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Optimal Control of Markov Processes with
Incomplete State-Information
Il. The Convexity of the Lossfunction*
K. J. AstrOM

Lund Institute of Technology, Division of Automatic Control, Lund, Sweden

1. INTRODUCTION

A nonlinear adaptive control problem was discussed in [1]. It was shown
that by quantization of time and state space the problem could be reduced to
a variational problem for a Markov chain with incomplete state-information,
To solve the variational problem we introduced a Ayperstate or an information
state consisting of a vector w(?) such that w,() is the conditional probability
that the Markov process is in state 7 given all measured variables up to time .
We choose the state space S as the subset of R, defined by

S = {x; x; = 0}.
After introducing the lossfunction ¥': S — Ry, it was shown in [1] that

the variational problem could be reduced to the solution of the following
functional equation

Vi) = max (g, ) + Tl Al Ve (”-‘ﬁjf—mﬂ
Vy(w) = m,?x(g, ), we S (L.1)
where 4 is the linear transformation defined by
(4jw); = Zs: 92iPsi®s

ol =211, (1.2)
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The notation is that of [1]. The i:th component of the vector g denotes the
instantaneous gain achieved by being in state i at time ¢ and choosing the
control variable u. P is the transition matrix of the Markov chain and Q is the
observation matrix defined in [1], ¢;; thus denotes the probability that the
measuring equipment denotes the process as being in the jth state when it
actually is in state 7. The matrices P and Q as well as the vector g depend on
and #. As P and Q are probability matrices having nonnegative elements it
follows that 4; maps S into S. In [1] it was assumed that Q does not depend
on u. All results of [1] will, however, also be valid when Q depends on «.
Equation (1.1) admits an analytical solution only in very specific cases. The
equation can, however, always be solved numerically. In the example 1 of
[1] we found that I was convex in @ and in example 2 of [1] where the maxi-
mum operation of (1.1) was substituted by a minimum operation, we found
that I was concave in w. In this paper we will establish that this observation
is true in general. Apart from being an amusing curiosity the result is useful
for establishing convergence properties as well as for the simplification of
numerical algorithms.

2. MaiN RssuLt

Before giving the main theorem we will establish some simple properties
of convex functions. We have

Lemma 1. Let fi(x) and fy(x) be convex functions. The function

f(%) = max{ fy(x), fo(x)} 2.1)

is then also convex.
Proor. We first show that
max{a + b, ¢ + d} < max{a, ¢} + max{b, d}. 2.2)
Consider four separate cases:
1. If a>c¢ and b >d, the right member becomes a -~ 5. Fuither

a 4 b > ¢ -+ d and the result holds.

2. If a>c¢ and b <d, the right member becomes a + d. Further
at+b<Lat+dandc+d<a-+td

3. If a<<c and b >d, the right member becomes » + ¢. Further
a+b<b+t+cande+t+d<b+ec

4. If a<<c and b <<d, the right member becomes ¢ + d. Further
a -+ & < ¢ + d and the result also holds,
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Now let 0 <<A <1 and » =1 — X. Consider the value of the function f
defined by (2.1) for the argument Ax + py. We have
w4 py) = max{ fi(Ax + ), fo(Ax -+ 1)}
< max{¥y(%) + ph(), Mao®) + pfe(V)}
< max{fy(x), Mo(%)} + max{wfi(y), wfa(¥)}
= A max{ fy(x), fo(%)} + p max{fi(x), fo(x)}
= M (®) + v/ (y) (2.3)

where the first inequality follows from f; and f, being convex, the second
from equation (2.2) and the last two equalities from A and p being nonnegative
and equation (2.1). The result is then established.

We have further

LevmMa 2. Let the function g : S — Ry be convex and let A be a linear
transformation which maps S into S. The function f : S — R, defined by

Ax) xeS [ Ax| 0 2.4)

e =114x1 g ()
is then also convex.

Proor. Let 0 <A< landp=1—A take xS and y €5, then

A4 A
fOx 4 py) = || M dx + pdy| g (ﬂﬂ‘%’[)

=M+ pdy g (e F i) @9

where
Al 4a|] _ ey

A = SR ol L
VUM T+ pdy)t T TMx £ pdy|

(2.6)

As X and g are nonnegative and 4 maps S into S, Adx e S, Adye S,
Mx - pAy € S. For two elements of # and v of S we have

lu+4ol =lul+[ol
hence
M+pm =1

Now using the convexity of g we find

g(“uﬁin”lnﬁil|)\“ (nAxn)*"l (nﬁiu)' @7
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Combining (2.5), (2.6) and (2.7) we find

70 ) <M1 () + 1 4y - ()

= M(x) + 1/ (y)
and the result is established.
We can now state the main result.
THEOREM. Let A; be mappings from S into S the functions V,: S — R,
defined recursively by (1.1) are then convex.

Proof. 'The linear function (g, @) is convex. By repeated application of
Lemma 1 we now find that Vy(w) is convex. Now consider Vy_;(w). It
follows from Lemma 2 that Vy(4w/| Aw|) || Asw] is convex. As a sum
of convex functions is convex we find that both terms within the brackets of
the right member of (1.1) are convex. Application of Lemma 1 now shows that
Vya(w) is convex. Now proceeding by induction we can show that all
functions V' (w) are convex, and the theorem is proved.

REMARK. We can show in a completely analogous way that the solutions
V {w) of the equation

Via(e) = min (g, @) + 2l 4w | Vs (T%wv‘ﬂ)g
Vi(w) = muin(g, w)

are concave. Compare [1] Fig. 2.
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