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Sammanfattning

Avhandlingen är uppdelad i tv̊a delar. Del I analyserar kapacitet för linjära
modulationssystem med en bärv̊ag. Kapaciteten är en övre gräns p̊a antalet
bitar som kan överföras under en användning av kommunikationskanalen, och
uppn̊as utav Gaussiska symboler. Den beror p̊a den underliggande pulsen
i ett linjärt modulationssystem och ocks̊a signaleringshastigheten, d.v.s.,
hastigheten som de Gaussiska symbolerna skickas med. Målet i Del I är att
studera pulsens och signaleringshastighetens p̊averkan p̊a kapaciteten.

Del II i avhandlingen ägnas åt Multipel Antenna System (MIMO), och
mer specifikt åt linjära förkodare för MIMO system. Linjär förkodning är ett
praktiskt sätt att förbättra prestandan av ett MIMO system och har stud-
erats omfattande under de fyra senaste decennierna. I praktiska applika-
tioner, s̊a är symbolerna som skickas tagna fr̊an ett diskret alfabet, s̊a som
QAM, och målet är att hitta optimala linjära förkodare för ett visst pre-
standamått av MIMO kanalen. Designproblemet beror p̊a prestandamåttet
och även mottagarstrukturen. Sv̊arigheten med att hitta optimala förkodare
beror p̊a problemets diskreta natur, och hittills har suboptimala lösningar mes-
tadels föreslagits. Problemet är väl undersökt i fallet med linjära mottagare,
och optimala förkodare har hittats för många olika prestandamått i detta fal-
let. Dock under användning av en optimal mottagare (ML mottagare), har det
hittills bara föreslagits suboptimala förkodare konstruktioner. Del II i avhan-
dlingen börjar med att föresl̊a nya, l̊agkomplexitets suboptimala förkodare, som
resulterar i en l̊ag bitfelssannolikhet (BER) hos mottagaren. Därefter utvecklas
en iterativ optimeringsmetod, vilken producerar förkodare som förbättrar de
hittills bästa i litteraturen. De erh̊allna förkodarna uppvisar en viss struktur,
som därefter analyseras och visas vara optimal för stora symbol alfabet. Dessa
resultat visas ocks̊a vara tillämpbara för små, praktiska symbol alfabet, och
ger upphov till nya sätt att konstruera förkodare med utmärkt prestanda för
ML mottagare.

v





Abstract

This thesis is divided into two parts. Part I analyzes the information rate of
single antenna, single carrier linear modulation systems. The information rate
of a system is the maximum number of bits that can be transmitted during
a channel usage, and is achieved by Gaussian symbols. It depends on the
underlying pulse shape in a linear modulated signal and also the signaling rate,
the rate at which the Gaussian symbols are transmitted. The object in Part
I is to study the impact of both the signaling rate and the pulse shape on the
information rate.

Part II of the thesis is devoted to multiple antenna systems (MIMO), and
more specifically to linear precoders for MIMO channels. Linear precoding is
a practical scheme for improving the performance of a MIMO system, and has
been studied intensively during the last four decades. In practical applications,
the symbols to be transmitted are taken from a discrete alphabet, such as
quadrature amplitude modulation (QAM), and it is of interest to find the op-
timal linear precoder for a certain performance measure of the MIMO channel.
The design problem depends on the particular performance measure and the
receiver structure. The main difficulty in finding the optimal precoders is the
discrete nature of the problem, and mostly suboptimal solutions are proposed.
The problem has been well investigated when linear receivers are employed, for
which optimal precoders were found for many different performance measures.
However, in the case of the optimal maximum likelihood (ML) receiver, only
suboptimal constructions have been possible so far. Part II starts by propos-
ing new novel, low complexity, suboptimal precoders, which provide a low bit
error rate (BER) at the receiver. Later, an iterative optimization method is
developed, which produces precoders improving upon the best known ones in
the literature. The resulting precoders turn out to exhibit a certain structure,
which is then analyzed and proved to be optimal for large alphabets.
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Chapter 1

The Impact of Signaling

Rate on Information Rate

for Linear Modulation

Systems

In the first part of this thesis, we study single carrier linear modulation sys-
tems. More precisely, we are interested in the achievable Shannon rates for
these systems. It turns out that these Shannon rates heavily depend on the
signaling rate in the linear modulation, and it is of interest in Part I to study
this dependence. At the time being, Orthogonal Frequency Division Multi-
plexing (OFDM) systems are dominant in emerging wireless standards, but
important applications of single carrier systems exist [1, 2, 3, 4, 5, 6, 7]. The
most prominent contemporary applications of linear modulation are optical
communications and the uplink of the LTE standard [8]1. This chapter starts
by giving a brief introduction to single carrier linear modulation systems in
Section 1.1. Section 1.2 derives the Shannon information rate2 for the studied
system. A connection between the signaling rate and the information rate is
noted, and thereafter an analysis is conducted to investigate this connection.
This analysis is performed in Section 1.4. New results arise from this analy-
sis, that provide necessary and sufficient pulse conditions in order to have an

1In LTE, the chosen modulation is single carrier frequency division multiple access (SC-
FDMA), which is a multicarrier modulation but with single carrier properties.

2Information rate in the classical Shannon sense, i.e., the maximum number of
bits/channel use that can be transmitted for a given modulation scheme.
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4 Analysis of Information Rate for Linear Modulation Systems

increasing information rate with respect to the signaling rate.

1.1 Mathematical Model of Single Carrier Lin-

ear Modulation Systems

This section starts by formulating a mathematical model for single carrier linear
modulation systems in Section 1.1.1. Section 1.1.2 describes the channel over
which communiation occurs, while Section 1.1.3 formulates the receiver which
gives rise to an equivalent discrete time model of the communication system.

1.1.1 Single Carrier Linear Modulation

A general, single carrier time-varying signal xc(t) transmitted from one antenna
device can be expressed as

xc(t) =
√
2Re{x(t)ei2πfct}, (1.1)

where Re{·} denotes the real-part of a complex number, fc is the carrier fre-
quency and x(t) is the complex-valued baseband signal that carries all the
information content to be conveyed to a receiving device. The baseband signal
has its frequency support concentrated around 0, and it is further assumed
to be bandlimited to W positive Hz, i.e., X(f) = 0 for |f | > W , where
X(f) = F{x(t)} is the Fourier transform of x(t) and W the bandwidth of
x(t). It is assumed that W ≪ fc, so that no frequency overlap occurs in the
transmitted signal. Upon transmission, its spectrum is shifted to the carrier
frequency fc, in order to accomodate frequency requirements on the system.
Several methods to construct the baseband signal x(t) exist, and we focus on
the simple and practical linear modulation, where x(t) is expressed as

x(t) = xA(t, T )
△
=
√

P0T

∞∑

j=−∞
ajh(t− jT ). (1.2)

In (1.2), a = {. . . , a−1, a0, a1, . . .} is the sequence of complex-valued infor-
mation bearing data symbols and h(t) is a real-valued modulation pulse.
The sequence a is a realization of a sequence of random variables A =
{. . . , A−1, A0, A1, . . .}; thus, x(t) is a random process. P0 is the average
transmitted power of xA(t, T )

P0
△
= lim

T→∞

1

T
E

{
∫ T

0

|xA(t, T )|2 dt
}

. (1.3)
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Here and throughout the thesis, E{·} denotes the expectation operator. As will
be discussed shortly, (1.3) imposes constraints on h(t) and the random vector
A. The bandlimitation of xA(t, T ) is incurred by bandlimitting h(t) to W Hz.
Further, we assume that h(t) is unit energy. Hence

∫ ∞

−∞
|h(t)|2 dt = 1

H(f) = 0, |f | > W. (1.4)

The autocorrelation of xA(t, T ) is defined as

φxA
(τ + t, t)

△
= E{xA(t+ τ, T )x∗A(t, T )}

= P0T
∞∑

j=−∞

∞∑

k=−∞
h(t+ τ − jT )h∗(t− kT )E{aja∗k},

(1.5)

where ∗ is complex conjugation. Since xA(t, T ) is a wide-sense cyclostationary
process with period T , its time-average autocorrelation function is

φxA
(τ)

△
=

1

T

∫ T

0

φxA
(τ + t, t) dt

= P0

∞∑

j=−∞

∞∑

k=−∞
E{aja∗k}

∫ T

0

h(t+ τ − jT )h∗(t− kT ) dt.

(1.6)

By making the variable substitution k = j + p, and defining Rp
△
= E{aja∗j+p}

(the correlation among symbols {aj} only depends on their relative position,
since we assume that A is a stationary process), we arrive at

φxA
(τ) = P0

∞∑

p=−∞
Rp

∞∑

j=−∞

∫ (1−j)T

−jT

h(t+ τ)h∗(t− pT ) dt

= P0

∞∑

p=−∞
Rp

∫ ∞

−∞
h(t+ pT + τ)h∗(t) dt. (1.7)
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By taking the Fourier transform of (1.7), we obtain the power spectral density
(PSD) of xA(t, T )

SXA
(f, T )

△
= F{φxA

(τ)}

= P0|H(f)|2
∞∑

p=−∞
Rpe

−i2πfpT

= P0|H(f)|2Sa(f, T ), |f | < W, (1.8)

where

SA(f, T )
△
=

∞∑

p=−∞
Rpe

−i2πfpT . (1.9)

SA(f, T ) is periodic with period f = 1/T , and from Parseval’s identity, it
follows that the average power of xA(t, T ) is

∫ W

−W

SXA
(f, T ) df = P0

∫ W

−W

SA(f, T )|H(f)|2 df.

Note that |H(f)|2 is symmetric around f = 0 since h(t) is a real-valued pulse.
Thus, in order for P0 to be the average power, the following identity must hold

∫ W

−W

SA(f, T )|H(f)|2 df = 1. (1.10)

From now on, SX(f) will denote the PSD of a signal x(t).

1.1.2 Frequency selective and non-selective channels

If the frequency modulated signal xc(t) in (1.1) is subject to a multipath en-
vironment, represented by a real-valued impulse response gc(t), the received
signal rc(t) becomes [9]

rc(t) =

∫ ∞

−∞
gc(τ)xc(t− τ) dτ + nc(t)

= Re

{[∫ ∞

−∞
gc(τ)e

−i2πfcτxA(t− τ, T ) dτ

]

ei2πfct
}

+nc(t). (1.11)

In (1.11), nc(t) is additive white Gaussian noise (AWGN) with zero-mean
E{nc(t)} = 0 and autocorrelation E{nc(t)nc(t + τ)} = N0δ(τ), where δ(τ) is
the Kroenecker delta function. We can write nc(t) =

√
2Re{n(t)ei2πfct}, where
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n(t) is a complex-valued AWGN with mean E{n(t)} = 0 and autocorrelation
E{n(t)n∗(t+ τ)} = N0δ(τ). Upon defining

g(τ)
△
= gc(τ)e

−i2πfcτ , (1.12)

we see that the integral in (1.11) represents the convolution of xA(t, T ) with
a complex-valued baseband channel impulse response g(τ). By inserting the
expression for xA(t, T ) in (1.2) into (1.11), the complex baseband model of
(1.11) becomes

r(t) = vA(t, T ) + n(t)

= g(t) ⋆ xA(t, T ) + n(t)

=
√

P0T

∞∑

j=−∞
aj [g(t) ⋆ h(t− jT )] + n(t)

=
√

P0T

∞∑

j=−∞
ajp(t− jT ) + n(t), (1.13)

where ⋆ denotes convolution and

vA(t, T )
△
= g(t) ⋆ xA(t, T ), (1.14)

p(t)
△
= g(t) ⋆ h(t). (1.15)

The Fourier transform of g(t) ⋆ xA(t, T ) is G(f)XA(f, T ), where G(f) and
XA(f, T ) are Fourier transforms of g(t) and xA(t, T ), respectively. Thus, g(t)
changes the spectrum of x(t), thereby being a frequency selective channel. If
there is no multipath in the environment, then g(t) = δ(t), and no frequency
selection occurs. In this case, g(t) is a non-frequency selective channel, also
known as a flat channel. In either case, it is further assumed that the receiver
has perfect knowledge of g(t).

1.1.3 Maximum-Likelihood Sequence Estimation

The optimal way to recover the data symbols a from r(t) in (1.13) is by apply-
ing a maximum likelihood sequence estimation (MLSE) at the receiver. This
amounts to solving the following optimization problem

â
△
= argmax

a
Pr(r(t)|a), (1.16)

where Pr(r(t)|a) is the conditional probability density function (pdf) of r(t)
given that a is sent. It can be shown [9] that (1.16) is the optimal way to recover
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a if and only if all possible symbol sequences a are equiprobable. Further, it is
well-known [9] that the optimization (1.16), for AWGN channels, is equivalent
to minimum Euclidean distance decoding

â = argmin
a

∫ ∞

−∞
|r(t)− va(t, T )|2 dt

= argmin
a

∫ ∞

−∞
|r(t)|2 − 2Re{r(t)v∗a(t)}+ |va(t, T )|2 dt. (1.17)

Inserting the expression (1.14) for va(t, T ), and noting that the term
∫
|r(t)|2 dt

has no impact on the minimization, (1.17) reduces to

â = argmax
a

∞∑

j=0

Re{a∗jyj} −
∫ ∞

−∞

1

2
|va(t, T )|2 dt, (1.18)

where

yj
△
=

∫ ∞

−∞
r(t)p∗(t− jT ) dt. (1.19)

The sequence y = {. . . , y−1, y0, y1, . . .} can be obtained by applying a matched
filter p∗(−t) together with baud-rate sampling at the receiver. Furthermore, y
is a sufficient statistic for detecting a, i.e., knowing y is sufficient to perform
MLSE. Expanding r(t) as in (1.13), we get

yj =
√

P0T

∞∑

k=−∞
ak

∫ ∞

−∞
p(t− jT )p∗(t− kT ) dt+

∫ ∞

−∞
n(t)p∗(t− jT ) dt

=
√

P0T

∞∑

k=−∞
akzj−k + ηj , (1.20)

with

zj−k
△
=

∫ ∞

−∞
p(t− jT )p∗(t− kT ) dt (1.21)

and

ηj
△
=

∫ ∞

−∞
n(t)p∗(t− jT ) dt. (1.22)

The sequence z = {. . . , z−1, z0, z1, . . .} is the inter-symbol-interference (ISI),
and the noise sequence η = {. . . , η−1, η0, η1, . . .} is a colored noise sequence if
zk 6= 0 for k 6= 0. Hence, a discrete time model of (1.13) is

y =
√

P0Ta ⋆ z + η. (1.23)
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Figure 1.1: The analog communication model that gives rise to the discrete
time model in (1.23).

Figure 1.1 shows the communication chain that gives rise to the discrete model
in (1.23). An MLSE implementation on the model (1.13), as in (1.23), was
proposed in [10], while an implementation over a whitened model was proposed
in [11]. We have,

zk =

∫ ∞

−∞
|P (f)|2ei2πkTfdf

=

∞∑

j=−∞

∫ 1/2T

−1/2T

|P (f + j/T )|2ei2πkTfdf

=

∫ 1/2T

−1/2T

∞∑

j=−∞
|P (f + j/T )|2ei2πkTfdf

=

∫ 1/2T

−1/2T

|Pfo(f, T )|2ei2πkTfdf, (1.24)

where |Pfo(f, T )|2 is the folded pulse spectrum

|Pfo(f)|2 △
=

∞∑

j=−∞
|P (f + j/T )|2, −1/2T ≤ f ≤ 1/2T. (1.25)

Hence, applying a matched filter and sampling with frequency 1/T folds
the spectrum of the received ISI sequence around 1/2T : This is the well-
known spectrum folding that occurs from sampling [9]. Note that |P (f)|2 =
|H(f)|2|G(f)|2, since p(t) is a convolution of h(t) and g(t). For notational
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convenience, we define

SH(f)
△
= |H(f)|2

SHG(f)
△
= |P (f)|2 = |H(f)G(f)|2 = SH(f)SG(f)

SH,fo(f, T )
△
= |Hfo(f, T )|2

SHG,fo(f, T )
△
= |Pfo(f, T )|2. (1.26)

A graphical view of some of the spectra in (1.26) is illustrated in Figure 1.2.
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Figure 1.2: The quantities SH(f), SG(f), SHG(f) and SHG,fo(f, T ). Note how
folding occurs around the point f = 1/2T .

1.2 Information Rate of Single-Carrier Linear

Modulation Systems

The information rate is a measure of how many bits that can be carried through
a channel, and is of uttermost importance for communications. The channel
of interest in Part I of this thesis is the AWGN channel in (1.13). This section
derives the achievable information rates of this channel. First, we start by
defining different information rates in Section 1.2.1 for a general AWGN channel
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y(t) = v(t) + n(t), where v(t) is not constrained to a specific signaling form.
Section 1.2.2 then finds closed form expressions of these rates for the model in
(1.13).

1.2.1 Information rate and capacity

Let us first formally define what is meant by information rate for an ana-
log transmission system in the baseband. Assume that k information bits,
b = [b0, . . . , bk−1], are to be transmitted across a communication channel. Each
realization of these bits is encoded into certain analog waveforms xj(t), and
transmitted across a channel with impulse response g(t)3. Assuming that the
channel is bandlimited to W Hz, this also limits the PSD SX(f) of the analog
analog waveform to a bandwidth of W Hz. At the receiver side, the wave-
form y(t) = v(t) + n(t) is observed, where n(t) is a random noise process and
v(t) = g(t) ⋆ x(t). The receiver then performs low-pass-filtering, sampling and
decoding in order to recover b. This simple transmission system is depicted
in Figure 1.3. Shannon showed [14] that a signal of bandwidth W Hz spans
roughly ≈ 2WT independent dimensions during a time interval of T seconds.
This means that a bandlimited signal of W Hz is completely specified by a
set of 2WT numbers during T seconds, which can be viewed as coordinates in
a 2WT dimensional space. Further, Shannon showed that these numbers can
be put on time shifted sinc pulses, since sinc pulses are basis functions that
span the space of analog signals. Thus, the whole analog signal can be viewed
in a discrete way, where the discrete numbers specify the amplitudes of the
sinc pulses that build up any signal x(t). Hence, encoding the bit sequence b

into a waveform x(t) corresponds to encoding it into a symbol vector x, which
defines the amplitudes of the sinc pulses. During T seconds, roughly 2WT
symbols x = [x0, . . . , x2WT−1] are sent, and at the receiver, the 2WT coordi-
nates y = [y0, . . . , y2WT−1] that specify the received signal y(t) are recovered
(by means of low pass filtering and sampling). Let X = [X0, . . . , X2WT−1]
be a sequence of 2WT random variables and pX(x) denote the pdf of the se-
quence. Note that x corresponds to a certain realization of X, which specifies
the signal x(t). Similarly, let Y = [Y0, . . . , Y2WT−1] denote the sequence of
random variables observed at the receiver. A certain modulator specifies pX ,
and the fundamental question that arises is: How many bits per second can
be transmitted across g(t) with a certain modulator, so that they can be re-
covered without any error at the receiver? This rate is the information rate,

3Note that in general, the number of different possible waveforms xj(t) to choose from is
larger than the number of possible bit sequences 2k, i.e., the waveforms come from a larger
set which also can be uncountable. To cleverly choose a subset of the waveforms to be used
for transmission is the idea of coding.
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Figure 1.3: The communication chain for single carrier modulation. A binary
source produces a bit sequence b of k bits which is encoded into an analog wave-
form x(t). This waveform is then transmitted across a channel with impulse
response g(t), and a waveform y(t) = v(t) + n(t) is observed at the receiver.

in bits per second, and can be achieved by cleverly choosing a subset of the
possible waveforms {xj(t)}. Shannon answered this question completely in
[13, 14]. Morever, he even found the ultimate limit, i.e., the maximun that can
be achieved. Thus, there exist ultimate limits on a communication system that
can be computed. Let I(Y ;X) = H(Y )−H(Y |X) be the mutual information
between the sequence Y and X, where H(·) is the differential entropy operator.

Definition 1. The information rate

I(pX)
△
= lim

T→∞
I(Y ;X)/T,

in bits per second, is the maximum number of information bits per second that
can be carried with a fixed pdf pX(x) across the channel g(t).

Thus, given a certain pdf pX , it is in principle possible to calculate the upper
limit on what can be achieved. Even though the information rate depends
on the shape of g(t), we will not explicitly write g(t) as an argument of the
information rate since this is understood implicitly. The information rate is the
limit of systems with a fixed set of waveforms, but where one is free to choose a
subset of them them to transmit. An example is that set of waveforms {xj(t)}
is linear modulation with binary symbols, in which the subset to use is typically
determined by the design of a code. If one maximizes the information rate with
respect to the pdf pX , but keeps the PSD SX(f) constant, one obtains

Definition 2. The constrained capacity

C(SX(f))
△
= sup

pX :PSD({xj(t)})=SX(f)

I(pX))

is the maximum number of information bits per second that can be carried by
a signal with PSD SX(f) across the channel g(t).
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Shannon showed in [14] that the constrained capacity is attained by a Gaus-
sian distribution on the symbols {xj} in x. Finally, maximizing the con-
strained capacity with respect to the average power constraint on the PSD
∫
SX(f) df ≤ P0, one obtains

Definition 3. The capacity

Ĉ(P0)
△
= sup

SX(f):
∫
SX(f) df≤P0

C(SX(f))

is the maximum number of information bits per second that can be carried by
an average power of P0 across the channel g(t).

Since the information rate, constrained capacity and capacity completely
determine how much information that can be transmitted across a certain com-
munication channel, it is thus of interest to compute these quantities.

1.2.2 Information rates for linear modulation systems

Let us now derive expressions for the rates in Section 1.2.1 for a general AWGN
baseband signaling model y(t) = g(t) ⋆ x(t) + n(t), Shannon’s classical results
provide expressions for the constrained capacity and the capacity of it [14].
The constrained capacity for a certain PSD SX(f) of x(t), in bits per second,
equals

C(SX(f))
△
=

∫ W

0

log

(

1 +
SX(f)SG(f)

N0

)

df. (1.27)

The rate in (1.27) can be achieved by a transmitted xB(t, T ) of the form in
(1.2) and with T = 1/2W [17],

xB(t, 1/2W ) =
√

P0T

∞∑

k=−∞
bksinc(t− k/2W ), (1.28)

where {bk} is a sequence of complex-valued Gaussian data symbols and sinc(t)
is the sinc pulse. Since the pulse is a sinc, the PSD of xB(t, 1/2W ) is
P0SB(f, 1/2W ) in the bandlimited interval [−W,W ], thus, the correlation
of {bk} determines the PSD, and it is chosen such that the PSD constraint
P0SB(f, 1/2W ) = SX(f) is satisfied. Hence, linear modulation with Gaussian
data symbols can achieve the constrained capacity in (1.27), by signaling with
Gaussian data symbols and sinc pulses at the signaling rate 1/T = 2W . In the
case of a flat channel, detection of the symbols {bk} in (1.28) is simple, since
they are put on the zero-crossings of the sinc pulses. Another possibility to
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achieve (1.28) is to have uncorrelated Gaussian symbols {bk} and a non-sinc
pulse h(t), as in (1.2), such that the PSD is still SX(f).

Optimizing (1.27) over SX(f), subject to the average power constraint
∫
SX(f) df ≤ P0 , gives the capacity of the AWGN channel

Ĉ(P0)
△
= max

SX(f):
∫
SX(f) df≤P0

C(SX(f))

=

W∫

0

log

(

max

(

θ(P0)
SG(f)

N0
, 1

))

df

subject to

W∫

0

max

(

θ(P0)−
N0

SG(f)
, 0

)

df = P0.

(1.29)

Ĉ(P0) is the maximal achievable information rate over the channel with impulse
response g(t), under an average transmission power P0. The optimal SX(f)
which gives Ĉ(P0) obeys the well-known waterfilling policy, where θ(P0) is a
real scalar value that represents the waterfilling level (i.e., fulfills the second
integral equation). As before, (1.29) is achieved by signals of the form in (1.28),
where B = {bk} are such that the optimal PSD is obtained.

As discussed above, rates in (1.27) and (1.29) are achievable by linear mod-
ulation signals of the form in (1.2), with a signaling rate of 1/T = 2W . Let us
now discuss what rates that are achievable by (1.2) for a fixed T which may
be less than 1/2W . Note that the signaling rate 1/T in (1.2) has no impact
on the transmitted PSD SXA

(f, T ) of xA(t), i.e., SXA
(f, T ) = SXA

(f, T ′) for
any T ′, since different time shifts of h(t) only shift the frequency components
through a complex exponential, and this has no impact on the PSD. Thus, with
the constraint SXA

(f, T ) = SX(f) on the PSD, the rate in (1.27) is the up-
per limit, achievable by signaling with T = 1/2W and Gaussian symbols {aj}
that give rise to the PSD SX(f). However, if the signaling rate 1/T in (1.2)
does not equal 2W , it is not clear whether (1.27) and (1.29) can be achieved
anymore, even though the transmitted PSD constraint is still met. In order to
gain insight into what happens with different signaling rates, it is sufficient to
study the discrete time model in (1.23), which is lossless from an information
rate point of view due to the fact that the sequence {yj} is a sufficient statistic.
Hence, the achievable rates for (1.2) with different 1/T can be found by cal-
culating the information rate of (1.23), which will soon be done. Before doing
that, we note that the discrete time model in (1.2) changes considerably if the
signaling rate is varied. Namely, it follows from (1.24) that the ISI sequence
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{zk} directly depends on T , and the spectrum of the ISI changes with T since
it depends on the folded spectrum in (1.25). Thus varying the signaling rate
in (1.2) changes the ISI sequence and its spectrum, and it is not obvious how
this impacts the information rate of (1.23). If the spectrum of the ISI sequence
affects the constrained capacity of (1.23), then this might give rise to a signif-
icant change in the achievable information rates of (1.23). Hence, we need to
calculate the achievable rates for (1.23) and investigate their dependence on
the signaling rate 1/T .

In practical single carrier systems, the symbols {aj} in (1.2) are taken from
a discrete alphabet such as quadrature amplitude modulation (QAM). In this
case, the analog waveforms are not built up from Gaussian symbols, and thus
the maximum number of carried bits per second is given by the information
rate in Definition 1. Hence, the bit rates given by the constrained capacity
and the capacity are not achievable with discrete alphabets4. Moreover, for a
discrete alphabet, it is not possible to obtain a simple closed form expression
for the information rate. However, it turns out that for large QAM alphabets,
the behaviour of the information rate is very well predicted by the information
rate for Gaussian symbols, i.e., the constrained capacity. Since there exists an
expression for the constrained capacity and the capacity of the AWGN channel,
we thus henceforth assume Gaussian distributed symbols.

Let
Z(λ, T ) =

∑

k

zke
iλk (1.30)

be the Fourier transform of the sequence z, here given in angular frequency.
Z(λ, T ) depends on T through the sequence {zj}, which in turn depends on T
through (1.24). Similarly, SA(λ, T ) denotes the the angular frequency expres-
sion of SA(f, T ). The constrained capacity of (1.23) is given by [16, 17, 18]

C(P0SA(f, T ), T ) =
1

2πT

∫ π

0

log2

(

1 +
P0SA(λ, T )Z(λ, T )

N0

)

dλ. (1.31)

Since the constrained capacity now depends on the signaling rate T through
Z(λ, T ), we add T as one of its arguments. From the expression for {zj} in
(1.21), it can be shown that

Z(λ, T ) =
1

T

∞∑

k=−∞

∣
∣
∣
∣
P

(
λ

2πT
+
k

T

)∣
∣
∣
∣

2

=
1

T

∣
∣
∣
∣
Pfo

(
λ

2πT

)∣
∣
∣
∣

2

=
1

T
SHG,fo

(
λ

2πT
, T

)

. (1.32)

4We will later see, however, that I(pX) → C(SX(f)) as T → 0 even with binary inputs.
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Hence, Z(λ, T ) is proportional to the folded spectrum of SHG(f) around the
frequency f = λ/2πT . Inserting (1.32) into (1.31), and performing a change of
variables, we get

C(P0SA(f, T ), T ) =

∫ 1/2T

0

log2

(

1 +
P0SA(f, T )SHG,fo(f, T )

N0

)

df. (1.33)

Hence, the constrained capacity of (1.23) clearly depends on the folded spec-
trum SHG,fo(f, T ), and since the latter changes with the signaling rate, (1.33)
can also change with the signaling rate. Note that the constrained capacity
also depends on the pulse spectrum SH(f), but again, this dependence will not
be explicitly written out, since in most cases the pulse shape is fixed. Maximiz-
ing the constrained capacity (1.33) over SA(f, T ), subject to the constraint on
SA(f, T ) in (1.10), gives rise to the capacity of (1.23), where we again remind
the reader that this capacity is constrained on T . The maximizing SA(f, T )
obeys the waterfilling (WF) strategy and gives

Ĉ(P0, T )
△
= max

SA(f,T )
C(P0SA(f, T ), T )

=

1/2T∫

0

log

(

max

(

θ(P0, T )
SHG,fo(f, T )

N0SH,fo(f, T )
, 1

))

df

subject to

1/2T∫

0

max

(

θ(P0, T )−
N0SH,fo(f, T )

SHG,fo(f, T )
, 0

)

df = P0.

(1.34)

θ(P0, T ) is a real scalar value that represents the waterfilling level (i.e., fulfills
the second integral equation). Comparing the equations in (1.33) and (1.34)
with (1.27) and (1.29), the difference is that folding of the spectra occurs in
the former.

1.3 Impact of Signaling Rate on the Informa-

tion Rate for Single-Carrier Linear Modu-

lation Systems

To recap the results in Section 1.2.2, transmitting symbols by means of (1.2)
every T th second, and applying a matched filter as in (1.19), gives rise to a dis-
crete model in (1.23) with the constrained capacity C(P0SA(f, T ), T ) in (1.27)
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and capacity Ĉ(P0, T ) in (1.29). The rates in (1.27) and (1.29) are indepen-
dent on the receiver structure, thus they are the upper limits on the achievable
rate of (1.23). However, in (1.23), folded spectra SH,fo(f, T ) and SHG,fo(f, T )
occur, which have direct impact on the achievable rates of (1.23). The reason
for this is the sampling rate, 1/T , which gives a different ISI sequence z in
(1.21). Its transform in (1.32) is now a folding of SHG(f) around f = λ/2πT ,
which clearly depends on the signaling rate 1/T . Therefore, different signaling
rates can vary the constrained capacity (we will soon see that this is indeed
the case). In general, the higher the baud rate, the more severe ISI sequence
z results at the receiver (i.e., longer ISI sequence), which gives rise to a large
MLSE decoding complexity.

Although massive research has been conducted on single carrier linear mod-
ulation during the past 90 years since Nyquist’s seminal paper [12], the exact
relation between the capacity changes and signaling rate changes remains un-
known. Recently, [15] showed that binary amplitude modulation with infinite
signaling rate achieves the constrained capacity, hence, binary transmission is
lossless if the signaling rate approaches infinity. However, for finite signaling
rates the behavior of the capacities is still unknown. Part I studies the ex-
act change in the constrained capacity and the capacity for small changes of
the signaling rate. As will be seen, the outcome is not unique. Under certain
conditions, these rates can never be degraded by increasing the signaling rate.
However, under other conditions, they can in fact decrease when the signaling
rate is increased.

In this thesis, we model the change in signaling rate by inserting a real-
valued number 0 < τ ≤ 1 in front of T , so that the transmitted signal in (1.2)
now becomes

xA(t, τT ) =
√

P0τT

∞∑

j=−∞
ajh(t− jτT ). (1.35)

Hence, 1/T is a reference signaling rate, and we are free to increase it as much
as desired by lowering τ . All previously introduced functions have the same
expressions, except that T is now replaced with τT which makes them depen-
dent on τ . Thus, the constrained capacity C(P0SA(f, T ), T ) is now denoted as
C(P0SA(f, τT ), τT ), and similarly for all other functions depending on T .

In [18], the impact of τ on the constrained capacity was analyzed to a large
extent for flat channels (G(f) = 1) and unit energy T -orthogonal pulses h(t),
i.e.,

∫

h(t)h∗(t− kT ) dt =

{
1, k = 0
0, k 6= 0.

(1.36)

The T -orthogonality for flat channels results in an ISI sequence in (1.23) such
that zk = δ(k) for τ = 1, and thus detection under T -orthogonal signaling
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rate is very simple. Also the information rate I(pX) with QAM inputs was
studied in [18] by means of simulation, since no closed form exists for I(pX)
with discrete inputs. Note that from (1.32), zk = δ(k) implies that folding of
SHG,fo

(
λ

2πT

)
= SH,fo(f) at the frequency 1/2T gives rise to a flat spectrum,

which is the frequency domain equivalent of the constraint in (1.36). This
signaling rate is called the orthogonal signaling rate. A further assumption in
[18] was that SA(f, T ) = 1, i.e., the data symbols are uncorrelated. Hence, the
constrained capacity is now denoted as C(P0, τT ). Under these assumptions,
the following theorem was proved in [18].

Theorem 1. Unless h(t) is a sinc pulse, for τ = 1/N , N an integer, it holds
that C(P0, τT ) > C(P0, T ).

Hence, by increasing the signaling rate above 1/T for T -orthogonal pulses,
it is possible to achieve a higher constrained capacity than with orthogonal sig-
naling. This concept is known in the literature as faster-than-Nyquist signaling,
since Nyquist signaling corresponds to an orthogonal signaling rate5. The main
idea behind the proof of Theorem 1 is that for a τ such that 1/τT = 2W , i.e.,
by signaling at the rate 1/2W , no folding of the spectrum occurs in (1.33).
Thus, the original spectrum SVA

(f, τT ), which equals SH(f) in this case since
SA(f, τT ) = 1 and SG(f) = 1, is recovered and the information rate in (1.33)
equals the maximal one in (1.27). Instead, signaling at the lower orthogonal
rate of 1/T , the expression in (1.33) is strictly lower than (1.27), except in the
cases when h(t) is a sinc pulse bandlimited to 1/2T positive Hz.

In the rest of Part I we shall study the quantities

∂C(P0SA(f, τT ), τT )

∂τ

and
∂Ĉ(P0, τT )

∂τ
.

In particular, we seek to investigate when the derivative is negative, i.e., when
it is beneficial to signal faster. For convenience we restrictW to satisfy 1/2T ≤
W ≤ 1/T . This choice is made since it allows us to make use of the simpler
Nyquist criterion for T -orthogonal pulses, SH(f)+SH(1/T − f) = T, 0 ≤ f ≤
1/2T , instead of the more clumsy Gibby-Smith condition SH,fo(f) = T [19].
There are several different cases to consider which can be summarized into

• Case I: SA(f, τT ) = 1, SH(f) fixed for all τ .

5This is the main reason for the T -orthogonal assumption on h(t) in (1.4): Being able
to make information rate comparisons to fully orthogonal transmissions for flat channels.
However, the results in this thesis are more general and do not require this assumption.
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• Case II: SA(f, τT ) free, SH(f) fixed for all τ .

• Case III: SH(f) free to choose for every τ .

With “SH(f) free”, we mean a scenario where the transmitter is free to choose
the spectrum shaping filter at will (possibly from a large filter bank). With
”SA(f, τT ) free” we mean that the transmitter can apply the waterfilling tech-
nique to optimize the information rate, i.e., in that case we study the derivative
of (1.34). Case I corresponds to the most important case from a practical point
of view, namely that uncorrelated data is assumed and the transmitter has a
fixed spectrum shaping filter (pulse).

Due to the bandlimitation of SH(f), it follows that if we choose τ <
1/(2WT ), no folding of the spectrum SHG(f) occurs. Hence, for τ < 1/(2WT )
we have

SHG,fo(f, τT ) = SH(f)SG(f).

Inserting this into (1.33) gives

C(P0SA(f, τT ), τT ) =

W∫

0

log2

(

1 +
P0 SA(f, τT )SH(f)SG(f)

N0

)

df, (1.37)

which equals the maximum in (1.27) with SX(f) = P0SA(f, τT )SH(f)SG(f).
With SA(f, τT ) = 1, (1.37) is independent of τ , as long as τ < 1/(2WT ).
For ”SA(f, τT ) free”’, τ < 1/(2WT ) implies that the optimal SA(f, τT ) con-
centrates its power to the frequency range where SH(f) is non-zero, and thus
(1.29) is achievable. Hence, there is no need to ever consider values of τ that
are smaller than 1/(2WT ), so the interesting regime of τ is τ ≥ 1/(2WT ).

1.4 Analysis of the Constrained Capacity

Throughout, the following notation will be used for derivatives: f ′(t) is the
derivative of a one-variable function f(t) and f ′′(t) is the second derivative of
f(t). For a function f(x1, x2) of two variables, f

′
x1
(x1, x2) denotes the derivative

with respect to x1, if it is not clear with regard to which variable the derivation
is performed.

1.4.1 SA(f, τT ) = 1, H(f) fixed for all τ

We start our analysis for this case by assuming a frequency non-selective chan-
nel (G(f) = 1). At the end of this section, the assumption of a flat channel
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will be relaxed and the derived results also apply to frequency selective chan-
nels. Since h(t) is T -orthogonal, the ISI will now be incurred by choosing a
non-orthogonal signaling rate (i.e. τ < 1) in (1.2). When τ = 1 (no ISI), it
follows that SH,fo(f, τT ) = T .

Since SA(f, τT ) = 1 and SG(f) = 1, (1.33) is

C (P0, τT ) =

∫ 1
2Tτ

0

log2

(

1 +
P0

N0
SH,fo(f, τT )

)

df. (1.38)

For Nyquist signaling with a T -orthogonal h(t) (τ = 1), the constrained capac-
ity C (P0, τT ) equals the familiar

CN (P0) , C (P0, T ) =
1

2T
log2(1 + 2P0T/N0). (1.39)

We will refer to CN (P0) as the Nyquist information rate. It does not depend
on the pulse h(t), as long as h(t) is T -orthogonal and unit-energy. Similarly,
CN (P0) depends only on the T -orthogonality rate, and not on signaling rate
variations with varying τ .

The τ interval of interest for the flat channel case is 1/(2WT ) ≤ τ ≤ 1.
That τ > 1 is a loss can be realized as follows. First, it can be observed that
the integration interval in (1.38) is smaller when τ > 1 compared to τ ≤ 1.
Secondly, (1.38) is maximized for a flat shape on SH,fo(f, τT ); for τ = 1, this
maximum is achieved since SH,fo(f, τT ) becomes flat due to Nyquist’s ”1924”
criteria for T -orthogonal pulses. Combining these two observations leads to the
fact that C (P0, τT ) < C(P0, T ) for τ > 1.

