Perturbation of the Ba 6sns 1so Sequence By the 5d7d 3po State, Probed By Lifetime Measurements

Aymar, M; Grafstrom, P; Levison, C; Lundberg, Hans; Svanberg, Sune

Published in:
Journal of Physics B: Atomic, Molecular and Optical Physics

DOI:
10.1088/0022-3700/15/6/013

1982

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Perturbation of the Ba 6sn $^{1}S_{0}$ sequence by the 5d7d, $^{3}P_{0}$ state probed by lifetime measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
(http://iopscience.iop.org/0022-3700/15/6/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.235.188.104
The article was downloaded on 01/07/2011 at 09:51

Please note that terms and conditions apply.
Perturbation of the Ba $6s\!n\!s\!\,^1S_0$ sequence by the $5d7d\,^3P_0$ state, probed by lifetime measurements

M Aymar†, P Grafström‡, C Levison¢, H Lundberg§ and S Svanberg‡
† Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique II, Bâtiment 505, 91405 Orsay, France
‡ Department of Physics, Lund Institute of Technology, S-220 07 Lund, Sweden

Received 9 October 1981

Abstract. The $6s\!n\!s\!\,^1S_0$ sequence of Ba is strongly perturbed around $n = 18$ by the $5d7d\,^3P_0$ doubly excited state. We have probed the configuration mixing by observing the strong decrease in the measured 1S_0 lifetimes around the short-lived valence perturber state. The measurements have enabled us to resolve the problem of the designation of the studied states. Wavefunctions obtained from multi-channel quantum-defect theory were used to calculate theoretical lifetimes in good agreement with the experimental values.

1. Introduction

In alkaline-earth atoms strong perturbations in sequences of highly excited (Rydberg) states occur due to interaction with low-lying valence states of series of the same parity, converging towards a higher series limit. Multi-channel quantum-defect theory (MQDT) (Lu and Fano 1970, Armstrong et al 1977) has been used to analyse recent data on energy levels (see e.g. Esherick 1977, Aymar et al 1978, Aymar and Robaux 1979). Configuration mixing not only affects the level positions but is also reflected in Landé factors (Wynne et al 1977, Grafström et al 1981a) and in the hyperfine structure (Beigang et al 1981, Grafström et al 1981b). Radiative properties are also very sensitive to the type of perturbations discussed here because of the great difference in lifetime between the Rydberg states (long lived) and the low-lying valence perturber states (short lived). Recently, very drastic changes in the measured lifetime values were observed for the perturbed $6s\!n\!d\,^1\!D$ sequences of Ba (Bhatia et al 1981, Gallagher et al 1981, Aymar et al 1981). In the present paper similar measurements for the $6s\!n\!s\!\,^1S_0$ sequence of barium are presented. The members $n = 11$–21 were investigated together with the perturber state close to $n = 18$, the $5d7d\,^3P_0$ doubly excited state. The new lifetime measurements shed light on some problems concerning level designations (Rubbmark et al 1977, Aymar et al 1978). The wavefunctions obtained by Aymar and Robaux (1979) using MQDT were used to calculate lifetimes for the studied states which are in good agreement with the experimental values.

2. Experimental techniques and measurements

Our lifetime measurements were performed using the PUMOLS technique (PULse MOdulated Laser Spectroscopy) which incorporates pulse modulation of a cw dye
laser beam and delayed-coincidence electronics (Gustavsson et al 1979). The experimental set-up is shown in figure 1. The even parity $J = 0$ states were populated by stepwise laser excitation via the short-lived $6s6p \; ^1P_1$ state employing a cw dye laser operating at 5535 Å and a further cw dye laser operating in the wavelength region 420–440 nm. Compared with the 1D_2 sequence previously investigated by Bhatia et al (1981) the transition probabilities to the S states are much lower than those pertinent to the 1D_2 levels, necessitating the use of a single-mode dye laser for efficient excitation. The green laser was adjusted to the 5535 Å Ba transition using optogalvanic signals from a Ba hollow cathode, whereas the single-mode dye laser was accurately set at the correct frequency employing a digital wavemeter with seven significant digits (Hertz and Nilsson 1981). Fluorescence photons were observed in the decay back to the $6s6p \; ^1P_1$ level. An interference filter was used to select the transition. The blue dye laser was acousto-optically modulated and start/stop signals for a time-to-amplitude converter (TAC) were obtained from a photomultiplier detecting a fraction of the exciting beam and a further multiplier observing fluorescence photons from a Ba atomic beam. Pulses from the TAC were fed to a multichannel analyser, where the exponential decay curve was gradually obtained. The data were outputted on a paper punch and fitted to an exponential at an external computer.

In figure 2 an experimental curve is shown for the $6s14s \; ^1S_0$ state together with a fitted exponential. The necessary precautions in order to avoid influences due to

![Figure 1. Experimental set-up used in the lifetime measurement of barium $J = 0$ states.](image-url)
pile-up, multiple scattering, collisions and flight-out-of-view effects were taken in the lifetime measurements (Gustavsson et al 1979).

