
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Instructing Industrial Robots Using High-Level Task Descriptions

Stenmark, Maj

2015

Link to publication

Citation for published version (APA):
Stenmark, M. (2015). Instructing Industrial Robots Using High-Level Task Descriptions. [Licentiate Thesis,
Department of Computer Science].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/2c8481d0-f0a3-4fcf-8f5c-9825479a190f

Instructing Industrial Robots
Using

High-Level Task Descriptions

Maj Stenmark

Licentiate Thesis, 2015

Department of Computer Science
Lund University

Instructing Industrial Robots
Using

High-Level Task Descriptions

Maj Stenmark

Department of Computer Science
Lund University

ISSN 1652-4691
Licentiate Thesis 1, 2015

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: maj.stenmark@cs.lth.se
WWW: http://cs.lth.se/maj_stenmark

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2015
c⃝2015 Maj Stenmark

Abstract

With more advanced manufacturing technologies, small and medium sized enter-
prises can compete with low-wage labor by providing customized and high quality
products. For small production series, robotic systems can provide a cost-effective
solution. However, for robots to be able to perform on par with human workers
in manufacturing industries, they have to become flexible and autonomous in their
task execution and swift and easy to instruct. This will enable small businesses
with short production series or highly customized products to use robot coworkers
without consulting expert robot programmers. The objective of this thesis is to
explore programming solutions that can reduce the programming effort of sensor-
controlled robot tasks. The robot motions are expressed using constraints, and a
number of simple constrained motions can be combined into a robot skill. The
skill can be stored in a database together with a semantic description, which en-
ables reuse and reasoning. The main contributions of the thesis are 1) develop-
ment of ontologies for robot devices and skills, 2) a user interface that provides
programming support for task descriptions in unstructured natural language and 3)
an implementation where low-level code is generated from the high-level descrip-
tions. The resulting system greatly reduces the number of parameters exposed to
the user. These parameters are described on a semantic level, which means that
the same skill can be used on different robot platforms. The research is presented
in four peer-reviewed papers. The first covers knowledge-based instruction and
the system architecture. The two following papers describe the natural language
programming feature of the system as well as a description of the user interface.
The fourth and last paper describes the code generation step, thus connecting the
high-level language instructions to real-time executable code.

i

Acknowledgements

I owe my deepest gratitude to my supervisor Prof. Jacek Malec for his continuous
support during my PhD study, for his patience, encouragement and knowledge. I
am also indebted to my co-supervisor Klas Nilsson, whose energy and many ideas
is a great inspiration. This Licentiate thesis would not have been possible without
the effort and contributions from my colleagues in the PRACE and ROSETTA
projects, it has been an honor for me to work with you. I also want to thank
my coworkers at the RobotLab and at the Computer Science department for their
invaluable help, feedback and many fascinating discussions. Not to forget their
ability to keep a positive attitude during late night demo preparations.

I also want to thank my family and friends for their emotional support and for
proofreading my papers, especially Jonas Linder for his TEX-support. Finally, I
want to thank Daniel Tegnered, for an inspiring collaboration in an ongoing longi-
tudinal psychological study and for providing material for this thesis.

Maj Stenmark
Lund, February, 2015

iii

List of Publications

List of Included Publications
The thesis is based on the following publications:

Paper I Maj Stenmark and Jacek Malec. Knowledge-Based Instruction of
Manipulation Tasks for Industrial Robotics. Robotics and Com-
puter-Integrated Manufacturing, vol. 33, pages 56–67, 2015.
DOI: 10.1016/j.rcim.2014.07.004.

Paper II Maj Stenmark and Pierre Nugues. Natural Language Programming
of Industrial Robots. In Proc. of The 44th International Symposium
on Robotics, Seoul, South Korea, 2013.
DOI: 10.1109/ISR.2013.6695630

Paper III Maj Stenmark and Jacek Malec. Describing constraint-based as-
sembly tasks in unstructured natural language. In Proc. of The
19th IFAC World Congress, pages 3056–3061, Cape Town, South
Africa, 2014. DOI: 10.3182/20140824-6-ZA-1003.02062.

Paper IV Maj Stenmark, Jacek Malec and Andreas Stolt. From High-Level
Task Descriptions to Executable Robot Code. IEEE Intelligent Sys-
tems’ 2014, Series Advances in Intelligent Systems and Computing,
vol. 323, pages 189–202, Springer, 2015. DOI: 10.1007/978-3-319-
11310-4_17.

Other Scientific Contributions
Maj Stenmark, Jacek Malec, Klas Nilsson, Anders Robertsson. On Distributed
Knowledge Bases for Small-Batch Assembly. IROS 2013 Workshop on Cloud
Robotics, Tokyo, Japan, 2013.
http://roboearth.org/wp-content/uploads/2013/03/final-13.pdf.

Maj Stenmark and Jacek Malec. A Helping Hand: Industrial Robotics, Knowl-
edge and User-Oriented Services. IROS 2013 Workshop on AI Robotics, Tokyo,
Japan, 2013. http://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/
paper07-final.pdf.

v

http://dx.doi.org/10.1016/j.rcim.2014.07.004
http://dx.doi.org/10.1109/ISR.2013.6695630
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02062
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://roboearth.org/wp-content/uploads/2013/03/final-13.pdf
http://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper07-final.pdf
http://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper07-final.pdf

List of Publications

Maj Stenmark and Jacek Malec. Knowledge-Based Industrial Robotics. Fron-
tiers in Artificial Intelligence and Applications, vol. 257: Twelfth Scandinavian
Conference on Artificial Intelligence, pages 265–274, IOS Press, 2013. DOI:
10.3233/978-1-61499-330-8-265.

Maj Stenmark. Industrial Robot Skills. Frontiers in Artificial Intelligence and
Applications, vol. 257: Twelfth Scandinavian Conference on Artificial Intelli-
gence, pages, 295–298, IOS Press, 2013. DOI: 10.3233/978-1-61499-330-8-295.

Maj Stenmark and Andreas Stolt. A System for High-Level Task Specification
Using Complex Sensor-based Skills. RSS workshop on Programming with con-
straints: Combining high-level action specification and low-level motion execu-
tion, Berlin, Germany, 2013. http://robohow.eu/_media/meetings/4-stenmark.pdf.

vi

http://dx.doi.org/10.3233/978-1-61499-330-8-265
http://dx.doi.org/10.3233/978-1-61499-330-8-295
http://robohow.eu/_media/meetings/4-stenmark.pdf

Contents

I Background 1

1 Introduction 3
1.1 Objectives . 4
1.2 Research Projects . 4
1.3 Thesis Contributions . 4
1.4 Thesis Outline . 6

2 Introduction to Robot Software and Systems 7
2.1 Automation and Robot Programming Languages 7
2.2 Sensing and Acting in the Real World 9
2.3 Graphics and Simulation . 10
2.4 Natural Language . 12
2.5 Databases and Ontologies . 15
2.6 Skills and Knowledge Representation 18
2.7 Learning from Demonstration 20
2.8 Robotic Middleware . 22
2.9 iTasC . 24
2.10 Code Generation . 25

3 Conclusions 29

II Papers 33

Paper I: Knowledge-Based Instruction of Manipulation Tasks for Indus-
trial Robotics 35
1 Introduction . 37
2 Robot Skills . 37
3 Architecture . 41
4 Knowledge Integration Framework 44
5 Knowledge-Based Services . 46
6 Engineering System . 50
7 Execution . 51
8 Related Work . 51

vii

9 Conclusions . 54

Paper II: Natural Language Programming of Industrial Robots 57
1 Introduction . 59
2 Related Work . 59
3 System Overview . 60
4 High-level Programming Prototype 62
5 Conclusions . 63
6 Future Work . 65
7 Acknowledgments . 65

Paper III: Describing Constraint-Based Assembly Tasks in Unstructured
Natural Language 67
1 Introduction . 69
2 Related Work . 69
3 Background . 70
4 Pattern-Matching Algorithm . 73
5 Discussion . 79

Paper IV: From High-Level Task Descriptions to Executable Robot Code 81
1 Introduction . 83
2 System Overview . 83
3 Code Generation . 85
4 Experiments . 91
5 Related Work . 92
6 Conclusions and Future Work . 93
7 Acknowledgments . 93

viii

Part I

Background

1

Chapter 1

Introduction
In 2014, the European Commission launched Horizon 2020, a research and innova-
tion program. The goal is to bring new technologies to the market, to increase the
industrial competitiveness of the European Union and battle societal challenges.
The program lists Advanced Manufacturing as one key enabling technology. With
more advanced manufacturing technologies, small and medium sized enterprises
can compete with low-wage countries by providing customized and high quality
products. Traditional industrial robot systems are not suitable for flexible produc-
tion in close cooperation with human workers. Furthermore, conventional robot
programming is time consuming and non-trivial, especially for users working in
small businesses who are unfamiliar with robots. For customized products in small
series, it is paramount that the user interaction and programming is swift and pain-
less. The challenge is to develop robot systems with streamlined robot program-
ming and robust and autonomous task execution. Hence, we see the birth of a new
generation of intelligent industrial robots. These robots have 1) better communi-
cation capabilities, for example understanding human language, 2) better situation
awareness with more advanced sensor integration such as object recognition, 3)
better reasoning capabilities so that they can adapt their task during execution and
4) the ability to learn task parameters so that they can optimize the execution.

The work included in this thesis only addresses a few of the many challenges in
intelligent robotics, namely, simplifying and automating programming of assem-
bly tasks. The domain is small parts assembly, such as consumer electronics. The
basic idea is that the human coworker should be able to reuse robot programs that
are created by more advanced users and that the system should help the user to set
up the task. The programming should resemble inter-human communication, that
is, be goal-oriented and use actions and objects in high-level descriptions.

We have developed a framework to describe robot programs, so called skills,
that can be stored in an online database, downloaded and reused using a graphical
user interface. The tasks can be described using English sentences and objects in
a CAD model of the world. Thus far we have limited our approach to industrial
robotics and manufacturing. Other areas such as service or health care robotics
face similar issues when it comes to interaction and sharing knowledge and skills
between robots.

3

1.1 Objectives
The challenge is to build a robotic system, where the effort to program complex
assembly tasks is lowered in order to make the system usable for non-expert users.
Simultaneously, the system should lower the effort for more advanced users such
as system integrators. This involves the creation of knowledge bases where robot
skills and tasks are stored for reuse as well as services that help the user to schedule
the task and generate code for sensor-based motions. The objective is to develop
a complete toolchain, including user interfaces for programming and services that
aid the user to refine the task for deployment.

1.2 Research Projects
The research work was funded by several European and Swedish research projects,
and each paper includes a more detailed acknowledgement section on the matter.
The most substantial are the grants from the European Union seventh framework
program (FP7/2007-2013), grant agreements No. 230902 (project ROSETTA),
No. 285380 (project PRACE), as well as No. 287787 (project SMErobotics).

1.3 Thesis Contributions
The three main contributions of the included papers are the following:

1. Ontologies for describing robot devices and skills. The first paper de-
scribes the ontologies and provides an overview of the system architecture.
The ontologies are modular and separated into smaller sub-ontologies that
are loaded into a core ontology. The core ontology includes robot devices,
such as robots, sensors, tool changers and fixtures. Tasks and skills are rep-
resented by graphs, hence we developed a graph ontology which includes
different state machine descriptions. Skills can be represented by a small
sub-ontology that describes the device requirements and pre-and post-con-
ditions.

2. A service for natural language programming of robots. The system in-
cludes distributed reasoning services that were developed in parallel with the
knowledge representation framework. The services can be accessed from a
high-level programming interface. Paper II describes the initial approach
that uses a general purpose natural language tool to extract the semantic
meaning from sentences written in unstructured English text. The extracted
semantic structures are then mapped to actions in the skill database and ob-
jects in the robot workspace. The natural language programming interface
was further developed in Paper III to be able to generate repeated actions
(loops) and constraints for sensor-controlled motions.

4

3. Generation of executable code for sensor-controlled skills. Being able
to express a task using high-level semantic descriptions is not enough, it
is necessary to be able to synthesize executable code as well. The initial
implementation of the code generation service is presented in Paper IV.

To provide an overview, the abstracts of the papers are included below.

Paper I – Knowledge-Based Instruction of Manipulation Tasks
for Industrial Robotics
Abstract. When robots are working in dynamic environments, close to humans
lacking extensive knowledge of robotics, there is a strong need to simplify the user
interaction and make the system execute as autonomously as possible, as long as
it is feasible. For industrial robots working side-by-side with humans in manufac-
turing industry, AI systems are necessary to lower the demand on programming
time and system integration expertise. Only by building a system with appropri-
ate knowledge and reasoning services can one simplify the robot programming
sufficiently to meet those demands while still getting a robust and efficient task
execution.

In this paper, we present a system we have realized that aims at fulfilling the
above demands. The paper focuses on the knowledge put into ontologies created
for robotic devices and manufacturing tasks, and presents examples of AI-related
services that use the semantic descriptions of skills to help users instruct the robot
adequately.

Paper II – Natural Language Programming of Industrial Robots
Abstract. In this paper, we introduce a method to use written natural language
instructions to program assembly tasks for industrial robots. In our application,
we used a state-of-the-art semantic and syntactic parser together with semanti-
cally rich world and skill descriptions to create high-level symbolic task sequences.
From these sequences, we generated executable code for both virtual and physical
robot systems. Our focus lies on the applicability of these methods in an industrial
setting with real-time constraints.

Paper III – Describing constraint-based assembly tasks in un-
structured natural language
Abstract. Task-level industrial robot programming is a mundane, error-prone ac-
tivity requiring expertise and skill. Since humans easily communicate with natural
language (NL), it may be attractive to use speech or text as instruction means for
robots. However, there has to be a substantial amount of knowledge in the system
to translate the high-level language instructions to executable robot programs.

In this paper, the method of [83] for natural language programming of robo-
tized assembly tasks is extended. The core idea of the method is to use a generic

5

semantic parser to produce a set of predicate-argument structures from the input
sentences. The algorithm presented here facilitates extraction of more compli-
cated, advanced task instructions involving cardinalities, conditionals, parallelism
and constraint-bounded programs, besides plain sequences of commands.

The bottleneck of this approach is the availability of easily parametrizable
robotic skills and functionalities in the system, rather than the natural language
understanding by itself.

Paper IV – From High-Level Task Descriptions to Executable
Robot Code.
Abstract. For robots to be productive co-workers in the manufacturing industry,
it is necessary that their human colleagues can interact with them and instruct
them in a simple manner. The goal of our research is to lower the threshold for
humans to instruct manipulation tasks, especially sensor-controlled assembly. In
our previous work we have presented tools for high-level task instruction, while in
this paper we present how these symbolic descriptions of object manipulation are
translated into executable code for our hybrid industrial robot controllers.

1.4 Thesis Outline
The thesis is organized as follows: the first part is an introduction to robot pro-
gramming languages and tools, first focusing on high-level programming envi-
ronments and instruction methods, then providing an overview of low-level solu-
tions for robot control, architecture and code generation. This part is concluded
with a discussion, where reflections on the research work and future challenges
are presented. The second part consists of four peer-reviewed publications. The
first paper is intended to give an overview of the system and to shed light on the
knowledge engineering aspects. The second and third papers describe the natural
language programming interface, which was improved over the years. The last
paper covers the code generation service.

6

Chapter 2

Introduction to Robot
Software and Systems
Robot systems consist of a heterogenous mix of hardware and software compo-
nents. The hardware can consist of robot manipulators, sensors, fixtures, grip-
pers, tools and tool changers, and input devices such as teach pendants or tablets.
The software can for example be image processing algorithms, control software,
databases, and graphical programming user interfaces. The architecture is dis-
tributed and setting up the communication and data management of the full system
while ensuring real-time requirements can be quite a challenge. In order to abstract
away the details of the low-level system components, and make the software de-
velopment easier, the communication and data management can be handled by
middleware. The middleware can function as a virtual machine or operating sys-
tem, so that the user can write robotics applications without specifying every detail
of the communication between the subsystems, see Section 2.8 for more details on
software architectures. In this background section, robot programming languages
and tools will be introduced, followed by control software implementations.

2.1 Automation and Robot Programming Languages
Many industrial robot vendors have created their own programming language. For
example, the market leader in industrial robotics, Motoman from Yaskawa Elec-
tric uses INFORM [100], KUKA uses KRL [45] and ABB developed RAPID [27].
These languages are designed with motion specification in mind, allowing debug-
ging by stepping through instructions one by one, either forward or backwards. An
example of RAPID code is displayed in Fig. 2.1. It is a small program where the
robot arm moves to a target position (target_3), opens the gripper, moves to a
pick up position (target_5), closes the gripper and retracts. The wrist is close to
a singularity, hence a singularity area is turned on before and off after the move-
ments. MoveL is a linear move (similarly, there is a joint move MoveJ) that moves
the robot to predefined target positions (target_3, target_5, target_6) at

7

Figure 2.1: An example of a small program written in RAPID.

velocity 100 mm/s. There are two output signals, do1 and do2 that are used to
open (do1 is high) and close (do2 is high) the gripper.

These languages are widespread but non-standard. There are five standard
languages for industrial automation applications, defined in the IEC-61131-3 stan-
dard [36]. Three of them are graphical: Sequential Function Charts (SFC), Ladder
Diagram (LD) and Function Block Diagram (FBD) while Instruction List (IL) and
Structured Text (ST) are textual. An example SFC is displayed in Fig. 2.2. It is
created using a tool called JGrafchart [91], which is developed and used in Robot-
Lab at Lund University. The squares are states or steps in the state machine; the
initial state is marked with double borderlines. A transition is green if it is true
(update) and triggers the following states. Here two parallel states are active until
cond becomes true. The last state, with marked corners, is a macrostep, a nested
state machine.

There are several graphical tools for programming of state machines, e.g.,
ROS, the Robot Operating System [73], has the state machine editor Smach [79]
or behaviors in Bride [17], or, the representation can be textual, such as StateMa-
chines in Orocos [70].

However, more advanced applications, such as multirobot cooperation and sen-
sor controlled tasks, are not easily programmed in native robot code or executed
locally on a robot controller. Hence, software and middleware intended to sim-
plify integration and package distribution use standard programming languages.
For example, the KUKA Sunrise control system uses Java [44], ROS uses Python
and C++ and Orocos [70] uses C++.

8

Figure 2.2: An example of an SFC.

2.2 Sensing and Acting in the Real World
Robots have high repeatability, which means that they can repeat the same motion
very precisely multiple times. This is useful in settings where the environment also
is repeatable, that is, in a robot cell where workpieces are placed in fixtures with
known positions. Flexible production and a dynamic environment add another
level of complexity to the robot programming. Depending on the application, some
robots are equipped with cameras and detection algorithms for object localization,
and may reason about their tasks during execution, for example, calculate how to
grip an object in a corner or navigate around an obstacle.

In Fig. 2.3 a dual-arm mobile robot is shown. A two-armed ABB industrial
robot mounted on top of a mobile platform. Down to the right, one of the yel-
low laser scanners may be glimpsed; scanners are used for mapping and obstacle
avoidance. The mobile robot platform runs ROS, where off-the-shelf packages for
mapping and navigation are available for download and use. On top of the robot
a teaching handle is attached. The balls are tracked by a camera system and the
human user can demonstrate positions and position areas for the robot; see more
about learning from demonstrations in Section 2.7.

Sensor-controlled assembly tasks can be expressed using constraints on the
sensor values. For example, a constraint may require that the robot should keep a
constant pressure on a surface while moving over it at the same time. Tasks like
these can be expressed using the iTaSC formalism, described further in 2.9.

9

Figure 2.3: A two-armed ABB industrial robot mounted on top of a mobile platform. On
top of the robot a teaching handle is attached.

2.3 Graphics and Simulation
A robot program can be debugged and optimized using graphical simulation envi-
ronments. Typically, such simulation environments have a graphical representation
of the robot and the workspace, and a virtual robot controller that can execute the
instructions in a realistic manner. Some environments, such as Gazebo [64], which
can be used in ROS, have physics simulations (such as light conditions or sim-
ple gravity). There are commercial environments such as 3DCreate from Visual
Components [96] that are intended for factory design and simulation and support
several robot brands. Usually, robot vendors provide tailored off-line program-
ming software and virtual robot controller simulation software as well as task spe-
cific packages for their products. Examples of such vendor specific software are:
MotoSim[55] that comes with painting application packages, Fanuc’s ROBOGU-
IDE [23] with packages for, e.g., painting, welding and palletizing, KUKA.Sim
from KUKA robotics and ABB RobotStudio for simulation of ABB robots.

In this thesis, a simplified programming tool was developed as an extension to
ABB RobotStudio. Sequences of robot instructions are composed into tasks, as
seen in Fig 2.4. The RobotStudio extension, in the included papers called the En-
gineering System, provides a natural language programming interface, where the
user can input sentences in English that are translated into a sequence of instruc-
tions (see Papers II and III). Short introductions to natural language processing are
given in the papers, but a more comprehensive background is provided below.

