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Abstract 

 

Sphingolipids are abundant in the microvillar membrane of intestinal epithelial cells 

where they are essential for structural integrity and may act as receptors for toxins, 

virus and bacteria. Metabolism of dietary and membrane sphingolipids in the intestine 

generates ceramide, sphingosine, sphingosine-1-phosphate, and ceramide-1-

phosphate, via the action of alkaline sphingomyelinase, neutral ceramidase, 

sphingosine-1-kinase, and ceramide-1-kinase. These intermediary metabolites act as 

bioactive lipid messengers, influencing numerous cellular functions including growth, 

differentiation and apoptosis of both epithelial and immunocompetent cells in the 

gastrointestinal tract, and also the progress of inflammation and responsiveness of the 

mucosal cells to pathogens.  This review summarizes background and recent progress 

in the metabolism of dietary and endogenous sphingolipids in the gut and its 

pathophysiological implications.   

 

Key words: ceramide, ceramidase, ceramide kinase, colon cancer, glucosylceramide, 

inflammatory bowel disease, intestine, sphingolipid, sphingosine, sphingosine kinase, 

sphingosine-1-phosphatase, sphingomyelin, sphingomyelinase.  
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1. Introduction 

The interest in sphingolipids is increasing. A number of recent reviews have 

covered broad perspectives on sphingolipids, including metabolism (1, 2), absorption 

and transport (3),  roles in signaling pathways (4-8), enzymes involved (9-11), and 

relation to tumorigenesis (12) and inflammation (13). Among the biologically active 

sphingolipid metabolites, ceramide and sphingosine-1-phosphate (S1P) are considered 

most important. Ceramide is a major lipid messenger that inhibits cell proliferation 

and induces apoptosis via dephosphorylation and inactivation of several proliferative 

and antiapoptotic molecules such as Akt, Bcl-2, PKC and pRB. It also activates 

several kinases as Raf kinase and JNK depending on cell types (10, 14, 15).  S1P 

functions as a second messenger inside the cells, and as an extracellular signal via G-

protein coupled receptors (5, 16). Increasing evidence indicates important roles of 

S1P in regulation of cell growth, angiogenesis, immune function and lymphocyte 

traffic, affecting downstream signaling molecules such as PLC, PI3K, Akt, VEGF, 

and COX 2 (16-18). Recent studies have indicated that ceramide-1-phosphate (C1P) is 

also an important lipid signal that affects cell proliferation and inflammation through 

activation of PLA2 (19, 20) (Fig. 1).  

Sphingolipids, in particular glucosylceramide, are abundant in the apical 

membrane in the absorptive epithelium in the gut, and are considered important for 

the preservation of structural integrity during exposure to bile salts and enzymes (21). 

The brush border sphingolipids may also support the insertion of transporters and 

receptors, necessary for the selective and effective transport of nutrients into the cells, 

although these aspects are poorly characterized. Sphingolipid composition changes 

when crypt cells differentiate to mature absorptive cells, reflecting the close 

connection between sphingolipid synthesis and mucosal regeneration and 

differentiation.   

Hydrolytic ectoenzymes, including those digesting sphingolipids, account for 

an important part of the proteins of the brush border (21). Sphingolipid metabolites 

may thus be generated both by intracellular enzymes occurring in most cell types and 

by ectoenzymes acting on sphingolipids in the diet and in the outer leaflet of the 

absorptive cells. The generated ceramide, sphingosine, and S1P are intermediates in 
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the conversion of sphingoid bases to chylomicron palmitic acid or in sphingolipid 

synthesis; they may reach signaling targets and act as messengers (3).   

The relation of the sphingolipids in the gut to intestinal inflammation and 

colorectal cancer (CRC) is a novel and complex issue. Both CRC and inflammatory 

bowel diseases (IBD) are common diseases that result from gene - environmental 

interactions including a dietary influence. Current hypotheses for IBD pathogenesis 

emphasize a deregulation of the normal inflammatory response to the commensal 

bacterial flora (22). Studies on gene targeted animals and in patients indicate that 

deregulation originating from defect barrier integrity, or from innate or specific 

immunity, may result in similar phenotypes (23). Lipid signaling via eicosanoids, 

glycerolipid- and sphingolipid messengers is an important feature of IBD (24). Most 

CRCs involves a stepwise series of mutations resulting in a progression to benign 

adenomas and eventually CRC, which can long be influenced by diet and drugs (25, 

26). The role of lipid messengers is highlighted by the protective effect of 

cyclooxygenase inhibitors (NSAID, non steroid anti-inflammatory drugs) against 

CRC development (27) and by the fact that the same types of the drugs make 

ulcerative colitis worse (28). 

This review focuses on the metabolism of sphingolipids in the gastrointestinal 

tract and the potential relation to mucosal protection, inflammation and 

carcinogenesis. Since the exposure to exogenous sphingolipids and the enzymes 

involved are unique features of the gastrointestinal tract, these aspects are covered in 

some detail.   

 

2. Sphingolipid profile in the intestinal tract  

 

Throughout the gastrointestinal tract sphingolipids are enriched in the apical 

membrane of the polarized epithelial cells. The sphingolipid profiles have been 

characterized by TLC, GLC and GLC-MS techniques with regard to sphingoid base, 

fatty acid and polar head group composition.   

The stomach mucosa contains neutral glycolipid species with one, two, three 

or five sugars (29), acidic glycolipids of the sulphatide and ganglioside classes, and 

more complex neutral glycolipids with blood group reactivity. It also contains several 

molecular species of sphingomyelin (SM) (30).  The functions of the stomach 

sphingolipids are only partly known. Upon stimulation the parietal cells undergo a 
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morphological transformation and membrane rearrangement. The secretory membrane 

containing the crucial K+/H+ ATPase was found to be rich in sphingolipids (31). 

