized spatially to reflect the topography of
the training space.

Some experiments have been conducted using Kohonen maps directly as databases
for on-line recognition [76, 78]. Essentially this corresponds to a template based
nearest neighbor recognition, but where templates are adaptively trained so
that the resulting template (node in the SOM) corresponds to a synthetic sam-
ple consisting of a linear combination of samples in the training set. SOM has
previously been used in the feature extraction stage in order to implicitly define
the set of features used in recognition [58]. It has also been implemented with
the function of sharing the emission probabilities between HMMs (cf. {b;} in
Section 2.3.1) and also to improve recognition accuracy through a simple ad-
ditional feature mapping (nearest neighbor style as above) [43]. In another
experiment self-organizing maps were used to identify inter-writer similarities
[131].

2.6.2 SVM

A pattern recognition method that has received a lot of focus in late years is
Support Vector Machines (SVM), introduced by Vapnik [126]. Support vector
machines are originally a genuine two-class discriminator that approximates
a boundary (separating hyperplane) between two classes by finding relevant
boundary samples called support vectors. In its simplest form the search for
the maximal margin hyperplane is conducted in linear space but often a kernel
can be used to map linearly inseparable data into another favorable space.
With such a kernel the SVM classifier with N support vectors {Y;} with
labels {£}Y, £ € [~1,1] can be written as in (2.9):

N
F(X) =sign(d_ 0iliK(Y;, X) +b), (2.9)
i=1
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where K is the kernel, a weights and b an offset. Training of the SVM classifier
corresponds to finding the maximum separating hyperplane and thus the set
(Y3, L£;, ;) which involves solving of a quadratic programming problem with
equality and inequality constraints. There are several publicly available pack-
ages for doing this, like libSVM.

FIGURE 2.5: A graphic view of a two-class problem with separating hyperplane
(solid line) and support vectors (larger markers on dashed line).

One of the major problems with applying support vector machines to recogni-
tion of on-line HWR is the intrinsic two-class nature of the SVM. A popular
method for coping with this in on-line HWR is by voting schemes applied to
multiple two-class discriminators [1]. Another strategy is to retain the genuine
two-class application of SVM by applying these as a second stage classifier for
solving common confusion errors made by a genuine multi-class method such
as the template based methods described earlier [31, 46, 135]. In another ex-
periment Bahlmann et al. use a conventional dynamic programming distance
function (cf. Section 2.4.2) as a kernel, but somewhat surprisingly this approach
does not seem to produce better results than a genuine multi-class DP-based
classifier even in the two-class discrimination case [9].

2.7 Combination Methods

A logical continuation to the type of recognizer analysis included above is to
try to exploit the differences in a constructive manner by combining different
methods. Conceptually such an approach is very attractive and, to use a popu-
lar description, in an abstract way it corresponds to the situation of relying on
a panel of multiple experts instead of being dependent on the decision by a sole
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judge. In practice, it has also proven that this analogy can be extended further.
Since it has been difficult to produce reliable ways to combine the actual con-
fidence values of different classifiers, voting methods using the candidate lists
(or rank) produced by the classifiers are often an effective combination strategy
[52]. It has been used successfully to combine on-line and off-line systems in
[69] and in a more comprehensive combination method comparison by Alpaydin
et al. it produces the highest recognition accuracy for writer independent tests
[2].

Another paradigm for combining methods is the multi-stage strategy which is
more of a serial approach where the next classifier is consulted after treatment
by the first. This can work in two ways, either by (1) only consulting the next
method upon rejection by the first (cascading) or (2) by allowing each method
to narrow the search as in a coarse-to-fine search. The latter is an important
step in recognition of scripts with large character sets such as e.g. Asian scripts
[66] and can also be used analogously for dynamic lexicon reduction in cursive
word recognition for western scripts [23, 94, 104]. One type of fine search
is to discriminate between top candidates from a first recognizer (also called
a discrimination zoom) [31]. Another interesting approach is boosting (here
AdaBoost) where a composite classifier is constructed by iteratively training
classifiers to correct errors made by the current composition [42]. Although
improvements have been made to simple Neural Networks [102] there are few
published results on boosting applied to on-line handwriting recognition.



CHAPTER 3

Preprocessing And Segmentation

By failing to prepare, you are preparing to fail.
Benjamin Franklin
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HIS CHAPTER TREATS various preprocessing and segmentation meth-
ods. Popular preprocessing methods include various forms of nor-
malization in scale, position and variance as well as curve smoothing
and other resampling schemes. The latter were especially important

in the past when digitally sampled data contained a significant amount of noise
[54, 90, 125]. For the system presented in this thesis, most conventional prepro-
cessing steps can be incorporated into the recognition algorithms and therefore
focus here lies on the segmentation techniques. Many segmentation techniques
however often make the same assumptions on input data and thus they have
similar flaws.

3.1 Introduction

Various recognition methods have a varying dependency upon the preprocess-
ing step and this is yet another factor that adds to the difficulty in comparing
recognition methods on a given data set. In general preprocessing techniques
imply that some restrictions on the expected structure of the input data are
imposed with the merit of reducing the required modeling complexity. Pre-
processing and normalization is traditionally also intricately dependent on the
script to be recognized [54]. For Asian scripts, for instance, the square shape of
the characters can be exploited to reduce variance and fix scale, which in turn
enables special resampling schemes. A common such method is the recursive
polygonal approximation [66] (cf. Section 2.1.1) seen in Figure 3.3 . For most
other scripts however the shape of the input depend on the written word and
the constituent characters. For these methods it is common to normalize by
some kind of helplines as seen in Figure 3.1, often inferred from the writing
[54, 104] or assumed from the writing user interface [36].

This chapter will discuss some of the most common preprocessing methods and
what requirements would be added to the recognition algorithms if they were
to be skipped. There are quite a few strategies for segmenting on-line cursive
script [6, 19, 25, 85, 88, 111] and since segmentation of input is a required step
for the algorithms treated in this thesis some examples of implementations and
modifications will also be covered. In principle however the standpoint of this
thesis is that no segmentation method is flawless! Therefore it is crucial also to
have strategies to cope with missing or extra segmentation points. The difficulty
in producing reliable segmentation points are also a factor that has boosted the
popularity of methods with implicit segmentation. Implicit segmentation can
be realized through a sliding window of a time-delay neural network [21, 55, 101]
or through a sequence of frames with Hidden Markov Models [68, 98, 108].

Segmentation can also be interpreted as a structurally dependent shape analy-
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FI1GURE 3.1: An on-line sample of the cursive word adorar segmented at y-
extrema, plotted with estimated base- (solid) and helplines (dashed).

sis. It is well-known that the dimensionality of a curve can be reduced without
loss of significant morphological information by encoding structural content (i.e.
curvature) [75]. For this reason points of high curvature are also often the focus
of segmentation algorithms as well as feature point extraction [6, 36, 47, 85]
It will be shown that this fact can be exploited to tailor special features for
segmented input.

3.2 Segmentation

The problem of segmentation can be seen as a type of unsupervised classifica-
tion. Given an input sample X of a set of strokes X!,..., X™ each stroke shall
be analyzed and possibly divided into smaller parts, conventionally referred to
as segments, according to certain characteristics. Extending the unsupervised
classification analogy further, the segmentation problem can be described as the
problem of clustering points on each stroke into an unknown number of com-
pact clusters distinctly separated in time. Since the desired number of clusters
is unknown an applicable such segmentation method is Hierarchical Agglomer-
ative Clustering (cf. [56] and Section 2.2.2). In Hierarchical clustering clusters
are determined through a threshold in the inter-class dendrogram. Using this



28 Chapter 3. Preprocessing And Segmentation

terminology, the segmentation problem can be described as the problem of find-
ing a cluster distance function d(c;, ¢;) between pairs of clusters ¢;, c; (sets of
points) and a suitable threshold T'. The set of clusters C' = ¢y, ..., ¢, can then
by defined as the minimal set of subsets of X = {p1,...,p x|} satisfying (3.1).

max d(c;,c5) <T. (3.1)
Ci,Cj
The border between each such one dimensional cluster ¢; = {p;;}; will be

exactly the set of segmentation points. An example of this description with a
commonly used segmentation method (vertical extreme point segmentation) is
given in Example 3.2.1.

Example 3.2.1. Vertical Extreme Point Segmentation. Define a cluster dis-
tance function by

d(ciacj): 0, ifci:pil,cj:pjl
0, if sign(pik —pji) = Kk, Vk, 1,

and define an arbitrary threshold T € R, then this corresponds to segmentation
by local vertical extreme points. This function can be extended to handle other
and more flexible versions of extreme point segmentation.

The notation S(X%) = {p;} will be used for the set of segmentation points
of stroke X* and thus S(X?) C X*. Correspondingly {A;} will denote the
segments in between which are one fewer than the segmentation points.

Definition 3.2.1. Two segmentations S(X), S(Y') are said to be similar S(X) ~
S(Y) if they have the same number of strokes and the same number of segments
for each stroke.

3.2.1 Script Dependent Segmentation

It has been observed by several researchers in the past that local extreme points
orthogonal to the writing direction can be used reliably for segmentation [36, 65]
as seen in Figure 3.9a. This coarse approach will however generally miss a num-
ber of segmentation points even for natural variations in input. Furthermore
it is flawed by the fact that it is dependent both on a reliable estimate of
the writing direction (which can even vary within a handwritten word). Nev-
ertheless this type of script dependent segmentation method can be used to
evaluate other parts of a segmentation based system. Even very simple meth-
ods for complementing insufficient segmentation routines such as augmentation
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(a) Y segmentation (b) Extra segmentation

FIGURE 3.2: An example of an Arabic word (o JH) where segmentation only
in vertical extremes is insufficient. Heuristic rules as in (3.2) is a simple but
sometimes effective way of adding more segmentation points. Segmentation
points in both figures are marked with squares.

points in [85] or splitting points in [36] has been applied successfully in the
past. Modifications to the extreme point approach mentioned above to pro-
duce a segmentation method for the Arabic script, also used in the recognition
experiments of Section 9.4 is described below.

3.2.2 Segmentation Of Arabic Script

The starting point for the segmentation scheme is the same as described in
Example 3.2.1 segmenting input at the extreme points in the vertical direc-
tion. The aim of the segmentation procedure is to divide input into segments
containing at most the shape of one individual character. For Arabic cursive
script there are several cases when the primitive strategy above is insufficient
as seen in Figure 3.2a. For the system used in the experiments with Arabic
cursive recognition presented in Chapter 9, a set of simple heuristic rules has
been added to trigger additional segmentation points on a segment A consist-
ing of n sample points p1,...,p, € R2. Heuristic rules are generally not very
robust but segmentation is not the focus in this thesis and good recognition
results are achieved despite this fact. Each rule consists of a set of rudimentary
comparisons with ad hoc threshold values {T;} as in (3.2), and the result of
the implemented rules on the input in Figure 3.2a is displayed in Figure 3.2b.
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For a segment A = (p1,...,pn), split in

2§£f§y>T1,i=1,...,e
i BY - 3.2
Pe;py if §§£:§i<TO;Z:€+1,...,f (3.2)
Alpi)y o
A(g,i);>T2,Z—f+1,...,n,

Another general problem with the simple segmentation at vertical extreme
points is that the placement of such points shows large variance in horizontal
placement when they are put on smooth arcs such as the "bottom” of the
letter u. To improve this situation an energy equation can be introduced for
vertical minima points as in (3.3). This energy model will be evaluated for all
occurrences of the segmentation points corresponding to local minima in y that
are bordered by local maxima on both sides, i.e. points that are located in a
visual "valley”. The main task is to try to center these points in the middle of
the valley (middle in terms of & w.r.t. the surrounding y-maxima points) and
this is accomplished by modeling a spring pulling the point towards the center
in z. Since the centering should be applied only for weak slants a counter-
acting force is modeled by a gravity force F, pulling the point down towards
the y-minima. Finally a third force component is added which is related to
the curvature property of the y-minima point. The main aim of this force
component is to maintain the location of strong feature points corresponding
to very sharp turns in the y-direction and it is modeled as a spring with a
spring constant proportional to the square of the curvature.

Two things are done to determine where a y-minima segmentation point should
be moved:

1. Check if the y-minimum constitutes a point of local (w.r.t. scale) energy
equilibrium. If this is true, the point remains in its original location.

2. If the y-minimum is is not a local energy equilibrium point then it is
moved to the global energy equilibrium.

The energy Q(p) of a given point p = (ps,py) € R? on the curve segment
A = (p1,-..,pn) consisting of the discrete points between the surrounding y-
maxima points (po, pn+1) is given by:

Q(p) < R(py — p}) + d(py — p)° + (po — T)%, (3.3)

where p* = (py, p;) = argmin,c, py and T = (Poz + P(n+1)2)/2. Here R should
be seen as the ratio of the gravity force pulling the point p toward p* and the
spring constant of the last term. This spring constant has thus been removed
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from (3.3). The middle component is also conceptualized as a spring pulling
the segmentation point towards p*, where the value of the spring constant is
related to ¢ = k(p*)/m, where x : R? — R is the curvature of p* measured in
radians.