In principle three different behaviors can be imagined for the constrained
capacity of a flat channel. It can be monotonically increasing with decreasing
τ , i.e. C

′

τ (P0, τT ) < 0; this is behavior 1 in Figure 1.4 (which is generated
with W = 1/T ). Another behavior that could be imagined is that C (P0, τT )
is not monotonically increasing with decreasing τ ; this is behavior 2. The third
behavior is a curve that goes below the starting value CN (P0). This is behavior
3 in Figure 1.4. Note that the curves reach a maximum at τ = 0.5 since no
folding occurs for τ ≤ 0.5. Sufficient conditions for the pulse h(t) will be
derived for which C (P0, τT ) satisfies one of the three different behaviors. Note
that behavior 1 is well defined also for frequency selective channels: Is the
constrained capacity monotonically increasing or not?

First, behavior 1 is analyzed, which asks for pulses for which C (P0, τT )
increases monotonically with decreasing τ , that is, whether there exist pulses
that have C

′

τ (P0, τT ) < 0 for 1/(2WT ) < τ < 1.
In what follows it is assumed that SH(f) is continuous in f ∈ [0,W ], while

S
′

H(f) is discontinuous in at most a finite number of points in the interval.
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Figure 1.4: Three different behaviors for C (P0, τT ) with respect to τ .

First, the results of the analysis are summarized, while practical examples are
given in Section 1.4.2.

Theorem 2. Assume that SH(f) is decreasing in [0,W ], that the smallest
value of SH,fo(f, τT ) in the interval f ∈

[
1
τT −W, 1/2τT

]
occurs at f = 1/2τT

and that SH,fo(f, τT ) is not identically zero in that interval. Then C (P0, τT ) is
monotonically increasing for decreasing τ and larger than CN (P0) for τ < 1. If
SH,fo(f, τT ) = 0 for f ∈

[
1
τT −W, 1/2τT

]
, then C (P0, τT ) is non-decreasing

for decreasing τ .

Proof. We investigate for which pulses it is true that C(P0, τT ) increases with
decreasing τ . We study the sign of the derivative of C(P0, τT ) in order to
answer this question. For increased readability, we will in all proofs use ln
instead of log2. This has no impact on the derived results since we are only
interested in the sign of the derivative. Consider a pulse with a continuously
differentiable spectrum in the frequency interval [0,W ]. If the spectrum is
discontinuous at f = W , we assume that the pulse values approaching the
point from left and right are finite and positive. In the folded pulse shape,
at the point f = 1

τT −W , we might have a discontinuity in the value of the
integrand in C(P0, τT ) and its derivative with respect to τ . Therefore, we split
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C(P0, τT ) into two integrals:

C(P0, τT ) = lim
ǫ→0

1
τT −W−ǫ
∫

0

ln

(

1 +
2P0

N0
SH,fo(f, τT )

)

df

+ lim
ǫ→0

1/2τT∫

1
τT −W+ǫ

ln

(

1 +
2P0

N0
SH,fo(f, τT )

)

df (1.40)

In the first integral, we approach the discontinuity point f = 1
τT −W from left

and note that the integrand is bounded and well-defined for that limit, since
the pulse spectrum also is. The same holds when approaching the discontinu-
ity from the right, in the second integral. Both integrands are continuously
differentiable in respective (open) integration intervals with respect to f and
τ , and the first does not depend on τ . From this we get that C(P0, τT ) is a
differentiable function with respect to τ . This allows application of the Leib-
niz integral rule on C(P0, τT ) [20]. The Leibniz integral rule states that for
functions f(x, z), a(z) and b(z),

∂

∂z

∫ b(z)

a(z)

f(x, z) dx =

∫ b(z)

a(z)

∂f(x, z)

∂z
dx+ f(b(z)), z)

∂b(z)

∂z
− f(a(z), z)

∂a(z)

∂z
.

(1.41)
Applying (1.41) on C(P0, τT ) with respect to τ gives the following expression:

C
′

τ (P0, τT ) = ln

(

1+
2P0

N0
S+
H,fo

(
1

τT
−W, τT

))(

− 1

τ2T

)

+ ln

(

1+
2P0

N0
SH,fo(1/2τT, τT )

)(

− 1

2τ2T

)

+ ln

(

1+
2P0

N0
S−
H,fo

(
1

τT
−W, τT

))(
1

τ2T

)

+ lim
ǫ→0

1/2τT∫

1
τT −W+ǫ

2P0

N0
S

′

H

(
1
τT − f

)

1 + 2P0

N0
SH,fo(f, τT )

(

− 1

τ2T

)

df

(1.42)

where S+
H and S−

H denote limits from the right and left. In the case when we
have several discontinuity points in the interval (0,W ], we split the integral
as above at the discontinuity points and do similar calculations. This leads
to more complicated expressions, which are not included here. Consider now
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pulse spectra that are continuous at f = W , i.e., SH(W ) = 0. In that case,
the derivative (1.42) reduces to

C
′

τ (P0, τT ) = ln

(

1 +
2P0

N0
SH,fo(1/2τT, τT )

)(

− 1

2τ2T

)

+ lim
ǫ→0

1/2τT∫

1
τT −W+ǫ

2P0

N0
S

′

H

(
1
τT − f

)

1 + 2P0

N0
SH,fo(f, τT )

(

− 1

τ2T

)

df.

(1.43)

From (1.43), we can finish the proof. We prove that the derivative in (1.43) is
smaller than or equal to 0. We have that

lim
ǫ→0

1/2τT∫

1
τT −W−ǫ

2P0

N0
S

′

H

(
1
τT − f

)

1 + 2P0

N0
SH,fo(f, τT )

(

− 1

τ2T

)

df

≤ lim
ǫ→0

1/2τT∫

1
τT −W−ǫ

2P0

N0
S

′

H

(
1
τT − f

)

1 + 2P0

N0
SH,fo(1/2τT, τT )

(

− 1

τ2T

)

df,

because SH(f) is decreasing in [1/2τT,W ) and the smallest value of SH,fo(f, τT )
in the interval

(
1
τT −W, 1/2τT

]
is SH,fo(1/2τT, τT ) = 2SH(1/2τT ). Now

lim
ǫ→0

1/2τT∫

1
τT −W−ǫ

2P0

N0
S

′

H

(
1
τT − f

)

1 + 2P0

N0
SH,fo(1/2τT, τT )

(

− 1

τ2T

)

df

=
2P0

N0
SH(1/2τT )

τ2T (1 + 2P0

N0
SH,fo(1/2τT, τT ))

.

Also

2P0

N0
SH(1/2τT )

τ2T
(

1 + 2P0

N0
SH,fo(1/2τT, τT )

) (1.44)

≤ ln

(

1 +
2P0

N0
SH,fo(1/2τT, τT )

)(
1

2τ2T

)

(1.45)

which reduces to

4P0

N0
SH(1/2τT )

1 + 4P0

N0
SH(1/2τT )

≤ ln

(

1 +
4P0

N0
SH(1/2τT )

)

(1.46)
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and this is true for 4P0

N0
SH(1/2τT ) ≥ 0. Hence, it follows that

C
′

τ (P0, τT ) ≤
2P0

N0
SH(1/2τT )

τ2T (1 + 2P0

N0
SH,fo(1/2τT, τT ))

+ ln

(

1+
2P0

N0
SH,fo(1/2τT, τT )

)(

− 1

2τ2T

)

≤ 0. (1.47)

In the case when SH,fo(f, τT ) is not identically 0 in
[

1
τT −W, 1/2τT

]
, there

is strict inequality in the first step in the proof above, which implies that the
derivative is strictly smaller than 0. This proves the theorem.

From Theorem 2, we deduce the following corollary.

Corollary 1. Assume that SH(f) is a decreasing function in [0,W ]. If
S

′′

H(f) ≤ 0 for f ∈ [0, 1/2T ], then C (P0, τT ) is non-decreasing for decreasing
τ .

Proof. It is enough to prove that the smallest value is at f = 1/2τT for some
fixed τ . Nyquist orthogonality criteria SH(f)+SH(1/T−f) = T gives S

′′

H(f)+

S
′′

H(1/T − f) = 0. This gives that S
′′

H(f) ≥ 0 for f ∈ [1/2T, 1/T ] since

S
′′

H(f) ≤ 0 for f ∈ [0, 1/2T ]. From this it follows that S
′

H,fo(f, τT ) = S
′

H(f)−
S

′

H(1/τT − f) ≤ 0 for f ∈ [0, 1/2τT ], with equality when f = 1/2τT , which
proves the corollary.

Hence, Theorem 2 gives a simple condition on a pulse spectrum SH(f) that
is sufficient for the constrained capacity to increase with the signaling rate. It
is simply a matter of locating the minimum value of the folded pulse spectrum.
Furthermore, Corollary 1 shows that if SH(f) is a decreasing concave function,
then the constrained capacity increases with the signaling rate.

We next consider behavior 2. Assume that SH(f) is at most discontinuous
at a finite number of points in the interval f ∈ [0,W ]. We can prove

Theorem 3. If SH,fo(f, τT ) ≤ T in [0, 1/2τT ] then C (P0, τT ) > CN (P0).
Moreover, C (P0, τT ) − CN (P0) is monotonically increasing with P0 for any
choice of τ .

Proof. To simplify notation, we put ξ = 2P0/N0. Define

g(ξ) =

∫ 1/2τT

0

ln(1 + ξSH,fo(f, τT ))df − 1

2T
ln(1 + ξT ). (1.48)
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Without loss of generality, it can be assumed that the integrand is a continu-
ously differentiable function with respect to ξ and f . If it is discontinuous in at
most finitely many f , the integral is split into intervals where the integrand is
continuous. Hence, differentiation under the integral sign is allowed. It holds
that g(0) = 0 and

g′(ξ) =

∫ 1/2τT

0

SH,fo(f, τT )

1 + ξSH,fo(f, τT )
df − 1

2(1 + Tξ)
. (1.49)

Hence g′(0) = 0, since
∫ 1/2τT

0
SH,fo(f, τT )df = 1/2 because h(t) has unit

energy. From (1.49) we infer that

g′(ξ) >

∫ 1/2τT

0

SH,fo(f, τT )

1 + ξT
df − 1

2(1 + ξT )
= 0, (1.50)

since SH,fo(f, τT ) ≤ T with strict inequality in some interval. Since g(ξ) and
g′(ξ) are continuous, we infer from above that g(ξ) > 0 when ξ > 0, which
proves the theorem.

Hence, Theorem 3 presents a simple condition on SH,fo(f, τT ) that gives
a superior constrained capacity than the Nyquist information rate. More-
over, for such SH,fo(f, τT ), Theorem 3 shows that increasing the power P0

widens the gap to the Nyquist information rate. However, it might happen
that C ′

τ (P0, τT ) > 0 for some τ , i.e., the constrained capacity can decrease
(but never below CN (P0)). From Theorem 3 we deduce the following corollary.

Corollary 2. Assume that h(t) is T -orthogonal. If SH(f) is decreasing in
[0,W ] then C (P0, τT )− CN (P0) is monotonically increasing with P0.

Proof. Since h(t) is T -orthogonal and SH(f) is decreasing in [0,W ] we have
T = SH(f)+SH(1/T −f) ≥ SH(f)+SH((1/τT )−f) for τ < 1, because SH(f)
is bandlimited to W Hz. Hence the conditions in Theorem 3 are satisfied and
the corollary is proved.

Finally, we state a sufficient condition for behavior 3, that is, C (P0, τT ) <
CN (P0) for some P0 and 1/(2WT ) ≤ τ ≤ 1.

Theorem 4. Assume that

∫ 1/2τT

0

S2
H,fo(f, τT )df >

T

2
.

Then there exists a P > 0 such that C (P0, τT ) < CN (P0).
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Proof. Start by Taylor-expanding g(ξ) introduced in the proof of Theorem 3.
Taylor expansion is allowed for sufficiently small ξ values, since the integrand
in g(ξ) is analytic and converging with respect to ξ, and this also holds for the
second term in g(ξ):

g(ξ) =

∫ 1/2τT

0

(ξSH,fo(f, τT )−
1

2
(ξSH,fo(f, τT ))

2+O(ξ3))df

− 1

2T
(ξT − 1

2
(ξT )2 +O(ξ3))

=
ξ2

2

(

T

2
−
∫ 1/2τT

0

SH,fo(f, τT )
2df

)

+O(ξ3) (1.51)

because
∫ 1/2τT

0
ξSH,fo(f, τT )df = ξ/2. O(ξ) is such that O(ξ3)/ξ3 is bounded

when ξ → 0. From above, we conclude that if
∫ 1/2τT

0
SH,fo(f, τT )

2df > T/2,
then by choosing ξ sufficiently small we can make the last expression in (1.51)
negative. This proves the theorem.

Hence, to have C (P0, τT ) ≥ CN (P0) for all P0, a necessary condition is
∫ 1/2τT

0
S2
H,fo(f, τT )df ≤ T/2 according to Theorem 4. Observe that pulses

satisfying Theorem 3 cannot fulfill Theorem 4, since

∫ 1/2τT

0

S2
H,fo(f, τT )df ≤

∫ 1/2τT

0

SH,fo(f, τT )Tdf = T/2.

Now, going back to the beginning of this section and setting SH(f) =
SHG(f), we see that all the derived theorems regarding the derivative of con-
strained capacity hold for this spectrum as well. The assumption of a flat
channel was used only to compare the constrained capacity of orthogonal sig-
naling with that of non-orthogonal signaling, obtained by succesively increasing
the signaling rate. For frequency selective channels, we answer the question
whether the constrained capacity is monotonically increasing with signaling
rate or not.

1.4.2 Numerical Results

In this section, the results for Case I are applied to actual pulse spectra. The
studied spectra are two triangular spectra as well as the frequently used root
raised cosine pulse (rtRC). The two triangular ones are

SHtri1(f) =

{
T − T 2f, 0 ≤ f ≤ 1

T
0, f > 1

T

(1.52)



Chapter 1. The Impact of Signaling Rate on Information Rate for Linear
Modulation Systems 27

and

SHtri2(f) =

{
T 2f, 0 ≤ f ≤ 1

T
0, f > 1

T .
(1.53)

Because these spectra are antisymmetric about f = 1/2T it follows that both
pulses are T -orthogonal. In both cases W = 1/T . What can be said about
these two? Since both are unit energy and T -orthogonal it follows that they
yield equal constrained capacities at τ = 1. Moreover, at τ = 1/(2WT ) = 1/2,
we have

SHtri1,fo(f, T/2) = SHtri1(f) = SHtri2,fo(1/T − f, T/2).

Inserting these folded shapes in (1.38) we obtain the same integral and it follows
that both spectra yield the same constrained capacity for τ = 1/2.

Although the two spectra are similar, it will be shown that for 1/2 < τ < 1
they have starkly different constrained capacity properties.

The folded spectrum of (1.52) is:

SHtri1,fo(f, τT ) =

{
T − T 2f, 0 ≤ f ≤ 1

τT − 1
T

2T − T
τ ,

1
τT − 1

T < f ≤ 1
2τT

(1.54)

From (1.52), we see that the pulse spectrum is continuous in [0,W ]. The
spectrum is also decreasing in [0,W ] and the smallest value of (1.54) in the
interval [ 1

τT −W, 1/2τT ] occurs for f = 1/2τT . Hence the conditions of The-
orem 2 are fulfilled and it follows that the triangular pulse spectrum in (1.52)
has monotonically increasing constrained capacity with decreasing τ . Com-
puting the constrained capacity numerically, we get the curves in Figure 1.5.
The constrained capacity indeed increases with decreasing τ and is larger than
CN (P0) for τ < 1, hence, signaling faster is always beneficial for the decreasing
triangular spectrum.

Inspecting (1.54), it is easy to conclude that the conditions in Theorem 3
are satisfied and it follows that C (P0, τT ) − CN (P0) increases monotonically
with P0.

The folded spectrum of SHtri2,fo(f, τT ) is

SHtri2,fo(f, τT ) =

{
T 2f, 0 ≤ f < 1

τT − 1
T

T
τ ,

1
τT − 1

T ≤ f ≤ 1
2τT .

(1.55)

We see that SHtri2,fo(f, τT ) does not satisfy the conditions in Theorem 2 as
it is not decreasing. Neither does it satisfy Theorem 3. However, it satisfies
Theorem 4 for some τ values, which implies that this spectrum yields a con-
strained capacity which is smaller than CN (P0) for some τ and P0. Thus, the
two spectra have significantly different behaviors: SHtri1(f) has behavior 1 but
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Figure 1.5: constrained capacity C (P0, τT ) versus τ for |Htri1(f)|2.

SHtri2(f) has behavior 3. In Figure 1.6 we have plotted C (P0, τT ) versus τ
for SHtri2(f) for some values of P0; it can be clearly seen that the constrained
capacity for this pulse spectrum is indeed decreasing for some τ values.

Next we analyze the well known rtRC pulse. Its spectrum is given by [21]

SH(f) =







T, |f | ≤ 1−β
2T

T cos2
(

πT
2β

(

|f | − 1−β
2T

))

, 1−β
2T < |f | ≤ 1+β

2T

0, |f | > 1+β
2T ,

(1.56)

where 0 ≤ β ≤ 1. In this case,W = (1+β)/2T . The first conditions in Theorem
2 are trivially satisfied, since the rtRC spectrum is continuously differentiable
and also has a decreasing spectrum. Next, we prove that the spectrum satisfies
Corollary 1. Since only positive frequency values are studied, we can drop the
magnitude operator sign in (1.56). The second derivative of (1.56) is

S
′′

H(f) =







0, f ≤ 1−β
2T

−π2T 3

2β2 cos
(

πT
β

(

f− 1−β
2T

))

, 1−β
2T <f ≤ 1+β

2T

0, f > 1+β
2T .

(1.57)
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Figure 1.6: Constrained capacity C (P0, τT ) versus τ for |Htri2(f)|2.

From (1.57) it is seen that S
′′

H(f) ≤ 0 when πT
β

(

f − 1−β
2T

)

≤ π
2 . This reduces to

f ≤ 1/2T , which shows that Corollary 1 is satisfied; thus a rtRC has behavior 1
for any value of β. By inspection it can be seen that the rtRC satisfies Corollary
2 and hence C (P0, τT )− CN (P0) is monotonically increasing in P0 for any τ .

Hence, the numerical results in this section confirm the theoretical analysis
from Section 1.4.1. For the practical rtRC pulse, it is beneficial, from an
constrained capacity perspective, to always reduce τ . Similarly, the theoretical
analysis explains why the simple triangular spectras behave so differently, which
is confirmed by the numerical results.

1.4.3 SH(f) free to choose for every τ

The assumptions imply that we first have to optimize (1.33) over SH(f), and
then study its behavior with respect to τ . Thus, instead of (1.33) we should
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study

C̃(P0SA(f, τT ), τT ) = max
SH(f)

1/2τT∫

0

log2

(

1+
2P0 SA(f, τT )SHG,fo(f, τT )

N0

)

df

subject to
∫ W

0

SA(f, τT )SH(f)df = 1.

(1.58)
Next, we prove that when SG(f) is decreasing, C̃(P0SA(f, τT ), τT ) in (1.58)
is non-decreasing.

Theorem 5. Assume that SG(f) is decreasing in [0,W ]. Then

C̃
′

τ (P0SA(f, τT ), τT ) ≤ 0.

Proof. Choose SH(f) such that SH(f) = 0, f ≥ 1/2τT , so that all its energy
is placed within the frequency interval [0, 1/2τT ]. This choice of SH(f) clearly
maximizes the integrand of C̃(P0SA(f, τT ), τT ). Now if τ decreases, we can
still choose the previously defined pulse for this lower τ , so C̃(P0SA(f, τT ), τT )
will at least have the value it had for the higher τ .

As a practical example, we mention that digital subscriber lines (DSL)
typically have low-pass frequency characteristics [22]. Indeed, most wired com-
munication channels can approximately be characterized as low-pass filters.

1.4.4 SA(f, τT ) free, SH(f) fixed

This case is the toughest one from an analytical point of view. Note that in
Section 1.4.3, the freedom to choose SH(f) makes it possible to concentrate
all the energy of the PSD SA(f, τT )SH(f) to the interval where SG(f) is the
largest. This is not possible to do if SH(f) is fixed, since SA(f, τT ) is periodic
with a period of 1/τT , and f = 1/2τT is a point where it starts to repeat
itself. Thus, we have to derive the derivative of Ĉ(P0, τT ) defined in (1.34).
By choosing a sufficiently large P0, θ(P0, τT ) becomes large and (1.34) reduces
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to

Ĉ(P0, τT ) =

1/2τT∫

0

log

(

θ(P0, τT )
SHG,fo(f, τT )

SH,fo(f, τT )

)

df

subject to

1/2τT∫

0

θ(P0, τT )−
SH,fo(f, τT )

SHG,fo(f, τT )
df = P0/2.

(1.59)

We now have

Theorem 6. For sufficiently large P0 <∞, Ĉ
′

τ (P0, τT ) < 0 for τ ≥ 1/(2WT ).

Proof. We start off, just as in the previous proofs, to split our integral into two
parts.

Ĉ(P0, τT ) =

1/τT−W∫

0

ln

(

θ(P0, τT )
SHG,fo(f, τT )

SH,fo(f, τT )

)

df

+

1/2τT∫

1/τT−W

ln

(

θ(P0, τT )
SHG,fo(f, τT )

SH,fo(f, τT )

)

df. (1.60)

We differentiate the expression in (1.60) with respect to τ , by using the Leibniz
rule:

Ĉ
′

τ (P0, τT ) =

1/τT−W∫

0

θ′τ (P0, τT )

θ(P0, τT )
df

+

1/2τT∫

1/τT−W

θ′τ (P0, τT )

θ(P0, τT )
+

(
SHG,fo(f,τT )
SH,fo(f,τT )

)′

τ
SHG,fo(f,τT )
SH,fo(f,τT )

df (1.61)

− ln

(

θ(P0, τT )
SHG,fo(f, τT )

SH,fo(f, τT )

)
1

2Tτ2
.

By differentiating the second integral equation in (1.59) with respect to τ , we
get the following expression
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1/τT−W∫

0

θ′τ (P0, τT )df

+

1/2τT∫

1/τT−W

(

θ′τ (P0, τT )−
(
SH,fo(f, τT )

SHG,fo(f, τT )

)′

τ

)

df

− 1

2Tτ2

(

θ(P0, τT )−
SH,fo(

1
2τT , τT )

SHG,fo(
1

2τT , τT )

)

= 0. (1.62)

From (1.62) we get

1/2τT∫

0

θ′τ (P0, τT )

θ(P0, τT )
df =

1

2Tτ2

(

1− SH,fo(
1

2τT , τT )

SHG,fo(
1

2τT , τT )θ(P0, τT )

)

+

1/2τT∫

1/τT−W

(
SH,fo(f, τT )

SHG,fo(f, τT )

)′

τ

1

θ(P0, τT )
df. (1.63)

Inserting (1.63) into (1.61), we get the following expression for Ĉ
′

τ (P0, τT )

Ĉ
′

τ (P0, τT ) =

1/2τT∫

1/τT−W

((
SH,fo(f, τT )

SHG,fo(f, τT )

)′

τ

1

θ(P0, τT )

+
SH,fo(f, τT )

SHG,fo(f, τT )

(
SHG,fo(f, τT )

SH,fo(f, τT )

)′

τ

)

df

+
1

2Tτ2

(

1− SH,fo(
1

2τT , τT )

SHG,fo(
1

2τT , τT )θ(P0, τT )

− ln

(

θ(P0, τT )
SHG,fo(

1
2τT , τT )

SH,fo(
1

2τT , τT )

))

.

(1.64)

It is implicitly assumed that differentiation is permitted at all places where it
occurs, and that none of the integrands are degenerate (division by 0). Since the
integral in (1.64) is bounded, we see that by increasing P0 and thus θ(P0, τT ),
we will at some point have Ĉ

′

τ (P0, τT ) < 0. This proves the theorem.
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Hence, Theorem 6 states that by just having a sufficiently large P0, we
can guarantee that the capacity will increase for increasing signaling rate, no
matter the shape of the channel and the pulse. The threshold for the power
P0 depends on the channel and the pulse used, but is guaranteed to be a fi-
nite number. More clearly, Theorem 6 states the following fact: Even though
there is frequency selection, which destroys the shape of the pulse, by perform-
ing waterfilling and signaling above a certain finite power level, increasing the
signaling rate in linear modulation will increase the capacity.

1.5 Discussion

This work analyzed the behavior of the constrained capacity and capacity for
linear modulation signaling when the signaling rate is changed. Both the cases
of frequency selective and flat channels are investigated. Further, we allow for
both fixed spectrum shaping filters as well as flexible ones, and in addition also
data correlation. For flat channels, it is shown that there are pulses for which
the constrained capacity can increase or decrease with signaling rate. Suffi-
cient conditions on the pulse shape have been derived for both cases to occur.
For frequency selective channels, it is shown that there is a threshold for the
power which makes the capacity increasing when waterfilling is performed. As a
general rule of thumb, it can be said that for channels and pulses that have ap-
proximately low-pass filter characteristics, it is in general beneficial to increase
the signaling rate. Thus, for a given available computational complexity, the
signaling rate should be as high as possible such that the complexity of the
decoding does not overshoot the complexity constraint. In [34], an information
rate analysis is performed that takes the decoding complexity constraint into
account. Thus, a future extension of this work is to study the impact of the
signaling rate on the achievable rates derived therein.
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Chapter 2

Introduction

2.1 Linear Communication Channels

A linear communication channel is characterized by the fact that the output
signal without noise is a linear mapping of the input signal. A general mathe-
matical model of linear channels in discrete time is

y = Hx+ n. (2.1)

In (2.1), y is theNr×1 received vector, H anNr×Nt matrix that represents the
linear channel and x theNt×1 vector of transmitted data symbols. Throughout
the thesis, Gaussian noise is assumed, hence n is an Nr × 1 vector of Gaussian
noise variables n ∼ CN (0,RN ), whereRN is the correlation matrix E{nn∗} =
RN . If RN 6= N0INr×Nr

, then the noise vector n is colored. In the next
section, we look at different communication scenarios that can be described by
(2.1).

2.1.1 Applications of linear channels

Despite its simplicity, many different communication systems can be repre-
sented by the linear model in (2.1). They merely differ in the structure of
H and the noise correlation matrix RN . We will now present well-known
communication systems that can be recast into (2.1).

ISI channels

As seen in Part I of the thesis, the single-carrier channel is a linear channel,
since the output is a convolution (a linear operation) of the channel impulse re-
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sponse and the input signal. By matched filtering and sampling of the received
signal, we get a discrete model as in (1.23), which is again a linear channel.
Assume that the ISI z is finite and of length 2M + 1, i.e, z = {z−M , . . . , zM}.
With notation from Part I, assume that there are N transmitted symbols
a = {a0, . . . , aN−1}. It is easily seen that (1.23), for certain sampling instances
kT , k = 0, 1, . . . , N − 1, can be represented in the form

y =
√

P0TZa+ η, (2.2)

where

Z =













z0 . . . zM
z∗1 z0 . . . zM
...

. . .

z∗M z∗M−1 . . . zM
. . .

z∗M . . . z0













(2.3)

and

a =








a0
a1
...

aN−1







. (2.4)

In this case, we have Nt = Nr = N . Further, η is the colored Gaussian noise
sequence in (1.23). For the ISI model, RN is a Hermitian matrix where the
element at position (i, j) is zi−j .

If the model (2.2) is whitened, a causal ISI sequence h = {h0, . . . , hM} is
obtained [23]. Then, y =

√
P0TZa+η becomes y =

√
P0THa+n, but where

H now takes the form

H =
















h0
...
hM . . . h0

. . .

hM . . . h0
...
hM
















(2.5)

and n is white Gaussian noise (WGN). Further, Nt = N and Nr = N +M .
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OFDM system

Assume a causal, whitened ISI sequence h = {h0, . . . , hM}. Construct the
following vector of data symbols plus a cyclic prefix

xc =













xN−M

...
xN−1

x0
...

xN−1













. (2.6)

Hence, a copy of the last M symbols (xN−M , . . . , xN−1) is transmitted in the
beginning; this goes under the name of cyclic prefix and was proposed in [33].
The symbols (x0, . . . , xN−1) are not data symbols, but precoded symbols as
will be explained shortly. xc is transmitted across the channel H in (2.5),
and after removing the cyclic prefix at the receiver, the model in (2.2) can be
written as

y = Hcx+ n, (2.7)

where x = (x0, x1, . . . xN−1)
T

and T stands for transpose. Hc is now a cyclic
Toeplitz matrix due to the cyclic prefix, and therefore posseses an eigenvalue
factorization Hc = UDU∗, where U is a discrete Fourier Transform (DFT)
matrix and D a diagonal matrix of eigenvalues [31]. The eigenvalues equal the
Fourier transform of the ISI sequence h evaluated at the different frequencies

dk,k =

M∑

j=0

hje
−2π

√
−1 kj/N .

Hence, if one encodes x as x = Ua, and the receiver constructs ŷ = U∗y, the
equivalent model becomes

ŷ = Da+ n̂, (2.8)

where n̂ = U∗n. Note that n̂ is also WGN since U is unitary. Thus, the orig-
inal ISI channel is decoupled into a set of parallel channels and ISI is avoided.
This technique is known as orthogonal frequency division multiplexing (OFDM)
and was invented in [32]. The penalty for combating ISI is the repetition of
M symbols, which is a spectral efficiency and a power loss; however, this loss
can be made small if the data block N is long in comparison with M . Another
drawback with OFDM is that the elements xj in the symbol vector x = Ua

tend to fluctuate much more than the data symbols aj , resulting in a high
peak-to-average power ratio.
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Single user MIMO system

For ISI channels, the model in (2.1) represented a time-sampled sequence, i.e.,
the yk are sampled symbols of the received signal at different time instances.
Instead, if multiple antennas are used at the transmiter and the receiver, y is
the received signal across the receving antenna array during one channel use.
Hence, multiple transmit and receive antennas provide additional degrees of
freedom in one time slot. The term used to denote this scenario is multiple input
multiple output systems (MIMO), and was introduced in the works [36, 35, 37]
and further analyzed in, e.g., [38, 39]. The channel entry hi,j at position (i, j) in
H now represents the channel impulse response between receiver antenna i and
transmitter antenna j, which in this case is assumed to not have ISI. A common
model [24], although not always realistic, is that the entries hi,j are i.i.d. and
hi,j ∼ CN (0, σ2). The noise sequence n is a WGN sequence in MIMO channels,
i.e., RN = N0INr×Nr

. The symbol vector x, that is transmitted across the Nt

transmitter antennas, is typically constrained to an average energy constraint

E{x∗x} ≤ P0. (2.9)

At the receiver terminal, the vector y is observed across the receive antenna
array. This vector can now be jointly processed at the receiver in order to
retrieve the transmitted vector x. Section 2.3 describes common processing
techniques for Single User MIMO channels.

Single user MIMO-OFDM systems

If the channel between transmitter antenna i and receiver antenna j is frequency
selective, one can apply the cyclic prefix technique together with a DFT trans-
form to decouple the frequency selective MIMO channel [24]. Each data stream
ai = {ai,1, ai,2, . . .}, i = 1 . . . Nt, that is transmitted from antenna i is subject
to a cyclic prefix and a DFT transform. After stripping off the cyclic prefix at
the receiver, the channel on each of the Nc frequency components becomes

yk = Hka1:Nt,k + nk, k = 1, . . . , Nc, (2.10)

where a1:Nt,k is the transmitted vector on carrier k. Hence, the frequency
selective MIMO channel is decomposed into Nc flat MIMO channels Hk, k =
1, . . . , Nc, each a Nr × Nt matrix. The system of matrix equations in (2.10)
can be represented as one matrix equation,






y1
...

yNc




 =








H1 0 . . . 0

0 H2 0 . . .
...

. . .
...

0 0 . . . HNc













x1

...
xNc




+






n1

...
nNc




 . (2.11)
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This is again the model in (2.1).

Multi user MIMO system

Assume a cellular system with K single antenna autonomous users that all
should be served by a single base station with Nt antennas. In broadcast trans-
mission (MIMO BC), the base station transmits a vector x, and the received
signal at terminal j is of the form

yj = hjx+ nj , j = 1, . . . ,K, (2.12)

where hj is the 1×Nt channel between the base station and terminal j. Hence,
the received signal at each terminal is of the form in (2.1), just as for the single
user MIMO system, and is called a multiple input single output (MISO) system.
The system of equations in (2.12) can be represented as (2.1), where H is a
matrix with {hj}, j = 1, . . . ,K as rows. The symbol vector x is a precoded
version of a data vector a, where ak is a symbol intended to user k. Essentially,
the precoding is such that tranmission to user k lies in the null space of the
other users j 6= k, so that the symbol ak does not cause any interference to
the users j 6= k. Thus, it is critical to provide the base station with accurate
channel state information (CSI). Common precoding techniques are dirty paper
coding (DPC) [28], zero forcing (ZF) [25], block diagonalization (BD) [26], and
vector perturbation (VP) [27]. Note that, since the receiving terminals do not
cooperate, joint detection of the vector y in (2.1) is not possible.

In a multiple access scenario (MIMO-MAC), each terminal transmits a sym-
bol xj to the base station. Let h∗

j be the channel between terminal j and the
base station. The received signal at the base station is

y = H∗x+ n, (2.13)

where H∗ is Nt×K and has {h∗
j} as columns. Hence, the MIMO MAC system

model can also be represented with (2.1). When the base station decodes a
symbol xj from user j, it faces interference from the other user symbols.

2.1.2 Channel state information

When it comes to ISI channels, it was assumed that the ISI sequence z is
perfectly known at the receiver and the transmitter, i.e., the channel matrix
H in (2.1) is perfectly known. This assumption is reasonable for the case of
deterministic channels, since z is then completely determined from the pulse
h(t), which is assumed to be known to the transmitter and the receiver. In the
case of quasi-static frequency selective channels g(t), a good enough channel
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estimate can be obtained. For example, in digital subscriber lines (DSL), it is
possible to obtain a good estimate of the channel [22].

However, for MIMO channels, the channel depends on the environment,
which determines how fast it changes from one channel use to another. As
soon as the channel variations are small, characterized by the coherence time
TC and the coherence bandwidth BC , it is possible to track the channel and
obtain reliable CSI. To obtain CSI at the receiver, a popular method is to send
known pilot symbols from the transmitter to the receiver [29]. Decoding them

at the receiver makes it possible to obtain an estimate Ĥ of the channel H,
which can be made accurate by devoting more resources to the training phase.
The amount of pilot data that needs to be transmitted has been analyzed in
[29]. Note that transmitting pilot symbols, estimating the channel based on the
pilot observations and using the estimate as if it is correct in the subsequent
data detection phase, is not the optimal approach as it is inferior to perform-
ing a non-coherent detection. The ultimate limits of non-coherent detection
have been studied in [30]. However, pilot tranmission yields significantly less
computational complexity at the receiver side.

In order for the transmitter to obtain H, two common techniques are:

1. Feedback: In this approach, the estimated channel Ĥ is sent from the
receiver to the transmitter on a feedback link. This feedback inherently
gives rise to some delay δ. In order for Ĥ to be reliable at the transmitter,
we must have δ ≪ TC . If the channel varies rapidly, this approach requires
more frequent estimates Ĥ and feedback.

2. Channel Reciprocity: This technique uses the assumption that the
estimated channel from the transmitter to the receiver is the same as
the channel from the receiver to the transmitter. Problems with this
technique include calibration issues as well as the fact that the forward
and backward channels are not necessarily close in time and frequency
[24].

Despite the practical difficulties in obtaining perfect CSI, in situations when the
channel varies slowly and the feedback link has sufficient capacity, the perfect
CSI assumption is assumed to hold throughout this thesis.

2.2 Performance Measures For MIMO Chan-

nels

From now on, the focus of Part II is to analyze the spatial single user MIMO
channel. The analysis is also applicable to general linear channels, but the used
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notation is from MIMO communications. We start by describing two widely
used performance measures for MIMO channels.

2.2.1 Information rate

The ultimate performance measure for a MIMO system is governed by its
mutual information, which determines the achievable information rates for the
MIMO channel. As described in Section 2.1.1, during one channel use, it is
possible to transmit information along the spatial dimensions. The spatial
channel during one such slot is described by the matrix H. Assume that the
channel does not change from one slot to another (quasi-static channel). Let

pX(x) denote the joint pdf/pmf of the vectorX = [X1, . . . , XNt
]
T

ofNt random
variables1. It is assumed that X has zero mean E{X} = 0Nt

and covariance
matrix RX = E{XX∗}. The mutual information I(Y ;X) between the input
x and output y for a MIMO channel is defined as

I(Y ;X)
△
= H(Y )−H(Y |X), (2.14)

where H(·) is the differential entropy operator [41]

H(Y ) = −
∫

y

pY (y) log2(pY (y)) dy.

I(Y ;X) is the number of bits that can be carried by X through H, given the
specified pdf pX(x).

Definition 4. The information rate I(H, pX) = I(Y ;X) is the maximum
number of bits per channel use that can be carried error free through the MIMO
channel H, given the pdf pX(x).

If one maximizes I(H, pX) over the pdf pX(x), but keeps the correlation
matrix RX fixed, one obtains the constrained capacity for the MIMO channel.

Definition 5. The constrained capacity for a MIMO channel is

C(H,RX) = sup
pX(x):E{XX∗}=RX

I(H, pX).

Soon we will present a closed form expression for the constrained capacity
of the MIMO channel. Finally, maximizing C(H,RX) over RX , yields the
capacity for a MIMO channel. This maximization is valid only if there is a
constraint on RX , and the average power constraint is commonly used.

1A capital and bold symbol denote a vector of random variables, except for matrices which
always are in capital and bold.
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Definition 6. The capacity for a MIMO channel is

Ĉ(P0,H) = max
RX :tr(RX)≤P0

C(H,RX).

Note that the information rate per channel use is given by the mutual
information between two sequences of random variables, Y and X. Comparing
this to Definition 1 in Part I of the thesis, we see that information rate for single
antenna systems is also the mutual information of two sequences, but divided
by their length (the number of channel uses). Thus, it can be expected that
the information rate for MIMO systems is superior to single antenna systems
(since no division by the length occurs), and this turns out to be the case.

Telatar derived exact analytical expressions for the constrained capacity
C(H,RX) and the capacity Ĉ(P0,H) [39] of a MIMO system. The constrained
capacity of a MIMO system is given by

C(H,RX)
△
= max

pX(x):E{XX∗}=RX

I(H, pX) = log2 det

(

INt
+

1

N0
HRXH∗

)

.