Glycolipids were later shown to interact with Helicobacter pylori (32), which produce 

a sphingomyelinase (SMase) suggested to be involved in Helicobacter induced cell 

death, gastritis and ulcer development (33). Glycolipid binding proteins were 

identified in Helicobacter pylori (34).  The amounts of sulphatides and gangliosides 

are low, but the proportion of sulphatides is higher in the stomach than in the 

intestine, and a protective role in the acid environment has been suggested (35). 

In the small intestine,  about 40% of the lipids in the apical membrane of 

absorptive villous cells are sphingolipids, which is much more than in the basolateral 

membrane (21, 36).  Bouhours and Glickman (37) analyzed sphingolipids of  villous 

and crypt cells and found that glucosylceramide content increased with differentiation 

of absorptive villous cells, associated with alterations in fatty acid and sphingoid base 

composition (38-40). Changes of the sphingolipid pattern also occur during fetal and 

neonatal development of the intestine to the mature absorptive organ (41).  

Glycosphingolipid (Glyco-SL) levels of epithelial cells exceed those of the 

nonepithelial cells in small intestine and colon (42). For example, epithelial cells of 

the colon contain three times as much glyco-SLs as the whole organ (29). Gustafsson 

et al (43) compared the glyco-SL pattern of the gastrointestinal  tract in germfree and 

conventional rats and found rather small differences in  mucosal glyco-SLs, indicating 

little influence of the bacterial flora.  

Gangliosides are negatively charged glyco-SLs containing sialic acid. Their 

presence in the mucosa was shown early (44). Later several classes belonging to the 

GM, GD and GT types were found in the mucosa (45). GM3 was previously found to 

be most abundant in the intestine and located primarily to the apical membrane.  The 

levels of GM3 and the key enzyme in ganglioside synthesis, CMP-sialic acid:lactosyl 

ceramide sialyltransferase, are higher in villous than in crypt cells (46).  

There are great similarities in the sphingolipid profiles throughout the 

gastrointestinal tract, but also some differences. In the rat small intestine, mono- and 

trihexosylceramide are major neutral glyco-SLs, with monohexosylceramide being 

high in the proximal third, and trihexosylceramide in the distal segment (47).  In 

monkeys concentration of gangliosides in small intestine is fourfold and that of 

neutral glyco-SLs twofold higher than in colon (47). Although sphingosine is the 

major base in neutral glyco-SLs, phytosphingosine is abundant in ganglioside GM3 at 
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both levels. Generally the high content of phytosphingosine is an important feature of 

small intestinal glyco-SLs (39).  

In conclusion sphingolipid biosynthesis and cellular location are intimately 

linked to mucosal differentiation and maturation in the small intestine, and exhibit 

both specific and common features at different levels of the gastrointestinal tract. The 

pattern is determined developmentally rather than by bacterial influence.   

 

3. Metabolism of sphingolipids in the intestinal tract. 

 

3-1. Synthesis and degradation of sphingolipids in the gut  

 

The differentiation and turnover of mucosal cells in the gastrointestinal tract 

are rapid. During the process, glyco-SLs and SM must be synthesized and degraded 

accordingly. Furthermore 6-10% of the polar lipids in chylomicrons secreted into 

chyle are SM. The need of sphingolipids for mucosal renewal and lipoprotein 

secretion is difficult to estimate precisely, but may be of the order 1.5 g per day in 

humans (3). Since there is no evidence for any substantial uptake of plasma 

lipoprotein sphingolipids from blood to the mucosa, this amount must be supplied 

primarily by local de novo synthesis.  

Synthesis of sphingolipids begins with the condensation of serine and 

palmitoyl-CoA, catalyzed by  serine palmitoyltransferase, which is a ubiquitous 

enzyme and expressed also in the intestine (48). The product, 3-ketosphinganine is 

reduced to sphinganine (dihydrosphingosine), which is subsequently acylated to 

dihydroceramide. Dihydroceramide is converted to ceramide by a desaturase that 

introduces a double bond at position 4 of the sphingoid base. 

Ceramide/dihydroceramide is synthesized by ceramide synthases that require ATP 

and formation of CoA derivatives of the fatty acids. These enzymes are located to the 

endoplasmic reticulum and use newly synthesized sphinganine or sphingoid bases 

from degraded sphingolipids (49). The genes coding for different ceramide synthases 

(CerS 1-6) have varying fatty acid and sphingoid base specificities and all except 

CerS-3 are expressed in the intestine according to Unigene expression profile.   The 

formed ceramides are located in the endoplasmic reticulum and transferred to the 

Golgi structures where glyco-SLs and SM are formed  (50-52) facilitated by ceramide 

transfer protein (53). Two types of SM synthase have been identified and cloned. The 
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type 1 is located to the Golgi and the type 2 resides primarily at the plasma membrane 

(54).   

A number of glucosyltransferases catalyze the sequential addition of 

carbohydrate moieties to the 1 hydroxyl group of ceramide (55). In the intestine the 

glucosylceramide is a major glycolipid. The extended carbohydrate chain of the other 

glycolipids consists of galactose, N-acetyl-glucosamine, fucose and sialic acid 

derivatives. The glucosylceramide synthase is highly expressed in the stomach, small 

intestine and colon (Unigene profile). Additional carbohydrates are then added by a 

series of glycosyltransferases usually catalyzing the reaction with a UDP derivative of 

the respective sugar. Regarding synthesis of gangliosides (56), sialyltransferases have 

been identified in intestine. The targeting of sphingolipids to the brush border 

membranes results from the localization of synthases as well as transfer proteins (51, 

57). Current views  on glycolipid synthesis and targeting have been recently 

summarized (57). Mechanisms behind the differential compartmentalization of SM to 

chyle lipoproteins and of glycolipids to the brush border are poorly known. The 

presence of the enzymes responsible for sphingolipid metabolism in the intestine is 

summarized in Table 1.  

 

3-2. Digestion and absorption of sphingolipids in the gut 

 

Calculations based on available analytical data indicate that adult humans on an 

ordinary Western diet ingest about 0.3-0.4 g sphingolipids per day (58) and  the suckling 

baby ingesting milk consumes  50-150 mg SM per day (59-61) as well as milk 

lactosylceramide and gangliosides. 

