LUND UNIVERSITY

Instructing Industrial Robots Using High-Level Task Descriptions

Stenmark, Maj

2015

Link to publication

Citation for published version (APA):
Stenmark, M. (2015). Instructing Industrial Robots Using High-Level Task Descriptions. [Licentiate Thesis,
Department of Computer Science].

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/2c8481d0-f0a3-4fcf-8f5c-9825479a190f

Instructing Industrial Robots
Using
High-Level Task Descriptions

Maj Stenmark

Licentiate Thesis, 2015

Department of Computer Science
Lund University

Instructing Industrial Robots
Using
High-Level Task Descriptions

Maj Stenmark

Department of Computer Science
Lund University

LUNDS UNIVERSITET
Lunds Tekniska Hégskola

ISSN 1652-4691
Licentiate Thesis 1, 2015

Department of Computer Science
Lund University

Box 118

SE-221 00 Lund

Sweden

Email: maj.stenmark @cs.lth.se
WWW: http://cs.Ith.se/maj_stenmark

Typeset using IATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2015
(©2015 Maj Stenmark

Abstract

With more advanced manufacturing technologies, small and medium sized enter-
prises can compete with low-wage labor by providing customized and high quality
products. For small production series, robotic systems can provide a cost-effective
solution. However, for robots to be able to perform on par with human workers
in manufacturing industries, they have to become flexible and autonomous in their
task execution and swift and easy to instruct. This will enable small businesses
with short production series or highly customized products to use robot coworkers
without consulting expert robot programmers. The objective of this thesis is to
explore programming solutions that can reduce the programming effort of sensor-
controlled robot tasks. The robot motions are expressed using constraints, and a
number of simple constrained motions can be combined into a robot skill. The
skill can be stored in a database together with a semantic description, which en-
ables reuse and reasoning. The main contributions of the thesis are 1) develop-
ment of ontologies for robot devices and skills, 2) a user interface that provides
programming support for task descriptions in unstructured natural language and 3)
an implementation where low-level code is generated from the high-level descrip-
tions. The resulting system greatly reduces the number of parameters exposed to
the user. These parameters are described on a semantic level, which means that
the same skill can be used on different robot platforms. The research is presented
in four peer-reviewed papers. The first covers knowledge-based instruction and
the system architecture. The two following papers describe the natural language
programming feature of the system as well as a description of the user interface.
The fourth and last paper describes the code generation step, thus connecting the
high-level language instructions to real-time executable code.

Acknowledgements

I owe my deepest gratitude to my supervisor Prof. Jacek Malec for his continuous
support during my PhD study, for his patience, encouragement and knowledge. 1
am also indebted to my co-supervisor Klas Nilsson, whose energy and many ideas
is a great inspiration. This Licentiate thesis would not have been possible without
the effort and contributions from my colleagues in the PRACE and ROSETTA
projects, it has been an honor for me to work with you. I also want to thank
my coworkers at the RobotLab and at the Computer Science department for their
invaluable help, feedback and many fascinating discussions. Not to forget their
ability to keep a positive attitude during late night demo preparations.

I also want to thank my family and friends for their emotional support and for
proofreading my papers, especially Jonas Linder for his TgX-support. Finally, I
want to thank Daniel Tegnered, for an inspiring collaboration in an ongoing longi-
tudinal psychological study and for providing material for this thesis.

Maj Stenmark
Lund, February, 2015

iii

List of Publications

List of Included Publications

The thesis is based on the following publications:

Paper I

Paper 11

Paper 111

Paper IV

Maj Stenmark and Jacek Malec. Knowledge-Based Instruction of
Manipulation Tasks for Industrial Robotics. Robotics and Com-
puter-Integrated Manufacturing, vol. 33, pages 56-67, 2015.

DOI: 10.1016/7.rc1im.2014.07.004.

Maj Stenmark and Pierre Nugues. Natural Language Programming
of Industrial Robots. In Proc. of The 44th International Symposium
on Robotics, Seoul, South Korea, 2013.

DOI: T0_TTO9/ISR 20136695630

Maj Stenmark and Jacek Malec. Describing constraint-based as-
sembly tasks in unstructured natural language. In Proc. of The
19th IFAC World Congress, pages 3056-3061, Cape Town, South
Africa, 2014. DOI: T0O.3182/20140824-6-7.A-1003.02067.

Maj Stenmark, Jacek Malec and Andreas Stolt. From High-Level
Task Descriptions to Executable Robot Code. IEEFE Intelligent Sys-
tems’ 2014, Series Advances in Intelligent Systems and Computing,
vol. 323, pages 189-202, Springer, 2015. DOI: 10 T007/978-3-319-
[1310-4_17.

Other Scientific Contributions

Maj Stenmark, Jacek Malec, Klas Nilsson, Anders Robertsson. On Distributed
Knowledge Bases for Small-Batch Assembly. TROS 2013 Workshop on Cloud
Robotics, Tokyo, Japan, 2013.
http://roboearth.org/wp-content/uploads/2013/03/final-13.pdt.

Maj Stenmark and Jacek Malec. A Helping Hand: Industrial Robotics, Knowl-
edge and User-Oriented Services. IROS 2013 Workshop on Al Robotics, Tokyo,
Japan, 2013. http://robohow.eu/_media/workshops/ai-based-robotics-1ros-2013/
paperU7/-final.pdf.

http://dx.doi.org/10.1016/j.rcim.2014.07.004
http://dx.doi.org/10.1109/ISR.2013.6695630
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02062
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://dx.doi.org/10.1007/978-3-319-11310-4_17
http://roboearth.org/wp-content/uploads/2013/03/final-13.pdf
http://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper07-final.pdf
http://robohow.eu/_media/workshops/ai-based-robotics-iros-2013/paper07-final.pdf

List of Publications

Maj Stenmark and Jacek Malec. Knowledge-Based Industrial Robotics. Fron-
tiers in Artificial Intelligence and Applications, vol. 257: Twelfth Scandinavian
Conference on Artificial Intelligence, pages 265-274, 10S Press, 2013. DOI:
LO3233/9/8-1-61499-330)-X-265.

Maj Stenmark. Industrial Robot SKkills. Frontiers in Artificial Intelligence and
Applications, vol. 257: Twelfth Scandinavian Conference on Artificial Intelli-
gence, pages, 295-298, 10S Press, 2013. DOI: T03233/978-1-61499-330-8-795.

Maj Stenmark and Andreas Stolt. A System for High-Level Task Specification
Using Complex Sensor-based SKills. RSS workshop on Programming with con-
straints: Combining high-level action specification and low-level motion execu-
tion, Berlin, Germany, 2013. http://robohow.eu/_media/meetings/4-stenmark.pdt.

vi

http://dx.doi.org/10.3233/978-1-61499-330-8-265
http://dx.doi.org/10.3233/978-1-61499-330-8-295
http://robohow.eu/_media/meetings/4-stenmark.pdf

Contents

[Background 1
3
LT _Objectived o o e 4
2 Research Projecty 4
L3 Thesis Confribufiond oo 4
L4 TheaasOuthndo .o o o ... 6
R Introduction to Robof Software and Systemg 7
g.I Automation and Kobot Programming Languagey 7
B2 Sensing and Acting inthe Real World 9
B3~ Graphics and Stimulation] 10
B4 NaturalLanguagd v v v v e e e e e e e e e 12
B> Databases and Ontologied v v v v v v v 15
2.6 Skills and Knowledge Representationd 18
E.7_Learning from Demonstration 20
L& Kobofic Middleward 22
OTTasO e e e e e e e e 24
T CodeGenerafion v v v v v v e e e e e e e e e e e 25
B——Conclusiond 29
| Papers 33
Paper I: Knowledge-Based Instruction of Manipulafion Tasks Tor Indus
frial Robofics 35
L Infroduchion e e e e e e e e e e e e 37
L Kobot Skills e 37
B Archifectura L L L L e e e e e e e e e 41
48 Knowledge Integration Framework 44
b Knowledge-Based Servicey« v v v v v e e e e e 46
) Engineering Systeno 50
[Execnfiod e 51
B Kelated Worklo e e e 51