(2.15)
The constrained capacity in (2.15) is attained by a multivariate Gaussian dis-
tribution on X, with the correlation matrix RX . The capacity is obtained
by subsequent maximization of (2.15) as in Definition 6. The solution to this
optimization is the well-known waterfilling technique. Let H = USV ∗ be the

SVD decomposition of the channel H and RX = QΣQ
T

be the eigenvalue
decomposition of RX . Further, let σj,j be the diagonal elements of Σ and sj,j
the diagonal elements of S, respectively. The optimization in Definition 6 can
be shown to be equivalent to

Ĉ(P0,H) = max∑r
j=1

σj,j=P0

r∑

k=1

log2

(

1 +
σj,js

2
j

N0

)

, (2.16)

where r is the rank of the channel H. The unitary matrix Q is equal to V .
The solution to (2.16) is

σopt
j,j =

(

µ− N0

sj,j

)

+

, (2.17)

where

x+ =

{
x x ≥ 0
0 x < 0

for a number x. Hence, in order to achieve the rate in (2.16), the transmitted
vector x is constructed as x = V

√
Σa, where a is a zero mean circularly
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symmetric complex Gaussian (ZMCSCG) with RA = INt×Nt
. This transforms

the linear channel in (2.1) into a set of parallel channels,

yk = sk,kσ
opt
k,kak + nk, k = 1, . . . , r. (2.18)

Thus, optimal transmission over the linear channel occurs over its eigenmodes
{sj,j}. Note, however, that this is only true if the data can be a multivariate
Gaussian. As soon as the symbols xj in x are drawn from a discrete constel-
lation, which is the main focus of Part II in the thesis, signaling as in (2.18) is
not optimal!

Transmitting at bit rates in (2.15) and (2.16), the probability of detecting an
erroneous message at the receiver can be made arbitrarily close to 0 with long
data blocks, in theory. Assume that the transmitter wants to convey 2k different
messages to the receiver. A bit pattern b of k bits is used to represent each
message. This bit pattern is represented by a sequence of vectors {x1, . . . ,xn}
which are sent through H in n different channel uses. The rate R of the

system is defined as R
△
= k/n bits / channel use. Assuming that channel is

used indefinitely, i.e., n→ ∞, it is possible to recover the transmitted message
with error probability tending to zero as long as R < C(H,RX) or Ĉ(P0,H),
if the encoding of the 2k messages to the sequence of n vectors is done in an
optimal fashion.

However, signaling exactly at these rates in practice is impossible for several
reasons. First of all, it requires that the transmitted symbols xj are taken from
a Gaussian alphabet, which is not very practical. Moreover, the number of
messages, k, has to be infinite (in theory), i.e, the transmission has to occur
for an indefinite amount of time. Infinitely many vectors xi, i = 1, . . ., need to
be transmitted, and the receiver has to receive the whole signal yi, i = 1, . . .,
in order to make optimal detection. Still, it is possible to come close to these
rates by modern coding systems. A popular method [42] is to code the bit
stream b with, e.g., a low density parity check (LDPC) code, into a new bit
sequence c of length m > k. Thus, the rate of the encoder is Rc = k/m.
Next, the bits in c are mapped onto a discrete alphabet X (e.g. QAM) of
cardinality |X | = M . This creates a sequence of n = m/Nt log2(M) symbol

vectors x
T

j = [xj,1, . . . , xj,Nt
], j = 1, . . . , n. The sequence of vectors is passed

through a serial to parallel converter and then transmitted from the antenna
array. Hence, there are n = m/Nt log2(M) channel uses, and the total rate
of the system is R = Rc log2(M)Nt bits per channel use. This transmitter is
shown in Figure 2.1. At the receiver, an iterative decoding algorithm is applied,
that iterates between decoding the MIMO channel and the LDPC encoder, in
accordance with the Turbo principle [40].

As soon as the alphabet for the symbols xj is constrained to be discrete,
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Figure 2.1: A practical transmission systems that can come close to the rates
in Definitions 4 - 6. The bit sequence b is encoded into a much longer bit
sequence c by an LDPC encoder. The bits in c are mapped onto a QAM
constellation, which results in a sequence of vectors {x1, . . . ,xn}, each with Nt

symbols. After the serial to parallel converter S/P, each vector is transmitted
from the antenna array across the channel H.

the rates in (2.15) and (2.16) can never be reached exactly. Instead, the limit is
I(H, pX) in Definition 4. However, by using large QAM alphabets, I(H, pX) ≈
C(H,RX). Beside a large QAM alphabet, long codewords need to be produced
by the encoder in order to reach I(H, pX) and thereby C(H,RX). For an
LDPC encoder, the needed block lengths can be as large as 105 [42, 43, 44]. For
some time-critical applications, it is instead of interest to send short codewords
and have less latency at the receiver side. This will inevitably lead to an error
probability that is bounded away from 0. Furthermore, the alphabet X is in
practice discrete. For these reasons, it is of interest to also consider other
performance measures than information rate.

2.2.2 Bit and block error rate

As discussed in the previous section, once the codewords are relatively short, it
will not be possible to signal at a vanishing error rate. It is then of interest to
quantify the bit error rate (BER), the ratio of erroneous bits in the decoding
of the message to the total number of bits, or the block error rate (BLER),
the ratio of erroneous bit sequences to the total number of sequences. Clearly,
these quantities should be as small as possible. Let b be the sequence of k bits
to be sent across the linear channel. As in Figure 2.1, these bits are in general
sent through an encoder that produces a longer sequence of bits, c, that are
mapped onto the discrete alphabet X . This produces a sequence of vectors
x1:n = {x1, . . . ,xn} that are transmitted through H. The receiver observes

the sequence y1:n = {y1, . . . ,yn} and produces an esimate b̂ of the sent bit

sequence b. Let bi denote the ith bit in b and Pi
△
= Pr{b̂i 6= bi} be its error
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probability. We can now define the bit error probability Pe as

Pe
△
=

∑k
i=1 Pi

k
. (2.19)

Further, we define the block error probability P k
e as

P k
e

△
= Pr{b̂ 6= b}. (2.20)

From the definition of P k
e , it holds that

P k
e = Pr{∪{b̂i 6= bi, 1 ≤ i ≤ k}}. (2.21)

Using the union bound, we get

P k
e = Pr{∪{b̂i 6= bi, 1 ≤ i ≤ k}} ≤

k∑

j=1

Pr{b̂i 6= bi} = kPe. (2.22)

Moreover, from the expression in (2.21), it is clear that

P k
e ≥ Pr{b̂i 6= bi}, i = 1, . . . , k. (2.23)

Hence,
k∑

i=1

P k
e ≥

k∑

i=1

Pi,

which gives
P k
e ≥ Pe. (2.24)

Combining (2.22) and (2.24), we get

Pe ≤ P k
e ≤ kPe. (2.25)

Hence, minimizing the block error probability has a direct impact on the bit
error probability and vice versa.

2.3 Receiver Structures for MIMO Channels

The information rates in Section 2.2.1 can be achieved by using the optimal
decoder. However, if another decoder or detection method is used, then the
performance degrades [47, 48]. For suboptimal detection, the ultimate limits,
under certain conditions, can be derived through the framework of generalized
mutual information [47, 48]. A thorough review of common detection methods
for MIMO channels, both optimal and suboptimal, is given in [45]. We start
by describing the optimal receiver first, followed by suboptimal techniques of
lower complexity.
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2.3.1 ML receiver

Let Pr{b̂ = b} = 1−Pr{b̂ 6= b} = 1−P k
e be the probability of a correct decision

of the transmitted bit sequence at the receiver. Further, let pY1:n
(y1:n) be the

pdf of the received sequence y1:n. Then, the probability that the decision b̂ is
correct can be expressed as

Pr{b̂ = b} =

∫

y1

· · ·
∫

yn

Pr{b̂ sent|y1:n}pY1:n
(y1:n)

n∏

k=1

dyk. (2.26)

Hence, Pr{b̂ = b} is maximized when the term Pr{b̂ sent|y1:n} is maximized for
every y1:n. Thus, given the received signal y1:n, the optimal decoding method
is

b̂ = argmax
b̃

Pr{b̃ sent|y1:n}. (2.27)

This is known as maximum a posteriori (MAP) decoding. This decoder mini-
mizes the probability of detecting an erroneous message and also achieves the
information rate. We can write

Pr{b̃ sent|y1:n} =
Pr{y1:n|b̃ sent}Pr{b̃ sent}

pY 1:n
(y1:n)

. (2.28)

If all possible bit sequences b are equiprobable, it is readily seen from (2.28)
that the maximization in (2.27) is equivalent to

b̂ = argmax
b̃

Pr{y1:n|b̃ sent}. (2.29)

This is the maximum likelihood (ML) decoding rule, and the decoder is known
as an ML decoder, which is thus optimal in the case of equiprobable bit se-
quences b. In this thesis, we assume that b is indeed uniformly distributed.
Clearly, this decoder minimizes the BLER.

Instead of performing ML decoding directly on the bit sequence b, another
method is to perform ML decoding on the transmitted sequence of vectors
x1:n = {x1, . . . ,xn}. First, let V denote the set of sequences x1:n that are
valid, i.e., each x1:n ∈ V represents a certain codeword that corresponds to
some bit sequence b. Then, the following ML decoding rule

x̂1:n = arg max
x̃1:n∈V

Pr{y1:n|x̃1:n sent} (2.30)

is also optimal since each elements in the set V is equiprobable. Since (2.1) is
an AWGN channel, (2.30) reduces to the following detection rule

x̂1:n = arg min
x1:n∈V

n∑

j=1

‖yj −Hxj‖2. (2.31)
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In (2.31), ‖ · ‖ denotes the Frobenius norm ‖x‖2 = tr(x∗x) of a vector x.
Moreover, this norm is also well defined for a matrix argument, and will thus
be used for matrices as well. Performing a joint decoding over the sequence
x1:n of transmitted vectors, which amounts to solving (2.31), implies a latency
at the receiver. If an uncoded system is used, then vectors can be detected
independently, which avoids the latency. We can then minimize each term in
the summation in (2.31) independently, which gives rise to an ML decoding on
the individual symbol vectors xj at each time instant. Hence, we consider

x̂k = argmin
x̃k

‖y −Hx̃k‖2. (2.32)

The probability of symbol vector error is

Pr{x̂ 6= x} = 1− Pr{∪x̃ 6=x‖H(x− x̃) + n‖2 > ‖n‖2}. (2.33)

Since Pr{x̂ 6= x} is hard to put in close form, we use the well known union
bound to obtain an upper bound:

Pr{x̂ 6= x} ≤Pr{x sent}
∑

x̃6=x

1

2|XN |Pr{‖H(x− x̃) + n‖2 < ‖n‖2}

=Pr{x sent}
∑

x̃6=x

1

2|XN |Pr{‖H(x− x̃) + n‖2 − ‖n‖2 < 0}.(2.34)

In each term of the second summation in (2.34), the variables H and x are
fixed. This implies that ‖H(x− x̃)+n‖2−‖n‖2 ∼ N (‖H(x− x̃)‖2, 4‖H(x−
x̃)‖2). Hence,

Pr{‖H(x− x̃) + n‖2 − ‖n‖2 < 0} = Q(‖H(x− x̃)‖/2), (2.35)

where Q is the Gaussian tail function

Q(x) =
1√
2π

∫ ∞

x

e−y2/2 dy. (2.36)

Since Q(x) has a steep descent towards 0, the dominating terms in the sum-
mation in (2.34) are those corresponding to the minimum distance, i.e., P{x̂ 6=
x} ≈ Q(

√

D2
min(H,X )) where

D2
min(H,X ) = min

x6=x̃
‖H(x− x̃)‖2. (2.37)

The minimum in (2.37) depends on the channel H and the alphabet X . Thus,
maximizing D2

min(H,X ) has a strong impact on lowering the block error prob-
ability at high SNRs, which in turn lowers the BER. The minimum distance is
the design parameter chosen in this thesis, and it will be analyzed for certain
discrete alphabets X .
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2.3.2 Linear receivers

The decoding rule in (2.32) can be implemented as a tree search operating over
H. However, its complexity, i.e., the number of leaf nodes, is exponential in
the alphabet size |X | and the memory of the channel H (spatial for MIMO
or temporal for, e.g., ISI). Hence, to reduce the complexity of the detection,
suboptimal and low complexity receivers are desirable. One low complexity
receiver is a linear one, which outputs the estimate

x̂ = TX (Wy) (2.38)

of the transmitted vector x, where the operation TX (r) of a vector r rounds
each element rj to the nearest element in X . Depending on the performance
measure, it may be the case that different W are optimal. However, it turns
out that most performance measures of interest, such as information rate and
bit error rate, are directly related to the mean-square-errors (MSEs) of a linear
receiver [49]. The MSEs are the diagonal elements of the MSE matrix

E
△
= E{[Wy − x][Wy − x]∗}. (2.39)

The filter that minimizes the MSEs is optimal for these performance measures.
This filter is the well-known Wiener filter [24], and equals

W = (H∗RXH + I)−1H∗. (2.40)

It is readily seen that the MSEs are directly dependent on the correlation
matrix RX , which is determined by the discrete alphabet XNt of the vectors
x. Here, XNt is the Nt fold Cartesian product of the symbol alphabet X .

2.4 Precoding for Linear Channels

Section 2.3 introduced different receiver structures, which produce different
values for the introduced performance measures in Section 2.2. Furthermore,
these receiver structures are directly dependent on the discrete alphabet XNt .
Thus, it is of interest to find the optimal discrete set XNt for the different
receiver structures and performance measures. However, this is also a non-
tractable problem if no constraints are put on the set XNt , except for the
obvious energy constraint. A widely used technique to generate XNt , which
starts to lend analytical tractability, is to construct the symbol vector x as

x = L(a), (2.41)
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where a is a data vector that comes from a well-defined discrete alphabet
AB , and L is a certain function/mapping. Note here that the mapping L is
L : CB → C

Nt , where B 6= Nt can hold. In practice, the alphabet A is an
M2-QAM alphabet,

A △
= {zr + izi : zr, zi ∈ {(−M + 1)/2, . . . , (M − 1)/2}}.

From now on, we will always let A be the QAM alphabet.
In general, to find the optimal mapping L for a certain receiver structure

and performance measure is a very tough problem. The mappings can be di-
vided into two classes: linear mappings and non linear mappings. The latter
often give rise to higher complexity (either encoding or decoding complexity),
but can in general perform better than linear mappings. However, linear map-
pings always have a linear encoding complexity, while the decoding complexity
depends on the receiver, and is in general easy to estimate for linear mappings.
We will now describe these two classes of mappings.

2.4.1 Linear precoding

When L is a linear map, it can be represented by a matrix equation, i.e.,
x = Fa for some matrix F . A linear map is called a linear precoder. Here, a
is an B× 1 vector, and F is Nt ×B. Since a is discrete and structured, so will
x be. We have already seen an application of linear precoding. To achieve the
capacity Ĉ(P0,H) in (2.16), the vector x is constructed as x = V Σa, where
a ∼ CN (0Nt

, INt×Nt
) (i.e., B = Nt). Hence, in this case, F = V Σ. In general,

since both the transmitter and receiver have perfect channel knowledge, it is
possible to optimize over a linear transformation F of the data symbols a,
in order to improve a performance measure imposed on (2.1). Hence, a more
general linear model than (2.1) arises from this consideration:

y = HFa+ n. (2.42)

As in (2.1), n ∼ CN (0Nr
, INr×Nr

). Since x = Fa, RX = E{Faa∗F ∗} =
FRAF ∗, where the last equality follows from the linearity of E{·} and the fact
that F is not stochastic. Hence, if RA = IB×B , then RX = FF ∗. In this
case, F determines the correlation matrix of x. The constraint in (2.9) now
becomes

tr(FRAF ∗) ≤ P0. (2.43)

Since RA is a correlation matrix, it is positive semidefinite, and therefore

possesses a factorization of the form RA = LL
T

for some matrix L. Hence,
a new precoder can be defined, F̂ = FL, which is subject to the constraint



52 MIMO Precoding

tr(F̂ F̂
∗
) ≤ P0. Thus, without loss of generality (WLOG), we can assume that

RA = IB×B in (2.43), since L can be incorporated into F . Therefore, we
consider uncorrelated QAM symbols.

2.4.2 Non-linear precoding

If L is a non-linear function, then we obtain a non-linear precoder. A com-
mon non-linear precoding technique is vector perturbation [51, 52, 55], already
mentioned in Section 2.1.1, which perturbs the data vector a with another
vector p that comes from a lattice, in order to reduce the transmit energy
tr(FRAF ∗). The data symbols aj are assumed to belong to a bounded re-
gion in the complex-valued plane. Usually, this region is the cube K = {a :
|Re{a}| < 0.5, | Im{a}| < 0.5}, i.e., aj ∈ K and a ∈ KB , the B dimensional
cube. A vector s is constructed as

s = H+(a+ p), (2.44)

where H+ is the Moore-Penrose pseudo inverse of H and p is the solution to

p = arg min
q∈Z[i]B

‖H+(a+ q)‖2. (2.45)

In (2.45), Z[i]B denotes the set of B dimensional Gaussian integer vectors. The
transmitted vector x is then

x =

√

P0

κ(H)
s, (2.46)

where κ(H) is the average energy

κ(H) = EA{‖s‖2} (2.47)

with respect to the data vector a. Hence, the received signal is

y =

√

P0

κ(H)
(a+ p) + n. (2.48)

Decoding a is now a simple matter. Since p ∈ Z[i]B and a ∈ KB , the lat-
tice vectors p translate the cube KB so that it tiles the complex-valued B
dimensional space C

B ; that is, the translated cubes cover CB and they do not
intersect. Let âj denote the j:th decoded data symbol. Then

âj = yj modK, (2.49)
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where modK means that yj is translated to K, i.e., yj − zj ∈ K for a (unique)
zj . Thus, a simple modulo operation for each received stream yj recovers aj .
Note that the decoded âj is corrupted by a modulo Gaussian noise, nk modK.

Vector perturbation gives rise to a simple decoding method, by inverting the
channel and translating the data vector a to reduce the transmit energy. The
main bottleneck is the computational complexity needed to find the optimal
p in (2.45), which is a well-known NP-hard problem [52]. Hence, an NP-hard
problem needs to be solved online for every realization of H and a. A subop-
timal low-complexity instance of vector perturbation is Tomlinson-Harashima
precoding [53].

2.5 Construction of Linear Precoders

The low encoding complexity of linear precoders is very desirable for practi-
cal applications. For this reason, linear precoders have been an active area of
research throughout the history of MIMO communications and is, e.g., incor-
porated in the long term evolution (LTE) standard [54]. As mentioned in the
previous section, depending on the receiver structure and the different perfor-
mance measures of interest, different optimal precoders are obtained. We will
now review some linear precoding techniques for different receiver structures.

2.5.1 Optimal linear precoders for linear receivers

As described in Section 2.3.2, the Wiener filter is the optimal linear receiver for
many performance measures of interest. Employing this filter at the receiver,
the next task is to find linear precoders that maximize different performance
measures. A thorough investigation of this problem is performed in [49, 50, 61].
The optimization problems that arise are efficiently solved with majorization
techniques, and it turns out that the optimum precoder can be derived in a
relatively easy fashion. Since now L(a) = Fa, it holds that the MMSE matrix
in (2.39) is E = (INt,Nt

+ F ∗H∗HF )−1. Let N ≤ min(Nr, Nt). Given an
arbitrary objective function f(e1,1, . . . , eN,N ) of the diagonal elements from
E that is increasing in its arguments and minimized when its arguments are
sorted in decreasing order, the solution to the optimization problem

min
F

f({ej,j})

subject to

ej,j ≤ ρj , j = 1, . . . , N

tr(FF ∗) ≤ P0

(2.50)
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is of the form F = V diag(
√
p)Q. Here V is the right unitary matrix of H, Q

is a unitary matrix such that ej,j = ρj , j = 1, . . . , N , (Q can be obtained by a
rather simple algorithm [49, Algorithm 2.2]) and diag(

√
p) is a diagonal matrix

with the vector
√
p on its main diagonal. As before, let S be the singular values

of the channel H. The vector p and the values ρ = [ρ1, . . . , ρN ] are obtained
through the optimization

min
ρ,p

f(ρ)

subject to

N∑

j=i

1

1 + pjsj,j
≤

N∑

j=1

ρj , ≤ 1 ≤ i ≤ N

ρi ≥ ρi+1

N∑

j=1

pj ≤ P0

pj ≥ 0, 1 ≤ j ≤ N.

(2.51)

It turns out that the BER function is convex in ρ as soon as it is below a
certain threshold ≈ 10−3. Thus, the problem in (2.51) is a convex optimization
problem, and minimizing the BER is a convex problem that can be solved
efficiently with convex optimization techniques.

Instead, if the interest is to maximize the mutual information, the problem
reduces to minimizing the determinant of E [49], and the optimal F has Q =

INt,Nt
and pi = (µ− λ−1

H,i)+, where µ is such that
∑N

j=1 pj = P0 holds. From
(2.51) it is thus possible to derive closed form solutions in the case of simple
functions f , and also optimal numerical solutions when f is convex.

2.5.2 Optimal linear precoders for maximizing the mu-

tual information

The Wiener filter is after all a suboptimal receiver, which thus gives suboptimal
performance of a MIMO system. If instead the optimal ML decoding rule
is employed at the receiver, the analysis of the optimal linear precoders is
significantly tougher. Note that since x = Fa, pX(x) = pA(a) = 1/|AB | and
RX = FF ∗. The information rate I(H, pX) in Definition 4 can be denoted as
I(H,F ), where the optimization variables are explicit. The information rate
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optimal precoder is found by solving

max
F

I(H,F )

subject to

tr(FF ∗) ≤ P0.

(2.52)

Note that it is trivial to solve (2.52) with C(H,RX) and Ĉ(P0,H) as ob-
jective functions, i.e., when the alphabet A is Gaussian: The optimum linear
precoder then performs waterfilling. However, since the alphabet A is discrete,
there is no closed form expression available for the objective function I(H,F ).
Finding the precoder F that solves (2.52) is a challenging problem. In [83],
the Karush-Kuhn-Tucker (KKT) conditions were derived for (2.52), which pro-
duced a fixed point equation for the optimal F . Based on this equation, an
iterative optimization technique was developed that produced precoders pro-
viding high information rate. However, the problem with this approach is that
the iterative optimization technique is not guaranteed to converge to the op-
timum, since (2.52) is a non-convex problem in F . A recent advance in [56]
shows that I(H,F ) is concave over the Gram matrix G = F ∗H∗HF . This
enables construction of an algorithm that converges to the optimum of (2.52).
However, this algorithm is of very high complexity and is not very feasible for
large QAM constellations and MIMO dimensions.

The work in [83] showed an interesting connection between information rate
and the minimum distance D2

min(HF ,A). Namely, Theorem 4 in [83] shows
that for high SNRs, the precoder solving (2.52) is the one maximizing the
minimum distance D2

min(HF ,A). Thus, for high SNRs, the solution to (2.52)
is obtained by optimizing the minimum distance. Hence, an interesting con-
nection exists between three well-known optimization criterias: the minimum
distance, BER and information rate. The precoder that minimizes the BER at
high SNRs, maximizes the data rate and the minimum distance at the same
time!

2.5.3 Linear precoders for minimizing the BER

In order to minimize the BER at any SNR, the common approach is to min-
imize the expression in (2.33). Since this expression cannot be put in closed
form, different approximations of it are minimized, such as the Chernoff upper
bound. In [57], a general expression for the precoder that minimizes (2.33) was
presented. Similar results are derived in [58]. However, these expressions are
given in terms of unknown matrices, and to determine these matrices is a non-
tractable task in dimensions higher than two. Works such as [59, 60, 61, 62]
present suboptimal constructions to minimize the BER. In general, finding the
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precoder that minimizes (2.33) is a non-tractable problem, and approximations
to (2.33) are made which relax the problem into a tractable one.

2.5.4 Linear precoders without CSI at transmitter

When the transmitter has no knowledge about the channel coefficients H, the
construction of precoders is of a different nature than before. In many cases,
the receiver has the capability to obtain a good enough estimate of the channel.
One alternative then is to feed back the CSI to the transmitter, as mentioned in
Section (2.1.2), so that the transmitter has a channel to work with. However,
due to the inherent delay, and in the case of low rate feedback links, this method
is not viable. Instead, in this scenario, it is desirable that the receiver only feeds
back a small amount of information to the transmitter, which is sufficient for
determining the precoder at the transmitter. In [63], it was shown that for
MIMO BC with a zero forcing precoder (ZF) at the base station, the number
of feedback bits required increases linearly with the SNR.

Usually, the transmitter is equipped with an already static, finite collection
of precoders, a precoder codebook, and the receiver only feeds back a string of
bits across the MIMO channel, that represent the position of the precoder in the
codebook that the transmitter should use. This is known as limited feedback
precoding. Hence, the art of limited feedback precoding is in designing the
finite precoder codebook. Many different techniques exist for this purpose.
In [109], precoders with k orthogonal columns are designed, where k < Nt.
It is shown that the optimal such precoder, for many performance measures,
has its k columns isotropically (i.e., ”evenly”) distributed across the unitary
space U(Nt, k) of Nt × k matrices with k orthogonal columns. Hence, the
optimal codebook should consist of precoders that are evenly spread across
U(Nt, k). By constructing different distance measures between the subspaces
that each such precoder spans, it is possible to construct codebooks of different
sizes containing evenly spread precoders. Beside orthogonal precoding, other
methods exist that feedback a few bits representing different elements of a
precoder that optimizes, e.g., the minimum distance [112].

In this thesis, we will make a comparison between different limited feedback
schemes and improve upon previous ones for MMSE receivers. This is the
subject of Chapter 6.



Chapter 3

Linear Precoders for

Maximizing the Minimum

Distance

Due to the difficulty in finding a precoder that minimizes the BER, a common
method is to minimize a quantity directly related to the BER. As described
in the previous chapter, the minimum distance is the dominant factor in the
BER at high SNRs, and the precoder that maximizes it not only minimizes
the BER, but also maximizes the information rate. There have been many
attempts to construct precoders that increase the minimum distance, see, e.g.,
[58, 60, 61, 79] among many others. All of these attempt to produce subopti-
mal constructions for moderate dimensions of the MIMO system. In [67], the
precoder that maximizes the minimum distance for two dimensional MIMO
channels (Nt = B = 2 and Nr ≥ 2) and 4-QAM alphabets was found. It is
shown that there are essentially only two different precoder ”structures” that
are optimal. With ”structure”, it is meant that the mathematical expression
for the precoder takes on two different forms, but the precoder itself changes
continuously with the channel, c.f., [67]. As we will see later, this structure is
characterized by the Gram matrix G = F ∗H∗HF : The two different precoder
structures correspond to two different Gram matrices. For any MIMO channel
H with a ratio of its singular values that is above a certain threshold, one of
these structures is always optimal, while for a channel with a ratio below the
threshold, the other structure is optimal. Thus, in a way, the optimal precoder
behaves in a discrete fashion.

The goal of this chapter is to provide new insights into the design of linear

57
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precoders F that maximize the minimum distance of the received signaling
points. We start off with new suboptimal constructions in Section 3.2. There-
after, we attempt to find the optimal minimum distance precoders through an
iterative optimization technique, presented in Section 3.3. From the output of
the optimization, we are able to observe a profound structure in the optimal
solutions, which directs towards a possibility of an analytic treatment of the
problem. This analysis is covered in Chapter 4.

3.1 Problem Under Consideration

The problem of finding the Nt × B precoder F that maximizes the minimum
distance can be formulated as:

F opt = argmax
F

D2
min(HF ,A)

subject to

tr(FF ∗) ≤ P0.

(3.1)

Let e = a− ã ∈ EB , where E is the difference set of the alphabet A. We now
have D2

min(HF ,A) = mine 6=0B
e∗F ∗H∗HFe. Define

G
△
= F ∗H∗HF (3.2)

to be the Gram matrix of HF . Then (3.1) becomes

F opt = argmax
F

min
e 6=0B ,e∈EB

e∗Ge

subject to

tr(FF ∗) ≤ P0.

(3.3)

It is readily seen that the optimal F opt is such that it minimizes tr(FF ∗) sub-
ject to a fixed constraint on the minimum distance, e.g., mine 6=0B ,e∈EB e∗Ge ≥
1. Thus, we can rewrite (3.3) as

F opt = argmin
F

tr(FF ∗)

subject to

min
e 6=0B ,e∈EB

e∗Ge ≥ 1

G = F ∗H∗HF .

(3.4)

As before, let H = USV ∗ be the singular value decomposition of H. For
flat fading MIMO channels, hi,j are i.i.d. complex-valued Gaussian variables,
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which implies that the rank of H is N = min(Nt, Nr) with probability 1. From
the definition of G in (3.2), it follows that U has no impact on D2

min(HF ,A),
and can therefore be removed at the receiver. Furthermore, the matrix V can
be absorbed into F without changing the value of the objective function in
(3.4). Only the N × N diagonal submatrix in S, that contains the singular
values, is of interest, since the other elements are zero. Hence, an equivalent
model to (2.1) arises:

y = SFa+ n, (3.5)

where S is a N × N diagonal matrix with non-zero diagonal entries, F is an
N×B matrix subject to tr(F ∗F ) ≤ P0 and a a B×1 vector. Further, y is now
N × 1 and so is n. In total, the system in (2.1), where x = Fa, can WLOG
be reduced to (3.5). G is now G = F ∗S2F , a B × B matrix. It is further
assumed that B ≤ N , i.e., the number of spatially multiplexed data streams is
determined by the rank. Thus, we can now rewrite (3.4) as

F opt = argmin
F

tr(FF ∗)

subject to

min
e 6=0B ,e∈EB

e∗Ge ≥ 1

G = F ∗S2F .

(3.6)

In [58], it was shown that solving (3.6) is an NP-hard problem. Thus, at first
sight, this problem seems mathematically intractable, and finding a solution to
it online amounts to solving an NP-hard problem. Therefore, the first natural
approach is to construct suboptimal solutions to (3.6), as was done in [61, 65].
This is the rationale behind Section 3.2. Another possibility is to solve (3.6)
by an algorithmic approach, which is the focus of Section 3.3. Careful investi-
gations of the precoders obtained in Section 3.3 reveal interesting connections
between the problem in (3.6) and lattice theory. This connection is studied in
Chapter 4.

Since G is Hermitian, and thus a normal matrix, its eigendecomposition is

G = QDQ∗. (3.7)

The factorization (3.7) is unique if the diagonal elements of D are ordered
in a decreasing order. From the definition of G and (3.7), we see that F =

S−1(
√
D 0B,N−B)

T

Q∗ is a precoder such that F∗S2F = G. The 0B,N−B

matrix is an B × N − B zero matrix, accounting for the case when B < N .
Next we prove that this F has the lowest energy of all possible G satisfying
G = F ∗S2F .



60 MIMO Precoding

Theorem 7. Let G = QDQ∗ where the diagonal elements of D are ordered
in decreasing order. Then, of all F satisfying G = F ∗S2F ,

F = S−1(
√
D 0B,N−B)

T

Q∗ (3.8)

is the one with least energy tr(F∗F).

Proof: Combining G = F ∗S2F and (3.7) we get F∗S2F = QDQ∗. Rewriting,
we have

Q∗F∗S2
HFQ = D. (3.9)

Assume that F∗RF, where R is a positive semidefinite matrix, is equal to a di-
agonal matrix Σ, where the diagonal elements in Σ are in decreasing order (in
our case Σ is B×B). Then, in [49, Lemma 3.16] it is proved that we can always

choose F = VRD
−1/2
R

√
Σ, where VR contains the B eigenvectors of R corre-

sponding to the B largest eigenvalues ofR andDR contains the B largest eigen-
values of R, respectively, in order to minimize tr(F∗F). Hence in our case, we

choose FQ = S−1(IB×B 0B,N−B)
T√

D which gives F = S−1(
√
D0B,N−B)

T

Q∗

and completes the proof.

3.2 Suboptimal Constructions

We start by investigating efficient suboptimal solutions to (3.6). Since the
precoders are suboptimal, they should provide another advantage, such as low
decoding complexity. This is the idea behind our suboptimal construction
presented in this section. Throughout the section, we will assume that A is a
QPSK alphabet. Thus, since A is fixed, we will write D2

min(HF ) instead of
D2

min(HF ,A).

3.2.1 Relaxation into a Toeplitz G

We constrain the Gram matrix G to a Hermitian Toeplitz form

G =















g0 g1 g2 · · · · · · gB−1

g∗1 g0 g1
. . .

...

g∗2 g∗1
. . .

. . .
. . .

...
...

. . .
. . .

. . . g1 g2
...

. . . g∗1 g0 g1
g∗B−1 · · · · · · g∗2 g∗1 g0















. (3.10)
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Constraining G to a Toeplitz matrix is clearly a suboptimal solution to the
problem in (3.6); however, it admits analytical treatment while, as we will
demonstrate, the results are still satisfying. The reasons that motivate us
to pursue a Toeplitz structure are as follows. Assume that G has diagonal
elements g1,1 6= g2,2 6= ... 6= gB,B , and consider the resulting Euclidean distance
from error vectors with only a single non-zero entry. Within the class of such
error vectors, the minimum distance equals1 4min(g1,1, ..., gB,B) achieved by
an error vector with its non-zero entry at the position for the minimum of
the diagonal elements. Thus, the minimum distance is completely determined
from the smallest diagonal element. Thus, we gain nothing from having many
large diagonal elements if there exists a single small one. On the contrary,
large diagonal elements should be avoided if possible since they are in general
expensive in terms of the cost constraint tr(F∗F); the design should aim at
having a well balanced G. Now assume error vectors with exactly q non-zero
entries and consider a sub block Gq of size q × q formed from the rows and
columns p, . . . , p+ q− 1 of G, i.e., Gq = gp:p+q−1,p:p+q−1, for some p. Invoking
the same arguments as above leads to the conclusion that all such blocks (for
different p) should be identical, the worst block will determine the MSED.
We would like to strongly point out that these are not hard facts, but merely
general design rules that lead to a tractable problem.

Using the precoder F from Theorem 7 gives that

tr(F∗F) = tr(S−2D) =
B∑

j=1

dj,j
s2j,j

, (3.11)

where dj,j and sj,j denote the j:th diagonal element in D and S, respectively.
Now we can rewrite the original problem in (3.6) in a simpler way. Using (3.11),
we can reformulate (3.6) as

min
d

B∑

j=1

dj,j
s2j,j

, subject to

{
mine 6=0 e

∗Ge ≥ 1
dj,j > 0, j = 1, . . . , B.

(3.12)

Hence, the objective function in (3.12) is linear in the eigenvalues of G; unfor-
tunately, the eigenvalues are in general hard to express in the elements gi,j of
G.

We will next study two different Toeplitz structures where the eigenvalues
can be found in closed form and be expressed in the elements of G; a memory-1
structure and a cyclic structure of memory-4. The latter gives rise to a cyclic

1The elements with least energy in the error alphabet are ±2 and ±2i which all have
energy 4.
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Toeplitz G, while the former is not cyclic. Imposing a memory-1 structure or
a cyclic Toeplitz structure on G makes (3.12) a simple optimization problem
for any S. The memory of G is related to the number of non-zero entries in G,
which determines the ML decoding complexity at the receiver: higher memory
gives larger decoding complexity. Still, increasing the memory gives more de-
grees of freedom for the optimization in (3.12), and thus better precoders are
expected to be found.

3.2.2 Memory-1 Toeplitz structure

In this section we set gk = 0, k > 1. An ML detector can be be implemented
by using a Cholesky-factorization L∗L = G; see [46] for the details. Due to
the constraint gk = 0, k > 1 it follows that Lk−ℓ = 0 unless k − ℓ = 0 or
1. This implies that the memory of the associated ML-detector is unity and
ML-detection can be implemented by a memory-1 Viterbi algorithm.

The eigenvalues dk,k of such a matrix can be shown to equal

dk,k = g0 + 2|g1| cos
(

kπ

B + 1

)

, k = 1, . . . , B. (3.13)

Clearly, {dk,k} is a decreasing sequence which implies that factorization (3.7)
becomes unique. Inserting this into the expression for the objective function
in (3.12), we get

B∑

k=1

g0 + 2|g1| cos
(

kπ
B+1

)

s2k,k
.

Hence, the objective function in (3.12) becomes linear in g0 and |g1|. It can
without loss of generality be assumed that g0 = 1. Since dk,k > 0 in (3.13), it
holds that 0 < |g1| < −1/2 cos(Bπ/(B + 1)) (which tends to 1/2 as B grows).

There exists an interesting connection between the problem studied here
and minimum distance problem for intersymbol interference (ISI) channels.
If |g1| ≤ 1/2 then G can be interpreted as the auto-correlation matrix of a
memory-1 ISI channel. It can be proved [64] that for all memory-1 ISI channels
the MSED is achieved by an error event consisting of a single symbol and equals
4g0. However, we do not require G to be a valid auto-correlation matrix, but
only to be positive definite. Therefore, a |g1| that exceeds 1/2 can be used.

The problem in (3.12) was solved exhaustively for 100 000 different channel
realizations, and an interesting observation can be made: The optimal solution
was always that |g1| should be chosen as large as possible so that D2

min(SF ,A)
is caused by a single symbol error event and thus equals 4g0. That large |g1| are
beneficial for the objective function can be seen directly from (3.12); since the
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sequence {1/s2k,k} is ordered in increasing order, cos
(

kπ
B+1

)

= − cos
(

(B−k)π
B+1

)

for k = 1 . . . ⌊B/2⌋ and {dk,k} is a decreasing sequence, it follows that the
objective function in (3.12) is minimized by choosing |g1| as large as possible.
However, when |g1| exceeds a certain threshold, the MSED drops below the
single error symbol distance 4g0, and the decrease of the MSED turns out
to be more significant than the decrease of the objective function. Table 3.1
lists the g1 that have as large magnitude as possible such that the MSED is
generated from an error event consisting of a single error symbol.

Table 3.1: Optimal g1 for some values of B.

B g1

6 0.5545 eiπ3/20

8 0.5320 eiπ3/20

10 0.5210 eiπ1/5

3.2.3 Memory-4 cyclic Toeplitz structure

In this case we use a G of the form (3.10) with gB−1 = g∗1 , gB−2 = g∗2 and
gk = 0, 3 ≤ k ≤ B−3. Note that a cyclic memory-2 construction has the same
degrees of freedom as the memory-1 construction in Section 3.2.2, since only
g1 can be chosen at will, while a cyclic memory-3 construction is not possible
sinceG should be Cyclic Toeplitz (thus, memories that are odd numbers are not
possible). The reason for constraining ourselves to a cyclic structure is because
it is possible to obtain an analytic expression for the eigenvalues {dk,k}, while
still maintaining a low decoding complexity. Note that compared with the G

in Section 3.2.2, the memory-4 cyclic G has extra elements in the upper right
and lower left corners. This increases the complexity of ML-detection to 4,
which can be realized by viewing the system as a tailbiting system of memory
2.