10

Fi
gu

re
2.

4:
Th

e
LU

E
xt

en
si

on
is

a
pl

ug
in

to
th

e
gr

ap
hi

ca
l

pr
og

ra
m

m
in

g
en

vi
ro

nm
en

t
A

B
B

R
ob

ot
St

ud
io

.
Th

e
ex

te
ns

io
n

pr
ov

id
es

na
tu

ra
l

la
ng

ua
ge

pr
og

ra
m

m
in

g
an

d
si

m
pl

e
se

qu
en

ci
ng

of
ac

tio
ns

an
d

sk
ill

s
in

to
ta

sk
s,

as
se

en
to

th
e

le
ft.

11

2.4 Natural Language
The idea of using natural (human) language to instruct a machine is older than
Unix time itself. A famous early attempt is SHRDLU [99] developed by Terry
Winogard. SHRDLU was a computer program that understood English and let a
user describe how to move objects in a block world. This was in 1968 and the
program could understand 50 words, such as "block", "cone", "blue", "place on"
and tried to guess the user’s intention from the word combination. An introduc-
tion to natural language processing (NLP) applications is given by [62]. The first
approaches were ruled-based, where hand-made grammatical rules where used to
process text [63]. However, for unrestricted natural language a large number of
rules is needed, especially for handling homophones, ambiguous interpretations
and spoken language. Hence, the turn of the century saw the rise of statistical
NLP, where large annotated text samples where used to train statistical models.
In statistical approaches, a model is learnt from a training set and then used to
categorize the most likely meaning of a sentence. In the 21st century the power,
performance and availability of natural language processing and speech recog-
nition systems rapidly increased due to increased processing power, data driven
approaches and Internet services. The general purpose statistical model running
on a virtual machine at Lund University can process (parse) unstructured English
sentences in about 20 ms and is accessed from for example mobile devices. The
result from the parser is a semantic structure of the input sentence.

Semantics is the study of meaning. When a meaning of a sentence is extracted
the following questions are at least partially answered:

• What is going on? (Predicate)

• Who/what is doing it? (Actor)

• What objects are involved? (Arguments to the predicate)

• Where is this going on? (Location argument)

• When and how long is this going on? (Temporal argument)

• How is the action carried out? (Manner)

• Who is the beneficiary of the event? (Beneficiary)

Language is ambiguous, homophones, such as press in news press and press down
belong to different part-of-speech and have different meaning. In a sentence, the
words that answer the above questions are labeled with the semantic role listed in
parenthesis after the question. This is done using special purpose dictionaries such
as WordNet [69], FrameNet [76], PropBank [66], that list predicates and roles that
can belong to the predicate. For example, in the sentence I live in a cardboard
box, the verb live is the predicate. There are several versions of live in PropBank,
so called senses that are different flavors of the word. The most common meaning
of live, live.01, is to reside or to not being dead. Another example is live.02, to
endure. In the example sentence, the predicate has an actor entity I and a location
argument in a cardboard box.

12

The goal for the Lund semantic parser and role labeler is to read the sentences
and output predicate-argument structures and present them in a table as seen in
Fig. 2.5. The figure shows the parsed output from the sentence I have found the
perfect Chicago-style deep dish pizza recipe1, an unusual sentence containing a
long compound noun. Two predicates are found, find.01 and recipe.01, each cor-
responding to a line in the top table where the semantic roles belonging to the
predicates are marked. The pronoun I is the actor A0 and, since modifiers and de-
terminers are included in the argument, the perfect Chicago-style deep dish pizza
recipe is the argument A1 to find.01. The semantic description of recipe.01 con-
tains a theme as A1-argument, in this case, there are three individually labeled A1
arguments. The graph in the middle is the dependency graph, which in fact is a tree
starting with the root of the sentence. The arrows are labeled with the grammatical
function between the words, such as modifiers (NMOD), subject (SBJ) or object
(OBJ) relations to the verb have, which is also the root. At the bottom of Fig. 2.5,
a table displaying the words in CoNNL-2009 standard is shown.

Determining the predicate-argument structures of a sentence is a classification
problem in machine learning. The model for the parser is trained using a cor-
pus, which is a large text mass where the sentences are annotated with syntactic
and semantic information. There are several corpora, for example the Penn Tree-
bank [49] which is created from Wall Street Journal articles, and the PropBank [66]
that added predicate-argument structures to the Penn TreeBank. The latter is used
by the Lund parser.

The Lund parser uses three main steps to classify the sentence, further de-
scribed in [10]. First the sentence is split into words (tokenized), and each word
is assigned a part-of-speech tag and the canonical form (lemmatization). Next, it
produces a dependency graph, which is a graph structure with the grammatical re-
lations between the words, see Fig. 2.5 for an example. The dependency graph is
finally used in a semantic role labeler to produce the predicate argument structures.
The semantic role labeler uses binary or multiple logistic regression in a cascade
of classifying steps.

• Predicate Identification: Each word is either classified as a predicate or
not using binary logistic regression.

• Predicate Disambiguation: Determines the sense of the predicate if there
are multiple senses. Lemmas that can be both verb and nouns have one
classifier per part-of-speech.

• Argument Identification: First each word is either classified as an argu-
ment or not. Then a multi-class identifier determines the role of the word.

As long as the sentence is somewhat grammatically correct, the parser will produce
a well-formed machine-readable table structure. From this table, the output can be
matched to robot instructions from a skill database and arguments can be mapped
to objects in the world, as described in Papers II and III.

1It contains two pounds of mozzarella.

13

Fi
gu

re
2.

5:
Th

e
pa

rs
ed

ou
tp

ut
fr

om
th

e
ex

am
pl

e
se

nt
en

ce
Ih

av
e

fo
un

d
th

e
pe

rf
ec

tC
hi

ca
go

-s
ty

le
de

ep
di

sh
pi

zz
a

re
ci

pe
.

14

Figure 2.6: A screen capture from a triple store with three triples, one triple per row.

2.5 Databases and Ontologies
The knowledge of the system is stored in a database. During the project, the knowl-
edge grew incrementally and the world was assumed to be open2, hence a relational
database with static tables was not a suitable choice for the conceptual model. In-
stead the system used an RDF triple store and later, a graph database. RDF, short
for Resource Description Framework, is a format where data is described as triples.
Our implementation uses the Sesame Workbench [65]. Each triple ⟨S,P,O⟩, has a
subject node S , a predicate P and an object node O. The object node can also be
a primitive data type such as string or a number, called a literal. Literals can not
point to any other nodes and unconnected edges are not allowed. Hence, a triple
is equivalent to a directed edge in a graph and a node can have multiple outgoing
and incoming edges.

Our graph database is implemented using Neo4J [56]. In the graph database
the literals can be attached directly to the nodes, and are called properties, while
an edge between nodes is called a relationship. A relationship can also have prop-
erties, which is not possible to express using RDF. Hence, a graph database can
encode information in a more dense format than a triple store.

To concretize, we will now encode some simple data in RDF and a graph
database, and the reader will become acutely aware of the need for an ontology,
which will be introduced afterwards.

Assume that we want to create a small social network with some information
about people3. One person is named "Maj", with the occupation "PhD student" at
a university called "Lund University". In RDF this can be encoded as triples as
following:

@pref ix t h e s i s : < h t t p : / / t h e s i s . s e / > .

t h e s i s : maj owl : i n d i v i d u a l t h e s i s : PhDstudent ,
t h e s i s : maj t h e s i s : hasName " Maj " ,
t h e s i s : maj t h e s i s : s t u d i e s A t " L u n d U n i v e r s i t y " .

Resources and properties in RDF are identified using unique Uniform Re-
source Identifier (URIs). The URI can be split into a prefix and an ending, in the
example above http://thesis.se/ is a prefix named thesis. One object, thesis:maj,

2The knowledge is not complete.
3To store personal information in a structured format requires explicit consent from the individuals,

according to Personuppgiftslagen.

15

is defined as a individual of a class thesis:PhDstudent, with properties labeled
thesis:hasName and thesis:studiesAt with literal values. The listing above creates
three triples as shown in Fig. 2.6. A resource, either a subject, an object or a
property is identified with URIs, hence http://thesis.se/maj refers to the same node
in each row. "Maj" and "LundUniversity" are string literals. In the first triple,
the predicate refers to an external URI and a class PhDstudent. The property
owl:individual that assigned a class type used the web ontology language OWL
[97]. In a moment we will create a small ontology so that we can make some sim-
ple reasoning, but first we compare how the same information can be stored in a
graph database.

In Neo4J the node could have literal properties attached on the node, hence the
same information can be stored as one single node. The previous example is vi-
sualized in Fig. 2.7a, showing one data node of type PhDstudent with an arbitrary
ID 13916 and the properties name and studiesAt. To make our social network a lit-
tle bit more interesting we can add another node and a social relationship between
the nodes. We add another PhDstudent called "Daniel", who studies at "Chalmers"
and connect the nodes with a relationship, as seen in Fig. 2.7b. Relationships (writ-
ten with capital letters) between nodes can have literal properties as well. Here the
relationship KNOWS has two properties since:2012 and relationship:romantic.

The relationships are directed, so when looking up persons in the database the
query has to be expressed correctly, as seen in Fig. 2.8. The query (a) finds all
nodes n that the node maj with the name property set to "Maj" points to with a
KNOWS relationship. It will return the Daniel node. Query (b) matches nodes
that daniel points to, with an empty result because the KNOWS relationship is not
(yet) symmetric. Depending on the relationship type, other relationships can be
inferred. For example, there might be an inverse property and when one is true the
other can be inferred. In a social setting such pair could be hasParent - hasChild
relationships. Another type of property is transitive, for example, a PhD student is
also a Person, hence, if Maj is a PhDstudent, the system should infer that she also
is a Person. It might also be desirable to limit the allowed number of relationships

(a) (b)

Figure 2.7: A single database node to the left and two nodes connected with a KNOWS
relationship to the right.

16

(a) (b)

Figure 2.8: The query finds all nodes n that the node "Maj" knows (a) and queries to find
who "Daniel" knows (b).

of a certain type, the cardinality of a relationship.
Modeling this type of knowledge can be done in an ontology. A small example

is shown in Fig. 2.9. Classes are marked with a yellow circle, individuals of a class
with a purple diamond. The violet properties are is-a relationships4, while blue is
a subclass relationship, and brown dashed lines are used for all other properties.
Here there are individuals Maj, Daniel, Lund_University and Chalmers. Each
student has to have a studiesAt relationship to some university. After running an
inference engine on the ontology in Fig. 2.9, new relationships are added as shown
in Fig. 2.10. Class properties are inferred for both instances of PhDStudent, and
since the relationship between Maj and Daniel is a symmetric property, an arc
between the nodes is added.

When an ontology is created, assumptions are made about the reality, e.g., that
there are only two legal parents, etc. However, in reality, there can be contradicting
assertions, information sources might be dubious or faulty, properties can change
over time, or our model can be too simplistic. There are different approaches to
handle these inconsistencies, e.g., by adding probabilities to a statement, evaluat-
ing a statement by looking at other supporting statements, or when data is updated,
by using time stamps. The approaches are very much context- and application-de-
pendent, e.g., in a social network, the relationship status between Maj and Daniel
must be verified by both parties, contracts or by legal records.

In the context of robotics, ontologies are used to represent knowledge about
robots, sensors, and tasks. The working group Ontologies for Robotics and Au-
tomation has developed a Core Ontology for Robotics and Automation, CORA,

4In this context, the meaning of the word ’is’ is nonexclusive, one individual can belong to multiple
classes.

Figure 2.9: A small example ontology.

17

Figure 2.10: The ontology from Fig. 2.9 with inferred relationships.

defining positions [19] and later extending it with environments [26]. The group
has also created an ontology for kit building [4] which has been evaluated using
human and multi-robot interaction [38]. This work is complementary to the ontolo-
gies presented in Paper I that focus on tasks and devices used in industrial applica-
tions, and are used as inspiration in ongoing work. Other ontologies for common
household tasks and objects were developed in the ROBOEARTH project [89]. The
ROBOEARTH ontology is based on OPENCYC [46], an ambitious project to cre-
ate an ontology for common sense reasoning. One challenge in robotics is how
to represent task descriptions and robot programs, often called skills, in a sensible
way.

2.6 Skills and Knowledge Representation
Skills is an overloaded term in the field of intelligent robotics. There is no universal
definition of a robot skill, nor how a skill should be formally represented. The
state of anarchy is so widespread, that there is no consensus on whether a skill is
represented by the goals of a task5 or the procedure to reach a goal.

A more established concept is manipulation primitive, which is the building
block of skills. It is an interface between the sensor-based motion control and
robot programming [43] which is based on the Task Frame Formalism [18, 21]
where coordinate frames can be placed in the work cell or attached to the robot.
Motions and sensor-values can then be expressed in any local coordinate frame

5Here "task" is used in its natural language sense because it, too, is a provocative term.

18

as long as it is connected to the robot in a chain of known frames. The motion
primitives described in [43] and implemented by [25, 68] contain a hybrid motion
expressed in a frame, a tool command which executes synchronously with the
motion and a stop command which terminates the move. The implementation
presented in Paper III is based on the same formalism and a similar three-tier
architecture, however, the technical implementation details differ. The problem
with the motion primitives is that the programming blocks are too low-level to
add value to a system. This has resulted in the notion of skills, a combination of
primitive robot capabilities that are non-trivial and have production value. The
production value depends on how advanced the skill is and also on how reusable
it is. Hence, there are parallel ongoing efforts to develop a viable skill concept.

The skill description closest to our work is described in [68]. Their skills
consist of a sequence of motion primitives encapsulated between pre-condition,
post-condition and continuous checks. The skill is initialized with a number of
parameters and terminates with an evaluation of post-conditions. The emphasis on
evaluation is where the skill description diverges from ours, since we do not re-
quire an evaluation step even though this can be desired. That is, in our approach,
a peg-in-hole skill does not need to include, e.g., visual inspection of the inserted
object. Such inspection procedure can in fact be another skill. Another difference
is that their skill has to be able to estimate if the skill can be executed on the in-
put parameters and the world state. This is not a requirement for us, where only
the skill parameters have to be within allowed intervals and all pre-conditions ful-
filled. It is possible to simulate the skills from the primitive sequence in our case.
The more relaxed requirements stem from a pessimistic view on the simulation
capabilities of the robot and its ability to evaluate the skill execution in each step.
Instead, the inspection skills are added in intervals during the task. The require-
ments in [68] are relevant for planning and reasoning purposes, but not during the
execution. The differences are academic however, since the skill designer either
way decides what conditions and checks to include in the skill.

Another related approach is the Action Recipes from the ROBOEARTH [89]
project. These are high-level task descriptions in an OWL-based language. The
Action Recipe is closer to our task description, because it can include (partial)
ordering between actions and the actions are fairly advanced (we would describe
them as skills), such as handing over drinks, capabilities that need to be imple-
mented on the robot.

In this project, a task is the overall goal of the robot. It can be a set of partially
ordered subgoals. These subgoals can be represented in a graph structure, called
assembly graph. An example of an assembly graph is shown in Fig. 2.11. It
displays an assembly of an emergency stop button box. There are two partially
ordered subassemblies. To the left, a red button should be pushed through a hole
in a yellow box top, and then a nut should be screwed on the button from the
other side of the box. To the right, another subassembly is displayed: a dark
grey switch should be snapped into place on a light grey box bottom. Finally, the
two subassemblies should be joined. The graph has a tree structure, where the
leaves are the original workpieces while each parent node represents an assembly.

19

Figure 2.11: An example of an assembly graph of an emergency stop button box.

Child assemblies must be carried out before the parent assemblies, but otherwise
no ordering is imposed. Each assembly node can specify which skill to use for the
assembly. To execute the task, a sequencing is given to the skills by a planning
or scheduling algorithm, or, if no optimization is required at that state, any valid
ordering.

During this project, skills are usually implemented as sensor-based motions in
form of an SFC, where actions can be generated as native robot code as described
in Paper IV. The skills are stored in an RDF database together with ontologies, as
described in Paper I. An ontology is used to structure data so that it is possible
for a machine to reason about it. For example, a skill is stored online together
with a set of input parameters with types, values and units. The type can be a
start position with x, y and z parameters given in mm relative to the robot world
coordinate system, and rotations in Euler angles in radians or degrees. The types
can be used by the graphical interface to select views and convert between units.
Another example is a picking skill, where a post-condition of the skill is that an
object is mounted in the gripper. This post-condition can be used by a scheduling
service so that the object has to be released before another one is picked up. Also
object types such as workpieces and sensors are stored in the ontology, which
makes it possible to reason about the work cell.

Since the robots act in the physical world, using skills that couple perception
and action, one compelling programming method is programming by demonstra-
tion. From demonstrations, parameters such as trajectory, accuracy and sensor
values can be extracted from the statistical data. This is useful since parameter
values that depend on the setup and can be difficult to know beforehand.

2.7 Learning from Demonstration
Learning from demonstration (LfD), or imitation learning is a method were users
teach a task to a robot by physical demonstrations, without traditional program-
ming. It is inspired by the way humans learn by imitation from young age. Until

20

recently, LfD has mostly been used for service robotics, while industrial robots
used kinesthetic teach-in of positions without generalization. The development of
new LfD techniques is outside of the scope of this thesis, however, it is a com-
pelling (relatively new) robot programming paradigm that will be a large part of
future work.

An introduction to the topic can be found in [2, 7] and in a more recent elec-
tronic format on Scholarpedia [8]. The benefit of LfD is that the demonstration can
be carried out by lay people, and the robot can itself generalize from few demon-
strations, and, if the task fails, the user can provide more demonstrations. The
generalization step is crucial for LfD, thus, teaching positions and replaying the
same trajectory is not LfD.

When imitating, the first thing to determine is what to imitate. What features
are relevant in the demonstration? Is it relative or absolute positions of objects,
for example? Should the robot learn how the world maps to actions or the goal of
the task? Should the robot generalize to discrete symbolic actions or continuous
functions? When the desired output is symbolic, such as simple actions, classi-
fication techniques such as Hidden Markov Models, Gaussian Mixture Models,
Support Vector Machines, decision trees, etc., can be used. When the learned task
is continuous, such as a trajectory, regression methods can be used, for example
Locally Weighted Regression. In the latter case, the statistical model can use the
variance of the demonstrations to determine where high precision is needed during
the motion.

The second design choice is how to imitate. The demonstrator and the learner
can differ in perceptual and physical capabilities, hence the learner will have to
transform the demonstrated data to its own perception and joint space. For exam-
ple, the demonstration can be carried out by directly observing the human using
vision or sensor gloves. This is simple for the human but it can be difficult to find
corresponding robot behavior. Another approach is kinesthetic teaching, where the
human moves the manipulator into place. It makes the imitation simpler for the
robot, but the demonstrator might need two arms to move the robot, hence making
it nearly impossible to demonstrate two-armed robot motions. Such limitations
can be addressed by teaching different parts of the task incrementally. The user
can use haptic devices to teach the task remotely, however, it can be non-trivial to
control a robot with multiple degrees of freedom using a remote control [8].

Demonstrations are naturally limited by the ability of the teacher and the human-
robot teaching interface, hence, it is desirable that the robot improves beyond the
capabilities of the teacher. LfD can be coupled with reinforcement learning tech-
niques to improve the performance. In that case, the teacher must provide a reward
function or the robot must learn the reward function itself. Creating a good reward
function is non-trivial.

All the above-mentioned methods are application-dependent. One challenge is
to reuse learned skills on a different robot and use adaption algorithms to optimize
the task on the new platform. Another is that the teaching methods require back-
ground knowledge and engineering, such as a known reward function, which can
be application-dependent and thus not easily be transferred to another task.

21

2.8 Robotic Middleware
Robotic systems are build by a number of distributed heterogenous hardware and
software components that have to interact during execution. In a robotic system
such components can include sensors (e.g., force sensors, laser scanners and cam-
eras), actuators and different software modules (control algorithms, motion plan-
ning, etc). In order to simplify configuration, communication and hide the com-
plexity of the system, as well as promote portability and modularity, there are
several frameworks for robotic middleware. Middleware is an abstraction layer
between software applications and the operating system and provides an interface
for execution and communication between components. Hence, middleware can
decrease development time and simplify code reuse. Surveys of current robotic
middleware are presented by [22, 54], a few are mentioned below.

2.8.1 ROS
The Robot Operating System, ROS [73], is a robotic middleware that runs on
Ubuntu and it is quite popular in the research community. Code modules called
nodes can be written in Python or C++. The nodes communicate using an asyn-
chronous publisher-subscriber model or by calling blocking services on other nodes.
In the publisher-subscriber model there are a number of topics that publisher nodes
can write to and other nodes can subscribe to. A publisher node can be a sensor
that publishes data messages, for example, a camera node with an image message.
A Master node helps the nodes to set up the communication. The publisher node
will advertise its topics to the Master, and a subscriber node, for example an image
processing algorithm, connects with a subscribe call to the Master which sets up
direct communication between the nodes. The topics are one-directional and asyn-
chronous, but there are also synchronous services where one node sends a request
and a response is returned.

