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point found at the origin. Both of these features are functions of 
the design rule chosen to select lattice quantizer code book 
points. Since the same rules are used to design all the code books 
of this correspondence, all of the quantizers of Tables 1-111 
demonstrate zero and infinity a performance similar to that 
indicated in Figs. 5 and 6. 

Notice that the SNR curves become more broad and offer less 
SNR performance as the source pdf changes from normal to 
Laplacian and then to gamma. The nature of the Laplacian and 
gamma sources cause the regions of greatest source vector proba- 
bility to spread through n-space along each of the coordinate 
axes, while a normal source is spherically symmetric about the 
origin of its space and show no source vector directional prefer- 
ence. The “ tailing” effect of the probability concentrations 
about the axis is the cause of the peak broadening of the 
Laplacian and gamma curves. Both the A and D lattices spread 
their points through n-space in a very symmetric manner and the 
full shell lattice quantizers of this correspondence are expected to 
perform less than optimally for a source that is not symmetric 
because many of the code points are spread throughout the 
central regions of the source space quadrants and are virtually 
unused. This causes the mse performance of the above “spheri- 
cal” code books to be worse than those quantizers whose code 
books are built with a point placement that shows a preference 
for the source space coordinate axes. No simulations taking this 
point into consideration were performed in this work, (see [17] 
for vector quantizers designed with the LBG algorithm for the 
Laplacian and gamma pdfs that show “tailing” preferences in the 
code book point placements). 

Since the gamma SNR performance of these quantizers has 
relatively broad peaks that encompass a large range of a, it is 
possible to select one of several different entropy rates for coding 
without suffering a loss in the expected SNR performance of a 
gamma-based system. This feature is not as significant for the 
Gaussian and Laplacian cases, where the SNR profiles tend to be 
more peaked. 

IV. CONCLUSION 
The expected mse performance of various low code rate vector 

quantizers, based upon the low dimension A and D lattices, can 
be better than that of the best scalar quantizers with equivalent 
code rates. This can be achieved with lattice-based quantizers 
that are designed by simple methods that do not guarantee 
globally optimal results. While the design algorithm presented 
offers only modest improvements in mse performance for a 
normally distributed source, improvement gains of up to several 
decibels can be achieved when coding Laplacian and gamma 
sources. 
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On Sequential Decoding for the Gilbert Channel 
V. SIDORENKO, ROLF JOHANNESSON, MEMBER, IEEE, 

AND K. SH. ZIGANGIROV 

Abstract --It is well-known that the computational performance of se- 
quential decoding deteriorates drastically when channel errors occur in 
clusters. Hagenauer suggested a feasible modification of sequential decod- 
ing which uses a burst-tracking method for better performance. At each 
step he considers the channel to be memoryless, but with varying probabil- 
ity of error. A different way of using sequential decoding to exploit the 
memory of a Gilbert channel is presented. A Fano-like metric matched to 
this channel is used. The methods are investigated by simulating sequential 
decoding utilizing the stack algorithm. These simulations confirm the 
feasibility of the proposed techniques. 
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I. INTRODUCTION 
In digital transmission over many real channels, the errors 

occur in bursts separated by fairly long error-free gaps. Since 
most error control systems are designed for memoryless channels, 
interleaving is often used to smear out the errors and create a 
channel that is effectively memoryless. However, in many appli- 
cations this causes an unacceptable delay. Since the existence of 
memory implies more capacity, it is tempting to exploit the 
memory when designing the error control systems. 

Gilbert [ l ]  suggested the following model for a channel with 
memory: a binary symmetric channel in which the crossover 
probability is determined by a two-state Markov chain (Fig. 1).  
In the “good state” G the channel is always error-free. In the 
“bad” or “burst state” B the crossover probability p is equal to 
1 / 2 .  

P 

1-p 

p.0 P p.112 

Fig. 1. Gilberts’s model for channel with memory 

Standard sequential decoding performs very poorly on a Gilbert 
channel. To exploit the memory we modify the stack algorithm 
[2 ] ,  [3 ]  by combining short interleaving with the use of a Fano-like 
metric matched to the channel and obtain a substantial improve- 
ment in computational performance. 