Since G is a B × B cyclic Toeplitz matrix, we know from [31] that the Q

in (3.7) is the DFT matrix, that is, the element at position (k, ℓ) in Q equals
e−2πi(k−1)(ℓ−1)/B/

√
B. Moreover, the diagonal elements of D are the Inverse

DFT (IDFT) of the first row of G, i.e., d = IDFT(g0, g1, . . . , gB−1), where
d = (d1,1, d2,2, . . . , dB,B) is the main diagonal of D. The idea of freezing the
unitary matrix into a DFT matrix and only optimizing the diagonal matrix D

has also been exploited in [66], but the linear optimization to follow shortly
was not used in [66]. Instead, a suboptimal static power allocation was used.
Important to note here is that every cyclic Toeplitz matrix can be obtained by
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simply choosing corresponding diagonal elements in D; Q is the same for all
cyclic Toeplitz matrices. Consequently the optimization problem (3.12) turns
into an optimization problem over d. Also, from (3.7) it follows that

e∗Ge = ẽ∗Dẽ =
B∑

j=1

|ẽj |2dj,j , (3.14)

where ẽ = Q∗e. Hence ẽ is the DFT of the error vector e. Since gk = 0,
3 ≤ k ≤ B − 2, we have an additional constraint on d. Now we can rewrite
(3.12) as

min
d

B∑

j=1

dj,j
s2j,j

, subject to







minẽ 6=0

∑B
j=1 |ẽj |2dj,j ≥ 1

dj,j > 0, j = 1, . . . , N.
∑B

j=1 dj,je
2πi(j−1)k/B = 0,

3 ≤ k ≤ B − 3.

(3.15)

Note that the problem is linear in the eigenvalues d, and is thus efficiently
solvable by, e.g., the simplex method. However, the number of constraints
in (3.15) is of an exponential order; in our case roughly 9B . Hence, it is of
interest to somehow reduce the number of constraints in (3.15), while still
finding a precoder that is optimal or very close to optimal. Therefore, a simple
algorithm is devised that reduces the number of constraints. It is summarized
in the following flowchart:

1. Start with an initial set E of vectors e.

2. Solve problem (3.12) over E . Let dopt denote the solution.

3. Use dopt to construct G by means of (3.8) and compute the MSED. Let
eopt denote the worst error event.

4. If eopt ∈ E , stop: dopt produces maximal MSED. Otherwise, add eopt to
E , return to step 2.

The above algorithm was run for 100000 channel realizations for each antenna
combination. The initial list was initialized with all error vectors of form e =
[0 . . . 0 e0 e1 e2 0 . . . 0]

T

. From the experiment, the following two things are
observed. (i) The final list E (after 100000 channel realizations) is not much
larger than the initial list; for most antenna combinations 5-10 new error vectors
were added. (ii) The above algorithm produces very few different results d; two
vectors d and d̃ are declared identical if ‖d − d̃‖2 ≤ 10−4. For example, only
2 different d:s were found when N = 8, B = 6 and 4 different when N = 12,
B = 10; in the latter case, 2 of the 4 were used in 99.9% of the cases.
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Interestingly, it turns out that the optimal d is usually not a decreasing
sequence. Thus, Theorem 7 implies that the obtained d is not optimal to
use when constructing the precoder. The reason for the non-decreasing d is
that d is optimal for the (DFT) Q under investigation, but Q is not the best
unitary matrix to use. In order to improve, we construct G from the DFT Q

and its optimal D (which has the optimal d on its diagonal). Then a unique
eigendecomposition follows (which results in a non-DFT Q) and the optimal
precoder is constructed from this composition, according to Theorem 7. The
newly obtained D matrix is simply a reordering of the optimal d that comes
from the optimization, so that its diagonal elements are sorted in decreasing
order.

Since the optimization in (3.12) is considered, all d are constrained to pro-
duce a fixed MSED that equals 1. Thus, to pick the best precoder for a given
channel realization, one has merely to identify the vector d from the list that
results in the least energy consumption

∑
dj,j/s

2
j,j . Since the list is short this

involves almost no complexity. Hence, these precoders are as easy to construct
as closed form precoders.

3.2.4 Comparisons

We will now compare the results of our precoder design with the competing
design in [65], which is described next. Let

S =

(
s1,1 0
0 s2,2

)

be a 2 × 2 channel matrix. In [67], the optimal precoder for a 2 × 2 MIMO
channel is found. Let s1,1 = ρ cosµ, s2,2 = ρ sinµ, where 0 ≤ µ ≤ π/4. Then
the optimal precoder F opt is given by

F opt =

( √

3+
√
3

6

√

3−
√
3

6 eiπ/12

0 0

)

, 0 ≤ µ ≤ µ0

F opt =

√

1

2

(
cosφ 0
0 sinφ

)(
1 eiπ/4

−1 eiπ/4

)

, µ0 ≤ µ ≤ π

4
(3.16)

where µ0 ≈ 17.28◦ and φ = arctan
(√

2−1
cosµ

)

. In [65], the 2× 2 results in (3.16)

are used as building blocks to construct large precoders for a general N × N
MIMO setup as in (3.5) (thus, S is now N ×N , where N is assumed to be an
even integer). The construction is as follows:
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1. Pair the largest and smallest singular values of the channel S, i.e., create
the following N/2 pairs:

(s1,1, sN,N ), (s2,2, sN−1,N−1), . . . , (sN/2,N/2, sN/2+1,N/2+1).

2. Consider each pair as a 2 × 2 MIMO channel and construct the optimal
precoder for it according to (3.16). Let F i be the optimal precoder for
pair i.

3. The available energy is distributed across the {F i} so that tr(F ∗
iF i) =

[D2
min,i(SF i)

∑

k 1/D
2
min,k(SF k)]

−1, where D2
min,i(SF i) is the squared

minimum distance of precoder F i. This energy distribution makes the
minimum distance of all the 2× 2 channel pairs equal.

Denote the joint precoder matrix formed from all {F i} as P f .
In Figure 3.1 we plot the pdf of D2

min(SF ) for different precoders F : the
memory-1 precoder from Section 3.2.2, the memory-4 precoder from Section
3.2.3 and the precoder P f from [65]. The figure is for the case when B = N−2.
We clearly see that the memory-4 precoder is superior, followed by memory-1
and P f . The gain is significant and will also be present in receiver tests to
follow. Figure 3.2 shows the distance profile when B = N − 1. Still, the
outcome is the same as when B = N − 2: memory 4 has the best distance
profile, followed by memory 1 and P f . However, the difference is not as big as
when B = N − 2. This can be somewhat explained by the fact that including
the second smallest singular value of the channel (when B = N − 1 we use the
N − 1 largest singular values of the N possible) adds one more term in the
objective function in (3.12), namely dB−1,B−1/s

2
B−1,B−1, where sB−1,B−1 ≤

sB−2,B−2 ≤ . . . ≤ s1,1. This will increase the value of (3.12), which is the
energy tr(F ∗F ) of the precoder, and hence the D2

min(SF ) = 1/ tr(F ∗F ) will
become smaller than when B = N − 2.

Next, we compare the symbol error rate (SER) performance of our proposed
precoders in Sections 3.2.2 and 3.2.3 with the precoder P f from [65]. Figure 3.3
shows the comparison between the different precoders. SNR in the figure is
defined as SNR = 1/N0. We can clearly see from the figure that the memory-
4 precoder is the best one in terms of SER, followed by the memory-1 and
P f . This is in agreement with Figure 3.1, which dictates the SER behaviour
for large SNR values and predicts the results observed in Figure 3.3. Note
that the performance of our precoders is better when we increase B and the
dimension N of the MIMO system.

Figure 3.4 shows the comparison between the precoders when B = N − 1.
As expected from Figure 3.2, the SER curve difference is only marginal in this
case. When B = N , P f actually outperformed our precoders. We observed
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that indeed, the function in (3.12) became large, hence the minimum distance
advantage for B = N − 1 and B = N − 2 is gone.

3.3 Iterative Precoder Optimization

The preceding section presented a suboptimal construction of F , which is effi-
cient in terms of complexity and SER performance. It was derived by imposing
a specific structure on the Gram matrix G, from which it is also easy to control
the ML decoding complexity at the receiver. The aim is now to drop this con-
straint onG, and perform an optimization that produces even better precoders.
Herein, we present an iterative optimization method, which alternates between
optimizing the unitary matrix Q and the eigenvalues D of G = QDQ∗. We fo-
cus on the case B = N , with the remark that the optimization is easily applied
to B 6= N as well. Hence, the Gram matrix G is now N ×N .

Our optimization procedure alternates between optimization of D and Q.
The steps are the following:

1. Given a unitary matrix Q, optimize (3.6) over D.

2. With the obtained D, optimize (3.6) over Q.

3. Iterate the first two steps, until the increase in the value of the objective
function D2

min(HF ) becomes negligible.

Next, each of these optimization steps will be explained in detail.

3.3.1 Optimization over D

For a fixed Q, the minimum distance constraint in (3.6) can be written as

min
e

e∗Ge = min
ẽ

ẽ∗Dẽ,

where ẽ
△
= Q∗e, and thus the optimization (3.6) reduces to

min
{dj,j},dj,j>0,j=1,...,N

N∑

m=1

s−2
m,mdm,m

subject to

ẽ∗Dẽ ≥ 1, ∀ ẽ.

(3.17)

Hence, the optimization is a linear problem over D and can be trivially solved
by means of standard techniques, such as the simplex algorithm [68].
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3.3.2 Optimizing for the unitary matrix Q

For a fixed D, the constraint in (3.3) is fulfilled and thus only the objective
function in (3.3) has to be optimized over Q. The problem of optimizing
objective functions under the unitary matrix constraint has been extensively
treated in [69, 70]. In our case, the unitary optimization problem is:

Qopt = argmax
Q

min
e

e∗QDQ∗e, subject toQ∗Q = IN×N . (3.18)

For a given N and symbol constellation, there is a finite number of error vectors
e ∈ {e1, . . . , eL}. For an M2-QAM alphabet A, the size of EN is |EN | = L =
(2M − 1)N − 1. This set can be reduced by removing ej that can be expressed
as ±ek or ±iek for some k 6= j.

The optimization problem (3.18) is equivalent to maximizing the minimum
of a set of L continuously-differentiable objective functions Jℓ(Q) over the Lie
group of unitary matrices U(N):

Qopt = argmax
Q

min
ℓ
{Jℓ(Q)}Lℓ=1, Q ∈ U(N), (3.19)

where each of the objective functions is defined as

Jℓ(Q) = e∗ℓQDQ∗eℓ, ℓ = 1, . . . , L. (3.20)

Since the number of error vectors L is considerably large (order of thousands),
the complexity of the optimization problem needs to be reduced. Without loss
of generality, we consider the set of vectors {eℓ} being sorted in an ascend-
ing order, according to the values of the objective function Jm they produce,
i.e., J1 ≤ J2 ≤ . . . ≤ JL. Maximizing the minimum value of the inner ob-
jective function Jℓ, is equivalent to maximizing J1 = minℓ{Jℓ(Q)}Lℓ=1 w.r.t
Q ∈ U(N). The optimization w.r.t. the unitary matrix Q is done by using
the Riemannian Steepest Ascent (SA) algorithm on the unitary group given
in [70, Table I]. After each iteration of the SA algorithm, the vectors {eℓ}
are again sorted in ascending order, and the new obtained objective function
J1(Q) is maximized. The Euclidean gradient of J1(Q) at a point Qk ∈ U(N)
is given by Γ1|k = e1e

∗
1QkD, and represents the steepest ascent direction on

the Euclidean space. The Riemannian gradient is a skew-Hermitian matrix
Y1|k = Γ1|kQ

∗
k − QkΓ

∗
1|k, and represent the steepest ascent direction on the

constrained parameter space U(N) at Qk, translated to a group identity el-
ement. A rotational update is performed, such that the unitary matrix con-
straint is maintained at every iteration:

Qk+1 = exp(+αµY1|k)Qk, (3.21)
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Figure 3.5: Optimization of J1(Q) on the unitary Lie group U(N). The Lie
group U(N) can be viewed as a smooth curved surface determined by the
unitary constraint. In this space, geodesics are the equivalent of the straight
lines from the Euclidean space. At each iteration k, the algorithm moves along
the geodesic curve G1|k(t) emanating from the current point Qk ∈ U(N) in
the direction of Riemannian gradient Y1|k. Only a fraction α ∈ (0, 1) of the
complete step µ (that would produce the maximum increase of J1(Q)) is taken,
at each iteration.

where exp(·) is the standard matrix exponential2, and µ is the step size. Note
that the update is multiplicative since a product of unitary matrices is unitary.

The complexity of the unitary optimization itself is of order O(N3). How-
ever, the complextiy of sorting the error vectors {eℓ} in ascending order is
O(LN2). Since N ≪ L, the complexity of the entire optimization is therefore
dominated by the sorting operation. Techniques to reduce the number of error
vectors {eℓ} exist, such as the flowchart in Section 3.2.3 and the method in
[71]. These have not been used since with a standard work-station, the entire
optimization process is a matter of fractions of a second.

A highly accurate step size µ is selected by using the polynomial-based line
search method given in [69, Table 1]. The unitary optimization procedure on
U(N) is illustrated in Figure 3.5.

The scaling factor α ∈ (0, 1) prevents the objective function J1(Q) to in-
crease too quickly. Too much increase in J1(Q) may actually produce a de-
crease in the other objective functions {Jℓ(Q)}Lℓ=2, even below the initial value
of J1. This is because their corresponding gradients Ym|k do not necessarily
point in directions that increase the minimum value of the objective functions.

2The matrix exp(+αµY1|k) is a unitary matrix.
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In that case, instead of increasing the minimum value of {Jℓ(Q)}Lℓ=1, the value
would be decreased. Therefore, small steps are preferred in order to avoid this
behavior3. After every step, reordering the error vectors {eℓ} in required, in
order to maximize the minimum value of the objective functions, J1.

3.4 Optimization Results

The convergence properties of the iterative optimization method described in
Section 3.3 depends heavily on the step size µ. The optimization shows rapid
convergence whenever µ is moderate-large, however, it often converges to a
local optimum. To improve the results, the step size µ should be taken as a
small number. This unfortunately implies that several hundreds of iterations
are needed before saturation of the objective function is reached.

It turns out that the starting point does not have a significant effect when-
ever µ is small. For each S in the grid, we have chosen as starting point the
optimal precoder for the previously considered S, which is close in Euclidean
distance to the current S, but also, 10 randomly chosen starting points. Then
we take as output the best of the 11 solutions, but most often they are all
the same. The overall conclusion of the iterative optimization is that it is ef-
ficient, but with a remark that it should be carried out off-line since several
hundreds of iterations are needed. If suboptimal solutions are tolerated, µ can
be taken larger which results in faster convergence so that the optimization can
be carried out on-line.

It may appear problematic to carry out the optimization off-line since the
size of precoder codebook may be prohibitive. However, for S that are “close”,
the optimal Gram matrices G = F ∗S2F are scaled versions of each other. The
size of the codebook to choose from becomes in fact quite small. The same is
not true for the optimal mutual information precoders from [83]. In that case,
no precoder codebook can be tabulated since each channel S has a unique
optimal precoder. This is a strong motivation to consider minimum distance
optimal precoders.

As a final remark, a standard Gauss-Seidel optimization4 of the precoder
F was tested, but it turns out that such an approach is grossly inferior to the
iterative optimization. This is true both for running-time and accuracy of the
results, and most often an undesired local optimum is reached.

Next, the outcome of the optimization procedure for the considered setups
is described. The optimal G matrices are not listed in the thesis, but they can

3The reason why steepest ascent is used is that the conjugate gradient in [70] would be
”too fast” for this purpose.

4From the optimization toolbox in Matlab.
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be found at www.eit.lth.se/goto/kapetanovicprecoders.

3.4.1 N = 2 with QPSK inputs

As already mentioned in Section 3.2.4, this optimization problem has been
completely solved in [67]. The authors of [67] analytically proved that the
optimal precoders F are such that the Gram matrices G only have two different
structures, up to a scaling. One of the two structures has rank 1, while the other
has full rank. Which of the two to use depends on the particular realization of
S.

3.4.2 N = 2 with 16-QAM inputs

For 16-QAM inputs, the work in [72] suggests that there should be 8 different
precoder structures (i.e., 8 different structures of the resulting G matrices,
up to scaling). One of these structures is however not optimal; by running
the iterative optimization procedure in Section 3.3, we obtain one precoder
structure that has a significantly larger minimum distance than one of the 8
found in [72]. 7 of the 8 precoders have full rank while 1 precoder has rank 1.

In terms of symbol error rate (SER), the newly found precoder has only
minor impact. For channels H where the channel coefficients are independent
zero-mean, unit-variance, complex Gaussian random variables, the channels
where the newly found precoder is optimal are scarce so that the effect of the
new precoder almost does not show up in simulations. Thus, the improve-
ment of [72] is mainly of theoretical interest, but it shows that the iterative
optimization approach is highly efficient.

3.4.3 N = 3 with QPSK inputs

By studying the resulting optimal G matrices for each S, it turns out that
there are only 14 different G matrices for N = 3, as opposed to the 8 proposed
in [73].

The different precoders that arise can be characterized in 3 different classes:
I) There are 5 precoders with full rank, II) 8 precoders with rank 2, III) 1
precoder with rank 1. The rank deficient precoders are used when some channel
eigenvalues are small, so only transmission over the stronger eigenmode occurs.

Unlike Section 3.4.2, the newly found codebook of precoders performs
slightly better than the codebook proposed in [73]. A simulation is presented
in Figure 3.6. In the simulation, the channel coefficients in H are inde-
pendent, zero-mean, unit-variance, complex Gaussian random variables. We
plot the BER for the 14 newly found precoders, the BER for the 8 precoders
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Figure 3.6: BER comparison between the new 14 precoders, the precoders in
[73] and uncoded transmission. Since the gain in D2

min(HF ) is not substantial,
as illustrated in Figure 3.7, the gain in BER is also less pronounced.

from [73] and the BER for uncoded transmission. As can be seen from the
figure, there is not much gain compared to the precoders from [73], which
suggests that they are close to optimal. However, plotting the distribution of
D2

min(HF ) for the 14 precoders and the precoders from [73], we see a slight
improvement in D2

min(HF ) for the 14 precoders. This is illustrated in Figure
3.7.

3.4.4 N = 4 with QPSK inputs

In the case of N = 4, the number of optimal structures of the G matrices that
our iterative optimization was able to identify is 77. With complex Gaussian
distributed channels, 30 different precoder structures cover >99.9 % of the
channels; hence, the other 47 structures are used very seldomly. Further, in
terms of minimum distance, the 30 precoders perform well as there is not much
loss compared with using the complete codebook.

Out of the 30 precoders, 8 have full rank, 19 have rank 3, 3 have rank 2,
but there is no precoder with rank 1 since in complex Gaussian distributed
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Figure 3.7: Probability function of D2
min(HF ) for the 14 best precoders and

the precoders in [73]. The precoders in [73] are close to optimal in D2
min(HF )

according to the authors – thus we might expect that the new 14 precoders are
very close to optimal, if not optimal.

channels, the probability of three very weak eigenmodes is extremely small.
A BER simulation is provided in Figure 3.8. We plot the performance

of the 77 suboptimal precoders, a codebook containing only the 30 precoders,
uncoded transmission, and the suboptimal precoding method from [65]. As
can be seen, there is about 0.8 dB gain of the proposed codebook compared
with the competing scheme from [65]. At BER 10−3, there is a 4 dB gain over
uncoded transmission. Also, as seen, there is no performance loss by using the
30 best precoders. In Figure 3.9, the distribution of D2

min(HF ) is illustrated
for the 30 precoders and the precoders in [65]. There is a significant gain in
minimum distance for the 30 precoders, which explains the BER gain.
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Figure 3.8: BER comparison between the 77 suboptimal G, the 30 most oc-
curing G out of the 77, the precoders in [65] and uncoded transmission. There
is no loss in using only the 30 most occuring precoders, and the gain in BER
is significant compared to the state-of-the art precoders in [65].

3.5 Connection With Lattices

An interesting fact about the G matrices is the structure of the elements.
Namely, with proper scaling for eachG, the elements gj,k = aj,k+bj,ki are either
such that aj,k and bj,k are rational numbers, or such that aj,k = r1+r2/

√
2 and

bj,k = r3 + r4/
√
3, where r1, r2, r3, r4, are rational numbers. A similar ordered

structure has also been observed for the G matrices obtained from the optimal
precoders in [67, 72]. This hints that there is a hidden underlying structure in
the precoding problem. It will be demonstrated that there is indeed a profound
relationship between the obtained G matrices and standard lattices. For this
reason, we now introduce a brief account on lattice theory.
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Figure 3.9: Probability function of D2
min(HF ) for the 30 new precoders and

the precoders in [65]. As seen, there is a significant improvement in D2
min(HF ),

which carries over to BER as was illustrated in Figure 3.8.

3.5.1 Lattices

All matrices and vectors in this subsection are assumed to be real-valued. This
covers complex-valued matrices and vectors too, since any complex-valued ma-
trix A is isomorphic to a real-valued matrix Ar through the transformation

Ar =

[
Re{A} Im{A}
− Im{A} Re{A}

]

(3.22)

and similarly

sr =

[
Re{s}
Im{s}

]

(3.23)

for complex-valued vectors s, where, Re{·} and Im{·} denote the real and
imaginary parts of a matrix/vector, respectively.

Let L ∈ R
N×N and let the columns of L be denoted by l1, . . . , lN . A lattice
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ΛL is the set of points
ΛL = {Lu : u ∈ Z

N}. (3.24)

In (3.24), u is an integer vector and L is called a generator matrix for the
lattice ΛL. The squared minimum distance of ΛL is defined as:

D2
min(L) = min

u 6=v
‖L(u− v)‖2 = min

e 6=0N

‖Le‖2 = min
e 6=0N

e
T

GLe,

where u,v and e = u−v are integer vectors and GL is the Gram matrix for the
lattice ΛL. The fundamental volume is Vol(ΛL) = | det(L)|, i.e., it is the volume
spanned by l1, . . . , lN . Let pj denote a lattice point in ΛL. A Voronoi region
around a lattice point pj is the set Vpj

(ΛL) = {w : ‖w−pj‖ ≤ ‖pk−w‖, pk ∈
ΛL}. Due to the symmetry of a lattice, it holds that Vpj

(ΛL) = pj +V0N
(ΛL).

The Voronoi region around 0N is denoted V(ΛL).
As can be seen from the definition of ΛL, the column vectors l1, . . . , lN

form a basis for the lattice. There are infinitely many bases for a lattice.
Assume that L′ is another basis for ΛL. It holds that L′ = LZ, where Z

is a unimodular matrix, i.e., Z has integer entries and det(Z) = ±1 [74].
Hence, the generator matrix L′ generates the same lattice as L, i.e., ΛL ≡ ΛL′

where ≡ denotes equality between sets. Two Gram matrices GL1
= L

T

1L1 and

GL2
= L

T

2L2 are isometric if there exists a unimodular Z and a constant c

such that GL1
= cZ

T

GL2
Z. Geometrically, this means that L1 and L2 are

the same lattice up to rotation and scaling of the basis vectors.
From the definition of the different lattice measures, it follows that

D2
min(WLZ) = D2

min(L) (3.25)

where W is any orthogonal matrix. Similarly, Vol(ΛWLZ) = Vol(ΛL).
A number of lattices are especially interesting and have been given formal

names in the literature. In particular, the densest lattices in the sense that
they maximize the quotient D2

min(Λ)/Vol(Λ) are of interest. In 2, 4, 6, and 8
dimensions, the densest lattices are the Hexagonal A2, Schläfli D4, E6, and the
Gosset E8 lattices, respectively [74]. Apart from these 4, we will also make use
of the 2-dimensional square lattice Z2 and the 6-dimensional D6 lattice.

3.5.2 Lattice identification of full rank precoders

The optimal precoder structures from Section 3.4 are optimized in terms of
their Gram matrices, thus, we do not directly obtain the lattice generators.
Therefore, we need to recover the lattice generator matrix from its Gram matrix
[75, 76]. However, our task will be easier since we shall first guess the lattice
generator, and then verify whether the guess is correct.
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Figure 3.10: The hexagonal lattice depicted with a geometrical description of
the introduced lattice quantities.

We next turn the attention to such a verification method. Let Gr denote
the real-valued representation of the (complex-valued) GrammatrixG obtained
from the iterative optimization described in Section 3.3. The dimension of Gr

is 2N × 2N . Let ΛLr
denote the lattice corresponding to Gr. There is yet no

explicit information about this lattice. We now make a guess on which lattice
ΛLt that Gr corresponds to. Since minimum distance precoding is related to
sphere packing problems, we shall later make the “educated guess” that ΛLt

is
the densest sphere packing lattice. However, this guess will most interestingly

not always be correct! Let Gt = L
T

t Lt denote the real-valued Gram matrix of
the lattice generator Lt for ΛLt

. Further, we scale Gt so that

det(Gr) = det(Gt).

Our task is now to verify whether it is true that ΛLr
≡ ΛLt

.
From Section 3.5.1, it follows that if ΛLr ≡ ΛLt then it must hold that

Lr = ULtZ, for some unitary matrix U and where Z is a unimodular matrix.
This gives

Gr = LT
r L

= Z
T

L
T

t LtZ

= Z
T

GtZ. (3.26)

Thus, if such unimodular Z exists, we know that Gr and Gt represent the
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same lattice. To find such Z is not as straightforward as it may seem at a first
glance due to the unimodular constraint. Integer relation algorithms, such as
the PSLQ algorithm [77], that find an integer vector a = (a1, . . . , an) solving
a1x1 + . . . anxn = 0 for some real/complex-valued numbers x1, . . . , xn, cannot
be used in this case since the equation in (3.26) is quadratic in the (integer)
elements of Z. Furthermore, (3.26) describes a system of quadratic integer
equations, one for each element in Gr, while PSLQ only considers a single
linear integer equation. Thus, we embark on developing an efficient algorithm
that finds Z satisfying the equation in (3.26).

If such Z exist, we must have that

D2
min(Lr) = D2

min(Lt).

In terms of the Gram matrices, this condition is expressed as

min
b

bTGrb = min
b

bTGtb. (3.27)

If (3.27) holds, consider the set of minimal norm vectors Ωr = {v1, . . . ,vKr
}

for Gr and Ωt = {v1, . . . ,vKt
} for Gt. These sets can be found via, e.g., sphere

decoding [78]. In order for Lr and Lt to generate the same lattice, it must hold
that Kr = Kt, i.e., the kissing numbers of the lattices must be the same. If
not, the lattices are not the same.

Given that the two Gram matrices Gr and Gt have the same minimum
distances and kissing numbers, we can try to construct the unimodular Z. Let
Ar = [vr

j1
, . . . ,vr

j2N
] be a matrix formed by 2N linearly independent vectors

from Ωr. Since Z represents a change of basis of the lattice, it must hold that
there exists a subset of 2N vectors At = [vt

k1
, . . . ,vt

k2N
] from Ωt such that

Ar = ZAt. Since Ar and At are invertible and contains only integer elements
by assumption, it follows thatA−1

t Ar is always an integer valued-matrix. Using
(3.26), we know that if

(At)
T

(A−1
r )

T

GrA
−1
r At = Gt, (3.28)

we have found the unimodular matrix as Z = A−1
t Ar. Consequently, a brute

force approach exhausts all subsets of V t and checks whether (3.28) is satisfied.
If no subset At, so that (3.28) holds, exists, the guess that ΛLr

≡ ΛLt
is

incorrect.
To exhaustively test all subsets is inefficient. Instead we have used a re-

cursive branch-and-bound algorithm, which goes as follows. Consider (3.28).
The task is to form At as 2N vectors from Ωt so that (3.28) holds. Suppose
initially that we pick the first column in At as a1. It must then hold that

a
T

1 (A
−1
r )

T

GrA
−1
r a1 = gt,1,1, (3.29)



Chapter 3. Linear Precoders for Maximizing the Minimum Distance 83

where gt,1,1 denotes element (1,1) of the matrix Gt. If this does not hold, a1

cannot possibly be the first column of At.
Now suppose that (3.29) holds, and suppose that we choose a2 as the second

column. Then it must hold that

[a1a2]
T

(A−1
r )

T

GrA
−1
r [a1a2] = gt,1:2,1:2, (3.30)

where gt,1:k,1:k denotes the sub-matrix formed by the elements from the first k
rows and columns of Gt.

If (3.30) does not hold, we do not have to consider the combinations a1 and
a2 any further. In this fashion, we can branch-and-bound until we have found
a solution At to (3.28), or until we have exhausted all possibilites without
finding any valid solution. The pseudo-code of a recursive implementation of
the branch-and-bound algorithm is given in Table 3.2.

With a standard work-station and N = 4, the entire verification process is
a matter of fractions of a second.

3.5.3 Lattice classification of rank deficient Gram matri-

ces

Whenever the channel S contains at least one small eigenvalue, the optimal
precoder structure G is rank deficient. Let β denote the rank of the 2N × 2N
matrix G - note that β must be an even integer since the eigenvalues of the
real-valued matrix Gr appear in pairs. This implies that we can not hope to
identify G as the Gram matrix of any well known 2N -dimensional lattice, since
these are all full rank. However, G can still represent an β-dimensional ordered
structure. This ordered structure may, or may not, represent a lattice, as is
recalled next.

Let Lr denote any β × 2N matrix such that Gr = LT
t Lt. It can, e.g.,

be obtained by taking the QR decomposition of Lr and setting Lt to be the
upper-triangular matrix of the QR factorization. The generator matrix Lr

corresponds to 2N vectors in β-space. Through Λ = {Lrv |v ∈ Z
2N} the

generator spans a number of points in β-space. These points can be a subset
of, or coincide with, the points spanned by an β × β lattice generator Lsq, the
subscript “sq” denotes “square”. If so, the implication is that for any integer
vector v ∈ Z

2N there exists a corresponding integer vector u ∈ Z
β such that

Lsqu = Lrv.

Since this should hold for all integer vectors v, it follows that it must be possible
to factorize Lr as

Lr = LsqP , (3.31)
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Table 3.2: Recursive algortihm to find the matrix Z. If Z is empty when the
routine terminates, the two lattices are not the same. The tolerance ǫ can be
taken as any small number, e.g., 10−4.

Algorithm to find the matrix Z

[Z] = findZmatrix(Ar,At,Gr,Gt,p)

Inputs: Ar, At = [ ], Gr, Gt, p = [1, 2, . . . , κ],
where κ is the kissing number of Gr.

Output: The Z matrix in (3.26) if it exists.

If number of columns in At = 2N

Z = AtAr
−1

else

T = A
T

rGrAr

Z = 0

For i ∈ p

e = (Ar)1:end,i
At = [At e]

C = A
T

t GtAt

m = number of rows in C

if ‖T1:m,1:m −C‖2 < ǫ then
q = [p1, . . . , pi−1, pi, . . . pend]
[Z] = findZmatrix(Ar,At,Gr,Gt, q)

end
if Z is empty

break
end

end
end
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where P is an β × 2N integer matrix. If such factorization exist, the lattice
ΛLr

is a subset of the lattice ΛLsq
= {Lsqu |u ∈ Z

β}. Let lr,j1 , . . . , lr,jβ be β
linearly independent columns in Lr (they certainly exist since Lr has rank β).
From (3.31), it follows that

[lr,j1 , . . . , lr,jβ ] = Lsq [pj1 , . . . ,pjβ ]
︸ ︷︷ ︸

P j1:jβ

,

where P j1 , . . . ,P jβ are β independent columns of P . Since P j1:jβ is a non-
degenerate integer matrix, it holds that any β×1 integer vector can be expressed
as P j1:jβr, where r is a β× 1 vector with rational entries. Hence, this directly
implies that every column in Lr can be expressed as a rational combination of
lr,j1 , . . . , lr,jβ . If this is not possible, then Lr does not represent a lattice. If
P contains the identity matrix, we in fact have that ΛLr

= ΛLsq
. However,

if the identity is not contained in P , there is ambiguity in the factorization
Lr = LsqP since many integer matrices P may exist. This can be resolved
by considering the factorization with the largest value of Vol(Lsq). However,
we will only consider factorizations where P contains the identity matrix, so
that ΛLr = ΛLsq

. For the cases where no such factorization exists, we can still
identify well known sub-lattices in ΛLr

. Suppose that a subset of the columns
in Lr are equivalent to some lattice Λ1 and that the remaining columns are
equivalent to another lattice Λ2. We write this as ΛLr

≡ Λ1 ×Λ2. The subsets
of columns in Lr that form the lattices Λ1 and Λ2 may be rotated by unitary
transforms U1 and U2, respectively, and also scaled by constants c1 and c2.

3.5.4 Lattice classification of the optimal precoders

In this section we examine the Gram matrices of the optimized precoders from
Section 3.4. It will turn out that all full rank precoders can be classified as
instances of well known lattices. Interestingly, in 6 dimensions this lattice is the
D6 lattice and not the denser E6 lattice. For the rank deficient precoders, some
are instances of lattices, while others are built up from stacking several lower
dimensional lattices. We have not found a precoder that does not correspond
to a well known lattice.

N = 2 with QPSK inputs

The structures of all precoders are listed in Table 3.3. As explained in Section
3.4.1, only two different precoder structures Gr occur for N = 2 with QPSK
inputs. One has full rank 4 and one has rank 2.5 Using our lattice identification

5The reader is reminded that Gr is the real-valued representation of G. The full rank of
G is 2 while it is 4 for Gr.
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method from Sections 3.5.2 and 3.5.3, we are able to characterize their corre-
sponding lattices. For the full rank precoder, Gr is identified as the Schläfli
lattice D4; this is also the densest lattice in 4 dimensions. For the rank deficient
precoder, no factorization (3.31) exists where P contains the identity matrix.
This can be seen as follows. With suitable scaling, Gr can be expressed as
Gr = LT

r Lr with

Lr =

[
4 + 2

√
3 −1 0 2 +

√
3

0 2 +
√
3 −4− 2

√
3 1

]

.

The middle two columns of this Lr are linearly independent, so the other two
columns in Lr must be a rational combination of these if Lr is to represent
a lattice. However, it is obvious that this is not the case, since the other two
columns contain the irrational number

√
3 as its first coordinate. Neverthe-

less, we can observe that the precoder contains two sub-lattices that both are
instances of the Z2 lattice, namely column 1 and 3, and column 2 and 4, re-
spectively. Hence, the precoder structure is Z2 × Z2. These two sub-lattices
are rotated against each other, but are also differently power scaled. For an
analytical derivation of this precoder, see [67].

N = 2 with 16-QAM inputs

The structures of all precoders are listed in Table 3.4. There are 8 different
precoder structures presented in [72]; 7 of them have full rank, while one only
has rank 2. One of the 7 full rank precoders is however not optimal. This
was realized in the following way. Out of the 7 full rank precoders, 6 can
be identified as the Schläfli lattice. The 7th precoder is “close” to the Schläfli
lattice, but there is no exact match. Therefore, it is suspected that this precoder
could therefore be incorrect and we applied the iterative optimization technique
from Section 3.3 for the channel matrices S where the non-Schläfli precoder
was to be used. The iterative optimization quickly produces a better precoder,
which can be identified as the Schläfli lattice.

All of the 7 full rank precoders can be identified as the Schläfli lattice, while
the rank 2 precoder has a structure of the form Z2 × Z2.

N = 3 with QPSK inputs

The structure of all precoders are listed in Table 3.5. Out of the 14 optimal
Gr that were found for this case, eight have full rank 6, five have rank 4 and
one has rank 2. The precoders with full rank are identified as the D6 lattice.
Very interestingly, this lattice is not the densest lattice in 6 dimensions. The
densest lattice, E6, does in fact never show up! In [79], sub-optimal lattice
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based precoders are constructed that make use of the densest lattices. Our
observation shows that also other lattices should be considered. Although it
cannot be guaranteed that the iterative optimization converges to the optimum,
it nevertheless produces solutions that hint upon a structure which is believed
to be optimal. Thus, there is room for improvement of the results in [79], and
this will be investigated more closely in Chapter 4.

The 5 precoders with rank 4 can be identified as the Schläfli lattice in 4
dimensions. As an example, we study one of these 5 precoders in closer detail.
Its Gram matrix can be factored as LT

r Lr with

Lr =








1 0 − 1
2 0 0 1

2

0
√
2 0 0 0 1√

2

0 0
√
3
2 − 1√

3
−(1 + 1√

3
) 1

2
√
3

0 0 0 2√
6

− 2√
6

− 1√
6







.

Although this matrix contains irrational numbers, these numbers appear in a
way so that a factorization of the form (3.31) is still possible. If we construct
Lsq as columns 1, 3, 4, and 6 from Lr, we get Lr = LsqP with,

P =







1 −1 0 0 −1 0
0 0 1 0 −2 0
0 1 0 1 −1 0
0 2 0 0 0 1






.

Since P only has integer elements and contains the identity matrix, it follows
that Lr and Lsq span the same lattice. Then the lattice spanned by Lsq can
be identified by the method described in Section 3.5.2, which yields the Schläfli
lattice with

Z =







0 0 0 −1
1 0 0 1
1 −1 1 1
0 0 1 0






.

Finally, the rank 2 precoder has a structure of the form Z2 × Z2 × Z2.

N = 4 with QPSK inputs

The structure of all precoders are listed in Table 3.6. The 8 full rank precoders
are all identified as the Gosset lattice E8. Although one cannot make a certain
claim of the total size of the optimal precoder codebook, there is evidence to
believe that the optimal codebook only contains 8 full rank precoders.

2 of the 19 rank 6 precoders are the D6 lattice, 15 have the structure
D6 × Z2, and 2 have the structure D4 × Z2 × Z2. The 3 rank 4 precoders are
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Table 3.3: Optimal precoders for N = 2 with QPSK inputs. Real-valued
representation of the precoders.

N = 2, QPSK inputs

Rank β number of precoders Lattice classification

4 1 D4

2 1 Z2 × Z2

Total: 2

Table 3.4: Optimal precoders for N = 2 with 16-QAM inputs. Real-valued
representation of the precoders.

N = 2, 16-QAM inputs

Rank β number of precoders Lattice classification

4 7 D4

2 1 Z2 × Z2

Total: 8

identified as the D4 lattice. The proposed codebook for Gaussian channels does
not contain any rank 2 precoder. For completeness we have also analyzed the
optimal precoder to use for channels with s2,2 = s3,3 = s4,4 = 0, i.e, all 4 data
streams are multiplexed onto a single eigenmode. It turns out that the optimal
precoder has the structure Z2 × Z2 × Z2 × Z2.
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Table 3.5: Optimal precoders for N = 3 with QPSK inputs. Real-valued
representation of the precoders.

N = 3, QPSK inputs

Rank β number of precoders Lattice classification

6 5 D6

4 8 D4

2 1 Z2 × Z2 × Z2

Total: 14

Table 3.6: Optimal precoders for N = 4 with QPSK inputs. Real-valued
representation of the precoders. ∗ This precoder is not used in the proposed
codebook for complex Gaussian channels, but is added to this table for com-
pleteness.