Early studies raised the question whether dietary SM could directly contribute to the 

SM pools in atherogenic cholesterol- and triglyceride rich plasma lipoproteins and in 

chylomicrons (62, 63). The answer was no. When radioactive SM, ceramide and 

glucosylceramide were fed to lymphatic duct cannulated and intact animals, little or no 

labeled SM, ceramide or glucosylceramide was absorbed intact into the chyle (64). Although 

SM and glycosylceramides were found to be resistant to digestion by pancreatic enzymes, 

both substrates were sequentially hydrolyzed to ceramide, sphingosine and free fatty acids in 

vivo (65). Free sphingosine and dihydrosphingosine were rapidly absorbed and metabolized 

in the mucosal cells to chylomicron palmitic acid (64). A smaller portion of the sphingoid 

bases is reincorporated into mucosal ceramide and more complex sphingolipids (64, 66) (Fig 
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2). Interestingly plant glucosylceramide containing the sphinga-4,8-diene as the major 

sphingoid bases are digested as effectively as glucosylceramide containing sphingosine and 

both sphingoid bases were taken up as effectively by CaCo2 cells (67). Inhibition of P-

glycoprotein (mdr1) with verapamil increased, however, accumulation of sphinga-4,8-diene 

but not of sphingosine in the cells, suggesting that this sphingoid base may be more 

effectively expelled (68). 

The rapid conversion of absorbed sphingosine and sphinganine to palmitic 

acid undoubtedly show the expression of  two key enzymes in this reaction, i.e. 

sphingosine kinase (Sph K) catalyzing the formation of S1P from sphingosine and 

S1P-lyase catalyzing the conversion of S1P to hexadecenal and ethanolamine 

phosphate (64) (69). Yatomi et al. (70) analyzed S1P in different tissues and found 

high levels in testes and intestine. Two isoforms of Sph K, Sph K1 and K2, have been 

cloned. Fukuda et al. (71) studied the expression of the different isoforms and found 

that Sph K1 contributed 40-70% of the activity in the small intestine and the major 

part of the activity in the colon, indicating that another Sph K contributed a 

substantial part of the activity in the small intestine. Sph K,  S1P lyase and the 

aldehyde oxidase that converts hexadecenal to palmitic acid are all expressed at high 

levels in the intestinal mucosa  (72). However, the longitudinal distribution of the 

enzymes in the gastrointestinal tract has not been studied. Furthermore the expression 

of  S1P phosphatases that specifically hydrolyze S1P to sphingosine and phosphate 

(73), thereby inactivating the important messenger S1P and channeling sphingosine to 

reutilization for ceramide and sphingolipid synthesis, has not been studied specifically 

in the gastrointestinal tract, although S1P phosphatase 1 and 2 have both been cloned 

(74-76). 

Interestingly Sph K2 but not 1 acted in concerted action with sphingosine 

phosphatase 1 to regulate recycling of sphingosine into ceramide, which was 

considered an evolutionary conserved pathway for sphingosine salvage (77). Thus 

compartmentalization as well as differential action of Sph K isoforms may influence 

partitioning of sphingosine for irreversible metabolism to palmitic acid or reutilization 

for ceramide formation. 

In conclusion the gut expresses high levels of enzymes that catalyze the 

irreversible conversion of sphingosine to palmitic acid. Salvage of some sphingosine 

for ceramide and sphingolipid formation does, however, occur. The expression of Sph 

K , S1P lyase and S1P phosphatases, as well as the intracellular compartmentalization 
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of the metabolites formed and thereby their access to signaling targets are expected to 

determine the biological effects of sphingolipids in the gut.  

 

3-3. Alkaline sphingomyelinase and neutral ceramidase in the intestine.  

 

The major enzymes that are responsible for SM degradation in the intestinal lumen 

and mucosa are alkaline SMase (Alk-SMase) and neutral ceramidase (N-CDase) (78). Both 

alk-SMase and N-CDase are ectoenzymes that bind to the surface of mucosal membrane with 

a transmembrane domain and the catalytic domains are located outside the cells (79). A 

glycosylceramidase activity in the gut, which could not be separated from the lactase-

phlorizine hydrolase, was also reported. Later studies confirmed that lactase-phlorizine 

hydrolase converts both glucosyl- and lactosylceramide to ceramide (80). Thus both SM and 

the glycosylceramides can be converted to ceramide.  

Alk-SMase is the major enzyme catalyzing the first step in the digestion of SM and is 

present in all species examined except guinea pig (81). It is also found in human bile but not 

in bile of many other species (81, 82). Its longitudinal distribution shows a maximum in the 

jejunum and a low level in colon. Purification and cloning of the rat and human enzyme  

demonstrated a lack of homology to known neutral and acid SMases but a relation to the 

nucleotide-pyrophosphatase/phosphodiesterase (NPP) family (79, 83). Accordingly the 

enzyme is now also designated NPP7. It does, however, not hydrolyze nucleotides but only 

choline phospholipids including SM, lysophosphatidylcholine, phosphatidylcholine and 

platelet-activating factor, preferring SM. The enzyme is bile salt dependent, taurocholate and 

taurochenodeoxycholate being the most effective stimulators (84). It is resistant to pancreatic 

proteases and can be released from the mucosa by bile salts and by tryptic digestion of a C-

terminal peptide, which anchors the enzyme to the brush border (85).   

Intestinal N-CDase was purified from a bile salt eluate from rat intestine mucosa and 

from human ileostomy content (86, 87). The enzymes are identical to neutral ceramidases 

identified in the apical membrane of rat renal tubular cells (88), in the mouse small intestine 

(89), and in the human liver (90).  Like alk-SMase the N-CDase has a longitudinal 

distribution that coincides with the main site of ceramide digestion (91). Although bile salt 

stimulated lipase (BSSL) present in human milk and in pancreatic juice was shown to 

hydrolyze ceramide (92), the digestion of ceramide in most parts of the small intestine is not 

decreased in BSSL (-/-) mice (93), whereas N-CDase knockout mice show a marked increase 
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of ceramide excretion in the feces (94). The conclusion is that N-CDase is more important for 

the digestion of ceramide than BSSL.   