The y-minimum point p* is defined to be a e-local minimum if the following
statements are true:

where pZ, is the prior point on the curve at € distance and p?_ the corresponding
subsequent point.

Consequently the rule defined above for placing the segmentation point p be-
tween two y-maxima segmentation points can be written as

(3.4)

_ {p*, if p* is a e-local minimum of €2

argmin,c, Q(p), the global minimum of

3.2.3 Generic Segmentation

Generally the type of heuristic rules applied in Section 3.2.2 will be unreliable
as it is virtually impossible to foresee all input variations of handwritten script.
The dependency on writing direction estimation also introduces limitations on
the system as well as a new source of error. A purely shape dependent seg-
mentation technique closer to the piece-wise polygonal approximation methods
used for sampling Chinese characters in [80] would therefore be a more robust
solution to the segmentation problem. The result of typical polygonal approx-
imation for a Chinese character is shown in Figure 3.3. Such techniques have
also been developed to retrieve important feature points in on-line signature
verification [19, 47]. The rest of the segmentation based techniques presented
in this thesis will work independently on the choice of segmentation method
and consequently the quest for the ultimate segmentation method has been left
for future research.

3.2.4 Segmented Shape Analysis

In addition to being a necessary component in recognition of connected script,
segmentation also unleashes new possibilities for shape analysis. The nature of
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A

(a) Original sampling (b) Polygonal Approximation

FIGURE 3.3: An example of segmentation/resampling method for chinese char-
acters that utilizes the intrinsic square property of chinese characters.

handwriting is such that variations of samples portraying the same set of sym-
bols are highly non-linear and irregular. In terms of the sampling discussion
in Section 2.1.1 it is clear that a given index of a point in one sample will not
correspond to the same index in another sample. This is called the alignment
problem. As previously explained, successful recognition methods such as the
popular strategies covered in Section 2.2 all include some form of implicit rem-
edy for this discrepancy. Wakahara et al. attack the problem by introducing
local approximations into a global transformation [136]. Segmentation tech-
niques add another layer of structurally motivated alignment as defined by the
segmentation function in (3.1).

The aim of a segmentation is to identify points in an input that correspond
to a certain characteristic such as a transition between two letters. In some
respect segmentation points should therefore be consistent in this functional
respect for samples portraying natural variations of the same shape. In this
section it will be shown that it can make sense to separate variations in the
structure of the segmentation points to the variations of the curves in between
the segmentation points. For this reason the set of segmentation points will
often be referred to as the frame of a handwritten sample or a template.

Figure 3.4 depicts the thin-plate spline transformation of inter-class and intra-
class segmentation points. After the thin-plate spline has been applied, the
curve shape differences between the corresponding segments are much less
complex. This gives some visual support for the notion that the non-linear
components of handwritten character variations could be treated separately by
some distance measure on the corresponding frame transformation. Although
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(a) An in-class example of bending an (b) An inter-class example of bending
a to another. a u to an a.

F1GURE 3.4: Bending the frame while leaving the parameterization fixed. The
four figures in both cases display the original sample, the affine approximation
to the target sample, the thin plate spline of the frame w.r.t the target frame
and finally the target sample.

successfully applied to the field of HWR before [12], thin-plate splines are prob-
ably not a good alternative for modeling this energy since folding frequently
occurs [38], which can be seen in the lower left plot in Figure 3.4b.

-0 5 0 5 10 15 -10 0 10 20

20 -0 5 0 5 10 15 02 -01 o 01 02

(a) Original parameterization. (b) Segmentation based parameterization.

F1cUure 3.5: The first four components of principal component analysis of
one segmented model of the letter n. Each plot in the figures above display
nwEnoU;,n =1,2, where i is the mean shape and U; the jth PC eigenvector
and o the standard deviation.
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Using Segmentation For Reparameterization

As noted in Section 2.1.1 the terms sampling and parameterization are often
used interchangeably when discussing on-line handwriting. Given samples that
are samples of a given set of connected smooth curve segments it is therefore
not certain that a parameter, i.e. the discrete point index, corresponds to a
point on the same curve part. This in turn causes strange artefacts when an-
alyzing variance of a set of samples portraying the same curve. In particular
the popular shape variance analysis method of PCA may deform the discontin-
uous curve connections when applied to samples of just slightly varying such
parametric alignment. This may cause the effect seen in Figure 3.5 where the
first PC-component contains rounded features in samples of 'n’ never observed
in data. Since segmentation techniques in general try to extract such points
corresponding to discontinuities in otherwise smooth curves, keeping segmen-
tation points in correspondence during alignment should with this hypothesis
guarantee the preservation of these important structural features. This partial
forced alignment technique is here referred to as segmentation based reparam-
eterization.

The results of the first modes of PCA with this parameterization compared
to arclength parameterization are shown in Figures 3.5 and 3.6. It clearly
shows that the reparameterization presented here aligns samples in a way that
improves the point to point correspondences and better preserves structural
features such as discontinuities in smooth curve segments.

Parameterization Of Segments

As for unsegmented handwritten input, the most basic approach for sampling
(or reparameterizing) a segment of a curve is to sample by arclength as de-
scribed in Definition 2.1.1. Recall that the weakness of this method is that
segments may require a varied number of points in order to be described cor-
rectly under the constraint of minimizing the number of points. This basic
method will be referred to as the Segment Arclength (SA) method.

Aiming at enabling an upper bound for the required number of points on each
segment, methods that try to approximate the segment by a few number of
points have also been investigated below. In this case the segment arclength
method is not recommendable since crucial shape information such as curvature
may be randomly lost due to the placement of the interval of points.

Choosing the n points on a piece of a curve that best approximates it is an
interesting problem that has been thoroughly studied in the field of discrete
geometry [45, 127]. There it is common to refer to the best approximation in
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(a) Original parameterization. (b) Segmentation based parameterization.

FI1GURE 3.6: The first four components of principal component analysis of one
allograph of v.Each plot in the figures above display u+noU;,n = 1,2, where p
is the mean shape and U, the jth PC eigenvector and o the standard deviation.

terms of the uniform metric i.e. the n points on the (discrete) curve X = {p;}1",
realizing (3.5). Let F be the set of monotone increasing functions f : Z — Z
such that f(0) =0 and f(n) =m for f € F.

— mi dpL(pis Ly s o), 3.5
O=nd TRt PL(P Losn pics) (35)
SJjsn

where dpr(pi, Lp FG—1)PFG) denotes the Point-to-Line distance from the point
pi to the line segment L, ., . defined by the points (ps;_1),ps@;))- In
accordance with the literature in discrete geometry the problem of minimizing
@ in (3.5) will be referred to as the min-e problem.

The algorithms developed for solving (3.5) found in publications are generally
focused on speeding up the process of recursively finding the largest distances
dpr,. The following section presents a fundamentally different approach for
n-point approximation of an m-point polygon. Instead of (3.5) the problem of
finding the maximum value of the segment length function is considered.

Definition 3.2.2. The linear segment length function of order n of a curve
segment 7(t),t € [0, 1] is the function I} : Z" — R such that

n

I’(a) = d(4(0),7(a1)) +d(v(an),7(1)) + Y d(v(ay),7(aj-1)),  (3.6)
j=2

for some metric d, and a = (a1,...,a,) such that 0 < a; < ... < a, < 1.
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With a Euclidean metric the subset that maximizes the linear segment function
is:

(Prays - Prm) = argiax > ) —pig-nl
=1

= argmax Iy (f(1),..., f(n)). (3.7)
feF

The method of finding (pi,,- - .,pi,) on a m-polygon according to (3.7) will be
referred to as the Dijkstra Curve Mazimization (DCM) method since the set
can be found by means of a modified version of the Dijkstras shortest path
algorithm as seen in Algorithm 1.

Algorithm 1 Dijkstra Curve Maximization

1: Find (piy, ..., pi,) of (3.7).

2: % Calculate distances

3: Set D;, =0,i=0,...,n,k=1,...,m
4: fork=2,....m—n+1do

5: for i =1,...,min(m,n) do

6: D =ming—;_1,. k-1 D;—1;

7: Pip=argmin,_, ; 4 qDi-1
8: end for

9: end for

10: % Trace path backward

11: t=m

12: forl=mn,...,1do

13: i = Pn,t

14: t= Pn—l,il

15: end for

First some properties of the simplest types of curve segments with n = 1 will
be shown for the continuous case. The following discussion is restricted to
curves in R? since this work is focused on handwritten characters. All curve
segments are also assumed to be parameterized by arclength with significantly
more points. The curve has been rotated so that it starts in the origin and
and ends in y(1) = (z(1),0). It is also assumed that no curve is a straight line.
For the first property the case where the z-values are monotone-increasing are
considered. In this case the notation v = (a, f(a)),a € [0,2(1)] will be used.
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Lemma 3.2.1. Let v(t) = (¢, f(t)). If [ is a constant function in the interval
€ (0,2(1)) such that |f(a)| > 0,a € (0,2(1)) then T}(a)(0,2(1)) obtains it
mazimum at a = x(1)/2.

Proof. Let f(a) =9d,a € (0,2(1)). Then

I} (a)(0,2(1)) = Va2 + 62+ /(x( )2 + 82,

This gives
dr a a—xz(1)
_ — + .
P N e S FT s B e

Then clearly %| = 0 and a sign study reveals that this is a global

) a=z(1)/2
maximum. O

It is easy to deduce that the solution to the min-e problem is the same as the
solution to the longest path problem given in Lemma 3.2.1. This shows that
these curve approximations are similar under some circumstances. One equally
easily realizes that there are many cases when they differ. One interesting
example are the respective solutions of the min-e¢ approach and the DCM to
picking one point on a sinus curve on the interval [0,27]. Here the DCM has
two optimal solutions lying close to the respective extreme points, whereas the
min-€ approach will choose the middle point. In particular one easily observes
that their behavior differ when the number n is less than the number of e-local

extreme points p = argmin ¢, ;) py on the curve. The DCM gets many
t1—e<t<ti+e
solutions in this case, all aiming at choosing one of the prominent features of

the curve whereas the min-e solution gives the mean path. Examples of the
extracted sample points with DCM on some connected character sequences are
shown in Figure 3.7. Apparently the DCM provides a nice and smooth curve.

Especially for handwritten characters where both the number n and m are
comparatively small, the execution of DCM will not require a significant amount
of processing power. Elementary calculations lead to the following statement:

Theorem 3.2.1. The DCM algorithm for finding the set of n-points realizing
mMax(p, . p)C(1,em) L% (Tpys -5 Tp, ) terminates after

(m—n+1)(m—-—n+2)

(n—2)m—n+1)+ 5

distance calculations.
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coda b 2

codla %\

(a) Spanish word coda (b) Arabic word _abs,!

FIGURE 3.7: Two cursive words with the original sampling above and the
structurally reparameterized words below. Here the DCM technique with n = 3
of Section 3.2.4 is used to parameterize each segment. The segmentation points
are the local vertical extremes of the curve.

Proof. Denote the number of intermittent points by n* = n — 2. Let k be the
indexes of the point x; and consider the required number of distance calcu-
lations to points with indexes larger than k. For the case when k < n* + 1,
only distances up to index m — (n* — (k — 1)) need to be computed since
n* are required and at most kK — 1 can be used up to index k. This implies
m—(n*—(k—1))—k = m—n*—1 distance calculations based on point xj. In to-
tal this contributes with (n*)(m—n*—1) distance calculations. When k& > n*+1
all distances to subsequent points i.e. m —k needs to be computed. The number
of such calculations is an arithmetic sum 1+. . .+m—(n*+1) = w
Replacing n* by n — 2 gives the sought time complexity. O
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FI1GURE 3.8: An example of a selection of segment arc types used to normal-
ize shape of segments in template database and sample to speed up distance
calculations.

Discretization Of Curve Types

Another interesting property of segmented handwriting is that the variability
in segment shape is significantly less than that of complete characters. Since
in general, shape comparisons are computationally expensive, this has inspired
to the possibility of discretizing the curve shape space, i.e. limiting the number
of possible curve shapes to a fixed number of normalized arctypes as defined in
Definition 3.2.3.

Definition 3.2.3. An arctype A will here be defined as any curve segment
A(t) € Rt € [0,1] such that A(0) = (0,0),A(1) = (1,0).

In order find the best approximating arctypes for a given curve, a distance
function for segment shape is needed. The alternative used for the segmented
shape comparisons in this thesis is presented in Section 3.2.4 below. Examples
of arctypes can be seen in Figure 3.8 and some samples forced into this space of
discrete segment shapes for Arabic and cursive alphabetic script can be seen in
Figure 3.9. Note how well the word arroz written by a Spanish native can be
reconstructed using a limited set of 100 arctypes, generated from Arabic script
samples, in Figure 3.9a.
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This type of discretization of segment shape space has similarities with the type
of structural reconstruction and analysis of on-line cursive script performed
in the early 90’s [87]. Parizeau et al. developed a programming language in
which input was analyzed an reconstructed using segmentation points and fixed
shapes in between [87, 88].

(a) Spanish word arroz (b) Arabic word laJ!