N = 4, QPSK inputs

Rank β number of precoders Lattice classification

8 8 E8

6 2 D6

6 15 D6 × Z3

6 2 D4 × Z2 × Z2

4 3 D4

2 1∗ Z2 × Z2 × Z2 × Z2

Total: 30/31∗
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Chapter 4

Precoding From a Lattice

Point of View

The previous chapter presented numerical methods to construct precoders that
produce large minimum distances at the receiver. The first method was a sub-
optimal explicit construction of the precoders, based on imposing a Toeplitz
structure on the Gram matrix. Next, this constraint was dropped, and an itera-
tive optimization algorithm was used that produced precoders improving upon
the previous best ones reported in the literature, and believed to be optimal.
It was observed that the obtained precoders exhibit a structure in their Gram
matrix, which is connected with well-known lattice structures. More precisely,
these precoders give rise to received signaling points that are structured as well-
known lattices. Taken together with the fact that the algorithm converged to
precoders that improve upon previous results, it is believed that they indeed
might be optimal. This chapter will thus explore the connection between the
minimum distance precoders and lattice theory. Hence, the minimum distance
problem will be viewed from a lattice theoretic perspective, and this will enable
us to explain the observed structures.

4.1 Introduction

In order to study the minimum distance problem from a lattice point of view,
the alphabet A has to be infinite, i.e., a ∈ AB = Z

B [i], the set of B-dimensional
Gaussian integer vectors. Hence, the error vectors e are B dimensional Gaus-
sian integer vectors. From now on, A will not be explicitly written out, since
it is implicit that it is equal to Z[i]. Thus D2

min(SF ,A) will be denoted as

91
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D2
min(SF ). Since there are infinitely many error vectors e, the B × B Gram

matrix G must have rank B in order for the inequalities e∗Ge ≥ 1 to hold.
If not, then the minimum distance D2

min(SF ) = e∗Ge is arbitrarily close to
0, since e can be arbitrarily close to the eigenvectors that corresponds to zero
eigenvalues. Thus, G is a positive definite matrix, and N ≥ B must hold (the
reader is reminded that the precoder F in (3.5) has dimensions N × B, and
G = F ∗S2F ). This chapter only focuses on the case N = B, with the remark
that the analysis also applies to N > B.

Using notions from Section (3.5.1), we start by reformulating (3.6) as a
lattice problem. Let M = SF be the lattice generator matrix at the receiver,
which as described above, must have full rank. M can be factorized as M =
WBZ, where W is a unitary/orthogonal matrix, B is a N × N matrix and
Z is a unimodular matrix. The lattice structure of M is determined by the
matrix B, while Z is the basis through which the lattice is represented. The
matrix W is merely a rotation of the lattice, but plays an important role in
the optimization to follow. With this factorization of M , it follows that F can
be written as

F = S−1M = S−1WBZ. (4.1)

Hence, (3.6) can be formulated as

min
W ,B,Z

tr(Z∗B∗W ∗S−2WBZ)

subject to D2
min(WBZ) = 1.

(4.2)

For completeness, we shall separate between two cases: (i) Real-valued pre-
coding, where all quantities in (4.2) are real-valued, and (ii) Complex-valued
precoding, where all quantities, except S, are complex-valued.

From Theorem 7 it follows that the optimization over W is straightforward
once BZ is fixed: The optimal W equals the left unitary matrix of BZ. This
leaves us with the optimization of B and Z, and we shall start with B in
Section 4.2.1, while optimization over Z is treated in Section 4.2.2.

4.2 Optimal Two Dimensional Lattice Precoders

As a start, two dimensional MIMO systems are studied, i.e., N = 2. In [79]
and [89], it is proposed to design F based on dense lattice packings. A lattice-
based construction implicitly assumes that the signal constellation is a finite
but sufficiently “large” set of lattice points, and the idea is that if the re-
ceived constellation points SFa’s are arranged as a dense lattice packing, the
minimum distance is expected to be “good”. However, no exact results on
optimality have been presented in either of these papers.
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To gain some insight into the problem, let us examine some simple special
cases. First, we rewrite (4.2) in its equivalent form

max
F

D2
min(SF )

subject to tr(FF ∗) ≤ P0.
(4.3)

The formulation in (4.3) turns out to be easier to analyize numerically. In real-
valued precoding, some specific instances of the problem in (4.3) can be viewed
geometrically. Assume that tr(FF ∗) = 4 and the elements of the input a are
identically and independently distributed (i.i.d.) random variables. Normalize
S to have s2,2 = 1, which only scales the optimal solution to (4.3) with a
constant, so that changing S corresponds to varying the value of s1,1. Since
there are only four real-valued elements in F , and they are bounded by the
energy constraint, it is possible to determine the optimal F to (4.3) for some
carefully chosen value of s1,1, say, by empirical means. When S = I (i.e.,
s1,1 = 1), one optimal solution to (4.3) is F = I, while another one is

F =

(
1 0.5

0
√

3/4

)

,

which spans a hexagonal lattice. However, as soon as S deviates from I (even
with a very small change, say, s1,1 = 1.01), the optimal F is unique (up to sign
changes in the columns) and it gives rise to an SF that is a generator matrix
for the hexagonal lattice. Varying s1,1 further, the optimal F changes in a
continuous way, while the received lattice SF remains the same (up to scaling).
This behavior continues until s1,1 reaches a certain value, for which the optimal
F suddenly changes in a discontinuous way, resulting in a discontinuous change
in SF . However, surprisingly, SF still spans a hexagonal lattice, in spite of
its subtle changes!

Figure 4.1 depicts such a behavior by plotting as vectors the columns of the
optimal F and the corresponding SF for three different S with s1,1 = 1.5, 2.7
and 2.8, respectively. The received constellation points SFa are shown as
discrete points. The optimal F changes continuously as s1,1 increases from 1.5
to 2.7, and the columns of SF are simply being scaled and always span the
same hexagonal lattice (up to scaling). When s1,1 further increases from 2.7
to 2.8, there is a discontinuous change in the elements of the optimal F . The
columns of SF also change discontinuously, but they still span the hexagonal
lattice (up to scaling and rotation). This intriguing behavior of the optimal
precoder poses a challenging puzzle, and the aim of this section is to resolve
this puzzle.

Although the results are derived for infinite constellations, by using lattice
theory, the results are applicable to “large” QAM constellations. In the nu-
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Figure 4.1: Visualization of the solution to the precoding optimization problem
in (4.3) when E is Z, tr(FF ′) = 4 and H is a diagonal channel matrix S =
diag([s1,1 1]). (a) Columns of the optimal real-valued precoding matrix F

are plotted. Three different S are considered: s1,1 = 1.5 (solid line arrow);
s1,1 = 2.7 (dashed line arrow); s1,1 = 2.8 (dotted line arrow). Columns of the
same matrix are plotted as arrows with the same line style. (b) Columns of
the matrices SF and their corresponding received constellation points SFa’s
for h1,1 = 1.5 (solid line arrows, filled circles) and for s1,1 = 2.7 (dashed
line arrows, crosses) are plotted. (c) Columns of the matrices SF and their
corresponding received constellation points SFa for s1,1 = 2.8 (dotted line
arrows, filled triangles) are plotted.
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merical result section, we shall investigate how “large” a QAM constellation is
sufficient for the presented results to be fruitfully applied. With the solution
at hand, we are able to answer questions, such as the following.

• Is there a general underlying structure of the precoding optimization
problem (4.2)?

• Under what conditions, does the solution to (4.2) vary with the channel
matrix S in a continuous (respectively, discrete) manner?

• Is it possible to offline construct a codebook of optimal precoders so that
there is no need to perform any online optimization?

The answers to these questions are that there is indeed a profound structure in
the solution of (4.2). Remarkably, there is a single precoder structure which is
optimal, and it organizes the received constellation points as a hexagonal lattice
for real-valued F ’s, and as a Schläfli lattice for complex-valued F ’s. However,
the basis through which the lattice SF is observed changes (up to scaling) in a
discrete fashion when S changes. This implies that (4.2) is actually a discrete
optimization problem and not a continuous one.

4.2.1 Optimal precoding lattices

In this section, the optimal latticeB for the real-valued and the complex-valued
cases is derived.

For the real-valued case, the main result is:

Theorem 8. For any non-singular channel matrix S, the optimal lattice B in
(4.2) is the hexagonal lattice, i.e.,

B =

[
1 1

2

0
√
3
2

]

.

Proof. First, the constraint in (4.2) will be made more managable. It follows
from (3.25) that D2

min(WBZ) = D2
min(B). Let b1, b2 ∈ R

2 be the columns
of B and assume that ‖b1‖ ≤ ‖b2‖. In 1801, C.F. Gauss noted [80] that if
b1 and b2 fulfill, |b2 · b1| ≤ ‖b1‖2/2, where ”·” is the scalar product between
vectors, then D2

min(B) = ‖b1‖2. Given b1, the set of all b2 satisfying the
inequality is the minimum distance region of b1. Figure 4.2 depicts this region
geometrically. b1 and b2 are actually the shortest basis for the lattice, since
‖b1‖ is the length of the shortest vector in the lattice, and it can be shown that
‖b2‖ is the length of the next shortest vector in the lattice. Hence, by putting
‖b1‖ = 1 and letting b2 be any vector in the minimum distance region of b1,
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b1

b2

−1 1

Figure 4.2: The minimum distance region of b1 is shaded. All b2 inside
the shaded region generate a lattice, spanned by b1 and b2, with a minimum
distance equal to the length of b1.

the matrix B will be a generator matrix for any lattice in the plane with unit
minimum distance.

Let r = ‖b2‖. The constraint D2
min(WBZ) = 1 can be written as r ≥ 1

and | cos(φ)| ≤ 1/2r where φ is the angle between b1 and b2. Hence, WB can
be written as

WB =

(
sin(α) r sin(α± φ)
cos(α) r cos(α± φ)

)

. (4.4)

The optimization (4.2) can now be formulated over α, φ and r:

min
α,φ,r

tr(Z∗B∗W ∗S−2WBZ) subject to r ≥ 1, | cos(φ)| ≤ 1/2r. (4.5)

It follows that the intervals for α and φ are 0 ≤ α ≤ 2π, |φ| ≤ cos−1(1/2r).
Let s1,1, s2,2 be the diagonal elements of S and assume s1,1 ≥ s2,2. For

notational convenience, we let zjj be the elements in Z. Define s
△
= s2,2/s1,1

and

a =
z211 + z212
‖Z‖2 b =

z11z21 + z12z22
‖Z‖2 c =

1 + s2

2
. (4.6)

In order to obtain easier expressions, we scale the objective function (4.5)
with 1/s2,2‖Z‖2 which has no impact on the solution, and by doing so we get
the following objective function

f(α, φ, r)
△
= tr(Z∗B∗W ∗S−2WBZ)/s2,2‖Z‖2
= c(a+ r2(1− a) + 2br cos(φ))

+(1− c)(a cos(2α) + (1− a)r2 cos(2α+ 2φ) + 2br cos(2α+ φ)).

(4.7)
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Since 0 ≤ s ≤ 1, it follows that 1/2 ≤ c ≤ 1.
First, we minimize f(α, φ, r) over α by making use of the following Lemma

Lemma 1. Let g(x) =
∑n

j=1 aj cos(x+θj) for some real-valued constants {aj}
and {θj}. It holds that

min
x
g(x) = −

√
√
√
√

n∑

j=1,k=1

ajak cos(θj − θk). (4.8)

Proof: Rewrite g(x) as g(x) = R{∑n
j=1 aje

i(x+θj)} = R{eix(∑n
j=1 aje

iθj )} =

R{eixz}, where z ,
∑

j aje
iθj . The minimum occurs when z is rotated to the

negative part of the real axis, i.e., x = π − β, and the minimum value is then
equal to −|z|. This gives expression (4.8).

Applying Lemma 1 to (4.7) in order to minimize over α, we get

h(φ, r)
△
=min

α
f(α, φ, r) = c(a+ r2(1−a) + 2rb cos(φ))

+(c−1)[a2+r4(1−a)2+4r2b2+2r2a(1−a) cos(2φ)
+4rb(a+r2(1−a)) cos(φ)]1/2.

Using the identity cos(2φ) = 2 cos2(φ)− 1 and defining t
△
= cos(φ), we get

q(t, r)
△
= h(cos−1(t), r) = c(a+r2(1−a)+2rbt)+(c−1)[a2+r4(1−a)2+4r2b2

−2r2a(1−a)+4r2a(1−a)t2+4rb(a+r2(1−a))t]1/2. (4.9)

From the definition of t, it follows that −1/2r ≤ t ≤ 1/2r. It can be verified
that q(t, r) is a concave function in t. This implies that the minimum of h(t, r)
over t is attained at one of the two end points t = ±1/2r. For these values,
and with the variable substitution ρ = r2, we get

l±(ρ)
△
= q(±1/2r, r)

= c(a+ρ(1−a)±b)+(c−1)[a2+ρ2(1−a)2+4b2ρ

−2ρa(1−a)+a(1−a)±2b(a+ρ(1−a))]1/2, (4.10)

where ρ ≥ 1. l+(ρ) has ”+” instead of ± and l−(ρ) has ”−”. The functions
l±(ρ) are both concave in ρ. Now, since l±(ρ) is the objective function of (4.5),
it follows that it must always be positive. Therefore, the minimizer must be
ρ = 1, which gives that r = 1 in (4.9). This implies that the minimum over
t in (4.9) occurs at t = ±1/2, which corresponds to φ ∈ {±π/3,±2π/3} in
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(4.7). This shows that the minimum of f(α, φ, r) in (4.7) occurs at r = 1
and φ ∈ {±π/3,±2π/3}. Inserting these values in the generator matrix B, one
obtains the generator matrix for the hexagonal lattice as stated in the Theorem.
This completes the proof.

While the real-valued case is interesting for theoretical purposes, the
complex-valued case is more important for practical MIMO or OFDM appli-
cations. Nevertheless, the real-valued result has immediate applications to
precoding for mitigation of I/Q imbalance in scalar complex-valued channels.

For the complex-valued case, our main result is:

Theorem 9. For any non-singular channel matrix S, the optimal lattice B in
(4.2) is the complex representation of the Schläfli lattice, i.e.,

B =

[

1 1
±1±i

2

0 ± 1√
2

]

.

Proof. It turns out that there is a similar minimum distance preserving condi-
tion for complex-valued B as for real-valued ones. In [81], the authors prove
that if ‖b1‖ ≤ ‖b2‖ and

|R{b∗1b2}| ≤
1

2
and |I{b∗1b2}| ≤

1

2
, (4.11)

then D2
min(B) = ‖b1‖2. The matrix W is now

W =

(
ei(φ1−γ1) 0

0 ei(φ3−γ1)

)(
sin(α)e−iφ1 cos(α)e−iφ2

cos(α)e−iφ3 − sin(α)e−iφ4

)

(4.12)

and B is

B =

(
reiγ1 sin(ω)eiγ2

0 cos(ω)eiγ3

)

. (4.13)

Hence, WB becomes

WB =

(
r sin(α) sin(α) sin(ω)eiθ1 + cos(α) cos(ω)eiθ2

r cos(α) cos(α) sin(ω)eiθ1 − sin(α) cos(ω)eiθ2

)

(4.14)

where φ1 − φ2 ≡ φ3 − φ4 (mod 2π), θ1 = γ2 − γ1 and θ2 = γ3 − γ1 + φ1 − φ2.
The conditions (4.11) become

|R{sin(ω)e−iθ1}| ≤ 1

2r
and |I{sin(ω)e−iθ1}| ≤ 1

2r
. (4.15)
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where r ≥ 1. Define f(α, ω, θ1, θ2, r) , tr(Z∗B∗W ∗S−2WBZ)/s2,2.We have

f(α, ω, θ1, θ2, r) = c[r2(|z11|2+|z12|2)
+|z21|2+|z22|2+2R{(rz11z∗21+rz12z∗22) sin(ω)e−iθ1}]+(1−c)[r2(|z11|2+|z12|2)
−(|z21|2+|z22|2) cos(2ω)+2R{(rz11z∗21+rz12z∗22) sin(ω)e−iθ1}] cos(2α)
−(1−c)[(|z21|2+|z22|2) sin(2ω) cos(θ1−θ2)
+2R((rz11z

∗
21+rz12z

∗
22) cos(ω)e

−iθ2)] sin(2α), (4.16)

where c = (1 + (s2,2/s1,1)
2)/2. First, we minimize over α. It is seen that f

depends on α as

f(α, ω, θ1, θ2, r)=a1 + a2 cos(2α) + a3 sin(2α)

=a1 +
√

a22 + a23

(

a2
√

a22 + a23
cos(2α) +

a3
√

a32 + a23
sin(2α)

)

=a1 +
√

a22 + a23(sin(ψ) cos(2α) + cos(ψ) sin(2α))

=a1 +
√

a22 + a23 sin(2α+ ψ), (4.17)

where the constants a1, a2 and a3 are easily read of from (4.16) and ψ is
such that sin(ψ) = a2/

√

a22 + a23. The minimum of (4.17) over α occurs at

α = −π/4 − ψ/2, which gives f(−π/4 − ψ/2, ω, θ1, θ2, r) = a1 −
√

a22 + a23.
Since only a3 depends on θ2, minimizing f over θ2 implies maximizing a23 over
θ2. We have

a3 = −(1− c)[(|z21|2+|z22|2) sin(2ω) cos(θ1−θ2)
+2R((rz11z

∗
21+rz12z

∗
22) cos(ω)e

−iθ2)]

= −(1−c)R{e−iθ2((|z21|2+|z22|2) sin(2ω)eiθ1+2 cos(ω)(rz11z
∗
21+rz12z

∗
22))}.

It follows that the maximizing θ2 is such that eiθ2 rotates the expression it
multiplies to the real axis. We get

min
θ2

f(−π/4− ψ/2, θ1, θ2, ω, r) = l(θ1, ω, r) =

c[r2(|z11|2+|z12|2)+|z21|2+|z22|2 + 2R{sin(ω)e−iθ1(rz11z
∗
21+rz12z

∗
22)}]

+(c− 1)[
(
r2(|z11|2+|z12|2)+|z21|2+|z22|2

+ 2R{sin(ω)e−iθ1(rz11z
∗
21+rz12z

∗
22)}

)2−4 cos2(ω)| det(Z)|2]1/2. (4.18)

As in the real-valued case, it can easily be shown that the expression in (4.18)
is concave in sin(ω). Thus, the minimum is attained at the endpoints of



100 MIMO Precoding

sin(ω). The constraints in (4.15) can be written as | sin(ω) cos(θ1)| ≤ 1/2r
and | sin(ω) sin(θ1)| ≤ 1/2r. Assume | sin(θ1)| ≤ | cos(θ1)|. It follows that the
interval for sin(ω) is −1/(2r cos(θ1)) ≤ sin(ω) ≤ 1/(2r cos(θ1)), while the in-
terval for θ1 is −π/4 ≤ θ1 ≤ π/4. Inserting either one of these endpoints for
sin(ω) in (4.18) and using the trigonometric identity 1/ cos2(x) = 1 + tan2(x),
we get that l takes on the following form

l(θ1, r) = c(b1+b2 tan(θ1))

+(c−1)

[

(b1+b2 tan(θ1))
2+

| det(Z)|2
r2

tan2(θ1)

+ | det(Z)|2(4− 1/r2)
]
,

(4.19)

where b1 and b2 are constants with respect to θ1. Again, it is clear that (4.19) is
concave in tan(θ1), and thus the minimum is attained at one of the endpoints of
θ1, which are −π/4 and π/4. If we instead assumed that | sin(θ1)| ≥ | cos(θ1)|,
the only difference is that tan(θ1) becomes cot(θ1) and π/4 ≤ θ1 ≤ 3π/4. This
gives rise to the same behavior of l(θ1, r) and thus same results are obtained.

To recap, we showed that the minimum for l(θ1, ω, r) in (4.18) over θ1, ω
occurs when θ1 = ±π/4 and at the endpoints for sin(ω), which are then
sin(ω) = ±1/(2r cos(θ1)) = ±1/

√
2r. We now continue by inserting this expres-

sion for sin(ω)e−iθ1 in (4.18) and obtain a one-dimensional function in ρ = r2

of the form

l1(ρ) = k1 + k2ρ+ (c− 1)
√

k3ρ2 + k4ρ+ k5 + | det(Z)|2(2/ρ− 4), (4.20)

where the kj are constants with regard to ρ and with k3 positive. If we instead

study the function l2(ρ) = k1 + k2ρ + (c − 1)
√

k3ρ2 + k4ρ+ k5 − 2| det(Z)|2,
it follows from the same concavity arguments as before that l2(ρ) is a con-
cave function and thus the minimum is attained at the endpoints, which are
ρ = 1 and ρ = ∞. From the concavity of l2(ρ) it follows that if the mini-
mum is attained at ∞, then the minimum value is −∞, which is impossible
since the trace function is always positive; thus the minimum of l2(ρ) must be
attained at ρ = 1. Now comparing l2(ρ) with l(ρ), the only difference is the
term | det(Z)|2(2/ρ−4) in the square root, with maximum value of 2| det(Z)|2
attained at ρ = 1; hence l2(1) = l1(1). Since c − 1 is always non-positive, it
follows that l2(ρ) ≤ l1(ρ) for ρ ≥ 1, which gives that the minimum of l1(ρ)
occurs when ρ = r = 1 (because the minimum of l2(ρ) occurs for ρ = 1).

We have now showed that the minimum of l(θ1, ω, r) in (4.18) occurs for
θ1 = ±π/4, sin(ω) = ±1/

√
2r, r = 1. Inserting these values into the lattice
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generator B in (4.13), we arrive to the following optimal lattice generator

B =

(
1 ±1±i

2
0 ± 1√

2

)

. (4.21)

Extending B to its real-valued representation by means of (3.22), it holds that
for each realization of ± as + or −, that Br is a generator matrix for the
Schläfli lattice D4.

Hence, by “complex representation”, it is meant that if the transformation
(3.22) is performed on B in Theorem 9, the Schläfli lattice in four real-valued
dimensions results. Its real-valued generator matrix is

D4 =







1 1 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1







(4.22)

To summarize, the two dimensional minimum distance optimal precoder
for “large” input constellations is always an instance of the hexagonal or the
Schläfli lattice for real-valued and complex-valued precoding, respectively.

4.2.2 Optimal Z matrix

Since B is now known, it remains to find the optimal basis matrix Z in order to
solve (4.2). This section describes the core idea of the algorithms that find the
optimal real-valued and complex-valued Z, respectively. A complete Matlab
code for the algorithms can be found at www.eit.lth.se/goto/Zalgorithm.

By inserting the optimal real-valued B and W into (4.2), the optimization
(4.2) is equivalent to1

Z = argmin
Z

µr
±(Z),

where

µr
±(Z)

△
= s2,2(z

2
11+z

2
12+z

2
21+z

2
22)l±(1)

= c[z211+z
2
12+z

2
21+z

2
22±(z11z21+z12z22)]

+(c−1)[(z211+z
2
12)

2+(z221+z
2
22)

2+4(z11z21+z12z22)
2

−(z211+z212)(z221+z222)±2(z11z21+z12z22)(z
2
11+z

2
12+z

2
21+z

2
22)]

1/2.

(4.23)

1The optimization over W is treated in the proofs of Theorem 8 and 9.
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In the complex-valued case, we have the following optimization

Z = argmin
Z

µc
±(Z),

where

µc
±(Z)

△
= c(‖Z‖2+R{(±1± i)(z11z

∗
21+z12z

∗
22)})

+ (c−1)
√

(‖Z‖2+R{(±1± i)(z11z∗21+z12z
∗
22)})2−2.

(4.24)

The ± signs in both (4.23) and (4.24) can be absorbed into the elements of
Z, without changing the unimodularity of Z. Define βr , z211+z

2
12+z

2
21+z

2
22−

(z11z21+z12z22) and βc , |z11|2+|z12|2+|z21|2+|z22|2+R{(1+i)(z11z∗21+z12z∗22)},
where we do not expliticly denote the dependency of βr and βc on Z. Since
| det(Z)| = 1, (4.23) and (4.24) become

µr(βr) = cβr + (c− 1)
√

β2
r − 3 (4.25)

and
µc(βc) = cβc + (c− 1)

√

β2
c − 2, (4.26)

respectively. The difference between (4.25) and (4.23) (similarly between (4.26)
and (4.25)) is that the former only depends on one variable, that implicitly
depends on the elements {zij}, while the latter is directly expressed in the
elements {zij}. Deriving the optimal βr and βc does not produce the optimal
elements {zij}, however, it can provide easier optimality conditions for {zij}.
If we for the moment drop the constraint that βr has to be integer-valued, the
function µr(Z) in (4.25) will be minimized over βr. It can be verified that
µr(Z) is a convex function. Differentiating µ(βr) with respect to β and setting

the derivative to 0 gives that βr,opt =
√

3c2

2c−1 is the optimal point. Since µr(Z)

is convex, the minimum of µ(βr) over unimodular matrices can only occur at
two specific matrices. Either it is the Z that produces the largest βr smaller
than βr,opt, or it is the Z that produces the smallest βr larger than βr,opt.
A similar analysis can be applied to the complex-valued (4.26), and it follows
that the largest βc smaller, or smallest βc larger, than βc,opt =

√
2c/

√
2c− 1

is optimal. Hence, in the real-valued case, an algorithm can be developed that
traverses unimodular Z’s and stops when two matrices Z1 and Z2 are found,
such that Z1 gives the βr that equals the largest integer smaller than βr,opt,
and Z2 gives the βr that equals the smallest integer larger than βr,opt. An
algorithm for the complex-valued case works in the same way. Due to lack of
space and the fact that the algorithms are ad-hoc, we omit the implementation
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Figure 4.3: Change in Z with respect to the ratio s1,1/s2,2. The solution to
(4.2) is constant for all S with a ratio between any two consecutive markers.
The scale on the x-axis is logarithmic.

details and refer to www.eit.lth.se/goto/Zalgorithm where the Matlab code for
both algorithms can be found.

Since we now know that solving (4.2) is a discrete optimization problem, it
is of interest to see how often the solution changes with varying S. Figure 4.3
shows the ratio s1,1/s2,2 on the x-axis, and the markers show the ratios where
Z changes. As seen, the same solution can be used for a wide interval.

4.2.3 Applications

In this section we consider a number of practical applications of the opti-
mal minimum distance lattice based precoder and make comparisons to other
schemes. As discussed in Section 2.5.2, minimum distance based precoders are
asymptotically optimal in the high SNR regime, but minimum distance plays
little role at low SNR, so significant performance gains cannot be expected
there.

Consider first the 2× 2 channel studied in [83],

S =

[ √
3 0
0 1

]

. (4.27)

In [83], this channel was studied at asymptotically high SNR for binary base-
band alphabets with real-valued precoding. The objective was to find the real-
valued precoder F that maximizes the mutual information I(SFx+n;x). For
high SNR, it is known that the optimal mutual information precoder converges
to the optimal minimum distance precoder, and the numerical optimization
framework in [83] thus produced the optimal minumum distance precoder. The
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precoder is of the following simple form

F =

[ √
2

√
2

−
√
2

√
2

]

. (4.28)

It can be verified by standard techniques that the combined channel-precoder
matrix SF is an instance of the hexagonal lattice - which is precisely the result
if an infinite lattice constellation was used. For such a lattice constellation, the
strength of the results in Theorem 8 and 9 is that no numerical optimization of
the precoder is necessary since it is known a-priori that the hexagonal lattice
must be the solution, and it only remains to find the optimal basis matrix Z

according to the algorithm mentioned in Section 4.2.2. By doing so, we find
that the optimal Z for asymptotically large constellations coincides with the
basis matrix that is built into (4.28). Altogether, for the particular channel
(4.27) studied in [83], a “large” constellation means binary and it is known
beforehand what structure the solution must have.

In Figure 4.4 we continue to study the channel (4.27), but now by evaluating
its mutual information that is achieved by 4QAM inputs when the complex-
valued minimum distance optimal precoder for large constellations is used. As
comparisons, plots of the achieved mutual information for 1) no precoding at
all, i.e., F =I, 2) Mercury/Waterfilling from [82], and 3) capacity achieved by
Gaussian inputs and waterfilling, are presented. The performance of the opti-
mal mutual information precoder coincides with that of Mercury/Waterfilling in
the low SNR regime, while it coincides with that of the minimum distance pre-
coder in the high SNR regime. As can be seen, there is a 2 dB gain offered by the
minumum distance precoder over uncoded systems and Mercury/Waterfilling
at high SNR. At low SNR, the Mercury/Waterfilling policy is optimal and
outperforms the minimum distance precoder.

For the channel (4.27), we observed that the large constellation assumption
made in this chapter was not very critical as it produced the same result as a
binary input constellation does. This is, however, not true in general, and it is
necessary to investigate the impact of the cardinality of the input constellation.
Consider diagonal channel matrices S where each diagonal element is a zero-
mean, unit-variance, circulary symmetric complex Gaussian random variable
(CN (0, 1)). The average mutual information, against SNR, is computed for
4QAM and 16QAM input constellations for 1) the minimum distance optimal
precoder for large constellations, 2) minimum distance optimal precoders for
the particular constellations used, and 3) no precoder. The average is evalu-
ated over 106 channel realizations by straightforward Monte Carlo simulation.
For 4QAM and 16QAM, the minimum distance optimal precoders have been
reported in [67, 72], while the optimal precoder for 64QAM has so far not been
reported in the literature which is the reason why we do not go beyond 16QAM.
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Figure 4.4: Mutual information for the channel (4.27) studied in [83] with
4QAM inputs under different settings. The solid heavy line shows the capacity
with waterfilling, the curve marked with asterixes shows the ensuing mutual
information from the lattice precoder in this section and the curve marked with
circles show the Mercury/Waterfilling mutual information. The bottom line is
the no precoding case.

The results are shown in Figure 4.5. The uppermost heavy solid line cor-
responds to the average capacity of the channel achieved by Gaussian inputs
with waterfilling. The lower set of curves corresponds to 4QAM while the upper
corresponds to 16QAM. Within each set of curves, the lower curve (without
markers) shows the no precoder case, the middle curve (marked with aster-
ixes) is the performance of the precoder constructed from a large constellation
assumptions, and the upper curve (marked with circles) is the performance of
the precoder explicitly constructed for the input constellation used. For 4QAM
inputs, a small loss of the large constellation construction can be seen, while for
16QAM the ensuing mutual information from a large constellation assumption
is virtually indistinguishable from that of a construction expliticitly made for
16QAM. Hence, it can be concluded from this example that a 16QAM input
constellation can be replaced by an infinite lattice constellation without appre-
ciably affecting the results. This greatly simplifies the precoder optimization
problem since lattice theoretic tools can be applied.
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Figure 4.5: Average mutual information for random diagonal channels with
4QAM (bottom set) and 16QAM (upper set). The heavy solid line is the ca-
pacity with waterfilling. Within each set, the line marked with circles shows
the performance of a precoder constructed expliticly for the input constella-
tion used, and the curve marked with asterixes shows the performance of the
precoder constructed from an infinite lattice constellation assumption. These
two curves are virtually identical for 16QAM. The bottom line within each set
corresponds to the no precoding case.

In Figure 4.6 we turn our attention towards the error probability of 2 × 2
MIMO systems with 1) the minimum distance optimal precoder for large con-
stellations, 2) minimum distance optimal precoders for the particular constel-
lations used, and 3) no precoding. 4QAM, 16QAM, and 64QAM input con-
stellations, together with a maximum likelihood detector, are considered. The
lines marked with circles correspond to the minimum distance optimal pre-
coder for large constellations, the lines marked with squares correpond to the
optimal precoder designed for the particular input constellations used, and the
unmarked lines correspond to the no-precoder case. As can be seen, there
is a large gain from explicitly taking the input constellation into account for
4QAM. However, for 16QAM inputs, this gain reduces significantly, so that
the precoder designed for large constellations performs close to optimal. For
64QAM, the gap to the optimal precoder designed expliticly for 64QAM can
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Figure 4.6: Maximum likelihood receiver tests of various precoders with
4QAM, 16 QAM, and 64QAM. Within each set, the rightmost curve is the
no precoding case, the middle curve is the precoder constructed from an infi-
nite lattice constellation assumption, and the leftmost curve is the performance
of a precoder constructed expliticly for the input constellation used (not present
for 64QAM).

not be determined. However, given the large reduction of the gap between the
4QAM and 16QAM cases, we expect that the gap for 64QAM is minor, so that
the precoder designed for large constellations is virtually optimal.

As a final example, an OFDM system with N sub-carriers {Hk}Nk=1 is in-
vestigated. For simplicity, all sub-carriers are assumed to be independent zero-
mean, unit-variance, circulary symmetric complex Gaussian random variables
(CN (0, 1)). In practice, adjacent carriers are strongly correlated but for the
transceiver system to be considered, N is large and such correlations are im-
material. The approach taken in [65] is pursued, but now with the 2 × 2
minimum distance optimal precoder constructed from the large constellation
assumption as a building block to construct much larger precoder structures.
The N sub-carriers are first grouped into N/2 pairs. The particular pair-
ing used in [65] is to combine the strongest sub-carrier with the weakest sub-
carrier, the second strongest with the second weakest etc. Let {H̃k}Nk=1 de-
note the sub-carriers {Hk}Nk=1, but sorted according to their strengths so that
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|H̃1| ≥ |H̃1| ≥ . . . ≥ |H̃N |. We have N/2 independent transmissions

yk =

[
H̃k 0

0 H̃N−k+1

]

F k + nk = S̃kF k + nk, 1 ≤ k ≤ N/2

and we need to construct N/2 precoders {F k}N/2
k=1. A total energy of N P/2 is

assumed, and we allocate a fraction γk to F k under the constraint that
∑
γk =

N P/2. Our power allocation policy is that all channel-precoder pairs S̃kF k

should have equal minimum distances. We can find the precoders according to
this policy as follows:

• Design {F k}N/2
k=1 according to the constraint Tr(F ∗

kF k) = 1.

• From lattice theory, it is guaranteed that the minumum distance for each
channel-precoder pair equals the length of the shortest vector of the lattice
spanned by S̃kF k. Let D

2
k denote the minimum distance.

• The power allocation that equalizes all minumum distance is proportional
to

γk ∝ 1

D2
k

and the overall power constraint
∑
γk = N P/2 finally yields the set of

precoders.

The ensuing average mutual information of this strategy is compared with
the no-precoder case, Mercury/Waterfilling, and the capacity of the channel.
The input constellation is 16QAM in all cases (except for the capacity case
where it is complex Gaussian). The results are shown in Figure 4.7. Note that
the average mutual information per channel-precoder pair is plotted. The top
heavy solid curve is the average capacity of the channel, the curve marked by
circles is the system based on the minimum distance optimal precoder described
above, the curve marked with asterixes is the Mercury/Waterfilling system, and
the bottom curve shows the performance of the no-precoder case. As in the
previous examples, there are no gains at low-moderate SNR by the minumum
distance optimal precoder, while the gains are significant at high SNR. Note
that the Mercury/Waterfilling is close to optimal at low SNR while it suffers
from large penalties at high SNR.

4.3 Optimal Lattice Precoders for Arbitrary

Dimensions

This section will extend the real-valued results in Section 4.2 to arbitrary di-
mensions. First, (3.5) is transformed into an equivalent real-valued model, by
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Figure 4.7: Average mutual information per sub-carrier pair with 16QAM
inputs under different settings. The solid heavy line shows the capacity with
waterfilling, the curve marked with circles shows the ensuing mutual infor-
mation from the lattice precoder in this section and the curve marked with
asterixes shows the mercury/waterfilling mutual information. The bottom line
is the no precoding case.

means of the transformations (3.22) and (3.23). Thus, there is no loss of gener-
ality by assuming real-valued systems, since they can represent complex-valued
systems as well. However, it will soon be evident that the real-valued represen-
tation has an inherent gain. Applying the transformations in (3.22) and (3.23)
to the matrices and vectors in (3.5) yields the real-valued model

yr = Sr F rar
︸ ︷︷ ︸

xr

+nr. (4.29)

Since a can be any Gaussian integer vector of dimension N , the real-valued
vector ar can be any integer vector of dimension 2N . Further, it holds that

tr(F
T

r F r) = 2tr(F ∗F ) ≤ 2P0. The precoding is now performed over the real-
valued domain as xr = F rar, where the actual complex-valued symbols x to be
transmitted over S in (3.5) are obtained from xr through the inverse of (3.23).
Note that the transformation in (3.22) imposes a skew-symmetric structure
on F r, which can be relaxed when the precoding is performed in the real-
valued domain, i.e., F r can be any 2N × 2N real-valued matrix satisfying the
trace constraint. Thus, by precoding over the real-valued domain, performance
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gains can be expected because there are more degrees of freedom in designing
F r than in designing F . Henceforth, we omit the subscript r and assume that
all variables in N dimensions are real-valued, unless stated otherwise.

For completeness, the problem in (3.6) is restated again, but now in real-
valued terms:

min
F

tr(FF T )

subject to

eTGe ≥ 1 ∀e ∈ Z
N\{0N},

(4.30)

where Z
N\{0N} is the set of all N -dimensional integer vectors except the all-

zero vector. Yet another equivalent way of expressing (4.30) is to maximize

the normalized minimum distance d2min(SF )
△
= D2

min(SF )/tr(FF
T

) over F 6=
0N×N . For our purposes, the problem formulation in (4.30) will turn out to be
the most convenient, and will be focus of study. In Section 4.3.1, we formulate
(4.30) as a pure lattice problem, and introduce the tools from lattice theory
needed to analyze it.

4.3.1 Lattice-theoretic approach

This section is split into four parts. Section 4.3.1 describes the Ryshkov poly-
tope and Section 4.3.1 the Minkowski polytope, both of fundamental impor-
tance for the understanding of the subsequent analysis. Section 4.3.2 formulates
(4.30) as a lattice problem, while Section 4.3.3 gives an overview of famous lat-
tice problems and techniques, applicable to the minimum distance problem, to
solve them.

Some terms from convex geometry will be used in what follows. The set
{λ1v1 + . . . λkvK : λj ≥ 0, 1 ≤ j ≤ K, }, for K given N -dimensional points
v1, . . . ,vK , is called an N -dimensional polyhedral cone. A polytope in N dimen-
sions is the intersection of a finite number of N -dimensional halfspaces2, i.e.,
the set of N -dimensional points {x : aj,1x1 + . . . aj,NxN ≤ bj : 1 ≤ j ≤M}
for given numbers M , aj,i, bj , 1 ≤ i ≤ N , 1 ≤ j ≤ M . A face of a polytope
is the intersection between the polytope and a supporting hyperplane3 of the
polytope. If the face is one-dimensional, we call it an edge, or in the case when
the polytope is a polyhedral cone, an extreme ray.

2By a half-space we mean either of the two parts into which a hyperplane divides a
Euclidean space.

3A supporting hyperplane of a set S is a hyperplane that intersects S, such that S is
completely contained in one of the two halfspaces determined by the hyperplane.
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Ryshkov polytope

Let ΛL ⊂ R
N be a lattice with a generator matrix L and with D2

min(L) ≥ λ.
This can be written as an infinite set of inequalities eTGLe ≥ λ, where

e ∈ Z
N/{0N} and GL = L

T

L. Since GL is a symmetric matrix, its di-
mension is N(N + 1)/2, and the infinite set of inequalities are linear over the
N(N + 1)/2 distinct elements of G. By considering the distinct elements in
G as a vector (g1,1, . . . , g1,N , g2,2, . . . , g2,N , . . . , gN,N ) in R

N(N+1)/2, the infi-
nite set of inequalities represent an intersection of infinitely many halfspaces in
R

N(N+1)/2.

