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Two 16-State, Rate Trellis Codes
Whose Free Distances Meet the Heller Bound

Rolf Johannesson,Fellow, IEEE, and
Emma Wittenmark,Student Member, IEEE

Abstract—For rate R = 1=2 convolutional codes with 16 states there
exists a gap between Heller’s upper bound on the free distance and its
optimal value. This correspondence reports on the construction of 16-
state, binary, rate R = 2=4 nonlinear trellis and convolutional codes
having dfree = 8; a free distance that meets the Heller upper bound.
The nonlinear trellis code is constructed from a 16-state, rateR = 1=2
convolutional code over 4 using the Gray map to obtain a binary code.
Both convolutional codes are obtained by computer search. Systematic
feedback encoders for both codes are potential candidates for use in
combination with iterative decoding. Regarded as modulation codes for
4-PSK, these codes have free squared Euclidean distanced2

E; free
= 16.

Index Terms—Convolutional codes, free distance, Heller bound, trellis
codes.

I. INTRODUCTION

It is well known that the free distancedfree is the principal
determiner for the error correcting capability of a trellis code when
we communicate over a channel with high signal-to-noise ratio and
use maximum-likelihood (or nearly so) decoding. In Fig. 1, we show
the free distances for rateR = 1=2, binary, optimum free-distance
(OFD) convolutional codes together with Heller’s and Griesmer’s
upper bounds for rateR = 1=2 [1], [2].

For any binary, rateR = b=c trellis code with memorym, Heller’s
upper bound on the free distance is given by

dfree � min
i�1

(m+ i)c

2(1� 2�bi)
: (1)
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Heller’s bound is not only valid for convolutional codes, i.e., linear,
time-invariant trellis codes, but also for a larger class of codes, viz.,
the class of nonlinear, time-varying trellis codes.

For any binary, rateR = b=c convolutional code with memorym,
Griesmer’s upper bound on the free distance says that the inequality

bi�1

j=0

dfree
2j

� (m+ i)c (2)

is satisfied fori = 1; 2; � � �. Griesmer’s bound is valid only for
(linear) convolutional codes.

It is interesting to notice that for codes with as few as 16 states
there exists a gap between Heller’s bound (and Griesmer’s bound),
dfree � 8, and the optimal value of the free distance,dfree = 7, for
rateR = 1=2 (linear) convolutional codes.

Inspired by the recent advances on block codes over4, see for
example [3] and [4], we have searched for 16-state, rateR = 1=2
convolutional codes over the ring4 such that they, when combined
with the Gray map, can be regarded as 16-state, binary, rateR = 2=4,
nonlinear trellis codes with a free distance as large asdfree = 8. We
also searched for 16-state, rateR = 2=4, binary convolutional codes
whose free distance closes the gap. Such low-complexity codes with
large free distance are strong candidates for use in practical systems.

In Section II we describe the codes and compare their spectra with
that of the best rateR = 1=2 convolutional code. Since these codes
might be excellent choices for iterative decoding we give systematic,
feedback encoders in Section III. Comments on related previous
works are given in Section IV.

II. 16-STATE CODES WITH dfree = 8

The computer search was concentrated on encoders with 16 states,
since this corresponds to the smallest memory for which a gap exists.
The optimal free distance for rateR = 1=2 convolutional codes
over 4 and Gray mapped to a binary trellis code was found to be
dfree = 8, which meets the Heller bound. We also found a binary, rate
R = 2=4 convolutional code over 2 with free distancedfree = 8,
which meets the Griesmer bound.

Several codes within each class were found to have the same free
distance. The codes reported are those with the best spectra, i.e., as
few codewords as possible successively atdfree, dfree + 1, and so
forth.

The optimum free distance, rateR = 1=2 convolutional code over
4 has generator matrix (Fig. 2)

G(D) = (3 + 3D +D2 2 +D + 2D2) (3)

and the optimum free distance, binary, rateR = 2=4 convolutional
code has generator matrix

G(D) =
D +D2 1 +D D2 1 +D +D2

1 D +D2 1 +D 1 +D +D2 : (4)

In Table I we compare the spectra,n(dfree + i); i = 0; 1; � � � ; 6,
for these codes with that of the optimum free distance, binary, rate
R = 1=2 convolutional code with generator matrix

G(D) = (1 +D +D4 1 +D2 +D3 +D4): (5)

For 32-state encoders, as can be seen in Fig. 1, there exist convolu-
tional codes which reach Griesmer’s upper bound on the free distance
for linear codes,dfree = 8, but Heller’s upper bound indicates that
there might exist codes with this complexity and a larger free distance,
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Fig. 1. Heller’s (solid line) and Griesmer’s (dashed line) bounds together with the optimal free distance for rateR = 1=2 convolutional codes (+ ).

TABLE I
SPECTRA OF THE THREE CODES

viz., dfree = 9. However, a computer search shows that this gap
cannot be closed using a trellis code generated as a rateR = 1=2
convolutional code over 4: Whether it can be closed by any trellis
code remains an open question.

