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TABLE I1 
IDENTIFICATION OF AN UNKNOWN FREQUENCY BY THE AR AND THE 

RECURSIVE FILTER METHODS 

SNR Ratio (db) AR Freq. Est. Recurs. Est. 

+ 29 0.804 0.8004 
+ 23 0.815 0.8004 
+ 20.5 0.825 0.8005 
+ 17.0 0.854 0.8005 
+ 11 0.973 0.8006 
+ 3.0 1.28 0.794 

seems to lie in the recursive method’s use of a narrowband 
filter. 111-posedness discussed at  the close of Section I1 had not 
yet even entered the picture. 

V. CONCLUSION AND EXTENSIONS 

We have herein taken a step toward deriving a useful infor- 
mation-theoretical technology from the intriguing analytic de- 
vice of HK. The specific contributions of the present work 
include extending the HK convergence result to general filter 
classes, with the specific objective of justifying use of narrow- 
band filters. Through a fixed-point structure, we have here been 
able to show that the HK recursions and our generalizations 
thereof achieve linear convergence, and can quantify the coeffi- 
cient in terms of hypothesized noise and filter parameters. 
Computational experiments just reported give us evidence that 
the recursive frequency detector explored here is clearly com- 
petitive with alternative fast algorithms. 

Presentation of details here would constitute a distraction, 
but we will mention that many pragmatic details of the fre- 
quency detector have been explored. In particular, Kedem and 
Yakowitz [ 121 have developed a rule that narrows the bandwidth 
as recursions progress. This has the effect of enhancing the 
signal-to-noise power ratio while increasing the convergence 
rate (to quadratic). Through such extensions, we have developed 
a practical way for detecting several signal frequencies simulta- 
neously. The scheme could be implemented by parallel proces- 
sors. 

In another direction, we have designed a recursive filter for 
tracking a spread-spectrum FM signal embedded in noise. Once 
the filter has “locked” onto the signal, only one recursion is 
needed for each update, because the correlation coefficient of a 
data block constitutes an accurate initial starting point r(1) for 
its successor block. Our opinion is that this capability of effec- 
tively using information from the recent past gives the recursive 
detector a clear-cut computational advantage over periodogram- 
based algorithms. 

Our methodology for the detection tasks just mentioned de- 
pends strongly on the contributions of the present work. Our 
ambitions now are to derive distributional properties of the 
sampling error, and to explore a zero-crossing version of the 
filter which, in light of [Ill, may have faster convergence proher- 
ties. 
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Strengthening Simmons’ Bound on Impersonation 

Rolf Johannesson and Andrea Sgarro 

Abstract -Simmons’ lower bound on impersonation, PI 2 2-’‘M:E’, 
where M and E denote the message and the encoding rule, respectively, 
is strengthened by maximizing over the source statistics and by allowing 
dependence between the message and the encoding rule. 

Index Terms -Authentication, impersonation, deception, perfect au- 
thentication. 

Manuscript received June 15, 1990; revised November 15, 1990. This 
work was presented in part at the Monte VeritP Seminar, “Future 
Directions in Cryptography,” Ascona, Switzerland, October 15-21, 1989. 

R. Johannesson is with the Department of Information Theory, Lund 
University, Box 118, S-221 00 Lund, Sweden. 

A. Sgarro is with the Departimento di Matematica e Informatica, 
Universiti di Udine, 1-33100 Udine, Italy and the Dipartimento di 
Scienze Matematiche, UniversitP di Trieste, 1-34100 Trieste, Italy. 

IEEE Log Number 9143443. 

0018-9448/91/0700-1182$01.00 01991 IEEE 



IEEE TRANSACr’IONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY 1991 1183 

I. INTRODUCTION 

In a system for authentication developed by Simmons [ l ]  the 
transmitter and receiver privately select an encoding rule E E B. 
The transmitter observes a source state S E 9 and uses the 
encoding rule E to determine a message M E A, which is sent 
over a (noiseless) communication channel to the receiver. (We 
rule out source states and encoding rules with zero probability.) 
A third participant, the opponent, would like to deceive the 
receiver into accepting a message that will misinform him about 
the state of the source. The opponent can choose between two 
quite different attacks: impersonating the transmitter and trying 
to form a valid message when in fact nothing has been sent, or 
waiting for a message sent by the transmitter and trying to 
substitute some other valid message. Let PI and Ps denote the 
opponent’s best-possible probability of success in an imperson- 
ation attack and in a substitution attack, respectively. 