P__RelafedWorkl
b SYStem OVEIVIEW o v o ot e e e e e e e e e
g High-level Programming Prototypd
) Conclusionso e
b Fofure World L oL L
|/ Acknowledgmenty Lo

Paper IIT: Describing Constraint-Based Assembly Tasks in Unstructured

3 5 o A . . e e e e e e e e e e e e e e e e e e e
4 Pattern-Matching Algorithm

Y System OVEIVIEW o o e e e e e e
&1 Code (Generafion

@ bxpermmenty L L L L e e e e e

|/ Acknowledgmenty o000 oo

viii

83

Part 1

Background

Chapter 1

Introduction

In 2014, the European Commission launched Horizon 2020, a research and innova-
tion program. The goal is to bring new technologies to the market, to increase the
industrial competitiveness of the European Union and battle societal challenges.
The program lists Advanced Manufacturing as one key enabling technology. With
more advanced manufacturing technologies, small and medium sized enterprises
can compete with low-wage countries by providing customized and high quality
products. Traditional industrial robot systems are not suitable for flexible produc-
tion in close cooperation with human workers. Furthermore, conventional robot
programming is time consuming and non-trivial, especially for users working in
small businesses who are unfamiliar with robots. For customized products in small
series, it is paramount that the user interaction and programming is swift and pain-
less. The challenge is to develop robot systems with streamlined robot program-
ming and robust and autonomous task execution. Hence, we see the birth of a new
generation of intelligent industrial robots. These robots have 1) better communi-
cation capabilities, for example understanding human language, 2) better situation
awareness with more advanced sensor integration such as object recognition, 3)
better reasoning capabilities so that they can adapt their task during execution and
4) the ability to learn task parameters so that they can optimize the execution.

The work included in this thesis only addresses a few of the many challenges in
intelligent robotics, namely, simplifying and automating programming of assem-
bly tasks. The domain is small parts assembly, such as consumer electronics. The
basic idea is that the human coworker should be able to reuse robot programs that
are created by more advanced users and that the system should help the user to set
up the task. The programming should resemble inter-human communication, that
is, be goal-oriented and use actions and objects in high-level descriptions.

We have developed a framework to describe robot programs, so called skills,
that can be stored in an online database, downloaded and reused using a graphical
user interface. The tasks can be described using English sentences and objects in
a CAD model of the world. Thus far we have limited our approach to industrial
robotics and manufacturing. Other areas such as service or health care robotics
face similar issues when it comes to interaction and sharing knowledge and skills
between robots.

1.1 Objectives

The challenge is to build a robotic system, where the effort to program complex
assembly tasks is lowered in order to make the system usable for non-expert users.
Simultaneously, the system should lower the effort for more advanced users such
as system integrators. This involves the creation of knowledge bases where robot
skills and tasks are stored for reuse as well as services that help the user to schedule
the task and generate code for sensor-based motions. The objective is to develop
a complete toolchain, including user interfaces for programming and services that
aid the user to refine the task for deployment.

1.2 Research Projects

The research work was funded by several European and Swedish research projects,
and each paper includes a more detailed acknowledgement section on the matter.
The most substantial are the grants from the European Union seventh framework
program (FP7/2007-2013), grant agreements No. 230902 (project ROSETTA),
No. 285380 (project PRACE), as well as No. 287787 (project SMErobotics).

1.3 Thesis Contributions

The three main contributions of the included papers are the following:

1. Ontologies for describing robot devices and skills. The first paper de-
scribes the ontologies and provides an overview of the system architecture.
The ontologies are modular and separated into smaller sub-ontologies that
are loaded into a core ontology. The core ontology includes robot devices,
such as robots, sensors, tool changers and fixtures. Tasks and skills are rep-
resented by graphs, hence we developed a graph ontology which includes
different state machine descriptions. Skills can be represented by a small
sub-ontology that describes the device requirements and pre-and post-con-
ditions.

2. A service for natural language programming of robots. The system in-
cludes distributed reasoning services that were developed in parallel with the
knowledge representation framework. The services can be accessed from a
high-level programming interface. Paper II describes the initial approach
that uses a general purpose natural language tool to extract the semantic
meaning from sentences written in unstructured English text. The extracted
semantic structures are then mapped to actions in the skill database and ob-
jects in the robot workspace. The natural language programming interface
was further developed in Paper III to be able to generate repeated actions
(loops) and constraints for sensor-controlled motions.

4

3. Generation of executable code for sensor-controlled skills. Being able
to express a task using high-level semantic descriptions is not enough, it
is necessary to be able to synthesize executable code as well. The initial
implementation of the code generation service is presented in Paper I'V.

To provide an overview, the abstracts of the papers are included below.

Paper I — Knowledge-Based Instruction of Manipulation Tasks
for Industrial Robotics

Abstract. When robots are working in dynamic environments, close to humans
lacking extensive knowledge of robotics, there is a strong need to simplify the user
interaction and make the system execute as autonomously as possible, as long as
it is feasible. For industrial robots working side-by-side with humans in manufac-
turing industry, Al systems are necessary to lower the demand on programming
time and system integration expertise. Only by building a system with appropri-
ate knowledge and reasoning services can one simplify the robot programming
sufficiently to meet those demands while still getting a robust and efficient task
execution.

In this paper, we present a system we have realized that aims at fulfilling the
above demands. The paper focuses on the knowledge put into ontologies created
for robotic devices and manufacturing tasks, and presents examples of Al-related
services that use the semantic descriptions of skills to help users instruct the robot
adequately.

Paper II — Natural Language Programming of Industrial Robots

Abstract. In this paper, we introduce a method to use written natural language
instructions to program assembly tasks for industrial robots. In our application,
we used a state-of-the-art semantic and syntactic parser together with semanti-
cally rich world and skill descriptions to create high-level symbolic task sequences.
From these sequences, we generated executable code for both virtual and physical
robot systems. Our focus lies on the applicability of these methods in an industrial
setting with real-time constraints.

Paper III - Describing constraint-based assembly tasks in un-
structured natural language

Abstract. Task-level industrial robot programming is a mundane, error-prone ac-
tivity requiring expertise and skill. Since humans easily communicate with natural
language (NL), it may be attractive to use speech or text as instruction means for
robots. However, there has to be a substantial amount of knowledge in the system
to translate the high-level language instructions to executable robot programs.

In this paper, the method of [83] for natural language programming of robo-
tized assembly tasks is extended. The core idea of the method is to use a generic

5

semantic parser to produce a set of predicate-argument structures from the input
sentences. The algorithm presented here facilitates extraction of more compli-
cated, advanced task instructions involving cardinalities, conditionals, parallelism
and constraint-bounded programs, besides plain sequences of commands.

The bottleneck of this approach is the availability of easily parametrizable
robotic skills and functionalities in the system, rather than the natural language
understanding by itself.

Paper IV — From High-Level Task Descriptions to Executable
Robot Code.