Since ROS has gained popularity, there is a large collection of open source
packages for sensors, robots, navigation with varying levels of quality. However, in
the industry, the enthusiasm has been mild, since the flat architecture gives scaling
issues and the system lacks real-time guarantees. One attempt to cater to the needs
of the industry is ROS industrial [74], however the initiative is yet in its infancy.

In RobotLab in Lund, ROS is used for example on the mobile robot platform
in Fig. 2.3. The ROS system communicates with the Orca system running on the
robot and the task level state machine in JGrafchart using LabComm-ROS bridges,
see Section 2.8.3.

2.8.2 OROCOS
The Open Robot Control Software, OROCOS [70], is a framework for real-time
robot control, thus complementary to ROS. Similarly to ROS the software is or-
ganized in modules, here called components. However, the OROCOS Real-Time
Toolkit is designed with hard real-time control in mind, letting the user to de-

22

termine scheduling and periodicity of components and the component designers
must enforce real-time behavior. Hence, making two independently written com-
ponents work together can be difficult, a hardship that ROS users can ignore. Other
frameworks, such as Rock [72] build on the OROCOS toolchain provide additional
features such as monitoring tools.

2.8.3 LabComm
Middleware can simplify integration and software reuse within a robot system, but
it can make it difficult for two robot systems to communicate even if both run the
same middleware. Hence, it is important to have a neutral communication proto-
col as well. LabComm is a communication protocol developed at Lund University.
Each message is typed and the user specifies the data format in a text file, a sam-
ple, and from that sample a LabComm compiler generates encoders and decoders
in different programming languages, e.g., C, RAPID, Java or C#. A LabComm
sample can either be a single type such as the status integer below,

sample i n t s t a t u s ;

It can also be a struct, as the test_sample below. Here, list_of_floats is an array
of floats, the length is specified as an integer between the brackets, or with an
underscore for arrays of variable length.

sample s t r u c t {
i n t b l a h ;
f l o a t l i s t _ o f _ f l o a t s [_] ;

} t e s t _ s a m p l e ;

Using LabComm, a system running Java, such as JGrafchart, can communicate
for example with a system running RAPID, such as the native robot controller
from ABB and an external controller as shown in Fig. 2.12. To communicate
with a ROS system, the LabComm sample can be translated to a ROS message
using a LabComm-ROS bridge that generates a small ROS node that works as
message server. An overview of the software architecture used in this work is
shown in Fig. 2.12. The task execution is carried out in JGrafchart, which in
turn communicates with the Engineering System, ExtCtrl and the native controller
using the protocol LabComm. Before and after the execution, Java processes on
the Linux machine can communicate with the Knowledge Integration server and
Engineering System in order to load newly generated state machines or upload log
data. Before execution, the MATLAB/Simulink model that contains the control
program and the sensor signals is loaded into ExtCtrl. The external controller,
ExtCtrl communicates with JGrafchart using Orca, a layer on top of LabComm
where the samples are either input or output signals, logdata or parameters. The
messages from JGrafchart to ExtCtrl are the output signals, the input signals go
in the other direction. Input signals are for example sensor values. Parameters
and output signals are used to set up the values for the kinematic chain, which are
described in the following Section.

23

JGrafchart

ExtCtrl Native
controller

LabComm
Commands

LabComm/Orca
Reference values

Sensor signals

Control loop

Model in
MATLAB/
Simulink

Task Execution (Real-time Linux)

Engineering System
(Windows PC)

Knowledge Integration
(Windows/Linux)

Figure 2.12: An overview of the software architecture of the robot system.

2.9 iTasC
The external controller, ExtCtrl, uses the iTasC framework [21]. The framework
separates the task specification given by constraints and the solver that fulfills the
constraints during the execution. In the workspace, interesting points on objects
or the robots are marked with local coordinate frames. The task is specified by
a closed kinematic chain, a closed loop of connecting frames, as illustrated in
Fig. 2.13. Each arrow is a transformation to a frame (marked with coordinate
axes). The blue frame is a constant frame, the yellow is the robot frame which will
be determined by the kinematics of the robot, the red arrow is a tool frame and
the black is a feature frame. When setting up a kinematic chain, the direction of
the frames must be consistent hence some frames will be inverted, e.g., the tool
frame and the robot frame. The frames can either go through the robot (yellow
arrow in the figure), the tool (red) or be constant (blue). The last frame in the loop
(black in the figure) is called feature frame, and is used to constrain the execution.
For example it can be set to be constant relative to a moving frame, or the robot
motion can be expressed in that frame. Each frame in the kinematic chain can be
accompanied with an uncertainty frame, expressing the certainty of the coordinate
values.

The kinematic chain can go through more than one robot, thus expressing syn-
chronized motions between arms. During execution, the solver implementation
carries out the low-level control of the robot, hence the task specification can be
expressed with high-level platform-independent constraints.

24

Figure 2.13: An example of a kinematic chain.

2.10 Code Generation

In order to go from high-level task descriptions to low-level motion control, we
need to generate code for the low-level system. The first implementation is de-
scribed in Paper IV.

The task is created in RobotStudio as a sequence of actions, where each ac-
tion is mapped to a step in the JGrafchart state machine, as illustrated in Fig. 2.14.
Simple motions are coded in RAPID, where positions are stored as RAPID robot
targets and move commands are written in procedures that can be called over Lab-
Comm, e.g, from the task state machine in JGrafchart. Multiple guarded motions
(with the same kinematic chain) are bundled into a nested SFC, while native code
function calls are made to code loaded into the native controller. Reused skills
are loaded from the knowledge-base and also put in a nested SFC. Between the
generated steps the controllers are turned on and off and parameters reset.

In the task state machine, sensor-controlled motions are encoded as macro
steps. The initial step in the macro step sets up the kinematic chain. The con-
straints for the chain are specified in RobotStudio as follows: the robot type can
be ABB YuMi right or left, IRB120 or IRB140. The frames are given by six co-
ordinate values, position values in millimeters in x, y and z direction, and rotation
in EulerYZX in radians. These values are set as parameters to ExtCtrl and used to
specify the kinematic chain in the first step as shown in Fig. 2.15. The first step sets
the parameters to the kinematic chain, in this case for the right arm (the first index
of the kinematicsConverged array becomes 1). The second step is a search in
z-direction. In this step, reference values for velocity and force are set along dif-

25

Figure 2.14: During the code generation step, a state machine is created from a RobotStudio
sequence.

ferent axes and the controller parameters are set (damping and stiffness in different
directions). The transition condition contains two final constraints, either the force
value in z-direction is greater than 3.0 N or larger than 6.0 N in y-direction on the
sensor called y_meas_extR.

After the kinematic chain is specified, the numerical values for the Jacobians
are computed iteratively, and kinematicsConverged is set to true (1).

A search step is specified setting a constant velocity or force along each coordi-
nate axis, where the values are set in a reference array to the controller. Controller
parameters are set up together with the reference array, specifying the damping
and stiffness values corresponding to the constant force reference value. The fi-
nal constraint is set as a transition condition on the sensor values, in Fig. 2.15 the
force/torque sensor on the right arm is an array named y_meas_extR.

Integrating a ROS system, for example, is similar to using RAPID, function
calls are made using a LabComm bridge that runs in ROS. When switching be-
tween controllers, the robot has to stand still so that the controller, ExtCtrl, RAPID
or otherwise, can set the reference position and velocity values to the actual values
of the robot.

The implementation described in Paper IV only supports sequences and guar-
ded motions. Ongoing work involves loops, error handling and two armed mo-
tions. For loops, the use case has been palletizing, where a pallet has a grid of
positions which can be specified in several ways e.g., by two diagonal endpoints

26

Figure 2.15: The nested SFC.

and number of rows and columns in the grid. When moving objects, in our use
case needles, between two pallets, two such grids must be specified and as well
as offsets between the needle and the grid point. In a more general case, where
the task is to carry out multiple assemblies of objects, e.g., boxes, the grid is not
specified by a pallet directly, but by the positions of the objects in pallets. On the
state machine level, it is straight-forward to represent lists of positions, but the user
interaction is still under development.

27

28

Chapter 3

Conclusions

The main contribution of this work is a system for high-level programming with
code generation and natural language understanding. Using high-level program-
ming reduces the number of manually specified parameters. Table 3.1 shows a
comparison between the number of parameters that the user needs to specify in the
graphical user interface and the SFC in JGrafchart, respectively. In the Engineer-
ing System, there is an initial configuration of the workspace when the coordinate
frames attached to sensors, tools and objects are set up. This is done graphically,
hence all six coordinate values are set at once, or each value can be specified
manually. Using the high-level programming interface, each search can be set up
using 4 values and one terminating condition. In the state machine each search or
maintenance constraint (constraining another axis than the motion direction) can
be set up by setting 6 reference values and 42 control parameters for an arm with
7 joints. A move can be specified in the graphical user interface using 4–7 pa-
rameters chosen from drop-down boxes, while this would need 21 parameters in
RAPID together with a call from the state machine and controller switches. As
an example, using the high-level interface to program the sequence in Fig. 2.14
(ignoring the reused skill in the end) can be done with 67 parameter when all op-
tional parameters are set. This corresponds to 393 parameters in JGrafchart, as
well as additional RAPID modules and additional steps for switching controllers.
Hence, we have reduced the parameters that the user has to specify to 17 % of
the original number. Using the natural language programming interface and the
default parameters will reduce the effort further. The three guarded motions and
six constraints (that is 190 parameters) from the sequence in Fig. 2.14 are specified
with approximately 30 words.

Additionally, the task specification abstracts away from robot type and sensor
name, making it reusable on different robot platforms and more easily understood
by a human. The modular architecture also makes it easier to change systems,
for instance, to generate code for another state machine execution system than
JGrafchart.

The semantic skill descriptions in KIF makes it possible to automatically check,

29

plan, and schedule tasks. A feature that is not included in the current test im-
plementation is automatic generation of plan domain definition language (PDDL)
files. Such files can be used by off-the-shelf planners as demonstrated by [3, 41].

Only a reduced part of the system has been tested in a factory-like setting. The
complete system is experimental and in order to test usability, a near product-like
stability should be achieved. It is possible and desirable to test isolated parts of
the system with naïve users, however, this is something we have not tried yet in a
methodic manner.

Future Work
Each paper lists more detailed future work, however, there are some general com-
ments. User studies should be carried out in order to test usability. This would
require that a subset of the system functionality is isolated and a product-like sta-
bility is provided.

The software modules that have been developed should be packaged and dis-
tributed to the community, some as open source and some as commercial products.
A distribution system for robotics applications is under development at Lund Uni-
versity.

As the system is modular, the future work includes testing how well the system
can be extended with new functionality, for example, code generation modules for
other low-level languages.

One of the problems with our approach is skill acquisition. To populate the
database with advanced skills, more advanced users need to create and parametrize
them. To avoid the possible bottleneck this can cause, one possibility is to use
learning from demonstration to automatically segment and parametrize skills. This
is planned for a future project1, where the system will be extended to support
learning from demonstration, segmentation and parameter learning.

1EU Horizon 2020 SARAFun.

30

Fe
at

ur
e

N
um

be
ro

fp
ar

am
et

er
s/

G
U

I
N

um
be

ro
fp

ar
am

et
er

s/
JG

ra
fc

ha
rt

C
om

m
en

t
In

iti
al

se
tu

p
pe

r
fr

am
e

O
ne

cl
ic

k
or

6
m

an
ua

lp
ar

am
et

er
s

N
/A

E
ac

h
fr

am
e

ne
ed

s
to

be
sp

ec
ifi

ed
ei

th
er

gr
ap

hi
-

ca
lly

or
m

an
ua

lly
.

In
iti

al
se

tu
p

pe
r

im
pe

da
nc

e
co

n-
tr

ol
le

r

2
(s

tif
fn

es
s

an
d

da
m

pi
ng

)
N

/A
T

he
da

m
pi

ng
an

d
st

iff
ne

ss
fa

ct
or

ne
ed

s
to

be
sp

ec
ifi

ed
.

T
he

se
ca

n
be

di
ff

er
en

t
w

he
n

m
ov

in
g

in
di

ff
er

en
td

ir
ec

tio
ns

.
In

iti
al

se
tu

p
of

co
m

m
un

ic
at

io
n

A
ut

om
at

ic
C

re
at

io
n

of
L

ab
C

om
m

ob
je

ct
an

d
se

tti
ng

up
co

n-
ne

ct
io

n
po

rt
an

d
IP

,
an

d
re

us
in

g
50

0
lin

es
of

R
A

PI
D

co
de

.
Se

tti
ng

an
d

re
se

t-
tin

g
of

ki
ne

m
at

ic
ch

ai
n

A
ut

om
at

ic
12

pa
ra

m
et

er
s

pe
r

fr
am

e
(t

yp
ic

al
ly

3-
4

fr
am

es
),

co
nt

ro
la

nd
m

as
s

m
at

ri
ce

s
(1

21
va

lu
es

pe
ra

rm
).

Se
ar

ch
m

ot
io

n
4

(o
bj

ec
t,

fr
am

e,
ax

is
,v

el
oc

ity
)

6
re

fe
re

nc
e

va
lu

es
an

d
6
×

7
(o

r
6)

co
nt

ro
l

pa
-

ra
m

et
er

s.
T

he
re

ar
e

6
co

nt
ro

l
pa

ra
m

et
er

s
pe

r
jo

in
t,

e.
g,

sa
m

pl
in

g
pe

ri
od

,s
tif

fn
es

s
an

d
da

m
pi

ng
.

E
rr

or
/F

in
al

co
ns

tr
ai

nt
2

(v
al

ue
an

d
ty

pe
or

ax
is

)
1

co
nd

iti
on

T
he

co
nd

iti
on

w
ill

te
rm

in
at

e
th

e
ac

tio
n

it
be

lo
ng

s
to

.
M

ai
nt

en
an

ce
co

n-
st

ra
in

t
5

(o
bj

ec
t,

fr
am

e,
ax

is
,

va
lu

e,
co

n-
tr

ol
le

r)
6

re
fe

re
nc

e
va

lu
es

an
d

6
×

7
(o

r
6)

co
nt

ro
l

pa
-

ra
m

et
er

s.
A

se
ar

ch
co

ns
tr

ai
nt

w
ith

a
m

ai
nt

en
an

ce
co

n-
st

ra
in

tw
ill

on
ly

se
tt

he
pa

ra
m

et
er

s
on

ce
,m

ai
nt

e-
na

nc
e

co
ns

tr
ai

nt
s

w
ith

ou
ta

se
ar

ch
is

pu
re

ly
se

n-
so

rc
on

tr
ol

le
d

in
th

at
di

re
ct

io
n.

M
ov

e
(p

ri
m

iti
ve

ac
tio

ns
)

4
+

3
op

tio
na

lp
ar

am
et

er
s

W
ou

ld
be

sp
ec

ifi
ed

in
R

A
PI

D
w

ith
21

pa
ra

m
et

er
s

an
d

ca
lle

d
fr

om
JG

ra
fc

ha
rt

us
in

g
3

lin
es

of
co

de
fo

r
se

tti
ng

pa
ra

m
et

er
s,

se
nd

in
g

an
d

w
ai

tin
g

fo
r

ac
kn

ow
le

dg
em

en
t,

as
w

el
la

s
st

ep
s

fo
rs

w
itc

hi
ng

co
nt

ro
lle

rs
.

R
eu

se
of

sk
ill

s
O

pt
io

na
lly

10
-2

0
pa

ra
m

et
er

s,
al

l
in

iti
al

iz
ed

w
ith

de
fa

ul
tv

al
ue

s
A

pp
ro

xi
m

at
el

y
lin

ea
rt

o
th

e
nu

m
be

ro
fs

te
ps

.
It

is
po

ss
ib

le
to

re
us

e
th

e
st

at
e

m
ac

hi
ne

di
re

ct
ly

by
co

py
in

g
it

in
to

a
m

ac
ro

st
ep

an
d

m
an

ua
lly

ad
-

ju
st

va
lu

es
,s

en
so

r
na

m
es

an
d

so
lv

e
co

m
pi

la
tio

n
er

ro
rs

.

Ta
bl

e
3.

1:
Th

e
nu

m
be

r
of

pa
ra

m
et

er
s

th
at

th
e

us
er

w
ill

ne
ed

to
sp

ec
ify

w
he

n
se

tti
ng

up
a

ta
sk

in
th

e
G

U
Io

r
di

re
ct

ly
in

a
JG

ra
fc

ha
rt

st
at

e
m

ac
hi

ne
.

31

32

Part II

Papers

33

Paper I

Knowledge-Based Instruction of Manipulation Tasks
for Industrial Robotics

Maj Stenmark Jacek Malec

Department of Computer Science
Lund University

maj.stenmark@cs.lth.se

jacek.malec@cs.lth.se

ABSTRACT

When robots are working in dynamic environments, close to humans lacking extensive
knowledge of robotics, there is a strong need to simplify the user interaction and make the
system execute as autonomously as possible, as long as it is feasible. For industrial robots
working side-by-side with humans in manufacturing industry, AI systems are necessary to
lower the demand on programming time and system integration expertise. Only by building
a system with appropriate knowledge and reasoning services can one simplify the robot
programming sufficiently to meet those demands while still getting a robust and efficient
task execution.

In this paper, we present a system we have realized that aims at fulfilling the above de-
mands. The paper focuses on the knowledge put into ontologies created for robotic devices
and manufacturing tasks, and presents examples of AI-related services that use the semantic
descriptions of skills to help users instruct the robot adequately.

Robotics and Computer-Integrated Manufacturing, 33 (2015), pages 56–67.

1. INTRODUCTION

1 Introduction
The availability of efficient and cheap computing and storage hardware, together with in-
tensive research on big data and appropriate processing algorithms on one hand, and on
semantic web and reasoning algorithms on the other hand, makes the existing results of
artificial intelligence studies attractive in many application areas.

The pace of adoption of the knowledge-based paradigm depends not only on the com-
plexity of the domain, but also on the economic models used and the perspective taken
by the leading actors. It may be quite well illustrated by opposing the service robotics
area (mostly research-oriented, mostly publicly funded, using open source solutions, acting
in non-standardized and not-yet-legally codified domain) with industrial robotics (applica-
tion-oriented, privately funded, using normally closed software, enforcing repeatability and
reliability of the solutions in legally hard-controlled setting).

When robots are working in dynamic environments, close to humans lacking extensive
knowledge of robot programming, there is a strong need to simplify the user interaction and
make the system execute as autonomously as possible (but only as long as it is reasonable).
This also motivates the integration of AI techniques into robotics systems. For industrial
robots working side-by-side with humans in manufacturing industry, AI-based systems are
necessary to lower the programming cost with respect to the required time and expertise. We
believe that only by building a system with appropriate knowledge and reasoning services,
we can simplify the robot programming sufficiently to meet those demands and still get a
robust and efficient task execution.

In this paper, we present a knowledge-based system aimed at fulfilling the above de-
mands. The paper is focusing on the knowledge and ontologies we have created for the
robotized manufacturing domain and is presenting examples of AI-related services that are
using the semantic descriptions of skills to help the user instruct the robot adequately. In
particular, the adopted semantic approach allows us to treat skills as compositional pieces
of declarative, portable and directly applicable knowledge on robotized manufacturing.

The paper is organized as follows: first we introduce the robot skill, then we describe
the system architecture. Next section introduces our robot skill ontology and other relevant
ontologies available in the knowledge base, as well as some services provided by the system.
Next we introduce the interface towards the user, i.e. the Engineering System, and briefly
describe the program execution environment exploiting the knowledge in a non-trivial way,
then we describe the related research. We conclude by suggesting future work.

2 Robot Skills
Our approach is anchored on the concept of a robot skill. As it may be understood in
many different ways, both by humans and machines, it needs to be properly defined and
made usable in the context of our domain of applications. The presentation in this section
adopts a historical perspective, showing how our understanding of skills pushed forward the
capacities of systems we have created.

Our earliest deployed system has been developed in the context of the EU project
SIARAS: Skill-Based Inspection and Assembly for Reconfigurable Automation Systems.
Its main goal was to build fundamentals of an intelligent system, named the skill server,
capable of supporting automatic and semi-automatic reconfiguration of the existing manu-
facturing processes. Even though the concept of skill was central, we have assumed devices
as the origin of our ontology. Our idea then has been that skills are just capabilities of de-

37

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 1: Manipulation and handling skills, as defined by SIARAS ontology.

vices: without them no (manufacturing) skill can exist. A device can offer one or more skills
and a skill may be offered by one or more devices. We have not introduced any granularity
of such distinction; all the skills were, in a sense, primitive, and corresponded to operators
as understood by AI planning systems (models of operations on the world, described us-
ing preconditions, postconditions, sometimes together with maintenance conditions). This
understanding laid ground to the development of a robotic skill ontology, siaras.owl,
that has been used to verify the configurability of particular tasks given current robotic cell
program expressed as a (linear) sequential function chart (SFC). This approach has been
proven to be valid, but the ontology grew quite fast and became problematic to maintain,
given dozens of robots with a number of variants each, thus multiplying the number of
devices. The details of SIARAS approach have been described in [32]. Fig. 1 and Fig. 2
illustrate the basic hierarchy of skills available in the siaras.owl ontology.