Simmons [I], also introduced Pd, the probability of deception, 
i.e., the probability that the opponent succeeds in defrauding 
the receiver by choosing optimally between an impersonation 
attack and a substitution attack, and showed that 

P d 2 m a x ( P I , P s ) .  (1) 

In Simmons’ formulation, the opponent is assumed to know all 
statistics for the authentication system except for probability 
distribution P ( e )  for the encoding rule E ,  which is assumed to 
be independent of the source state S. One can instead adopt the 
assumption, as was taken in [2], that the opponent also knows 
P(e) ,  in which case one has 

Pd = max ( PI,  Ps ) . (2) 
Simmons’ formulation is a game-theoretic one in which the 

sender chooses P ( e )  to minimize Pd. The choice of a P ( e )  that 
minimizes Pd could be different from that needed to minimize 
the probability of success (for the opponent) of either an imper- 
sonation attack or a substitution attack, which explains the 
inequality in (1). However, in this paper we do not need to 
commit ourselves to either approach. 

In Section I1 we review Simmons’ lower bound on imperson- 
ation and in Section I11 we give a strengthened version of it. 
Two examples of authentication systems and a brief discussion 
are given in Section IV. We conclude the paper by showing that 
a refinement of our argument, which removes the assumption of 
independence between E and S,  leads to an even stronger 
bound. 

11. SIMMONS’ BOUND 

The opponent’s best impersonation attack is to choose the 
message m that maximizes the probability that m is a valid 
message, Let the authentication function x ( m , e )  be 1 if m is 
valid message for the encoding rule e, and 0 otherwise, i.e., 
x ( m ,  e )  = 0 if and only if the joint probability P ( m ,  e )  is zero. 
Then, 

PI = max P( m valid), ( 3 )  

P ( m  valid)= x x ( m , e ) P ( e ) .  (4) 

m 

where 

e 

Simmons [ l ]  (see also [2] and [3], where a short proof is 
provided) proved that 

( I ( M ;  E )  is the mutual information) with equality if and only if 

a) P ( m  valid) is independent of m or, equivalently, choosing 
M completely at random is an optimum impersonation 
attack 

and 
b) for each message m ,  P(mle) has the same value for all e 

for which x ( m , e ) =  1. 

The bound ( 5 )  also implies the bound 

, (6) p >2-I(M;E) 
d -  

where a) and b) are necessary but no longer sufficient conditions 
for equality. 

We conclude this section by giving a simple proof of Simmons’ 
bound (5). This proof, which is a variant of the one given in [3], 
was suggested by Korner [4] and is based on the log-sum 
inequality [5, pp. 48-49]. For arbitrary nonnegative numbers 
(ai}:= (bJ= we have 

a .  
E a i  log 2 > a log E, 

b i -  b (7) 

(where a term in the sum with ai = 0 is understood to be 01, 
where a = E i a i  and b = C i b i ,  and where equality holds if and 
only if aib = abi for i = 1,2;. . , n .  

For each message m the summation over the encoding rules 
in the expression for the mutual information 

can be restricted to all e for which x ( m ,  e )  = 1, since P(elm> = 0, 
if and only if x ( m ,  e )  = 0. Thus (8) can equivalently be written as 

(9) 

Defining a ,  = x ( m ,  e)P(elm) and be = x ( m ,  e )P(e) ,  we ob- 

Applying (7) to the summations over the encoding rules in (9), 
tain a = Leae = 1 and b = Leb, = P(m valid). 

we obtain 

I (  M ;  E )  2 - P (  m) log P( m valid) 

2 - max log P ( m  valid) = -log PI.  
m 

(10) 

Observing that the conditions for equality in (10) are equivalent 
to a) and b) previously given completes the proof. 

m 

111. A TIGHTENED LOWER BOUND 

From (4) and (3), it is clear that P(m valid) and PI are 
independent of the source statistics, but, in general, Z ( M ;  E )  is 
not! Thus, we can minimize Z(M; E )  over the source statistics to 
obtain the stronger bound 

(11) p > z - i n f l ( M ; E )  
I -  

where the infimum is taken over all source statistics that do not 
alter x ( m ,  e), i.e., do not change the set of ( m ,  e )  pairs for which 
P(m,  e )  # 0. (We have to write an infimum rather than a mini- 
mum because the minimization set is topologically open.) 

We have of course the corresponding tightening of the bound 
(6): 

(12) p > z- inf l (M;E)  
d -  

-1 
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IV. EXAMPLES AND COMMENTS 

In the following authentication systems, all encoding rules are 
selected with equal probability and independently of the source 
state S. The possible source states are J = { H , T } ,  head and 
tail. Without loss of essential generality we assume that P(head) 
= p I 1 / 2 .  