F1GURE 3.9: An example of arctype discretized cursive word samples. The top
figures show the original samples and the bottom the samples restored with a
limited set of arctypes. Both approximated from an arctype database generated
from Arabic script with 105 arctypes.

Segmented Shape Distance

The curve distance function presented here is called DCM-DTW since it is a
DTW (cf. Section 2.4.2) influenced distance function developed to discriminate
well between curves parameterized according to the DCM method presented
in Section 3.2. Points placed with DCM are spaced unevenly on the curve as
this method focuses on retaining the shape information and not on providing
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a smooth parameterization. For this reason a dynamic programming method
matching two such point configurations need to allow Point-to-curve matching
in addition to traditional Point-to-point matching. Furthermore as the num-
ber of points are few compared to traditional arclength parameterizations, the
directional vector used in many implementations [3, 77|, is no longer a stable
feature. Instead DCM-DTW makes use of the intermittent angle 6, of a point
p defined as

Op = arg(pe+ — p) — arg(p — pe-), 0, mod 27 € [0, 27), (3.8)

where pe4,p.— denote the next and the previous points at a distance € on the
curve and arg(p) is the angle of the vector p relative to the horizontal axis.

To accomplish the desired flexible Point-to-Curve matching, the closest point
on each line segment of the opposing curve is calculated for each point. Let

Lj(t) =tpj_1+ (1 — t)pj,t c [0, 1]

denote the line segment between points p;_1,p; on curve P = {p;}. Let

tL

g0 = argmin || L;(t) — ¢l (3.9)

t€[0,1]

for a line segment L;(¢) on P and a point g; on a compared curve ). With this
notation the pseudo points z;, on the curve P w.r.t. the curve @, both with n
PQ _ L

points are defined as z; .~ = j(t(?f).

A basic distance function between points or pseudo points p,q € R? is intro-
duced as
9(p,q) = llp — qll + kel0p — 0], (3.10)

where ky is a normalization constant for balancing angle distance with coordi-
nate distance. Notice that the angle values from (3.8) can be interpreted as a
stgned curvature as seen in the example below.

Example 3.2.2. Given two curves y1(x),v2(z) along the x-axis such that
71(0.5) = 1,71(x) = 0,z # 0.5 and 72(0.5) = —1,v(x) = 0,2 # 0.5, then
0+, 0.5) = O45(0.5)| will attain the mazimal value of 27.

A dynamic programming distance function based on this premise has an align-
ment function ®(k) = (¢p(k), ¢4(k)) and transitions (1,0), (1,&), (&,1), (0,1),
(1,1) where the novel (1,£) and (£, 1) transitions mark the transition to or
from the pseudo points in P or @ respectively. The alignment function has
the requirements that ®(1) = (1,1), ®(m) = (n,n). When adding transitions
to the alignment functions the addition of two £ is defined by & + & = 1.
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The alignment state (¢p(r), ¢q(r)) = (k + &, j) is defined as (p%(T),q%(T)) =

(Pkte,q5) = (xkpﬁ’j, ¢;). The distance function dpcas can now be formulated
as

dpoem (P, Q) = H}I}HZQ(P%(@,%Q(@), (3.11)

i=1

where only the transitions (0,1), (£,1) are valid from states (¢,(r), ¢q(r)) =
(k+&,9), k,7=1,...,n and similarly (1,0), (0,€) are valid from states

(@p(r), ¢q(r)) = (K, + &),k j=1,...,n.

Notice also that the definition of the addition of the £ transition to a £ state
implies that only ¢ = 0.8 will be allowed for transition (£,1) from a state
(k +0.2,5) for instance.

As pointed out in [77] conventional DP-algorithms for matching handwritten
characters suffer from over-fitting the template to the sample, and to improve
the situation the simple distance function g has been updated with a weight
function f : R — R which also considers the context in which the points
differ. The over-fitting problem for conventional DTW arises from the fact
that samples of classes with very curved strokes such as the digit '3’ differ
much more than classes with straight strokes such as the digit ’1’.

FIGURE 3.10: A plot of the relief function f; with (a = —0.2,6 = 1.1,¢ = 1)
defined in (3.13) for the possible input values. The plot shows the appearance
for k € (1,2,3).

In this thesis the central feature distance function g in (3.10) has been modified
slightly by introducing continuous relief functions f1, fo designed to cope with
this problem. This is done by diminishing large feature differences between
samples that have a similar feature profile as seen in the definition of g in (3.12).
A graphic view of these functions is included in Figure 3.10.
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Define the height value pj as the distance from the point p to the base line of
the segment P = {p;}7_,, which in turn correspond to the line through p1, pp.

8(p,q) = f1(0p,04) - 160 — 9q|2+

) (3.12)
f2(9pa9q7phaqh) : Hp - q” .
acd?/k +ba/k+e, 0,0, <m
[1(0p,0) = af?/k+ b0/ +¢, 0,0, >, (3.13)

c, otherwise

where a = (7 — max(0p,6,))/7) and § = (min(6p,0;) — 7)/m. The constant
k can be used to alter the appearance of the relief function whereas c is the
default angle feature weight value.

(a0? + ba)k(ph, qn) + ¢, 0p,0q < y1,y2 > T
f2(9p,9q,Ph,Qh) = (a62+bﬁ)f‘€(phth)+07 0;050(1 Zﬂ-vpthh 2 T7 (314)
c, otherwise

where ) )
min((min(pp, qn) — T, N)

Aw

with T being a threshold parameter for py, gn. The length of between first and
last point is A and w a weight parameter for this function, which in Figure 3.10
corresponds to k.

K(Ph,qn) =

The complete algorithm between two segments P = {p;}"_; and Q = {g;}}_,
can now be formulated as in Algorithm 2.

3.3 Preprocessing

This section provides a brief overview of some common preprocessing techniques
for on-line handwriting recognition.

3.3.1 Smoothing

In early versions of hardware with the aim of capturing electronic ink, the trace
of the pen movement was often inexact causing several obstacles obstructing
the recognition process. Often the curve sampling of the handwriting samples
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Algorithm 2 DCM-DTW

fori,j:=1,...,ndo
if i <n then

d(ie, j) == g(x};*, ;) + min { d(ic,j — 1)
d(iv (] - 1)5)
end if
if j <n then
d(i, je) := a(pi, &%) + min < d(i — 1, je)
d((i —1)¢, )

end if
d(i —1,7) + 8(pi, 4j)
d(i —1,(j — 1)¢) + 29(pi> q5)
d(i, (7 — 1)¢) + 9(pis q5)
d(i, j) == min ¢ d(i, j — 1) + a(pi, 4;)
(
(
(i

U

(i —1)e, 7 — 1) + 20(pis q5)
d (Z— e, j) + a(pir ;)
d(i—1,5 — 1) + 29(pi, q5)

end for
dpcm (P, Q) :=d(n,n)/2n

would be very jagged curves [47]. For isolated single character recognition the
arclength resampling progress has the implicit side effect of a low-pass filter.
Even though the hardware for capturing online handwriting is much more re-
liant nowadays smoothing techniques could still be applicable for handwriting
under extremely shaky conditions. Most segmentation methods would benefit
from smoothing under such circumstances as they are sensitive to discontinu-
ities in the curve. The DCM parameterization itself is also sensitive to high
frequency noise in that it always maximizes the path length. Garutto et al. at-
tacks the problem by extracting salient feature points in multiple scales [111].

3.3.2 Helpline Estimation

With segmentation methods such as the one described in Section 3.2 a reliable
estimate of the writing direction is absolutely crucial since this is the basis
for the extracted set of segmentation points. An intuitive user interface can
somewhat remove the dependency of reliable helpline estimation by guiding the



3.3 Preprocessing 45

writer to write in a certain direction or even by explicitly inserting helplines
[36]. Often the estimated helplines may also serve as input to further scale and
slant normalization as described in Sections 3.3.3-3.3.4.

3.3.3 Scale Normalization

For template matching strategies but also for feature generators feeding sta-
tistical recognition methods, scaling of input is often an important part of the
preprocessing stage. Features dependent on coordinate values such as hori-
zontal and vertical displacement between certain feature points are intuitive
and powerful features included in many recognition systems [36, 50, 85]. For
horizontally written scripts, the scale normalization is often approximated by
scaling to certain inferred help-lines [20, 36, 55, 90, 101]. LeCun et al. report
achieving better recognition results for normalization based on global helpline
estimation than character level normalization [13].

It is also possible to make a recognition system invariant to global scale differ-
ences in input by simply assuring that all features are scale-invariant. Examples
of some such features will be provided in Section 4.2.

3.3.4 Slant Correction

For handwriting, especially horizontally written scripts, a typical writer depen-
dent consistent shape perturbation is the grade of slanting of the writing. This
may differ not only between writers but also depending on the writing style.
Especially for cursive handwriting recognition, it is common to infer the slant
of the input sample to limit the between-writer variability and thus facilitate
modeling by removing the skew correction from the recognition stage [47, 109].
Severe slanting may also cause inconsistent placement of segmentation points
for some segmentation methods such as the naive segmentation method in Sec-
tion 3.2. Slant correction can therefore be beneficial to recognition methods
based on such segmentation strategies.

The great merit of deslanting techniques in template based systems for hand-
writing recognition are that they may remove some of the global template
variations and thus reduce the need for some modeling. On the other hand
these techniques generally also make assumptions based on the mean slant of
all segments in a sample and may thereby cause some misinterpretations. In
particular for connected sequences of characters a global deslanting process will
fail to capture variations in slant within a word.
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3.4 Experiments

In this section some quantitative results for the DCM segment shape approx-
imation technique described in Section 3.2.4 will be given. It is difficult to
evaluate parts that will be components in a larger context, such as the segmen-
tal shape comparisons made here, but to get some results, the single segment
digits i.e. all samples X such that |S(X)| = 2 were extracted from the train and
test sets of the UNIPEN/1a dataset (cf. Section 9.2.2). These were then used
in a recognition experiment such that all samples in the training set were used
as templates. The comparison is made to the standard mass center normalized
DTW (cf. Section 2.4.2). The top-n results denote that the correct class was
among the n best. Although this is a very limited test, it does show that Algo-
rithm 2 works and that it provides competitive results in a simple recognition
setting.

| Method | Top-1 | Top-2 |
DCM-DTW | 98.93% | 100%
DTW (MC) 97.87% | 99.79%

TABLE 3.1: Recognition results on the single segment samples of the
UNIPEN/1a data set (includes 469 single segment test digits of ’1°,’2",’3’’5’,
"7’ and ’9’)



CHAPTER 4

Additive Template Matching

I have had my results for a long time, but I do not yet know how I
am to arrive at them.
Carl Friedrich Gauss
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EMPLATE MATCHING SCHEMES for on-line handwriting recognition are
essentially the techniques for comparing objects in the form of dis-
cretely sampled curves. In recent years template matching methods
have mainly been applied to the problem of recognizing single char-

acters implying that each such curve object corresponds to a single symbol,
but some previous work on applications to template sequences can be found
in [36, 50]. This chapter presents a template matching scheme especially de-
signed to work with segmented input by applying similar object recognition
methods to the set of curve parts resulting from the segmentation strategy. In
subsequent chapters it will be shown that this design creates a suitable frame-
work for easy extension of single character recognition to connected character
recognition. In this chapter however, focus is on the task of comparing two
segmented objects, i.e. the search for a suitable distance function applicable
to segmented input. It will also be shown that this particular design enables
exploitation of some other beneficial traits of segmented input.

4.1 The Frame Deformation Energy Model

Inspired by the possible consistency of certain key feature points in the set of
samples portraying a given handwritten character shape, the starting point for
the search of a suitable distance function will be based on the segmentation
points of a sample. To simplify the discussion somewhat, the targets of recog-
nition in this chapter are limited to single characters, i.e. input portraying one
isolated character. The subset of points of a template (i.e. model) correspond-
ing to the structurally significant segmentation points will here be referred to
as the frame of the character template. Given two samples X,Y with similar
segmentations S(X) ~ S(Y), i.e. same number of segments and points per
segment it is possible to define a transformation T : X — Y. In particular this
transformation can be written as

IS
T(X) = Trame(X) + Z Ls, (Tframe(Af() - AzY)v (4.1)

where Trame has the property that Teame(S(X)) = S(Y) and each function
I's, takes the points on the transformed segments Tfmme(AX ) in the frame to
the corresponding points on A in the target sample. This splitting creates an
intuitive scenario for application of a classic coarse-to-fine recognition strategy.
The coarse part of the recognition process can be to evaluate the magnitude of
Ttrame and the fine part to compare the residuals Trame(X) — Y.

In this thesis the magnitude of Tf.ame Will be assessed by introducing an analogy
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with a mechanical framework of stretchable coils and springs. Each segment in
a frame (consisting of two segmentation points) can be exactly transformed into
a segment in a second frame by translating, rotating and scaling. Translation
of a segment is not relevant unless there are intermediate lifts of the pen in the
handwriting and for now this can be ignored. Scaling and rotating a two-point
segment fits well into such an analogy since it can be modeled mechanically
by a spring and a coil. After performing this transformation on the first pair
of segments, the first two segmentation points will coincide. This removes
the need for further translation and the third segmentation point will coincide
after application of suitable rotation and scaling. This way the whole frame
transformation process can be seen as twisting the coils and springs of each
segment of the frame successively. The mechanical analogy is fairly popular and
has for instance been used for describing a word normalization process in the
past [13]. Another way of illustrating the magnitude of such a transformation
is to plot a deformation grid as for the thin-plate spline transformation in
Figure 3.4.