In Section I1 we give a brief description of Hagenauer’s [4]  
method for sequential decoding on burst-error channels. Also, we 
suggest a slight modification of this algorithm which gives an 
improvement when the interleaving is short. In Section I11 we 
describe a new algorithm and in Section IV we report on simula- 
tions which confirm the superiority of our algorithm when the 
interleaving is short. An “embryo” of our method was presented 
in Gr’hna [5 ] .  

11. HAGENAUER’S BURST-TRACKING METHOD 
To improve the computational performance of sequential de- 

coding, Hagenauer suggested a method that, in addition to inter- 
leaving, keeps track of a burst during decoding. He used the 
channel statistics of a four-state Markov model, simulated both 
modified stack and Fano decoders with high rate codes, and 
showed the feasibility of his method. 

Hagenauer’s method is based on interleaving. The de-inter- 
leaver matrix is filled from the channel, column by column. The 
sequential decoder moves row by row. Let n denote the number 
of channel symbols per branch. Assume that the number of 
columns in the matrix rn is large enough so that the decoder 
never backs up more than r subblocks. Hagenauer uses a burst 
indicator for each column to keep track of whether the channel is 
in the burst state or in the good state. The probabilities of being 
in a burst, when the burst indicator is at certain levels, are 
calculated and used in the evaluation of the Fano metric [6 ] .  

If the interleaving is short, the sequential decoder will back up 
more than r subblocks, and the stack algorithm might get into 
trouble. To avoid incorrect alteration of the burst indicators, we 
modify the method and store the set of burst indicators together 
with each node on the stack. This modified algorithm is, of 
course, more complex but could be used as a reference when we 
compare different methods from a computational distribution 
point of view. 

111. SIDORENKO- JOHANNESSON-ZIGANGIROV 
(SJZ) ALGORITHM 

Let us consider a rate R = k / n ,  memory M, binary convolu- 
tional code, which we represent by the generator matrix G ( D ) ,  
where 

C i ( D )  G : ( D )  ... q ( D )  

G ( D ) =  : ]  i G : ( D )  G i ( D )  ... G ; ( D )  

and 

G l ( D ) = g h , , + g : , D +  ... + g b , D M  

where 1 = 1,.  . . , n ,  and u = 1 , .  . . , k. The information sequence 
i f ) ,  i a ) ;  . -, i a ) ,  Zi’), ii’); . . , i l k ) ,  . . . is encoded as the sequence 

x = x(1) x f ’ , .  . . , $1, $), Xf2’,. . . , . . . 
0 7  

where 
k M  

xj‘) = i$E)sgLt, (mod2). 

The encoded sequence x is divided into frames. Each frame is 
divided into blocks of length Lm. The first block is shown as: 

o = l  s - 0  

The blocks are transmitted columnwise. The received sequence 
y is de-interleaved in the obvious way. We will choose as our 
stack decoder output the sequence x, which maximizes the loga- 
rithm of the a posteriori probability log, P [ x ,  s l y ] ,  where s is the 
state sequence. This is equivalent to maximizing 

where P [ x ]  = 2- ‘R  and t is the path length. Following Fano [7 ] ,  
P [ y ]  is approximated by P O [ y ] = 2 - ‘ .  Hence we have the dia- 
gram in Fig. 2. 

State Transitions Metrice 

aG = IOgz Z - R  > O 

-a noerror ag =log, - R < o 

ag =log, + ‘(1-a) - R < 0 

Fig. 2. State transitions and corresponding metrics 
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Since the stack decoder always follows the path with maximal 
metric the decoder will never make the transition G --* B ,  no 
error. Even if the true state transition is G + B ,  no error, the 
decoder will make the transition G -, G ,  no error. 

Let T be the largest integer such that 

b, + TUG + b, < (7 +2)U, 

The ideal stack decoder will never contain more than T consecu- 
tive state transitions B ,  no error + B ,  no error. Furthermore, it 
will never contain less than T + 1 consecutive state transitions G ,  
no error + G, no error between two B ,  error states. 