Although alk-SMase, lactase phlorizine hydrolase and N-CDase are important 

enzymes in sphingolipid digestion, they may also hydrolyze endogenous sphingolipid 

substrates in the apical membrane of epithelial cells, thereby generating messengers that 

influence mucosal functions. In support of this hypothesis, over expression of alk-SMase in 

Cos 7 cells caused a 30% reduction of SM in the cells (79). As in other tissues acid SMase, 

glucosyl- and galactosylceramidase, and acid ceramidase localized primarily to the 

lysosomes, are, however, also expressed, and it has not been excluded that these enzymes 

may play a role as well. 

The course of SM digestion and thereby the exposure of distal small intestine and 

colon to SM and its metabolites can be influenced by the amount of SM given, the presence 

of bile salts and other lipids, and by the levels of the enzymes involved. Early studies 

indicated an extended course and a limited capacity of SM digestion. The recovery of SM 14C 

stearic acid in chyle was incomplete and about 25% of the sphingosine appeared in feces, 

mainly as ceramide (64). Increasing the dose of SM increased the proportion and amount of 

undigested SM and ceramide in the lower half of the gut, and increased output of SM and 

ceramide in feces (95). In a human study, Hertervig found that feeding a dose of 250 mg milk 

SM in a standardized meal increased output of both ceramide and intact SM in ileostomy 

content in humans (96), indicating an incomplete digestion and absorption of SM. When rats 

were fed radio-labeled SM orally together with cholesterol or sitosterol the digestion of SM 

was delayed and colonic exposure increased (97). In vitro studies with purified alk-SMase 

showed that the presence of glycerolipids or sterols, but not of free fatty acids inhibited SM 

hydrolysis by alk-SMase (98). The higher alk-SMase in jejunum and ileum than in duodenum 

and the higher concentrations of other dietary lipids in the upper part of small intestine may 

thus explain why SM digestion primarily occurs in middle and lower small intestine.   

Expression of alk-SMase and ceramidase can be affected by dietary factors and drugs. 

Alk-SMase was increased by psyllium and ursodeoxycholic acid (99-101) and decreased by a 

fat rich diet. The effects of ursodeoxycholic acid are stronger on  polarized colonic cells than 

on  monolayer cells (102). Psyllium, a water soluble dietary fiber, increases alk-SMase and 

decreases N-CDase activity, and may thus increase the ceramide levels in the gut. Variations 

in the key apoptotic enzyme caspase 3 correlates positively to alk-SMase but negatively to 

acid SMase (99).  Several compounds with anticancer and anti-inflammatory properties such 

as 5-ASA, boswellic acid and ursolic acid increase alk-SMase activity (103)   In view of the 



 12

strict bile salt dependence of alk-SMase, the question has been raised whether bile or bile 

acids may be important for the expression of the enzyme in the intestine. The alk-SMase 

activity in feces and gut lumen was significantly decreased by biliary diversion but not the 

mucosal activity (104). The overall conclusion is that the alk-SMase level can be significantly 

influenced by external factors. 

In conclusion dietary SM is sequentially hydrolyzed by alk-SMase and N-CDase. The 

digestion is extended and occurs primarily in the middle and lower level of the small 

intestine. From a teleological point of view the protease resistance and the release of the 

enzymes by trypsin and bile salts makes possible an extended intraluminal digestion, with 

minimal risk of mucosal damage caused by unintentional hydrolysis of  mucosal 

sphingolipids.     

 

4. Intestinal sphingolipids and inflammatory bowel diseases   

 

Inflammatory bowel disease (IBD), primarily Crohn's disease and ulcerative 

colitis, are common diseases caused by an interaction between genetic predisposition 

and environmental factors. An excess of polymorphonuclear leukocytes, eosinophils, 

macrophages and different subtypes of B- and T-lymphocytes are present in varying 

proportions and with different tissue location depending on the type and stage of 

disease. At the site of inflammation, cytokines, eicosanoids and glycerolipid- and 

sphingolipid messengers are produced by the epithelium and by the 

immunocompetent cells. Current hypotheses for the pathogenesis of IBD emphasize 

the deregulation of the immune response to normal gut bacteria (22). Sphingolipid 

involvement in IBD can be related both to mucosal integrity, barrier and receptor 

functions and formation of sphingolipid messengers in epithelium and inflammatory 

cells. Bacterial and viral infections may trigger the onset or relapse of IBD. 

Interactions of bacteria and virus with sphingolipid receptors are therefore relevant 

both to the actions of intestinal pathogens and to IBD.   

 

4-1. The receptor function and anti-infectious effects of sphingolipids.  

 

Since targeting of sphingolipids to the apical membrane is an important 

feature of the barrier formation, any abnormality in this process may be of interest in 

relation to the pathogenesis of IBD. These aspects of IBD are poorly investigated. 
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One may, however, postulate that glucosylceramide and other neutral glycol-SLs have 

an important barrier role. It is therefore interesting to note, that multidrug resistance 

protein 1 (MDR1) participates both in transfer of glucosylceramide to the apical 

membrane of polarized cells (105) and in the translocation of glucosylceramide in the 

Golgi complex, making it available for the synthesis of  other neutral glyco-SLs as 

lactosylceramide and globotriaosylceramide (106). The reason is that IBD has been 

linked to a downregulation and genetic polymorphism in IBD (107) and the MDR1a-

/- mouse appears to be an appropriate model for spontaneous colitis (108). Further 

exploration of the complex connections between glucosylceramide synthesis and 

MDR1 expression  (109) in relation to IBD is undoubtedly needed.   

Some microorganisms and microbial toxins use glyco-SLs to attach to the host 

cell as a way of mediating pathogenic effects. Viruses can bind to host cells via glyco-

SLs. Dietary sphingolipids may thus compete for the attachment sites and promote 

elimination of pathogenic organisms and toxins from the intestine and counteract 

bacterial translocation. Milk fat consumption was shown to be related to a reduced 

number of food-borne infections (110, 111). Since enteropathogenic bacteria and 

viruses, and possibly with normal commensal in a predisposed individual, may trigger 

onset or relapse of IBD, the interaction between these agents and mucosal 

sphingolipid receptors is briefly summarized in this context.    