The dual hierarchy, that of devices, has been illustrated in Fig. 3 and Fig. 4, while

38

2. ROBOT SKILLS

Figure 2: Top skill classification, as defined by SIARAS ontology.

39

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 3: Manipulation and handling devices, as defined by SIARAS ontology.

Fig. 13 shows some of the properties that can be attributed to devices.
The deficiencies of the SIARAS ontology, that is, atomicity of skills and devices, fixed

parameterizations and scalability issues, have led us to reconsider the idea. These time de-
vices did not play a central role any longer, but rather skills have been put in the center.
In the ROSETTA project2 the definition of skills has been based on the so-called produc-
tion (PPR) triangle: product, process, resources [20] (see Fig. 6). The workpieces being
manufactured are maintained in the product-centered view. The manufacturing itself (i.e.,
the process) is described using concepts corresponding to different levels of abstraction,
namely tasks, steps, and actions. Finally, the resources are materialized in devices (capable
of sensing or manufacturing). The central notion of skill links all three views and is one of

2RObot control for Skilled ExecuTion of Tasks in natural interaction with humans;
based on Autonomy, cumulative knowledge and learning, EU FP7 project No. 230902,
http://www.fp7rosetta.org/.

40

http://www.fp7rosetta.org/

3. ARCHITECTURE

Figure 4: Sensor devices, as defined by SIARAS ontology.

the founding elements of the representation.
In case of a robot-based production system, skills may be defined as coordination of

parameterized motions. This coordination may happen on several levels, both sequencing
(expressed, e.g., via a finite state machine or a similar formalism), configuring (via ap-
propriate parameterization of motion) and adapting (by sensor estimation). On top of this
approach, based in our case on feature frame concept [21], we have built a set of reasoning
methods related to task-level description, like, e.g., task planning. The details are presented
in the following sections

3 Architecture
The generic setup describing the intended usage of our approach is illustrated in Fig. 7.
The system architecture is very roughly depicted in Fig. 8. The Knowledge Integration
Framework (KIF) is a server that contains data repositories and ontologies. It provides
computing and reasoning services. There are two main types of clients of the KIF server,
the Engineering System, which is a robot programming environment, and the robot task
execution system.

The task execution system is a layer built on top of the native robot controller. Given the
task, the execution system generates the run-time code files utilizing online code generation
(see Section 5), then compiles and executes the code.

The Engineering System uses the ontologies provided by KIF to model the workspace
objects and downloads skills and tasks from the skill libraries. Similarly, new objects and
skills can be added to the knowledge base by the Engineering System. Skills that are cre-

41

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 5: Device properties, as defined by SIARAS ontology.

Product

Resources Process

Skills

Figure 6: The PPR model, with skills as common coordinating points for the three views.

42

3. ARCHITECTURE

Figure 7: The Knowledge Integration Framework provides services to the Engineering Sys-
tem and the Task Execution. The latter two communicate during deployment and execution
of tasks. The Task Execution uses sensor input to control the robot and tools.

Figure 8: The Knowledge Integration Framework provides services to the Engineering Sys-
tem and the Task Execution. The latter two communicate during deployment and execution
of tasks. The Task Execution uses sensor input to control the robot and tools.

43

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

ated using classical programming tools such as various state machine editors (like, e.g.,
JGrafchart23 [94]), can be parsed, automatically annotated with semantic data and stored in
the skill libraries.

The services, described later in the paper, are mainly used by the Engineering System
to program, plan and schedule the tasks.

4 Knowledge Integration Framework
The Knowledge Integration Framework, KIF4 is a module containing a set of robotics on-
tologies, a set of dynamic data repositories and hosting a number of services provided for
the stored knowledge and data. Its main storage structure is a Sesame5 triple store and a set
of services stored in Apache Tomcat6 servlet container.7

The ontologies we use in our system come from several sources and are used for dif-
ferent purposes. The main, core ontology, rosetta.owl, is a continuous development
aimed at creating a generic ontology for industrial robotics. Its origins is the FP6 EU
project SIARAS described earlier in Section 2. It has been further modified within the
FP6 EU project RoSta (Robot Standards and reference architectures, http://www.robot-
standards.eu/, [58]). Within the FP7 EU Rosetta project this ontology has been extended,
refactored and made available online on the public KIF ontology server http://kif.cs.
lth.se/ontologies/rosetta.owl. However, this is just the first of a set of ontologies
available on KIF and useful for reasoning about robotic tasks.

The ontology hierarchy is depicted in Fig. 9, where arrows denote the ontology import
operations. We used extensively the QUDT ontologies and vocabularies (Quantities, Units,
Dimensions and Types, initiated by NASA and available at http://www.qudt.org) in
order to express physical units and dimensions. This ontology has been slightly modified
to suit the needs of our reasoner. However, as QUDT ontologies led to inconsistencies, we
have introduced the possibility to base the quantities, units and dimensions on the alternative
OM ontology8 [71].

The core Rosetta ontology (as its predecessors) is focusing mostly on robotic devices
and skills. According to it, every device can offer one or more skills, and every skill is
offered by one or more devices. Production processes are divided into tasks (which may be
considered specifications), each realized by some skill (implementation). Skills are compo-
sitional items: there are primitive skills (non-divisible) and compound ones. Skills may be
executed in parallel, if the hardware resources and constraints allow it.

On top of the core ontology we have created a number of "pluggable" ontologies, serv-
ing several purposes:

Frames The frames.owl ontology deals with feature frames and object frames of phys-
ical objects, normally workpieces involved in a task. In particular, the feature frames are re-
lated to geometrical locations and therefore the representation of location is of major impor-
tance here. The constraints among feature frames are expressed using kinematic chains [21],

3http://www.control.lth.se/grafchart/
4We realize the name coincidence with Knowledge Interchange Format [29], but as this name has

been used for more than six years by now, we have decided to keep it.
5http://www.openrdf.org
6http://tomcat.apache.org
7Technically speaking, the triple store is also a servlet.
8http://www.wurvoc.org/vocabularies/om-1.6/

44

http://kif.cs.lth.se/ontologies/rosetta.owl
http://kif.cs.lth.se/ontologies/rosetta.owl
http://www.qudt.org
http://www.control.lth.se/grafchart/
http://www.openrdf.org
http://tomcat.apache.org
http://www.wurvoc.org/vocabularies/om-1.6/

4. KNOWLEDGE INTEGRATION FRAMEWORK

ROSETTA.OWL

QUDT 1.1

INJURY.OWL SFC.OWLPARAMS.OWLFRAMES.OWL

OM 1.8

CC-BY-3.0

CC-BY-SA-3.0

CC-BY-3.0CC-BY-3.0

CC-BY-3.0

Figure 9: The KIF ontologies used by the Rosetta project. In case an ontology is openly
available, the type of license is quoted.

also introduced by this ontology.

Injury The injury.owl ontology deals with the levels of injury risks when humans
and robots cooperate, or at least share common space. The ontology specifies the possible
injury kinds, while the associated data, either extracted from earlier work [93], or gathered
during the Rosetta project [50], are provided as the upper limit values that may be used in
computations of injury risks or of evasive trajectories for a robot.

Params Each skill may be parameterized in a number of ways, depending on the gran-
ularity level of control, available information or the demands posed on the skill. In order
to provide knowledge about skill parameterization for knowledge services (like, e.g., task
consistency checking), the params.owl ontology describes skills and their mandatory and
optional parameters, their units and constraints.

SFC The sfc.owl ontology characterizes various behavior representations using vari-
ants of executable state machines (Sequential Function Charts are one of them; the others
included are OpenPLC, Statecharts, rFSMs and IML). It also contains the semantic descrip-
tion of several graph-based representations of assembly, like assembly graphs, constraint
graphs or task graphs [48], that may also be considered to be behavior specification, al-
though at a rather high level of abstraction.

This solution illustrates two important principles of compositionality and incrementality:
every non-trivial knowledge base needs to be composable out of simpler elements, possible
to be created by a single designer or team without the need to align it with all the other
elements. The alignment, or conflict resolution (e.g., inconsistency), should be performed
(semi-)automatically, after plugging the element into the system. So, every "top" ontology
should only be forced to adhere to QUDT (or OM) and ROSETTA ontologies, possibly
neglecting other elements existing in parallel.

45

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

The incrementality principle ensures that every "top" ontology should be amenable to
incremental change without the risk of breaking the whole system. Thus, changes to, e.g.,
Params ontology should not affect the consistency and utility of, e.g., SFC ontology. On the
other hand, one can imagine situations where changes in one module (e.g., introduction of
a new constraint type between feature frames, described in frames.owl) might facilitate
improvements in another (e.g., easier specification of parameters for a given skill, described
in params.owl).

Besides storing the ontologies, the triple store of KIF provides also a dynamic semantic
storage used by Engineering System to update, modify and reload scene graphs and task
definitions. Depending on the kind of repository used, some reasoning support may be
provided for the storage functionality. More advanced reasoning, and a generic storage of
arbitrary kind of data, is provided by KIF services, described below.

5 Knowledge-Based Services
The knowledge base provides storage and reasoning services to its clients. The most basic
service it offers is access to libraries with objects and skills, where the user can upload and
download object descriptions and task specifications. Some of them are stored with seman-
tic annotations, as triples, e.g., workpieces, scene graphs or skill definitions. Others are
stored as uniform chunks of data without semantically visible structure (e.g., RAPID pro-
grams or COLLADA files), although other tools may access and meaningfully manipulate
them for various purposes.

The services are mostly user-oriented, providing programming aid, and can be used
step-by-step to create a workspace and then to refine a task sequence from a high-level
specification to low level code. The workspace is created by adding a robot, tools, sen-
sors and workpieces to the scene, giving the object properties relevant values and defining
relations between objects (see Section 6).

The user specifies a task using the workpieces and their relations. On the highest level,
the task is represented by an assembly graph [48]. An example assembly graph of a cell
phone is shown in Fig. 10. The assembly graph is normally a tree (not necessarily binary).
The leaves are the original workpieces which are joined into subassemblies represented by
parent nodes and the full assembly is represented by the root. Each subassembly can be
annotated by more information, such as geometrical relations between the objects, or what
type of joining mechanism to use (e.g., glueing, snapping, screwing). The tree imposes a
partial order on the operations, where child assemblies have to be carried out first. When
going from the task specification given by the assembly graph to an executable program, the
task has to be sequentialized. Depending on the robot, or on the number of collaborating
robots, the sequence can be realized in several ways, hence, an assembly graph specification
can be shared by several robot systems, even though the sequences realizing it will differ.

KIF provides a planning service that transforms an assembly graph to a sequence of
operations using preconditions and postconditions of the skills. Initially the service verifies
the device requirements of a skill. Fig. 11 displays the device requirements of an imple-
mentation of the skill that inserts a shieldcan onto a printed circuit board (PCB). This skill
has only three device requirements: a mounted tool (which is a manipulation requirement),
a fixture and a force sensor, which (though it is not displayed in the figure) must be aligned
vertically. When planning the sequence, the planner adds actions that fulfill the precondi-
tions (see the example in Fig. 12), such as moving objects into place.

However, the sequence can also be created directly by the user, either manually or by

46

5. KNOWLEDGE-BASED SERVICES

Figure 10: An assembly graph for a partial assembly of a cell phone. A metal plate, a shield
can, is pressed onto a printed circuit board (PCB) and a cell phone camera is inserted into
a socket. The camera socket is then fastened on the PCB.

Figure 11: The device requirements of the skill ShieldCanInsertion are modelled in an on-
tology. The ManipulationRequirement which several skills inherit from, is that a gripper
has to be mounted on the robot. The ShieldcanFixtureRequirement and the Shieldcan-
ForceSensorRequirement list that there must exist a fixture and a force sensor that have
to be vertically aligned (not shown in the picture).

Figure 12: There are three preconditions to the ShieldCanInsertion skill. The skill has two
feature frames (relative coordinate frames) as input parameters, where one is a reference
object frame and the other is attached to the object in the gripper, i.e., an actuating frame.
The first precondition is that the object with the reference frame has to be on the fixture.
Secondly, the object with the actuating frame should be attached to the gripper, see Fig. 13,
and finally, the position of the actuating object should be above the fixture. Imprecise geo-
metrical relations such as “Above” are given concrete values by the Engineering System.

47

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 13: The ontology description of the precondition ShieldcanHoldActuatingFrame
which is a subclass of ObjectAttachedToGripper.

Figure 14: The user can describe the task using English sentences.

using a natural language instruction interface. Later, the same planner can be used to verify
that the sequence fulfills the preconditions of each action (Fig. 13).

The natural language interface is described in more detail elsewhere [83] and [81]. The
user either dictates or types English instructions in a text field (see an example in Fig. 14).
The input text is sent to a natural language service on KIF where the sentences are parsed
into predicates (verbs) and their corresponding arguments. Each verb has several different
senses depending on the context and meaning, e.g., the predicate take in take off the shoes
has sense take.01, but in the sentence Take on the competition it has sense take.09. The
shoes and (on) the competition are arguments to the predicates. Each sense has a number of
predefined arguments for, e.g., the actor doing the deed, the object being manipulated, the
source or the destination. These arguments are labelled as A0, A1, etc. Both the sense of
the verbs and the arguments are determined using statistical methods described in [10].

The natural language service outputs a preliminary form of program statements derived
from the sentences. However, the matching to actions and objects existing in the world
is done in the Engineering System. In the simplest form a program statement contains
an action (the predicate) and a few arguments (objects). The action is then mapped to
a robot program template while the arguments are mapped to the physical objects in the
workspace, using their names and types. Actions described this way can be picking, placing,
moving and locating objects. More complicated program structures can be expressed using
conditions that have to be maintained during the action or for stopping it, as in the sentence

48

5. KNOWLEDGE-BASED SERVICES

Figure 15: The result given by the parser of the sentence from Fig. 14. At the top, each line
displays a found predicate with its arguments. Assemble was evaluated to assemble.02 with
the arguments the shieldcan (A1), to the PCB (A2) and a manner using shieldcaninsertion.
The bottom of the picture displays the dependency graph (actually a tree). The arrows
point, beginning from the root of the sentence, from parents to children. Each arrow is
labelled with the grammatical function of the child. Under each word the corresponding
part-of-speech tag (determiner - DT; noun - NN, etc) can be found.

Search in the x-direction until contact while keeping 5 N in the z-direction. The example
sentence Assemble the shieldcan to the PCB using ShieldCanInsertion given in Fig. 14
has a skill, ShieldCanInsertion, as argument to use (which in turn is a nested argument to
assemble, see bottom of Fig. 15). Use is not mapped to a robot action, but rather prompts
a search for a corresponding skill in the KIF libraries. The skill is instantiated with the
arguments as parameters or, when no matching parameter can be found, with default values.
For example, the ShieldCanInsertion is described in the ontology with an actuated object
and a fixated object, which are mapped to A1 – the shieldcan and A2 – the PCB.

These programs can be further edited or directly executed on a physical robot or in the
virtual environment of the Engineering System.

There exists also a scheduling service that helps the user to assign actions to a system
with limited resources. The current implementation of the service is based on the list-
scheduling. The manipulation skills require different end effectors, e.g., for gripping and
for screwing. By adding a tool changer to the cell, the robot can change end effectors during
the task. The time it takes to change tools is added as penalty on the priority of the actions.
When there are multiple arms, one arm can of course change a tool while waiting for the
other arm to finish its operation during a two-arm manipulation skill. A typical input to the
service can be to schedule a partially ordered task on a two-armed robot with three tools
and one force sensor. Each action lists its estimated time and the resource requirements,
required tool(s) and resources. Given the estimated time to change tools and the number of
cycles, the service will output a suggested schedule that minimizes the total time.

The last service named here is a code generation service used by the task execution
system. It is described below in Section 7.

49

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 16: The engineering system is a plug-in the programming environment ABB Robot-
Studio.

6 Engineering System
The Engineering System is a high level programming interface implemented as a plugin
to the programming and simulation IDE ABB RobotStudio, 9 shown in Fig. 16. When
creating a station, objects such as the robot, workpieces, sensors, trays and fixtures can be
manually generated in the station or downloaded from KIF together with the corresponding
ontologies.

A physical object is characterized by its local coordinate frames, the object frame and
a number of relative coordinate frames called the feature frames, see Fig. 17. Geometrical
constraints are expressed as relations between feature frames, and may be visualized as in
Fig. 18.

An example program sequence is shown in Fig. 19. The program has a nested hierarchy,
where steps (such as pick or place) may contain atomic motions and gripper actions.

9http://new.abb.com/products/robotics/robotstudio

50

http://new.abb.com/products/robotics/robotstudio

7. EXECUTION

Figure 17: A feature frame.

Figure 18: A geometrical relation between two objects.

7 Execution
The sequence from Fig. 19 is sent to the execution system, which in turn calls the code
generation service that returns a complete state machine (serialized in an XML file), which
is visualized, compiled and executed using JGrafchart tool [94]. It creates a task state
machine, where each state is either a call to primitive functions on the robot, or a nested
skill. Fig. 20 shows a small part of a generated state machine. Each skill is either retrieved
from KIF and instantiated with the new parameters, or generated from scratch by creating
a closed kinematic chain for a given robot and the objects. The vendor-specific code is
executed using the native robot controller, while the more complex sensor-based skills are
executed using an external control system [14] and the state machine switches between
these two controllers when necessary.

To guarantee a safe execution, the injury risk for different velocities is evaluated using
the data stored in KIF and the final robot speed is appropriately adjusted.

8 Related Work
Task representation has been an important area for the domain of robotics, in particular for
autonomous robots research. The very first approaches were based on logic as a universal
language for representation. A good overview of the early work can be found in [16]. The
first autonomous robot, SHAKEY, exploited this approach to the extreme: its planning sys-
tem STRIPS, its plan execution and monitoring system PLANEX and its learning compo-
nent (Triangle tables) were all based on the first order logic and deduction [60]. This way of
thought continued, leading to such efforts as "Naive physics" by Patrick Hayes (see [16]) or
"Physics for Robots" [77]. This development stopped because of the insufficient computing
power available at that time, but has recently received much attention in the wider context
of semantic web. The planning techniques [30] have also advanced much and may be used

51

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

Figure 19: An example sequence of the cell phone assembly. First, the PCB is moved to the
fixture. Then, the shieldcan is picked and inserted on the PCB using a sensor-based skill
called shieldcaninsertion. The cell phone camera is assembled with the socket, and then the
socket is inserted on the PCB.

nowadays for cases of substantial complexity, although generic automation problems are
usually still beyond this limit.

Later, mixed architectures begun to emerge, with a reasoning layer on the top, reactive
layer in the bottom, and some synchronization mechanism, realized in various disguises, in
the middle. This approach to building autonomous robots is prevalent nowadays [6], where
researchers try to find an appropriate interface between abstract, declarative description
needed for any kind of reasoning, and procedural one needed for control. The problem
remains open until today, only its complexity (or the complexity of solutions) grows with
time and available computing power.

Task description in industrial robotics setting comes also in the form of hierarchical
representation and control, but the languages used are much more limited (and thus more
amenable to effective implementation). There exist a number of standardized approaches,
based, e.g., on the IEC 61131 standards [36] devised for programmable logic controllers,
or proprietary solutions provided by robot manufacturers, however, to a large extent the
solutions are incompatible with each other. EU projects like RoSta10 are attempts to change
this situation.

At the theory level all the approaches combining continuous and discrete formalisms
may be considered as variants or extensions of hybrid systems [31], possibly hierarchical.
Hybrid control architectures allow us to some extent separation of concerns, where the con-
tinuous and real-time phenomena are handled in their part of the system, while the discrete
aspects are treated by appropriate discrete tools. Our earlier work attempted at declaratively
specifying such hybrid systems, but was limited to knowledge-based configuration [32].

Robotics systems are usually build from a number of distributed heterogenous hardware

10www.robot-standards.org

52

8. RELATED WORK

Figure 20: Each box is a state in the task state machine. The state called Skill 1 with marked
corners is a nested state machine containing a (dynamically generated) sensor-based skill.
Before and after the sensor-based skill the external controller is started and turned off,
respectively.

and software components that have to seamlessly interact during execution phase. In order
to simplify configuration, communication and hide the complexity of the system, as well as
to promote portability and modularity, there exist several frameworks for robotics middle-
ware (see comprehensive surveys [22] and [54]). Module functionality can be provided as
nodes in the ROS 10 environment, or as standardized components in RT-components [61],
where the modules can provide blackbox-type computations with well-specified interfaces.