E q-y-y 01 10 

11 H. 

We have P l = 1 / 2  and P s = 1 - p 2 1 / 2 .  The probability of 
deception is Pd 2 1/2 with equality, if and only if p = 1/2. Since 

Z ( M ; E ) = H ( M ) -  H ( M ( E ) = 2 -  h ( p ) ,  (13) 

where h ( p )  is the binary entropy function, we have equality in 
Simmons’ bounds ( 5 )  and (61, if and only if p = 1/2. In our 
bound ( l l ) ,  equality is obtained regardless of the source statis- 
tics! But in our bound (121, we have equality, if and only if 

If we add a third bit to the label for the encoding rules, we 
p = 1/2. 

obtain the following authentication system: 

M 
I 00 01 10 11 

000 
001 
010 

E 011 
100 
101 
110 
111 

H T 
T H 
T H 
H T 

T H 
H T 

H T 
T H. 

In this system, we have PI =1/2  and Ps=1/2,  and hence, 
Pd = 1/2, independent of the source statistics. 

Since equation (13) is valid also for this system, we have 
equality in (5 )  and (6) if and only if p = 1/2, but in (11) and (12) 
equality is regardless of the source statistics! We call an authen- 
tication system robustly optimal against an impersonation attack 
if its achieves equality in (11). The systems in both examples are 
robustly optimal. 

Analogously to Shannon’s perfect secrecy, Simmons [6] has 
defined an authentication system to be perfect if all the infor- 
mation about the encoding rules exchanged in private, i.e., the 
information required to identify the selected encoding rule, is 
used either to conceal the source state or else to confound the 
opponent. The system of the first example is perfect if and only 
if p = 1/2, but the second is never perfect. 

We conclude this section by proving a consequence of (1 1) [ 11. 
In an authentication system with deterministic encoding (i.e., 
one in which the source state S and encoding rule E uniquely 
determine the message M )  we have 

Z(M;  E) = H (  M )  - H(MIE)  

= H (  M )  - H (  S) 

< l o g l k l -  H(S), (14) 
where 1 . 1  denotes the cardinality of the set. Because the right 
side of inequality (14) is minimized by choosing the source states 

equiprobably, it follows that 

inf I (  M ;  E )  I log lkl - log 191 (15) 

always holds, from which Simmons’ combinatorial lower bound 
on impersonation, P, 2 [/I/ [AI, follows by substituting (15) 
into (11). 

V. FURTHER STRENGTHENING OF THE BOUND 

From (3) and (41, it is clear that PI depends only on the 
(marginal) distribution of the encoding rule E and on the 
authentication function x ( m ,  e) .  Thus, given that these are kept 
fixed both the source statistics and any correlation between the 
source state S and the encoding rule E are totally irrelevant. 
From a practical point of view an authentication system with 
correlated source state S and encoding rule E might seem 
farfetched. But nevertheless, since Simmons’ bound (5 )  is valid 
also in this case, we have the following strengthened bound: 

(16) p , 2 - l n f I ( M , E )  

where the infimum is taken over all (possibly dependent) ran- 
dom couples (S, E )  such that: 

I -  

a) E has the same marginal distribution as for the given 

and 
b) the resulting x ( m , e )  is the same as for the given system. 

The following examples show that the bound (16) can return 
values that are strictly better than those obtained by the bound 
(11). We assume that the encoding rule E is determined by a 
fair coin: 

system 

E 

Let P ( S  = H )  = p .  Then we have Z(M; E )  = H ( M ) -  H(MIE)  
= H ( M ) - h ( p ) .  If S and E are independent, then we have 
H ( M ) = l + ; h ( p ) ,  and, hence, the minimizing P(s) for our 
bound (11) is p = 1/2, which gives PI 2 1/&. 

Now assume that S and E are equal with probability close to 
1. Then the message M is almost always 0 and both H ( M )  and 
H ( M I E )  are close to 0. The bound (16) returns the true value 
PI = 1 for the original system where S and E are independent. 

In order to obtain a nondegenerate (PI  < 1) authentication 
code, we modify the preceding example: 

E & H. 

The encoding rule is determined by a random experiment with 
P ( E  = 0) = P ( E  = 1)= 1/4 and P ( E  = 2)= 1/2. As before, we 
let P(S = H )  = p and have I ( M ;  E )  = H ( M ) -  h ( p ) .  If S and E 
are independent, then we have H ( M )  = 5 + :h(p), and hence, 
Z(M; E )  = 5 - $h(p) .  Our bound (11) becomes PI 2 2 w 4  = 0.42. 
Again bound (16) is tight, which is seen from the fact that 
the choices P ( S  = HIE = 0) = P(S = TIE = 1) = 1 and P ( S  = 
H I E  = 2) = 1/2 return the true value PI = 1/2 for the original 
system where S and E are independent. 
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It should be noted that the probability distribution for the 
source states is hardly visible in bound (16) as previously stated; 
actually one can take the infimum directly with respect to 
random couples ( M ,  E )  rather than (S, E) .  
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Two-Dimensional Harmonic Retrieval and Its 
Time-Domain Analysis Technique 

Xian-Da Zhang 

Abstract -We focus on 2-D harmonic retrieval. It is shown that a 2-D 
ARMA process is the appropriate model of 2-D sinusoids in white noise. 
A time-domain analysis technique is presented for resolving several 
closely spaced 2-D sinusoids in white noise. 