4.2 Feature Space

Although the choice of distance function for a template matching problem is
of critical importance for maximizing recognition accuracy, even very simple
distance functions can produce great results if operating in a feature space
suitable for the matching problem. Many researchers have stressed the im-
portance of the feature space in the past [85]. Lots of time has been devoted
to the design of features aimed at treating a specific discrimination problem
in handwriting. Apart from the dominant features also used in single char-
acter recognition, namely vertical and horizontal positioning along with local
direction [8, 29, 77] the most common features include Fourier coefficients [36],
curvature [70, 55, 85, 101], speed [70, 101] and the hat feature [35, 70, 55, 101]
aimed at detecting diacritical marks. Jaeger et al. and Liwicki et al. have de-
fined even more features but in an attempt to optimize the selection Liwicki
found that a subset of only five features was enough to produce competitive
results [55, 70]. One way to include the strengths of off-line systems (the in-
sensitivity to coordinate sequences) into an on-line system is to add off-line
features such as context maps [55].

In view of the two-step strategy of the Frame Deformation Energy concept

described in Section 4.1 the features used in this thesis can also be divided into
two categories:

e Frame features corresponding to the magnitude of the stress on "coils”
and 7springs” on the frame when bending.
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e Segmental features corresponding to the difference between two segments
with common start and end (i.e. with frame deformation removed)

To simplify notation a point of m features in feature space F™ will be denoted
by f and the jth feature by f;.

4.2.1 Frame Features

Since the modeling concept for the frame deformations are based on the mutual
relations of length and angles between subsequent segments in the frame, the
two natural features corresponding to this are of course relative length and
angle of the segments. This feature is not new as is, relative length has been
used in a system based on HMM in the past [35], but then without the type
of normalization described in Section 4.2.1. A complete list of frame features
used within this thesis can be found in Table 4.1. An interesting comparison
is Duneau et al. who use the segment angle and length as features, enabled
through a scale normalization enforced by a restrictive user interface [36]. One
of the key features of the frame features in this thesis is the correlation between
subsequent segments through the relative features. This concept of relating
subsequent segments through relative shape is an intuitive way to extend a
single character recognition function to connected script [79].

FIGURE 4.1: A plot of the normalization function H(r) for logarithmic ratio
values log(r) in the range (-2, 2).
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Frame Features

Name

Description

Angle, ¢

Relative Length, A

Relative Horizontal Position, R,

Relative Vertical Position, R,

The angle of the segment between
Pi,Pi+1 as calculated in the input co-
ordinate system p; = (Pig,Piy) lLe.
P(i+1)y —Piy )

P(i+1)zs —Piz ’’

The length of a segment (p;, p;+1) in re-
lation to the length of a subsequent seg-
ment (p;+1,pi+2)- Calculated through a

- : llpits—psll

normjahznt%g funct-lon H( e
described in Section 4.2.1.

The relative displacement of the mean

horizontal value compared to previous

arctan(

) as

T AT
segment, as in A]fvil}\(“, where A? is the
mean horizontal value for segment ¢ and
N, is a normalization constant.
The relative displacement of the mean
vertical value compared to previous seg-
ment, as in ijvity“, where AY is the
mean vertical value for segment ¢ and
N, is a normalization constant.

TABLE 4.1: A table of the frame features used within this thesis.

Ratio Normalization

Some features e.g. angular values are intrinsically limited by their periodic
nature. Weights can be used to balance magnitude of different features but
this is an insufficient remedy for balancing bounded and unbounded features.
To handle this problem a normalization function H : R — [a,b] that takes
unbounded values to a bounded interval has been introduced. For the features
covered in this thesis this applies to the relative length features A\. The aim of
the function design is that it should be tolerant to small differences and reach
a maximum value comparable to periodic features such as the angular values.
The values for ratios in the interval (0.01, 100) can be seen on a logarithmic

scale in Figure 4.1.

31n(r)
H(r) = {(2 arctan( =

sign(In(r)),

)3, if (2 arctan(%p))ﬂ <1

(4.2)

otherwise.
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4.2.2 Segmental Features

The primary objective of this set of features is to discriminate between hand-
writing samples of different classes that display similar shape variations in
frame. A typical example of this are the differences between samples of the
letters U and V as seen in Figure 4.2. The complete set of segmental features
used within this thesis can be found in Table 4.2.

Segmental Features

Name Description

Arctype, A The curve shape of the segment from
Definition 3.2.3 (cf. Section 3.2.4).
Connection Angle, # | The local angle between subsequent
curve types at the connection point as
seen in Figure 4.2.

TABLE 4.2: A table of the segmental features used within this thesis

FIGURE 4.2: Two handwritten characters u and v with identical frame features.
The connection angle 6 is calculated as the angle between local subsequent
arctypes and this is still significantly different.
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Pen-up Modeling

A pen-up movement is actually the act of non-writing and thereby corresponds
to movement which is not recorded by the sampling device. But although there
is no information on exactly how the writer has moved the pen in between
two pen-down movements, the actual points where the pen-tip has entered or
exited the sampling device are significant. The difference between a pair of
such pen-up and pen-down movements correspond to a translation and will
here be referred to as a pen-up segment. For consistency the same modelling as
for the actual writing has been applied to these segments with the exception
of non-relevant features such as the Arctype in Table 4.2.

4.2.3 Virtual Reference Segments

Since the features of size and position as described in Section 4.2 are relative
they will be undefined for the first segment in a match making it impossible
to discriminate between shapes with common appearance but different size or
position. To enable the inclusion of such properties it is possible to add virtual
segments to the template matching both before and after the sample to be
recognized as seen in Figure 4.3 if there is such information available in the
user interface. With the aid of such segments it is possible to include size
and position in the features of the first segment indirectly. In particular this
design enables easy application of helpline information when available, without
making the system helpline dependent.

Reference End

Reference Start /g®
0 LTS

FIGURE 4.3: A cursive word sample plotted with virtual reference segments
in solid bars before and after the words. The dotted lines mark the pen-up
segments in the sample.
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4.3 Distance Function in 3"

Despite the attractive appearance of thin-plate deformed grids and some suc-
cessful applications of thin-plate splines to the character recognition problem in
the past [12], it is not suitable to use this model for frame deformation distance
calculations. The main problem is that common variations in handwritten pat-
terns involves points on the extension of a line being distributed on either side
of the line causing folding of the thin-plate spline.

Instead a more straightforward implementation of the Frame Deformation En-
ergy concept described in Section 4.1 will be used to define a distance function in
§™. If each bending operation on the frame could be done independently of the
others then the energy required would be a simple sum of the components. It
is therefore natural to introduce a linear distance function acting in this space.
More importantly, as seen in the tables of features in Tables 4.1 and 4.2, sev-
eral of the features themselves depend on their segmental context. Keeping the
distance function linear in features also enable separation of context-dependent
(relational) and context independent features. Since the context-dependent fea-
tures are relevant whenever there is context, i.e. the current segment is followed
by one or more other segments, this distance component is called connective
distance de. Similarly the context independent part will be referred to as
segmental distance dg. A linear function in feature space '™ can be written

P
AX,Y) = wpdi(fX.§) =
J

> wido(55,1)) + D wids (R ), w; > 0. (4.3)
j€Rel keSeg

The greatest problem with this distance function is the question of optimality
and the difficulty in optimizing the function with respect to recognition feature
weights wg. This discussion will be temporarily disregarded and it is just noted
that even simple ad-hoc values can produce great results given well-balanced
features. For now it is assumed that the feature values themselves have been
balanced and that the weights are set to unit size, w; = 1.

Viewing the variables ¥, ¥ of samples X,Y as sequences of points in feature
space §™ it follows that (4.3) actually correspond to a weighted norm (f* —
F)YTW (X — §) when the functions d¢, dg also are sum of squares. Observe
that this is a template independent normalization of feature space and not
related to weighting through feature distribution analysis as performed in [50].
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4.4 Segmented Template Matching

With a distance function acting in the segmented feature space §"* as defined in
Section 4.3 the process of segmented template matching is now straightforward.
Given a template T and a sample X with the same number of segments, the
distance between these two can be calculated simply as

IS(T)|-1
(T, X)= Y dA],A)), (4.4)

J

where d(AT, AX) is the distance function from (4.3), and A™, AX the segments
of T, X respectively.

4.4.1 Additivity

Enabling fair comparison of an input sample to various sequences of templates
imposes requirements on the distance function. By fair is here meant that the
distance value is independent on the number and position of connection points
in the template sequence, and only on the combined shape. Some new ter-
minology is introduced below to simplify the discussion and to show that the
template distance function in (4.4) indeed has this property. An interesting
comparison is the intrinsically sequential Hidden Markov Modeling technique,
which given that segmental matching probabilities are unconditionally inde-
pendent, can utilize the Viterbi algorithm to find the modeling sequences that
maximizes the probability of generating input [108] (cf. Section 2.3.1).

Segmentations of two different sets of equal number of n strokes (X,Y") are said
to be similar, S(X) ~ S(Y) if |S(X?)| = |S(YY)|,j = 1,...,n. With respect to
the pen-up modeling described in Section 4.2.2 this means that the similarity
of two sequences will be valid if and only if the pen-up segments are in the
same place.

To clarify the process of comparing sequences of templates, two operations in
sample space X are introduced. The additive operator + is used for adding
two separate samples P, by letting the first point of the second sample
constitute the starting point of a new stroke. The concatenation operator
U will denote the connection of two samples P, @ by attachment of the first
point of the second segment to the last point of the first. The difference be-
tween these operations are illustrated in Figure 4.4. As seen in the figure, the
+ operation differs to the U operation by the introduction of a pen-up seg-
ment as described in Section 4.2.2. Let the partitioning P(X) = (9,1) of a
sample X be defined as an operation O € {+,U} and an index I such that
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AN
@@\W

PLUP (

FIGURE 4.4: The difference between addition 4+ and concatenation U of two
samples P; and P, with the resulting samples and their class labels to the right.

OUAXYIZIAXY SO = X

Definition 4.4.1. A distance function & : X x X — R is additive if for any two
samples X, Y € X such that S(X) ~ S(Y') and any partitioning P = (O, I) the
difference

B(X.Y) — S({AS LA 1) -
AT AT = ar X,Y) (45

does not depend on the partial matches &({A }j 1 {AY} 1) or
S(X Sy
({AX}l (X)]-1 {AY}l - 1)

Example 4.4.1. The conventional DTW distance & prw with mass center
normalization is a typical example of a distance function which is not additive
according to Definition 4.4.1. Since alignment is performed it is very likely
that the complete match G prw(X,Y) would differ in alignment on the subpart
{pj =1 ¢ X from the alignment obtained with @DTW({pj i 1,{pj -h.
Thus 6DTW(X, Y') can not be calculated from the partial matches without lmow—

ing the alzgnment of the partial matches. This implies that o depends on
Sprw({p; }i21 {p) 2D

The following theorem follows immediately from this Definition 4.4.1 but is
included for completeness:
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Theorem 4.4.1. The template distance function in (4.4) is additive according
to Definition 4.4.1.

Proof. Let X,Y be two samples such that S(Y) ~ S(X) and let P = (U, ),
then

S(X)|-1
Z d(AY AY) =
[S(X)|-1
ST wde (i) + D wids(f5), 1) =
kERel l€Seg

I—-1 I+1
Z AX AY Z Z wkdc lkafz;)—’— Z wldS(ffl(,le/)]_F
J i=I k€Rel l€Seg

[S(X)|-1

ST AN AY) = S({AY I AT I + e (AT D (AF GO+
i=I+1

I+1
S wrde(fy. i) + D wids (Y. 1)
i=1 k€Rel lESeg

Evidently « in (4.5) is independent of 6({Ay}j 1 {AX} 1) since it can be de-

fined as ZIH > kerel Wedo (Fx, 1) + > leSeg wyds(fX,Y,). Similar operations
can be done to show the same thmg for P = (+,1). O
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CHAPTER b

Connected Character Recognition With Graphs

If T were to awaken after having slept for a thousand years, my
first question would be: Has the Riemann hypothesis been proven?
David Hilbert
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HIS CHAPTER TREATS the tools needed to extend the template match-
ing scheme presented in Chapter 4 to additive recognition of arbitrary
sequences of connected or non-connected characters. By using an ad-
ditive distance function such as the one presented in Section 4.4 for

the segmental template matching, graph techniques become powerful tools for
evaluating partial template matches.