Task descriptions come in different disguises, depending on the context, application
domain, level of abstraction considered, tools available, etc. Usually tasks are composed
out of skills, understood as capabilities of available devices [11], but the way of finding
appropriate composition varies heavily, from manual sequencing in many workflows, via
AI-influenced task planning [30], hybrid automata development tools [31], Statecharts [34]
and Sequential Function Charts (SFCs) [36], iTaSC specifications [21], to development of
monolithic programs in concrete robot programming languages, like, e.g., ABB RAPID.

There have been several attempts to codify and standardize the vocabulary of robotics.
There exists an old ISO standard 8373 requiring however a major revision to suit the de-
mands of contemporary robotics. IEEE Robotics and Automation Society is leading some
work towards standardization of robotic ontologies. In particular, there are first drafts of
robotic core ontology [19], although not as developed as the ROSETTA ontology described

53

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

in this paper. Regarding industrial robotics, the work on kitting ontologies, originated at
NIST [4], may be considered as an early attempt to address the problem.

In the area of service robotics there are several systems exploiting the knowledge-
based approach, and relying on an underlying ontology, like KNOWROB [89] (based on
the generic OPENCYC ontology [51]), used in ROBOHOW project11 or several participants
in the ROBOEARTH project12 [98]. However, they do not attempt to standardize the do-
main, as the variance of tasks and skills in the service robotics is very large. On the other
hand, the KNOWROB ontology became a de-facto standard used in several experimental
robot systems.

9 Conclusions
We have shown a generic knowledge-based system architecture and its possible use in in-
dustrial robotic systems. In particular, we have employed the approach for representing
and realizing force-controlled tasks realized by one- and two-armed ABB robots in an in-
dustrial setting. The presented generic ontologies are either novel, or a derivative of our
earlier research. The use of semantic tools and explicit knowledge in industrial robotics
is in its early stage, with only a few other published examples [4]. The ideas have been
experimentally verified and work well in the currently ongoing EU-projects PRACE13 and
SMErobotics.14 The implemented system is just a proof of concept, and systems that are
derived from this work must undergo usability, security and performance testing, before
they might be considered to be ready for industrial practice. But already now it can be
stressed that the knowledge-based approach allowed us to create composable representa-
tions of non-trivial assembly skills, shown to be reusable among different models of ABB
robots, but also portable to other vendors and control architectures (like the one reported
in [40] and running on a Kuka LWR4 robot).

The already ongoing continuation of the work presented above involves integration of a
heterogeneous system consisting of a mobile robot platform (Rob@Work) running a ROS-
based control system, and a real-time-enabled ABB-manipulator running the ABB-specific
control software, so that the two parts can operate seamlessly together as an integrated,
knowledge-based, productive robotic system. This work includes deploying knowledge-
based services in the context of chosen robotic middleware.

Future work involves contribution to the IEEE standardization efforts, and aligning and
sharing robotic ontologies with other research groups. An online documentation of the core
ROSETTA ontology is also expected. The number of knowledge-based services should
be extended with, e.g., online reasoning during execution, geometrical reasoning and inte-
grated path planning and optimization. We are also verifying this approach in other domains
of manufacturing, like wood-working and machining, expecting to extend the ontologies
appropriately.

We have found out during the work described in this paper that skills are much more
than just a potential to execute coordinated motions. This line of thought has been already
present in [59], where business aspects of skills have been pointed to. We plan to explore
this topic in the nearest future.

11http://robohow.eu
12http://roboearth.org/
13http://prace-fp7.eu/
14http://www.smerobotics.org/

54

http://robohow.eu
http://roboearth.org/
http://prace-fp7.eu/
http://www.smerobotics.org/

9. CONCLUSIONS

Acknowledgments
The research leading to these results has received partial funding from the European Union’s
seventh framework program (FP7/2007-2013) under Grant agreement nos. 230902 (project
ROSETTA), 285380 (project PRACE) and 287787 (project SMErobotics).

The work described in this paper has been done in tight collaboration with many people
from the project consortia. The authors are indebted for many fruitful discussions.

An early version of this paper has been presented during the 12th Scandinavian Con-
ference on Artificial Intelligence, Aalborg, Denmark, October 2013.

55

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

56

Paper II

Natural Language Programming of Industrial
Robots

Maj Stenmark Pierre Nugues

Department of Computer Science
Lund University

maj.stenmark@cs.lth.se

pierre.nugues@cs.lth.se

ABSTRACT

In this paper, we introduce a method to use written natural language instructions to program
assembly tasks for industrial robots. In our application, we used a state-of-the-art semantic
and syntactic parser together with semantically rich world and skill descriptions to create
high-level symbolic task sequences. From these sequences, we generated executable code
for both virtual and physical robot systems. Our focus lays on the applicability of these
methods in an industrial setting with real-time constraints.

The 44th International Symposium on Robotics, Seoul, South Korea, Oct 24-26, 2013.

1. INTRODUCTION

1 Introduction
Robot programming is time consuming, complex, error-prone, and requires expertise both
of the task and the platform. Within industrial robotics, there are numerous vendor-specific
programming languages and tools, which require certain proficiency. However, to increase
the level of automation in industry, as well as to extend the use of robots in other domains,
such as service robotics and disaster management, it has to be possible for non-experts to
instruct the robots.

Since humans communicate with natural language (NL), it is appealing to use speech
or text as instruction means for robots as well. This is complicated for two main reasons:
First, NL can be ambiguous and its expressivity is richer than that of a typical programming
language. Secondly, tasks can be expressed as goals as well as imperative statements, hence,
even if the instructions are correctly parsed, the description itself is often not enough to
create a successful execution. There has to be a substantial amount of knowledge in the
system to translate the high-level language instructions to executable robot programs.

In this paper, we introduce a method for using natural language to program robotized
assembly tasks and we describe a prototype of it. The core idea of the method is to use a
generic semantic parser to produce a set of predicate-argument structures from the input sen-
tences. Such predicate-argument structures reflect common semantic situations described
through language and at the same time use a logical representation. Using the predicate-
argument structures, we can extract the orders embedded in a user’s sentences and map
them more easily onto robot instructions.

2 Related Work
Natural language programming for robots has been investigated for both service and nav-
igational robots from the early 1970’s. SHRLDU [99] is an oft-cited example of the first
attempts to give robots conversational competences. To interpret and convert a user’s sen-
tences into instructions, robotic system often make use of an intermediate representation.
Examples include [87, 47, 78], where the authors have developed their own domain specific
semantic representation for navigational robots.

Tenorth et al. [88] parse pancake recipes in English from the World Wide Web and
generate programs for their household robots. They use the WordNet lexical graph [69] with
a constituent parser and they map WordNet’s synsets to concepts in the Cyc [51] ontology.
Finally, they add mappings to common household objects.

In order to bridge the sentence to the robot actions, all the examples mentioned above
seem to use ad-hoc intermediate formalisms that are difficult to adapt to other domains,
languages, or environments. Frame semantics [24] is an attempt to provide generic models
of logical representations of sentences. Frame semantics starts from prototypical situations
shared by a language community, English for instance, and abstracts them into frames.
While frame semantics is only a theory, FrameNet [28, 76] is a comprehensive dictionary
that provides a list of lexical models of the conceptual structures. Commercial situations
like selling are represented with the Commerce_sell predicate-argument structure, where
the arguments include a buyer, a seller, and goods. Given a sentence and a verb belonging
to this frame, like vend, sell, or retail, a semantic parser will identify the predicate and its
arguments.

As of today, FrameNet has not a complete coverage of English verbs and nouns. Prop-
bank [66] and Nombank [52] are subsequent projects related to FrameNet that both de-

59

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

veloped comprehensive databases of predicate-argument structures for respectively verbs
and nouns and annotated large volumes of text with it. As training data is essential to the
development of statistical semantic parsers, most of the current parsers use the Propbank
nomenclature, as they are easier to train.

To the best of our knowledge, few robotics systems use existing predicate-argument
nomenclatures. An exception is RoboFrameNet [92], a language-enabled robotic system
that adopts frame semantics. However, the authors wrote their own frames inspired from
FrameNet. Their model includes a decomposition of the frames into a sequence of primi-
tives. They built a semantic parser that consists of a dependency parser and rules to map
the grammatical functions to the arguments. Such techniques have been used from the early
Absity system [35] and are known to have a limited coverage.

In the project, we describe below, we used a multilingual high-performance statistical
semantic parser [12, 10] trained on the Penn Treebank and using the Propbank and Nom-
bank lexicons. In contrast to RoboFrameNet, the parser we adopted can accept any kind of
sentence.

3 System Overview
Architecture

The central part of the system architecture [11] is the knowledge integration framework
(KIF). KIF consists of a client-server architecture where the server hosts ontologies, pro-
vides services, and object and skill libraries. The ontologies represent the world objects,
such as robots, sensors, work-pieces and their properties, as well as robot skills. The skills
are semantically annotated, platform-independent state machines, which are parameterized
for reuse and executed using JGrafchart [94].

KIF interacts with the engineering system (ES), which is the high-level programming
interface, and the robot controller. The ES is implemented as an extension to the program-
ming and simulation environment ABB RobotStudio [1]. When creating the robot cell, the
objects, such as sensors, work-pieces, and trays, can be generated or downloaded from KIF
together with the ontology. Every physical object has an object frame, and a number of
feature frames related to its object frame. These frames are used to express geometrical
constraints; see Fig. 1.

A program consists of a sequence of steps, which in turn consists of actions, motions,
skills, or nested steps. The sequence is created using the graphical interface of the ES. The
steps for picking a printed circuit board (PCB) and placing it on a fixture are shown in Fig. 2.
To execute the sequence, platform specific code (robot code or the XML file used by the
state machine executor) is generated for the motions, actions and skills, and deployed on the
target platform. To help the user quickly setup a skeleton sequence of a task, we provide a
natural-language parsing service on KIF; see Fig. 3. The service reads the text input, parses
the text in search of predicate-arguments structures, and returns those containing predicates
that match the task vocabulary.

On the client side, the predicates are mapped to programs; the arguments representing
station objects and the other parameters are filled with default values or geometrical rela-
tions taken from the station. The programmer can then check the sequence, possibly alter
it, and finally execute it.

60

3. SYSTEM OVERVIEW

Figure 1: In the object browser, the robots
are listed under robots; all physical objects
are listed under world and each object lists
its own frames and relations.

Figure 2: The visual rendering of a pro-
gram for picking and placing a PCB.

Predicate-Argument Structures
An assembly task can be defined as e.g.: Pick the PCB from the input tray and place it on
the fixture. Then take a shield can and insert it on the PCB. These sentences are parsed to
extract the predicates-argument structures pick(PCB, input tray) and place(it, fixture), while
the agent parameter, robot, is implicit.

The parser is trained on the Penn Treebank that uses the Propbank lexicon [37]. Prop-
bank labels each English verb with a sense and defines a set of arguments that is specific to
each verb. In the sentence: Pick the PCB from the input tray and place it on the fixture, both
pick and place have sense 1 (pick.01 and place.01):

• Pick.01 has three possible arguments; arg0: agent, entity acquiring something, arg1:
thing acquired and arg2: seller.

• Place.01 has arg0: putter, arg1: thing put, and arg2: where put.

The parsing output is shown in Fig. 4. As shown in this figure, the arg1 and arg2 arguments
to pick.01 are matched to the PCB and the input tray respectively, while the robot (arg0)
is implicit. Before mapping the identified arguments to the station objects, the arguments
corresponding to the same entity have to be gathered into coreference chains; see Fig. 5.
The last step links the coreference chains to the entities in the station using the object name
or type.

Task Vocabulary
The vocabulary is currently rather limited. We only considered predicates matching pro-
grams that the robot could generate. Each program has arbitrary language tags such as
take, insert, put, calibrate, either predefined or edited by the user. Possible arguments to the
programs are the objects in the station, which is a well-defined, finite world.

61

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

ES KIF NL parser

ES KIF NL parser

User writes
the NL text in
a text box. The text is sent

as a request
Forwards the text The parser

finds the
predicates and
arguments in
the sentences

Returns the parsed result

The KIF service filters
the result and returns
only those predicates
that are relevant for
the assembly task

Returns the filtered
predicates and their
arguments

Matches the
arguments to
the objects in
the station and
generates the
sequence

Figure 3: The data flow between the user, the KIF service and the semantic parser.

Figure 4: Parsing result from the first sentence. The parser identified two predicates, pick
and place, and two arguments for each predicate.

4 High-level Programming Prototype
On the highest level, the task is represented by an assembly graph [48], which is a partially
ordered tree of assembly operations; see Fig. 6. The graph describes the assembly of an
emergency stop button box.

Each operation specifies the desired geometrical relations of the involved objects and
the skill type for the assembly. Examples of skill types in the ontology are screw, glue and
peg-in-hole, where each type can have several different implementations. The assembly op-
erations are subgoals, and the root node represents the final goal of the task. The motivation
for the assembly graph is to have a platform independent task description, so that different
implementations can be compared and reasoned about.

The assembly graph is realized by sequences of actions and motions for each robot.
The sequence can be: 1) created manually by adding actions and motions one by one and
editing their properties, 2) generated from the assembly graph or 3) created by using a
natural language interface. An example of the latter is shown in Fig. 7: two assembly steps
of a stop button box assembly are described by natural language. Fig. 8 shows the parsed
result from Fig. 7.

Each predicate is mapped to a type of skill. For example, a pick or take consist of a
sequence of primitive actions: approaching the object to be picked, opening the gripper,
moving slowly to a grasp position, closing the gripper, and then retracting. The mapping of
the objects are rudimentary: by name (ignoring space and case) or, if this is unsuccessful,

62

5. CONCLUSIONS

Figure 5: Coreference solving of entities in the first sentence. Mentions corresponding to
the same entity are gathered into coreference chains.

by the ontology type (e.g. fixture, tray or pin). When generating the motions for picking and
placing the objects, the application uses the existing grasp positions and relations between
the work-pieces as default values. If no relations exist, a new one is created with zero
offset. The actions for opening and closing the gripper are taken from the selected tool,
since each tool describes its own procedures. The resulting sequence is shown in Fig. 9.
Using reasoning services available from KIF, the generated sequence can then be checked
for inconsistencies and additional skills are suggested to solve missing constraints (e.g. an
object has to be placed in a fixture before an assembly or a tool needs to be exchanged
between drilling and picking). The code generated from the sequence is executable on both
virtual and physical robots; see Fig. 10. To expand the vocabulary, the user can add natural
language tags to existing steps and upload them to KIF.

5 Conclusions
In this paper, we have presented a system to describe robot assembly tasks in the RobotStu-
dio environment using natural language. From an input sentence, the processing pipeline
applies a sequence of operations that parses the sentence and produces a set of predicate-
argument structures. The semantic module uses statistical techniques to extract automati-
cally these structures from the grammatical functions.

The NLP pipeline is designed so that it reaches high accuracies and has short response
times required for user interaction. Parsing a sentence takes from 10 to 100 milliseconds.

63

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

Figure 6: The assembly graph is created by dragging and dropping icons of the objects.
Here, the first assembly operation involves the base of the emergency button (left) and the
switch (right). In the second operation the lid is added to the subassembly.

Figure 7: The commands are written into
a simple text field, the narrative is then
sent to the KIF service that facilitates se-
mantic parsing.

Figure 8: The result the parsed predi-
cates along with their arguments.

Drawing from the frame semantics theory, the semantic parser uses a standardized inventory
of structures and can be applied to unrestricted text. This makes the pipeline more easily
adaptable to new tasks and new environments.

As second step, the system maps the predicate and the arguments extracted from the
sentence to robot actions and objects of the simulated world. These objects and actions are
stored in a unified architecture, the knowledge integration framework that represents and
manages the entities, services, and skill libraries accessible to the robot.

Making the application part of a tool already used by industry is a conscious choice:
high-level natural language programming is convenient to get an application up and running
quickly. However, when tuning the parameters of a task, the programmer can still use the
traditional tools, e.g. to edit the generated code directly. Also, because of the industrial
focus, we have real-time performance on the underlying sensor and control systems, which
is necessary for many manipulation tasks in assembly operations.

Unlike previously reported results, our approach supports both a command-like inter-
face and parsing of longer texts, yielding multistep programs.

64

6. FUTURE WORK

Figure 9: The generated sequence for in-
serting a switch on the base of a stop bot-
tom and putting the top of the box on the
base.

Figure 10: The sequence from Fig. 8 ex-
ecuted on a physical robot.

6 Future Work
The obvious drawback of this implementation is the lack of speech as an input modality.
However, since many smartphones have sufficient speech recognition for our purposes, this
was not our main scientific concern. Rather, we wanted to extend the skill library with
relevant and generic assembly skills. We plan to extend our application with tools that
make it simple to extract the natural language predicate-argument structures given a skill,
its parameters (objects, velocities, forces), and a textual description of the skill. Another
extension is to automatically search after suitable implementations that are tagged with
synonyms to the used words.

7 Acknowledgments
The research leading to these results has received funding from the European Union’s sev-
enth framework program (FP7/2007-2013) under grant agreements N◦ 230902 (ROSETTA)
and N◦ 285380 (PRACE) and from the Swedish Research Council grant N◦ 2010-4800 (SE-
MANTICA).

65

Paper III

Paper III: Describing Constraint-Based Assembly
Tasks in Unstructured Natural Language

Maj Stenmark Jacek Malec

Department of Computer Science
Lund University

maj.stenmark@cs.lth.se

jacek.malec@cs.lth.se

ABSTRACT

Task-level industrial robot programming is a mundane, error-prone activity requiring ex-
pertise and skill. Since humans easily communicate with natural language (NL), it may
be attractive to use speech or text as instruction means for robots. However, there has to
be a substantial amount of knowledge in the system to translate the high-level language
instructions to executable robot programs.

In this paper, the method of [83] for natural language programming of robotized as-
sembly tasks is extended. The core idea of the method is to use a generic semantic parser
to produce a set of predicate-argument structures from the input sentences. The algorithm
presented here facilitates extraction of more complicated, advanced task instructions involv-
ing cardinalities, conditionals, parallelism and constraint-bounded programs, besides plain
sequences of commands.

The bottleneck of this approach is the availability of easily parametrizable robotic skills
and functionalities in the system, rather than the natural language understanding by itself.

The 19th IFAC World Congress, Cape Town, South Africa, Aug 24-29, 2014.

1. INTRODUCTION

1 Introduction
Programming of a traditional robot cell requires considerable expertise and effort. The
new generation of robots, that work in an unstructured environment, that might have more
degrees of freedom and two arms, introduces an increased level of complexity in user in-
teraction and instruction. Therefore, methods of robot instruction that are accessible to
non-experts would lead to greater usability of industrial robotics. Yet another aspect of the
problem lies in vendor-specific solutions, available for each brand of robots. Different tools
of varying complexity, different robot programming languages and different abstraction lev-
els of task descriptions make them inaccessible for a plain user.

Since humans communicate with natural language (NL), it may be attractive to use
speech or text as instruction means for robots. This is non-trivial for two main reasons:
First, NL is often ambiguous and its expressivity is richer than that of a typical programming
language. Secondly, tasks can be expressed as goals as well as imperative statements, hence,
even if the instructions are correctly interpreted, the description itself is often not enough
to create a successful execution. There has to be a substantial amount of knowledge in the
system to translate the high-level language instructions to executable robot programs.

In this paper, the simple method from [83] for natural language programming of as-
sembly tasks is extended. The core idea of the method is to use a generic semantic parser
to produce a set of predicate-argument structures from the input sentences. The original
algorithm allows extraction of only plain sequences of commands. Here we show that us-
ing the predicate-argument structures together with the dependency graphs facilitates also
extraction of more complicated task instructions, which involve cardinalities (e.g., pick two
bolts and two nuts), conditionals (e.g., if...then...else) and constraint-characterized programs
(e.g., do...until...)

2 Related Work
By abstracting away the underlying details of the system, e.g., by demonstration, high-
level programming can make robot instruction accessible to non-expert users and reduce
the workload for an experienced programmer. A survey of programming-by-demonstration
models in robotics is presented by [7].

In industrial robotics, programming and demonstration techniques are normally used
to record trajectories and positions. As it is desirable to minimize downtime for the robot,
much programming and simulation is done offline whereas only the fine tuning is done
online [33]. There is a plethora of tools, often visual, for robot programming. In robotics,
standardized graphical programming languages include Ladder Diagrams, Function Block
Diagrams and Sequential Function Charts [36]. Using a touch screen as an input device,
icon-based programming languages such as in [9] can also lower the threshold to robot
programming.

Natural language programming for robots has been investigated since the early 1970’s.
SHRLDU [99] is an example of the first attempts to give robots conversational competences.
To interpret and convert a user’s sentences into instructions, robotic system often make use
of an intermediate representation. Examples include [47] and [87], where the authors have
developed their own domain-specific semantic representations for robot navigation.