Abstract. For robots to be productive co-workers in the manufacturing industry,
it is necessary that their human colleagues can interact with them and instruct
them in a simple manner. The goal of our research is to lower the threshold for
humans to instruct manipulation tasks, especially sensor-controlled assembly. In
our previous work we have presented tools for high-level task instruction, while in
this paper we present how these symbolic descriptions of object manipulation are
translated into executable code for our hybrid industrial robot controllers.

1.4 Thesis Outline

The thesis is organized as follows: the first part is an introduction to robot pro-
gramming languages and tools, first focusing on high-level programming envi-
ronments and instruction methods, then providing an overview of low-level solu-
tions for robot control, architecture and code generation. This part is concluded
with a discussion, where reflections on the research work and future challenges
are presented. The second part consists of four peer-reviewed publications. The
first paper is intended to give an overview of the system and to shed light on the
knowledge engineering aspects. The second and third papers describe the natural
language programming interface, which was improved over the years. The last
paper covers the code generation service.

Chapter 2

Introduction to Robot
Software and Systems

Robot systems consist of a heterogenous mix of hardware and software compo-
nents. The hardware can consist of robot manipulators, sensors, fixtures, grip-
pers, tools and tool changers, and input devices such as teach pendants or tablets.
The software can for example be image processing algorithms, control software,
databases, and graphical programming user interfaces. The architecture is dis-
tributed and setting up the communication and data management of the full system
while ensuring real-time requirements can be quite a challenge. In order to abstract
away the details of the low-level system components, and make the software de-
velopment easier, the communication and data management can be handled by
middleware. The middleware can function as a virtual machine or operating sys-
tem, so that the user can write robotics applications without specifying every detail
of the communication between the subsystems, see Section ¥ for more details on
software architectures. In this background section, robot programming languages
and tools will be introduced, followed by control software implementations.

2.1 Automation and Robot Programming Languages

Many industrial robot vendors have created their own programming language. For
example, the market leader in industrial robotics, Motoman from Yaskawa Elec-
tric uses INFORM [100], KUKA uses KRL [45] and ABB developed RAPID [27].
These languages are designed with motion specification in mind, allowing debug-
ging by stepping through instructions one by one, either forward or backwards. An
example of RAPID code is displayed in Fig. . It is a small program where the
robot arm moves to a target position (target_3), opens the gripper, moves to a
pick up position (target_5), closes the gripper and retracts. The wrist is close to
a singularity, hence a singularity area is turned on before and off after the move-
ments. MovelL is a linear move (similarly, there is a joint move MoveJ) that moves
the robot to predefined target positions (target_3, target_5, target_6) at

7

—IPROC main()
SingArea\Wrist;

Movel target_3,v18@,z58,tool@\WObj:=wobj@;
= IF DOutput(dol)=@ OR DOutput(do2)=1 THEN
Reset dol;
Set dolj
WaitTime ©.5;
ENDIF
Movel target_5,v188,Tine,tool@\WObj:=wobj8;
= IF DOutput(do2)=8 OR DOutput(dol)=1 THEN
Reset dolj
Set do2;
WaitTime ©.5;
ENDIF
Movel target_6,v188,z18,tool@\WObj:=wobj8;

singArea\off;
ENDPROC

Figure 2.1: An example of a small program written in RAPID.

velocity 100 mm/s. There are two output signals, dol and do2 that are used to
open (do1 is high) and close (do2 is high) the gripper.

These languages are widespread but non-standard. There are five standard
languages for industrial automation applications, defined in the IEC-61131-3 stan-
dard [36]. Three of them are graphical: Sequential Function Charts (SFC), Ladder
Diagram (LD) and Function Block Diagram (FBD) while Instruction List (IL) and
Structured Text (ST) are textual. An example SFC is displayed in Fig. Z2. It is
created using a tool called JGrafchart [91], which is developed and used in Robot-
Lab at Lund University. The squares are states or steps in the state machine; the
initial state is marked with double borderlines. A transition is green if it is true
(update) and triggers the following states. Here two parallel states are active until
cond becomes true. The last state, with marked corners, is a macrostep, a nested
state machine.

There are several graphical tools for programming of state machines, e.g.,
ROS, the Robot Operating System [73], has the state machine editor Smach [79]
or behaviors in Bride [17], or, the representation can be textual, such as StateMa-
chines in Orocos [70].

However, more advanced applications, such as multirobot cooperation and sen-
sor controlled tasks, are not easily programmed in native robot code or executed
locally on a robot controller. Hence, software and middleware intended to sim-
plify integration and package distribution use standard programming languages.
For example, the KUKA Sunrise control system uses Java [44], ROS uses Python
and C++ and Orocos [70] uses C++.

= update

=== cond

> L

+ cond2

Figure 2.2: An example of an SFC.

2.2 Sensing and Acting in the Real World

Robots have high repeatability, which means that they can repeat the same motion
very precisely multiple times. This is useful in settings where the environment also
is repeatable, that is, in a robot cell where workpieces are placed in fixtures with
known positions. Flexible production and a dynamic environment add another
level of complexity to the robot programming. Depending on the application, some
robots are equipped with cameras and detection algorithms for object localization,
and may reason about their tasks during execution, for example, calculate how to
grip an object in a corner or navigate around an obstacle.

In Fig. 3 a dual-arm mobile robot is shown. A two-armed ABB industrial
robot mounted on top of a mobile platform. Down to the right, one of the yel-
low laser scanners may be glimpsed; scanners are used for mapping and obstacle
avoidance. The mobile robot platform runs ROS, where off-the-shelf packages for
mapping and navigation are available for download and use. On top of the robot
a teaching handle is attached. The balls are tracked by a camera system and the
human user can demonstrate positions and position areas for the robot; see more
about learning from demonstrations in Section Z74.

Sensor-controlled assembly tasks can be expressed using constraints on the
sensor values. For example, a constraint may require that the robot should keep a
constant pressure on a surface while moving over it at the same time. Tasks like
these can be expressed using the iTaSC formalism, described further in IZ9.

Figure 2.3: A two-armed ABB industrial robot mounted on top of a mobile platform. On
top of the robot a teaching handle is attached.

2.3 Graphics and Simulation

A robot program can be debugged and optimized using graphical simulation envi-
ronments. Typically, such simulation environments have a graphical representation
of the robot and the workspace, and a virtual robot controller that can execute the
instructions in a realistic manner. Some environments, such as Gazebo [64], which
can be used in ROS, have physics simulations (such as light conditions or sim-
ple gravity). There are commercial environments such as 3DCreate from Visual
Components [96] that are intended for factory design and simulation and support
several robot brands. Usually, robot vendors provide tailored off-line program-
ming software and virtual robot controller simulation software as well as task spe-
cific packages for their products. Examples of such vendor specific software are:
MotoSim[55] that comes with painting application packages, Fanuc’s ROBOGU-
IDE [23] with packages for, e.g., painting, welding and palletizing, KUKA.Sim
from KUKA robotics and ABB RobotStudio for simulation of ABB robots.

In this thesis, a simplified programming tool was developed as an extension to
ABB RobotStudio. Sequences of robot instructions are composed into tasks, as
seen in Fig '4. The RobotStudio extension, in the included papers called the En-
gineering System, provides a natural language programming interface, where the
user can input sentences in English that are translated into a sequence of instruc-
tions (see Papers II and III). Short introductions to natural language processing are
given in the papers, but a more comprehensive background is provided below.