5.1 Introduction

The by far most common strategies for recognizing on-line cursive script in
the literature is to conduct recognition on subparts of the input using a neural
network [55, 82, 101, 104] or network of HMMs [68, 107]. The main motiva-
tion behind the popular Neural Network based approach is that it avoids the
reliance on explicit segmentation points [104]. In these methods the Neural
Network produces a detection score for each letter and each time frame, thus
generating what is often referred to as a detection matriz in time and letter
(See Section 2.6.1). Classification with Neural Networks in each frame is a
fairly quick operation and it seems that a large part of the time complexity
here derives from lexical post-processing. Most of these methods base the fi-
nal recognition hypothesis on searching through the detection matrix for given
dictionary words and will thus not produce any results without dictionary [82]
although it is possible to retrieve non-dictionary results simply as the most
probable path through the detection matrix [101]. Limiting the problem to
the search for the best recognition hypothesis from a dictionary enables other
holistic feature approaches for dictionary reductions which can produce good
results efficiently but may be less robust for large variations in input [36, 94].

One of the major merits of a template based system compared to these con-
ventional methods is that template based systems can produce better results
when training data is scarce (lesser risk for overtraining). Furthermore the
additivity of the template matching distance in Chapter 4 seems to make it
easier to separate pure shape matching from linguistic processing. There are
very few examples of template based systems for on-line cursive script in the
literature and it seems that this type of segment and recognize approaches were
more or less abandoned in the mid-90’s [50, 90]. In one of the first accounts of
on-line cursive script recognition, however, Tappert employs a template based
system [124]. Tappert does not make use of segmentation points and instead
dynamically matches input to complete sequences of possible templates. The
three-dimensional lattice fed to dynamic programming however is computation-
ally costly and for practical use required limitations in form of letter transitions
as well as segmentation points. Segmentation graphs have also been used for
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structurally defined templates but the actual pattern matching ranking criteria
used differs greatly from conventional distance functions acting in feature space
[89]. The previous work on template based matching with graphs which seems
to bear most resemblance to the strategy presented in this thesis are Ford et
al. [50], Duneau et al. [36] and Oh [85]. Ford et al. use statistically derived
segmental matching scores. Duneau et al. apply a template matching scheme
but use a dictionary driven search for word hypothesises. Oh applies Fischer
discriminant analysis at the letter recognition stage and builds word hypoth-
esises by evaluating a lattice structure with properties similar to that of the
detection matrix used in the classical neural network approach [101]. Graphs
have also been used for recognition of off-line cursive script [26, 39, 44, 71]
and many aspects such as the dictionary structure and several graph search
algorithms can be used for both settings.

An important property of the methods based on implicit segmentation is the
possibility to produce confidence scores (albeit low) even for severely degraded
samples of characters. The template matching scheme in the most basic form
presented in this chapter requires each template to have a similar segmentation
to the part it is matched against. In other words for each template T there has
to be a subset of segments X7 = {A;(};:(LS(T”*Q in X = {Af}‘j‘i(fm*l such
that S(T) ~ S(XT). This is equivalent to finding the sequence of concatenated
templates in the database that approximates the input best. In turn this means
that input where some of the constituent characters have degraded so that they
are illegible out of context, such as the samples seen in Figure 5.1, are also not
recognizable by the system.

The remainder of the chapter is organized as follows: First the concept of con-
nection properties for templates will be discussed in Section 5.2. This is the
fundamental concept needed for defining the space of available template se-
quences implicitly defined through allowing recurrent connections in the tem-
plate database. The next section presents the segmentation graph and finally
Section 5.5 presents the secondary graph structure producing the actual recog-
nition hypothesis.

5.2 Connection Properties

It is well-known that the shapes of characters in a connected character se-
quence are affected by surrounding characters [137]. In this section it will be
shown how such context dependent shape information can be introduced into
a template based recognition strategy through a template connectivity func-
tion. These restrictions serve two purposes, (1) limitation of the possible set
of combinations reduces time complexity and (2) avoiding sample input to be
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2
[ ]

(a) Missing letter shapes for ng in frame.

(b) Segmentation error missing points for n.

F1GURE 5.1: Two examples of degenerate cursive writing with letter shapes
generally not included in a segmentation based template database.

compared to a template sequence corresponding to a non-existent handwrit-
ten pattern (which could possibly be similar to an existing pattern for another
set of templates as seen in Figure 5.2b). Prohibiting connections of characters
that would correspond to an invalid shape by imposing constraints in model-
ing connections has been evaluated for networks of HMM for Korean script in
the past [107]. As stated there, optimally the pen-down connection between
characters, here called ligatures', should optimally be modeled individually for
each pair of characters. A reason for this is that some ligatures suitable for
some character connections may cause an unobserved shape when combined
with other characters as in Figure 5.2, where 'c’ in combination with a ligature
turns into the shape of the letter ’e’. By introducing restrictions on connections
it is possible to selectively choose the type of ligatures that should connect to
a certain character. The tradeoff of such manual control over the recognition
system similar to the strategy of syntactical recognition is the extra effort put
into template design [87].

In order to control whether two templates may connect to each other using one
of the operations +,U defined in Section 4.4.1 a set of connection properties
Cs,C. can be assigned to each template. Since connection may occur both
before and after each template separate connection properties will be given to

'In other work often also called a letter-join[50]
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fconn(ce (ngl)a CS (01)7 C(U))
—

uy c1 Lig, U

Lig, Lig, Uy,

(a) Database (b) Implicit template sequences

FIGURE 5.2: An example of connective properties for templates in the
database. Figure 5.2b shows some template sequence shapes implicitly defined
by allowing connections between all templates.

the starting point Cs(T) and the end point C.(T') of each template T'.

Connectivity may also be dependent on the connective operation, denoted by
O € {+,U} used to connect the templates. The case of the adding (+) op-
eration adds an intermittent pen-up segment unlike the concatenation (U).
The connectivity properties of the operation are written as C(£) in correspon-
dence with earlier notation. For a more compact representation the functional
join W dependent on the operation is introduced as an alternative segmen-
tal breakdown of a sample X. With this representation X can be written as
X =u; (Af, 0;), where {Af} is the segment sequence corresponding to S(X).
With this notation the Connectivity Function for templates in a database can
be defined as in Definition 5.2.1.

Definition 5.2.1. Let C5(T"),C.(T") denote the sets of connective properties of
the template T at the start and endpoint respectively. Then the binary non-
commuting connective function between two templates 77, T> and a connective
operation O is defined as:

1, ifCe(Tl)ﬂCS(Tg)ﬂC(D)#@

. (5.1)
0, otherwise.

fconn(Tla TQaD) = {
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Example 5.2.1. The connectivity property is best illustrated by an eram-
ple. Based on the templates seen in Figure 5.2, create and assign the con-
nection properties listed in Table 5.1. From Definition 5.2.1 it is now clear
that feonn(Th, T2, D) = 1 for the following triplets: (c1, Ligy,VU), (u1, Lig;,U),
(Ligy,u1,U), (e1,u1,+), (u1,c1,+), (c1,¢1,+), (w1, u1,+).

| Set | Properties |

C,(Lig;) C_L_1

Ce(Lig;) C_L_2
Cs(c1) C_L_3,C_U_1
Celcr) C_L_1,C_U_1
Co(u1) | C_L_2,C_L_3,C_U_1
Ce(ul) C_L_1,C_U_1
C(+) C_U_1
C(U) C_L_1,C_L_2,CL_3

TABLE 5.1: An example of a set of connective properties for the templates
seen in Figure 5.2.

5.2.1 Ligaturing

The pen-down movement between two letters in a cursive word is often referred
to as a ligature [108]. In this section the same word will also be used for
pen-up connections corresponding to the 4 operation between two individual
letters. The reason for sharing terminology is that with the modeling of pen-
up movements as described in Section 4.2.2 the functional part of these non-
symbolic shape parts are very similar. During the recognition phase they will
however be treated quite differently.

Pen-down ligatures will be modeled explicitly just as other shapes portray-
ing symbols and the connection properties backward and forward governs the
template sequences they can exist in. Pen-down ligatures have shape and will
thus also contribute to the shape part of the approximation distance for the
best word hypothesis.

Pen-up ligatures correspond to the modeling of the lift of the pen between
two templates. These ligatures will not be modeled explicitly but instead cal-
culated dynamically through the templates before and after the lift of the pen.



5.3 Segmentation Graph 65

FIGURE 5.3: An example of dynamically calculated pen-up ligature (dotted
line) between a template T;, of the character 'n’ and a template T, representing
an ’a’ according to the template properties in (5.2).

By defining the properties after_separation a(T'),before_separation b(T)
for a template T' the dynamic pen-up ligature between two templates 11,75 is
calculated as

['= (a(Th) + 2a(T1) + b(T2) + 25(T2), yo(T2) — ya(T1)) € R, (5.2)

Tq,Tp are relative x-values denoting the offsets for the reference points from
where the dynamic pen-up calculation should be done. The variables y,, yp
denote the absolute y-values of the reference points used for calculating the
dynamic pen-up. A graphic view of the calculation between two templates of
n and a is shown in Figure 5.3.

5.3 Segmentation Graph

This section will show how to use the segmental distance function in (4.3) to
build a graph containing the template matching information. The segmentation
graph for a template based system can be characterized by Definition 5.3.1.

Definition 5.3.1. A Segmentation Graph Sp(X) = (N, E) for a sample X
with segmentation points S(X) = {px} constructed by a database D, is a
graph such that each node n € N corresponds to a segmentation point p; and
each edge ¢™7 € E to the properties of matching a template in D between
segmentation points p; and p;.

For simplicity any edge ending in point p; will be denoted by e~/ and with
71—

€' is implied any edge starting in point p;. When talking about recogni-
tion between two given nodes in the segmentation graph, different recognition
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» 70, (10) A 1,95, (15)] /] » 120, (7) L [ 160, 3\
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FIGURE 5.4: An example of constructing a segmentation graph for the Swedish
word ’ek’. The edge values are the best cumulative distance for that edge, given
edges to start node. The template distance for the isolated part of input is
included within parenthesis.

candidates can use different number of edges. The set of edges in node N; corre-
sponding to segmentation point p; will be denoted by F;. Any such sequence of
edges will here be called a path. For notational convenience alignment between
a sample X and a template sequence 7 = (T1,...,Tg) is introduced as

(I)(Xa T) = ((bk‘l (Xa Tl)a'-w(I)kQ(X’ TQ))) (53)

where @, (X, T,) = {p¢Tq ) }‘ji(fq” so that ¢, (j) gives the index of the segmen-
tation point in S(X) that corresponds to segmentation point j in template T,
and k denotes the index of the first segmentation point in X that corresponds
to the first segmentation point in 7,. Thus ¢r, (|S(T,)|) = ¢ér,,,(1) when
Opr, (15(1,))) =Y, but differ when the + connects Ty, Tg41 and k = ¢, (1).

Example 5.3.1. Figure 5.5 shows an example of a template sequence T sim-
ilar to a sample X (S(X) ~ S(W;T;,9;)). In this example the alignment
function ®(X,T) becomes (©1(X,Te), P3(X, Trig), Pa(X, Tk), Ps(X,Ts)) and
for instance ®4(X,Ty) = {pi}/_, C X.

Definition 5.3.2. The complete graph &5 (X) of a sample X with segmenta-
tion S(X) = {pk}‘,i(f()‘ and database D is the segmentation graph s.t. for every
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FIGURE 5.5: An example of an input sequence X and a template sequence
T = (T67 TLiga Tk, Ta)~

template T € D, '~ FIS(MI=1 i such that S(T) ~ S(®;(X, T)).

Especially when introducing a limiting connectivity function as specified in Def-
inition 5.2.1 another question arises, and that is the existence of a sequence of
templates with a segmentation matching the input sequence. A template can
only be matched to a segmentation similar part of input and this in conjunc-
tion with connectivity restrictions could potentially cause the situation that
no sequence of templates connected with the 4, U operations is similar to in-
put. To describe this situation the term segmentability of an input sample by
a database D is introduced in Definition 5.3.3.

Definition 5.3.3. A sample X is segmentable by a database D if there is
a sequence of m templates and connection operations {7;}™, {O;}™"! s.t.
fconn(naﬂ+1agi) - 1aZ = 1; cee, M — 1 and S(&J;n_l(n7ﬂ+lagi)) ~ S(X)

The complete graph as defined in Def. 5.3.2 will contain paths for all template
sequences that matches every segment in input. In terms of computational
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complexity as well as memory usage, it is normally however not a good idea to
work with the complete graph. Various strategies that aim at calculating only
a limited and effective set of edges are discussed in the next section.

5.3.1 Building A Segmentation Graph

When building an acyclic graph for handwriting recognition it is very common
to do this with the graph search algorithm to be applied in mind. The Viterbi
algorithm used for HMM and DTW can best be viewed as a graph search
algorithm but it is so intricately connected to the method used to analyze
the graph that the graph terminology seldom appears in those cases [129].
Since the Viterbi algorithm is very much a specialization of graph search for
a sequence with probabilistic edge length values [40] the more general shortest
path algorithm by Dijkstra is seen as the starting point for the graphs discussed
in this chapter [33]. In the dual graph strategy proposed in this chapter the
purpose of the segmentation graph is not to produce the best complete paths of
templates corresponding to the input sample. Instead the objective of this first
graph is to produce a graph with the most relevant templates matching to each
part of input. Since a complete path may contain a varied number of edges,
the edge distance in itself is inadequate for determining how well a certain edge
matches to a certain part of input. Instead, the complete best path distance
including the last edge will be used when comparing the qualification of edges.