Numerous studies  demonstrate important receptor functions of gangliosides 

for pathogenic bacteria, toxins and virus (112). The gangliosides provide a negative 

charge to the surface, serving as specific binding sites for cholera toxins, 

enteropathogenic Escherichia coli toxin, and rotavirus etc and to be involved in the 

immune response to oral vaccination with several antigens via receptor function at the 

M-cells of the Peyers patches. GM1 is the major ganglioside in the small intestine and 

was shown to be a receptor for cholera toxin, the binding being essential for triggering 

the diarrhea response.  In case of enterohaemorrhagic E coli the toxin exerts a specific 

pathogenic mechanism. Shiga toxins are virulence factors produced by certain 

bacteria as E. coli O157:H7 (113), that cause hemorrhagic colitis (114).   The binding 

site for Shiga toxins is a Glyco-SLs (Gb3) (115),  which is not present in normal 

colonic epithelial cells but highly expressed in metastatic colon cancer (116).   

Exogenous gangliosides such as in milk may be potentially important during 

suckling, as they may protect breast fed infants from infections. It has been shown 

that milk gangliosides can inhibit enterotoxins, inhibit adhesion of E coli and suppress 
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the growth of E coli and potentially other pathogenic microorganisms in the intestine 

of premature babies, and stimulate growth of bifidobacteriae. Milk gangliosides also 

inhibit cholera toxin adherence to Caco2 cells (117). Enriching infant formula with 

ganglioside changed the microflora. E coli in feces of preterm infants decreased and 

bifidobacteriae increased, and the growth of bifidobacteriae is promoted by sialic acid 

(118).  Gangliosides may be essential for neonatal growth of the nervous system (119) 

and may enhance uptake of lipids in the weanling rat (110). Interestingly addition of 

gangliosides to the diet reduced infection with Giardia muris, a close relative to the 

human intestinal pathogen Giardia lamblia, in mice (120). 

The effects of sphingosine and ceramide on the pathogenic bacterial strains E 

coli O157:H7, Salmonella enteritidis, Campylobacter jejuni and Listeria 

monocytogenes was investigated in vitro. It was found that sphingosine but not 

ceramide has strong antibacterial effects on all strains (111). Thus in the small 

intestine where digestion of sphingolipids is fastest, the continuous generation of 

sphingosine may be important to control bacterial growth.  

            In conclusion, these antibacterial and antiviral mechanisms of dietary 

sphingolipids may be important but the in vivo relevance is often hard to evaluate.  

 

4-2. Sphingolipid signaling in intestinal inflammation. 

 

Although the roles of ceramide, sphingosine, S1P and C1P as lipid messengers 

in tumor and inflammation in general have been the subject of many previous 

investigations (13), current information on the specific involvement of sphingolipids 

in intestinal inflammation is sparse. Current views emphasize that sphingolipid 

metabolites may contribute to both the proinflammatory and antiinflammatory 

response, and that S1P formation and action may be targets for IBD therapy.  

Ceramide, although it functions as a proapoptotic molecule in many cell types, 

may also induce inflammatory response. Previous studies have shown that the 

proinflammatory response to TNF and IL-1 involves activation of  neutral SMase, 

leading to the formation of ceramide (121). NF-B is a key molecule with 

proinflammatory properties and its activity was increased by ceramide in the small 

intestinal epithelial cells, due to reduction of IB-a and IB-b (122). Similar 

activation of NF-B was also identified in HT29 colon  cells after SMase treatment 
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and the cells appear more sensitive to acid SMase than N-SMase (123). In addition, 

the formation of ceramide may be involved in the assembly of Toll-like receptor 

(TLR) in response to bacterial toxin such as lipopolysaccharide (LPS) (124). Several 

microbial ligands such as LPS, p-fimbriae and the B-subunit of Shiga toxin were 

shown to increase the levels of ceramide and trigger a TLR4 dependent response in 

either leukaemia cells or epithelial cells (125, 126)   

However, as has been reviewed previously (127), the role of ceramide often 

varies with the site and mechanism of formation and with cell type. In aortic 

endothelial cells, ceramide formed by neutral SMase in response to an oxidized 

phosphatidylcholine was reported to inhibit the LPS-induced IL-8 response (128). Of 

particular interest is a recent study showing that hydrolysis of SM at the apical 

membrane of intestinal Caco-2 cells by SMase attenuates the intoxication of the host 

cells by cholera toxin (129). The study indicates a protective effect of intestinal 

SMase, particularly alk-SMase, as it is an ecto-enzyme anchoring on the surface of 

microvilli membrane and also present in the intestinal content, with good access to 

SM at the apical membrane of mucosal cells. A reduction of alk-SMase in human 

longstanding ulcerative colitis was previously reported (130).  

 S1P has primarily proinflammatory properties and acts as a chemo attractant 

for neutrophils and macrophages. It has antiapoptotic effects on macrophages, induces 

mast cell degranulation and regulates lymphocyte functions and traffic. S1P also 

induces COX 2 expression, thus influencing production of eicosanoid inflammatory 

mediators. Formation of PGE2, a major prostaglandin in the gastrointestinal tract, 

may thereby be increased. How this relates to the gastrointestinal tract is presently 

unknown. One may speculate about both harmful and beneficial implications, since 

COX inhibition induces mucosal ulcerations and makes colitis worse (28), but does 

also counteract colon cancer development. S1P may thus be good during the progress 

of the inflammation and not during the resolution. Interestingly Sph K1 knockout 

mice exhibited normal inflammatory response  in acute peritonitis and chronic 

collagen induced arthritis models (131). Tissue levels of S1P were not increased in 

inflammation.  