10

‘121 2Yy1 03 U2as S ‘SYSVI 03Ul SIJ1YS Puv sUONOY Jo Surdouanbas ajdwis puv Suruwnuvidoid
23vndup] pampu sapraosd uoisuaxa Yy opniSioqoy gqy uduuoliaua Sutuuvidold porydpid ay1 o1 widnyd v S1 U0ISUIXF (1] YL T N1

pusg
“19]jed ey} Ul
wayj ind pue sa|pasu ay} ||e 93e |
e} 2L aquasag
CryETRC ST PR e
Yoaads dniag | suogonnsu|

== B)

-]

| tmainzuoners-Gupop | [x 2

peisy @

Jeddyb usdg @
eoed oy anop &
ainpy Lpeouddy @

peiEy @
eddyuf esop) @
dseif ojanop & [
Joddyb usdg @
voums yoeauddy (T -
o &5
daig o -E

HonLyel [werepeRus T preseewss
1IN0 00ES NI | dusnbas (paford

digH | sleol | uonenwIS | uonuyRQ Asel | uouLEd PIOM
.| uswmey jsppa sBumss uonesuss §sei 9 sbendueluondidssg | essjomucyuondusssg
yog dpn | Josuss pafoly | jessy Bumpesl D4SissL symsxa payy Sdeld Eimen uomy dais ssusnbss ysel pue siosuss ssidyiopy eswey Ael smpad (0oL 1000 PLOM
[@H @H ‘ ‘ ~ ‘ - & . /=~ G R
@ A G mm = @ N ¢ fF © cF - Y (R .

SUFppY vy J2li01u0) uonenwis Buizpon

swon | uoisuzie M E

11

2.4 Natural Language

The idea of using natural (human) language to instruct a machine is older than
Unix time itself. A famous early attempt is SHRDLU [99] developed by Terry
Winogard. SHRDLU was a computer program that understood English and let a
user describe how to move objects in a block world. This was in 1968 and the
program could understand 50 words, such as "block", "cone", "blue", "place on"
and tried to guess the user’s intention from the word combination. An introduc-
tion to natural language processing (NLP) applications is given by [62]. The first
approaches were ruled-based, where hand-made grammatical rules where used to
process text [63]. However, for unrestricted natural language a large number of
rules is needed, especially for handling homophones, ambiguous interpretations
and spoken language. Hence, the turn of the century saw the rise of statistical
NLP, where large annotated text samples where used to train statistical models.
In statistical approaches, a model is learnt from a training set and then used to
categorize the most likely meaning of a sentence. In the 21st century the power,
performance and availability of natural language processing and speech recog-
nition systems rapidly increased due to increased processing power, data driven
approaches and Internet services. The general purpose statistical model running
on a virtual machine at Lund University can process (parse) unstructured English
sentences in about 20 ms and is accessed from for example mobile devices. The
result from the parser is a semantic structure of the input sentence.

Semantics is the study of meaning. When a meaning of a sentence is extracted
the following questions are at least partially answered:

e What is going on? (Predicate)
e Who/what is doing it? (Actor)

What objects are involved? (Arguments to the predicate)

e Where is this going on? (Location argument)

When and how long is this going on? (Temporal argument)

How is the action carried out? (Manner)

Who is the beneficiary of the event? (Beneficiary)

Language is ambiguous, homophones, such as press in news press and press down
belong to different part-of-speech and have different meaning. In a sentence, the
words that answer the above questions are labeled with the semantic role listed in
parenthesis after the question. This is done using special purpose dictionaries such
as WordNet [69], FrameNet [76], PropBank [66], that list predicates and roles that
can belong to the predicate. For example, in the sentence [live in a cardboard
box, the verb live is the predicate. There are several versions of live in PropBank,
so called senses that are different flavors of the word. The most common meaning
of live, live.01, is to reside or to not being dead. Another example is live.02, to
endure. In the example sentence, the predicate has an actor entity / and a location
argument in a cardboard box.

12

The goal for the Lund semantic parser and role labeler is to read the sentences
and output predicate-argument structures and present them in a table as seen in
Fig. 5. The figure shows the parsed output from the sentence I have found the
perfect Chicago-style deep dish pizza recipe®, an unusual sentence containing a
long compound noun. Two predicates are found, find.0I and recipe.0l, each cor-
responding to a line in the top table where the semantic roles belonging to the
predicates are marked. The pronoun [is the actor A0 and, since modifiers and de-
terminers are included in the argument, the perfect Chicago-style deep dish pizza
recipe is the argument A/ to find.01. The semantic description of recipe.0l con-
tains a theme as Al-argument, in this case, there are three individually labeled A/
arguments. The graph in the middle is the dependency graph, which in fact is a tree
starting with the root of the sentence. The arrows are labeled with the grammatical
function between the words, such as modifiers (NMOD), subject (SBJ) or object
(OBJ) relations to the verb have, which is also the root. At the bottom of Fig. I3,
a table displaying the words in CoNNL-2009 standard is shown.

Determining the predicate-argument structures of a sentence is a classification
problem in machine learning. The model for the parser is trained using a cor-
pus, which is a large text mass where the sentences are annotated with syntactic
and semantic information. There are several corpora, for example the Penn Tree-
bank [49] which is created from Wall Street Journal articles, and the PropBank [66]
that added predicate-argument structures to the Penn TreeBank. The latter is used
by the Lund parser.

The Lund parser uses three main steps to classify the sentence, further de-
scribed in [10]. First the sentence is split into words (tokenized), and each word
is assigned a part-of-speech tag and the canonical form (lemmatization). Next, it
produces a dependency graph, which is a graph structure with the grammatical re-
lations between the words, see Fig. I3 for an example. The dependency graph is
finally used in a semantic role labeler to produce the predicate argument structures.
The semantic role labeler uses binary or multiple logistic regression in a cascade
of classifying steps.

e Predicate Identification: Each word is either classified as a predicate or
not using binary logistic regression.

e Predicate Disambiguation: Determines the sense of the predicate if there
are multiple senses. Lemmas that can be both verb and nouns have one
classifier per part-of-speech.

e Argument Identification: First each word is either classified as an argu-
ment or not. Then a multi-class identifier determines the role of the word.

As long as the sentence is somewhat grammatically correct, the parser will produce
a well-formed machine-readable table structure. From this table, the output can be
matched to robot instructions from a skill database and arguments can be mapped
to objects in the world, as described in Papers II and III.

!t contains two pounds of mozzarella.

13

‘ad12.4 v221d ysip daap 2)K1s-03vo1y) 192f12d Y1 punof aavy | 2ouauas ajduvxa 2yl woif mdino pasivd 2y :G'g 24n31

d @ 11

i 1v|10admoar] A| rdo] £ B 7] sN| T adroas] adroai] o1

1V | | “| aonN| l 1] 7 | oNN| T ezzid 7 ezzid| 6

1V]] ~| aonN| 1 ol 7 7 NN T ysip|] usip| 8

] N] ~| dONN|] gl B daap|] daap| £

1V i i ~| AONN] i 01 7] B | ann| T[erfas-o8eomy) ~lo14s-03e0my| 9
ANIW-INV]]] “| aonN| 1 ol 1 1 oo 100p2d B opad| ¢
7]]] ~| aonN| 1 ol 7 1 71 1al o] o] +

7] ~| 1opun A DA 7] 7] T T naa] T punoy] 7] punoj| ¢

B]] 7| looy T o B L oney i eyl g

[oV] | ras] 7 7] aud] T I] 1 1
102dpax :sday|pgpuy :sdxy| paig |paigspfpadagd|padag|pesHd|pesH|s1eadd[s1ead|s0dd[SOd| pumma g |Jewwdy(wiog |ar

I 1a
waged Ay
paged Ay

Ch] <1004>

‘sUWlpE parmbar aouuas Juisieg

0V | T0=dRa1

ov 10'Pul

a[f1s-03eo1qD 109112d punoj | 2aeq 1

14

Subject Predicate Object Context
<http://thesis.se/maj> | <http://www.w3.org/2002/07/owl#individual> | <http://thesis.se/PhDstudent>

<http://thesis.se/maj> | <http://thesis.se/hasName> "Maj"
<http://thesis.se/maj> | <http://thesis.se/studiesAt> "LundUniversity"

Figure 2.6: A screen capture from a triple store with three triples, one triple per row.