To simplify our decoder, for each of the m columns in the 
de-interleaver matrix we use a flag to denote when we are in a 
bad state. The flag will be reset after receiving T consecutive 
error-free symbols, where TI  T + 1. Thus our Fano-like metric rn 
will be calculated for each received symbol according to the rules 
in Table I. Our Gilbert channel (see Section IV) gives T = 9 but 
simulations indicate that we should use T = 6. 

TABLE 1 

State 
Situation Transition Flag Metric 

No flag, no error 
No flag, error 
If flag and 

G + G 
G -r B 

~ m + uG = log, 2(1- P) - R 
set flag m + hc; = log, P - R 

T consecutive 
error-free 
symbols B + G reset flag m t h, =log, 2Q - R 

Otherwise B - r B  - m t u , = l o g , ( l - Q ) -  R 

Iv. SIMULATIONS 

To investigate the distribution of the average number of com- 
putations we conducted several simulations. Three different codes 
were tested, viz., an optimum distance profile (ODP) systematic 
convolutional code with rate R = 1/3, memory M = 19, dlree = 24, 
and distance profile d = [3,4,5,6,7,8,9,10,11,11,12,13,13,14, 
15,15,16,16,17,18], [8]; an R = 216 systematic convolutional 
code with M = 9 and an equivalent initial (over the first seven 
branches) growth of the column distances d = [3,5,7,9,11,12, 
13,14,16,16] and with generator (octal notation): 

1 4000 oo00 5660 6424 3574 1340 
' -  -i OOOO 4000 1440 2254 5764 7214 

and, finally, an R = 2/6 systematic convolutional code with 
M = 9 and an initial growth of the column distances that is 
optimal over the first four branches, d = [4,6,8,10,ll,l2,13,14, 
15,171. This code has generator 

0000 4000 1540 5014 7524 6754 
4000 oo00 6760 3264 4034 7040 

The simulated Gilbert channel had P = 0.005 and Q = 0.05. 
Hence we will stay in the burst state P/( P + Q) = 9 percent of 
the time. For the three different codes 500 frames each consisting 
of lo00 information digits (augmented with a tail of dummy 
zeros) were decoded by the SJZ algorithm. The interleaving was 
( L m  = ) 600 bits. For a given interleaving the value of r that was 
optimal from a computational distribution point of view was 
chosen. The computational distributions are shown in Fig. 3 and, 
as expected, the rate R = 2/6 codes gave better computational 
performances than the R = 1/3 code. For this reason we used the 
rate R = 2/6 code with generator GI to compare the computa- 

'branch >Nl 
1 2 

I 3 b N  

R:l/3, r:6, L.33 

Clossical stack algorithn 
Interleaving =600 
R=2/6wi th  generator G2.r=4.L=25 

R=2/6 with generator G1, r.3, L.33 

Classical stock algorithm 
Interleaving =MOO 
R=2/6with generatorG2 r=9.L:56 

Fig. 3. Computational distributions for three different codes decoded by the 
SJZ algorithm using interleaving 6M) bits. For comparison, performance of 
classical stack algorithm using interleaving 600 and 3000 bits is shown. 

P[ocornp./ bramh rN I 

I l N  

1 

Hag ,r=5,L=10 
Per, = 029 
Pems= 097 

Interleaving- XQ 
#frames=350 

\ 
Mod Hag, rz4.L.13 
Perr = 009 
Pwos= 054 

Hag .r=5.L=100 

Interleaving = 600 
ttframes. 500 Perr '0 . 

Mod, Hag., r.5. L:20 
Perr = 002 

Pem- 0 

P-o 3 1nter1eaving=30~ 
#frames=500 

Fig. 4. Comparison of Hagenauer's stack algorithm with our (more complex) 
modification of his algorithm for three different interleavings: 300. 600. and 
3000 bits. 

tional performances of the algorithms. For comparison we also 
show the computational distribution for the same channel and 
the interleaving when the classical stack algorithm is used. 