Emphasizing the role of S1P in gut inflammation, orally administered 

sphingosine kinase inhibitors were recently shown to suppress colitis induced by 

dextran sulphate (132). Exploiting current knowledge about the key role of S1P in 



 16

lymphocyte traffic, the S1P receptor modulator FTY720 was shown to alleviate colitis 

in a number of experimental colitis models (133-135) 

Sphingosine on the other hand may counteract S1P induced priming of 

neutrophils and induce apoptosis in leukocytes and macrophages, and was also shown 

to stimulate PGE2 production in fibroblasts and to enhance TNF induced PGE2 

production (136). There are thus several mechanisms by which sphingolipid feeding 

might favour anti-inflammatory as well as proinflammatory mechanisms in the gut. 

Regarding intestine much information is, however, lacking today. For instance the 

expression of Sph K1 and 2, S1P-lyase and S1P-phosphatases and the regulation and 

distribution of these enzymes along the gastrointestinal tract need to be studied in 

much more detail. Studies on the regulation of intracellular and external levels of 

sphingolipid metabolites in normal and inflamed tissue are needed.  

While ceramide, sphingosine and S1P have divergent effects on intestinal 

inflammation, ganglioside, particularly galactosylceramide (GalCer) was reported to 

inhibit inflammation. Alpha-GalCer was found in vivo to inhibit Toxoplasma gondii-

induced ileitis by overexpression of IFN- via a specific interaction with NKT cells, 

which regulate the immune response (137). Similar inhibition by alpha-GalCer on 

allergic airway inflammation was also reported (138). The inhibitory effects of 

GalCer may be of species specificity, as one analogue of GalCer, CCL-34 but not 

GalCer, was found to stimulate NF-B in a TLR4 dependent manner in Raw 264.7 

cells (139).  

 

4-3. Interaction of sphingolipid signaling with eicosanoid and glycolipid signalings 

 

The roles of eicosanoids in inflammation in general and in IBD have been 

extensively investigated. An important progress in the recent years was the 

identification of the cross-communication between sphingolipid and eicosanoid 

signaling (Fig. 3). In eicosanoid metabolism, the key enzymes are PLA2 and COX2. 

PLA2  triggers the hydrolysis of phosphatidylcholine (PC) leading to increased 

formation of both arachidonic acids and lysoPC. Arachidonic acid is the precursor of 

PGE2 and leukotrienes, and the lysoPC will further be converted to lysophosphatidic 

acid (LPA). PGE2, leukotriene, and LPA are potent factors promoting inflammatory 

responses. As shown in Fig 2, SM was  reported previously to inhibit the PLA2 
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activity, indicating a protective effect of the lipids on pathogenesis of inflammation  

(140).  More importantly, C1P and S1P, the phosphorylated form of ceramide and 

sphingosine, were recently reported to activate PLA2 and induce expression of 

COX2, respectively (19). C1P and S1P seem to act concertedly to stimulate the 

formation of PGE2 and promote the inflammation. Thus the kinases catalyzing the 

phosphorylation of ceramide and sphingosine may be novel targets for the 

development of antiinflammatory drugs.  

 PLA2 is also a key enzyme responsible for production of platelet activating 

factor (PAF), as it cleaves alkyl-acyl-glycerophosphocholines to form lyso-PAF, a 

precursor of PAF. In addition to the crosstalk between sphingolipid messengers and 

eicosanoids there may also be an interaction between sphingolipid- and glycerolipid 

messengers in the gut. PAF can be synthesized and released from the inflammatory 

mucosa and is implicated in IBD such as Cohn's disease, ulcerative colitis, and 

necrotizing enteritis in the newborn, which are associated with high extracellular 

levels of PAF.  It is therefore of great interest that alk-SMase was shown to hydrolyze 

and inactivate PAF (141). PAF is considered to be hydrolyzed primarily by PAF-

deacetylase. The effects of alk-SMase on PAF represents an additional pathway which 

is well suited to act in the gut because of its location at the mucosal surface and the 

resistance of the enzyme to proteases.  In addition, LPA derived from lyso-PC under 

the actions of lysophospholipase D is another lipid messenger that stimulates cell 

migration and inflammation. Alk-SMase can also hydrolyze lyso-PC with a 

phospholipase C activity and thus may compete with lysophospholipase D and reduce 

the formation of LPA (79).  

 

5. Intestinal sphingolipids and colonic carcinogenesis 

 
5-1. Link of sphingolipid metabolism with colonic tumorigenesis. 

 

Since ceramide and sphingosine are regulators of cell growth, differentiation 

and apoptosis, the questions have been asked whether the metabolites formed from 

dietary or membrane SM may influence the cell cycle of the gut epithelium under 

normal and tumorigenic conditions, and whether sphingolipid metabolites regulate 

normal proliferation and differentiation in crypt cell progenitor compartment and cell 

fate along the crypt villous axis. Analytical studies more than two decades ago 
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identified differences in sphingolipid composition between tumor tissue and normal 

tissues of the gastrointestinal tract. When animals were injected with 

dimethylhydrazine, a colonic chemical carcinogen, SM was found to be increased in 

the colonic tissues before the appearance of adenomas, accompanied by a reduction of 

SMase, indicating a decreased SM hydrolysis prior to malignant transformation (142). 

Furthermore this colon carcinogen was found to also decrease glyco-SLs and to 

induce changes of the glyco-SL pattern in the intestine (143).  However, in human 

colon cancer tissues, the levels of SM are reduced as measured by 31P magnetic 

resonance spectroscopy (144), together with reduced ceramide levels by about 50% 

(145). Similar changes were also found in many other cancer tissues such as ovarian 

tumors, lung cancers and head and neck cancers (12). Multiple factors may be 

responsible for the changes of SM and ceramide in colonic tissues, such as de novo 

biosynthesis of sphingolipids, the hydrolysis of SM by different SMases, and the 

glycosylation of ceramide.   

