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The Optimal Sampling Pattern for Linear Control

Systems
Enrico Bini, Senior Member, IEEE, Giuseppe M. Buttazzo

Abstract—In digital control systems the state is sampled at
given sampling instants and the input is kept constant between
two consecutive instants. By optimal sampling problem we mean
the selection of sampling instants and control inputs, such that
a given function of the state and input is minimized.

In this paper we formulate the optimal sampling problem and
we derive a necessary condition of the LQR optimality of a set
of sampling instants. As the numerical solution of the optimal
sampling problem is very time consuming, we also propose a
new quantization-based sampling strategy that is computationally
tractable and capable to achieve a near-optimal cost.

Finally, and probably most interesting of all, we prove that
the quantization-based sampling is optimal in first-order systems
for large number of samples. Experiments demonstrate that
quantization-based sampling has near-optimal performance even
when the system has higher order. However, it is still an
open question whether or not quantization-based sampling is
asymptotically optimal in any case.

Index Terms—Control design, Least squares approximations,
Linear feedback control systems, Linear systems, Optimal con-
trol, Processor scheduling, Real-time systems.

I. INTRODUCTION

Reducing the number of sampling instants in digital con-

trollers may have an beneficial impact on many system

features: the computing power required by the controller,

the amount of needed communication bandwidth, the energy

consumed by the controller, etc. In this paper, we investigate

the effect of sampling on the optimal LQR. We formulate the

problem as follows

minimizeū

∫ T

0

(x′Qx+ ū′Rū) dt+ x(T )′Sx(T )

s.t.

{

ẋ = Ax+ Bū

x(0) = x0,

(1)

where x and ū are the state and input signals (moving over

R
n and R

m, resp.), A ∈ R
n×n, B ∈ R

n×m, Q ∈ R
n×n, R ∈

R
m×m, S ∈ R

n×n are matrices, with Q and S positive semi-

definite, R positive definite (to denote the transpose of any

matrix M we use the compact Matlab-like notation M ′). The

control input signal ū is constrained to be piecewise constant:

ū(t) = uk ∀t ∈ [tk−1, tk)
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with 0 = t0 < t1 < · · · < tN = T . The sequence

{t0, t1, . . . , tN−1, tN} is called sampling pattern, while tk
are called sampling instants. Often, we represent a sampling

pattern by the values that separates two consecutive instants

that are called interarrivals τk . The sampling instants and the

interarrivals are related to one another through to the relations
{

t0 = 0

tk =
∑k−1

i=0 τi k ≥ 1,
τk = tk+1 − tk.

In periodic sampling we have τk = τ for all k, with τ = T/N
the period of the sampling.

In our formulation, we intentionally ignore disturbances to

the system. While accounting for disturbances would certainly

make the problem more adherent to the reality, it would also

prevent us from deriving the analytical results that we propose

in this paper. The extension to the case with disturbances is

left as future work.
In continuous-time systems, the optimal control u that

minimizes the cost in (1) can be found by solving the Riccati

differential equation
{

K̇ = KBR−1B′K −A′K −KA−Q

K(T ) = S
(2)

and then setting the input u as

u(t) = −R−1B′K(t)x(t). (3)

In this case, the achieved cost is

J∞ = x′
0K(0)x0.

For given sampling instants, the optimal values uk of the

input that minimize the cost (1) can be analytically determined

through the classical discretization process described below. If

we set

Φ(τ) = eAτ , Āk = Φ(τk), (4)

Γ(τ) =

∫ τ

0

eA(τ−t) dtB, B̄k = Γ(τk), (5)

Q̄(τ) =

∫ τ

0

Φ′(t)QΦ(t) dt, Q̄k = Q̄(τk), (6)

R̄(τ) = τR+

∫ τ

0

Γ′(t)QΓ(t) dt, R̄k = R̄(τk), (7)

P̄ (τ) =

∫ τ

0

Φ(t)′QΓ(t) dt, P̄k = P̄ (τk), (8)

then the problem of minimizing the cost (1) can be written as

a discrete time-variant problem
{

xk+1 = Ākxk + B̄kuk

given x0
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with the cost

J = x′
NSxN +

N−1
∑

k=0

(x′
kQ̄kxk + u′

kR̄kuk + 2x′
kP̄kuk).

This problem is then solved using dynamic program-

ming [1], [2]. The solution requires the backward recursive

definition of the sequence of matrices K̄k
{

K̄k = Q̂k − B̂kR̂
−1
k B̂′

k

K̄N = S,
(9)

with Q̂k, R̂k, and B̂k, functions of K̄k+1 as well, defined by

Q̂k = Q̄k + Ā′
kK̄k+1Āk,

R̂k = R̄k + B̄′
kK̄k+1B̄k,

B̂k = P̄k + Ā′
kK̄k+1B̄k.

Then, the optimal input sequence uk is determined by

uk = −R̂−1
k B̂′

kxk, (10)

with minimal cost equal to

J = x′
0K̄0x0. (11)

Equation (10) allows to compute the optimal input signal uk

for given sampling instants t0, t1, . . . , tN . In fact, the optimal

input sequence depends on Āk, B̄k, Q̄k, R̄k, P̄k , Q̂k, R̂k,

and B̂k which are all function of the inter-sample separations

τk = tk+1− tk. However, to our best knowledge, the problem

of determining the optimal sampling pattern is still open.

The paper is organized as follows. In Sections II-A and II-B

we recall some natural sampling techniques. In Section III

we formulate the problem of optimal sampling and we report

some results. Since solving the optimal sampling problem

is very time consuming, in Section IV we propose a new

sampling method that we call quantization-based sampling

being related to quantization theory. In Section V we prove

that quantization-based sampling is optimal for first-order

systems when the number N of samples tends to ∞, while

in Section VI we investigate second-order systems.

A. Related works

Triggering the activation of controllers by events, rather

than by time, is an attempt to reduce the number of sampling

instants per time unit. A first example of event-based controller

was proposed by Årzén [3]. In self-triggered controller [4],

the control task determines the next instant when it will be

activated. Wang and Lemmon addressed self-triggered linear

H∞ controllers [5]. Self-triggered controllers have also been

analysed and proved stable also for state-dependent homoge-

neous systems and polynomial systems [6]. Very recently, Rabi

et at. [7] described the optimal envelope around the state that

should trigger a sampling instant. Similar as in this paper,

they consider the constraint of N given samples over a finite

time horizon. In our paper, however, we aim at establishing

a connection between quantization-based sampling (properly

defined later in Section IV) and optimal sampling in absence

of disturbances.

The connections between “quantization” and the control has

been studied deeply in the past. Often the quantization was

intended as the selection of the control input over a discrete set

(rather than dense). Elia and Mitter [8] computed the optimal

quantizer of the input, which was proved to be logarithmic.

Xu and Cao [9] proposed a method to optimally design a

control law that selects among a finite set of control inputs.

The input is applied when the (scalar) state reaches a threshold.

The number of thresholds is finite. In a different, although

very related, research area Baines [10] proposed algorithms

to find the best fitting of any function u with a piecewise

linear function ū, which minimizes the L2 norm of u − ū.