The lifetime values were measured with the atomic beam exposed to the chamber walls at about 300 K. The far-infrared reflective properties of the vacuum chamber were such that the influence of the exposure to the hot oven orifice was completely negligible. The highly excited, long-lived 1S_0 states will be influenced by black-body induced transitions resulting in virtually shortened natural lifetimes. The effect was found to be about 4% for 1D_2 states with n around 20 (Bhatia et al 1981). The experimentally found value for the 1D_2 states closely agrees with the corresponding theoretical results for 2D states of caesium (Farley and Wing 1981). Their calculated correction for 2S states is 2% for $n = 10$ and 15% for $n = 20$. These results indicate the size of the expected correction for the studied Ba 1S_0 states. The experimental, room-temperature lifetime values for 1S_0 levels are given in table 1. The error bars comprise the statistical spread in the data as well as a 1.5% additional allowance for systematic errors. A strong decrease in lifetime values is very evident around $n = 18$.

3. Calculations and discussion

Some problems concerning level designations appear near the perturbation of the 6sns 1S_0 sequence close to the 181S_0 state. Between the 171S_0 and 191S_0 levels, Rubbmark et al (1977) assigned two levels to the $J = 0$ bound spectrum; a level at 41451 cm$^{-1}$ was designated as 181S_0 and a level at 41468 cm$^{-1}$ as 5d7d 1S_0. Aymar et al (1978) could not detect the former level and instead designated the level at 41468 cm$^{-1}$ as the 181S_0 state; moreover they observed a new level at 41441 cm$^{-1}$ and designated this level as the 5d7d 3P_0 perturber. In a recent investigation (Camus et al 1981) two-step optogalvanic spectroscopy was used to observe the 6sns 3S_1 series of barium and the 41451 cm$^{-1}$ level was assigned as the 6s18s 3S_1 state. In order to
clarify the level designation situation we have, in addition to the lifetime measurements for 1S_0 states (which included the 41468 cm^{-1} state for which we have used the designation $6s18s^1S_0$), determined the lifetimes of the 41441 cm^{-1} and 41451 cm^{-1} states. The results are also included in table 1. Our lifetime measurements confirm the designations given by Aymar et al (1978) and Camus et al (1981). The short lifetime $138(5)$ ns obtained for the 41441 cm^{-1} state is characteristic for a valence perturber state ($5d7d^3P_0$). The lifetime value $2010(50)$ ns obtained for the 41451 cm^{-1} state corresponds to a long-lived pure Rydberg level ($6s18s^3S_1$) rather than to a short-lived perturbed state. In connection with measurements of g_J factors of barium states (Grafström et al 1981a) we also determined the g_J factor of this level to be close to two as expected for a 3S_1 state.

The experimental lifetimes obtained for the $J = 0$ levels have been successfully interpreted using the results provided by a MQDT analysis of the even-parity bound spectrum of Ba I (Aymar et al 1978). The parametric method used for interpreting experimental data is similar to that previously used by one of us (Aymar et al 1981) for analysing lifetime data of Rydberg levels in the perturbed $6s1d^13D_2$ series of Ba I. The wavefunction of a $J = 0$ bound level pertaining either to the $6sns^1S_0$ series or to $5dnd$ ($n = 6, 7$) configurations can be expressed as

$$\Psi_i(n_i) = a_i\phi_{6ss}^1S_0(n_i^*) + b_i\phi_{5dd}^1S_0(n_i^*) + c_i\phi_{5dd}^3P_0(n_i^*)$$

(1)

where a_i, b_i and c_i are MQDT mixing coefficients of the $6ss^1S_0$, $5dd^1S_0$ and $5dd^3P_0$ channels and the ϕ functions have a pure LS-coupled angular part and a radial part involving the effective quantum number n_i related either to the first $\text{Ba}^+ 6s$ limit ($n_i^* = n_i^*)$ or to the $\text{Ba}^+ 5d_{3/2, 5/2}$ higher limits (n_i^*, n_i^*). If we leave out the lowest $6sns^1S_0$ levels ($11 \leq n \leq 13$), slightly perturbed by lower $5d6d J = 0$ levels, the b_i and c_i coefficients have high values only for the $5d7d^3P_0$ level and for some levels close to this perturber, for $n > 13$ we can neglect the variation of Ψ_i with n_i^* and n_i^* and write

$$\Psi_i(n_i^*) = a_i\phi_{6ss}^1S_0(n_i^*) + b_i\phi_{5d7d}^1S_0 + c_i\phi_{5d7d}^3P_0$$

(2)

where the $\bar{\phi}$ functions do not depend on i. The radiative decay rate of a given level i can be calculated from transition probabilities to lower $6snp$, $5dnp$ and $5dnf J = 1$