The interest in the relation between sphingolipids and colorectal cancer was 

triggered in 1994 by a study, which showed that administration of SM inhibited the 

formation of aberrant crypt foci and reduced the malignant transformation in mice 

(146). The finding was thereafter confirmed and extended by other studies, which 

showed similar effects of natural and synthetic SM, as well as monoglucosyl 

ceramide, lactosyl ceramide, and ceramide analogues (147).  SM was also found to 

enhance chemotherapeutic effects of anticancer drugs both in vivo and in vitro (148) 

and is both chemopreventive and chemotherapeutic (149). Hydrolysis of the 

sphingolipid to generate ceramide seems a key procedure for such anticancer effects. 

Particular attention has therefore been given to alk-SMase (NPP7), the key enzyme in 

the intestine responsible for hydrolysis of SM and generation of ceramide. Progressive 

reduction of alk-SMase activity with malignant transformation has been reported in 

human colonic inflammation and carcinogenesis (130, 150, 151). Recently loss of 

function mutation of alk-SMase has been found in colon cancer HT29 cells (152) and 

in liver cancer HepG2 cells (153).  The mutations occur at the alternative splicing 

level, involving the deletion of exon 4, which encodes a critical His that participates 

in the formation of binding site for SM (154). However, how often the mutation 

occurs in association with tumorigenesis and what factors that affect or even correct 

the altered splicing are still unknown and should be the targets for further 

investigation.  
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5-2. Diverse effects of sphingolipid metabolites on colonic tumorigenesis. 

While SM, ceramide and sphingosine have antiproliferative effects in colon 

cancer cells, S1P has emerged as a potent molecule that stimulates cell proliferation, 

inhibits apoptosis and promotes inflammation, cell migration, and angiogenesis (154).  

High levels of S1P correlate to a poor survival rate (155). In colon cancer cells, S1P 

has been shown to induce COX 2 expression (156, 157), and activate  p38 MAPK and 

Erk (158). S1P can also increase the production of PDGF and VEGF and activate 

growth factor receptor. Visentin et al. recently showed that neutralizing S1P with 

specific antibody significantly inhibited the cancer progression through inhibiting the 

cell proliferation and blocking neovascularization in several cell lines including colon 

cancer HT29 cells (159). Sph K, the enzyme responsible for the formation of S1P  is 

upregulated in many cancer tissues and also  in AOM induced colonic 

adenocarcinoma (160). Down regulation of Sph K by siRNA inhibits COX2 

expression and PGE2 production (160). A balance between ceramide/sphingosine and 

S1P has been considered as a rheostat mechanism that determines the cell survival 

and cell death. In addition, the balance is also determined by the enzymes that 

catabolize S1P, such as S1P lyase and S1P phosphatase. The normal intestinal 

epithelial cells have high levels of S1P lyase and S1P phosphatase. However, in colon 

cancer cells both S1P lyase and S1P phosphatase are down regulated and thus the 

catabolism of S1P is inhibited (161).  Over expression of S1P lyase potentiates 

apoptosis via p53- and p38 dependent pathways. Comparing with S1P phosphatase, 

the levels of S1P lyase may be more important in regulating the balance between 

ceramide and S1P, as the removal of S1P by S1P lyase is irreversible.  Interestingly, 

in the familial adenomatous polyposis Min mouse  model, further knocking out of Sph 

K1 significantly decreases the adenoma size and cell proliferation(162). These 

inhibitory effects are not affected by knocking down of S1P receptors, indicating that 

the intracellular S1P plays an important role in tumorigenesis in these animals.  

Although ceramide is in general antiproliferative, recent studies indicate that 

its effects vary with location and pathway for ceramide formation. For example 

ceramide formed by acid SMase is restricted to the lysosomes and cannot exert 

signaling effects at its site of formation (163). Too high acid SMase activity may in 

fact facilitate the cell growth as cancer cell growth requires not only vasculature to 

provide oxygen, but also an effective autophagy, i.e. a process by which cells 
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selectively digest potions of their interior, in order to grow. Autophagy, which is 

conducted by lysosomal enzymes, has been shown to be an important process to 

stimulate cell survival (164, 165).  The acid SMase activity is high in rapidly dividing 

Caco-2 cells. Several anticancer compounds such as boswellic acid, psyllium, and 

curcumin inhibit acid SMase activity (99, 103, 166, 167). As mentioned in the 

previous section, C1P has also been reported as another proliferative and 

proinflammatory factor derived from sphingolipid metabolism (168, 169), by its 

ability to activate PLA2 and increase the production of arachidonic acid (170). 

Considering the stimulatory effects of S1P on COX2, C1P and S1P seem to act 

concertedly to stimulate the formation of PGE2 and promote the inflammation and 

carcinogenesis (16).  

Ceramide is the precursor of glyco-SLs. Important roles of glyco-SLs in 

tumorigenesis are emerging. Exogenously administered glyco-SLs such as 

glucosylceramide, lactosylceramide, and GD3 have been shown to inhibit the 

formation of aberrant crypt foci caused by chemical carcinogens (171). GM3 in cell 

culture was found to stimulate cell differentiation and inhibit cell proliferation 

through the activation of PTEN (172). Similar effects were also found in drug-

induced synthesis of GM3. However, there is evidence showing that conversion of 

ceramide to glyco-SLs in colon cancer is related to cancer invasiveness, metastasis 

and most importantly, drug resistance (173, 174). The synthesis of UDP-Gal 

transporter is increased in human colon cancer and is correlated with Dukes-stage  

(175). In metastatic colon cancer, Gb3 levels were reported to be increased in 

correlation with invasiveness, which may relate to the function of Gb3 as receptor for 

Shiga toxin 1 (116).  Overexpression of glucosylceramide synthase was identified in 

colon cancer cells resistant to drug treatment, associated with an increase of  

multidrug resistant phenotype and expression of P-glycoproteins (116, 176). Based on 

this information, the breakdown of ceramide by ceramidase may under some 

circumstances be critical to avoid the accumulation of glycoceramide and also the 

formation of C1P.  Although the N-CDase has been cloned and the enzyme deficient 

mice have been generated (94), the dynamic changes of intestinal ceramidase in 

association with colon cancer development are still largely unknown.  