However, in all of these works, the instants t1, . . . , tN−1 at

which the approximating function changes are not optimiza-

tion variables, while in this paper we explicitly investigate the

optimal selection of the sampling instants. Moreover, in our

method, the control inputs u0, . . . , uN−1 are not determined

by a quantization procedure (as in [10]), but rather by the

solution of an optimal discrete time-varying LQR problem.

Finally, a problem related to the one considered here was

addressed by Kowalska and von Mohrenschildt [11] who

proposed the variable time control (VTC). Similarly to our

approach, they also perform the cost minimization over the

sampling instants as well. However, the authors perform a

linearisation of the discrete-time system in a neighbourhood

of every sampling instant, losing then optimality.

The contributions of this paper are:

• the determination of a necessary condition for the opti-

mality of a sampling pattern;

• the introduction of the quantization-based sampling,

which is capable to provide a cost very close to the

optimal one with a small computational effort;

• the proof that quantization-based sampling is optimal for

first-order systems with a large number of samples;

• a numerical evaluation that shows that quantization-based

sampling is near optimal for second and higher order

systems as well.

II. SAMPLING METHODS

For any given sampling method, we evaluate the temporal

distribution of the sampling instants by the sampling density,

whereas the capacity to reduce the cost by the normalized cost.

Both metrics are formally defined below.

Definition 1: Given a problem, specified by x0, A, B, Q,

R, and S, an interval length T , and a number of samples N ,

we define the sampling density σN,m : [0, T ] → R
+ of any

sampling method m as

σN,m(t) =
1

Nτk
∀t ∈ [tk, tk+1).

Notice that the sampling density is normalized since:

∫ T

0

σN,m(t) dt =
N−1
∑

k=0

∫ tk+1

tk

σN,m(t) dt =
N−1
∑

k=0

1

Nτk
τk = 1.

To remove the dependency on N we also define the follow-

ing density.
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Definition 2: Given a problem, specified by x0, A, B, Q,

R, and S, and an interval length T , we define the asymptotic

sampling density σm : [0, T ] → R
+ of any sampling method

m as

σm(t) = lim
N→∞

σN,m(t).

The density σm provides significant information only when

N is large compared to the size of the interval [0, T ], while

in reality it is often more desirable to have a small N to

reduce number of execution of the controller. Nonetheless, the

asymptotic density can still provide informative results that can

guide the design of more efficient sampling techniques, even

when N is not large.

While the density σm provides an indication of how samples

are distributed over time, the quantity defined below returns a

measure of the cost associated to any sampling method.

Definition 3: Given a problem, specified by x0, A, B, Q,

R, S, an interval length T , a number of samples N , we define

the normalized cost of any sampling method m as

cN,m =
N2

T 2

JN,m − J∞
J∞

where JN,m is the minimal cost of the sampling method m with

N samples and J∞ is the minimal cost of the continuous-time

systems.

The scaling factor N2/T 2 is motivated by the observation

(proved by Melzer and Kuo [12]) that the cost J(τ) of periodic

sampling with period τ can be approximated by J∞ + kτ2 +
o(τ2) for small values of the period τ (the Taylor expansion

in a neighbourhood of τ → 0 has not first order term).

To remove the dependency on N , we also compute the limit

of the normalized cost.

Definition 4: Given a problem, specified by x0, A, B, Q,

R, and S, an interval length T , we define the asymptotic

normalized cost of any sampling method m as

cm = lim
N→∞

cN,m. (12)

The asymptotic normalized cost (12) is also very convenient

from an “engineering” point of view. In fact, it can be readily

used to estimate the number of samples to achieve a bounded

cost increase with respect to the continuous-time case. If for

a given sampling method m we can tolerate at most a (small)

factor ǫ of cost increase w.r.t. the continuous-time optimal

controller, then

(1 + ǫ)J∞ ≥ JN,m = T 2 cN,mJ∞
N2

+ J∞,

from which we deduce

N ≥ T

√

cN,m

ǫ
≈ T

√

cm
ǫ
. (13)

Relation (13) constitutes a good hint for assigning the number

of samples in a given interval.

Notice that the cost JN,m of any method m with N samples,

can be written by Taylor expansion as

JN,m=J∞
(

1+T 2N−2cN,m

)

=J∞
(

1+T 2N−2cm
)

+o(N−2)

with the remainder o(N−2) such that limN→∞ N2o(N−2) =
0. Hence, for a small value of N , the approximation of (13)

is tight as long as the remainder o(N−2) is small. While we

do not provide any analytical result in this sense, later in the

experiments of Section VII, we show that this approximation

is quite tight for all the considered examples.

Below, we recall the characteristics of the existing sampling

methods.

A. Periodic sampling

The simplest (and almost universally used) sampling method

is the one obtained by dividing the interval [0, T ] in N inter-

vals of equal size; it corresponds to the choice tk = kT/N and

it is called periodic sampling (abbreviated per). We then have

that all the inter-sampling periods are equal: τk = τ = T/N
for all k, and the sampling density is, obviously, constant, with

σper,N (t) = 1/T, ∀N.

For the periodic case, it is possible to determine analytically

the asymptotic normalized cost cper. In 1971, Melzer and

Kuo [12] approximated the solution K̄(τ) of the Discrete

Algebraic Riccati Equation to the second order of the sampling

period τ , in a neighbourhood of τ = 0. They showed that

K̄(τ) = K∞ +X
τ2

2
+ o(τ2),

being K∞ the solution of the ARE of the continuous-time

problem (2) and X the second order derivative of K̄(τ) in 0,

that is the solution of the following Lyapunov equation

A′X +XA+
1

6
A′K∞BR−1B′K∞A = 0. (14)

with

A = A−BR−1B′K∞.

Melzer and Kuo [12] also proved that such a solution is

positive semidefinite. Hence the normalized asymptotic cost

in the periodic case is

cper= lim
N→∞

N2

T 2

x′
0(K∞ +X T 2

2N2 + o(N−2))x0 − x′
0K∞x0

x′
0K∞x0

=
x′
0Xx0

2x′
0K∞x0

.

In the case of a first-order system (n = 1), assuming without

loss of generality B = R = 1, the Lyapunov equation (14)

has the solution X = 1
12 (K∞ −A)K2

∞ and the ARE has the

solution K∞ = A +
√

A2 +Q. Hence the asymptotic cost

becomes

cper =
1

24
(A
√

A2 +Q+A2 +Q). (15)

B. Deterministic Lebesgue sampling

As the number of samples N → ∞, the optimal sampled-

time control input ū tends to the optimal continuous-time input

u. It is then natural to set the sampling instants so that ū
approximates u as close as possible.

A tentative sampling method, that we describe here for the

only purpose of a comparison with our proposed sampling

method which will be described later in Section IV, is to set a
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threshold ∆ on the optimal input u, so that after any sampling

instant tk, the next one tk+1 is determined such that

‖u(tk+1)− u(tk)‖ = ∆.

with u being the optimal continuous-time input. Through

this sampling rule, however, we cannot establish a clear

relationship between ∆ and the number N of sampling instants

in [0, T ]. If we assume that the dimension of the input space

is m = 1 (which allows us to replace the notation of the norm

‖·‖, with the notation of the absolute value |·|), we can enforce

both a constant |u(tk+1)− u(tk)| (except when u̇ changes its

sign in (tk, tk+1)) and a given number N of sampling instants

in [0, T ] by the following rule

∀k = 0, . . . , N − 1,
∫ tk+1

tk

|u̇(t)| dt = 1

N

∫ T

0

|u̇(t)| dt, (16)

where u is the optimal continuous-time control input. We

call this sampling method deterministic Lebesgue sampling

(abbreviated as dls), because of its similarity to the (stochas-

tic) Lebesgue sampling proposed by Åström and Bernhards-

son [13], which applied an impulsive input at any instant

when the state, affected by disturbances, was hitting a given

threshold.