2.5 Databases and Ontologies

The knowledge of the system is stored in a database. During the project, the knowl-
edge grew incrementally and the world was assumed to be open?, hence a relational
database with static tables was not a suitable choice for the conceptual model. In-
stead the system used an RDF triple store and later, a graph database. RDF, short
for Resource Description Framework, is a format where data is described as triples.
Our implementation uses the Sesame Workbench [65]. Each triple (S, P, 0), has a
subject node S , a predicate P and an object node O. The object node can also be
a primitive data type such as string or a number, called a literal. Literals can not
point to any other nodes and unconnected edges are not allowed. Hence, a triple
is equivalent to a directed edge in a graph and a node can have multiple outgoing
and incoming edges.

Our graph database is implemented using Neo4J [56]. In the graph database
the literals can be attached directly to the nodes, and are called properties, while
an edge between nodes is called a relationship. A relationship can also have prop-
erties, which is not possible to express using RDF. Hence, a graph database can
encode information in a more dense format than a triple store.

To concretize, we will now encode some simple data in RDF and a graph
database, and the reader will become acutely aware of the need for an ontology,
which will be introduced afterwards.

Assume that we want to create a small social network with some information
about people®. One person is named "Maj", with the occupation "PhD student" at
a university called "Lund University". In RDF this can be encoded as triples as
following:

@prefix thesis: <http ://thesis.se/>.

thesis :maj owl:individual thesis:PhDstudent,
thesis :maj thesis:hasName "Maj",
thesis :maj thesis:studiesAt "LundUniversity".

Resources and properties in RDF are identified using unique Uniform Re-
source Identifier (URIs). The URI can be split into a prefix and an ending, in the
example above http.//thesis.se/ is a prefix named thesis. One object, thesis:maj,

2The knowledge is not complete.
3To store personal information in a structured format requires explicit consent from the individuals,
according to Personuppgiftslagen.

15

is defined as a individual of a class thesis:PhDstudent, with properties labeled
thesis:hasName and thesis:studiesAt with literal values. The listing above creates
three triples as shown in Fig. 8. A resource, either a subject, an object or a
property is identified with URISs, hence http.//thesis.se/maj refers to the same node
in each row. "Maj" and "LundUniversity" are string literals. In the first triple,
the predicate refers to an external URI and a class PhDstudent. The property
owl:individual that assigned a class type used the web ontology language OWL
[97]. In a moment we will create a small ontology so that we can make some sim-
ple reasoning, but first we compare how the same information can be stored in a
graph database.

In Neo4J the node could have literal properties attached on the node, hence the
same information can be stored as one single node. The previous example is vi-
sualized in Fig. 774, showing one data node of type PhDstudent with an arbitrary
ID 13916 and the properties name and studiesAt. To make our social network a lit-
tle bit more interesting we can add another node and a social relationship between
the nodes. We add another PhDstudent called "Daniel”, who studies at "Chalmers"
and connect the nodes with a relationship, as seen in Fig. I”7H. Relationships (writ-
ten with capital letters) between nodes can have literal properties as well. Here the
relationship KNOWS has two properties since:2012 and relationship:romantic.

The relationships are directed, so when looking up persons in the database the
query has to be expressed correctly, as seen in Fig. 8. The query (a) finds all
nodes n that the node maj with the name property set to "Maj" points to with a
KNOWS relationship. It will return the Daniel node. Query (b) matches nodes
that daniel points to, with an empty result because the KNOWS relationship is not
(yet) symmetric. Depending on the relationship type, other relationships can be
inferred. For example, there might be an inverse property and when one is true the
other can be inferred. In a social setting such pair could be hasParent - hasChild
relationships. Another type of property is transitive, for example, a PhD student is
also a Person, hence, if Maj is a PhDstudent, the system should infer that she also
is a Person. It might also be desirable to limit the allowed number of relationships

0 @ o @

PhDstudent [13916] ® KNOWS [25281]

© Properties € Properties

name Maj since 2012

studiesAt Lund University relationship romantic

(a) (b)

Figure 2.7: A single database node to the left and two nodes connected with a KNOWS
relationship to the right.

16

MATCH (maj {name:"Maj"})-[:KNOWS]1->(n) MATCH (daniel {name:"Daniel"})-[:KNOWS]->(n)
RETURN n; RETURN n;

(a) (b)

Figure 2.8: The query finds all nodes n that the node "Maj" knows (a) and queries to find
who "Daniel" knows (b).

of a certain type, the cardinality of a relationship.

Modeling this type of knowledge can be done in an onfology. A small example
is shown in Fig. 9. Classes are marked with a yellow circle, individuals of a class
with a purple diamond. The violet properties are is-a relationships?, while blue is
a subclass relationship, and brown dashed lines are used for all other properties.
Here there are individuals Maj, Daniel, Lund_University and Chalmers. Each
student has to have a studiesAt relationship to some university. After running an
inference engine on the ontology in Fig. 9, new relationships are added as shown
in Fig. T0. Class properties are inferred for both instances of PhDStudent, and
since the relationship between Maj and Daniel is a symmetric property, an arc
between the nodes is added.

When an ontology is created, assumptions are made about the reality, e.g., that
there are only two legal parents, etc. However, in reality, there can be contradicting
assertions, information sources might be dubious or faulty, properties can change
over time, or our model can be too simplistic. There are different approaches to
handle these inconsistencies, e.g., by adding probabilities to a statement, evaluat-
ing a statement by looking at other supporting statements, or when data is updated,
by using time stamps. The approaches are very much context- and application-de-
pendent, e.g., in a social network, the relationship status between Maj and Daniel
must be verified by both parties, contracts or by legal records.

In the context of robotics, ontologies are used to represent knowledge about
robots, sensors, and tasks. The working group Ontologies for Robotics and Au-
tomation has developed a Core Ontology for Robotics and Automation, CORA,

“In this context, the meaning of the word ’is’ is nonexclusive, one individual can belong to multiple
classes.

rﬁ:'_‘. Person I [|-',"‘-51udem | — % PhDStudent l

-~
e _—

A -
"

- e _
MeE .“:\.._ r

U University

A

> ek

| & Lund_University]

Figure 2.9: A small example ontology.

17

& PhDstuden

Chalmers .
[# Lund_University

Figure 2.10: The ontology from Fig. 9 with inferred relationships.

defining positions [19] and later extending it with environments [26]. The group
has also created an ontology for kit building [4] which has been evaluated using
human and multi-robot interaction [38]. This work is complementary to the ontolo-
gies presented in Paper I that focus on tasks and devices used in industrial applica-
tions, and are used as inspiration in ongoing work. Other ontologies for common
household tasks and objects were developed in the ROBOEARTH project [89]. The
ROBOEARTH ontology is based on OPENCYC [46], an ambitious project to cre-
ate an ontology for common sense reasoning. One challenge in robotics is how
to represent task descriptions and robot programs, often called skills, in a sensible
way.