III. SYSTEMATIC FEEDBACK ENCODERS

It was recently shown that systematic, feedback convolutional
encoders can be efficiently decoded by iterative decoding also for
low signal-to-noise ratios [5].

A rateR = b=c convolutional code over a ring is systematic if and
only if it has a generator matrix that has ab�b subdeterminant which
is a unit in the ring of realizable functions [6]. Since3 + 3D +D2

is such a unit we have the following systematic, feedback encoder
for our convolutional code over4:

G(D) = 1
2 +D + 2D2

3 + 3D +D2
: (6)

It is well known that every convolutional code over a field has
a systematic generator matrix [7]. Our binary, rateR = 2=4
convolutional code can be encoded by the following systematic,
rational generator matrix:

G(D) =

1 0
1 +D +D3

1 +D2 +D3

1 +D3

1 +D2 +D3

0 1
D +D2 +D3

1 +D +D2 +D4

1 +D2 +D4

1 +D +D2 +D4

: (7)

Fig. 2. A rateR = 1=2 convolutional encoder over4 together with a
Gray map.

A realization in controller canonical form requires 128 states. Since
the generator matrix is systematic it is also minimal [7] and, hence,
it can be realized with 16 states. Such a minimal realization is shown
in Fig. 3.

IV. COMMENTS

In [8], Lee reported a 16-state, rateR = 4=8, unit-memory
convolutional code withdfree = 8.

Regarded as modulation codes for 4-PSK, the codes given in (3)
and (4) have free squared Euclidean distanced2E; free = 16. In his
comments on our manuscript, Garello [9] has drawn our attention to
the following earlier results:

In [10], Benedettoet al. published a systematic 16-stateR =
2=4 binary convolutional encoder with feedback that over a 4-PSK
constellation with binary Gray mapping achievesd2E; free = 16 and
has the same spectrum as (4), thus meeting an upper bound on the
free distance for group codes given in [11]. Clearly, their constituent
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Fig. 3. A minimal realization of the systematic rateR = 2=4 binary
encoder.

convolutional encoder hasdfree = 8 which meets the Griesmer
bound.

Furthermore, in [12] Benedettoet al. reported a 16-stateR = 1=2
convolutional code over 4 with generator

G(D) = (1 +D +D2 2 + 3D+ 2D2) (8)

that achievesd2E; free = 16: This code hasn(12) = 289 and, hence,
is slightly inferior to (3).

Recently, Calderbanket al. [13] used “unwrapping” of their tail-
biting representation of the(24; 12; 8) extended Golay code to
construct a most interesting 16-state convolutional code withdfree =
8. Their GCC (Golay convolutional code) can be encoded by a
rate R = 4=8 time-invariant convolutional encoder or with a rate
R = 1=2 time-varying, period4 convolutional encoder; see also [14].
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Convolutional Encoder State Estimation

A. J. Han Vinck,Senior Member, IEEE,
Petr Dolezal, and Young-Gil Kim

Abstract—To estimate the convolutional encoder state from received
data, one may use the inverse to the encoderG. However, channel errors
make this method unreliable. We propose a method that uses the received
data in the following way. We calculate the syndrome, and after a specific
number of received syndrome values equal to zero, we expect that the
corresponding received data is also error-free. The received data is then
used to build the inverse and give an estimate for the encoder state. The
method can be used in situations where knowledge of the encoder state
helps the decoding process or for synchronization purposes. We analyze
the performance of the described method with respect to state estimation
error probability and the average time it takes before we can estimate
the encoder state with a certain desired reliability.

Index Terms—Convolutional codes, state recovery.

I. INTRODUCTION

A general convolutional encoder is specified by itsk�n generator
matrix G. For minimal encoders, we can derive the delay-free
right inverse G�1 and the syndrome formerHT , see [1]. We
concentrate on rateR = 1=2, or k = 1 and n = 2 convolutional
encoders, with a standard constraint length6 encoder as a working
example. Nonsystematic, noncatastrophic encoders are described by
the pair of binary polynomials(g1; g2). Generally, one assumes
that both polynomials have zero delay and maximum degree or
constraint lengthm. The inverse consists of two polynomials,d1
and d2 such that g1d1 + g2d2 = 1, where all operations are
modulo 2. The realization of the inverse is called invertor. The
syndrome former is the pair(g2; g1)T . Using the delay operatorD
notation, the encoder input sequence, the encoder output sequence
pair and the received channel output sequence pair are given by
X(D); (C1(D); C2(D)) = X(D) � G; and (R1(D); R2(D));
respectively. The received sequence

(R1(D); R2(D)) = (C1(D) + n1(D); C2(D) + n2(D))

whereni(D), i = 1; 2 is the channel error sequence that results from
a hard-decision detection and a+ denotes modulo two addition. Note
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