Following this sampling rule, by construction, the asymp-

totic density is

σdls(t) =
|u̇(t)|

∫ T

0 |u̇(s)| ds
.

After the sampling instants t1, t2, . . . , tN−1 are determined

according to Eq. (16), the values of the control input uk are

optimally assigned according to (10).

For the dls method we are unable to determine the nor-

malized cost cdls, in general. However, in Section V we

analytically compute cdls for first-order systems (n = 1).

III. OPTIMAL SAMPLING

We now investigate the optimal solution of the problem (1).

Let us introduce a notation that is useful in the context of

this section. For any vector x ∈ R
n, let us denote by xxx the

following vector in R
nnn, with nnn = n(n+1)

2 ,

xxx = [x2
1, 2x1x2, . . . , 2x1xn,

x2
2, 2x2x3, . . . , 2x2xn, . . . , x2

n−1, 2xn−1xn, x2
n]

′,

and for any matrix M ∈ R
n×n, let us denote by MMM ∈ R

nnn the

vector

MMM = [M1,1, M1,2, . . . , M1,n, M2,2, M2,3, . . . , M2,n, . . . ,

. . . , Mn−1,n−1, Mn−1,n, Mn,n]
′.

This notation allows writing the cost (11) as J = xxx′
0K̄̄K̄K0,

and the Riccati recursive equation (9), as
{

K̄̄K̄Kk = r(τk, K̄̄K̄Kk+1)

K̄̄K̄KN = SSS,
(17)

with r : R× R
nnn → R

nnn properly defined from (9).

Since we search for stationary point of J , let us investigate

the partial derivatives ∂K̄̄K̄Kk

∂τh
. Firstly

h < k ⇒ ∂K̄̄K̄Kk

∂τh
= 0,

because K̄k depends only on the current and the future

sampling intervals {τk, τk+1, . . . , τN−1}. Then we have














∂K̄̄K̄Kk

∂τk
=

∂r

∂τ
(τk, K̄̄K̄Kk+1)

∂K̄̄K̄Kk

∂τh
=

∂r

∂K̄̄K̄K
(τk, K̄̄K̄Kk+1)

∂K̄̄K̄Kk+1

∂τh
h > k

from which it follows

∂K̄̄K̄Kk

∂τh
=

[

h−1
∏

i=k

∂r

∂K̄̄K̄K
(τi, K̄̄K̄Ki+1)

]

∂r

∂τ
(τh, K̄̄K̄Kh+1) h ≥ k

(18)

Notice that ∂r
∂K̄̄K̄K

(τi, K̄̄K̄Ki+1) ∈ R
p×p.

Since the problem (1) is constrained by
∑N−1

k=0 τk = T ,

from the KKT conditions it follows that at the optimal point

the gradient ∇J must proportional to [1, 1, . . . , 1], meaning

that all components of ∇J have to be equal to each other.

Hence, a necessary condition for the optimum is that for every

h = 0, . . . , N − 2

∂J

∂τh
=

∂J

∂τh+1
⇐⇒ xxx′

0

∂K̄̄K̄K0

∂τh
= xxx′

0

∂K̄̄K̄K0

∂τh+1
,

which can be rewritten as

xxx′
0

[

h−1
∏

i=0

∂r

∂K̄̄K̄K
(τi, K̄̄K̄Ki+1)

]

[

∂r

∂τ
(τh, K̄̄K̄Kh+1)

− ∂r

∂K̄̄K̄K
(τh, K̄̄K̄Kh+1)

∂r

∂τ
(τh+1, K̄̄K̄Kh+2)

]

= 0. (19)

Finding the analytical solution of (19) is an overwhelming

task. Hence below we propose some special cases that provide

some insights on how the general solution should be. In

Section III-C we describe a numerical algorithm to find the

solution.

A. Two sampling instants: optimality of periodic sampling

If N = 2, then (19) must be verified only for h = 0. In this

special case condition (19) becomes

xxx′
0

[

∂r

∂τ
(T − τ1, r(τ1,SSS))

− ∂r

∂K̄̄K̄K
(T − τ1, r(τ1,SSS))

∂r

∂τ
(τ1,SSS)

]

= 0 (20)

in which the only unknown is τ1.
Eq. (20) also allows checking whether periodic sampling

can be optimal or not. Let K̄τ be the solution of the DARE

associated to the discretised system with period τ . Then a

necessary condition for the optimality of the periodic sampling

with period τ is

xxx′
0

[

Ip −
∂r

∂K̄̄K̄K
(τ, K̄̄K̄Kτ )

]

∂r

∂τ
(τ, K̄̄K̄Kτ ) = 0 (21)

where Innn denotes the identity matrix in R
nnn×nnn. If (21) is false,

then we are certain that when the system state is at x0, periodic

sampling with period τ is not optimal.
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B. First-order systems

In the case of a first-order system (n = 1 and then nnn = 1)

we can avoid using the bold facebold facebold face notation introduced at the

beginning of Section III, since both M and MMM are the same

scalar value.

The necessary condition for optimality (19) requires to

compute the Riccati recurrence function r(τ, K̄) and its par-

tial derivatives. For first-order order, the Riccati recurrence

function r is

r(τ, K̄) =
Q̄kR̄k − P̄ 2

k + (Ā2
kR̄k − 2ĀkB̄kP̄k + B̄2

kQ̄k)K̄

R̄k + B̄2
kK̄

(22)

with the following partial derivatives

∂r

∂K̄
(τ, K̄) =

(ĀkR̄k − B̄kP̄k)
2

(R̄k + B̄2
kK̄)2

∂r

∂τ
(τ, K̄) =

1

(R̄k + B̄2
kK̄)2

(

R(P̄k + ĀkB̄kK̄)2

+ (ĀkR̄k − B̄kP̄k)(Q(ĀkR̄k − B̄kP̄k)

+ 2Āk(AR̄k −BP̄k)K + 2ĀkB̄k(AB̄k −BĀk)K̄
2)
)

.

Let us now investigate the condition on τ0, . . . , τN−1 to

satisfy (19). Since we assume x0 6= 0, we have that at least

one of the two factors in (19) is equal to zero.

Remark 5: First, we observe that if τk is such that ĀkR̄k =
B̄kP̄k, then ∂r

∂K (τk, K̄) = 0 for any possible K̄. Let us set k∗

as the minimum indices among the k such that ĀkR̄k = B̄kP̄k.

From (18), it follows that ∂K̄0

∂τh
= 0, for all h ≥ k∗ + 1. In

fact, for such special τk∗ , the value of K̄k∗ is

K̄k∗ =
Q̄k∗R̄k∗ − P̄ 2

k∗

R̄k∗

that is independent of K̄k∗+1 and then independent of any

τk∗+1, . . . , τN−1. These are all potential critical points that

need to be explicitly tested.