2.6 Skills and Knowledge Representation

Skills is an overloaded term in the field of intelligent robotics. There is no universal
definition of a robot skill, nor how a skill should be formally represented. The
state of anarchy is so widespread, that there is no consensus on whether a skill is
represented by the goals of a task® or the procedure to reach a goal.

A more established concept is manipulation primitive, which is the building
block of skills. It is an interface between the sensor-based motion control and
robot programming [43] which is based on the Task Frame Formalism [18, 21]
where coordinate frames can be placed in the work cell or attached to the robot.
Motions and sensor-values can then be expressed in any local coordinate frame

SHere "task" is used in its natural language sense because it, too, is a provocative term.

18

as long as it is connected to the robot in a chain of known frames. The motion
primitives described in [43] and implemented by [25, 68] contain a hybrid motion
expressed in a frame, a tool command which executes synchronously with the
motion and a stop command which terminates the move. The implementation
presented in Paper III is based on the same formalism and a similar three-tier
architecture, however, the technical implementation details differ. The problem
with the motion primitives is that the programming blocks are too low-level to
add value to a system. This has resulted in the notion of skills, a combination of
primitive robot capabilities that are non-trivial and have production value. The
production value depends on how advanced the skill is and also on how reusable
it is. Hence, there are parallel ongoing efforts to develop a viable skill concept.

The skill description closest to our work is described in [68]. Their skills
consist of a sequence of motion primitives encapsulated between pre-condition,
post-condition and continuous checks. The skill is initialized with a number of
parameters and terminates with an evaluation of post-conditions. The emphasis on
evaluation is where the skill description diverges from ours, since we do not re-
quire an evaluation step even though this can be desired. That is, in our approach,
a peg-in-hole skill does not need to include, e.g., visual inspection of the inserted
object. Such inspection procedure can in fact be another skill. Another difference
is that their skill has to be able to estimate if the skill can be executed on the in-
put parameters and the world state. This is not a requirement for us, where only
the skill parameters have to be within allowed intervals and all pre-conditions ful-
filled. It is possible to simulate the skills from the primitive sequence in our case.
The more relaxed requirements stem from a pessimistic view on the simulation
capabilities of the robot and its ability to evaluate the skill execution in each step.
Instead, the inspection skills are added in intervals during the task. The require-
ments in [68] are relevant for planning and reasoning purposes, but not during the
execution. The differences are academic however, since the skill designer either
way decides what conditions and checks to include in the skill.

Another related approach is the Action Recipes from the ROBOEARTH [89]
project. These are high-level task descriptions in an OWL-based language. The
Action Recipe is closer to our task description, because it can include (partial)
ordering between actions and the actions are fairly advanced (we would describe
them as skills), such as handing over drinks, capabilities that need to be imple-
mented on the robot.

In this project, a task is the overall goal of the robot. It can be a set of partially
ordered subgoals. These subgoals can be represented in a graph structure, called
assembly graph. An example of an assembly graph is shown in Fig. LTI It
displays an assembly of an emergency stop button box. There are two partially
ordered subassemblies. To the left, a red button should be pushed through a hole
in a yellow box top, and then a nut should be screwed on the button from the
other side of the box. To the right, another subassembly is displayed: a dark
grey switch should be snapped into place on a light grey box bottom. Finally, the
two subassemblies should be joined. The graph has a tree structure, where the
leaves are the original workpieces while each parent node represents an assembly.

19

Figure 2.11: An example of an assembly graph of an emergency stop button box.

Child assemblies must be carried out before the parent assemblies, but otherwise
no ordering is imposed. Each assembly node can specify which skill to use for the
assembly. To execute the task, a sequencing is given to the skills by a planning
or scheduling algorithm, or, if no optimization is required at that state, any valid
ordering.

During this project, skills are usually implemented as sensor-based motions in
form of an SFC, where actions can be generated as native robot code as described
in Paper I'V. The skills are stored in an RDF database together with ontologies, as
described in Paper I. An ontology is used to structure data so that it is possible
for a machine to reason about it. For example, a skill is stored online together
with a set of input parameters with types, values and units. The type can be a
start position with x, y and z parameters given in mm relative to the robot world
coordinate system, and rotations in Euler angles in radians or degrees. The types
can be used by the graphical interface to select views and convert between units.
Another example is a picking skill, where a post-condition of the skill is that an
object is mounted in the gripper. This post-condition can be used by a scheduling
service so that the object has to be released before another one is picked up. Also
object types such as workpieces and sensors are stored in the ontology, which
makes it possible to reason about the work cell.

Since the robots act in the physical world, using skills that couple perception
and action, one compelling programming method is programming by demonstra-
tion. From demonstrations, parameters such as trajectory, accuracy and sensor
values can be extracted from the statistical data. This is useful since parameter
values that depend on the setup and can be difficult to know beforehand.

2.7 Learning from Demonstration

Learning from demonstration (LfD), or imitation learning is a method were users
teach a task to a robot by physical demonstrations, without traditional program-
ming. It is inspired by the way humans learn by imitation from young age. Until

20

recently, LfD has mostly been used for service robotics, while industrial robots
used kinesthetic teach-in of positions without generalization. The development of
new LfD techniques is outside of the scope of this thesis, however, it is a com-
pelling (relatively new) robot programming paradigm that will be a large part of
future work.

An introduction to the topic can be found in [2, 7] and in a more recent elec-
tronic format on Scholarpedia [8]. The benefit of LfD is that the demonstration can
be carried out by lay people, and the robot can itself generalize from few demon-
strations, and, if the task fails, the user can provide more demonstrations. The
generalization step is crucial for LfD, thus, teaching positions and replaying the
same trajectory is not LfD.

When imitating, the first thing to determine is what to imitate. What features
are relevant in the demonstration? Is it relative or absolute positions of objects,
for example? Should the robot learn how the world maps to actions or the goal of
the task? Should the robot generalize to discrete symbolic actions or continuous
functions? When the desired output is symbolic, such as simple actions, classi-
fication techniques such as Hidden Markov Models, Gaussian Mixture Models,
Support Vector Machines, decision trees, etc., can be used. When the learned task
is continuous, such as a trajectory, regression methods can be used, for example
Locally Weighted Regression. In the latter case, the statistical model can use the
variance of the demonstrations to determine where high precision is needed during
the motion.

The second design choice is how to imitate. The demonstrator and the learner
can differ in perceptual and physical capabilities, hence the learner will have to
transform the demonstrated data to its own perception and joint space. For exam-
ple, the demonstration can be carried out by directly observing the human using
vision or sensor gloves. This is simple for the human but it can be difficult to find
corresponding robot behavior. Another approach is kinesthetic teaching, where the
human moves the manipulator into place. It makes the imitation simpler for the
robot, but the demonstrator might need two arms to move the robot, hence making
it nearly impossible to demonstrate two-armed robot motions. Such limitations
can be addressed by teaching different parts of the task incrementally. The user
can use haptic devices to teach the task remotely, however, it can be non-trivial to
control a robot with multiple degrees of freedom using a remote control [8].

Demonstrations are naturally limited by the ability of the teacher and the human-
robot teaching interface, hence, it is desirable that the robot improves beyond the
capabilities of the teacher. LfD can be coupled with reinforcement learning tech-
niques to improve the performance. In that case, the teacher must provide a reward
function or the robot must learn the reward function itself. Creating a good reward
function is non-trivial.