There are two main strategies to consider when adding edges to the segmenta-
tion graph. Edges can be added either

segment-by-segment so that all matches against one segment in the input
sample are completed before matching the next segment,

or it can be

template-by-template so that all starting segments of all valid templates
are matched from each segmentation point.

Both of the strategies are presented in Algorithms 3 and 5. Although it will be
shown later that the segment-by-segment strategy has certain other favorable
traits one distinct difference can be made here. The segment-by-segment strat-
egy is by definition harsher at segment level and thus risks eliminating paths
upon a large matching distance on a single segment whereas the template-
by-template strategy is less sensitive to peaks in segmental distance. On the
other hand the template-by-template strategy can be more sensitive when the
global match of the template is less accurate. Naturally the construction of the
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complete graph in Def. 5.3.2 is completely independent of which of these two
strategies are used since all valid edges are kept.

Additivity Requirement

The Dijkstra shortest path algorithm is a very simple but effective algorithm
to dynamically calculate the shortest path through a graph [33]. This algo-
rithm however only works if the path distance is independent on the number
of nodes used and only dependent on the edge distances - but this is exactly
the additivity concept as in Definition 4.4.1.

Tappert [124] also mentions additivity as a concept but in that case additivity
refers to the point matching which in his case corresponds to DTW as solved
with the Viterbi algorithm. Unlike template matching the additivity of the log-
arithm of conditional probabilities has driven the design of that algorithm [40].
Without this property recognition results would potentially be dependent on
the length of the individual templates used in the complete template sequence
matched.

Edge Connection Distance

The template distance function defined in Section 4.4 does not contain the
features connecting forward from a given segmentation point and therefore
connection calculations treating these features need to be treated when find-
ing the total distance for a sequence of edges. These connection calculations
are precisely the function « specified in Definition 4.4.1. In other words, in
order to calculate a complete distance value for the best path backwards when
adding a new edge, the best connection to edges in the starting point of the
current match need to be calculated. Including the edge connection operation
O for connection two edges in point 4, the edge connection distance g for edges

e~ €'~ can be written as in (5.4).
D de(fTe ) 170+ |
Rel B if Dl = —|—
g(Te_”ﬁTei—‘yDiaX) = dc(f(Jr’TEi_‘)’fgil) (54)

> Rel do(fTe=iTe=) §X) otherwise

where §f(Te=i:Te=i) is a feature value between the templates corresponding to
edges e~ e~ and {(Te=i1) is a feature value corresponding to connection
between template and the pen-up segment induced by the + operation. With
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this function at hand it is now possible to formulate the segmentation graph
construction algorithm as in Algorithm 3.

Algorithm 3 Segmentation Graph &p(X), Template by template

1: % Initialize

2. Bp=0,k=1,...,|S(X)|
3: for k = 1,...,maxT€D|S(T)| do
4 for T €D, |S(T)| =k do

5: if feonn(0,T,+) =1 then
6 Set d(ek*) = &(T, ®1(T, X))
7 E,=FE,U e%ﬂk

8 end if

9 end for

10: end for

11: % Loop segmentation points

12: fori=2,...,|S(X)|—1do

13: % Loop database templates
14: for k=1,...,|D| do

15: if Ef = {e € Eilfeonn(Te, Tk, O;) = 1} # 0 then
16: Set d = @(Tk,q)z(Tk,X))
, i—(i+|S(Te)|-1)y _ 7 : , i
17: Set d(er, ) =d+min.cp: de) + g(Te, Tk, O, X)
18: % Add to edges in node N(;y|s(7,)|-1)
i—(i+|S(Tw)| -1
19: Eitismo-1) = Egrism-1 Yer, sy
20: % Apply beam width
21: if |E(i+\S(Tk)|71)| > Be then
22: Elivis(To)l-1) = Elirls(T)-1) — a18MaXee g sop ) d(€)
23: end if
24: end if
25: end for
26: end for

Since Algorithm 3 is the well-known Dijkstra algorithm applied to graph build-
ing with an additive template distance function, it follows immediately by con-
struction [33]. An example of constructing the segmentation graph from a
simple database can be seen in Figure 5.4. Let Tp(X) = {T|S(T) ~ S(X)} be
the set of segmentable sequences 7 = W;(T;,9;),T; € D of X. Let the sequence
with the smallest cumulative distance be defined as in

7] |7]-1

7" = argmin Zﬁ(Ti’q’Mi(l)(Ti?X” + Z 9(Zi, Tiv1, 94, X). (5.5)

TeTp(X) i—1
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Algorithm 4 Finding best path v'~!S(0! in Sp

1: SetTZ:N‘S(X)‘

2: Set v ={}

3: whilen > 1 do

4: Set '™ = argmin,cp d(e)
5 v=ovUe™n

6: n=:1

7: end while

Theorem 5.3.1. Relax the beam constraint on line 21 in Algorithm 8. Then
Algorithm 4 can be used to find T* in ( 5.5) by tracing Sp(X) produced by
Algorithm 3 from node N|s(x)|-

Proof. Clearly the best path (template sequence) needs to end in N|g(x) or it
would not be a sequence that segments X. Then the theorem follows from the
cumulative distance property of d(e) in Line 17 of Algorithm 3. |

5.3.2 Limiting the Graph Size

As seen in Algorithm 3 the computations required for the construction of the
segmentation graph are bounded by the number of database template |D| and
the number of segmentation points |S(X)|. The actual time complexity is how-
ever also dependent on the connectivity function f.onn, and on the positions of
the pen-up segments corresponding to the + operation in template space, since
these factors have impact on the number of template sequences that are similar
to the segmentation of input. In this respect a large number of unnecessary
computations have already been avoided in the construction phase. The prob-
lem with estimating the bounds of a general time complexity is thus that the
number of sequences that can be expanded from any given segmentation point
will depend tremendously on input. It is however equally clear that an exhaus-
tive search among all possible combinations of all templates is an extremely
time consuming task.

From this perspective, putting a constraint Bs on the number of sequences
that can be expanded from a given point is thus desirable. This procedure
is very common in both offline and online cursive handwriting recognition as
well as speech recognition and usually goes by the name BEAM search [39].
With this limitation the number of connective distance calculations in every
node would be bounded by this value (instead of D) as seen on in Alg. 3.21.
The normal edge distance calculations are bounded by |D| from every node
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and the total number of distance calculations during construction will thus be
bounded by O(|D|Bg (]S(X)| —1)). So in order to be computationally efficient
the strategy is predetermined to deal with various ways of limiting Bg. In
practice, however, limiting Bs also puts constraints on the templates that
connect via feonn and thus the actual average number of calculations will be
significantly smaller than |D|. The effect of varying Beg for time complexity,
memory and recognition accuracy can be seen in Table 9.9.

It is here important to stress that Algorithm 3 only works with the complete
graph 6} (X) and the reason for this is simply the Markovian characteristic of
its construction. In other words, the last edge in the best path to a given node
is not necessarily the edge used by the best path from the same node. Therefore
limiting Be will invalidate Theorem 5.3.1 and it can no longer be asserted that
the best path through &p(X) will correspond to the sequence of templates best
approximating the input. In practice, however, this does not invalidate the use
of the algorithms, but it will limit performance since sequences corresponding
to the best approximation to input are likely not to be available in Sp(X) with
Bgs for some samples.

5.4 Noise Modeling

As opposed to many other template matching techniques, segmented template
matching requires a more explicit treatment of possible noise in input. By
noise here, is meant, either involuntary parts of strokes such as those often
appearing at the start of a stroke if the writer slips with the pen, or other
segmentation artifacts. Some such artifacts, usually at the beginning and end
of strokes caused by immature hardware, have previously been the focus of
preprocessing techniques [47]. Generally noise will be treated as parts of shape
that don’t match particularly well to anything. In the recognition process this
can be handled in a number of ways:

e Introducing a noise template, possibly with special matching character-
istics

e Introducing a fixed distance value for a noise segment

e Using heuristics to introduce a dynamic template, which depends on in-
put, that models some known type of noise

Noise templates The largest problem encountered when trying to model
noise by a fixed template is naturally that noise can have the appearance of
anything that is dissimilar to a real shape. This strategy is therefore very
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Algorithm 5 Segmentation Graph &p(X), Segment by segment

1: % Initialize

2. Ey, I = @,k = 2,,|8(X)|
3 BY ={0},k=1,...,|D|

4: % Loop segmentation points
5. fori=1,...,|S(X)|—1do

6: % Loop database templates

7: for k=1,...,|D| do

8: if BF = {e € Ei|feonn(Te, T, O;) = 1} # () then
9: Set d=&(T}, & (T}, X))

10: Set d(e H“*”) = d+min e d(e) + g(T., T}, O, X)
11: % Add to edges in node N1

12: if |S(X)| > 1 then

13: I(H—l) = I(z+1) U 67_>(1+1)

14: % Apply 1ncomplete beam width

15: if |I(i+1)| > By then

16: L1y = L) —argmaxeer d(e)
17: end if

18: else

19: Add edge e}, “* as in Alg. 3.19

20: end if

21: end if

22: end for

23: % Continue incomplete matches

24: for er; € I; do

25: Set d = &(TU+D &, (TU+D X))

26: Set d(eh V) = d+ dlers) + g(T7, TV, 07, X)
27: if j +1<|S(T)| then

28: I(z+1) = I(H—l) U e;z(jjgl)

29: Apply beam as in Lme 14

30: else

31: EGit1) = 1) U e(l+1 IS(T)])—(i+1)

32: Apply beam as in Alg 3.19

33: end if

34: end for

35: end for

unlikely to succeed well. Since the aim of the noise distance is to enable stepping
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past segmentation points without matching templates from the database using
a fixed distance is probably a more suitable solution.

Fixed noise distance A weakness of the fixed distance strategy is that the
acceptable distance values for noise depend on how well modeled other tem-
plates in the database are. When the average distance values become smaller
as variation in database modeling increases this also implies that the average
value of a non-match decreases, thus affecting the matching properties of noise
with a fixed distance. The intrinsic robustness against various forms of noise
has been one of the key arguments for using network based methods without
explicit segmentation. Since the sliding window principle of such methods cor-
responds to a more global template match these are less sensitive to small noise.
In one realization, the detection of nil letters in the detection matrix could also
correspond to matching noise [101].

Dynamic noise modeling This has been the choice of method for the im-
plementations covered in this thesis and can be interpreted as a combination of
the previous two strategies. In this method noise is modeled by some observed
heuristics, but instead of using a fixed template, the template adapts to input
in some predetermined way. This will imply that those particular observations
in input will match fairly well to input whereas other types of noise not fit-
ting into the heuristic model will have large matching distance. To balance
these two possibilities and assuring that noise is indeed a database element
that does not match particularly well to anything, the matching distance can
be truncated as in ( 5.6).

dmirn if ®(Tnoisey X) < dminy
B (Thoise, X) = { B(Thooises X),  if dimin < B(Thoises X) < dinax, (5.6)
dmaxa Otherwise.

When matching noise to the segmentation graph there is also another consid-
eration, that of adding noise as separate edges or incorporating noise segments
in the database templates. The choice of strategy is here mostly dependent on
the edge addition strategy. For a template-by-template strategy it is natural
to add noise as separate edges connecting to everything, i.e.

fconn(TnoiseaTaD) = fconn(T7 Tnoise;D) = 17VT S D,D c {"'7 U} (57)

since one would otherwise have to evaluate a very large number of noise com-
binations with each template. For the segment-by-segment strategy, however,
noise can be added either as a new edge or to an existing edge in the set of
incomplete edges in each node.
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(a) Sample

(b) Approximating template sequence

FIGURE 5.6: An example of the recognition of a sample of the word change.
The aligned parts of the input sample corresponding to the best matching
template sequence shown concatenated in Figure 5.6b is shown in Figure 5.6a
with matching colors.

5.5 The Recognition Graph

The aim of the segmentation graph is to quickly conduct all relevant shape
comparisons and store this in a compact format. The segmentation graph also
allows easy access to the best path backward from any given node. Unfortu-
nately however, this is not the case for the second or n-best results. Simon [71]
has studied the application of path algebras for fast retrieval of such results
from a segmentation graph, but the distance values in that case are multiplica-
tive (i.e. probabilities) instead of additive as in the template matching case
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and rely on that they are independent of each other. Unfortunately there is
no simple way to retrieve such candidates from the complete graph &5 (X),
and to make sure that elements are returned in order of distance, only lossless
exhaustive search methods can be applied. Not only may the variation from
the best sequence of matching templates alter the segmentation (and thus not
correspond to just changing one edge), but the connection distance g(e™%, €' ™)
is just the best connection distance and thus needs to be recalculated for every
path except the best.