If instead all intersample separations are such that ĀkR̄k

never equals B̄kP̄k (this happens if the minimum τk such that

ĀkR̄k = B̄kP̄k is larger than T , or when τk is small enough

since ĀkR̄k = τkR + o(τk) and B̄kP̄k = B2Q
2 τ3k + o(τ3k )),

then from (19) it follows that an optimal sampling pattern

must satisfy the condition

∂r

∂τ
(τh, r(τh+1, K̄h+2))−

∂r

∂K̄
(τh, r(τh+1, K̄h+2))

∂r

∂τ
(τh+1, K̄h+2) = 0. (23)

This relationship allows finding all intersample separations

τ0, . . . , τN−2 starting from any τN−1 using the backward

recursive equations (23) and (17). In order to fulfil the equality
∑N−1

k=0 τk = T we have then to choose τN−1 appropri-

ately; this is made through an iterative procedure that we

implemented to scale the value τN−1 until the constraint
∑N−1

k=0 τk = T is verified. In Section V, this condition will

be exploited to find the asymptotic behaviour of optimal

sampling.

C. Numerical solution

In general, finding the τ0, . . . , τN−1 that solve Eq. (19)

is very hard. Hence we did implement a gradient descent

algorithm, which iteratively performs the following steps:

1) computes the gradient ∇J =
(

∂J
∂τ0

, . . . , ∂J
∂τN−1

)

at the

current solution;

2) project ∇J onto the equality constraint
∑N−1

k=0 τk = T
by removing the component that is orthogonal to the

constraint;

3) performs a step along the negative projected gradient and

then update the solution if the cost has been reduced or

reduce the length of the step if the cost is not reduced.

As it will be later shown in Section VII this numerical

optimization procedure is capable to find solutions that are

much better than both periodic and dls sampling. However, this

considerable cost reduction has a price. The major drawback of

the numerical algorithm is certainly its complexity. Moreover,

being the problem non-convex, the gradient-descent algorithm

does not guarantee to reach the global minimum.

Only the computation of the gradient of the matrix K̄0

with respect to all sampling instants has the complexity of

O(N2n3). This step needs to be computed over and over

until numerical stopping criteria of the gradient descent al-

gorithm are reached. While still giving interesting insights

on the optimal sampling pattern problem, this considerable

computational cost prevents both computing the asymptotic

behaviour for large N and practical applications of this result.

For this reason, we propose below another solution which

demonstrated surprising properties (proved later in Section V).

IV. QUANTIZATION-BASED SAMPLING

In this section we describe a sampling method that is

capable to provide a near-minimal cost (considerably lower

than dls sampling) without requiring to execute a heavy

optimization routines. The basic idea is to approximate the

optimal continuous-time control input u with a piecewise

constant function.

This approach is well studied under the name of quanti-

zation, a discretization procedure which aims to approximate

a function, in the Lp sense, by means of piecewise constant

functions. Given a function u ∈ Lp(Ω) the goal is to find a

piecewise constant function ū taking only N values, which

realizes the best approximation of u, in the sense that the

Lp(Ω) norm
∫

Ω

‖u(x)− ū(x)‖p dx

is minimal. In our case, if the dimension of the input space

is m = 1, the quantization problem can be formulated as

minimizing the quantization error Eqnt

Eqnt =
N−1
∑

k=0

∫ tk+1

tk

|u(t)− uk|2 dt. (24)

with t0 = 0 and tN = T .

In this problem the unknowns are the constants

{u0, . . . , uN−1} to approximate the function u, as well as the
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intermediate instants {t1, . . . , tN−1}. If we differentiate the

quantization error Eqnt with respect to uk we find that

uk =
1

tk+1 − tk

∫ tk+1

tk

u dt. (25)

which, not surprisingly, states that the constant uk that better

approximates u in the interval [tk, tk+1] is its average value

over the interval. Thanks to (25) the quantization cost can be

rewritten as

Eqnt =

∫ T

0

|u|2 dt−
N−1
∑

k=0

(tk+1 − tk)|uk|2.

Now we differentiate the error with respect to tk, with k =
1, . . . , N − 1. We find

∂Eqnt

∂tk
= − ∂

∂tk

(

1

tk+1 − tk

∣

∣

∣

∣

∫ tk+1

tk

u dt

∣

∣

∣

∣

2
)

−

∂

∂tk





1

tk − tk−1

∣

∣

∣

∣

∣

∫ tk

tk−1

u dt

∣

∣

∣

∣

∣

2




= − 1

(tk+1 − tk)2

∣

∣

∣

∣

∫ tk+1

tk

u dt

∣

∣

∣

∣

2

+ 2u′(tk)uk+

1

(tk − tk−1)2

∣

∣

∣

∣

∣

∫ tk

tk−1

u dt

∣

∣

∣

∣

∣

2

− 2u′(tk)uk−1

= −|uk|2 + 2u′(tk)uk + |uk−1|2 − 2u′(tk)uk−1

= |uk−1 − u(tk)|2 − |uk − u(tk)|2

from which it follows that the sampling sequence that mini-

mizes the quantization error must be such that

|uk−1 − u(tk)|2 = |uk − u(tk)|2. (26)

We can then define the quantization-based sampling method

(abbreviated with qnt) as follows:

1) the optimal continuous-time input u is computed;

2) the piecewise-constant function ū that minimizes Eqnt

of (24) is found by applying the gradient condition

of (26);

3) for the sampling instants t0(= 0), t1, . . . , tN−1, tN (=
T ) of this solution ū, we compute the optimal input

sequence from (10), since the inputs of (25) are not

optimal for the minimization of J .

An efficient implementation and a proof of convergence of

this algorithm is beyond the scope of this paper. The interested

reader can find our implementation of this function at github.

com/ebni/samplo. Finally, we remark that the method qnt is

applicable to any linear system with dimension of the input

space m = 1 and any dimension n of the state space.

A. Asymptotic behaviour

As shown in [14], [15] the quantization problem of a func-

tion u ∈ Lp(Ω), is equivalent to minimize the Wasserstein’s

distance Wp(µ, ν) where µ is the image measure u#(dx/|Ω|)
and ν is a sum of Dirac masses

ν =
1

N

N
∑

k=1

δyk
.

As N → ∞, the asymptotic density of points yk can be

computed and is equal to

f(y)m/(m+p)

∫

f(y)m/(m+p) dy

where m is the dimension of the space of values of u and f
is the density of the absolutely continuous part of the measure

µ.

If the input space has dimension m = 1, then we find

f(y) = 1/|u̇|
(

u−1(y)
)

, being u the solution of the Riccati

equation (3). From the asymptotic density of values yk, which

is
|u̇|−1/(1+p)

(

u−1(y)
)

∫

|u̇|−1/(1+p)
(

u−1(y)
)

dy

we can pass to the asymptotic sampling density, which is then

σqnt(t) =
|u̇(t)|p/(1+p)

∫ T

0 |u̇(t)|p/(1+p) dt
.