All the above-mentioned methods are application-dependent. One challenge is
to reuse learned skills on a different robot and use adaption algorithms to optimize
the task on the new platform. Another is that the teaching methods require back-
ground knowledge and engineering, such as a known reward function, which can
be application-dependent and thus not easily be transferred to another task.

21

2.8 Robotic Middleware

Robotic systems are build by a number of distributed heterogenous hardware and
software components that have to interact during execution. In a robotic system
such components can include sensors (e.g., force sensors, laser scanners and cam-
eras), actuators and different software modules (control algorithms, motion plan-
ning, etc). In order to simplify configuration, communication and hide the com-
plexity of the system, as well as promote portability and modularity, there are
several frameworks for robotic middleware. Middleware is an abstraction layer
between software applications and the operating system and provides an interface
for execution and communication between components. Hence, middleware can
decrease development time and simplify code reuse. Surveys of current robotic
middleware are presented by [22, 54], a few are mentioned below.

2.8.1 ROS

The Robot Operating System, ROS [73], is a robotic middleware that runs on
Ubuntu and it is quite popular in the research community. Code modules called
nodes can be written in Python or C++. The nodes communicate using an asyn-
chronous publisher-subscriber model or by calling blocking services on other nodes.
In the publisher-subscriber model there are a number of topics that publisher nodes
can write to and other nodes can subscribe to. A publisher node can be a sensor
that publishes data messages, for example, a camera node with an image message.
A Master node helps the nodes to set up the communication. The publisher node
will advertise its topics to the Master, and a subscriber node, for example an image
processing algorithm, connects with a subscribe call to the Master which sets up
direct communication between the nodes. The topics are one-directional and asyn-
chronous, but there are also synchronous services where one node sends a request
and a response is returned.

Since ROS has gained popularity, there is a large collection of open source
packages for sensors, robots, navigation with varying levels of quality. However, in
the industry, the enthusiasm has been mild, since the flat architecture gives scaling
issues and the system lacks real-time guarantees. One attempt to cater to the needs
of the industry is ROS industrial [74], however the initiative is yet in its infancy.

In RobotLab in Lund, ROS is used for example on the mobile robot platform
in Fig. Z3. The ROS system communicates with the Orca system running on the
robot and the task level state machine in JGrafchart using LabComm-ROS bridges,
see Section TR,

2.8.2 OROCOS

The Open Robot Control Software, OROCOS [70], is a framework for real-time
robot control, thus complementary to ROS. Similarly to ROS the software is or-
ganized in modules, here called components. However, the OROCOS Real-Time
Toolkit is designed with hard real-time control in mind, letting the user to de-

22

termine scheduling and periodicity of components and the component designers
must enforce real-time behavior. Hence, making two independently written com-
ponents work together can be difficult, a hardship that ROS users can ignore. Other
frameworks, such as Rock [72] build on the OROCOS toolchain provide additional
features such as monitoring tools.

2.8.3 LabComm

Middleware can simplify integration and software reuse within a robot system, but
it can make it difficult for two robot systems to communicate even if both run the
same middleware. Hence, it is important to have a neutral communication proto-
col as well. LabComm is a communication protocol developed at Lund University.
Each message is typed and the user specifies the data format in a text file, a sam-
ple, and from that sample a LabComm compiler generates encoders and decoders
in different programming languages, e.g., C, RAPID, Java or C#. A LabComm
sample can either be a single type such as the status integer below,

sample int status;

It can also be a struct, as the fest_sample below. Here, list_of floats is an array
of floats, the length is specified as an integer between the brackets, or with an
underscore for arrays of variable length.

sample struct {

int blah;

float list_of_floats|[_];
}Jtest_sample;

Using LabComm, a system running Java, such as JGrafchart, can communicate
for example with a system running RAPID, such as the native robot controller
from ABB and an external controller as shown in Fig. T2, To communicate
with a ROS system, the LabComm sample can be translated to a ROS message
using a LabComm-ROS bridge that generates a small ROS node that works as
message server. An overview of the software architecture used in this work is
shown in Fig. T2, The task execution is carried out in JGrafchart, which in
turn communicates with the Engineering System, ExtCtrl and the native controller
using the protocol LabComm. Before and after the execution, Java processes on
the Linux machine can communicate with the Knowledge Integration server and
Engineering System in order to load newly generated state machines or upload log
data. Before execution, the MATLAB/Simulink model that contains the control
program and the sensor signals is loaded into ExtCtrl. The external controller,
ExtCtrl communicates with JGrafchart using Orca, a layer on top of LabComm
where the samples are either input or output signals, logdata or parameters. The
messages from JGrafchart to ExtCtrl are the output signals, the input signals go
in the other direction. Input signals are for example sensor values. Parameters
and output signals are used to set up the values for the kinematic chain, which are
described in the following Section.

23

Knowledge Integration
(Windows/Linux)

ot

encector”

(oo Service Task Execution (Real-time Linux)

LabComm/Orca
Reference values

LabComm

wands
- @

Engineering System
(Windows PC)

Model in |\ =

MATLAB/ “ = Native
Simulink § 1| controller
e ﬁ

theta fon
J {ATLAB Function

Control loop| |

Sensor signals

Figure 2.12: An overview of the software architecture of the robot system.

2.9 iTasC

The external controller, ExtCtrl, uses the iTasC framework [21]. The framework
separates the task specification given by constraints and the solver that fulfills the
constraints during the execution. In the workspace, interesting points on objects
or the robots are marked with local coordinate frames. The task is specified by
a closed kinematic chain, a closed loop of connecting frames, as illustrated in
Fig. T3. Each arrow is a transformation to a frame (marked with coordinate
axes). The blue frame is a constant frame, the yellow is the robot frame which will
be determined by the kinematics of the robot, the red arrow is a tool frame and
the black is a feature frame. When setting up a kinematic chain, the direction of
the frames must be consistent hence some frames will be inverted, e.g., the tool
frame and the robot frame. The frames can either go through the robot (yellow
arrow in the figure), the tool (red) or be constant (blue). The last frame in the loop
(black in the figure) is called feature frame, and is used to constrain the execution.
For example it can be set to be constant relative to a moving frame, or the robot
motion can be expressed in that frame. Each frame in the kinematic chain can be
accompanied with an uncertainty frame, expressing the certainty of the coordinate
values.

The kinematic chain can go through more than one robot, thus expressing syn-
chronized motions between arms. During execution, the solver implementation
carries out the low-level control of the robot, hence the task specification can be
expressed with high-level platform-independent constraints.

24

Figure 2.13: An example of a kinematic chain.

2.10 Code Generation

In order to go from high-level task descriptions to low-level motion control, we
need to generate code for the low-level system. The first implementation is de-
scribed in Paper IV.

The task is created in RobotStudio as a sequence of actions, where each ac-
tion is mapped to a step in the JGrafchart state machine, as illustrated in Fig. T4,
Simple motions are coded in RAPID, where positions are stored as RAPID robot
targets and move commands are written in procedures that can be called over Lab-
Comm, e.g, from the task state machine in JGrafchart. Multiple guarded motions
(with the same kinematic chain) are bundled into a nested SFC, while native code
function calls are made to code loaded into the native controller. Reused skills
are loaded from the knowledge-base and also put in a nested SFC. Between the
generated steps the controllers are turned on and off and parameters reset.