Definition 7. The Ryshkov polytope Rλ is the set Rλ
△
= {G : e

T

Ge ≥ λ, e ∈
Z
N/{0N}}.

It is easily realized that any G ∈ Rλ is positive definite, thus Rλ ⊂ SN×N
≻0 .

In the vector space R
N(N+1)/2, the set of positive definite matrices SN×N

≻0

corresponds to a cone, where Rλ is contained in the interior of the cone. Rλ

is a convex and unbounded set, since if G1,G2 ∈ Rλ, then k1G1 + k2G2 ∈ Rλ

for k1, k2 ≥ 0 and k1 + k2 ≥ 1. Because any positive definite Gram matrix G,
hereinafter called a ”positive quadratic form” (PQF), corresponds to a lattice,
the Ryshkov polytope contains all Gram matrices of lattices with minimum
distance of at least λ.

SinceRλ is the intersection of infinitely many halfspaces, it could be the case
that Rλ has a boundary that is ”curved” and does not represent a polytope.
More formally, there could exist a point on the boundary of Rλ for which there
is only one support plane, which intersects Rλ only at this point. We say that
an intersection of infinitely many halfspaces P = ∩∞

i=1Hi, is a locally finite
polytope, if the intersection of P and an arbitrary polytope is again a polytope.
Thus, a locally finite polytope P contains no curved boundary. The following
theorem [84] justifies the name ”Ryshkov polytope”, and plays a fundamental
role for the classification of optimal precoders that is developed in this work.

Theorem 10. For λ > 0, the set Rλ is a locally finite polytope.

A vertex in Rλ corresponds to a form G that is the unique solution to a set
of at least N(N +1)/2 linearly independent equations e

T

j Gej = λ, j = 1 . . . K,

where K ≥ N(N + 1)/2. Note that if G is a vertex in Rλ, then so is Z
T

GZ

where Z is unimodular, and thus there is an infinite, but countable, number of
vertices in the Ryshkov polytope. This observation also implies that the vertices
can be partitioned into equivalence classes, where the equivalence relation is
an isometry between two vertices. A conceptual visualization of Rλ is given in
Figure 4.8.
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Figure 4.8: A conceptual visualization of the Ryshkov polytope Rλ. The
dots correspond to vertices in Rλ, i.e., the perfect forms. The boundary of the
positive semidefinite cone never intersects withRλ, since this boundary consists
of forms with arbitrarily small minimum distance. Moreover, this boundary is
not made up of straight lines as the simplified figure shows in two dimensions,
but is a complicated surface in higher dimensions.

Lattices corresponding to vertices of Rλ are named perfect lattices in the
literature [85], and the corresponding Gram matrices are perfect forms. The
next theorem gives another interesting property of the Ryshkov polytope [85],
which is important for this work.

Theorem 11. There are only finitely many non-isometric perfect forms in the
Ryshkov polytope.

Hence, although there are infinitely many perfect forms in the Ryshkov
polytope, Theorem 11 reveals that out of these, only finitely many are non-
isometric and correspond to different lattices. The non-isometric perfect lat-
tices have been tabulated for all dimensions up to N = 8 [84]. In two and three
dimensions, there is only one unique perfect lattice. In four dimensions, there
are two, in five there are three, and in 8 dimensions there are 10916.

Voronoi’s algorithm [85], is commonly used to traverse the vertices of the
Ryshkov polytope. In Section 4.3.6 we present an algorithm for solving our
problem, which in essence is a modified version of Voronoi’s algoritm.
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Minkowski polytope

Another characterization of PQFs is via Minkowski reduction.

Definition 8. The Minkowski reduction region M is the set of all G satisfying

(i) v
T

Gv ≥ gi,i, for all v ∈ Z
N such that gcd(vi, . . . , vN ) = 1.

(ii) gi,i+1 ≥ 0, i = 1, . . . , N − 1. (4.31)

As with the Ryshkov polytope, M is a subset of SN×N
≻0 . A PQFG = L

T

L ∈
M is said to be Minkowski reduced and the lattice generator matrix L is called
a Minkowski reduced generator matrix for ΛL. It can be shown that any lattice
ΛB has a generator matrix L that is Minkowski reduced, i.e., there exists an
L such that B = LZ, where L is Minkowski reduced and Z is a unimodular
matrix [86]. Note that the Minkowski reduced generator matrix is not unique
for a certain lattice, e.g., if L is Minkowski reduced, then so is −L. However, it
can be proved that there are only finitely many Minkowski reduced generator
matrices for any lattice [86]. Given a generator matrix B, a Minkowski reduced
generator matrix L, and the corresponding unimodular matrix Z, can both be
obtained by applying the Minkowski reduction algorithm on B [86].

Let L be a Minkowski reduced generator matrix and GL = L
T

L the
corresponding Minkowski reduced PQF. Condition (i) in (4.31) implies that
D2

min(L) ≥ g1,1, and since g1,1 = ‖l1‖2, it follows that D2
min(L) = g1,1, because

at least v = (1 0 0 . . . 0)
T

achieves equality. Hence, any Minkowski reduced
generator matrix L contains the shortest vector in the lattice ΛL as one of its
columns. M is an intersection of infinitely many halfspaces, just as the Ryshkov
polytope, but with different halfspaces in this case. It is easily seen that M
corresponds to a cone in the vector space R

N(N+1)/2, since if G1,G2 ∈ M,
then k1G1 + k2G2 ∈ M for k1 ≥ 0 and k2 ≥ 0. We now define

Definition 9. Mλ = {G : G ∈ M, g1,1 ≥ λ}.

Hence, the Minkowski reduced PQFs in Mλ correspond to all Minkowski
reduced generator matrices of lattices with a minimum distance of at least λ.

A polyhedral cone is a cone with a finite number of flat faces, and is therefore
also a polytope. A fundamental result by Minkowski is [86]

Theorem 12. M is a polyhedral cone in R
N(N+1)/2.

Theorem 12 is of importance later, since the polyhedral structure of M is
crucial for the solvability of (4.30).

It follows from Definition 9 that Mλ is the intersection of the hyperplane
{G : g1,1 = λ} with M, and from Theorem 12 we conclude that Mλ contains
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a finite number of vertices. The vertices are hereinafter denoted as Minkowski
extreme forms, and the corresponding lattices as Minkowski extreme lattices.
Minkowski extreme forms have been tabulated up to dimension 7, while for
higher dimensions they are unknown since the computational complexity is
too high. Compare this to perfect forms in the Ryshkov polytope, which are
known up to dimension 8. This is due to the fact that enumerating perfect
forms is computationally more tractable than enumerating Minkowski extreme
forms [84]. Ryshkov managed to show that every perfect form is equivalent
to a form lying on an extreme ray of the Minkowski reduction region M [87].
Cohn et al., however, showed that there are extreme rays in the Minkowski
reduction region that do not contain perfect forms [88]. Thus, every vertex
(perfect form) of the Ryshkov polytope R1 can be reduced to a vertex in M1,
but there are some extreme rays in M1 which contain PQFs in R1 that are not
vertices of R1. Thus, since the Minkowski reduction region is different from
the Ryshkov polytope, defining our optimization problem over it can provide
additional insights to the properties of the optimal solution.

4.3.2 Lattice-based problem formulation

We are now ready to reformulate (4.30) as a pure lattice optimization problem.
This will, for completeness, be done over the Ryshkov polytope as well as
over the Minkowski reduction region. We begin with the former. Start by
factorizing F as F = S−1UB, where U is an orthogonal matrix and B is any

matrix such that F satisfies the trace constraint tr(F
T

F ) ≤ P0. From lattice
theory, it follows that B can be regarded as a generator matrix for a lattice
ΛB. Inserting the expression F = S−1UB into (4.30), we arrive at

min
U ,B

tr(B
T

U
T

S−2UB)

subject to

GB ∈ R1,

(4.32)

where GB = B
T

B. The subscript in GB will be left out when no confusion
can arise.

Let us now instead turn to the second formulation and formulate (4.30) as
an optimization over the Minkowski polytope M1. We keep the factorization
F = S−1UB, but we further factorize B as B = LZ, where L is a Minkowski
reduced basis of the lattice ΛB and Z a unimodular matrix. This gives that
the F in (4.30) can also be factorized as F = S−1ULZ. Furthermore, the

constraint D2
min(B) ≥ 1 is now equivalent to GL = L

T

L ∈ M1. Thus, (4.30)
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can as well be formulated as

min
U ,L,Z

tr(Z
T

L
T

U
T

S−2ULZ)

subject to

GL ∈ M1.

(4.33)

Also for (4.33), the subscript in GL will sometimes be left out. Note that
the objective functions in (4.32) and (4.33) are exactly the same, since B =
LZ, but the optimization procedure is different for the two problems. First
of all, the optimization domains are different. Secondly, the optimization in
(4.32) only involves a minimization over orthogonal (U) and invertible (B)
matrices, while (4.33) is a minimization over orthogonal, invertible (L) and
unimodular matrices (Z). Hence, the methodology for solving (4.32) differs
from the one solving (4.33). The formulation in (4.33) also reveals the fact that
changing the basis in ΛB, i.e., varying Z, only affects the transmitted power,
which is not evident from the formulation in (4.32). Another advantage of the
formulation in (4.33) will be revealed by Theorem 13 in Section 4.3.1. The work
in [79] considered a problem formulation similar to (4.33), but without using the
Minkowski reduction domain. Instead, only the objective function was studied
for different lattice bases L. As mentioned in Section3.5.4, both [89] and [79]
made approximations to the minimum distance problem, and the hypothesis
was that the densest packing lattices in high dimensions should produce large
distances. However, no exact results were presented. Instead, in [79] it was
just proposed that L should be a basis for the densest lattice packing, and a
heuristic, iterative algorithm was given to find the optimal Z. The derived
precoders turn out to have good performance, however the question remains
whether they indeed are optimal minimum distance precoders, and if not, how
far away they are from the optimum. Thus, (4.33) was not satisfactory treated
in [79]. Moreover, the results in Section 3.5.4 suggest that packing lattices are
not always optimal.

Two fundamental questions arise about the problems (4.32) and (4.33): 1)
Is there an explicit formula for the optimal solutions to any of the problems?
2) If there is no such formula, what is the structure of the solution and can it
be found in a simple way for any channel outcome S?

Before answering these questions, we look at some classical lattice prob-
lems and tools for solving lattice optimization problems. Our motivation for
surveying these well known problems is that the minimum distance problem
studied in this thesis is tightly connected to them, and has in principle the
same structure in its solution as some of the classical problems.
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4.3.3 Classical lattice problems

There are many optimization problems that can be interpreted as optimization
over lattices. A famous one is finding the densest lattice packing of spheres in
an N -dimensional space, corresponding to the following optimization

min
L

Vol(L)

subject toD2
min(L) ≥ 1,

(4.34)

i.e., to find, among all lattices with fixed minimum distance, the lattice with
the minimal volume. The dual of this problem is to find the lattice maximizing
the volume of the sphere encompassed by its Voronoi region; this is known as
maximizing the covering of the lattice. Mathematically, it corresponds to the
following optimization

min
L

max
w∈V(L)

‖w‖

subject to

D2
min(L) ≥ 1.

(4.35)

The general solutions of these problems remain unknown as of today. How-
ever, for small enough dimensions, solutions are known. In two dimensions, it
turns out that the hexagonal lattice solves both of these problems; this fact was
shown for (4.34) by Lagrange in 1801 [90], and for (4.35) by Kershner in 1934
[74]. The packing problem has been solved for N ≤ 9 and N = 24, while it is
unsolved for all other N . For the covering problem, the solution is known for
N ≤ 5. Although the packing problem is unsolved in general, it is known that
the optimal lattice must be a perfect lattice which also immediately implies that
it is attained at a Minkowski extreme lattice. Hence, finding the densest lattice
packing in any dimension N amounts to traversing the non-isometric vertices
in R1, or traversing the vertices in M1. Although the former is computa-
tionally more feasible, traversing the non-isometric perfect forms also becomes
computationally inefficient for higher dimensions. Despite the computational
bottleneck, it is known that (4.34) and (4.35) are both discrete optimization
problems rather than continuous ones.

To show that the solution of (4.34) is achieved by a perfect lattice (or a
Minkowski extreme lattice), it suffices to show that Vol(L) is a strictly concave
function over SN×N

≻0 . Since SN×N
≻0 contains the polytopes R1 and M1, this

therefore implies that Vol(L) is concave over both R1 and M1. Therefore,
the solution to (4.34) is attained at the vertices of these polytopes, i.e., at the
perfect lattices (vertices of R1) and the Minkowski extreme lattices (vertices
of M1). Hence, concavity of the objective function is enough to conclude that
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perfect lattices solve a given lattice optimization problem. The concavity of
det(G)1/N over SN×N

≻0 was shown by Minkowski [86].
Next, we show that the objective functions in (4.32) and (4.34) are of differ-

ent nature. Recall that (4.32) is the minimum distance optimization problem,
while (4.34) is the optimal lattice packing problem. The orthogonal matrix U

minimizing the objective function in (4.32) is given by Theorem 7, and equals
the left orthogonal matrix in the SVD decomposition of B. Inserting this U

into the objective function in (4.32) gives an optimization problem as in (3.12),
but here in terms of a lattice optimization problem

min
G

N∑

j=1

ωj(GB)/s2j,j

subject toGB ∈ R1,

(4.36)

where ωj(GB) is the j:th largest eigenvalue of GB and sj,j is the j:th
largest diagonal element in S. The optimization in (4.34) can be performed

over the Ryshkov polytope, with the objective function
N

√

det(B
T

S−2B) =

N

√

det(S−2) det(GB). The matrix S can be regarded as a constant and does

not impact the optimization. It further holds that

N

√

det(S−2) det(GB) = N

√
√
√
√

N∏

j=1

ωj(GB)/s2j,j .

Hence, (4.34) minimizes the N :th root of the product of the eigenvalues of
GB over R1, while (4.36) minimizes a weighted sum of them. Due to the
arithmetic-geometric mean (AM-GM) inequality, we have that

N∑

j=1

ωj(G)/s2j,j ≥ N N

√
√
√
√

N∏

j=1

ωj(G)/s2j,j ,

which shows that the L solving (4.34) is only minimizing the lower bound to
the objective function in (4.36), thus not guaranteeing that it is the optimum to
(4.36)4 Hence, although (4.32) and (4.34) have the same optimization domain,
(4.32) posseses a different objective function than (4.34), and is thus a different
lattice optimization problem.

4This same reasoning is used in [79] in order to propose densest lattices as good candidates
for providing a large minimum distance.
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4.3.4 Optimal lattice structure

This section will prove the concavity of the objective functions in (4.32) and
(4.33), respectively. We start by proving the concavity of the objective function
in (4.33) over SN×N

≻0 , for any given S and Z matrix. Define

f(L,Z)
△
= min

U
tr(Z

T

L
T

U
T

S−2ULZ),

which is the objective function in (4.33) without the minimization over L and
Z. Observe also that f(B, IN×N ) is the objective function in (4.32) without
the minimization over B. We now show

Theorem 13. For a fixed Z, f(L,Z) is concave over SN×N
≻0 with respect to

GL.

Proof. Write minU tr(Z
T

L
T

U
T

S−2ULZ) = minU tr(S−2ULZZ
T

L
T

U
T

).

Let LZZ
T

L
T

= QDQ
T

be the eigenvalue decomposition of LZZ
T

L
T

, where
Q is the orthogonal matrix. Now note that

f(L,Z) = min
U

tr(S−2ULZZ
T

L
T

U
T

)

= min
U

tr(S−2UQD2Q
T

U
T

)

= min
U

tr(S−2UQ
T

D2QU
T

)

= min
U

tr(S−2UZ
T

L
T

LZU
T

)

= min
U

tr(S−2UZ
T

GLZU
T

).

Hence

f(L,Z) = h(GL,Z)

= min
U

tr(S−2UZ
T

GLZU
T

).

Now it follows that for positive semidefinite G1, G2 and 0 ≤ γ ≤ 1,

h(γG1 + (1− γ)G2,Z)=min
U

γtr(S−2UG1U
T

) + (1− γ)tr(S−2UG2U
T

)

≥ γmin
U

tr(S−2UG1U
T

) + (1− γ)min
U

tr(S−2UG2U
T

)

= γh(G1) + (1− γ)h(G2),

which shows that h(GL,Z), and thus also f(L,Z), are concave over SN×N
≻0

with respect to GL.
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An immediate corollary of Theorem 13 is

Corollary 3. f(L,Z) is concave over SN×N
≻0 with respect to the Gram matrix

GB = GLZ = Z
T

L
T

LZ.

Proof. Let L = B, Z = IN×N and apply Theorem 13.

Taken together, Theorem 13 and Corollary 1 show that the objective func-
tions in (4.32) and (4.33), respectively, are both concave over their correspond-
ing domains. This immediately implies that the solution to (4.32) is a perfect
lattice, and the solution to (4.33) is a Minkowski extreme lattice. Exactly which
perfect lattice/Minkowski extreme lattice that solves (4.30) depends of course
on the channel outcome S, and an algorithm is given in Section 4.3.6 that
enumerates all possible perfect forms solving (4.30) for a specific S. However,
since there are finitely many perfect lattices/Minkowski extreme lattices in N
dimensions, we know that there are finitely many different lattices solving the
problem for all S. This answers our second question posed in Section 4.3.2:
The optimal GB in (4.32) is a vertex of the polytope R1, and the optimal GL

solving (4.33) corresponds to a vertex in M1. Hence, the solution to (4.30)
does not depend continuously on S, instead it changes in a discrete fashion
when S is varied continuously. Relating to the first question in Section 4.3.2,
this result implies that an explicit formula for the solution of (4.30) seems out
of reach, since such a formula does not exist for (4.34) whose set of possible
solutions is a subset of the set of possible solutions to (4.30). Altogether, a
previously unknown result is revealed: There are finitely many lattices that
can solve the minimum distance optimization problem in (4.30), and they can
be enumerated offline.

Theorem 13 also reveals that for any given Z matrix, the optimal solution to
(4.33) occurs at a Minkowski extreme lattice. Thus, given any Z, the optimal
L that builds up F = S−1ULZ in (4.30) is a Minkowski extreme lattice.
This fact will be used in Section 4.3.6 to develop a good suboptimal precoder
construction. Hence, the problem formulation in (4.33) provides additional
information about the behavior of (4.30), not present in (4.32): This is the
main reason for introducing (4.33).

We can already at this stage deduce several interesting conclusions from
the result in Theorem 13. For up to three dimensions, there is only one non-
isometric perfect lattice in each dimension: For N = 2 it is the hexagonal
lattice and in N = 3 it is the face-centered cubic lattice. Since these are
the only non-isometric perfect lattices in these dimensions, they also solve
(4.34), and thus the proposition in [79] to use densest lattice packings in (4.33)
is optimal for these dimensions. However, when N = 4 there are two non-
isometric lattices: The checkerboard lattice D4 and the root lattice A4 [74].
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It will be demonstrated in Section 4.3.8 that both of these lattices occur as
solutions to (4.32) for different S, so the constructions in [79] are suboptimal
for N = 4. Another interesting consequence of Theorem 13 is that the main
result in Theorem 8, which shows that the hexagonal lattice is optimal in two
dimensions, now follows immediately from Theorem 13. However, as will be
explained in Section 4.4, the results in this section do not cover the result in
Theorem 9.

Note that it is now an easy task to construct the optimal F in (4.30), once

the GB solving (4.32) is known. Let Gopt = B
T

optBopt denote the optimal

form and Gopt = QoptDoptQ
T

opt be its eigenvalue decomposition. Since the

optimal U in F = S−1UB is equal to the left orthogonal matrix in the SVD
decomposition of B, it follows that the optimal F can be constructed as

F opt = S−1
√

DoptU
T

opt. (4.37)

To summarize, the following knowledge is at hand about the solution to the
original problem in (4.30). We have shown that (4.30) is equivalent to both
(4.32) and (4.33). Theorem 13 then shows that the L matrix solving (4.33),

for any invertible S, gives rise to a Gram matrix G = L
T

L that corresponds
to a vertex in the polytope M1. Since M1 has a finite number of vertices for
any dimension N , and is independent of the matrix S, it holds that there are
finitely many L matrices (up to rotation) that are candidates to solving (4.33)
for any given S. Once the optimal Lopt is known (up to rotation), it remains
to find the optimal unimodular matrix Zopt in (4.33) and then to construct
the optimal precoder F opt from (4.37), where Bopt = LoptZopt. To find the
optimal Z, we need to perform a search over unimodular matrices, which can
be simplified if good bounds on the optimum solution to (4.33) are known.
These bounds will be developed in Section 4.3.5.

When it comes to the equivalent problem formulation in (4.32), Corollary
3 shows that the B matrix solving (4.32) for any given invertible S, is such

that it produces a Gram matrix G = B
T

B that is one of the vertices in the
polytope R1. Given the optimal G in R1, the optimal precoder is obtained
through (4.37). The R1 polytope contains infinitely many vertices, and it
is known that each vertex is isometric to some vertex in M1. Since (4.32)
is connected to (4.33) through the factorization B = LZ, it holds that if

GB = B
T

B = Z
T

L
T

LZ is a vertex in R1, then GL = L
T

L is a vertex
in M1. Hence, traversing the different vertices in R1 is equivalent to a joint
enumeration of some of the vertices in M1 and different unimodular matrices
Z. However, it is instead possible to directly enumerate perfect forms by
formulating an algorithm working over R1. Again, bounds are needed in order
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to restrict the amount of vertices to traverse, and they will be presented in the
next section.

4.3.5 Bounds on the optimal solution

We start by deriving lower and upper bounds to tr(Z
T

L
T

U
T

S−2ULZ), which
is the objective function in (4.33). The upper bound presented here improves
significantly upon the upper bound presented in [79]. From these bounds, we
are able to derive further bounds that aid in restricting the search space for
the algorithms that find the optimal precoder, which are introduced in Section
4.3.6.

Theorem 14. The following lower bound holds for the optimal solution to
(4.33)

min
U ,L,Z

tr(Z
T

L
T

U
T

S−2ULZ) ≥ N N/2
√

det(L)/det(S). (4.38)

Proof. Dropping the integer-valued constraint on Z, while keeping the deter-
minant constraint det(Z) = ±1, we apply the method of Lagrange multipliers

to find first order optimality conditions. Let M = L
T

U
T

S−2UL. The optimal
Zo must satisfy

∂tr(Z
T

oL
T

U
T

S−2ULZo)

∂Zo
= γ

det(Zo)− 1

∂Zo
⇒ 2Z

T

oM = γ
(

Z
T

o

)−1

, (4.39)

where γ ∈ R. Taking determinants on both sides, and making use of det(Zo) =
±1, we get γ = 2 N

√

det(M). Inserting this γ into (4.39) and multiplying both

sides of the equation with Z
T

o , we arrive at Z
T

oMZo = N
√

det(M)IN . Hence,
for this Zo, we get

tr(Z
T

oL
T

U
T

S−2ULZo) = tr(IN ) N
√

det(M)

= N N
√

det(M).

Since this expression is independent of U , it is a lower bound to the ob-

jective function for a fixed L. Expressing det(M) = det(L
T

S−2L) =
det2(L)/det2(S), we arrive at the lower bound in (4.38).

This bound was also reported in [79], but derived in a different way, by
using the AM-GM inequality and Hadamard’s inequality. The approach pre-
sented here shows that this lower bound corresponds to the optimal real-valued
unimodular Z.

Next, we derive an upper bound on minU ,L,Z tr(Z
T

L
T

U
T

S−2ULZ)



122 MIMO Precoding

Theorem 15. If D2
min(L) = 1, then

min
U ,L,Z

tr(Z
T

L
T

U
T

S−2ULZ) ≤ N N/2
√

1/det(S). (4.40)

Proof. Let B = ULZ = QR denote the QR-decomposition of the received
lattice. It holds that D2

min(B) ≥ min1≤i≤N |ri,i|2 [91]. In [92], an orthogonal
precoder matrix F gmd (geometric mean precoder) and an orthogonal receiver
matrix W gmd were constructed, such that in the QR decomposition of Bgmd =

W gmdSF gmd, all diagonal elements of R equal N
√

det(S). Hence, in essence,
the precoder F gmd together with the rotation W gmd at the receiver, produces
a lattice with maximal lower bound on D2

min. This value is equal to the geo-
metric mean of its singular values, thereby its name the ”geometric mean pre-
coder”. It is clear that D2

min(Bgmd) ≥ N
√

det(S), and since F gmd is orthogonal,

tr(F
T

gmdF gmd) = N . Hence d2min(S,F gmd) = D2
min(Bgmd)/tr(F

T

gmdF gmd) ≥
N/2
√

det(S)/N . Now it follows that for any precoder F with higher d2min(S,F )
than d2min(S,F gmd), d

2
min(S,F ) ≥ (det(S))2/N/N . Hence, this gives an upper

bound on tr(FF
T

), tr(FF
T

) ≤ N N/2
√

1/det(S). Writing F = S−1ULZ, we
get the upper bound in (4.40).

Combining Theorem 14 and 15, we have the following bounds

N(det(L)/det(S))2/N ≤ tr(Z
T

L
T

U
T

S−2ULZ) ≤ N(1/det(S))2/N . (4.41)

Recall that d2min(S,F ) is the ratio of the minimum distance to the energy of
the precoder. In terms of this ratio, the bounds in (4.41) translate into

(det(S)/det(L))2/N/N ≥ d2min(S,F ) ≥ (det(S))2/N/N. (4.42)

Note that the L in (4.41) and (4.42) is such that D2
min(L) = 1. Also, these

bounds hold for any precoder F = S−1ULZ that improves upon F gmd. It
is readily seen that the ratio between the upper bound and the lower bound
in (4.41) is (1/det(L))2/N . Hence, for a fixed dimension, the optimum ratio
d2min(SF opt)/(det(S))

2/N is always smaller than (1/det(L))2/N , independently
of the channel S. For example, whenN = 2, the optimal lattice is the hexagonal
lattice Lhex and when D2

min(Lhex) = 1, det(Lhex) =
√

3/4. The ratio between

the upper bound and lower bound in (4.42) is then
√

4/3 ≈ 1.16, hence the opti-
mal d2min(SF opt) in two dimensions is at most 16% better than the lower bound
d2min(SF gmd) = det(S)/2. For N = 3, the optimal lattice is the face-centered
cubic lattice LA3

that has a volume of det(LA3
) = 1/2 when D2

min(LA3
) = 1.

In this case, the ratio between the bounds in (4.42) is 21/3 ≈ 1.26; hence, the
performance of the optimal precoder is at most 26% better than for F gmd. It is
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worthwile to observe that the ratio between the bounds, for optimal packing lat-

tices L, equals Hermite’s constant δN
△
= maxLD

2
min(L)/Vol(L)2/N [85]. Thus,

the ratio of the bounds is upper bounded by Hermite’s constant. Hermite’s
constant is the ratio between the constraint function and the objective func-
tion in (4.34), and is therefore an optimization problem equivalent to (4.34).
The following upper and lower bounds are known for δN [74, 93]

N

2πe
+

log(πN)

2πe
+ cN,1 ≤ δN ≤ 1.744N

2πe
(1 + cN,2),

where cN,1 and cN,2 are constants depending on the dimension N . From this it
follows that δN grows linearly with the dimension N , and thus the ratio of our
bounds grows at most linearly with N . This can be compared to the bounds
in [79], where the ratio between the upper bound and lower bound contains
the exponential factor 2N/2. Thus, the improvement in the upper bound is
significant. Note also that F gmd operates above the lower bound in (4.42), and
due to its good SER performance as reported in [92], it can serve as a basis for
developing a suboptimal Z matrix to (4.33). This will be presented in Section
4.3.6.

As discussed in the first paragraph of Section 4.3.4, a closed form solution
to (4.30) seems out of reach. We are thus interested in an algorithm that can
find the optimal Z in (4.33), or an algorithm to find the optimal GB in (4.32).
In order to do so, it is desirable to first have some bounds on the Z matrix or
some quantity depending on it, in order to restrict the search space. From this

perspective, we develop an upper bound on tr(Z
T

L
T

LZ).

Theorem 16. With D2
min(L) = 1, the following upper bound holds

min
L,Z

tr(Z
T

L
T

LZ) ≤ N

(

s1,1
n
√

det(S)

)2

. (4.43)

Proof. Let GL = Z
T

L
T

LZ. Inserting the optimal U into (4.41), we arrive at
the upper bound

tr(Ω(GL)S
−2) ≤ N(1/det(S))2/N , (4.44)

where Ω(GL) is the diagonal matrix containing the eigenvalues ωj(GL) of
GL. Since the eigenvalues ωj(GL) are sorted in opposite order to s−2

j,j , and

s−2
1,1 ≤ . . . ≤ s−2

N,N , we have the inequality

tr(Ω(GL)S
−2) ≥ tr(Ω(GL))

s21,1
,

which gives us the upper bound in (4.43)
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Geometrically, the inequality in (4.43) implies that the lattice vectors of
the optimal lattice LoptZopt must have a bounded length. Using the trace
inequality [94]

ωN (GLopt
)tr(ZoptZ

T

opt) ≤ tr(Z
T

optL
T

optLoptZopt) ≤ ω1(GLopt
)tr(ZoptZ

T

opt),

we also have the following upper bound for Zopt

tr(ZoptZ
T

opt) ≤
N

ωN (GLopt
)

(

s1,1
n
√

det(S)

)2

. (4.45)

In terms of GB = Z
T

L
T

LZ = B
T

B, the upper bound in (4.43) is

tr(GB) ≤ N

(

s1,1
n
√

det(S)

)2

. (4.46)

Let ub(S) denote the upper bound in (4.46). Hence, the optimal GB in the
Ryshkov polytope that solves (4.32) is one of the vertices of the finite, bounded
polytope R1 ∩ {GB : tr(GB) ≤ ub(S)}.

4.3.6 Numerical methods for solving (4.32) and (4.33)

In this section, we present algorithmical approaches to solve (4.32) and (4.33).
Although (4.32) can be solved by enumerating all vertices in the polytope R1∩
{G : tr(G) ≤ ub(S)}, the methodology for solving (4.33) will provide another
interesting observation. Additionally, the problem formulation in (4.33) gives
novel insight into an efficient suboptimal precoder construction, formulated in
Section 4.3.7, that is not present in the formulation in (4.32). First, we discuss
a method to solve (4.33), then we discuss the solution to (4.32).

Finding the solution to (4.33)

To find the solution to (4.33), one needs to tabulate Minkowski extreme lattices
in N dimensions. Unfortunately, it turns out to be more complex to enumerate
Minkowski extreme lattices than perfect forms [84]. Note, however, that only
those Minkowski extreme lattices that correspond to perfect forms have to be
known. Namely, once all non-isometric perfect forms have been tabulated in
N dimensions, the fact that each perfect form (vertex) in R1 is equivalent
to a Minkowski extreme form (vertex) in M1, implies that the Minkowski
extreme lattices solving (4.33) are the ones corresponding to the non-isometric
perfect forms. Therefore, it is not necessary to know all the Minkowski extreme
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lattices in N dimensions in order to solve (4.33), only those corresponding to
perfect forms are needed. However, when constructing a good suboptimal
solution to (4.33), presented in Section 4.3.7, it is necessary to know all the
Minkowski extreme lattices to obtain the best suboptimal construction. The
smallest eigenvalue ωN (GL) in (4.45) is non-zero for all the Minkowski extreme
lattices L (candidates for the optimum), and thus the bound in (4.45) is well-
defined. A geometrical interpretation is that this inequality bounds the squared
lengths sum of the basis vectors in the integer lattice Z

N , where the basis
vectors are now the rows of Z. Thus, finding the optimal Z can be regarded
as searching for basis vectors inside a sphere of a certain radius. If one has
a priori knowledge about the maximum ratio s1,1/det(S), an off-line, one-
shot algorithm can be formulated that searches for unimodular Z inside the
largest sphere, corresponding to the Minkowski extreme lattice L with smallest
ωN (GL) and the channel S with largest upper bound in (4.45). This sphere
certainly includes the optimal Zopt corresponding to the optimal Minkowski
extreme lattice Lopt for any channel that can occur. A large codebook of
matrices LZ can then be constructed off-line, by matrix multiplication of each
encountered Z in the sphere with the different Minkowski extreme lattices and
storing the resulting matrices into the codebook. To then find the optimal
precoder F = S−1ULZ online for a certain S, one simply goes through every
element LZ in the codebook, and constructs F by using the optimal U .

The outlined method to solve (4.33) includes the following steps: 1)
Find all Minkowski extreme lattices that correspond to non-isometric perfect
forms. This is accomplished by applying Voronoi’s algorithm to enumerate
non-isometric perfect forms [95], and then applying the Minkowski reduction
algorithm to the obtained perfect lattices. 2) Enumerate all unimodular Z

satisfying the bounds in (4.45). There are specialized algorithms for this task
[96].

Finding the solution to (4.32)

As described in Section 4.3.5, the optimal G is one of the vertices in the poly-
tope R1∩{G : tr(G) ≤ ub(S)}. Hence, one method to find the optimum is to
directly enumerate all the perfect forms inside the polytope. A finite codebook
can be constructed off-line if a priori knowledge of the upper bound in (4.46)
is available. A method to enumerate perfect forms is via Voronoi’s algorithm
[95]. It enumerates perfect forms and stops when all non-isometric forms have
been found. As mentioned, for today’s computers, it is only usable up to 8
dimensions due to the large number of edges in the Ryshkov polytope in higher
dimensions. We need to slightly modify the classical Voronoi’s algorithm, by
changing its stopping condition. Since we are interested in forms that are
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isometric, our stopping condition is based on the upper bound in (4.46).
An exclusion criteria for vertices can be formulated, which helps in reducing

the size of the final codebook. From the problem formulation in (4.36), we
see that vertices with eigenvalues that majorize the eigenvalues of some other
vertex, can never solve (4.36). By majorization, we mean the following. Let
a = {a1, . . . , aN}, a1 ≤ . . . ≤ aN , and b = {b1, . . . , bN}, b1 ≤ . . . ≤ bN , be
two sequences of length N sorted in ascending order. If a is majorized by b,
denotes as a � b, then the following inequalities hold

k∑

i=1

ai ≤
k∑

i=1

bi, k = 1, . . . , N. (4.47)

Clearly, majorization induces a partial order on the set of sequences. Now, the
objective function in (4.36) can be written in terms of partials sum. Denote

fj
△
= 1/s2j,j , j = 1, . . . , N , with f0

△
= 0. Hence, f0 ≤ f1 ≤ . . . ≤ fN . The

objective function in (4.36) is

N∑

j=1

ωj(GB)/s2j,j =

N∑

j=1

(fj − fj−1)

N∑

k=j

ωj(GB). (4.48)

Each term fj − fj−1 in (4.48) is non-negative and
∑N

k=j ωj(GB) is the partial

sum of the eigenvalues of GB. It is clear from this formulation that if G′
B

is another vertex with eigenvalues ωj(G
′
B) that are majorizing ωj(GB), then

GB can never produce a smaller value of the objective function in (4.48) than
G′

B for any realization of {1/s2j,j}. Thus, G′
B does not have to be included in

the codebook. However, the Voronoi algorithm still needs to traverse it, since
other forms that solve (4.36) for a certain S might be reachable from it.

The algorithm needs an initial perfect form as starting position, and a good
starting point is the root lattice AN [84]. The following notation is used in
the algorithm. Min(G) denotes the set of minimum vectors of G, i.e., the set

{x : x
T

Gx = 1} and G[x]
△
= x

T

Gx. The algorithm is summarized by the
pseudo-code in Table 4.1. The only difference between Algorithm in 4.1 and
the Voronoi algorithm presented in [95] is the stopping condition. Voronoi’s
algorithm stops as soon as all neighbouring perfect forms of a certain perfect
form are isometric to some other perfect form already encountered. Algorithm
4.1 stops as soon as all perfect forms satisfying the upper bound in (4.46) have
been enumerated.

The Fincke-Pohst algorithm is used to compute Min(G) [78]. The toughest
part of the algorithm is to compute the extreme rays of a polytope specified by
linear inequalities. This is the bottleneck of enumerating non-isometric perfect
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Table 4.1: An algorithm that traverses all perfect forms satisfying the bounds
in (4.46).

Algorithm for Solving (4.32)
Input: A starting perfect form Gs, e.g., the

root lattice AN .

Output: The list of G matrices corresponding

to the vertices in the polytope R1 ∩ {G : G ≤
ub(S)} that are candidates for solving (4.36).

Let G = Gs and define the boolean variable bG
△
= 1.

Save the pair (G, bG) in a set G = {(G, bG)} and G in
a set O = {G}.

1. Compute Min(G) and the extreme rays (edges)
T 1, . . . ,T k of the polyhedal cone

{G′ ∈ SN×N : G′[x] ≥ 0 ∀x ∈ Min(G)}.

2. Determine neighbouring perfect formsGi asGi =
G+ αT i, i = 1 . . . k.

3. Let Gj1 , . . .Gjm be those neighbouring forms sat-
isfying the upper bound in (4.46) that also cannot

be found in G, and define bGjl

△
= 0, l = 1 . . .m.

Then let G = G ∪ {(Gj1 , bGj1
), . . . , (Gjm , bGjm

)}.

4. For each Gjl , l = 1, . . . ,m, check if there is a Ĝ ∈
O with eigenvalues majorizing the eigenvalues of
Gjl . Then let O = O/{Ĝ} and O = O ∪ {Gjl},
i.e., exclude Ĝ from O and include Gjl into O.

5. Find a pair (Gj , bGj
) in G such that bGj

= 0.
If such a pair exists, change the value of bGj

to
bGj

= 1, let G = Gj and go to step 1. Otherwise,
stop and return O.
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forms with Voronoi’s algorithm and thereby solving the lattice packing problem
in high dimensions. There exist methods that does this in O(Nvd) time, where
N is the dimension, d the number of non-redundant inequalities describing the
polytope and v is the number of vertices in the polytope [97].

For step 2, determining the neighbouring perfect forms can be done by the
algorithm in [84, Algorithm 2, Chapter 3], which computes the α needed in
step 2. In the other steps, we use boolean variables bGj to denote whether a
vertex has been visited or not.

A few comments regarding the complexity of solving (4.32) with Algorithm
4.1 compared to the method in Section 4.3.6. The latter method first uses
Voronoi’s algorithm to find non-isometric perfect forms, since this is less com-
plex than enumerating Minkowski extreme lattices. The next step is to enu-
merate unimodular matrices satisfying the upper bound in (4.45). The former
method works directly with Algorithm 4.1, which is based on enumerating per-
fect forms satisfying (4.46). Thus the question is: Is it more complex to directly
enumerate vertices in R1 (Algorithm 4.1), or to only enumerate non-isometric
vertices in R1, to then go over and enumerate unimodular matrices satisfying
the bound in (4.45)? The answer to this complexity analysis is left for future
work.