Taking p = 2, i.e. minimizing the L2 norm
∫ T

0
|u− ū|2 dt, we

end up with the asymptotic sampling density

σqnt(t) =
|u̇(t)|2/3

∫ T

0
|u̇(s)|2/3 ds

(27)

Equation (27) provides a very interesting intuition, which

can be used as follows to determine the sampling instants.

The steps, also illustrated in Figure 1, are described below:

1) the optimal continuous-time input u is computed;

2) the sampling instants t1, . . . , tN−1 are determined such

that their asymptotic density is (27), by construction.

That is we choose t1, . . . , tN−1 such that

∀k = 0, . . . , N − 1,
∫ tk+1

tk

|u̇(t)|2/3 dt = 1

N

∫ T

0

|u̇(t)|2/3 dt (28)

with the usual hypothesis of t0 = 0, tN = T
3) for such a sampling sequence t0(=

0), t1, . . . , tN−1, tN (= T ), we compute the optimal

input sequence from (10), which guarantees to minimize

the control cost J for given sampling instants.

u

|u̇|
|u̇|2/3
uq23

0

t0 =0 tN =T

Fig. 1: Sampling according to the asymptotic density.

After the optimal continuous-time input u is computed (which

has the complexity of solving a Riccati differential equation),
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the complexity of computing the sampling instants from u is

O(N). Notice that the difference between this method and the

dls method (whose instants are selected according to (16)) is

only in the exponent of |u̇|.
This method is abbreviated with q23 to remind the 2/3

exponent in (28). Although method q23 follows from the

asymptotic sampling density (i.e. with N → ∞) of method

qnt, as it will be shown in Sections V and VI, this method

produces sampling sequences with a near-optimal cost also for

reasonably small values of N .

Finally, we remark that, similarly to the method qnt, the

method q23 is applicable to any linear system with dimension

of the input space m = 1 and any dimension n of the state

space.

V. FIRST-ORDER SYSTEMS: QUANTIZATION IS

ASYMPTOTICALLY OPTIMAL

These quantization-based sampling techniques (methods qnt

and q23) follow the intuitive idea that the optimal discrete-

time input should mimic the optimal continuous-time input.

As it will be shown later in Section VII, their excellent

capability to reduce the cost appears in all the performed

experiments. Unfortunately, we were unable to prove a general

result that relates the costs JN,qnt or JN,q23 to the minimal

continuous-time cost J∞ or to the cost of optimal sampling

JN,opt. Nonetheless, for first-order systems (n = 1), we did

actually prove that the asymptotic sampling density σqnt of the

quantization (Equation (27)) is actually equal to the asymptotic

density of the optimal sampling σopt. The only additional

hypothesis we are using is that the weight S of the final state

at the instant T is set equal to the continuous ARE solution

K∞, which implies K(t) = K∞, ∀t ∈ [0, T ] . As it will

be shown later in the proof, this assumption is needed only to

simplify the expression of the optimal continuous-time control

input. Proving the asymptotic optimality of quantization-based

sampling in more general hypothesis required a too involved

mathematical development. Moreover, we observe that assum-

ing the weight of the final state equal to the solution of the

ARE is not very stringent, since the state at time t = T is

going to be small anyway, especially for large T .

Also, throughout this section we assume that if Q = 0 then

A > 0, otherwise the optimal input is obviously ū(t) = 0,

which is a constant function independently of the sampling

instants.

For such a first-order system we are actually able to compute

analytically both the asymptotic optimal sampling density σopt

and asymptotic normalized cost copt.
Lemma 6: Consider a first-order system (n = 1) with

weight of the final state S equal to the solution of the contin-

uous ARE. Then the optimal sampling pattern has asymptotic

density

σopt ∝ |u̇|2/3 (29)

being u the optimal continuous-time input.

Proof: Up to suitable normalizations of the cost function

and of the system dynamics, we can assume, without loss of

generality, that B = 1, and R = 1. From (2) it follows that

the solution of the ARE, and then the weight of the final state,

is

S = A+
√

A2 +Q.

This assumption enables us to have a simple expression for

the optimal continuous-time input u, that is

u(t) = −x0(A+
√

A2 +Q)e−
√

A2+Q t. (30)

From (4)–(8), the discretised system with an intersample

separation of τk gives the following discrete-time model

Āk = 1 +Aτk +
A2

2
τ2k +

A3

6
τ3k +

A4

24
τ4k + o(τ4k ),

B̄k = τk +
A

2
τ2k +

A2

6
τ3k +

A3

24
τ4k + o(τ4k ),

Q̄k = Q(τk +Aτ2k +
2A2

3
τ3k +

A3

3
τ4k ) + o(τ4k ),

R̄k = τk +Q(
1

3
τ3k +

A

4
τ4k +

7A2

60
τ5k ) + o(τ5k ),

P̄k = Q(
1

2
τ2k +

A

2
τ3k +

7A2

24
τ4k ) + o(τ4k ).

Since we investigate the asymptotic optimal sampling den-

sity (N → ∞ and then τk → 0), we realize that ĀkR̄k =
τk + o(τk) never equals B̄kP̄k = Q

2 τ
3
k + o(τ3k ), for small

τk. By Remark 5 the optimal solution must satisfy Eq. (23)

which establishes a relationship between τh and τh+1. Since

they both tend to zero, we write τh as a function of τh+1:

τh = ατh+1 + βτ2h+1 + o(τ2h+1), (31)

with α and β suitable constants to be found from Eq. (23).

Approximating the Riccati recurrence function r of (22) to

the fourth order1 w.r.t. τ , we find

r(τ, K̄) = K̄ − (K̄2 − 2AK̄ −Q)τ

+
(

K̄3 − 3AK̄2 + (2A2 −Q)K̄ +AQ
)

τ2

−
(

K̄4 − 4AK̄3 + (
55

12
A2 − 4

3
Q)K̄2

+ (−4

3
A3 +

5

2
QA)K̄ − 2

3
QA2 +

1

4
Q2
)

τ3

+
(

K̄5− 5AK̄4+ (
49A2

6
− 5

3
Q)K̄3+

19

4
(−A3+QA)K̄2

+ (
2A4

3
− 13QA2

4
+

7Q2

12
)K̄ +

QA3

3
− Q2A

2

)

τ4

+ o(τ4) (32)

1For computing this and next expressions, we made use of the symbolic
manipulation tool “Maxima” (http://maxima.sourceforge.net/).
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with the partial derivatives

∂r

∂τ
= −(K̄2 − 2AK̄ −Q)

+ 2
(

K̄3 − 3AK̄2 + (2A2 −Q)K̄ +AQ
)

τ

− 3
(

K̄4 − 4AK̄3 + (
55

12
A2 − 4

3
Q)K̄2

+ (−4

3
A3 +

5

2
QA)K̄ − 2

3
QA2 +

1

4
Q2
)

τ2

+ 4
(

K̄5− 5AK̄4+ (
49A2

6
− 5

3
Q)K̄3+

19

4
(−A3+QA)K̄2

+ (
2A4

3
− 13QA2

4
+

7Q2

12
)K̄ +

QA3

3
− Q2A

2

)

τ3

+ o(τ3)

∂r

∂K̄
= 1− 2(K̄ −A)τ + (3K̄2 − 6AK̄ + 2A2 −Q)τ2

−
(

4K̄3 − 12AK̄2 + 2(
55

12
A2 − 4

3
Q)K̄

− 4

3
A3 +

5

2
QA
)

τ3 + o(τ3).