Index Terms -Harmonic retrieval, two-dimensional ARMA modeling, 
signal detection. 

I. INTRODUCTION 

The 2-D harmonic retrieval is a classic problem in multidi- 
mensional signal processing, and receives increasing interest in 
various fields such as sonar, radar, geophysics, etc. Up to now, 
all presented solutions to the problem have been based on high 
resolution 2-D spectral estimations including the 2-D MEM 
[1]-[SI, linear prediction [6]-[8], ARMA model [9]-[ll], and 
Pisarenko’s generalization [3]. 

In this correspondence, we focus on the 2-D harmonic re- 
trieval from a new standpoint that is different from the previous 
spectrum analysis techniques. The first goal of this correspon- 
dence is to show in theory that 2-D sinusoidal frequencies 
( f , , , f2 ,>  are determined by A(zl, z,) = 0, where A(zI ,  2,) is a 
2-D characteristic polynomial consisting of AR coefficients of a 
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2-D ARMA model. Our second goal is to present a time domain 
analysis technique in order to overcome the difficulty arising 
when solving A(zl, z2) = 0 for ( f l l ,  fZi). 

11. PRELIMINARIES 

Consider a 2-D random field {x(n,,n,)) of sinusoids in addi- 
tive noise w(n,,n,) with zero-mean and variance U’:  

M 

x ( n , , n , )  = c A,sin(2.rrfr,n1 +2rf , ,n ,  +6,)+w(n , ,n , ) ,  
r = l  

(1) 

where A ,  and 6, are the amplitude and phase of the ith 
sinusoid, respectively. 

Assume that the A ,  are deterministic and the Or are uniformly 
distributed, mutually independent, and independent of w(nl, 
n,). Then it is easy to show that x ( n l , n , )  is wide-sense homoge- 
neous and its autocorrelation function is given by 

M 

r (  1, k )  = 0 . 5 ~ :  cos (2.rrffIZ + 2Tf,,k) + U26 ( I ,  k ) .  (2) 
r = l  

It is worthwhile to point out that (2) reduces to (3) for k 0 
and to (4) for 1 = 0: 

MI 
r ( Z , o )  = o . s A ~ ( ~ , ) c o ~ ( ~ . ~ ~ ~ , , Z ) + U ~ ~ ( Z )  (3) 

r = l  

and 

M2 

r ( 0 , k )  = c O . S A f ( f , ) c o s ( 2 ~ f , , k ) + a ~ 6 ( k ) ,  (4) 

in which fl,  ( z  = 1; . . ,MI)  and f,, ( j  = 1; . ., M,) represent the 
distinct f l  and f2  frequencies, respectively, and A r ( f l )  and 
A , ( f 2 )  are the amplitudes of sinusoids associated with these 
frequencies. Note that when some frequencies (say in the set of 
fr l )  overlap, A,(fl) and A ,  will be different. For instance, if 
x(nl ,  n,) is given by 

x(n, ,n,)  = sin(0.2rn1 +0.4.rrnZ) 

r = l  

+2sin(0.2.rrnl +O.66.rrnZ) + w(nl ,n1) ,  

where u2 = 1, then 

r ( Z , k )  = 0.5cos(0.2.rrZ+0.4.rrk) 

+2~0~(0 .2 . r r l+0 .66 . r rk )+  u(Z ,k ) ,  

but, 

r(Z,O) = 2.5cos(O.2~rZ) + 6(Z), 

r ( 0 , k )  = 0.5cos(0.4rk)+2cos(0.66ak)+6(k).  

Looking carefully at (3) and (4), we see that the frequencies 
can be determined using only the autocorrelations (r(Z, O)), while 
the determination of the f,, requires only the use of {r(O, k) ) .  

111. HARMONIC RETRIEVAL AND ITS 
ANALYSIS TECHNIQUE 

In this section we analyze the 2-D harmonic retrieval problem 
in theory, and discuss how to resolve 2-D sinusoids in white 
noise. To make the correspondence self-contained, we briefly 
state the estimation of AR parameters of a 2-D ARMA model. 
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