The pragmatic approach taken in this thesis to attack the problem has been
named the dual graph approach since it involves a second graph - the Recog-
nition Graph. In practice this means that beam searching techniques will be
applied in two levels - first to prune shape matching results and then to expand
partial results to complete word hypothesis. This second graph produces the
actual recognition hypothesis and thereby correspond to the actual path ex-
pansion in other work. In this chapter this will basically amount to summing
the edge distance values, but further merits of this structure will be shown in
subsequent chapters. In other work, averaging has been proposed as a proce-
dure for summing sequential distance values [85]. In this implementation this
has not been considered to be a good option since it fundamentally changes
the additivity principles.

Definition 5.5.1. A Recognition Graph Rp(S,X) = (N, V) for a segmenta-
tion graph & of a sample X with segmentation points {p;;} constructed by
a database I, is a graph such that each node n corresponds to a segmenta-
tion point p; and each edge v' ™7 to the properties of matching a sequence of
templates in D between segmentation points from the beginning to j.

The recognition graph uses both the matching information in a segmentation
graph as well as the corresponding sample and database to produce a set of
symbols that, in view of the distance function used, are the most similar to the
input sample.

5.5.1 Recalculated Pen-up Movements

When pen-up connections are calculated in the segmentation graph only the
best edge can be considered and naturally only the last segment can therefore
be taken into account. Since the aim of the matching process is to find the
best approximating sequence of templates in the database the match of noise
should in a modeling respect be disregarded. For this reason, when matching
noise, one noise — noise segment connection distance should be replaced by
the correct template — noise segment. This is done by remodeling a pen-up
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translation between strokes in the input sample so that the starting point of
the compared pen-up movement corresponds to the lift of the pen between
two actual template matching edges as shown in Figure 5.7. Depending on
the segmentation graph such recalculations may or may not be possible due to
the Markovian characteristic (i.e. there may be a multitude of preceding noise
edges), but the modeling of complete paths always enables such recalculations
in the recognition graph.

FIGURE 5.7: An example of pen-up recalculation (dotted line) in sample due
to matched noise edges.

5.56.2 Building A Recognition Graph

The major computations required when adding the edges in the segmentation
graph to obtain path candidates for the recognition graph are those conducted
for the connection distance. The beauty of the additivity concept explored in
this thesis is how the complete path hypothesis propagation in its initial form
basically consists of expanding the compact segmentation graph into a Trie
structure [41] with nodes sorted by their complete distance as seen in Figure 5.8.
Ad hoc summation procedures for ranking complete paths as common for most
other methods is thereby avoided [89].

5.5.3 Connection Distance Calculation

For each new edge from the segmentation graph added to the recognition graph
a new pen-up movement or concatenation distance calculation is conducted.
The connection distance of (5.4) calculated for the segmentation graph only
accounts for the connection corresponding to the best path backward for the
given edge. To get the real connection value when adding another arbitrary
edge from the segmentation graph to a path in the recognition graph this
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connection distance must therefore often be recalculated. Furthermore it is
possible to incorporate better pen-up modeling information since the complete
path from the first node is fixed for the elements in the recognition graph. For
this reason the path distance D, for a set of edges e}ﬂ”, ...,elrTIn can be

recursively defined as

Dv(vl—’jk) — Dv(vl—’jk—l) 4 d(ejk—l—’jk)+
Q(Tejk—Q"jk—l ) Tejk—l"jk ’ Djk71 ) X); Dv(vl_)jl) = d(€1—>j1), (58)

where § is the distance in (5.4) but with corrected path pen-up modeling as
described in Section 5.5.1.

Algorithm 6 Creation of the Recognition Graph Rp(X)

1: % Initialize

2: Set V; ={},i=1,...,|S(X)]

3 fork=1,...,5(X) do

4: Set V. = E}, ﬂ{elﬂ}

5: end for

6: % Expand Trie structure

7. fork=1,....,58(X),r=1,...,|E;| do

8 Let iy, be the start node of edge e, € Ej,
9 forg=1,...,|V;. | do

10: Set v = (vg 7, elx—F)

11: Set D, (v) according to (5.8)

12: Vi =V, Uw

13: % Apply Beam width

14: if |Vk| > By then

15: Vi = Vi — argmax, ¢y, Dy (v)
16: end if

17: end for

18: end for

5.5.4 Time Complexity Considerations

The time complexity for building a recognition graph depends more than any-
thing on two factors: 1) the number of edges in each node of the segmentation
graph, 2) the number of paths in each node of the recognition graph as lim-
ited by the recognition graph beam width Bg. For the segment-by-segment
strategy, naturally also the incomplete beam width B; has impact on the time
complexity.
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FIGURE 5.8: A graphic view of expanding the matching information in the
segmentation graph as in Figure 5.4 into the Trie structure of the recognition
graph.

5.6 Preprocessing Parameters

Another potentially powerful property of template matching with explicit seg-
mentation is the ease with which global shape parameters can be localized.
With global shape parameters is here implied reference line position, scaling
and other global features often normalized at a preprocessing stage [47]. Se-
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quential template matching opens up the possibilities to assess these param-
eters locally and adding a suitable distance component to g¢,§ for modeling
local changes in these global features. The relative length ratio in Table 4.1,
is such a feature as differences in length only has a one-segment memory and
thus the scaling cost of a template equals to the scaling of the first segment of
the template.



CHAPTER O

Delayed Strokes And Stroke Attachment

It is not worth an intelligent man’s time to be in the majority. By
definition, there are already enough people to do that.
G. H. Hardy
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N CHAPTER 5 it is shown how the template distance function defined in
Chapter 4 can be used to create a recognition system for connected charac-
ter input. However, this strategy makes an oversimplifying and sometimes
incorrect assumption in that all coordinates belonging to a character are

written together. This is certainly not true for western cursive writing nor
Arabic, scripts which both contain diacritic marks commonly written after all
other letters have been entered.

6.1 Introduction

An obvious problem that on-line recognition methods encounter when applied
to connected characters is the presence of delayed strokes. There are various
strategies for coping with this problem and most solutions are closely related
to the type of recognition method used. Recognition of Chinese characters is
often compared to the task of recognizing cursive words for other alphabets
[54]. In this field stroke-order invariance is a thoroughly studied phenomenon
which is handled considerably well with Dynamic Programming algorithms
[136]. For the recognition of on-line cursive script the problem has not received
as much attention and diacritical removal with simple heuristics seems to be
the most common approach although some strategies use explicit stroke re-
ordering and insert probable diacritic strokes at a spatially decided point in
time [16, 107, 124]. Often the removed information is used to boost confidence
in the final hypothesis evaluation in combination with a dictionary look-up
[50, 90, 104]. In recent work a more frequent approach is to convert the re-
moved stroke into a hat-feature added to the features of the spatially under-
lying strokes as introduced by Guyon et al. [55, 68, 101]. Since this problem
is particular to on-line methods treating the sequence of points chronologically
rather than space-oriented, it is possible that the merits of adding off-line tech-
nology may be somewhat owed to the intrinsic stroke-order invariance of the
off-line recognition setting. Nevertheless some off-line methods also try to find
an explicit association of diacritics with base shapes [30, 37]. From a problem
description standpoint the delayed strokes introduce a third complexity layer
to recognition of connected characters by adding the ambiguity of each entered
stroke can be a modifier of already entered characters. The possible confusion
cases will now be:

e Segment subpart misinterpretation - this corresponds to recognition er-
rors in conventional isolated character recognition, see Chapter 4.

e Segmentation errors - this corresponds to an error in recognized segmen-
tation. The implied letter borders in the recognition results do not cor-
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respond to the correct set of letter borders in input, see Chapter 5.

e Diacritic errors.

The last set of new Diacritic errors and a proposed algorithm for dealing with
such is the focus of this chapter. The proposed algorithm avoids the problem
of previously proposed systems with heuristically determined diacritic removal
and insertion schemes and instead match diacritic parts of characters in the
same way that other templates are treated. Previous work in trying to include
diacritics dynamically into the recognition process involves successive associa-
tion of delayed diacritics to letters earlier in the hypothesis through a best-first
paradigm [103]. The algorithm proposed in this chapter will enable a complete
beam search of the combinatorial possibilities to associate multiple diacritics
with one hypothesis as well as introduce a way to account for unmatched in-
formation in a fair manner.

In short diacritic errors can be said to belong to one of three types

1. Letter confusion - a diacritic mark has been matched as a normal letter
or vice versa.

2. Association error - a correctly recognized diacritic - such as a point - has
been associated as a modifier to the wrong part of input.

3. Diacritic confusion - a diacritic mark has been interpreted as the wrong
type of diacritic mark.

Here the diacritic confusion corresponds to shape matching errors such as those
that would arise in normal recognition with a template distance function on
isolated characters. The other two confusion cases are however particular to
how the writing of a diacritic is modeled compared to previous writing as shown
in Section 6.4.

6.2 Diacritic Modeling

Diacritic strokes are defined as the small strokes such as accents and dots added
to some letters to distinguish between similar words. In the template database
presented in this system the diacritic components and the letters they modify
are distinctly separated. The actual writing of diacritics may, just like the
ordinary set of letters, vary considerably between writers. In order to simplify
modeling, the preliminary assumption that a delayed stroke is added one at
a time is made in Definition 6.2.1. In cases when a diacritic is composed of
multiple strokes this means that each such stroke will be treated separately.
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diacritic template >

)

diacritic template

anchor point

liacriti¢ pen-up

base shape

base shape anchor point

(a) "Tah’ template (b) ’Kaf’ template

FIGURE 6.1: A plot of the pen-up modeling for attaching diacritics to tem-
plates.

Definition 6.2.1. A diacritic shape is a part of a character that is written
distinctly separated into a single stroke.

Templates corresponding to letters without diacritic marks will here be called
base shapes. All letters with variations in diacritic marks but with the same
base shape will share this template. The modeling of the position of the dia-
critic relative the base shape is done by associating a pen-up movement (i.e.
translation) from a designated point in the template, called the anchor point
as seen in Figure 6.1. Let ol denote a pen-up attached to point index a of tem-
plate T'. As diacritic marks appear both below, above and even in the middle
of characters, the endpoint of this movement may correspond to min, max or
center value of the diacritic stroke. Two samples with pen-up movements in
opposite directions connected to the vertical minimum of the diacritic template
are shown in Figure 6.1.

In the case when the anchor point corresponds to the last point in the template
and the diacritic in input is the next stroke after the base shape, recognition will
correspond simply to connected character recognition as described in Chapter 5
of a base shape template and a diacritic template. For diacritics in connected
writing however, this is almost never the case and therefore a more elaborate
modeling as described in Section 6.3 is required to make sure that previous
assumptions on additivity used for the connected character recognition are
sensible.
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6.3 Pen-up Attachment

The system for recognition of on-line sequences of connected characters pre-
sented in previous chapters is Markovian in the sense that recognition of a new
part of a sample only depends on the recognition of the immediate predeces-
sor. There is no way to associate delayed strokes to base shapes. This section
describes a new stroke attachment paradigm to cope with this problem. In the
discussion in previous chapters it has been assumed (although not explicitly
mentioned) that characters in the connected character sequence in input fol-
low a chronological order. This means that the pen-up segments discussed in
Section 4.2.2 can be used directly for recognition. In view of the frame energy
concept of Section 4.1 each such pen-up movement corresponds to the bar con-
necting two strokes. To provide a suitable basis for good recognition results
these pen-up movements need to be stable features in input with as small vari-
ance as possible, and from this standpoint the chronological pen-up modeling
is not always a good choice. Consider the chronological pen-up segments of the
Arabic word las in Figure 6.2 for instance. It is quiet clear that some of the
pen-up movements in input corresponding to the diacritic attachment depends
on the width of other characters. To improve this situation two new concepts
for modeling stroke connections in input are introduced and the corresponding
pen-up attachments are shown in Figure 6.2.

Recalculated pen-up This term has already been introduced in Section 5.5.1
and corresponds to changing the modeling of the attachment point be-
tween base shape templates.

Diacritic pen-up This remodeling is often accompanied by a recalculated
pen-up since it only models the pen-up movement from the anchor point
in the template to the diacritic template and never from the diacritic
template.

6.3.1 Input Segmentation

Clearly as seen in Figure 6.2 the proposed remodeling schemes only modify
the pen-up movements between strokes. How does this impact on the task
of comparing and ranking the approzimating sequences of templates to input?
Since each pen-up remodeling corresponds to another set of pen-up segments
in X it is natural to introduce a remodeling function X : S(X) — S(X),
where the space S(X) consists of all variations in pen-up modeling of identical
segmentation points S(X) so that even though S(X) = {p} is constant, the
resulting segments {A}Li(lx)l_l will differ. In the view of the optimization
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Chronological pen-up

diacritic pen-up

ke
7

diacritic pen-up

FIGURE 6.2: Some examples of pen-up reorderings and reassociations in a
sample containing diacritic strokes for the Arabic word laa>.

problem of finding the best approximating template sequence. This will add
X as a subject of minimization and the best approximating sequence in this
respect will now be the solution to

7| ITI-1
arTgr)réinZQS(Z,<I>¢Ti(1)(7§,X(X)))+ > U(T T, 05, X(X)).  (6.1)
’ =1 =1

6.4 Dynamic Treatment Of Diacritic Strokes

In view of (6.1) it is clear that Algorithm 6 needs modification in order to handle
the problem of finding the best template sequence. The actual pen-up remod-
eling implications to template distance is easily handled by the recalculated
distance function in (5.4), the chronological dispersion of diacritics from their
base shapes however, will cause problems. The reason for this is the sharing
of diacritic templates for the base shapes. Since a base shape may correspond
to several different symbols solely differing by their diacritic variations, not
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including the diacritic information in matching the base shape may cause a
combinatorial explosion of possible symbol sequences and without the diacritic
matching information each such symbol sequence will have the same distance.
There are a few intuitively direct ways to attack this problem.