We now replace in the necessary condition for optimality

(23) the expressions above. If we write τh as a function of

τh+1 (Eq. (31)), we find

− τ2h+1

Q+AK̄h+2

12

[(

6(α− 1)(α+ 1)2AK̄2
h+2

+ 2
[

(α+ 1)
(

(2α2 − 2α− 1)Q+ (−4α2 − 2α+ 5)A2
)

− 3αβA
]

K̄h+2

− 6
(

(α+ 1)2(α− 1)A+ αβ
)

Q
)

τh+1

− 3(α2 − 1)(Q +AK̄h+2)
]

+ o(τ3h+1) = 0

from which we have
(

6(α− 1)(α+ 1)2AK̄2
h+2

+ 2
[

(α+ 1)
(

(2α2 − 2α− 1)Q

+ (−4α2 − 2α+ 5)A2
)

− 3αβA
]

K̄h+2

− 6
(

(α+ 1)2(α− 1)A+ αβ
)

Q
)

τh+1

− 3(α2 − 1)(Q +AK̄h+2) + o(τh+1) = 0. (33)

From Equation (33) we have that both coefficient of the

zero order term and of the first order term in τh+1 are zero. By

setting the constant (that is −3(α2 − 1)(Q + AK̄h+2)) equal

to zero, we find α2 = 1. However, from (31), we observe

that α = −1 is not feasible, since it will lead to negative

intersample separations. Hence we have α = 1. By replacing

α = 1 in the coefficient of τh+1 in (33) and setting it equal

to zero, we find

(2Q+ 2A2 + 3βA)K̄h+2 + 3βQ = 0

from which we find

β = −2

3

(Q +A2)K̄h+2

Q+AK̄h+2
.

Recalling the expression (31), we can now assert that a

necessary condition for the optimality of a sampling pattern

is that

τh = τh+1 −
2

3

(Q +A2)K̄h+2

Q+AK̄h+2
τ2h+1 + o(τ2h+1). (34)

We are now going to exploit (34) to find the asymptotic

sampling density of the optimal pattern.

Let us compute the derivative of the asymptotic density

σopt of the optimal sampling at a generic instant th+1. By

Definitions 1 and 2, we have

σ̇opt(th+1) = lim
N→∞

σopt(th+2)− σopt(th+1)

τh+1

= lim
N→∞

1
Nτh+1

− 1
Nτh

τh+1

= lim
N→∞

1− 1

1− 2
3

(Q+A2)K̄h+2
Q+AK̄h+2

τh+1

Nτ2h+1

= lim
N→∞

− 2
3
(Q+A2)K̄h+2

Q+AK̄h+2
τh+1

Nτ2h+1

= −2

3

(Q+A2)K̄h+2

Q+AK̄h+2
lim

N→∞

1

Nτh+1

= −2

3

(Q+A2)K̄h+2

Q+AK̄h+2
σopt(th+2)

from which we obtain the differential equation

σ̇opt(t) = −2

3

(Q+ A2)K(t)

Q+AK(t)
σopt(t) (35)

being K(t) the solution of the Riccati differential equation

(2). If S = A +
√

Q+A2, then K(t) is constantly equal to

S. Then in such special case, Eq. (35) becomes

σ̇opt(t) = −2

3

(Q+A2)(A+
√

Q+A2)

Q+A(A+
√

Q+A2)
σopt(t)

= −2

3

√

Q+A2 σopt(t)

which is solved by

σopt(t) = c e−
2
3

√
Q+A2 t

with c suitable constant such that
∫ T

0 σopt(t) dt = 1.

From the expression (30) of the optimal continuous-time

input we obtain that σopt ∝ |u̇|2/3. The Lemma is then proved.

Basically Lemma 6 states that, by tolerating the weak

assumption that the weight S of the final state x(T ) is equal

to the solution of the continuous ARE, the asymptotic density

σopt of the optimal sampling is the same as the asymptotic

density σq23 of the quantization-based sampling. In addition to

this result, the next Lemma also provides an exact computation

of the asymptotic normalized cost copt (see Definition 4) of the

optimal sampling. This result allows quantifying the benefit of

optimal sampling.

The following Lemma provides a more general result from

which the asymptotic normalized cost copt of the optimal

sampling is derived later in Corollary 8.

Lemma 7: Consider a first-order system (n = 1). Let us

assume, up to suitable normalizations, that B = 1 and R = 1
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and that the weight of the final state is equal to the solution of

the continuous ARE, S = A+
√

A2 +Q. Then, the asymptotic

normalized cost of the sampling method mα with asymptotic

sampling density

σmα(t) =
α(S −A)

1− e−α(S−A)T
e−α(S−A)t ∝ |u̇(t)|α (36)

is

cmα=
S

12(S − A)T 2

1− e−2(1−α)(S−A)T

2(1− α)

(

1− e−α(S−A)T

α

)2

(37)

Proof: Under our hypotheses, the solution if the Riccati

differential equation is K(t) = S = A +
√

Q+A2, for all

t ∈ [0, T ]. Hence the optimal continuous-time cost is

J∞ = x2
0S.

Since we are investigating the normalized cost copt (see

Definition 3), we consider the sequence:

ξk =
N2

T 2

(

K̄k

S
− 1

)

so that copt = limN→∞ ξ0. From the definition of ξk it follows

that

K̄k = S(
T 2

N2
ξk + 1).

From (32), by approximating K̄k to the third order of τk, we

have

K̄k = K̄k+1 − (K̄k+1 − S)(K̄k+1 − 2A+ S)τk

+ (K̄k+1 −A)(K̄k+1 − S)(K̄k+1 − 2A+ S)τ2k

−
(

K̄4
k+1 − 4AK̄3

k+1 + (
55

12
A2 − 4

3
Q)K̄2

k+1

+ (−4

3
A3 +

5

2
QA)K̄k+1 −

2

3
QA2 +

1

4
Q2
)

τ3k + o(τ3k )

which allows to find a recurrent relationship that defines ξk






































ξk = ξk+1 − ξk+1(S
T 2

N2
ξk+1 + 2(S −A))τk

+ ξk+1(S
T 2

N2
ξk+1+ 2(S −A))(S

T 2

N2
ξk+1+ S −A)τ2k

+
S(S −A)2

12

N2

T 2
τ3k + o(τ3k )

ξN = 0.
(38)

From (38), it follows that the discrete derivative of ξk is

ξk+1 − ξk
τk

= ξk+1(S
T 2

N2
ξk+1 + 2(S −A))

− ξk+1(S
T 2

N2
ξk+1 + 2(S −A))(S

T 2

N2
ξk+1 + S −A)τk

− S(S −A)2

12

N2

T 2
τ2k + o(τ2k ).

By definition of asymptotic sampling density (see Definitions 1

and 2), as N → ∞, the intersample separation τk tends to zero

with

τk =
1

Nσmα(tk)
+ o
( 1

N

)

.