In conclusion, colon cancer is associated with multiple changes of the 

enzymes responsible for sphingolipid metabolism, including the reductions of serine 

palmitoyl-CoA transferase, alk-SMase, and sphingosine lyase, and increases of 
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glucoceramide synthase, and Sph K, resulting in decrease in ceramide levels and 

increase in S1P levels (Fig 4). The changes of N-CDase and ceramide kinase in colon 

cancer have not been established. While inhibiting glucosylceramide synthase results 

in enhanced apoptosis (177, 178),  knocking out  N-CDase does not cause severe 

pathology, indicating that the conversion of ceramide to glucoceramide  is a 

fundamental pathway for ceramide metabolism. Whether ceramide kinase is important 

for ceramide level in the intestine is not clear. The expression of the enzyme is 

reported to be high in human liver, but not intestine (179).   

 

Future perspectives 

 

Sphingolipids are both cellular constituents and dietary components. The intestinal 

tract is an organ that is rich in sphingolipids. Today important features have emerged from 

studies of the sphingolipid rich interface and of the metabolism and anticancer effects of 

dietary sphingolipids. New information has been gained which make S1P a potential target in 

the treatment of colorectal cancer and IBD. An immense complexity remains, however, to be 

structured. Sphingolipid digestion is an extended process with limited capacity and the 

exposure to colon of sphingolipids and their metabolites can be changed by dietary means, 

but the physiological effects on normal mucosal functions, inflammatory processes and 

tumorigenesis that this may have need further study. A question that should be asked is 

whether the high expression of alk-SMase and N-CDase  in the middle and lower small 

intestine contributes to the low tumor incidence in this organ. The anti-inflammatory effects 

of alk-SMase need further investigation in view of its ability to hydrolyze and inactivate PAF 

even in the protease rich intestinal environment. The information linking C1P formation and 

eicosanoid signaling further emphasizes the importance of identifying of key points in the 

complex crosstalk between different lipid and peptide signals. Considering the dual role of 

sphingolipids as barrier and receptor components as well as precursors of important 

messengers the longitudinal distribution and the regulation of virtually every enzyme that 

participates in sphingolipid metabolism in the gastrointestinal tract needs further study. Focus 

should be not only on those participating in formation and partitioning between of sphingoid 

bases and their phosphorylated forms between the different pathways, but also on the 

enzymes that form and degrade sphingolipids during the differentiation of the apical 

membrane of the epithelial cells. Finally, although new information has emerged on the 

effects and the metabolism of milk sphingolipids in the suckling neonate, the knowledge on 
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this subject is still too fragmentary. A key issue in both the adult and the neonate is whether 

sphingolipids and the metabolites they generate can influence the function not only of the 

epithelial cells but also the immunological function of the gut.     
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Table 1. Sphingolipid metabolic enzymes in the intestinal tract 

 

Enzyme     Note      Ref 

---------------------------------------------------------------------------------------------------------------------------- 

Serine palmitoyl-CoA transferase  Found in all tissue including intestine  [48] 

Ceramide synthase   CerS 1, 2, 4, 5, 6 are found in intestine                [49] 

Sphingomyelin synthase   SMS1 in Golgi and SMS2 in membrane.                   [54] 

Sphingomyelinase:  

Alkaline SMase   Major enzyme for SM digestion                         [78,95]

 Acid SMase   High in proliferative crypt cells                            [102] 

            Neutral SMase         Low in the intestine                              [104]  

Ceramidase   

Neutral ceramidase  Major enzyme for ceramide degradation  [78] 

 Bile salt stimulated lipase  From pancreas and milk    [92] 

Ceramide kinase    Low in intestine, high in liver               [179] 

Sphingosine kinase    Two types. Type 1 accounts for 40-70%                 [70,71] 

Sphingosine-1-P lyase   High in physiological conditions    [72] 

  Sphingosine-1-P phosphatase  Present in the intestine   (authors’ data) 

Glucosylceramide synthase  High in stomach and intestine.                               [55,56] 

Glucosyltransferase   High in villous                [55,56] 

--------------------------------------------------------------------------------------------------------------------------- 
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Figure legends  

 

Fig. 1. Signaling effects of SM metabolites. Metabolism of SM generates signaling 

molecules including ceramide, sphingosine, ceramide-1-phosphate (C1P), and 

sphingosine-1-phosphate (S1P). Ceramide and sphingosine are major lipid 

messengers that inhibit cell growth and inflammation, whereas C1P and S1P are 

major molecules with proliferative and inflammatory properties, through various 

signal transduction pathways. The open arrow indicates the chemical pathways and 

the solid line indicates the biological effects. The lines with arrows indicate 

stimulation and those with a blunt line indicate inhibition.  

 

Fig. 2. Hydrolysis of SM in the intestinal lumen and mucosal cells. SM is hydrolyzed by alk-

SMase and N-CDase to sphingosine, which is absorbed and converted to fatty acid and 

ceramide. The fatty acid and part of both endogenous and exogenous ceramide/SM will be 

incorporated into chylomicrons.  The solid line with arrow indicates chemical reaction and 

the dashed line with arrow indicates translocation.  

 

Fig. 3. Interaction of sphingolipid signaling with eicosanoid signaling in inflammation. Under 

the actions of PLA2 and Cox2, phosphatidylcholine (PC) is converted to PEG2 which 

stimulates inflammation and cell proliferation. This pathway is enhanced in one hand by S1P 

which stimulates the expression of Cox2 and , in the other hand, by C1P which enhances 

PLA2 transport and activity by binding to the enzyme.   

 

Fig. 4. Changes of enzymes responsible for sphingolipids metabolism in colon cancer. 

SPT: serine palmitoyl transferase, Alk-SMase: alkaline SMase, SMS: SM synthase, 

GCS: glycoceramide synthase, CDase: ceramidase, SPK: sphingosine kinase, SPL: 

S1P lyase. +  : increase, - : decrease.  

 

 



 35

Fig. 1 
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Fig. 2 
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Fig. 3. 
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Fig. 4 
 

 
 
 