[88] parse pancake recipes in English from the World Wide Web and generate programs
for their household robots. They use the WordNet lexical database [69] with a constituent
parser and they map entries in the WordNet dictionary to concepts in the Cyc ontology [51].

69

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Finally, they add mappings to common household objects.
In order to bridge the sentence to robot actions, all the examples above use ad-hoc for-

malisms. FrameNet [76], based on frame semantics, is a comprehensive dictionary that
provides a list of lexical models of the conceptual structures. Propbank [66] has devel-
oped a extensive database of predicate-argument structures for verbs and nouns, and anno-
tated large volumes of text. The Propbank nomenclature is used by most current statistical
parsers, including ours.

Only few robotics systems use existing predicate-argument nomenclatures. An excep-
tion is RoboFrameNet [92]. However, the authors wrote their own frames inspired by
FrameNet. They built a semantic parser that consists of a dependency parser and rules
to map the grammatical functions to the arguments. Such techniques are known to have a
limited coverage.

In the project described below we have used a multilingual high-performance statis-
tical semantic parser [12, 10] using the Propbank and Nombank lexicons. In contrast to
RoboFrameNet, the parser we adopted can accept any kind of sentence. The NL processing
module is a knowledge-based service in a larger programming environment [80]. In particu-
lar, it allows one to create constraint-based task descriptions based on the iTaSC formalism,
a property exploited here.

3 Background
The system has been described in detail in our previous work [83, 80]; a simplified view of
its components is shown in Fig. 1. It is a cloud-based system for knowledge sharing and dis-
tributed AI reasoning. The knowledge and reasoning services are stored on a server called
Knowledge Integration Framework (KIF), which contains data repositories and ontologies
modeling objects and actions. KIF also provides servlets for planning, scheduling and code
generation, as well as the NL-programming servlet described in this paper. These services
are used for offline programming by the Engineering System (ES), which is a user-interface
implemented as a plug-in to ABB RobotStudio [1] visual IDE.

Objects in the World The core ontology, rosetta.owl [80], contains devices such as

Figure 1: A view of the system architecture.

70

3. BACKGROUND

Figure 2: A sequence of skills.

sensors and robots. The ES also uses a separate ontology to describe parts, such as trays
and workpieces. The ontologies describe object types and properties, while the data repos-
itories contain instances of the types. E.g., a ForceSensor is a subtype of Sensor and of
PhysicalObject, has property measures with value Force, and it also inherits properties
such as weight from PhysicalObject. The object types and their property types are later
used by the natural language programming system to link arguments to real world objects.
Objects are displayed by ES using their CAD models. Each object has a number of rela-
tive coordinate frames called feature frames, attached to its main object frame. The feature
frames are used to express relations between objects. A typical case is a gripping pose
described as a relation between a gripper frame and an object feature frame.

Task Vocabulary The task vocabulary is limited to existing robot capabilities. In the
KIF repositories, robot actions are stored as program templates, called skills. There are
primitive actions, such as search, locate and move which can be combined into more com-
plex skills such as pick and place. Each skill has parameters, e.g., velocities, other objects,
their feature frames, or relations. Each skill has also a set of device requirements, pre - and
post-conditions as well as optional properties such as natural language labels. The skills are
downloaded from the KIF libraries into the ES and added to a task sequence, see Fig. 2. This
sequence can be edited by drag-and-dropping objects and by editing parameters of each ac-
tion or skill. As an additional modality, we have extended the system with natural language
support for sequence generation. Using language to express a task is faster than download-
ing or selecting each skill separately; besides, speech allows hands-free instruction of the
robot.

Natural Language Programming The task is expressed in unstructured English, either
by typing it in a text box directly in the user interface, or by connecting an Android app to the
ES and using its speech-to-text conversion. The text is sent to a servlet on KIF, which in turn
calls a general purpose statistical parser15 [10] that outputs predicate-argument structures

15The parser is available as open source software, freely accessible at
http://barbar.cs.lth.se:8081/.

71

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

in standard format (cf. Fig. 3).

ES KIF NL parser

ES KIF NL parser

User writes
the NL text in
a text box. The text is sent

as a request
Forwards the text The parser

finds the
predicates and
arguments in
the sentences

Returns the parsed result

The KIF service filters
the result and returns
only those predicates
that are relevant for
the assembly task

Returns the filtered
predicates and their
arguments

Matches the
arguments to
the objects in
the station and
generates the
sequence

Figure 3: The NL parsing sequence.

Predicate-Argument (PA) Structures As an example we use an assembly where a
printed circuit board, a PCB, is covered with a metal plate, a shieldcan. First the PCB
should be fixated, which can be expressed in English as Take the PCB from the input tray
and place it on the fixture. The PA structures are take(PCB, input tray) and place(it, fixture).
The parser labels verbs with different senses depending on the context in which they are
used. For example, take off (like a plane) is take.19 and take down is take.22.

The parsing pipeline uses logistic regression to produce the PA structures, see Fig. 4.
First, the dependency graph is extracted. The dependency graph connects the words in the
sentence using their grammatical functions. It is technically a tree, where the root is the
dominant word in the sentence, most often a verb describing an action, and the arrows (see
for example bottom part of Fig. 6) point from the parent or head to its children. Then the
predicates are identified, labelled with a sense and finally the arguments are identified and
labelled. Take in our example has sense 1. The predicate take.01 has three arguments named
A0-A2, the actor (A0), the thing being taken (A1) and the source (A2). In this case, the robot
is not explicitly mentioned, hence there is no A0. Pronouns, such as it or them are linked to
their antecedents in the sentence.

Previous work [83] defined an algorithm describing how predicates can be mapped to
robot skills, and arguments linked to specific world objects in order to create an executable
sequence of the task, as displayed in Fig. 2. However, the supported programming features
were limited, excluding e.g., such control structures as conditionals, temporal constraints,
control parameters, parallell execution and references to program features. The contribu-
tions of this work are that predicate-argument pairs can be mapped to complex skills and
the novel methods we are using to extract constraints and control structures from NL in-
structions.

Code Generation and Execution The executable code for primitive actions is gener-
ated in native controller language (RAPID). E.g., each gripper can have a predefined native
code to open and close it. On the other hand, the sensor-controlled skills use a framework
based on iTaSC [21], together with external force/torque sensors. These skills are specified
by state machines using Grafchart [94] language, where states are simple motions and tran-
sition conditions are, e.g., timeouts or force and torque thresholds. A motion is specified by

72

4. PATTERN-MATCHING ALGORITHM

	
�
���
������������
���������
��
�����
�
���������
�������
�

Predicate sense

Predicate identification

Argument identification
+ Argument labeling

	
�
���
������������
���������
��
�����
�
���������
�������
�

�
�
��� ��
�
���

	
�
���
������������
���������
��
�����
�
���������
�������
�

�
�
��� ��
�
���

måndag 21 oktober 13

Figure 4: The parsing pipeline.

constraining outputs (e.g., positions or force values) from a kinematic chain. The kinematic
chain is a specification of the relation between task variables and the robot, which are rep-
resented by a list of transformations. The state machine is generated by ES for all skills and
all constrained motions [84].

4 Pattern-Matching Algorithm
In this section, we present our method of extracting motion constraints and control struc-
tures from unstructured English in more detail. At the moment, the system supports car-
dinality, parallel execution, conditionals and program references. The algorithm that runs
on KIF server is presented in Algorithm 1. It matches the output from the semantic parser
to program statements, using the semantic labels, the part of speech (POS) tags and depen-
dency relations between the words. The following examples illustrate how the matching of
the different statements is carried out.

Cardinality refers to the number of elements. In the sentence Take all needles and put
them in the pallet, the cardinality of the needles is all. Take three of the needles ... has
cardinality three. The cardinality is easily extracted from the arguments. In these examples,
the arguments A1 to take.01 are all needles, and three of the needles, respectively. In the
first case, the verb is labelled as plural (NNS) and the determiner all is used. In the second
case, where there is an explicit numbering (CD) in the argument, it is used as cardinality.
Personal pronouns, such as them or it, are assumed to refer to all the objects in the previous
argument (this is done in the ES). There is a subtle difference between Take the needle and
Take a needle, which is expressed in the use of determiner. In the first case, a specific

73

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Algorithm 1: Pattern-matching algorithm. Non-trivial functions are de-
scribed separately.

Data: Input text text, set of predicates that have an action-mapping,
understoodPredicates

Result: list of program statements, list of unknown statements
Let sentences be a list of sentences in text split by ".", "!" and "?"
Let actions be an empty list
Let unknownStatements be an empty list
sentenceNbr← 0
foreach sentence s in sentences do

Increase sentenceNbr
semOut put ← semParse(s)
q← sortPredicates(semOut put)
while q is not empty do

p← poll first element in q
if not(p is negated or an auxiliary verb) then

if understoodPredicates does not contain p then
stm← createArgs(p,q)
Add stm to unknownStatements
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to unknownStatements
end

end
else

stm← createArgs(p, p)
Add stm to actions with sentenceNbr
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to actions with sentenceNbr
end

end
Remove nested predicates in stm from q

end
end

end
return actions and unknownStatements

needle is referenced, while in the second, it is only the object type that is mentioned and
any needle can be chosen. When linking entities to specific objects in the world, the system
will look for a specific object where the name matches the argument value in the first case,
but in the second case, the argument value is an object type and the system will return
objects of the given type instead. When the cardinality of an argument is larger than one,
the resulting program structure is a loop, the sentence number is used to determine its scope,
where actions in the same sentence are in the same loop. “Take all needles. Put them in
the pallet.” will thus be two loops, and in a single robot system the planning service will
complain about such instructions.

74

4. PATTERN-MATCHING ALGORITHM

Function sortPredicates(semOut put)
if semOutput has a root element then

Let q be an empty queue
root← get root predicate from semOutput
if root is a predicate then

Add root to q
Parse the tree breath first adding all predicates to q

end
end
else

predicates← all predicates from semOut put in input order
Add all predicates to q

end
return q

Function createArgs(p)
args← findArgs(p)
stm← (p, args)
if hasIfCondition(p) then

word← the child of p of form "if" or "when"
condition← recursiveSearch(word)
stm← if-statement with condtion and stm

end
if hasBreakCondition(p) then

word← the child of p of form "until"
condition← recursiveSearch(word)
stm← break-statement with condtion and stm

end
if hasParallellActivity(p) then

word← the child of p of form "while"
condition← recursiveSearch(word)
stm← while-statement with a and stm

end
return stm

75

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Function findArgs(p)
a1← argument "A1" of p
if a1does not exist then

a1← search for an argument labelled "TMP", "IN", "AM-LOC"
if a1is not found then

a1← search among children to p labelled "LOC"
end

end
a2← argument "A2" in p
if a2is not found then

a2← search for an argument labelled "TMP", "IN", "AM-LOC"
end
if a1is not found and a2 is found then

a1← a2
a2← void

end
return (a1, a2)

Function recursiveSearch(w)
foreach child c of word do

if c is predicate then
cond← createArgs(c)
if any child cc to c has POS-tag "CC" then

nestedStm← recursiveSearch(cc) (cc is "and" or "or")
Add nestedStm to cond

end
end

end
return cond

Function getWildcard(p)
manner← get argument from p with tag "AM-MNR"
if manner found then

word← recursively search all descendants of manner for a word labelled "NN",
"NNS" or "NNP"
if word found then

stm← new statement("use", word)
return stm

end
end
return empty statement

76

4. PATTERN-MATCHING ALGORITHM

Figure 5: The parse result of “Search in the z-direction until contact”, together with the
dependency graph.

Figure 6: The parse result of “Move in the z-direction until you measure 5 N”.

Until is a keyword for extracting the exit condition. Until is used to express guarded
motions such as Search in the z-direction until contact. The conditions can be nested PA
structures as well, for example: Move in the z-direction until you measure 5 N. The results
from the parsing of the two example sentences are displayed in Figs 5 and 6. In order
to extract the program statements, the analysis starts with the root in case the root is a
predicate. If the predicate belongs to the set of understood predicates, it is added as a
program statement, together with its arguments. In the first example, the direction was
identified as argument A1 to search.01, however, in the second sentence, the direction is
considered a location argument to move.01. In the case of missing object arguments, the
location arguments are used instead, since these are valid parameters to motions. The default
frame of the direction is the tool frame.

If the predicate has any temporal constraints, expressed by for example until and while,
these are labelled TMP in the dependency graphs. The temporal constraints can be ei-
ther a noun describing an event, or nested PA structures such as measure (pred) 5 N (A1).
The temporal constraints are added as a condition to the main program statement (Move
- z-direction) and will later be used to create transition conditions and thresholds for the
guarded motion. Conditions will be discussed in more detail later.

While. In most programming languages while statements are equivalent to until, how-
ever, in natural language they also express parallelism. For example “While holding 5 N in
z-direction, search in x-direction until contact” is a guarded motion along one axis, while
adding a constraint in another direction. The result is translated into program statements
similarly to until-statements. This sentence results in a while-statement describing the par-
allell actions of searching and holding, while the search is a nested until-statement with the
transition condition.

77

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Figure 7: Result for an if-sentence.

Figure 8: Result for a when-sentence.

Conditions. Conditions can be events or PA structures. In our system, the events that
can be used are contact, collision and timeout. The predicates that are allowed are limited
to measure, reach, sense, thus limiting the expressions to sensor values. The system also
supports nested conditions using AND and OR, such as contact or timeout, because and
and or are tagged as coordination conjunctions (CC) by the dependency parser.

If and when. In our system, these are considered equivalent, however, in the if-sentence
the condition is considered an adverbial while in the when-sentence it is a temporal, see
Fig. 7 and Fig. 8. This difference is ignored and the PA structure is used as a condition in
both cases.

Keywords. All robot skills are not suited to be mapped to predicates, e.g., in a Snapfit
skill two plastic pieces are snapped into position. Hence, the predicate use is dedicated as
a keyword, where the argument is either another program or a device that is not part of the
assembled parts, such as sensors or tools. That allows sentences such as “Assemble the
shieldcan and the PCB using myskill”, see Fig. 9. Here myskill can be snapfit or peg-in-
hole, or be replaced with tool such as gripper2. When a use-predicate is evaluated by the
system, it first searches among the sensors and tools for devices that the skill can use, and
then online for a skill which can be used to replace the generic assemble action.

Another way to express similar commands is by using the word with. This will naturally
not be parsed into a predicate, but rather be an argument to assemble.2 called manner which
is labelled AM-MNR in the result shown in Fig. 10. Adverbs typically describe the manner
of a predicate, such as Carefully assemble.... In case the manner contains with and a noun
it is simply interpreted as a use with the noun as its argument.

Program references. A small set of predicates and PA structures are used to describe
the program itself. For example Repeat the task. The predicates are pause, stop, start,
repeat, and restart, while the arguments can be skills or general references such as the task
and the program.

78

5. DISCUSSION

Figure 9: Example of the usage of the wildcard word use.

Figure 10: Example of the usage of the word with.

Negation. Predicates with negation are ignored. Although it is possible to imagine
commands such as Don’t go close to the human, we have chosen to require usage of an
active command such as Avoid the human. For a negation to be meaningful, both an action
and its negation have to be mapped to different skills, since the complement of an action is
not a well defined concept.

When the program statements have been extracted from English sentences, the predi-
cates are mapped into programs and functions, and the arguments are linked to objects in
the world or to skills that are downloaded to the station. Thresholds for sensor values and
parallell constraints are added to the guarded motions. Executable robot code for the task
is generated from the guarded motions and skills. The resulting code has been verified by
virtual robot execution in the Engineering System.

5 Discussion
Using the standard predicate argument-structures together with the dependency graphs, it
is possible to extract the semantic meaning of complicated assembly task descriptions from
unstructured English. The bottleneck is rather the availability of robotic skills and function-
alities in the system, not the natural language understanding by itself.

In a virtual world, control parameters and sensor thresholds can be set to default values.
In order to carry out robust task execution on a physical platform though, the damping and
stiffness factors of the impedance controller and force signatures should be learnt for the
task. The parameters to the impedance control can be learnt by experimentation, as shown
by [85].

The approach and algorithms presented in this paper are not limited to just assembly
tasks, or just to industrial robot task descriptions. After having completed experiments
involving skill parameter learning, we plan to extend this approach to other manufacturing
domains.

79

Paper IV

From High-Level Task Descriptions to Executable
Robot Code

Maj Stenmark Jacek Malec Andreas Stolt

1. Department of Computer Science
2. Department of Automatic Control

Lund University
maj.stenmark@cs.lth.se

jacek.malec@cs.lth.se

andreas.stolt@control.lth.se

ABSTRACT

For robots to be productive co-workers in the manufacturing industry, it is necessary that
their human colleagues can interact with them and instruct them in a simple manner. The
goal of our research is to lower the threshold for humans to instruct manipulation tasks,
especially sensor-controlled assembly. In our previous work we have presented tools for
high-level task instruction, while in this paper we present how these symbolic descriptions
of object manipulation are translated into executable code for our hybrid industrial robot
controllers.

IEEE Intelligent Systems’ 2014, Advances in Intelligent Systems and Computing, 323 (2015),
pages 189–202.

1. INTRODUCTION

1 Introduction

Deployment of a robot-based manufacturing system involves a substantial amount
of programming work, requiring background knowledge and experience about the
application domain as well as advanced programming skills. To set up even a
straightforward assembly system often demands many days of work of skilled sys-
tem integrators.

Introducing sensor-based skills, like positioning based on visual information
or force-feedback-based movements, adds yet another level of complexity to this
problem. Lack of appropriate models and necessity to adapt to complexity of the
real world multiplies the time needed to program a robotic task involving continu-
ous sensor feedback. The standard robot programming environments available on
the market do not normally provide sufficient sensing simulation facility together
with the code development for specific industrial applications. There are some
generic robot simulators used in research context that allow simulating various
complex sensors like lidars, sonars or cameras, but the leap from such simulation
to an executable robot code is still very long and not appropriately supported by
robot programming tools.

The goal of our research is to provide an environment for robot task program-
ming which would be easy and natural to use, even for plain users. If possible, that
would allow simulation and visualization of the programmed task before the de-
ployment phase, and that would offer code generation for a number of predefined
robot control system architectures. We aim in particular at ROS-based systems and
ABB industrial manipulators, but also other systems are considered.

In our work we have developed a system for translation from a high-level,
task-oriented language into either the robot native code, or calls at the level of a
common API like, e.g., ROS, or both, and capable to handle complex, sensor-based
actions, likewise the usual movement primitives.

This paper focuses on the code generation aspect of this solution, while our
earlier publications described the task-level programming process in much more
detail [11, 48, 80, 81].

Below we begin by describing the system architecture and the involved, al-
ready existing components. Then we proceed to the presentation of the actual
contribution, namely the code generation process. In the next section we describe
the experiments that have been performed in order to validate this approach. Fi-
nally we present a number of related works. The paper ends with conclusions and
suggestions for future work.

2 System Overview

The principles of knowledge-based task synthesis developed earlier by our group
[11, 13] may be considered in light of the Model-Driven Engineering principles
[39]. In particular, the system described in the rest of this paper realizes the princi-
ples of separation of concerns, and separation of user roles, as spelled out recently

83

PAPER IV: FROM HIGH-LEVEL TASK DESCRIPTIONS TO EXECUTABLE
ROBOT CODE

in robotic context in [95]. It consists of the following components:

• An intuitive task-definition tool that allows the user to specify the task using
graphical menys and downloading assembly skills from a knowledge base,
or by using a natural-language interface [81, 83];

• An advanced graphical simulation and visualization tool for ABB robots,
extended with additional capabilities taking care of other hardware used in
our experiments;

• Software services transforming the task specification into a combination of a
transition system (a sequential function chart) and low level code executable
natively on the robot controller;

• Controllers specific for the hardware used: IRC5 and custom ExtCtrl [14]
for the ABB industrial robots, and ROS-based16 for the Rob@Work mobile
platform;

• ABB robots: a dual-arm concept robot, IRB120 and IRB140, Rob@Work
platform from Fraunhofer IPA17, Force/Torque sensors from ATI Industrial
Automation18 used in the experiments mentioned in this paper, as well as
vision sensors (Kinect and Raspberry Pi cameras) used for localization.

The functional dependencies in the system are illustrated in Fig. 1. The knowl-
edge base, called Knowledge Integration Framework (KIF), is a server contain-
ing robotic ontologies, data repositories and reasoning services, all three support-
ing the task definition functionality [13, 48, 80]. It is realized as an OpenRDF
Sesame (http://www.openrdf.org) triple store running on an Apache Tom-
cat servlet container (http://tomcat.apache.org). The Engineering System

16www.ros.org
17http://www.care-o-bot.de/en/rob-work.html
18http://www.ati-ia.com

Figure 1: The Knowledge Integration Framework provides services to the Engineering Sys-
tem and the Task Execution. The latter two communicate during deployment and execution
of tasks. See also Fig. 5.