From this observation, as N → ∞, the discrete derivative of

ξk becomes the differential equation

δ̇(t) = 2(S −A)δ(t)− S(S −A)2

12T 2
σ−2
mα(t),

where δ(t) is the limit of ξk. With the sampling density σmα(t)
of (36), the differential equation above becomes






δ̇(t) = 2(S −A)δ(t)− S(1− e−α(S−A)T )2

12α2T 2
e2α(S−A)t

δ(T ) = 0,

which is a first-order linear non-homogeneous differential

equation, whose explicit solution is

δ(t) =
S(1− e−α(S−A)T )2

24(S −A)(1− α)α2T 2

(

e2α(S−A)t

− e−2(1−α)(S−A)T e2(S−A)t
)

.

Since the asymptotic normalized cost cmα coincides with δ(0),
we obtain (37) and the Lemma is proved.

The reason for assuming a sampling density as in (36) is

quite simple: periodic, dls, and optimal sampling (q23) are all

special cases of the asymptotic density (36). In fact:

• the periodic sampling has constant sampling density,

hence it corresponds to the case α = 0;

• the dls sampling corresponds, by construction, to the case

α = 1;

• from Lemma 6, the optimal sampling corresponds to the

case α = 2/3.

In Figure 2 we plot the asymptotic normalized cost as α varies.

The system in the plot has A = 1 and Q = 8 (and B = R = 1,

0.4
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α
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Fig. 2: Asymptotic normalized cost as function of α.

S = A +
√

A2 +Q = 4). We plot the cost cmα for three

different values of T : 0.25, 1, and 4. This experiment confirms

the validity of Lemma 6: the minimal cost occurs when α = 2
3

(denoted in the figure by a dashed vertical line).

By evaluating the cost of (37) with α equal to 0, 1, and 2
3

we can then find the explicit cost expression of the asymptotic

normalized cost for the periodic, the dls, and the optimal

sampling respectively, as stated in the following Corollary.
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Corollary 8: Consider a first-order system (n = 1). Let us

assume, up to suitable normalizations, that B = 1 and R = 1
and that the weight of the final state is equal to the solution of

the continuous ARE, S = A+
√

A2 +Q. Then, the asymptotic

normalized costs of the periodic, dls, and optimal sampling are,

respectively

cper = cm0 =
A
√

A2 +Q+A2 +Q

24
(1− e−2

√
A2+QT ),

(39)

cdls = cm1 =
A+

√

A2 +Q

12T
(1− e−

√
A2+QT )2, (40)

copt = cm 2
3
=

9

32T 2
(

A
√

A2 +Q
+ 1)(1− e−

2
3

√
A2+QT )3.

(41)

Notice that as T → ∞, the cost cper coincides with the one

derived earlier in (15), which was a consequence of the second

order approximation of the cost of periodic sampling (14)

derived by Melzer and Kuo[12].

In Figure 3, we draw the asymptotic normalized costs for

the three sampling methods: periodic, dls, and optimal (method

q23). As expected, the cost of optimal sampling is always
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Fig. 3: Asymptotic normalized cost as function of T .

lower than the other two methods. As T → ∞, the cost cper
tends to the constant of (15), that is 1

2 in this case. The cost

cdls tends to zero as 1
4T , while copt tends faster to zero with

3
8T 2 .

VI. SECOND-ORDER SYSTEMS

In Section V, we show that the quantization-based sampling

is optimal for first-order systems. First-order systems, however,

are quite special cases. For example, they never exhibits

oscillations in the optimal control input. Hence, the second

natural investigation that we perform, is on systems that can

oscillate. For this purpose we assume

A =

[

0 −ω
ω 0

]

, B =

[

1
0

]

, Q = qI, R = 1,

(42)

Notice that we must assume q > 0, otherwise the optimal

input is always u(t) = 0. The system of (42) has the following

solution of the ARE

K∞ =

[

ω
√

ρ2 + 2ρ− 3 ω(1− ρ)

ω(1− ρ) ρω
√

ρ2 + 2ρ− 3

]

with ρ defined as

ρ =

√

1 +
q

ω2
> 1.

For such a system, the characteristic polynomial χ(s) of the

closed loop system with optimal state-feedback, is:

χ(s) = det(sI−(A−BR−1B′K∞)) = s2+2ωnζs+ω2
n (43)

with the following damping ratio ζ and natural frequency ωn:

ζ =
1

2

√

(ρ− 1)

(

1 + 3
1

ρ

)

,

ωn = ω
√
ρ.

Hence, by properly choosing the problem parameters q and ω,

we can construct overdamped, critically damped, and under-

damped systems with any natural frequency.

If we assume x0 = [1 0]′, then the cost of the optimal

continuous-time input is

J∞ = x′
0K∞x0 = ω

√

ρ2 + 2ρ− 3.

With this initial condition, if the closed-loop system is over-

damped (that is when ρ > 3), then the optimal input is

u(t) = 2
√
2ω

√
ρ− 1√
ρ− 3

sinh
(

ωnt
√

ζ2 − 1

− log

√

ρ2 − 1 +
√

ρ2 − 9√
8

)

e−ωntζ ,

if the system is underdamped (1 < ρ < 3), the optimal input

is

u(t) = 2
√
2ω

√

ρ− 1

3− ρ
sin
(

ωnt
√

1− ζ2

− arctan

√

9− ρ2

ρ2 − 1

)

e−ωntζ ,

and finally, if the system is critically damped (ρ = 3), then

the optimal input simply is

u(t) = (4ω2t− 2ω
√
3)e−ω

√
3t.

For such a second order systems we are not capable to

demonstrate that the asymptotic (with the number of samples

N → ∞) sampling density of the quantization problem

(that, we remind, is proportional to |u̇| 23 ) is the same as the

asymptotic sampling density of the optimal LQR problem (1).

Instead, we propose a numerical evaluation suggesting that

the two asymptotic densities may coincide, even in the second

order case. More precisely, let us define a sampling method

mα with the sampling instants t0(= 0), t1, . . . , tN−1, tN (= T )
such that

∀k = 0, . . . , N − 1,
∫ tk+1

tk

|u̇(t)|α dt =
1

N

∫ T

0

|u̇(t)|α dt.

As observed in Section V, such a method is of our interest,

because periodic, dls, and q23 sampling methods are all special

cases for α equal to 0, 1, and 2/3, respectively.
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N cN,per cN,dls cN,q23 cN,qnt cN,num

4 0.4958 0.3200 0.2541 0.2539 0.2536
8 0.4980 0.3082 0.2454 0.2454 0.2454

16 0.4986 0.3033 0.2432 0.2432 0.2432
32 0.4987 0.3017 0.2426 0.2426 0.2426
64 0.4987 0.3012 0.2425 0.2425 0.2425
128 0.4988 0.3011 0.2424 0.2425 0.2424
256 0.4988 0.3010 0.2424 0.2427 0.2424
512 0.4988 0.3010 0.2424 0.2435 0.2424

∞ 1

2
(1− e

−6) 1

3
(1− e

−3)2 3

8
(1− e

−2)3 — 3

8
(1 − e

−2)3

ǫ = 2% N ≥ 4.99 N ≥ 3.88 N ≥ 3.48 N ≥ 3.49 N ≥ 3.48

TABLE I: First-order system (A = B = R = 1, Q = 8): normalized costs cN,m, with varying N .