<table>
<thead>
<tr>
<th>State</th>
<th>Lifetime (ns) at 300 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0 states</td>
<td></td>
</tr>
<tr>
<td>$6s11s^1S_0$</td>
<td>319 (7)</td>
</tr>
<tr>
<td>$6s12s^1S_0$</td>
<td>444 (9)</td>
</tr>
<tr>
<td>$6s13s^1S_0$</td>
<td>584 (13)</td>
</tr>
<tr>
<td>$6s14s^1S_0$</td>
<td>753 (15)</td>
</tr>
<tr>
<td>$6s15s^1S_0$</td>
<td>936 (19)</td>
</tr>
<tr>
<td>$6s16s^1S_0$</td>
<td>1076 (22)</td>
</tr>
<tr>
<td>$6s17s^1S_0$</td>
<td>917 (19)</td>
</tr>
<tr>
<td>$6s18s^1S_0$</td>
<td>274 (20)</td>
</tr>
<tr>
<td>$6s19s^1S_0$</td>
<td>2060 (60)</td>
</tr>
<tr>
<td>$6s20s^1S_0$</td>
<td>3000 (200)</td>
</tr>
<tr>
<td>$6s21s^1S_0$</td>
<td>3400 (300)</td>
</tr>
<tr>
<td>Perturber $5d7d^3P_0$</td>
<td>138 (5)</td>
</tr>
<tr>
<td>3S_1 state</td>
<td>6s18s3S_1</td>
</tr>
</tbody>
</table>
Perturbation of the Ba 6sns 1S_0 sequence

levels. With simplifying assumptions discussed by Aymar et al (1981), we obtain the following expression for the radiative decay rate Γ_i of the level i

$$\Gamma_i = a_i^2 \Gamma_{6ss}^i (n_i^*) + (b_i^2 + c_i^2) \Gamma_{5d7d}^i \epsilon_{P_0}$$

(3)

where Γ_{6ss}^i is the decay rate of a level pertaining to the pure 6ss 1S_0 channel and $\Gamma_{5d7d}^i \epsilon_{P_0}$ is the decay rate of a pure 5d7d 3P_0 perturber, i.e. involving no admixture of the 6ss 1S_0 channel.

Since the decay rates of pure Rydberg levels are expected to have a $(n_i^*)^{-3}$ dependence we can write for i levels with $n > 13$

$$\Gamma_i = a_i^2 \left(\frac{\gamma}{(n_i^*)^3} \right) + (b_i^2 + c_i^2) \Gamma_{5d7d}^i \epsilon_{P_0}$$

(4)

where the quantities γ and $\Gamma_{5d7d}^i \epsilon_{P_0}$ do not depend upon i.

For the lower levels ($11 \leq n \leq 13$) we neglect the small perturbation mainly due to 5d6p perturbers and the corresponding decay rates are given by

$$\Gamma_i = \frac{\gamma}{(n_i^*)^3}$$

(5)

The quantities γ and Γ_{5d7d} have been determined by fitting the theoretical decay rates (equation (4) or (5)) to the experimental data. The values so obtained are $\gamma = 1.19 \times 10^9$ s$^{-1}$ and $\Gamma_{5d7d}^i \epsilon_{P_0} = 0.0113 \times 10^9$ s$^{-1}$. The comparison between theoretical and experimental lifetimes is shown in figure 3, where the results are plotted on a ln–ln diagram against the effective quantum number n^*. The straight line corresponds to equation (5). The overall agreement between experiment and theory is rather good; the drastic decrease in lifetimes around the 5d7d 3P_0 perturber is very well

Figure 3. Ln–ln plot of experimental and theoretical lifetime values for $J = 0$ states against the effective quantum number n^*. The straight line corresponds to $\tau_i = (n_i^*)^3/\gamma$ with $\gamma = 1190$. •: experimental values with error bars; ●: theoretical values.
reproduced. The new lifetime measurements allow us to confirm the designations given by Aymar et al (1978). For lower $6sns \; ^1S_0$ levels ($n \leq 13$) our theoretical treatment is rather rough due to the presence of the $5d6d \; J=0$ perturber; however, experimental data do not deviate much from the straight line describing the behaviour of unperturbed $6sns \; ^1S_0$ levels. (Let us note that the lower levels are introduced in the fit in order to increase the number of data points from which γ is determined.) The fitted γ parameter is in good agreement with that computed by means of a central potential according to the Klapisch method (Aymar et al 1970): $\gamma_{th} = 1.2 \times 10^9 \text{s}^{-1}$. The $\Gamma_{5d7d \; ^3P_0}$ parameter is also in agreement with the $\Gamma_{5d7d \; ^1D_2}$ parameter previously determined (Aymar et al 1981); in fact from $\Gamma_{5d7d \; ^1D_2} = 0.015 \times 10^9 \text{s}^{-1}$ one can deduce $\Gamma_{5d7d \; ^3P_0} = 0.01 \times 10^9 \text{s}^{-1}$ taking into account a wavelength factor leading to a smaller decay rate for the lower $5d7d \; ^3P_0$ level.

Acknowledgment

This work was supported by the Swedish Natural Research Council.

References