1. Insert heuristically designated delayed strokes into a chronological point
sequence [16, 124].

2. Handle symbol ambiguity at a path level to avoid the combinatorial ex-
plosion of symbol sequences. This corresponds to matching completely
without diacritics only applying such knowledge in a postprocess to dis-
criminate between ambiguous words [36, 50, 90, 104].

3. Include the future diacritic matching information in the path calculation.
This strategy is the most common for HMM and neural network based
methods where all delayed strokes are removed by simple heuristics and
incorporated into the feature sequences through the hat feature [55, 68,
101].

Only the second method is covered in this thesis, and this choice is motivated
by two strong arguments. Firstly, handling ambiguity at the symbol sequence
level would still not aid in taking early decisions as to whether a complete
template with a diacritic matches well. Thus it would force the recognition
graph to store more paths in every node to handle sequences that would be
very unlikely given the complete input with diacritics. An example of this
in English for instance is the recognition of a sample of the word minimum
as shown in Figure 6.3. Since the letter ’i’ without a dot here matches well to
parts of 'n” and 'm’ the recognition graph will have to keep track of lots of paths
that have a very large matching distance if the required diacritic matching were
to be included. An example of such a sequence that would be unlikely given
a priori diacritic associations is the segmentation corresponding to template
sequence ‘iciininciun’ shown in Figure 6.3b. The other argument for including
diacritic matching information in the path calculations involves the interaction
with lexical knowledge presented in Chapter 7.

6.4.1 Diacritic Matching

The diacritic templates themselves are not treated as ordinary base shapes
and the main difference are the implementational aspects of Definition 6.2.1.
This definition implies that matching of diacritic templates to input should be
restricted so that diacritic edges containing the match of one diacritic always
start at the first node of a stroke and ends in the last node of the same stroke.
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(a) Sample

S EIARL LT
e |* KYR/ ReV &4 K/ 4

(b) Segmentation from template sequence

FIGURE 6.3: A sample of the cursive word minimum demonstrating the typ-
ical problem with diacritic association, here shown with a different template
segmentation.

Thus only the best path containing precisely one diacritic is calculated for each
stroke 7, i.e.
S; = argmin Dy, (v s, (6.2)

1t s (x9))

where |S(X7)]| is the number of nodes in stroke j, and i1,7|s(x4)| denote the
indexes of the first and last segmentation points of stroke j respectively. The
best path for a diacritic template T' in (6.2) will be referred to as a diacritic
edge e%(']. Let c?,(e%(']) denote the distance for the diacritic edge of template
T matched to stroke j. To denote the category of templates matched from
the template database ID the notation Dp,Dp for the diacritic and base shape
templates is introduced respectively. The set S; can be calculated using Al-
gorithm 6 with D = Dp and with restrictions on symbol sequences so that it
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contains precisely one edge corresponding to a diacritic template (but possibly
multiple noise edges).

The best paths at stroke level for non-diacritic matches are also stored thus
providing a set of conditional best stroke-level paths S;|p=pg,Si|p=n-

6.4.2 Diacritic Attachment

The diacritic stroke paths are added to the segmentation graph as extra edges
between start and end-point but with specific connection properties which also
involve stroke pen-up reattachment as seen in Figure 6.2. Unlike the connection
properties in (5.1) the connection properties for a diacritic stroke path depend
on the complete previous path and the diacritic properties of its matched base
shape template. Let ©,(e) denote a diacritic property with anchor point a of
the base template for the symbol corresponding to the edge e. The distance
for a complete diacritic edge match is complemented by the matching of the
diacritic pen-up as

d(er,a) = d(er) + (ol , Te, Xpr (X)). (6.3)

Now every path v will contain not only the set of matched edges {er} but
possibly also a set of unmatched templates {D,(e)} = U. With this notation
in mind the connective function in (5.1) can be extended to act on diacritic
edges e corresponding to template 7" and path v corresponding to template
sequence T = {7 }‘jlil as

fCOnn(ﬂ1)"T79)7 if T e ]DB
feonn(v,T,0) = {1, if T eDp, TeUW),D=+. (6.4)

0, otherwise

Limitations to the diacritic modelings searched introduces a diacritic beam By .
Here this beam is defined as the size of the set of diacritic edges {e%{ '} for each
stroke j. This set can be ordered according to the complete diacritic edge dis-
tance d(e%{ ;) and limited so that only the Bp edges with smallest distance are
kept. Since the set of possible stroke reattachments X change only the pen-up
movement between strokes, matching characteristics will differ only after a pen-
up segment has been passed during the construction of the recognition graph.
Thus for every such path expansion (adding an edge after pen-up segment)
the set of matching reattachments going forward will depend on if the chrono-
logical, some recalculated pen-up or diacritic pen-up was used for the pen-up
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matching. After the final pen-up has been matched the particular reattachment
used will be unique. In order for the previous discussions of approximating best
template sequences with graph techniques covered in Chapters 4 and 5 to be
valid the compared input sample must remain the same. This is no longer true
for stroke reattachments since each reattachment alters the pen-up segments.
In view of the Frame Energy concept the stroke attachments can be seen as a
way to model input and in this sense the comparison of path scores resulting
from different stroke attachments will correspond to comparing different graphs
each corresponding to a unique model as seen in Figure 6.6. The corresponding
recalculated connection distance will also depend on the attachment and takes
the form of

Dy %) = Dy (0 =9) + A=) + §(Thrs1, Tos i, X s (X)), (6.5)

where X,1—;(X) is the set of stroke attachments that contain the pen-up seg-
ments matched in v*77. With this notation at hand, there are a number of
issues to attend to before presenting the dynamic diacritic recognition algo-
rithm. First of all is the validity in comparing different version of input. In
terms of finding the template sequence and stroke attachment fulfilling (6.1)
this proposed strategy simply corresponds to sequential optimization of the dis-
crete variables X and 7 and thus the solution will be found with an exhaustive
search. The proposed algorithm will merely bound this search in time.

6.4.3 Attachment Point Invariance

In the introduction of the additivity concept it is stated that template sequences
should be treated fairly i.e. independently of their segmentation when matched.
It is possible to define a similar property for the stroke attachments.

Definition 6.4.1. A pen-up segment distance function is attachment point
inwvariant if its output depends only on the relative position of the pen-down
parts on either side of the pen-up and not on the actual pen-up segment itself.

It is clear that the conventional distance function with the frame features pre-
sented in Section 4.2.1 will produce different distance values for the case seen
in Figure 6.4 as the difference in angle is very small for the case of match-
ing the template with anchor point as to attachment X5 and quite large when
comparing the template with anchor point a; to attachment X;. Lacking this
property the matching properties for diacritical marks will depend not only on
their position (including the diacritic pen-up as seen in Figure 6.1) but also
on their anchor points. Due to the angular feature a harsher handling will be
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as

(a) Sample (b) Diacritic template

FIGURE 6.4: An example of the attachment point invariance problem. Even
though the two attachment points a1, as result in identical templates, the tem-
plate distance to the corresponding stroke reorderings Xj, X5 of sample in 6.4a
may differ due to the differing differences between pen-up segments.

achieved by minimizing the length of the diacritic pen-up segments as seen in
the comparison of the anchor points a;, as in Figure 6.4.

6.4.4 Graph Handling

Not only does the pen-up recalculation dependency in ¢ of (6.5) imply that
paths corresponding to different reattachments of the input sample compete in
the same graph. In order to suppress the size of the beam when building the
recognition graph, i.e. the number of kept paths in each node, some kind of
preliminary attention must be given to the set of unmatched edges U(v'™). To
accomplish this, the branch-and-bound strategy from combinatorial optimiza-
tion is introduced. For each path it is possible to compute the best possible
path forward by utilizing the best stroke-level paths as determined by (6.2) and
further conditioned by U. This way the list of best paths in Algorithm 7 can
always be sorted by the best possible distance from start to end, albeit some-
what optimistic. This combined distance is referred to as the sorting distance
Dyort as defined in (6.6).
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(a) Sample

(b) Simple segmentation graph

FIGURE 6.5: A graphic display of Algorithm 7 showing the gradual decrease
in number of stroke attachment models evaluated during graph expansion.

Dyort (0 7F U0 ™F)) = D, (v} ~F)+
S

Y min (d(Sw)log.de)), (6.6)

xm 1k
m=s-+1 ¢ €U )

where S are the number of strokes in input and s is the index of the stroke
containing node k.

Another issue is what to do with the set U when no suitable diacritics are found.
The simple intuitive approach to this case taken in this thesis is to introduce
a penalty to each path as soon as it becomes clear that an element of U(v!™)
is impossible to match given the remainder of the input sample. This is called
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X1, Xy, Xs

FIGURE 6.6: Recognition graph expansion of the segmentation graph in Fig-
ure 6.5b.

missing diacritic punishment and is added as fpen(U(v'7)) to (6.6).

Ambiguous Path Expansion

Another difficulty with the unmatched edges is the embedded ambiguity which
result in that the path expansion with a diacritic edge is ambiguous (unlike the
base shape case as seen in Figure 5.8. The ambiguity is caused by two factors:

e One template with diacritics can have several alternative ways of doing
this, such as two dots converted into one 'two-dot’ stroke.

e If there were several unmatched edges corresponding to the same diacritic
template, the same diacritic edge can be added in different places for the
same sequence of edges resulting in identical paths apart from stroke
attachment. A symbol requiring two dots can for instance use either
stroke for each of the dots.
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The first ambiguity implies that the same path can have several alternative
sets of unmatched edges denoted by U(v'™) = {Um(vl—’)}ﬂf(:”fﬂ‘, and thus
contain many alternative futures. The second ambiguity is not an ambiguity in
a real sense since the stroke attachments differ and thus the distance values. On
the other hand with respect to the performance of the beam search conducted
by the recognition graph algorithm, there should not be multiple paths in the
graph corresponding to exactly the same edges. To cope with this problem a
secondary beam search within the set of identical edges sequences is performed
by simply limiting the set for every new diacritic edge (corresponding to such
an expansion), so that at most the best By different stroke attachments X are
stored per sequence as seen in Figure 6.6 and in Algorithm 7.24. Note also that
each such stroke attachment will carry its own set of unmatched edges which
is thus also conditioned by the stroke attachment U(v!™, X).

Time Complexity Considerations

The two time consuming part of the added diacritic handling is searching for
attachment points whenever a new diacritic edge is encountered and recalcula-
tions of the sorting distance. Each stroke attachment alternative carries its own
set of unmatched edges and each of these must be searched for possible ways
to attach the new edge. Similar operations are performed for determining the
sorting distance as the minimum stroke distance with a diacritic in the future
will depend on if that diacritic can attach to an attachment points amongst
the unmatched edges. As seen in the experiments conducted in Section 9.4.1
the memory and speed effect of the two diacritic related beams Bg and By is
marginalized by the other beam sizes in the graph structures.
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Algorithm 7 Constructing Rp({X"}{_,) with dynamic diacritic handling

1: Create a segmentation graph according to Algorithm 3 or 5

2: Determine S;|p=1,,i=1,...,5

3: forr=1,...,5 do

4: k= Z;Zl |S(X7)| % k is the index of the last node in stroke v
5: Set By = E, U{eX Y23 % Add diacritic edges

6: end for

7: % Initialize recognition graph

8: Set Vi, = {el_’k|61_>]C S Ek},k =1,...,|8(X)|

9: % Loop strokes

10: forr=1,...,5 do

11: % Loop segmentation points per stroke

12: for j=s1,...,55x) do

13: fork=1,...,|E;| do

14: Set iy, to start node of ei’“ﬂj

15: if i, < 81 then % This is a new stroke

16: Update X,(X),v € V;,

17: end if

18: forli=1,...,|V;, | do

19: if fconn(’l}ll%lk , Tezk_’j ,9;,.) =1 then

20: Calculate D, (v),”) N VX € X (X)

21: end if '

22: Update U(v}; 7, Xy (X))

23: Set Djort(vll;J) = minXeX“Hj(X) Diort(v1=7,U)
4 UeU(UlLJ,X)

24: Limit |U(v}kff,xv;;j (X)) < By

25: Vi =V;Uuv, 7

26: if |V;| > By then% Apply beam width

27 ‘/J = ‘/J - argmaxvevj D:ort(v)

28: end if

29: end for

30: end for

31: end for

32: end for
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CHAPTER [

Application of Linguistic Knowledge

Acorns were good until bread was found.
Francis Bacon
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PART FROM THE SUPERPOSED complexity of segmentation and dia-
critic association problems, another difficulty with connected char-
acter recognition is that the nature of such writing is prone to