In Figure 4 we illustrate the normalized cost for ω ∈ {5, 25}
and q ∈ {1, 10, 100}, with N = 500 sampling instants, as α
varies. Surprisingly, we have that in all cases the normalized
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Fig. 4: Normalized cost cmα,500 for second order systems.

cost reaches the minimum at α = 2
3 . This observation suggests

that a result analogous to Lemma 6 may hold also for second-

order systems. In addition, we observe that the normalized

cost is higher in all cases when the optimal input has larger

variations (w = 25). When the cost of the state (represented

by q) is large compared to the cost of the input, then the choice

of the sampling method has a stronger impact on the overall

cost.

VII. NUMERICAL EVALUATION

In this section we investigate how the normalized cost varies

with the number of samples N . We compare the following

sampling methods:

• periodic sampling (per),

• deterministic Lebesgue sampling (dls), with sampling

instants determined according to (16);

• quantization based on the theoretical asymptotic density

of (q23), with sampling instants determined according

to (28);

• quantization based on the exact condition of gradient

equal to zero of Equation (26) (abbreviated with qnt).

For large N this method tends to q23;

• optimal numerical solution (num), computed by the

gradient-descent algorithm described in Section III-C.

In all experiments of this section the length of the interval

is T = 1. Also noticed that in all cases, the optimal input

signals u0, . . . , uN−1 are selected according to (10), while the

sampling sequence depends on the chosen method.

In the first experiment we tested a first-order system, with

A = 1 and Q = 8. In Table I we report the normalized costs as

N grows. In the row corresponding to N = ∞ we report the

theoretical values, as computed from (39), (40), and (41). We

observe that, in this case, the convergence to the asymptotic

limit is quite fast. This supports the approximation made

in (13) and, more in general, the adoption of the asymptotic

normalized cost as a metric to judge sampling methods, even

with low N . Also, in the last row, we report the bound on

the number of samples, for each sampling method, if a cost

increase of at most ǫ = 2% is tolerated w.r.t. the continuous-

time case.

In Table II, we report similar data for a second order system

of the kind described in (42), with ω = 5 and q = 100.

Such a choice makes the closed-loop system underdamped.

We observe again that the convergence to the limit is fast.

In the final experiment, we tested the following third-order

system

A =





1 12 0
−12 1 0

1 0 2



 B =





1
1
1



 (44)

with initial condition x0 = [1 0 0]′.
In Table III, we report the computed normalized costs

corresponding to Q = 0 (upper part of the table), Q = 10 I
(middle portion), and Q = 100 I (bottom of the table). The

weights to input u and to the final state x(T ) were always

assumed constant (R = I and S = K∞).

In the last row of each case tables, we report again the

estimate of the needed number of samples in [0, 1], if it

is tolerated a cost increase of r = 2% w.r.t. the continu-

ous control input (as computed from (13)). The interested

reader can find the code for performing these experiments at

github.com/ebni/samplo.

Below we provide some comments on the data reported in

this section.

• The run-time of the experiments of Table III took one

day on a 2.40 GHz laptop. The weight of this simulation

prevented us to perform it on a higher dimension systems

or with larger number of samples.
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N cN,per cN,dls cN,q23 cN,qnt cN,num

4 8.9956 1.7499 1.9642 1.8199 1.6878
8 7.2440 5.7915 0.7064 0.5578 0.5497

16 6.8638 4.1775 0.6356 0.5638 0.5596
32 6.7721 1.9258 0.5936 0.5704 0.5656
64 6.7494 1.5956 0.5818 0.5747 0.5724
128 6.7437 1.4830 0.5828 0.5799 0.5774
256 6.7423 1.4355 0.5826 0.5845 0.5805
512 6.7419 1.4332 0.5839 0.5951 0.5823

ǫ = 2% N ≥ 18.36 N ≥ 8.47 N ≥ 5.40 N ≥ 5.45 N ≥ 5.39

TABLE II: Second-order system (ω = 5, q = 100): normalized costs cN,m, with varying N .

N cN,per cN,dls cN,q23 cN,qnt cN,num

10 14.488 9.4078 8.2823 5.9003 5.8911
20 13.382 8.0191 8.1115 6.6710 6.5765
40 13.136 8.4132 7.8431 7.2797 7.1273

ǫ = 2% N ≥ 25.63 N ≥ 20.51 N ≥ 19.80 N ≥ 19.08 N ≥ 18.88

10 16.615 7.2274 4.9684 2.9200 2.9139
20 14.640 6.3719 3.7374 3.2204 3.1786
40 14.221 4.8349 3.6936 3.6597 3.4165

ǫ = 2% N ≥ 26.66 N ≥ 15.55 N ≥ 13.59 N ≥ 13.53 N ≥ 13.07

10 30.959 10.161 1.7244 0.96569 0.94476
20 25.509 24.900 1.1534 1.1478 0.99627
40 24.352 4.5791 1.2179 1.2095 1.1631

ǫ = 2% N ≥ 34.89 N ≥ 15.13 N ≥ 7.80 N ≥ 7.78 N ≥ 7.63

TABLE III: Third-order system (of Eq. (44) with, from top to bottom, Q = 0, Q = 10 I , and Q = 100 I): normalized costs

cN,m, with N ∈ {10, 20, 40}.

• The experiments confirm the validity of the asymptotic

density of the quantization-based sampling of (28), since

the cost achieved by q23 tends to the cost of the numerical

quantization qnt as N grows.

• The capacity of both quantization-based sampling and

dls sampling to reduce the cost w.r.t. periodic sampling

is much higher in all those circumstances with high

variation of the optimal continuous-time input u (such

as when Q is larger compared to R). This behaviour

is actually proved for first-order systems. In fact, from

Equations (39)–(41), if Q → ∞, we have cper ≈ Q,

cdls ≈
√
Q, and copt ≈ 1/

√
Q.

• The cost achieved by the quantization-based sampling

(qnt and, q23 for larger N ) appears to be very close to

the optimal one, even for higher order systems. However,

it is still an open question whether Lemmas 6 and 7 can

be proved in general or not.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we investigated the effect of the sampling

sequence over the LQR cost. We formulate the problem for

determining the optimal sampling sequence and we derive a

necessary optimality condition based on the study of the gra-

dient of the cost w.r.t. the sampling instants. Hence, following

a different path of investigation, we proposed a quantization-

based sampling, which selects the sampling instants (but not

control sequence) in the way that better approximates the

optimal control input. Surprisingly, this sampling method is

demonstrated to be optimal for first-order systems and large

number of samples per time unit. For second-order systems,

such an asymptotic optimality is apparent from our numerical

experiments, although it is not formally proved.

Being this research quite new, there are more open issues

than questions with answers. Among the open problems we

mention:

• proving the asymptotic optimality of the quantization-

based sampling even in general (higher order) cases;

• the application of the proposed methods to closed-loop

feedback where the state is also affected by disturbances;

• possible more efficient implementation of the gradient

optimization procedure;

• the investigation of global minimization procedures

which could lead to a higher cost reduction (gradient

descent algorithms could indeed fall into local minima);

• the investigation of different approaches to approximate

the optimal control input.
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