84

http://www.openrdf.org
http://tomcat.apache.org
www.ros.org
http://www.care-o-bot.de/en/rob-work.html
http://www.ati-ia.com

3. CODE GENERATION

(ABB RobotStudio [1]) is a graphical user interface for high-level robot instruction
that uses the data and services provided by KIF for user support. The Engineering
System uses the ontologies provided by KIF to model the workspace objects and
downloads known skills and tasks from the skill libraries. Similarly, new objects
and skills can be added to the knowledge base via the Engineering System. Skills
that are created using classical programming tools, such as various state machine
editors (like, e.g., JGrafchart [90], used both as a sequential function chart [36]—a
variant of Statecharts [34]—editor, and its execution environment), can be parsed,
automatically or manually annotated with semantic data, and stored in the skill
libraries.

The Task Execution module is built on top of the native robot controller and
sensor hardware. It compiles, with the help of KIF, a symbolic task specifica-
tion (like the one shown in Fig. 2) into generic executable files and, when needed,
hardware-specific code, before executing it. It is implemented on a real-time-
enabled Linux machine, linking the external control coming from JGrafchart (a
simple example is shown in Fig. 2b) or possibly other software, with the native
controller of the robot. Depending on the system state (execution or teaching
mode) or the action being carried out, the control is switched between the ExtCtrl
system for sensor control and the native controller, allowing smooth integration of
the low-level robot code with the high-level instructions expressed using the SFC
formalism. It also runs adaption and error detection algorithms. The native robot
controller is in our case an ABB IRC5 system running code written in the language
RAPID, but any (accessible) robot controller might be used here. The Engineer-
ing System uses among other tools a sensor-based-motion compiler [84] translat-
ing a symbolic, constraint-based [21] motion specification into an appropriately
parametrized corresponding SFC and the native controller code.

In addition to the benefit of providing modular exchangeable components, the
rationale behind KIF as a separate entity is that the knowledge-providing services
can be treated as black boxes. Robot and system-integration vendors can offer their
customers computationally expensive or data-heavy cloud-based services [82] in-
stead of deploying them on every site and each installation.

3 Code Generation

In order to illustrate the process of code generation, we will use an example
task where a switch is assembled into the bottom of an emergency stop box.
Both parts are displayed in Fig. 3a. The task is described in the Engineering
System as a sequence, shown earlier in Fig. 2a. First the box is picked and
aligned to a fixture with a force sensor. Then the switch is picked and assem-
bled with the box using a snap-fit skill. The sequence is mixing actions (pickbox,
movetofixt, pickswitch and retract) that are written in native robot con-
troller code (ordinary blind moves), guarded search motions which are actions that
are force-controlled (alignment to the fixture), and it also reuses a sensor-based
skill (snapFitSkill. In this section we present how we generate and execute

85

PAPER IV: FROM HIGH-LEVEL TASK DESCRIPTIONS TO EXECUTABLE
ROBOT CODE

(a) The task is shown as a
sequence in Engineering Sys-
tem.

(b) A small part of the state
chart generated from the se-
quence in Fig. 2a.

(c) A sample XML description corresponding to the
guarded motion skill from Fig. 2a that is sent to the code
generation service by Engineering System. The param-
eter values are either set automatically or by the user in
the Engineering System. If a guarded motion is generated,
e.g., from text and one of the parameters is an impedance
controller, the controller is selected among the controller
objects in the station. All mandatory parameters must be
specified before the code generation step.

Figure 2: A task can be created using the graphical interface of the Engineering System or
by services for automatic sequence generation. The sequence shown is part of an assembly
of an emergency stop button (see next section), consisting of a synthesized guarded motion,
a complex snapFitSkill and three position-based primitives, see Fig. 2a. In Fig. 2b the step
named skill1 is a macro step containing the synthesized guarded motion skill. Before and
after the actual skill the steps for starting and turning off ExtCtrl are inserted. The idle
state resets all reference values of the controller. Finally, Fig. 2c presents the corresponding
input to the code generation service.

86

3. CODE GENERATION

(a) The parts that are used in the process:
the bottom of an emergency stop box (later
"box") and a switch that will be inserted into
the box.

(b) The two-armed ABB robot and the
workspace setup.

Figure 3: The example setup for the assembly experiments.

code for tasks containing these three types of actions. As an example we will use
the sequence shown in Fig. 2a that, when executed, requires switching between the
native robot controller and the external, sensor-based control (ExtCtrl).

The task sequence is translated into executable code in two steps. First, the
native code for each primitive action is deployed on the robot controller. In this
case RAPID procedures and data declarations are added to the main module and
synchronized to the ABB controller from the Engineering System. In the second
step a KIF service generates the task state machine (encoded as an SFC). Thus, KIF
acts both as a service provider and a database, where the service builds a complete
SFC, which can include steps synthesized from skills that are stored in the KIF
databases. The final SFC is executed in JGrafchart, which, when necessary, calls
the RAPID procedures on the native controller. The data flow between the modules
is illustrated in Fig. 4.

3.1 Execution System Architecture
The execution system architecture is depicted in Fig. 5. The task is executed in
JGrafchart, which in turn invokes functions on different controllers. The exter-
nal controller (ExtCtrl) is implemented using Matlab/Simulink Real Time Work-
shop. It sends position and velocity references to the robot while measurements
from the sensors are used to control the motion. Motions are specified using a sym-
bolic framework based on iTaSC [21], by constraining variables such as positions,
velocities or forces in a closed kinematic chain that also contains the robot. The
communication between the modules is done using a two-way protocol called Lab-
Comm (http://wiki.cs.lth.se/moin/LabComm). LabComm packages data
in self-describing samples and the encoders and decoders may be generated for
multiple languages (C, Java, RAPID, C#). The ExtCtrl interface divides the

87

http://wiki.cs.lth.se/moin/LabComm

PAPER IV: FROM HIGH-LEVEL TASK DESCRIPTIONS TO EXECUTABLE
ROBOT CODE

KIF ES

Native
controllerKIF ES Deployer/

JGrafchart

Native
controller

The user stores
skill instances

The code module
is deployed on

native controller

Deployer/
JGrafchart

The task description

Calls code generation
module with description

JGrafchart
state

machine

ExtCtrl

ExtCtrl

 Starts execution

Function
calls

Status

Reference
values

Status

Figure 4: The Engineering System (ES) sends the task description to a small helper program
called Deployer which in turn calls the code generation service on KIF, loads the returned
file and starts JGrafchart.

JGrafchart

ExtCtrl Native
controller

CommandsReference
values

Sensor signals

Control loop

Wednesday, February 5, 14

Figure 5: A schematic image of the execution architecture. The task state machine is exe-
cuted in JGrafchart, which in turn sets and reads reference values to ExtCtrl and sends
commands to the native controller.

samples into four categories: inputs, outputs, parameters and log signals. Hence,
JGrafchart can set output signals and read inputs from the underlying controller.

LabComm is also used to send commands (strings and acknowledgements) to
the native controller. In that sense, the protocol aligns well with ROS messages,

88

3. CODE GENERATION

and two-way LabComm-ROS bridges have also been created. This is important
since a few of our robot systems are ROS-hybrids, where an ABB manipulator
is mounted on top of a ROS-based mobile platform, each having a separate Lab-
Comm channel to JGrafchart.

3.2 Sequential function charts in JGrafchart

JGrafchart is a tool for graphical editing and execution of state charts [90]. JGraf-
chart is used for programming sensor-based skills and has a hierarchical structure
where state machines can be nested. For each robot, the generated state machine
will be a sequence. Each primitive or sensor-based skill is represented by a state
(step), and transitions are triggered when the primitive action or skill has finished.
Each state can either contain a few simple commands or be a nested state machine,
put into a so called macro step (in Fig. 2b shown by a square with marked corners).
The generated and reused skills are put into these macro steps while primitive ac-
tions becomes simple steps with function calls.

When alternating between sensor-based external control and the native con-
troller, the controllers are turned on and off during the execution, so these steps
need to be added as well during the generation phase. The switching between con-
trollers is handled by the state machine in JGrafchart. When ExtCtrl is turned
on or off, the robot has to stand still to avoid inconsistent position and velocity
values. When a controller is turned on it starts by updating its position, velocity
and acceleration values to the current values on the robot.

The state machine can have parallel activities and multiple communication
channels at the same time. Hence, code can be generated for multiple tasks and
executed in parallel. Although the state machine allows synchronization between
the tasks, we do not have a high-level representation of synchronized motions yet.

Finally, the sequence IDs and graphical elements, such as positions of the
blocks, have to be added in order to provide an editable view. We generate very
simple layout, however, much more could be done with respect to the legibility of
the generated SFCs.

3.3 Code generation service

The code generation is implemented as an online service which is called by the
Engineering System. It takes an XML description with the sequence as input and
outputs the XML-encoding of the sequential function chart understood by JGraf-
chart. An example of the input is shown in Fig. 2c. Each robot has its own task,
which needs to specify what LabComm port it will connect to. A primitive is spec-
ified by its procedure name and parameters to the procedure. Reusable skills are
referenced by their URI, which is the unique identifier that is stored in the KIF
repositories.

89

PAPER IV: FROM HIGH-LEVEL TASK DESCRIPTIONS TO EXECUTABLE
ROBOT CODE

3.4 Reusing skills

A skill that is created in JGrafchart as a macro step, can be uploaded to KIF and
reused. During the upload, it is translated into RDF triples. The skills are anno-
tated with types, e.g., SnapFit, and skill parameters that are exposed to the users
are also annotated with types and descriptions. The RDF representation is a simple
transformation, where each state in the state machine is an RDF node annotated
as a State, together with parameters belonging to the state, the commands, a de-
scription of the state (e.g. Search x) and is linked to transitions (which similarly
are annotated with type and values). In this way, the parameters can be retrieved
and updated externally using the graphical view in the engineering system. When
a skill is updated in the engineering system, the new instance is also stored in KIF
with the new parameter values. The URI in the input XML file refers to the updated
skill, that is retrieved during the code generation process and translated back from
triples to XML describing a macro step. The macro step is then parameterized and
added as a step in the task sequence XML.

3.5 Guarded motions

One drawback of using the reusable skills is that there are implicit assumptions of
the robot kinematics built into them, and thus the skill can only be used for the
same (type of) robot. This limitation can be avoided by using a symbolic skill
description and regenerating the code for each specific robot. This is what we do
for the guarded motions. In this case, the skill specification is larger, as shown
in Fig. 2c, where three actions are described. First, a search in the negative z-
direction of the force sensor frame (f1) is performed. When the surface is hit, the
motion continues in negative y-direction of the same frame while holding 3 N in
the z-direction, pushing the piece to the side of the sensor. The last motion is in
the x-direction while both pressing down and to the side, until the piece is lodged
into the corner. In order to setup the kinematic chain, the coordinate frames that
are used to express the motions have to be set, as well as the tool transform, that
is, the transformation from the point where the tool is attached on the robot flange
to the tip of the tool. Each constraint is specified along an axis of a chosen frame.
There can be one motion constraint (using the <Direction> tag) which specifies
the motion direction, speed and the threshold value for stopping. The other rota-
tional and translational axes can also be constrained. The constraint should also
specify what set of impedance controller parameters to use. Knowing what robot
the code is generated for, the control parameters for the kinematic chain are set
to the values of the frames and each motion sets reference values on correspond-
ing parameters. Simply put, it is a mapping, where several hundred output signals
have to get a value, where most are just dependent on the robot type, while some
represent the coordinates of the frames in the kinematic chain and other reference
values during execution. During the code generation the right value has to be set
to the corresponding reference output signal and this is calculated depending on
what frame is used.

90

4. EXPERIMENTS

Figure 6: The properties of a move primitive: zone data for specifying maximal allowed
deviation from the target point, velocity in mm/s, the position(s) of the motion specified by
a relative position of the actuated object to a (frame of a) reference object. A motion can
have a list of positions added to it.

3.6 RAPID code generation
The actions that have native controller code are called primitives. There are several
different primitives and, in fact, they do not have to be simple. The most used are
simple linear motions, move primitives for translation and rotation, and actions for
opening and closing the gripper. The gripper primitives are downloaded together
with the tool. The simplest form of a primitive is pure native code, a RAPID
primitive, which does not have any semantically described parameters but where
the user can add arbitrary lines of code which will be called as a function in the
program. This is an exception though, since most primitives are specified by their
parameters. E.g., the properties of a linear move are shown in Fig. 6. The target
positions will be calculated from the objects’ CAD-models and the objects’ relative
frames and positions in the virtual environment. The code for each primitive type
and target values are synchronized to the controller as RAPID procedures and data
declarations.

Hence, JGrafchart will invoke a primitive function with a string consisting of
the procedure name followed by comma-separated parameters, e.g, "MoveL tar-
get_1, v1000, z50". The string value of the procedure name can be invoked directly
with late binding, however, due to the execution model of the native controller the
optional parameters have to be translated into corresponding data types, the target
name must be mapped to a robtarget data object and, e.g., the speed data has to be
parsed using native functions.

4 Experiments
In order to verify that the code generation works as expected, we tested it using the
sequence from the Engineering System depicted in Fig. 2a which resulted in an ex-
ecutable state machine, the same that is partly shown in Fig. 2b. The state machine
is the nominal task execution, without any task-level error handling procedures.
We have generated code for a two-armed ABB concept robot (see Fig. 3b) and the
generation for guarded motions is working for both the left and the right arm, as
well as for ABB IRB120 and IRB140 manipulators.

91

PAPER IV: FROM HIGH-LEVEL TASK DESCRIPTIONS TO EXECUTABLE
ROBOT CODE

5 Related Work

The complexity of robot programming is a commonly discussed problem [67, 75].
By abstracting away the underlying details of the system, high-level programming
can make robot instruction accessible to non-expert users. However, the work-
load for the experienced programmer can also be reduced by automatic generation
of low-level control. Service robotics and industrial robotics have taken some-
what different but not completely orthogonal paths regarding high-level program-
ming interfaces. In service robotics, where the users are inexperienced and the
robot systems are uniform with integrated sensors and software, programming by
demonstration and automatic skill extraction is popular. A survey of programming-
by-demonstration models is presented by Billard [7].

Task description in industrial robotics setting comes also in the form of hier-
archical representation and control, but the languages used are much more limited
(and thus more amenable to effective implementation). There exist a number of
standardized approaches, based e.g., on IEC 61131 standards [36] devised for pro-
grammable logic controllers, or proprietary solutions provided by robot manufac-
turers, however, to a large extent incompatible with each other. EU projects like
RoSta [58] (www.robot-standards.org) are attempting to change this situation.

In industrial robotics, programming and demonstration techniques are used
to record trajectories and target positions e.g., for painting or grinding robots.
However, it is desirable to minimize downtime for the robot, therefore, much pro-
gramming and simulation is done offline whereas only the fine tuning is done on-
line [53, 15, 33]. This has resulted in a plethora of tools for robot programming,
where several of them attempt to make the programming simpler, e.g., by using
visual programming languages. The graphics can give meaning and overview,
while still allowing a more advanced user to modify details, such as tolerances.
In robotics, standardized graphical programming languages include Ladder Di-
agrams, Function Block Diagrams and Sequential Function Charts. Other well
known languages are LabView, UML, MATLAB/Simulink and RCX. Using a
touch screen as input device, icon-based programming languages such as in [9]
can also lower the threshold to robot programming. There are also experimental
systems using human programmer’s gestures as a tool for pointing the intended
robot locations [57]. However, all the systems named above offer monolithic com-
pilation to the native code of the robot controller. Besides, all the attempts are
done at the level of robot motions, focusing on determining locations. Experi-
ences show [86] that even relatively simple sensor-based tasks, extending beyond
the “drag and drop” visual programming using those tools, require a lot of time
and expertise for proper implementation in mixed architecture like ours.

Reusable skill or manipulation primitives are a convenient way of hiding the
detailed control structures [43]. The approach closest to ours is presented in the
works of M. Beetz and his group, where high-level actions are translated, using
knowledge-based techniques, into robot programs [5]. However, the resulting code
is normally at the level of ROS primitives, acceptable in case of service robots, but
without providing any real-time guarantees needed in industrial setting. In this

92

www.robot-standards.org

6. CONCLUSIONS AND FUTURE WORK

context, they also present an approach to map high-level constraints to control
parameters in order to flip a pancake [42].

6 Conclusions and Future Work
In this paper we have described how we generate executable code for real-time
sensor-based control from symbolic task descriptions. Previous work in code gen-
eration is limited to position-based approaches. The challenge to go from high-
level instructions to robust executable low-level code is an open-ended research
problem, and we wanted to share our approach in high technical detail. Naturally,
different levels of abstraction have different power of expression. Thus, generat-
ing code for different robots from the same symbolic description is much easier
than reusing code written for one platform by extracting its semantic meaning and
regenerating the skill for another platform. Hence, it is important to find suitable
levels of abstraction, and in our case we have chosen to express the guarded mo-
tions using a set of symbolic constraints. The modular system simplifies the code
generation, where the user interface only exposes a subset of parameters to the
user, while the JGrafchart state machine contains the calculated reference values
to the controllers and coordinates the high-level execution. The external controller
is responsible for the real-time sensor control which is necessary for achieving the
necessary performance for assembly operations.

In future work we plan to experiment using a mobile platform running ROS
together with our dual-arm robot and thus evaluate how easy it is to extend the
code generation to simultaneously support other platforms. The sequence can ex-
press control structures, such as loops and if-statements, ongoing work involves
adding these control structures to the task state machine as well as describing and
generating the synchronization between robots.

The robustness of the generated skills depends on the user input. One direction
of future work is to couple the graphical user interface with haptic demonstrations
and learning algorithms in order to extract e.g., force thresholds and impedance
controller parameters. Another direction is to add knowledge and reasoning to the
system to automatically generate error handling states to the task state machine.

7 Acknowledgments
The research leading to these results has received partial funding from the Eu-
ropean Union’s seventh framework program (FP7/2007-2013) under grant agree-
ments No. 285380 (project PRACE) and No. 287787 (project SMErobotics). The
third author is a member of the LCCC Linnaeus Center and the eLLIIT Excellence
Center at Lund University.

The work described in this paper has been done in tight collaboration with
other researchers from the project consortia. The authors are indebted for many
fruitful discussions.

The authors are grateful to Anders Robertsson for careful proofreading.

93

BIBLIOGRAPHY

94

Bibliography

[1] ABB. RobotStudio, 2015. Available from: http://new.abb.com/

products/robotics/robotstudio. Online; last accessed 17 February
2015.

[2] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.
A survey of robot learning from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, 2010.

[3] Stephen Balakirsky. Ontology based action planning and verification for
agile manufacturing. Robotics and Computer-Integrated Manufacturing,
33, 2015.

[4] Stephen Balakirsky, Zeid Kootbally, Craig Schlenoff, Thomas Kramer, and
Satyandra Gupta. An industrial robotic knowledge representation for kit
building applications. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012.

[5] Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. CRAM: A cog-
nitive robot abstract machine for everyday manipulation in human environ-
ments. In Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, 2010.

[6] George A. Bekey. Autonomous Robots. MIT Press, 2005.

[7] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal.
Springer Handbook of Robotics, chapter: Robot Programming by Demon-
stration, pages 1371–1394. Springer Verlag, 2008.

[8] Aude Billard and Daniel Grollman. Robot learning by demonstration.
Scholarpedia, 8(12):3824, 2013. revision no. 138061.

[9] Rainer Bischoff, Arif Kazi, and Markus Seyfarth. The morpha style guide
for icon-based programming. In Proc. of the IEEE Int. Workshop on Robot
and Human Interactive Communication, 2002.

[10] Anders Björkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. A
high-performance syntactic and semantic dependency parser. In Coling

95

http://new.abb.com/products/robotics/robotstudio
http://new.abb.com/products/robotics/robotstudio

BIBLIOGRAPHY

2010: Demonstration Volume, pages 33–36, Beijing, China, August 23-27
2010.

[11] Anders Björkelund, Lisett Edström, Mathias Haage, Jacek Malec, Klas
Nilsson, Pierre Nugues, Sven Gestegård Robertz, Denis Störkle, Anders
Blomdell, Rolf Johansson, Magnus Linderoth, Anders Nilsson, Anders
Robertsson, Andreas Stolt, and Herman Bruyninckx. On the integration
of skilled robot motions for productivity in manufacturing. In Proc. IEEE
International Symposium on Assembly and Manufacturing, Tampere, Fin-
land, 2011.

[12] Anders Björkelund, Love Hafdell, and Pierre Nugues. Multilingual seman-
tic role labeling. In Proc. of the Thirteenth Conference on Computational
Natural Language Learning (CoNLL):Shared Task, pages 43–48, Boulder,
Colorado, USA, 2009.

[13] Anders Björkelund, Jacek Malec, Klas Nilsson, Pierre Nugues, and Herman
Bruyninckx. Knowledge for intelligent industrial robots. In Proc. AAAI
2012 Spring Symp. On Designing Intelligent Robots, Stanford Univ., 2012.