4.3.7 Suboptimal precoder construction

Finding the optimal solution is a computationally demanding task for today’s
computers, and suboptimal solutions are of interest. We base our suboptimal
construction on F gmd from Section 4.3.5.

It can be numerically verified that for F gmd, the received lattice is not a
Minkowski extreme lattice, and is thereby not optimal. Hence, the performance
of F gmd can be improved by applying the result of Theorem 13. Let Bgmd =
SF gmd be the received lattice at the receiver, where F gmd is scaled so that
D2

min(Bgmd) = 1. Now perform a Minkowski reduction on Bgmd by using the
Minkowski reduction algorithm [86], so that we can factor the basis matrix as
Bgmd = UgmdLgmdZgmd for some rotation Ugmd, Minkowski reduced lattice
basis Lgmd with D2

min(Lgmd) = 1, and unimodular Zgmd. It then follows that

F gmd = S−1UgmdLgmdZgmd. Define Fm,i
△
= S−1U iLm,iZgmd, i = 1 . . . K,

to be the K different precoders where Lm,i is the i:th Minkowski extreme
lattice with D2

min(Lm,i) = 1, and U i is the left orthogonal matrix of Lm,iZgmd.

Applying Theorem 13, we know that tr(F
T

m,jFm,j) < tr(F
T

gmdF gmd) for some
1 ≤ j ≤ K. Thus, Fm,j is a precoder performing better than the geometric
mean precoder.

Hence, by performing a Minkowski reduction and using the resulting uni-
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modular matrix together with one of the Minkowski extreme lattices, it is
possible to improve upon the geometric mean precoder and reach closer to
the lower bound given in (4.41). However, performing a Minkowski reduction
includes finding the shortest basis vector in the lattice, which is an NP-hard
problem [98]. Nevertheless, it turns out to be easily doable with a standard
workstation at least for N . 15. Another method that can be used for this
purpose is the iterative algorithm presented in [79].

4.3.8 Packing lattices are not always a solution to (4.32)

By applying the knowledge that perfect forms solve (4.32), we provide in this
section a numerical example where the densest lattice packing is not a solution
to (4.32). This shows that the solution to (4.30) is somewhat counter-intuitive:
The optimal packing of points at the receiver, does not always minimize the
total energy of the lattice points at the transmitter.

Note that a perfect form G that is a candidate for solving (4.32) must

satisfy the upper bound (4.43). Since e
T

Ge ≥ 1, ∀e ∈ Z
N/{0N}, it holds that

gi,i ≥ 1, i = 1 . . . N , and thus tr(G) ≥ N . Let λi denote the i:th shortest
vector in the lattice L with Gram matrix G. By definition, the minimum
distance is λ1 = 1. Now assume a channel S such that the upper bound

in (4.43) is smaller than (N − 1)λ1 + λ2. If Z
T

GZ is another perfect form

isometric to G that is also a candidate for solving (4.32), then tr(Z
T

GZ) ≤
(N − 1)λ1 + λ2. However, this inequality significantly limits the number of
possible Z matrices and thus the number of perfect forms isometric to G.

Namely, since tr(Z
T

GZ) =
∑N

j=1 Z
T

j GZj and each term λ1 ≤ Z
T

j GZj ≤ λ2,
it follows that each Zj must correspond to a minimum vector of G, i.e., Zj

belongs to the set Min(G).
Let us apply this idea to 4-dimensional lattices. In 4 dimensions, there are

only two non-isometric perfect forms, the D4 and A4 lattice. A Gram matrix
for D4

5 is

GD4
=







1 0 0.5 0
0 1 −0.5 0
0.5 −0.5 1 −0.5
0 0 −0.5 1







(4.49)

5Gram matrices for non-isometric perfect forms can be found at [99].
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and for A4,

GA4
=







1 −0.5 0 0
−0.5 1 −0.5 0
0 −0.5 1 −0.5
0 0 −0.5 1






. (4.50)

Hence, any perfect form in 4 dimensions can be expressed as either Z
T

GD4
Z

or Z
T

GA4
Z for some unimodular Z. Further, it holds that λ1 = 1 and λ2 = 2

for both GA4
and GD4

. Now let S be

S =







1 0 0 0
0 0.95 0 0
0 0 0.94 0
0 0 0 0.93






. (4.51)

The upper bound in (4.43) is 4.83 for this S. Hence, if a perfect form Z
T

GD4
Z

isometric to GD4
solves (4.32), then the columns of Z must be taken from

Min(GD4
). Similarly, if a perfect form isometric to GA4

solves (4.32), then the
columns of the corresponding unimodular Z are taken from Min(GA4

). It is
an easy task to find Min(GD4

) and Min(GA4
), by applying the Fincke-Pohst

algorithm, and also to find all unimodular matrices whose columns consist of
these minimum vectors. Going through each perfect form obtained from these
unimodular matrices, and plugging in the optimal precoder (4.37) into (4.32),
the result is that the perfect form isometric to GA4

gives the smallest value of
the objective function in (4.32). Repeating the same argument for the channel

S =







1 0 0 0
0 0.99 0 0
0 0 0.94 0
0 0 0 0.93






, (4.52)

one concludes that the perfect form isometric to GD4
solves (4.32). Hence, this

shows that both A4 and D4 occur as optimal lattice structures at the receiver;
which one it is, depends on the channel S.

4.3.9 Optimal lattices for low complexity ML decoders

Section 3.2 proposed suboptimal precoder constructions by also taking the ML
decoding complexity into account. Clearly, the more non-zero elements in G,
the larger the complexity of the ML decoder. Assume that the ML decoder
should have memory M < N . This forces G to have N −M − 1 diagonals that
are zero, i.e., G is a banded symmetric matrix. Hence, it is of interest to solve
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(4.2) over Gs that also satisfy this constraint, in addition to belonging to Rλ.
The framework developed in Section 4.3 enables one to do that. Constraining
some elements gj,k in G to 0 simply corresponds to intersecting Rλ with the
coordinate planes gj,k = 0. This will give rise to a new polytope with new
vertices, which correspond to new optimal lattices. Note that the constraint
gj,k = 0 means that the lattice basis vectors B = [b1, . . . , bN ] that represent

G, i.e., G = B
T

B, are such that bj and bk are orthogonal. Thus, forcing more
elements gj,k to be zero results in more orthogonal optimal lattices. In [100],
lattice precoding that produces a memory-1 ML decoder was proposed, which
exhibits good BER performance as well for larger alphabets. Future research
should investigate which optimal lattices that occur for different constraints on
the ML decoding complexity.

4.4 Precoding with Complex-Valued Alphabets

As mentioned in the beginning of Section 4.3, precoding over the real-valued
domain is more general than precoding over the complex-valued domain. Never-
theless, the results obtained in Section 4.3 are also applicable to complex-valued
vectors and matrices. This is evident from the analysis in this section, where
one can as well define a complex-valued Ryshkov polytope and thus perform
the same analysis as before. We now investigate how this ”complex-valued”
Ryshkov polytope relates to the real-valued one studies in this section. Any
B × B complex-valued Gram matrix G and any B × 1 complex-valued error
vector e can be extended to their real-valued equivalents Gr and er by means
of the transformations in (3.22) and (3.23), respectively. The degrees of free-
dom in this skew-symmetric, real-valued matrix Gr is B(B + 1). Hence, we
can define a B(B + 1) dimensional polytope

Rc
λ

△
= {Gr : e

T

rGrer ≥ λ} (4.53)

in the space of B(2B+1) dimensional matrices. This polytope is an extension of
the complex-valued Ryshkov polytope to the real-valued space. In this section,
it was realized that the skew-symmetric constraint onGr can be dropped, which
made Gr full dimensional and Rc becomes equal to the Ryshkov polytope in
Definition 7. However, if the skew-symmetric constraint is kept in order to
deal with pure B dimensional complex-valued matrices, Rc

λ is only B(B + 1)
dimensional. Furthermore, from the definition of Rc

λ, it follows that any G ∈
Rc

λ must be positive definite, and thus corresponds to a lattice with a minimum
distance of at least 1. Thus, Rc

λ ⊂ R. This suggests that there can be vertices
in Rλ that are not vertices in Rc

λ, and explains also why there is room for
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improvement by precoding over the real-valued domain instead of the complex-
valued one.

Next, we argue that the results in Section 4.3 only cover the real-valued
result in Theorem 8 in Section 4.2. Theorem 9 states that the optimal lattice
for minimum distance in two dimensional complex-valued systems is unique,
and corresponds to the Schläfli lattice in the four dimensional real-valued space.
However, in Section 4.3.8, we proved that for some channels S, the A4 lattice
occurs as an optimal point in R1. Thus, the general results in Section 4.3
only cover the real-valued precoding result in Section (4.2), but not the result
in Theorem 9. Note that the channel S in Section 4.3.8 for which the A4

lattice was optimal does not come from an extension of the form in (3.22), i.e.,
it can not represent the singular values of a complex-valued channel in two
dimensions. Such S matrices must have pairs of eigenvalues on their diagonal.
It is of future research to investigate which lattices that solve the complex-
valued lattice problem.

4.5 Conclusions

This chapter studies precoding over non-singular linear channels with full CSI
through a lattice-theoretic approach. The classical complex-valued linear chan-
nel is first transformed to a more general real-valued model which enables per-
formance improvements over the classical complex-valued model. Then, the
main problem studied in the work is to find lattices that maximize the min-
imum distance between the received lattice points, under an average energy
constraint at the transmitter. The optimal lattice is analytically shown to be
a perfect lattice, as defined by Ryshkov, for any given non-singular channel.
Bounds on the optimal performance are developed, tighter than previously re-
ported, which enable construction of algorithms that produce a finite codebook
of matrices, from which the optimal precoder can be derived. Furthermore, a
suboptimal precoder construction is presented together with bounds on its per-
formance, which is analytically shown to improve upon a previous presented
precoding scheme in the literature, by utilizing the new results in this work. In
addition to this, we demonstrate with an example that optimal packing lattices
are not always optimal for maximizing minimum distance, which is a counter-
intuitive result at first sight. An immediate practical application of the derived
results is precoding over large alphabets.



Chapter 5

Applications to Finite

Alphabets

In Chapter 4, the theoretical analysis assumed an infinite signaling alphabet,
which gives rise to an infinite, discrete error alphabet EB . Clearly, the infinite
alphabet analysis becomes more valid the larger the signaling alphabet; however
in practical systems, the alphabets can be rather small (e.g. binary and 4PAM
real-valued models). Nevertheless, we saw in Sections 3.5.4 and 4.2.3 that the
obtained lattice precoders occur as optimal solutions for the finite constellations
as well. We will soon explain why this happens. Recall again that we can
as well work with the real-valued model in (4.29), since any complex-valued
communcation model can be transformed into a real-valued one. Moreover, as
was argued in Section 4.3, precoding in the real-valued domain provides more
degrees of freedom and thus better performance can be expected. Thus, the
original minimum distance optimization problem in (3.6) is now assumed to be
real-valued.

This chapter will present interesting observations on how the minimum
distance problem behaves for finite alphabets. First, the chapter discusses
the main difference between the problem studied in Chapter 4 and the finite
alphabet case, and gives some interesting observations along with introducing
new notation. Section 5.1 presents an efficient method to find the optimal
solution to (3.6), given a certain S, for small dimensions and alphabets. The
observations that are made in that section are in agreement with the results
of Section 3.5.2. Section 5.2 then presents new observations on the behavior
of (3.6), which are then used as design guidelines in Section 5.4 to construct
a finite codebook of precoders with excellent minimum distances. Section 5.3

133
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presents a theorem that gives support to the observations made in Section
5.2 and the heuristic guideline presented therein. Finally, Section 5.5 presents
simulation results with the new precoder codebook.

The main difference between assuming an infinite error alphabet compared
to a finite one, is that the Gram matrix G does not have to be of full rank
anymore, i.e., G can be a degenerate form, i.e., is of lower rank. Namely, since
there are only finitely many error vectors ej , j = 1, ...,m, there are matrices

G that satisfy e
T

Ge ≥ 1, but are not full rank. This implies that the optimal
G is not necessarily a lattice in N dimensions, since a lattice in N dimensions
has a full rank Gram matrix, and vice versa. Let G ≻ 0 denote that the Gram
matrix G is positive semidefinite. Given a finite set EN of N -dimensional
integer (error) vectors, not containing the all-zero vector, we can define the
”finite Ryshkov polytope” as

Definition 10. The finite Ryshkov polytope is the set

Rλ(E) = {G : e
T

Ge ≥ λ, e ∈ EN , G ≻ 0}

of all positive semidefinite forms (Gram matrices) G with a minimum distance
of at least λ over the set EN .

For notational convenience, we omit the dimension N of the alphabet EN

in the definition of Rλ(E). Note that Rλ(E) is simply the region of all positive
semidefinite G satisfying the constraints in (3.6), where the alphabet EN is
now finite. Furthermore, the shape of Rλ(E) clearly depends on the error
vectors in the set EN . Figure 5.1 shows a simplified geometrical representation
of Rλ(E). As with Figure 4.8, the boundary of the positive semidefinite cone
corresponds to a complicated surface in higher dimensions, and is described by
the solutions to a multidimensional polynomial equation [115]. Hence, it is a
continuous curve, but its shape is complicated. This boundary consists of all
positive semidefinite forms of rank p < N . Positive semidefinite forms of rank
p define a surface of dimension Np−p(p−1)/2 in the N(N +1)/2 dimensional
space of positive semidefinite forms.

From the definition of Rλ(E), it follows that Rλ ⊂ Rλ(E). More stringently,
the following relation holds for Rλ(E). Let E1, E2 be two different alphabets
where E1 ⊂ E2. Then it holds that

Rλ(E2) ⊆ Rλ(E1). (5.1)

We can now reformulate (3.6) in terms of R1(E). Herein, we let the di-
mension of (3.6) be N instead of B. Let EN be some finite error alphabet.
Factorize F in (3.6) as in (4.1). Then, it is clear that (3.6) is equivalent to the
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Figure 5.1: A visualization ofRλ(E) in the positive semidefinte cone. Note that
in contrast to Rλ, there are Gram matrices G in Rλ(E) that actually touch the
positive semidefinite cone, and thus are degenerate positive semidefinite forms.

following optimization

F opt = argmin
W

tr(B
T

W
T

S−2WB)

subject to

G ∈ R1(E)
G = B

T

B ≻ 0.

(5.2)

Furthermore, Theorem 13 shows that the objective function in (5.2) is equiv-

alent to minU tr(US−2U
T

G), where U is an orthogonal matrix. Thus, (5.2)
is also equivalent to

F opt = argmin
U

tr(US−2U
T

G)

subject to

G ∈ R1(E)
(5.3)

The relation in (5.1) implies that for finite alphabets E , solving (5.3) by
changing the constraint G ∈ R1(E) to G ∈ R1, i.e., solving (5.3) over the
Ryshkov polytope R1, can result in a non-optimal G to (5.3). The solution
to (5.3), for a finite alphabet E , could sometimes actually be attained at the
boundary of the positive semidefinite cone, and soon we will show that this
can indeed happen. Formulating (5.3) as in (4.36), a lower rank solution cor-
responds to a precoder that ”turns off” the weak eigenmodes in S, i.e., the N
streams are multiplexed across the strong eigenmodes only.
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Although R1(E) and R1 are clearly different, the following interesting ob-
servations can be made about the solution to (5.3): If the optimal G to (5.3)
is of full rank for some given S (such S exist, as will be discussed shortly)
and some finite alphabet E , then it must be one of the full rank vertices of
R1(E). The reason for this is Theorem 13, which shows that the objective
function in (5.3) is concave over the set of positive semidefinite matrices, and
thus also over R1(E). As will be discussed shortly, there are matrices S for
which the optimum to (5.3) is full rank. However, as for Rc

1 in Section 4.4, it
could happen that the full rank vertices of R1(E) are not necessarily perfect
lattices anymore, i.e., there are full rank vertices in R1(E) that are not vertices
of Rλ for any λ > 0. Nevertheless, as the alphabet E grows in size, there will
be many common full rank vertices between R1(E) and R1, and in the limit
we know that all full rank G correspond to perfect lattices.

Further interesting observations can be noted from the relations in (5.1).
Assume that we have the error alphabets EBin and E4PAM resulting from the
binary and 4PAM constellation, respectively. Then clearly, EBin ⊂ E4PAM

1,
and from (5.1), R1(E4PAM) ⊆ R1(EBin). Assume an S, for which the optimal
GBin to (5.3) with E = EBin is a full rank vertex of R1(EBin). If GBin is also
a vertex of R1(E4PAM), then clearly GBin also solves (5.3) with E = E4PAM for
this specific S. Actually, if GBin ∈ R1, i.e., it corresponds to a perfect lattice of
minimum distance 1, then since R1 ⊂ R1(E) ⊆ R1(EBin), for any finite E such
that EBin ⊂ E , then GBin is a solution to (5.3) for the error alphabet E as well.
In other words, if the lattice corresponding to GBin has a minimum distance of
1, then it solves (5.3) for the given S, for any finite alphabet E that includes
the binary error alphabet EBin. Clearly, this argument can be extended to any
alphabets E1 and E2 such that E1 ⊂ E2; binary and 4PAM alphabets were used
only as an illustration of the argument.

Hence, it is of interest to classify the full rank vertices of R1(E) for a certain
error alphabet E . If it turns out that the full rank vertices in R1(E) with a
minimum distance of 1, which are then perfect lattices, also appear as full rank
vertices in R1(E ′) for any E ′ such that E ⊂ E ′, then they are also candidates
for solving (5.3) with E = E ′. Numerical investigations suggest that in small
dimensions, this might be the case. The lrs software in [97] was used to
enumerate full rank vertices in two, three and four dimensions for different
error alphabets E . The error alphabets E are of the form E = {−M, . . . ,M},

1Note that this relation is not true if power scaling is used for the 4PAM constellation in
order to have unit energy on the transmitted streams, since then the 4PAM error alphabet
is not composed of integers. Thus, more rigorously, we mean that there is a constant k > 0
such that EBin ⊂ kE4PAM. However, it is clear that this does not change the analysis, and
WLOG we can assume PAM constellations that are not scaled.
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for some integer M2. Namely, in two dimensions, we enumerated all the full
rank vertices of R1(E) for M ≤ 10. It turns out that for each such M , all
vertices have minimum distance of 1, i.e., the vertices are (or isometric to)
perfect lattices since they are uniquely determined from their minimum vectors.
Clearly, in this case the vertices are isometric to the hexagonal lattice, since that
is the only perfect lattice in two dimensions. In three dimensions, the same was
done forM ≤ 4, and for eachM , the full rank vertices were isometric to the A3

lattice. In four dimensions, for M = 1, we observed that all full rank vertices
were isometric to either A4 or D4. Hence, it seems that once the alphabet E
is symmetric, as in the case of error alphabets, the minimum vectors of the
full rank Gram matrices G that are uniquely defined by a set of N(N + 1)/2
equations in R1(E) are already contained in the alphabet EN . A more rigorous
investigation of this is left for future work.

Another interesting fact was noted in this enumeration of vertices. In three
and four dimensions, some of the vertices are not full rank. In three dimensions,
some of the vertices are of rank 2, and in four dimensions, of rank 3. Thus, even
though they are uniquely defined by a set of N(N + 1)/2 equations in R1(E),
these vertices touch the boundary of the positive semidefinite cone (note that
this does not happen for the Ryshkov polytope R1). Hence, for some S, it may
happen that these degenerate precoders give the optimal minimum distance.
Therefore, the simulation results for the two dimensional lattice precoders in
Section 4.2 can be improved, by also including these precoders that turn off
weak eigenmodes. This will be elaborated in Section 5.5. By using the lat-
tice identification techniques in Section 3.5.2, we could identify the degenerate
vertices found in three and four dimensions as perfect lattices of minimum dis-
tance 1, but now in a lower dimension. This confirms the observations made in
Section 3.3 for complex-valued matrices, that for some S, the optimal precoder
gives rise to a lattice in lower dimensions.

Thus, the following knowledge about (5.3) is currently at hand. Given a
matrix S for which the optimal G in (5.3) is of full rank, this G corresponds to
a vertex in Rλ(E). Furthermore, tests in three and four dimensions show that
these vertices are perfect lattices. On the other hand, if the solution is not at a
full rank vertex of Rλ(E), then it is degenerate and is located on the boundary
of the cone of positive semidefinite matrices. In this case, the solution does not
necessarily represent a lattice.

2Note that error alphabets E that represent practical PAM constellations such as binary,
4PAM, 16PAM, etc., have an odd M .
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5.1 Relation to Semidefinite Programming

For a fixed orthogonal matrix U , the objective function in (5.3) is linear in
G, and thus (5.3) is a semidefinite programming problem (SDP). There are
efficient numerical methods to solve semidefinite programs [101]. Hence, for
a fixed U , it is possible to calculate the optimal G for a given S. Solving
(5.3) for many different U , it is possible to obtain solutions that are very close
to the optimum. For small enough dimensions, the orthogonal matrices can
be parameterized (e.g. by Givens rotations [102]) and (5.3) solved for each
realization of U .

This has been done for N = 3 and EBin, with the following outcome. For
channels S that give a full rank optimal G, we already know from the above
mentioned enumeration with lrs that this G corresponds to a perfect lattice.
This was now also confirmed by solving (5.3) for the parameterized U for many
channels S that give rise to an optimal full rank G. It is noteworthy that the
channels S for which a full rank G is optimal consist of good eigenmodes, i.e.,
s3,3 is quite close to s1,1 (it turns out that for s1,1/s3,3 ≤ 5/2, the optimal
G is full rank). Once s3,3 becomes small compared to s1,1, the optimal G
degenerates, i.e., is of lower rank. However, interestingly, for many such S,
the optimal lower rank G still represents a lattice. Namely, for many different
channels S for which the optimal G is of rank 2, this G of rank 2 represents
the hexagonal lattice of minimum distance 1. In the case of an S that gives rise

to a rank 1 G, this G of rank 1 can be written as G = bb
T

, where b = [1 2 4]
- hence, it is a one dimensional lattice. However, for the following S,

S =





10 0 0
0 2 0
0 0 1



 , (5.4)

the optimal G is of rank 2 and equals

G =





1 2.4564 −1.9564
2.4564 6.3636 −4.6382
1.9564 −4.6382 3.9128



 . (5.5)

It is easily verified with the technique in Section 3.5.2 that G in (5.5) does not
correspond to any lattice in two dimensions. By varying the second diagonal
element s2,2 in the interval 1.8540 ≤ s2,2 ≤ 2.1354, different rank 2 optimal
Gs are obtained. Hence, this corresponds to the fact that the optimum is at
the boundary of the positive semidefinite cone, and more specifically, on the
Np − p(p − 1)/2 = 5 dimensional curve (N = 3, p = 2) that represents Gs
of rank 2. Since this boundary is a continuous curve, varying the elements
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in S continuously also varies the optimal solution in a continuous way. Thus,
for these S, the optimal solution is not structured in the nice way as was
the case in Chapter 4, and the optimal solution does not change in a discrete
fashion as with full rank vertices, but rather continuously with the channel S.
However, it turns out that the lattice solutions are close to the non-lattice G

solutions, since once s2,2 is outside the interval [1.8540, 2.1354], the optimal G
immediately becomes a lattice. Thus, since a very small set of S matrices give
non-lattice solutions, a restriction to only use lattice precoders will not result
in a significant loss in minimum distance.

If the alphabet EBin is increased to E4PAM, then the optimum solution for the
channel in (5.4), and also to those channels for which s2,2 ∈ [1.8540, 2.1354],
s1,1 = 10, s3,3 = 1, suddenly becomes a G of rank 2 that represents the
hexagonal lattice. Thus, increasing the alphabet results in optimal solutions
which are lattices for even larger sets of S. Moreover, the former rank 2 solution
for these channels when using EBin does not satisfy the minimum distance
constraint for the alphabet E4PAM. Hence, increasing the alphabet ”cuts out”
many of the lower rank solutions in R1(EBin), since additional hyperplanes

e
T

Ge ≥ 1 are added to the set R1(EBin). Thus, it is then rare that the optimal
solution to a certain S is of lower rank; an S for which this happens must
be very ill-conditioned the larger the alphabet E becomes. Chapter 4 shows
that in the limit, when the alphabet size |E| goes to infinity, the optimal G
is never degenerate for any S. However, once such an S is encountered for a
finite alphabet, it is also very likely that it corresponds to a lower rank lattice
solution. In Section 5.2, we will give plausible arguments to this behavior.

5.2 Relation to Quadratically Constrained

Quadratic Programming

This section will make some observations on the behaviour of the optimal so-
lution described in Section 5.1. Furthermore, these observations are used as
guidelines in Section 5.4 to construct a finite codebook of precoders with large
minimum distances.

The problem in (5.3) can also be formulated as a quadratic program over

B, where G = B
T

B. Let b = [b
T

1 . . . b
T

N ]
T

be a vectorization of B, with the

columns of B stacked on top of each other. Upon defining C
△
= IN×N ⊙ S−2,

Ej
△
= eje

T

j , j = 1, . . . , |EN |, and Aj
△
= IN×N⊙Ej , where ⊙ denotes the matrix
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Kroenecker product, (5.3) becomes

min
b

tr(b
T

Cb)

subject to

b
T

Ajb ≥ 1, j = 1, . . . , |EN |.

(5.6)

Hence, (5.6) is a quadratically constrained quadratic programming problem.
The constraints in (5.6) correspond to the region that lies outside the union

of ellipsoids b
T

Ajb ≤ 1, j = 1, . . . , |EN |. Note however, from the definition
of Aj , that these ellipsoids are N dimensional ellipsoids in an N2-dimensional
space. Hence, geometrically, the problem is to find the smallest N2-dimensional
ellipsoid with the semiaxis specified by C, such that it is not contained in the
interior of the constraint region. Since the constraint region is not convex,
(5.6) is a non-convex problem. In the case of an infinite integer alphabet, the
constraint region consists of the union of infinitely many ellipsoids, and we
know that the solution is at an intersection of N(N + 1)/2 ellipsoids, which
specify a unique point, up to rotation. In other words, the optimal bopt gives
rise to N(N + 1)/2 equalities in the constraint region of (5.6), and there are
infinitely many optimal solutions b that can be expressed as b = UKbopt, where
UK = IN×N ⊙U and U is any N -dimensional orthogonal matrix.

If G is of rank 1, then b = [b1 . . . bN ] is a vector of N elements, and
the problem in (5.6) reduces to the following quadratic program with linear
constraints

min
b

‖b‖2

subject to

N∑

j=1

eq,jbj ≥ 1, q = 1, . . . , |EN |
(5.7)

This problem is efficiently solved by the quadratic programming software in
Matlab and its quadprog function. It was found that for many different error
alphabets E and dimensions N , the optimal b is an integer vector which rep-
resents a one dimensional lattice. However, if the rank is increased, then the
constraint region is no longer linear, and the problem becomes harder to solve.

Expanding (5.6) in the elements of b, (5.6) can also be written directly in
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the matrix elements bj,k as

min
{bj,k}

N∑

j=1

1

s2j,j

N∑

k=1

b2j,k

subject to

N∑

j=1

(
N∑

k=1

eq,kbj,k

)2

≥ 1, q = 1, . . . , |EN |.

(5.8)

By performing the variable substitution xj,k = b2j,k, the objective function in
(5.8) becomes linear in this new coordinate system. Note that there is an
ambiguity in this substitution, since the bj,k are uniquely defined by xj,k up to
sign. Hence, the optimal solution to (5.8) can be found by solving

min
{xj,k}

N∑

j=1

1

s2j,j

N∑

k=1

xj,k

subject to

N∑

j=1

(
N∑

k=1

eq,k ±√
xj,k

)2

≥ 1, q = 1, . . . , |EN |

xj,k ≥ 0.

(5.9)

for any realization of ± as either + or −, and choosing the best out of these
solutions. Note that the objective function is now simple, while the constraint
region is complicated and is described by an intersection of spaces that lie above
quadratic surfaces. However, this formulation can give a more clear geometrical
explanation, especially in two dimensions. Note that if the constraint region in
(5.9) would be contained inside a polyhedron located in the quadrant xj,k ≥ 0,
with a finite number of vertices that all intersect the constraint region in (5.9),
then the optimal solution to (5.9) would always be at one these vertices. In this
case, the constraint region would contain some ”isolated” points, as depicted
in the left region in Figure 5.2. However, if the constraint region cannot be
contained inside a polyhedron with vertices located on the constraint region,
then the optimum to (5.9) for a certain S can lie on a curve with nonisolated
points, as shown in the right region in Figure 5.2. In that case, varying the
channel S continuously, a whole continuum of optimal Gs is obtained. When
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Figure 5.2: The isolated points are denoted as black dots. In the region to the
left, the optimum to (5.9) always occurs at the isolated points. In the region
to the right, there are points which are not isolated, so that the curve on
which they are located is bent ”outwards”. Thus, minimizing a linear function
over the region to the right gives a whole continuum of different solutions for
different channels.

N = 2, finding the optimal G of rank 1 gives a simple problem in (5.9)

min
{x1≥0,x2≥0}

x1 + x2

subject to

(eq,1
√
x1 ± eq,2

√
x2)

2 ≥ 1, q = 1, . . . , |EN |
(5.10)

For small alphabets E , the two dimensional region in (5.10) is similar to the
region to the left in Figure 5.2. Future analysis should investigate whether this
is true for arbitrary dimensions N and alphabets E .

However, from the numerical investigations in Section 5.1, we know that
the constraint region in (5.9) does not look like the region on the left in Fig-
ure 5.2. Nevertheless, from the same numerical investigations, we know that
there are portions of the constraint region in (5.9) that contain these isolated
points. Note that these isolated points correspond to several constraints in
(5.9) being active, and thus a heuristic approach to finding good solutions to
(5.9) is to find those G in (5.3) that satisfy as many constraints as possible,
even if they are of lower rank. Actually, the full rank solution satisfies as many
equalities as possible, N(N + 1)/2, which gives a set of isolated points to the
constraint region. The lower rank optimal solutions obtained by the numerical
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optimization in Section 5.1 also satisfy quite many equalities. Namely, for the
three dimensional case of study, it turns out that the rank two solutions that
correspond to two dimensional lattices satisfy 5 or more equalities (note that 5
is the dimension of the rank two matrix in three dimensions). However, the G

in (5.5) only satisfies 4 equalities. This suggests that inducing more equalities
on G for the symmetric alphabets E produces lattice solutions, even in the case
of lower rank, and results in very good solutions to (5.3). It should however
be emphasized that this is only a heuristic argument, and merely suggests a
method that can construct a finite codebook of precoders with large minimum
distances.

5.3 Least Number of Active Constraints in (5.3)

From Theorem 13, we can actually prove the following corollary regarding the
least number of active constraints in (5.3) (i.e., the least number of equalities)
that an optimal solution must have.

Corollary 4. If the optimal solution Go to (5.3) is of rank p, then at least
p(p+ 1)/2 constraints are active in R1(E).

Proof. Factorize G in (5.3) as G = Z
T

L
T

LZ, where L is a p×p matrix of rank
p and Z is a p × N matrix. Note that Z is now a real-valued matrix, not to
be confused with the unimodular matrix Z in (4.33). Hence, the optimization
problem in (5.3) can now be written as

min
U ,L,Z

tr(Z
T

L
T

U
T

S−2ULZ)

subject to

e
T

j Z
T

L
T

LZej ≥ 1, j = 1, . . . , |EN |.

(5.11)

Denote Lo and Zo as the optimal solution to (5.11), i.e., Go = Z
T

oL
T

oLoZo.
Inserting Zo into the objective function in (5.11), an optimization over U and
L is left. Theorem 13 shows that for any fixed Z, the objective function in

(5.11) is concave overGL = L
T

L. Moreover, the constraint region in (5.11), for
a fixed Z, is a finite Ryshkov polytope in p(p+1)/2 dimensions, but where the
alphabet is given by the vectors Zej , j = 1, . . . , |EN |. Thus, the optimal GLo is
inside this Ryshkov polytope. If GLo

would be or rank lower than p, then Go =

Z
T

oGLoZo is also or rank lower than p, contradicting the hypothesis of the
theorem. Hence, this implies that the optimal GLo

must be a full rank vertex
of this finite Ryshkov polytope, and thus satisfy at least p(p + 1)/2 equalities
in the constraint region of (5.11). Hence, this proves the corollary.
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Corollary 4 shows that the higher rank the optimal solution has, the more
equalities it satisfies in the constraint region. Moreover, it provides a lower
bound to the number of active constraints for the optimal solution. This sup-
ports the heuristic arguments in Section 5.2, which propose to look for solutions
to (5.3) that satisfy as many equalities as possible.

5.4 Finite Codebook of Lattice Precoders

Adhering to the structure of the optimal solutions in three dimensions, pre-
sented in Section 5.1, and the heuristic arguments in Section 5.2, we are in-
terested in finding lattice precoders of different ranks, which should be found
by enforcing enough equalities in R1(E). It is expected that the resulting pre-
coders will have large minimum distances, and it might be that they are optimal
for many S as was observed in Section 5.1; note, however, that the optimality
cannot be guaranteed. As the results in Section 5.1 show, the lower rank Gs
are also perfect lattices, as well as the full rank Gs. To enumerate the full rank
Gs for a certain alphabet, we use the lrs software. However, to enumerate the
lower rank lattices, we develop a novel method for that purpose.

Factorize a rank p < N lattice Gram matrix G as G = Z
T

L
T

LZ, with L

a full rank p× p matrix and Z an integer p×N matrix. The generator matrix
L is chosen as a generator matrix for a perfect lattice in p dimensions with

a minimum distance of 1, hence GL = L
T

L is a Gram matrix for a perfect
lattice. Next, we need to determine the integer matrices Z that give at least
K equalities in R1(E). Complying with the full rank case, where the optimal
solution satisfies N(N +1)/2 equalities, we will set K = Np−p(p−1)/2, since
that is the dimensionality of a rank p matrix. Note that Np − p(p − 1)/2 >
p(p+ 1)/2, hence this is a stronger requirement than the result in Corollary 4.

Each constraint e
T

j Z
T

GLZej ≥ 1 can be written in a vectorized form

e
T

j Z
T

GLZej = z
T

Kjz ≥ 1, j = 1, . . . , |EN |, (5.12)

where z = [z
T

1 . . . z
T

N ]
T

is a vectorization of Z, and Kj = Ej ⊙ GL, with

Ej = eje
T

j . Each Kj is an Np × Np matrix of rank p. Next, we factorize

each Kj as Kj = R
T

j Rj , where Rj is an Np × Np upper triangular matrix
of rank p. This can be done, by first finding the eigenvalue decomposition

of Kj , Kj = U jΣjU
T

j and letting T j =
√
ΣjU

T

j . Next, we perform a QR
factorization of T j , T j = QjRj , for some orthogonal Qj and upper triangular

Rj . Hence, Kj = T
T

j T j = R
T

j Rj . From this, each constraint in (5.12)
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becomes
z

T

R
T

j Rjz ≥ 1. (5.13)

If the kth constraint, 1 ≤ k ≤ |EN |, is active, this corresponds to finding those

integer vectors z for which z
T

R
T

kRkz = 1. Note that this would be a simple
sphere decoding algorithm if Rk was of full rank Np, however since every Rj is
of rank p, the classical sphere decoding algorithm cannot be applied. Instead,
we note the structure of eachRj . Let chol(G) denote the Cholesky factorization
of a positive definite matrix G. From the definition of Rj , it follows that each
Rj is of the form

Rj =

(
ej,1chol(GL) ej,2chol(GL) . . . ej,Nchol(GL)

0Np−p,p 0Np−p,p . . . 0Np−p,p

)

. (5.14)

Due to the symmetry of the error alphabet E , there are error vectors ej such
that the elements ej,l 6= 0 and ej,k = 0 for k 6= l (a coordinate vector). Let
e1 be the first coordinate vector, i.e., e1,1 6= 0, e1,k = 0, k > 1. If it would

hold that z
T

R
T

1R1z ≤ u1, where u1 is a given upper bound, then we can find
the p coordinates z1:p of z by running the sphere decoding algorithm with R1

and the upper bound u1. For each such decoded vector z1:p of p coordinates,

we let z = [z
T

1:p 01,Np−p]
T

and put z in a list Z0. Next, an error vector e2 is
chosen such that e2,1 6= 0 and e2,2 6= 0, but e2,k = 0 for k > 2. Multiplying
each vector zj in Z0 with R2 results in a vector vj . Now, for each such vj ,
we can decode the coordinates zp+1:2p by running the sphere decoder with R2

and providing it the sphere center −vj , along with a new upper bound u2.
Each newly decoded vector of p coordinates is combined with zj and put into

a new list Z1 as Z1 = Z1 ∪ {[zT

j,1:p z
T

p+1:2p]
T

01,Np−2p}. In the next step, we
choose the vector e3 with the first three coordinates non-zero, and continue
this process until all coordinates are decoded. At the end, a list ZN is obtained
with those z satisfying the upper bound uj at each step j. Finally, those z that
give less than K equalities in (5.13) are discarded. Hence, the main importance
in this approach are the upper bounds u0, . . . , uN−1. They are clearly related
to the minimum distance profile of the optimal solution, since they bound the
distance of the optimal solution for the different error vectors. Finding good
such upper bounds on the minimum distance are left for future research. The
discussed algorithm is summarized by the pseudo code in Table 5.1.
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Table 5.1: An algorithm that enumerates rank p perfect lattices of dimension
N , that are candidates for solving (5.3).

Algorithm for Enumerating Lattice Precoders

Input: A p-dimensional perfect form G, the

different Rj in (5.14) with ej containing j non-

zero elements, upper bounds u1, . . . , uN , and the

number of equalities K.

Output: The list G of N × N Gram matrices

corresponding to the perfect form G that

give at least K equalities in R1(E).

1. Initialize j = 0, Zj = {} and G = {}.

2. Set Zj+1 = {}. For each z = [z
T

1:jp 01,Np−jp]
T ∈

Zj , take Rj+1 and construct vj+1 = Rj+1z. De-
code the p coordinates zjp+1:(j+1)p of z by ap-
plying the sphere decoder, operating with the
sphere center −vj+1 and the upper bound uj+1.
For each newly decoded zjp+1:(j+1)p, let Zj+1 =

Zj+1 ∪ {[zT

1:jp z
T

jp+1:(j+1)p 01,Np−2p]
T}. Repeat

until all z in Zj have been traversed.