In Fig. 4 we compare the computational distributions obtained 
by Hagenauer's algorithm with those obtained by our (more 
complex) modification of his algorithm. Using 3000-bit interleav- 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 5 ,  SEPTEMBER 1988 1061 

ing the algorithms show similar performances. The modified 
algorithm is somewhat better with 600-bit interleaving, but for 
short interleaving (300 bits) the modified algorithm is, of course, 
much better. 

Finally, in Fig. 5 it is shown that the SJZ algorithm gives 
slightly better performance using short interleaving than the 
modification of Hagenauer’s algorithm does. 

Fig. 5. Comparison of our modification of Hagenauer’s algorithm with new 
SJZ algorithm for three different interleavings: 300,600, and 3000 bits. 

Remark: The modifications of the algorithm necessary to deal 
with a more general channel are nontrivial. In [9] we presented 
some preliminary results for the Gilbert-Elliot channel. 
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Multiple Burst-Correcting Array Codes 
MARIO BLAUM, MEMBER, IEEE, PATRICK G. FARRELL, 

MEMBER, IEEE, AND HENK c. A. VAN TILBORG, 
SENIOR MEMBER, IEEE 

Abstract -Two families of binary linear multiple burst-correcting array 
codes are presented. The codes consist of all possible n1 X n, arrays over 
GF(2), where the columns have even parity and the rows belong to any 
given code of length n, and minimum distance 2 t .  It is shown that if the 
bits are read out diagonally instead of horizontally, each diagonal followed 
by the preceding one (viewed cyclically), then the code can correct up to t 

bursts of length I n1 if and only if n ,  2 2tn,  + 1. If each diagonal is 
followed by the next one, the code can correct up to t bursts of length 
- < n1 - 1 if and only if.n, 2 2r(n, -2)+1.  For t =1 some of these results 
are already known. Decoding algorithms are presented, and the case t = 1 
is discussed in more detail. 

I. INTRODUCTION 
Consider the simple binary array code n1 X n2 where each row 

and column has even weight. It is well-known that this code can 
correct any random error. However, if the bits are read diago- 
nally instead of horizontally, the code can correct a burst of 
errors [l], [5]. The diagonal readout proceeds as follows. Fix a 
parameter s, 1 I s I n2 - 1, gcd(s, n 2 )  = l ;  start in the upper left 
hand comer, and read the corresponding diagonal; then do the 
same thing to diagonal s, then to diagonal 2s ,  etc. [7]. The array 
is viewed cyclically on n,, i.e., the last column is followed by the 
first one. Fig. 1 shows an example of diagonal readout with s = 3. 

The purpose of this correspondence is to generalize the result 
[l], that the n1 x n,-code with readout s =1 can correct any burst 
of length up to n, - 1 if and only if n, 2 2n ,  - 3. (Codes with 
s = 1 were investigated also in [2] and (51.) 

We study arrays in which columns have even weight and rows 
are codewords from a code with minimum distance 2t .  It was 
observed [3], [4], that in some cases one has multiple burst-error 
correction. The proposed decoding algorithms depended on the 
specific choice of the code of minimum distance 2t .  Only the 
readout with s =1 was considered in [3] and [4]. Here we obtain 
conditions on n, and n2 that are independent of the particular 
code of minimum distance 2t implemented on the rows. We 
concentrate on the case s = n, - 1 (denoted s = - l),  but the 
analogous result for s = 1 is also given. Our main result is proved 
in the next section and can be stated as follows: Consider the 
n, x n, array code with the s = - 1 readout, each column having 
even weight and each row being a codeword in a given code of 
minimum distance 2t .  Then this array code can correct up to t 
bursts of length I n, if and only if n2 2 2tn1 +l. 

A similar result can be obtained when s = l .  In this case, the 
array code can correct up to t bursts of length I n, - 1 if and 
only if n2 2 2t(  n, - 2)  + 1. Notice that when t = 1, we obtain the 
result of [l]. 

In Section 111 we discuss decoding strategies. In Section IV we 
study the special case t = 1 and shortening procedures. 
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