[14] Anders Blomdell, Isolde Dressler, Klas Nilsson, and Anders Robertsson.
Flexible application development and high-performance motion control
based on external sensing and reconfiguration of ABB industrial robot con-
trollers. In Proc. of ICRA 2010, pages 62–66, Anchorage, AK, USA, 2010.

[15] Vitor Bottazzi and Jaime Fonseca. Off-line programming industrial robots
based in the information extracted from neutral files generated by the com-
mercial CAD tools. Industrial Robotics: Programming and Simulation and
Application, 2006.

[16] Ronald J. Brachman and Hector J. Levesque. Readings in Knowledge Rep-
resentation. Morgan Kaufmann, 1985.

[17] Bride, 2014. Available from: http://wiki.ros.org/bride. Online; last
accessed 14 January 2015.

[18] Herman Bruyninckx and Joris De Schutter. Specification of Force-
Controlled Actions in the “Task Frame Formalism”-A Synthesis. In IEEE
Transactions on Robotics and Automation, volume 12, 1996.

[19] Joel Luis Carbonera, Sandro Rama Fiorini, Edson Prestes, Vitor A. M.
Jorge, Mara Abel, Raj Madhavan, Angela Locoro, Paulo Goncalves, Tamas
Haidegger Marcos E. Barreto, and Craig Schlenoff. Defining position in a
core ontology for robotics. In Proc. 2013 IEEE/RSJ IROS, Tokyo, Japan,
2013.

[20] A.F. Cutting-Decelle, R.I.M. Young, J.J. Michel, R. Grangeland, J. Le
Cardinal, and J.P. Bourey. ISO 15531 MANDATE: A Product-process-
resource based Approach for Managing Modularity in Production Manage-
ment. Concurrent Engineering, 15, 2007.

96

http://wiki.ros.org/bride

BIBLIOGRAPHY

[21] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré,
Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx.
Constraint-based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty. 26(5):433–455, 2007.

[22] Ayssam Elkady and Tarek Sobh. Robotics middleware: A comprehen-
sive literature survey and attribute-based bibliography. Journal of Robotics,
2012, 2012.

[23] FANUC Robotics. RoboGuide. Available from: http://www.

fanucrobotics.de/en/products/software/simulation%20and%

20development/roboguide. Online; last accessed 14 January 2015.

[24] Charles J. Fillmore. Frame semantics and the nature of language. Annals of
the New York Academy of Sciences: Conference on the Origin and Devel-
opment of Language and Speech, 280:20–32, 1976.

[25] Bernd Finkemeyer, Torsten Kröger, and Friedrich M. Wahl. Executing as-
sembly tasks specified by manipulation primitive nets. Advanced Robotics,
19(5):591–611, 2005.

[26] Sandro Rama Fiorinia, Joel Luis Carboneraa, Paulo Gonçalvesb, Vitor A.M.
Jorgea, Vítor Fortes Reya, Tamás Haideggerd, Mara Abela, Signe A. Red-
fieldf, Stephen Balakirsky, Veera Ragavanh, Howard Lii, Craig Schlenoffj,
and Edson Prestesa. Extensions to the core ontology for robotics and
automation. Robotics and Computer-Integrated Manufacturing, 33:3–11,
2015.

[27] ABB Flexible Automation. RAPID Reference Manual.

[28] FrameNet. https://framenet.icsi.berkeley.edu/fndrupal/, 2013. Available
from: https://framenet.icsi.berkeley.edu/fndrupal/. Online;
accessed 14 January 2015.

[29] Michael R. Genesereth and Richard E. Fikes. Knowledge interchange for-
mat, version 3.0. Technical report, Stanford University Logic Group, Tech-
nical Report Logic-92-1, 1992.

[30] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning, The-
ory and Practice. Morgan-Kaufman, 2004.

[31] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dynam-
ical Systems: Modeling and Stability and and Robustness. Princeton Uni-
versity Press, 2012.

[32] Mathias Haage, Jacek Malec, Anders Nilsson, Klas Nilsson, and Sławomir
Nowaczyk. Declarative-knowledge-based reconfiguration of automation
systems using a blackboard architecture. In Anders Kofod-Petersen, Fredrik
Heintz, and Helge Langseth, editors, Proc. 11th Scandinavian Conference
on Artificial Intelligence, pages 163–172. IOS Press, 2011.

97

http://www.fanucrobotics.de/en/products/software/simulation%20and%20development/roboguide
http://www.fanucrobotics.de/en/products/software/simulation%20and%20development/roboguide
http://www.fanucrobotics.de/en/products/software/simulation%20and%20development/roboguide
https://framenet.icsi.berkeley.edu/fndrupal/

BIBLIOGRAPHY

[33] Martin Hägele, Klas Nilsson, and J. Noberto Pires. Springer Handbook of
Robotics, chapter: Industrial Robotics, pages 963–986. Springer Verlag,
2008.

[34] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[35] Graeme Hirst. Semantic interpretation and the resolution of ambiguity.
Cambridge University Press, 1987.

[36] IEC. IEC 61131-3: Programmable controllers – part 3: Programming lan-
guages. Technical report, International Electrotechnical Commission, 2003.

[37] R. Johansson and P. Nugues. Dependency-based syntactic-semantic anal-
ysis with probbank and nombank. In Proceedings of CoNLL-2008, pages
183–187, Manchester, United Kingdom, 2008.

[38] Vitor A.M. Jorge, Vitor F. Rey, Renan Maffei, Sandro Rama Fiorini,
Joel Luis Carbonera, Flora Branchi, João P. Meireles, Guilherme S. Franco,
Flávia Farina, Tatiana S. da Silva, Mariana Kolberg, Mara Abel, and Edson
Prestes. Exploring the IEEE ontology for robotics and automation for het-
erogeneous agent interaction. In Robotics and Computer-Integrated Manu-
facturing, volume 33, pages 12–20, 2015.

[39] Stuart Kent. Model driven engineering. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods, volume 2335 of Lecture
Notes in Computer Science, pages 286–298. Springer Berlin Heidelberg,
2002.

[40] Markus Klotzbücher and Herman Bruyninckx. Coordinating robotic tasks
and systems with rFSM statecharts. Journal of Software Engineering for
Robotics, 1(3):28–56, 2012.

[41] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S.K. Gupta. Towards
robust assembly with knowledge representation for the planning domain
definition language (PDDL). Robotics and Computer-Integrated Manufac-
turing, 33, 2015.

[42] I. Kresse and M. Beetz. Movement-aware action control — integrating sym-
bolic and control-theoretic action execution. In Proc. ICRA 2012, pages
3245–3251, Saint Paul, MN, USA, 2012.

[43] T. Kroeger, B. Finkemeyer, and F. M. Wahl. Manipulation primitives —
a universal interface between sensor-based motion control and robot pro-
gramming. In Robotic Systems for Handling and Assembly, pages 293–313.
Springer, 2010.

[44] KUKA. KUKA Sunrise. Available from: http://www.kuka-labs.

com/en/service_robotics/robot_control_system/. Online; last
accessed 14 January 2015.

98

http://www.kuka-labs.com/en/service_robotics/robot_control_system/
http://www.kuka-labs.com/en/service_robotics/robot_control_system/

BIBLIOGRAPHY

[45] KUKA System Software. KUKA System Software 5.5 Operating and Pro-
gramming Instructions for System Integrators, 2010.

[46] Douglas B. Lenat. Cyc: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM, 38(11):33–38, 1995.

[47] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk:
Connecting language, knowledge, and action in route instructions. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence - Volume
2, AAAI’06, pages 1475–1482. AAAI Press, 2006.

[48] J. Malec, K. Nilsson, and H. Bruyninckx. Describing assembly tasks in a
declarative way. In ICRA 2013 WS Semantics and Identification and Control
of Robot-Human-Environment Interaction, Karlsruhe, Germany, 2013.

[49] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre,
Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The Penn
Treebank: Annotating predicate argument structure. ARPA Human Lan-
guage Technology Workshop, 1994.

[50] Björn Matthias, Susanne Oberer-Treitz, and Hao Ding. Collision testing for
human-robot collaboration. In Safety in Human-Robot Coexistence and In-
teraction: How Can Standardization and Research benefit from each other?.
IEEE Int. Conf. Intelligent Robots and Systems (IROS), Vilamoura, Portu-
gal, 2012.

[51] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira. An introduction to
the syntax and content of Cyc. In AAAI Spring Symposium on Formalizing
and Compiling Background Knowledge and Its Applications to Knowledge
Representation and Question Answering, 2006.

[52] Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika
Zielinska, Brian Young, and Ralph Grishman. The NomBank project: An
interim report. In Adam Meyers, editor, HLT-NAACL 2004 Workshop:
Frontiers in Corpus Annotation, pages 24–31, Boston, May 2004.

[53] S. Mitsi, K.-D.Bouzakis, G. Mansour, D. Sagris, and G. Maliaris. Off-line
programming of an industrial robot for manufacturing. In Int. J. Adv. Manuf.
Technol., volume 26, pages 262–267, 2005.

[54] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Middleware for
robotics: A survey. In Proc. of The IEEE Intl. Conf. on Robotics and Au-
tomation and and Mechatronics (RAM 2008), pages 736–742, 2008.

[55] Motoman Incorporated. MotoSim EG Instructions, 2007.

[56] Neo Technology, Inc. Neo4J, 2015. Available from: http://neo4j.com/.
Online; accessed 2 February 2015.

99

http://neo4j.com/

BIBLIOGRAPHY

[57] Pedro Neto, J. Norberto Pires, and A. Paulo Moreira. High-level program-
ming and control for industrial robotics: using a hand-held accelerometer-
based input device for gesture and posture recognition. Industrial Robot,
37(2):137–147, 2010.

[58] Anders Nilsson, Riccardo Muradore, Klas Nilsson, and Paolo Fiorini. On-
tology for robotics: a roadmap. In Proc. of The Int. Conf. Advanced
Robotics (ICAR09), Munich, Germany, 2009.

[59] Klas Nilsson, Elin Anna Topp, Jacek Malec, and Il-Hong Suh. Enabling
reuse of robot tasks and capabilities by business-related skills grounded in
natural language. In ICAS 2013, 9th Int. Conference on Autonomic and
Autonomous Systems, Lisbon, Portugal, 2013.

[60] N. J. Nilsson. Shakey the robot. Technical Report 323, SRI International,
Menlo Park, CA, USA, 1984.

[61] Ando Noriaki, Suehiro Takashi, Kitagaki Kosei, Kotoku Tetsuo, and Yoon
Woo-Keun. RT-component object model in RT-middleware — distributed
component middleware for RT (robot rechnology). In Proc. of IEEE inter-
national symposium on computational intelligence in robotics and automa-
tion (CIRA), pages 457–62, Espoo, Finland, 2005.

[62] Pierre M. Nugues. An Introduction to Language Processing with Perl and
Prolog, chapter 1, pages 1–21. Springer, 2016.

[63] Pierre M. Nugues. An Introduction to Language Processing with Perl and
Prolog, chapter 6, pages 148–162. Springer, 2016.

[64] Open Source Robotics Foundation. Gazebo, 2014. Available from: http:
//gazebosim.org/. Online; accessed 14 January 2015.

[65] OpenRDF Sesame, 2015. Available from: http://rdf4j.org/. Online;
last accessed 17 February 2015.

[66] Martha Palmer, Paul Kingsbury, and Daniel Gildea. The proposition
bank: An annotated corpus of semantic roles. Computational Linguistics,
31(1):71–106, 2005.

[67] Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish. Recent
progress on programming methods for industrial robots. In 41st Inter-
national Symposium on Robotics (ISR) and 6th German Conference on
Robotics (ROBOTIK), pages 619–626, Berlin, Germany, 2010. VDE VER-
LAG GMBH.

[68] Mikkel Rath Pedersen, Dennis Herzog, and Volker Krüger. Intuitive skill-
level programming of industrial handling tasks on a mobile manipulator.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4523–4530, Chicago, IL, USA, 2014.

100

http://gazebosim.org/
http://gazebosim.org/
http://rdf4j.org/

BIBLIOGRAPHY

[69] Princeton University. About WordNet, 2010. Available from: http://

wordnet.princeton.edu/. Online; last accessed 17 February 2015.

[70] The Orocos Project. Orocos. Available from: http://www.orocos.org/.
Online; last accessed 14 January 2015.

[71] Hajo Rijgersberg, Mark van Assem, and Jan Top. Ontology of units of
measure and related concepts. Semantic Web Journal, 4(1):3–13, 2013.

[72] Rock Robotics, 2015. Available from: http://rock-robotics.org/.
Online; last accessed 17 February 2015.

[73] ROS, 2014. Available from: http://wiki.ros.org/. Online; last ac-
cessed 14 January 2015.

[74] ROS-I-Consortium. ROS industrial. Available from: http://

rosindustrial.org/. Online; last accessed 14 January 2015.

[75] G. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. Fuhlbrigge. Easy
robot programming concepts: An industrial perspective. In Proceedings 9th
IEEE International Conference on Automation Science and Engineering,
Madison, Wisconsin, USA, 2013.

[76] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, R. Johnson, and J. Schef-
fczyk. FrameNet II: Extended theory and practice. Tech. report, UCB,
2010.

[77] James G. Schmolze. Physics for robots. In Proc. AAAI-86, pages 44–50,
1986.

[78] Nobuyuki Shimizu and Andrew R Haas. Learning to follow navigational
route instructions. In IJCAI, volume 9, pages 1488–1493, 2009.

[79] Smach, 2013. Available from: http://wiki.ros.org/smach/

Documentation. Online; last accessed 14 January 2015.

[80] Maj Stenmark and Jacek Malec. Knowledge-based industrial robotics. In
Proc. of The 12th Scandinavian AI Conference, Aalborg, Denmark, 2013.

[81] Maj Stenmark and Jacek Malec. Describing constraint-based assembly
tasks in unstructured natural language. In Proc. IFAC 2014 World Congress,
Cape Town, South Africa, 2014.

[82] Maj Stenmark, Jacek Malec, Klas Nilsson, and Anders Robertsson. On
distributed knowledge bases for industrial robotics needs. In Proc. Cloud
Robotics Workshop at IROS 2013, Tokyo, Japan, 2013.

[83] Maj Stenmark and Pierre Nugues. Natural language programming of in-
dustrial robots. In Proc. International Symposium of Robotics 2013, Seoul,
South Korea, 2013.

101

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://www.orocos.org/
http://rock-robotics.org/
http://wiki.ros.org/
http://rosindustrial.org/
http://rosindustrial.org/
http://wiki.ros.org/smach/Documentation
http://wiki.ros.org/smach/Documentation

BIBLIOGRAPHY

[84] Maj Stenmark and Andreas Stolt. A system for high-level task specification
using complex sensor-based skill. In RSS 2013 workshop and Programming
with constraints: Combining high-level action specification and low-level
motion execution, Berlin, Germany, 2013.

[85] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson. Adaptation of
force control parameters in robotic assembly. In 10th International IFAC
Symposium on Robot Control, Dubrovnik, Croatia, 2012.

[86] Andreas Stolt, Magnus Linderoth, Anders Robertsson, and Rolf Johansson.
Force controlled assembly of emergency stop button. In IEEE International
Conference on Robotics and Automation, Shanghai, China, 2011.

[87] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller,
and N. Roy. Understanding natural language commands for robotics navi-
gation and mobile manipulation. In Proceedings of AAAI 2011, 2011.

[88] M. Tenorth, D. Nyga, and M. Beetz. Understanding and executing instruc-
tions for everyday manipulation tasks from the world wide web. In Proc.
IEEE ICRA, Anchorage, AK, USA, 2010.

[89] Moritz Tenorth and Michael Beetz. KnowRob – a knowledge process-
ing infrastructure for cognition-enabled robots. In International Journal
of Robotics Research, volume 32, 2013.

[90] Alfred Theorin. Adapting Grafchart for Industrial Automation. PhD the-
sis, Licentiate Thesis, Lund University, Department of Automatic Control,
2013.

[91] Alfred Theorin. A Sequential Control Language for Industrial Automation.
PhD thesis, Lund University, 2014.

[92] B. J. Thomas and O. C. Jenkins. RoboFrameNet: Verb-centric semantics for
actions in robot middleware. In Proc. IEEE ICRA, Saint Paul, MN, USA,
2012.

[93] Deutsche Gezetzliche Unfallversicherung. Bg/bgia risk assessment recom-
mendations according to machinery directive, design of workplaces with
collaborative robots. Technical report, Report no. U001/2009e, 2011.

[94] Lund University. JGrafchart, 2013. Available from: http://www.

control.lth.se/grafchart. Online; last accessed 17 February 2015.

[95] Dominick Vanthienen, Markus Klotzbuecher, and Herman Bruyninckx. The
5C-based architectural composition pattern. Journal of Software Engineer-
ing for Robotics, 5(1):17–35, 2014.

[96] Visual Components. 3DCreate. Available from: http://www.

visualcomponents.com/products/3dcreate/. Online; accessed 14
January 2015.

102

http://www.control.lth.se/grafchart
http://www.control.lth.se/grafchart
http://www.visualcomponents.com/products/3dcreate/
http://www.visualcomponents.com/products/3dcreate/

BIBLIOGRAPHY

[97] W3C. OWL. Available from: http://www.w3.org/TR/owl-features/.
Online; last accessed 2 February 2015.

[98] Markus Waibel, Michael Beetz, Javier Civera, Raffaello d’Andrea, Jos El-
fring, Dorian Galvez-Lopez, Kai Häussermann, Rob Janssen, J.M.M. Mon-
tiel, Alexander Perzylo, Bjoern Schiessle, Moritz Tenorth, Oliver Zweigle,
and M.J.G. (René) Van de Molengraft. RoboEarth. Robotics and Automa-
tion Magazine, IEEE, 18(2):69–82, 2011.

[99] T. Winograd. Procedures as a representation for data in a computer program
for understanding natural language. Technical report, MIT, 1971.

[100] Yaskawa Motoman Robotics. DX100 OPTIONS INSTRUCTIONS FOR IN-
FORM LANGUAGE, 3 edition.

103

http://www.w3.org/TR/owl-features/

With more advanced manufacturing technologies, small and medium sized enter-
prises can compete with low-wage labor by providing customized and high quality
products. For small production series, robotic systems can provide a cost-effective
solution. However, for robots to be able to perform on par with human workers
in manufacturing industries, they have to become flexible and autonomous in their
task execution and swift and easy to instruct. This will enable small businesses
with short production series or highly customized products to use robot coworkers
without consulting expert robot programmers. The objective of this thesis is to
explore programming solutions that can reduce the programming effort of sensor-
controlled robot tasks. The robot motions are expressed using constraints, and a
number of simple constrained motions can be combined into a robot skill. The
skill can be stored in a database together with a semantic description, which en-
ables reuse and reasoning. The main contributions of the thesis are 1) develop-
ment of ontologies for robot devices and skills, 2) a user interface that provides
programming support for task descriptions in unstructured natural language and 3)
an implementation where low-level code is generated from the high-level descrip-
tions. The resulting system greatly reduces the number of parameters exposed to
the user. These parameters are described on a semantic level, which means that
the same skill can be used on different robot platforms. The research is presented
in four peer-reviewed papers. The first covers knowledge-based instruction and
the system architecture. The two following papers describe the natural language
programming feature of the system as well as a description of the user interface.
The fourth and last paper describes the code generation step, thus connecting the
high-level language instructions to real-time executable code.

Department of Computer Science, ISSN 1652-4691
Lund University, Licentiate Thesis 1, 2015
Box 118, SE-221 00 Lund, Sweden

	I Background
	Introduction
	Objectives
	Research Projects
	Thesis Contributions
	Thesis Outline

	Introduction to Robot Software and Systems
	Automation and Robot Programming Languages
	Sensing and Acting in the Real World
	Graphics and Simulation
	Natural Language
	Databases and Ontologies
	Skills and Knowledge Representation
	Learning from Demonstration
	Robotic Middleware
	iTasC
	Code Generation

	Conclusions

	II Papers
	Paper I: Knowledge-Based Instruction of Manipulation Tasks for Industrial Robotics
	Introduction
	Robot Skills
	Architecture
	Knowledge Integration Framework
	Knowledge-Based Services
	Engineering System
	Execution
	Related Work
	Conclusions

	Paper II: Natural Language Programming of Industrial Robots
	Introduction
	Related Work
	System Overview
	High-level Programming Prototype
	Conclusions
	Future Work
	Acknowledgments

	Paper III: Describing Constraint-Based Assembly Tasks in Unstructured Natural Language
	Introduction
	Related Work
	Background
	Pattern-Matching Algorithm
	Discussion

	Paper IV: From High-Level Task Descriptions to Executable Robot Code
	Introduction
	System Overview
	Code Generation
	Experiments
	Related Work
	Conclusions and Future Work
	Acknowledgments