3. If j = N − 1, go to step 4, otherwise set j = j+1
and go to step 2.

4. Check if any of the vectors z in ZN violate the up-
per bound z

T

Rjz ≤ uN for some 1 ≤ j ≤ |EN |, or
give less thanK equalities in the system z

T

Rjz ≥
1, j = 1, . . . , |EN |. Exclude those z from the list
ZN . For each z in the resulting ZN , construct

the matrix Z and let G = G ∪ {ZT

GZ}. Exclude
elements from G by the majorization principle de-
scribed in Section 4.3.6. Return G.
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5.5 Numerical Results for Finite Alphabet Lat-

tice Precoders

In this section, we present information rate and SER simulations for the lattice
precoders that were found with the lrs software in [97], the lower rank lattice
enumeration algorithm in Table 5.1 and the quadratic programming formula-
tion for rank 1 in (5.7). Since (5.7) produces one global solution, the optimal
rank 1 precoder for a certain alphabet E and N is easy to find and does not
depend on the channel realization S. We investigate the following scenarios

• Scenario 1: N = 3, real-valued parallel Gaussian channels, with an error
alphabet EN

Bin coming from a binary constellation.

• Scenario 2: N = 3, real-valued parallel Gaussian channels, with an error
alphabet EN

4PAM coming from a 4PAM constellation.

• Scenario 3: N = 4, real-valued parallel Gaussian channels, with an error
alphabet EN

Bin coming from a binary constellation.

• Scenario 4: N = 4, real-valued parallel Gaussian channels stemming
from a complex-valued 2×2 Rayleigh fading MIMO model, with an error
alphabet EN

Bin coming from a binary constellation.

In all these scenarios, the noise is real-valued Gaussian noise with mean zero
and variance 1/SNR over each stream. The binary constellation is EN

Bin = {±1},
while EN

4PAM = {±3/
√
5,±1/

√
5}. Moreover, the SER is an average over all

channel realizations. We now present the sizes of the codebooks obtained from
lrs and the algorithm in Table 5.1 for the different scenarios.

• Scenario 1: The final codebook contains 8 lattice precoders. There are 3
of rank 3 and 4 of rank 2.

• Scenario 2: The final codebook contains 233 lattice precoders. There are
198 of rank 3 and 34 of rank 2.

• Scenario 3: The final codebook contains 50 lattice precoders. There are
26 of rank 4, 19 of rank 3 and 4 of rank 2.

Hence, the final codebooks are quite small for these dimensions and alphabets.
Figure 5.3 shows a SER simulation for Scenario 1. The codebook of 8

lattice precoders is compared with a random codebook of 8 precoders, a random
codebook of 64 precoders, the geometric mean decomposition (GMD) precoder
in [92] and no precoding. It is seen that the lattice precoder codebook improves
significantly upon the competing schemes. Moreover, increasing the size of the



148 MIMO Precoding

5 6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

 

 

8 Lattice precoders
GMD precoder
Uncoded
8 Random precoders
64 Random precoders

Figure 5.3: SER comparison for N = 3 with binary signaling. The comparison
is made between the codebook of 8 lattice precoders, two random codebooks of
8 and 64 precoders, respectively, the GMD precoder in [92], and no precoding.
There is a clear performance gain by using the lattice precoders.

random codebook from 8 to 64 precoders certainly improves its performance,
however as seen in Figure 5.3, the performance is still a loss compared to the
lattice precoder codebook.

Figure 5.4 shows a SER simulation for Scenario 3. The codebook of 233
lattice precoders again performs significantly better than a random codebook
of the same size and the GMD precoder. The non-precoding case is not shown,
since its loss is very big. In Figure 5.5, a SER simulation for Scenario 3 is
shown. Similar conclusions can be derived as with the previous cases, where
we notice that the gap between the lattice precoders and the other schemes is
even wider now.

Next, we turn to a 2 × 2 complex-valued Rayleigh fading MIMO channel
with 4QAM, as in Section 4.2.3. The two dimensional complex-valued model is
now extended to 4 real-valued dimensions over which precoding is performed,
which provides more degrees of freedom as argued in Section 4.3. This amounts
to precoding over a BPSK alphabet in 4 dimensions, and thus we can use the
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Figure 5.4: SER comparison for N = 3 with 4PAM signaling. The comparison
is between the codebook of 233 lattice precoders, a random codebook of 233
precoders, the GMD precoder in [92], and no precoding. Again, there is a
performance gain by using the lattice precoders.

lattice precoder codebook for this purpose; hence, this is Scenario 4 above. The
SER simulation is shown in Figure 5.6. The lattice precoding codebook of 50
precoders is compared to the optimal two-dimensional complex-valued precoder
in [67] and the GMD precoder. It is seen that the performance of the lattice
codebook is the same as of the optimal complex-valued precoder, and the GMD
precoder is once again far off in performance. Hence, in this case, the additional
degrees of freedom provided in 4 dimensional real-valued space do not have a
significant impact on the SER performance. However, this simulation shows
that the lattice precoding results in Section 4.2.3 can be improved significantly,
since now there are lattice precoders that avoid transmitting streams over weak
eigenmodes, which in general lowers the minimum distance. Hence, the lattice
precoders can perform as well as the optimum complex-valued precoder for
4QAM. More interestingly, even though the SER performance of the lattice
precoders is the same as of the optimal complex-valued precoder, it turns out
that for all the tested channels, the minimum distance of the lattice precoders is
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Figure 5.5: SER comparison for N = 4 and binary signaling. The comparison
is between the codebook of 50 lattice precoders, a random codebook of 50
precoders and another one of 400 precoders, the GMD precoder in [92], and
no precoding. Again, there is a clear performance gain by using the lattice
precoders.

equal to or larger than the the minimum distance of the optimal complex-valued
precoder. Namely, for those channels that result in an optimal full rank lattice
precoder, the minimum distance of the lattice precoder and the complex valued
precoder is the same. For channels that result in lattice precoders of lower
rank, the minimum distance of the complex valued precoders is less. Thus, the
optimal complex valued precoder produces a Gram matrix that is a full rank
vertex in Rλ(EBin), and for the channels that arise in the simulation, only one
vertex is optimal. However, as soon as they turn off transmision across weak
eigenmodes, the lower rank lattice precoders give a higher minimum distance.
On average, the minimum distance of the lattice precoders is 7% higher than
the optimal complex-valued precoder, and thus this slight gain does not result
in a significant SER gain. Nevertheless, this is of theoretical interest, since it
shows that the obtained lattice precoders truly operate close to the optimum.
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Figure 5.6: SER comparison for N = 4 and binary signaling, but for chan-
nels that arise from a 2 × 2 complex-valued MIMO model. The comparison
is between the codebook of 50 lattice precoders, the optimal complex-valued
precoder in two dimensions from [67] and the GMD precoder in [92]. Note
that the 50 lattice precoders operate as well as the optimal complex-valued
precoder, thus improving the performance in Section 4.2.3.

We move on to information rate curves for the obtained precoders. From the
results in [83], we expect high information rates as the SNR gets larger, since
precoders that maximize the minimum distance also maximize the information
rate in the high SNR regime. Figures 5.7, 5.8 and 5.9 show ergodic information
rates for Scenario 1, 2 and 3, respectively. The information rates of the lattice
precoders are compared with 1) capacity, i.e., real-valued Gaussian symbols
with waterfilling, 2) constrained capacity with Gaussian symbols and uniform
power distribution, 3) a unitary precoder that equals the DFT matrix, which
spreads the information bits evenly across the channel, 4) no precoding. As
seen, in all cases, the information rate of the lattice precoder codebook is high,
and comes quite close to the capacity for moderate and low SNRs as well.
At higher SNRs, it converges quickly to the maximum limit compared with
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Figure 5.7: Ergodic information rates for N = 3 and binary signaling. The
comparison is between the capacity, the constrained capacity, the 8 lattice
precoders, a DFT precoder and no precoding. The information rate of the
lattice precoders is close to capacity and converges quickly to the maximum of
3 bits per channel use.

the unitary precoders, and this behavior is expected as previously discussed.
Thus, beside providing strong SER results, the obtained lattice precoders also
produce high information rates, and this is a very desirable property.

In Figure 5.10, an interesting observation is made. It shows the information
rate for N = 4 with binary signaling across a fixed channel H, for different
SNRs. For this particular H, the information rate of the lattice precoders
is extremely close to the capacity at low and moderate SNRs. This is an
appealing behavior, which shows that even in the low SNR regime, there is a
possibility to reach close to optimal rates across certain channels by using only
a small set of precoders which also provide very good SER performance. Such
channels also exist for N = 3. However, Figure 5.11 shows another channel,
where the information rate of the lattice precoders is further away from the
capacity than in Figure 5.10. The average performance is of course dictated
by the ergodic capacity. Nevertheless, it is interesting that the performance of
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Figure 5.8: Ergodic information rates for N = 3 and 4PAM signaling. The
comparison is between the capacity, the constrained capacity, the 233 lattice
precoders, a DFT precoder and no precoding. The information rate of the
lattice precoders is again quite close to capacity and converges quickly to the
maximum of 6 bits per channel use.

precoders maximizing the minimum distance is also very good at low SNRs for
certain channel outcomes.

As a closing remark, we note that in all simulations, it never happened
that the lattice precoder codebook had inferior minimum distance to any of
the other schemes presented herein. Thus, it is believed that these precoders
truly operate close to the upper limit (in terms of minimum distance). Note
also that the GMD precoder is far away in performance compared to the other
schemes. The main reason for this is that the GMD precoder always transmits
across all the channel eigenmodes, which thus can produce small distances in
case of ill-conditioned channels. However, as shown in Section 4.3.7, the GMD
precoder provides close to optimal minimum distances for large alphabets (i.e.,
for those cases when it is never favourable to turn off weak eigenmodes, since
the alphabet is large). Hence, a method to improve the GMD is also to include
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Figure 5.9: Ergodic information rates for N = 4 and binary signaling. The
comparison is between the capacity, the constrained capacity, the 50 lattice
precoders, a DFT precoder and no precoding. Once again, the information
rate of the lattice precoders is close to capacity and converges quickly to the
maximum of 4 bits per channel use.

bit loading, which would provide it with a well-conditioned channel and thus
improve its performance.

5.6 Conclusions

This chapter shows that utilizing the lattice theoretic techniques developed in
Chapter 4, it is possible to construct lattice precoders that provide excellent
SER performance for finite alphabets as well. Heuristic arguments are pre-
sented that explain why this happens, and they suggest to look for Gram ma-
trices of different rank that have many active constraints in the finite Ryshkov
polytope. This property is satisfied by lattice precoders of degenerate rank.
By studying the optimal solution in small dimensions, it is realized that lattice
precoders are in many cases optimal and in other cases close to optimal. A



Chapter 5. Applications to Finite Alphabets 155

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8

SNR (dB)

In
f. 

R
at

e

 

 

50 Lattice precoders
DFT precoder
No precoding
Const. Capacity (no WF)
Capacity (WF)

Figure 5.10: Information rate curves for N = 4 and binary signaling. Note how
close the information rate of the lattice precoder codebook is to the capacity,
even at low SNRs.

novel method to enumerate lattice precoders of degenerate rank, that turn off
weak eigenmodes of the channel, is also presented. It is demonstrated by SER
and information rate simulations that the obtained finite codebook performs
very well.
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Figure 5.11: Information rate curves for N = 4 and binary signaling. Note how
close the information rate of the lattice precoder codebook is to the capacity,
even at low SNRs.



Chapter 6

Limited Feedback

Precoding With MMSE

Receiver

In this chapter, it is assumed that the transmitter (Tx) has no knowledge about
the channel H, while the receiver (Rx) has perfect knowledge of H. The Tx
CSI is more challenging to obtain and several levels of CSI can be assumed.
The school of thought in this chapter is to assume a digital finite rate zero-
error, zero-delay feedback link from the Rx to the Tx. A very popular method
in this case is to have a finite set (codebook) of precoders that is known to both
Rx and Tx, and to let Rx feed back the index of the precoder to use during
a transmission. This is commonly referred to as limited feedback precoding.
Unlike with perfect Tx CSI, the optimal codebook to use for this setup is not
known to date.

Limited feedback for MIMO has been extensively studied in [103] - [111] and
references therein. Performance metrics have been capacity (or outage prob-
ability) [105, 108], received SNR [104], minimum distance [112], BER [110],
MMSE [107], etc. However, none of the aforementioned works study beam-
forming with full spatial multiplexing. Also they do not include power-loading,
except for the work in [107, 108]. In order to facilitate analytic treatment
of codebook designs, random beamforming codebooks have been considered
in [106]. The outcome is that the random beamforming codebook approach
performs well in the large system and codebook regime. Other works focus
on methods to construct deterministic precoder codebooks with better perfor-
mance [105, 107, 108, 109, 110, 111].
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There are many ways to construct a codebook of precoders. One alternative
is to constrain the codebook to unitary precoders (beamforming), i.e., precoders
that are unitary matrices. One reason for this is that the peak to average
power ratio (PAPR) at each transmit antenna is lower than for precoders with
power-loading, hence, rendering it more amenable for practical implementation.
The other precoding alternative is to have general precoding matrices subject
to a power constraint (the unitary precoders immediately fulfill this power
constraint). At first it may seem obvious that non-unitary precoding must
be better than unitary since power-loading can boost the performance. By
power-loading is meant that the columns in the precoder are not forced to have
unit energy. Non-unitary precoding being better than unitary precoding is not
necessarily true - if the precoding is unitary, then a re-enumeration operation of
the antenna elements at the Rx can be done. The re-enumeration leads to gains
in performance which could potentially be more significant than the power-
loading gain. The main contribution of this chapter compared to prior work
in the field is the observation and investigation of the antenna re-enumeration
and to conduct a comparison between unitary and non-unitary precoding. A
linear MMSE (Wiener filter) receiver is explicitly targeted. For this receiver
structure, the focus is on the concept of Schur-convexity in [49] in order to
construct good finite codebooks, which has not been explicitly addressed in
the references. An additional contribution is a novel algorithm on constructing
a unitary codebook based on the re-enumeration gain of the antenna elements.
Moreover, it is shown by simulations that for rather small unitary codebooks, a
random precoder codebook construction can perform as well as more advanced
constructions. Additionaly, we present a method to construct a good non-
unitary codebook that improves upon the random construction for smaller
codebook sizes.

The chapter is organized as follows. Section 6.1 is split into three sections.
Section 6.1.1 describes the optimal precoder for the case of perfect channel
knowledge at Tx and Rx. Section 6.1.2 considers unitary precoding and intro-
duces different codebook design methods for unitary precoders. Section 6.1.3
focuses on codebook design for non-unitary precoding. Section 6.2 presents
receiver test results for the different schemes and discusses the results. Section
6.3 finally concludes the chapter.

6.1 Precoder Design

In Section 6.1.1, the structure of the optimal precoder for an MMSE receiver
is described, given in [49]. Section 6.1.2 describes the unitary codebook de-
sign that is used later. Section 6.1.3 describes different methods of designing
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codebooks where the precoders also perform power-loading.

6.1.1 Optimal precoder - perfect Tx CSI

The derivation of optimal precoders (denoted here as F opt) for perfect Tx CSI
and MMSE receivers is given in [49] - a large number of different performance
measures are treated. More precisely, the performance measures are divided
into two parts: Schur-convex and Schur-concave functions of the MSE values.
For Schur convex functions, the optimal precoder takes the form

F opt = V DoptQ, (6.1)

where, as before, H = USV ∗ is the SVD decomposition of H, and the ele-
ments dopt,j in the diagonal matrix Dopt are dopt,j = max(µ/

√
sj,j−1/

√
sj,j , 0)

where µ is such that tr(D2
opt) = N SNR. Q is a unitary matrix where each

element has the same magnitude. These matrices are often called Hadamard
matrices in the literature.

Using F opt, the MSE matrix in (2.39) reduces to

E{(x̂− x)(x̂− x)∗} = Q∗(I +D2
optS

2)Q. (6.2)

From the structure of Q, it follows that the diagonal elements in Eopt (the
MSE values) are equal. It is seen that the optimal precoder accomplishes this
by multiplying out V from the channel and applying the Q matrix at the end.
The power-loading matrixDopt is used to minimize the sum of these equal MSE
values, and is derived by solving a waterfilling problem in the singular values
S of the channel. Hence the optimal precoder produces exactly the minimal
solution of a Schur-convex function of the MSE’s. Note that if no power-loading
is used in the optimal precoder, i.e. Dopt = IN×B , then the resulting unitary
precoder is simply making the MSE values equal, while not changing their total
sum. Since a Schur-convex function of the MSE’s is minimized when all the
MSE values are equal, it is easily realized that this unitary precoder is the
optimal precoder among all unitary precoders for Schur-convex functions of
the MSE’s. Its structure is

F opt,uni = V Q. (6.3)

As shown in [49], the average BER is a Schur-convex function of the MSE
values for a sufficiently high SNR (a rule of thumb given in [49] is an SNR such
that BER ≤ 2 · 10−2). Hence one optimal precoder for average BER is of the
form given in (6.1), while one optimal unitary precoder is of the form in (6.3).
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6.1.2 Limited feedback precoding - unitary codebook

The literature on unitary codebook precoder design for different performance
measures is vast. The seminal work was done in [103] and [109], where it
is shown that designing unitary codebooks is equivalent to packing unitary
subspaces, which is known in the literature as Grassmanian codebook design.
In [109], several different distance measures between the unitary subspaces were
proposed with which the packing was performed. The different packings were
produced with an algorithm with origins in [113]. In [114] a more systematic
algorithm for constructing unitary precoders is presented, which utilizes the
generalized Lloyd’s algorithm and where the measures used in the algorithm
are the ones from [109]. The ideas in [109] have also been applied to linear
decoding. In [110], the authors use the chordal distance between subspaces
together with Lloyd’s algorithm to find good packings for the ZF receiver and
the MMSE receiver. They also show that the unitary codebook should take
into account the Hadamard matrix. More specifically, it is shown that in order
to decrease BER, the optimal unitary precoder (assuming perfect CSI at Tx)
should be of the form V opt = V Q for some channel outcomes H, where Q is a
Hadamard matrix, while for some channel outcomes Q should not be included.

A problem with prior proposed codebooks is that they are only constructed
for the case when not using full spatial multiplexing, i.e., when the unitary
matrix is of dimension N × B and B < N . The distance metrics in [109] are
meaningless for full spatial multiplexing as well as for subsequent work based
on [109]. In [111], a way to construct a codebook of N ×N unitary matrices is
presented. This method will be implemented here for comparison. In [107], a
distance measure between N ×N unitary matrices is given, which is originally
proposed in [113]. Hence the results derived herein should be compared to
those in [107] as well. However, due to insufficient description of the codebook
construction in [107], these results could not be replicated.

Next we look into the design methods for unitary codebook construction
that will be compared in the numerical results section. First, a strength-
ened version of the method in [111] is developed. Assume a codebook Cuni =
{U1, . . . ,UN} of N unitary precoders. As discussed in the previous subsec-
tion, an optimal unitary precoder is of the form in (6.3), which gives the MSE
matrix in (6.2) (where Dopt = IN×B). However, since we are limited to using
Cuni, the precoder is constructed as F uni = U jQ. This gives the MSE matrix

E{(x̂− x)(x̂− x)∗} = Q∗U∗
jV (I + S2)V ∗U jQ. (6.4)

Since an MSE matrix as in (6.2) is strived for, it is desirable to use a U j such
that V ∗U j is close to the identity matrix, in which case (6.4) will be close to
(6.2). This is the same as trying to approximate the precoder in (6.3) as close
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as possible. However, since there is no power-loading matrix D as in (6.1), it
is unnecessary to only strive for an optimal unitary precoder of the form in
(6.3). As mentioned at the end of Section 6.1.1, the precoder in (6.3) is one
optimal unitary precoder. F opt,uni in (6.3) is such that the channel-precoder
product is HF opt,uni = USIQ, and the resulting MSE values will be equal.

But they will also be equal if HF = USIPQ, where IP is a matrix obtained
by permuting the columns of the identity matrix I in some way. Hence all the
N ! possible permutations of I will yield MSE values that are equal. Thus, the
corresponding precoders F give the same result and are all optimal. For large
MIMO systems, N ! is large, and hence taking into account which permutation
matrix that is approximated will considerably improve the performance. Note
that if power-loading is present, this would often result in an unfavourable
permutation of the power-loading, which would increase the MSE values and
decrease the performance.

Denote all permutations by I1, I2, . . . , IN !. When there can be no ambigu-
ity, we shall use I instead of I1. Figure 6.1 demonstrates the above discussed
gain for the simple 1 × 1 MIMO case. The channel unitary matrix V is now
simply a uniformly distributed vector on the unit circle. Assume that a code-
book of two precoders U1, U2 should be designed. The codebook should be
designed such that the channel-precoder product V ∗U j should be as close to
the I2 axis as possible (note that the permutation matrix I2 corresponds to
an axis for the simpe 1 × 1 MIMO case); this should hold for all V . Clearly,
one optimal placement of the two vectors is to place them as in Figure 6.1 in
order to cover channel vectors that appear in one of the four regions marked
by the dashed lines in the figure. All other optimal vectors are obtained by a
rotation of U1 and U2; in other words, the two optimal vectors must have a
scalar product that is 0. However, the channel-precoder product can just as
well be close to I1 (the other axis), which would simply lead to a rotation of
the original channel-precoder product. Clearly U1 can be discarded because
U1 and U2 cover the same space. Instead, it is then better to use the vector U
together with U2, which gives a better coverage of the unit circle. In general,
any two optimal vectors are separated by 45◦ (the scalar product is 1/

√
2).

A similar argument can be applied to the 2 × 2 MIMO case. If V ∗U j

approximately equals I2 instead of I1, the physical interpretation is that the
streams from the Tx have been permuted. The receiver can view this as a
re-enumeration of the antenna elements, and the performance is the same as if
V ∗U j is close to I1. When only seeking for a channel-precoder product close
to identity I, the optimal two precoders are of the form U1 = V , U2 = V I2,
where V is an arbitrary unitary matrix and I2 is obtained by swapping the
two columns of the 2 × 2 identity matrix. The scalar product between U1

and U2, defined as |tr(U∗
1U2)|, is then 0. This corresponds to a packing as
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Figure 6.1: Packing vectors for the simple 1x1 MIMO case.

in Figure 6.1. By running the unitary precoder packing algorithm from [111],
which will be explained shortly, we exactly get this solution, while Algorithm
1 below gives two matrices with scalar product equal to

√
2.

Next, a way to measure distance between a unitary matrix Q and a permu-
tation matrix Ij is needed. Define the following function:

du(X, Ij) , ‖|X| − Ij‖. (6.5)

Here |X| is the absolute value of each element in matrix X. Observe that the
function du(·, ·) does not correspond to a valid metric. However, for notational
convenience, (6.5) is refered to as the distance between X and Ij . Plugging
X = V ∗U into (6.5) and some manipulations give

du(V
∗U , Ij) = tr(|V ∗U ||V ∗U |∗ − |V ∗U |(Ij)

∗

−Ij |V ∗U |∗ + I)

= 2N − tr(|V ∗U |(Ij)
∗+Ij |V ∗U |∗). (6.6)

From this form, it is seen that the distance measure in [111] is the same as in
(6.6) for the special case when Ij = I. It is also seen that minimizing (6.5)
is the same as maximizing the sum of the absolute values of the elements in
X at positions indicated by the 1s in Ij . Hence, (6.5) is an intuitive way to
measure how close X is to Ij , up to a rotation that does not affect the MMSE
performance.

Assume we have a unitary codebook Cuni = {U1, . . . ,UN}. For every uni-
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tary matrix U j in the codebook, define the set

TUj ,Ik
= {V : du(V

∗U j , Ik) ≤ du(V
∗U l, Im),

l 6= j, m 6= k}. (6.7)

This is the set of all unitary matrices V that are closest to Ik if multiplied with
U j from the right. So every precoder U j has N ! of these sets, each containing
V that are closest to U j and the corresponding permutation matrix. Based on
these observations, it is possible to formulate a novel algorithm to construct a
set Cuni = {U1, . . . ,UN} of N unitary matrices. Fix a positive integer p in ad-
vance. It has the setup of Lloyd’s algorithm with clustering, and goes as follows:

Algorithm 1

1. (Initial): Put j = 1 and generate an initial set of N unitary matrices
U

j
1,U

j
2, . . . ,U

j
N .

2. (Clustering): Generate a new unitary matrix V from the channel. Find
(U j

m, In) = arg min
U

j
k,Il

du(V
∗U j

k, I l) and place V in the set T
U

j
m,In

. Re-

peat this step for many channel realizations.

3. (Discard): Keep only those sets T
U

j
m,In

for which n = p and discard the
rest.

4. (Centroid): For each set T
U

j
m,Ip

, calculate the unitary centroid matrix

Wm,p as

Wm,p = arg min
Ŵm,p

E{du(V ∗Ŵm,p, Ip)} (6.8)

5. (Update): Set j=j+1 and U
j
k = W k,p. Return to 2.

The algorithm in [111] is similar to Algorithm 1, but there is no Discard
step, and there is only one permutation matrix, namely the identity matrix
I. Hence, every precoder has only one set TUj

for each precoder U j . Some
comments on Algorithm 1 are necessary. In the Clustering part, one simply
generates a unitary matrix from the channel and places it in the set TUj ,Ik

,
i.e., to the unitary matrix U j and permutation matrix Ik for which it comes
closest to. In the Discard step, for every precoder U j , only one set is kept. In
this case, it is decided to keep the same set for all precoders, hence the usage
of the integer n. The Centroid step calculates a new unitary matrix that is
closest (on average) to the unitary matrices in the set TUj ,Ik

by solving the
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minimization problem in (6.8). Since it is very hard to find an exact solution,
a suboptimal solution is constructed that follows the method in [111], and is
outlined here. From (6.6), we see that solving (6.8) is equivalent to solving

W = arg max
Û

∗
Û=I

tr(|V ∗Û |(Ip)
∗ + Ip|V ∗Û |∗). (6.9)

Put Û = W̃ Ip, where W̃ is a unitary matrix. Then (6.9) becomes a maxi-

mization problem over W̃

Ŵ = arg max
W̃

∗
W̃=I

tr(|V ∗W̃ |+ |V ∗W̃ |∗)

= arg max
W̃

∗
W̃=I

N∑

k=1

|v∗
kw̃k|, (6.10)

where vk is the kth column in V and w̃k the kth column in W̃ . Hence,
the original solution W in (6.9) is obtained from the solution in (6.10) as

W = Ŵ Ip. Thus, it is of interest to find a suboptimal solution to (6.10). By

relaxing the constraint that W̃ must have orthogonal columns to just having
columns with unit length, it is seen from (6.10) that the minimization problem
is then independent for each column w̃k, and thus each term in the summation
in (6.10) can be maximized separately from the others. Hence, the following
problem should be solved

min
‖w̃k‖=1

E{|v∗
H,kw̃k|2}. (6.11)

It is simple to show that the solution to (6.11) is the eigenvector of the matrix
E{vH,kv

∗
H,k} corresponding to the largest eigenvalue. Thus, there are N unit

vectors w̃1, . . . , w̃N , and we construct a matrix W̃ u with them. Since W̃ u is
not a unitary matrix and thus not a solution to (6.10), simply let Ŵ be the uni-

tary matrix closest to W̃ u in Frobenius distance: Ŵ = argminZ∗Z=I ‖W̃ u −
Z‖. The solution to this minimization problem is Ŵ = XY , where W̃ u =
XΣY , the SVD decomposition of W̃ u.

The next strategy that is studied is random unitary precoding.

Algorithm 2

1. For every channel realization, generate randomly N unitary precoders
U1, . . . ,UN .

For Algorithm 1 and 2, the receiver has the same selection criteria to find the
best precoder in the codebook. The index I to feed back to Tx is determined as
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Unitary Rx Selection Criteria

For each channel realization H, find the feedback index B as

I = argmin
k

min
l
du(V

∗Uk, I l). (6.12)

For the algorithm in [111], the Rx selection criteria is the same except that
I l = I, ∀l, since only the distance to I is measured.

We close this section with a remark on the unitary precoders obtained from
Algorithm 1 and 2. It will be demonstrated in Section 6.2 that a random
codebook performs as well as the codebook obtained from Algorithm 1 for
not so large codebook sizes. The reason for this is that there will be random
samples of the unitary space that come as close to some permutation Ij (note
that it does not matter which Ij it comes close to since the improved Unitary
Rx Selection Criteria is used) as the codebook obtained from Algorithm 1.
The simulation results in Section 6.2 show that a codebook of 16 precoders is
sufficiently large to get the same performance of the two algorithms, which thus
facilitates the codebook design of unitary matrices, since a random codebook
construction is also efficient. However, for smaller codebooks, a packing gain
is indeed obtained by the codebook resulting from Algorithm 1.

6.1.3 Limited feedback - non unitary precoding

In this section, we use Lloyd’s algorithm to construct precoders that also per-
form power-loading. Due to the power-loading, the distance measure (6.5)
needs to be replaced. As noted in Section 6.1, BER is a Schur-convex function
of the MSE’s for high SNR values. Hence it is desirable to minimize the MSE’s.
There are many different ways to measure the MSE values, but here the focus is
on the sum of them, that is, the trace of the MSE matrix. Hence, the following
metric is defined

dnu(H,F ) = tr((I + F ∗H∗HF )−1). (6.13)

Other measures that are common are the product of the MSE values, the
determinant of the MSE matrix, and also maximizing the smallest eigenvalue
of the channel H. These measures have been tested in Algorithm 3 below, but
trace of the MSE matrix turned out to be superior. The scheme goes as follows:

Algorithm 3

1. (Initial): Put j = 1 and generate an initial set of N precoder matrices
F

j
1,F

j
2, . . . ,F

j
N .
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2. (Clustering): Generate a new channel matrix H.
Find

j = argmin
k
dnu(H,F k)

and place H in a set Rj .

3. (Centroid): For each set Rj , calculate the centroid channel matrix Hj
c

as
Hj

c = argmin
Hj

EH∈Rj
{‖H −Hj‖} (6.14)

Construct the new centroid precoder as F j
c = V j

cDcQ, where Hj
c =

U j
cSc(V

j
c)

∗ and Dc is the waterfilling of the singular values Sj
c given in

(6.1).

4. (Update): Put j = j + 1 and let F j = F j−1
c . Return to step 2.

This is a joint optimization over the power-loading and the unitary matrix
in the precoders. The algorithm is simple and converges to a local optima
after 3 – 4 iterations. In the Centroid step, the solution to (6.14) follows from
Lemma 2.

Lemma 2. The solution to minHc
EH{‖H −Hc‖} is Hc = E{H}.

Proof. Let E{H} = Hm. It follows that

E{‖H −Hc‖ = E{tr((H −Hc)(H
∗ −H∗

c))}
= E{tr((H −Hm +Hm −Hc)(H

∗ −H∗
m +H∗

m −H∗
c))}

= tr(E{(H −Hm)(H∗ −H∗
m)})+

tr(E{(Hm −Hc)(H
∗
m −H∗

c)})
≥ tr(E{(H −Hm)(H∗ −H∗

m)}), (6.15)

with equality when Hm = Hc.

Algorithm 3 was run for many different starting points, and interestingly
enough, it converges to a set of precoders that have equal power-loading ma-
trices. This effect is more and more evident when increasing the dimension of
the system. Also, the sets Rj contain equally many channel matrices; hence,
the precoders are uniformly placed in the space of N × N complex matrices,
with respect to the distance measure in (6.13).

The next strategy studied is a random precoding codebook.

Algorithm 4: For every channel realization, randomly generate N pre-
coders F 1, . . . ,FN . This is done by generating N random channel realizations
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H1, . . . ,HN . Then precoder F j is constructed as F j = V Hj
DjQ, where Dj

is the waterfilling solution to the singular values in channel Hj .

The receiver has the following selection criteria for Algorithm 3 and 4.

Non-unitary Rx Selection Criteria: For each channel realization H, find
the feedback index B as B = argmink dnu(H,F k).

6.2 Numerical Results

In this section we present SER simulations over Rayleigh fading MIMO channel
gains for the different algorithms. They are compared to each other, and also
with the algorithm proposed in [111], explained in the previous section. No
simulation results for Algorithm 2 are included, since it turns out that using
precoders produced by Algorithm 2 together with the Rx Selection Criteria
(6.12), the same SER performance is achieved as when using precoders resulting
from Algorithm 1 or the precoders from [111]. This behavior is expected for a
sufficiently large codebook as was discussed in Section 6.1.2, and the simulation
figures in this section show that a codebook of only 16 precoders is enough
to get the same performance. Hence, in this case, performance gains arise
only from the unitary Rx selection criteria in (6.12), since it is a method that
improves any unitary codebook. This is an interesting result, since it shows
that a random unitary codebook construction is a good method to construct
unitary codebooks. For codebook sizes smaller than 16, Algorithm 1 achieves
an improved packing over a random unitary codebook.

All the figures present SER simulations for different MIMO systems, code-
book sizes and data alphabets. In the figure legends, ”Algorithm in [111]”
refers to precoders constructed by the algorithm in [111] and that use the Rx
selection criteria therein, explained right after (6.12). The following can be
concluded from the figures. The results differ for different alphabet sizes, so
first we consider 4-QAM. For 4-QAM, Figures 6.2 - 6.8 show that there is a
clear gain (about 0.5 dB) to use Unitary Rx Selection Criteria (6.12) than us-
ing the selection criteria in [111]. Also, the performance is significantly better
than using no precoding. When it comes to non-unitary precoding, for a small
codebook size, precoders from Algorithm 3 significantly outperform precoders
generated by Algorithm 4 (around 0.5 dB). However, when the codebook size is
increased (to 128 or 256 precoders), Algorithm 4 performs as well as Algorithm
3. As noted in Section 6.1.2, it has also been mentioned in [110] that random
precoding performs well. However, that was for unitary precoding, while the
figures here show that this also holds for non-unitary precoding.
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Figure 6.2: 3× 3 MIMO, 256 precoders and 4-QAM.

What is also important to note is that unitary and non-unitary precoding
have close to equal performance for a small codebook size (16 precoders or
less). When increasing the codebook size, non-unitary precoding performs
better than the optimal unitary precoder; hence codebooks with power-loading
are very beneficial when it comes to SER.

For 16-QAM, the story is a bit different. Figure 6.8 shows that the gain from
using unitary precoding compared to no precoding is not significant anymore
(not even by using optimal unitary precoding). There is a clear improvement
in using power-loading codebooks. Also, Algorithm 4 performs at least as well
as Algorithm 3 for a large codebook size, while for a smaller codebook (16
precoders), Algorithm 3 is better than 4.

6.3 Conclusion

The performance of limited feedback precoding with unitary and non-unitary
precoder codebooks and an MMSE receiver was investigated. Different algo-
rithms to construct the two types of codebooks were investigated and compared
with each other. Unitary precoding has an inherent gain by having the free-
dom to re-enumerate the streams at Rx and by this improve the MSE values.
This is possible for any unitary codebook and is a significant gain compared to
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Figure 6.3: 3× 3 MIMO, 16 precoders and 4-QAM.

the selection method in [111] as demonstrated in the simulations. Moreover, it
has been argued and shown by simulations that random unitary precoders per-
form as well as more advanced constructions. The simulations also show that
non-unitary codebooks significantly outperform unitary ones for large code-
book sizes, while for smaller sizes, the performance is the same. Also, in the
large codebook regime, random non-unitary precoding performs as well as non-
unitary precoding steming from a simple packing algorithm, while for smaller
codebook sizes, the packing has a significant gain. The non-unitary packing
exhibits an interesting structure: the resulting precoders have the same power-
loading. For larger alphabet sizes, unitary precoding yields small performance
gains, while non-unitary precoding still performs very well.
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Figure 6.4: 4× 4 MIMO, 128 precoders and 4-QAM.
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Figure 6.5: 4× 4 MIMO, 16 precoders and 4-QAM.
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Figure 6.6: 3× 4 MIMO, 16 precoders and 4-QAM.
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Figure 6.7: 3× 4 MIMO, 256 precoders and 4-QAM.
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Figure 6.8: 4× 4 MIMO, 128 precoders and 16-QAM.



Chapter 7

Future Work

The main result in Part II is the insight on the behavior of linear precoders
that maximize the minimum distance between the received signaling points
over linear channels. This is something that has been a subject of research for
many decades, and is also of interest for practical applications. Part II in this
thesis completely explains the behavior of these linear precoders once the sig-
naling alphabet becomes large. Among other things, it shows that construction
of optimal minimum distance precoders is in essence a discrete optimization
problem for large alphabets. It is however well-known from before that this
problem is NP-hard to solve. Moreover, even if it is discrete, it becomes un-
tractable for larger dimensions: Enumerating all possible solution candidates is
essentially impossible, even if it is done off-line. Hence, future work should con-
sider efficient suboptimal solutions to this problem, that still have acceptable
performance. The work in Part II shows that the main challenge in construct-
ing the optimal precoder for dimensions N up to 8, for a certain channel, is
equivalent to finding the optimal basis vectors (i.e., the optimal unimodular Z
matrix) of a perfect lattice: If this basis would somehow be known before hand,
constructing the optimum precoder for small enough dimension is then a rather
easy task. Thus, a possible future direction is to get good estimates on Z. It
has already been shown in Section 4.3.7 that the GMD precoder produces a
good estimate of Z, but obtaining this Z from the GMD precoder is also an
NP-hard problem. Hence, other suboptimal constructions of Z are therefore
needed. One possible method is the iterative optimization presented in [79],
that now could be used in combination with perfect lattices.

Beside the large alphabet limits, the work in Part II shows that lattice
precoders also perform very well for small alphabets. The problem is in a way
divided into finding precoders of full rank and degenerate rank. For full rank
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precoders, the problem is again about finding vertices in a polytope, but now
in a finite Ryshkov polytope. It was observed by running the lrs software
in [97], that these vertices are still perfect lattices even for finite alphabets.
However, this does not have to hold in higher dimensions, and future work
should focus on classifying the vertices of the finite Ryshkov polytope, to see
whether some of its vertices represent non-perfect lattices. For degenerate rank
precoders, a novel method was developed in Part II that finds lattice precoders
of degenerate rank. It has been demonstrated through simulation that it is
important to include these precoders into the finite codebook, since they avoid
transmission across weak eigenmodes. Even though these precoders can be
found off-line, just as the full rank vertices, this becomes a more complex task
for larger alphabets (note however that the larger the alphabet, the less these
precoders will occur as optima). Therefore, it is again of need to find good
suboptimal constructions even for this case.

As demonstrated by the information rate simulations, the minimum dis-
tance precoders converge quickly to the maximum information rates with in-
creasing SNR. Moreover, it was seen that for some channels, they perform very
close to the capacity even in the low SNR regime. More specifically, there
are certain channels for which the lattice precoders reach the capacity at low
SNRs. Characterization of these channels is of importance, since that could
give insight in how to close the gap to the capacity even for channels where this
currently does not happen. A possible method of approach is to combine the
strength of the minimum distance precoders in the high SNR regime, together
with the strength of the Mercury/Waterfilling technique at low SNRs. This
could result in efficient precoding methods that come very close to capacity
even for small alphabets.
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