In the task state machine, sensor-controlled motions are encoded as macro
steps. The initial step in the macro step sets up the kinematic chain. The con-
straints for the chain are specified in RobotStudio as follows: the robot type can
be ABB YuMi right or left, IRB120 or IRB140. The frames are given by six co-
ordinate values, position values in millimeters in x, y and z direction, and rotation
in EulerYZX in radians. These values are set as parameters to ExtCtrl and used to
specify the kinematic chain in the first step as shown in Fig. ZT3. The first step sets
the parameters to the kinematic chain, in this case for the right arm (the first index
of the kinematicsConverged array becomes 1). The second step is a search in
z-direction. In this step, reference values for velocity and force are set along dif-

25

akilll
1

|
Switeh o £y <— Step turning off ExtCtrl

LC.proc.status == 1 & i.extCtrlRunning2 ==8

Project ' Sequence p

Fridalet
=7 Step
5 j ;;g;box LC.proc.status == 1
=@ Searchz
search z
=@ Searchy
searchy LC.proc.status == 1
hold z .
5@ Searchx Tunan Exch <— Step turning on ExtCtrl
search x
:ZEZ i.extCtrlRunning2 ==1
© movetofud «.| | €« State resetting all parameters
@ pickswitch
—-£7 Step 1

snapFit Skill
@ retract
\@ «— Nested SFC with reused skill

Figure 2.14: During the code generation step, a state machine is created from a RobotStudio
sequence.

ferent axes and the controller parameters are set (damping and stiffness in different
directions). The transition condition contains two final constraints, either the force
value in z-direction is greater than 3.0 N or larger than 6.0 N in y-direction on the
sensor called y_meas_extR.

After the kinematic chain is specified, the numerical values for the Jacobians
are computed iteratively, and kinematicsConverged is set to true (1).

A search step is specified setting a constant velocity or force along each coordi-
nate axis, where the values are set in a reference array to the controller. Controller
parameters are set up together with the reference array, specifying the damping
and stiffness values corresponding to the constant force reference value. The fi-
nal constraint is set as a transition condition on the sensor values, in Fig. T3 the
force/torque sensor on the right arm is an array named y_meas_extR.

Integrating a ROS system, for example, is similar to using RAPID, function
calls are made using a LabComm bridge that runs in ROS. When switching be-
tween controllers, the robot has to stand still so that the controller, ExtCtrl, RAPID
or otherwise, can set the reference position and velocity values to the actual values
of the robot.

The implementation described in Paper IV only supports sequences and guar-
ded motions. Ongoing work involves loops, error handling and two armed mo-
tions. For loops, the use case has been palletizing, where a pallet has a grid of
positions which can be specified in several ways e.g., by two diagonal endpoints

26

Set kinematic chainl I

== i.kinematicsConverged.get{8) > 6.5

z-search

+i.y_meas_extR.get(2) > 3.8 | i.y_meas_extR.get(1l) > 6.0

Figure 2.15: The nested SFC.

and number of rows and columns in the grid. When moving objects, in our use
case needles, between two pallets, two such grids must be specified and as well
as offsets between the needle and the grid point. In a more general case, where
the task is to carry out multiple assemblies of objects, e.g., boxes, the grid is not
specified by a pallet directly, but by the positions of the objects in pallets. On the
state machine level, it is straight-forward to represent lists of positions, but the user
interaction is still under development.

27

28

Chapter 3

Conclusions

The main contribution of this work is a system for high-level programming with
code generation and natural language understanding. Using high-level program-
ming reduces the number of manually specified parameters. Table Bl shows a
comparison between the number of parameters that the user needs to specify in the
graphical user interface and the SFC in JGrafchart, respectively. In the Engineer-
ing System, there is an initial configuration of the workspace when the coordinate
frames attached to sensors, tools and objects are set up. This is done graphically,
hence all six coordinate values are set at once, or each value can be specified
manually. Using the high-level programming interface, each search can be set up
using 4 values and one terminating condition. In the state machine each search or
maintenance constraint (constraining another axis than the motion direction) can
be set up by setting 6 reference values and 42 control parameters for an arm with
7 joints. A move can be specified in the graphical user interface using 4-7 pa-
rameters chosen from drop-down boxes, while this would need 21 parameters in
RAPID together with a call from the state machine and controller switches. As
an example, using the high-level interface to program the sequence in Fig. I'T4
(ignoring the reused skill in the end) can be done with 67 parameter when all op-
tional parameters are set. This corresponds to 393 parameters in JGrafchart, as
well as additional RAPID modules and additional steps for switching controllers.
Hence, we have reduced the parameters that the user has to specify to 17 % of
the original number. Using the natural language programming interface and the
default parameters will reduce the effort further. The three guarded motions and
six constraints (that is 190 parameters) from the sequence in Fig. T4 are specified
with approximately 30 words.

Additionally, the task specification abstracts away from robot type and sensor
name, making it reusable on different robot platforms and more easily understood
by a human. The modular architecture also makes it easier to change systems,
for instance, to generate code for another state machine execution system than
JGrafchart.

The semantic skill descriptions in KIF makes it possible to automatically check,

29

plan, and schedule tasks. A feature that is not included in the current test im-
plementation is automatic generation of plan domain definition language (PDDL)
files. Such files can be used by off-the-shelf planners as demonstrated by [3, 41].

Only a reduced part of the system has been tested in a factory-like setting. The
complete system is experimental and in order to test usability, a near product-like
stability should be achieved. It is possible and desirable to test isolated parts of
the system with naive users, however, this is something we have not tried yet in a
methodic manner.

Future Work

Each paper lists more detailed future work, however, there are some general com-
ments. User studies should be carried out in order to test usability. This would
require that a subset of the system functionality is isolated and a product-like sta-
bility is provided.

The software modules that have been developed should be packaged and dis-
tributed to the community, some as open source and some as commercial products.
A distribution system for robotics applications is under development at Lund Uni-
versity.

As the system is modular, the future work includes testing how well the system
can be extended with new functionality, for example, code generation modules for
other low-level languages.

One of the problems with our approach is skill acquisition. To populate the
database with advanced skills, more advanced users need to create and parametrize
them. To avoid the possible bottleneck this can cause, one possibility is to use
learning from demonstration to automatically segment and parametrize skills. This
is planned for a future project?, where the system will be extended to support
learning from demonstration, segmentation and parameter learning.

'EU Horizon 2020 SARAFun.

30

QUIYODUL 2IDIS 1ADYIDAD [D Ul K]102.41p 40 [)D) 2yl Ul ySvi v dn Suijas uaym £f1dads 03 paau JJim 4asn ayg 1oy siajauinand fo 1aoquinu YT 1€ 2]1qUL

"SI0IID
uone[Iduwod 9AJ0S pue SAWLU Josuds ‘sanfea jsnl
-pe A[[enuew pue dojs oroewr e ojut 31 Jurkdoo Aq
A1oa11p QuIyoRW 938)S Y} 9snal 03 d[qrssod s7 1]

'sdo)s Jo Jequinu oy} 03 Jeaur] Ajeyewrrxoxddy

San[eA JNEJop Y)IM PazIjeniur
e ‘sioowered (z-01 Aqreuondo

S[IIS JO asnoy]

*SI9[[ONU0D
Suryoyms 10J sdais se [[om se quawaspajmouddor
I0j Sunrem pue Surpuds ‘siojowered Junjes oy

3p0d Jo saul| ¢ Sursn LRYOJRID[WOIJ PI[[ed pue (suonoe
s1ojowered 17 PIm QIVY U payroads oq prnopy s1ojowered reuondo ¢ + 4 | oapmuud) QAo

"UOTIOAIP Jey) UT PI[[ONUOD JOS

-uas Ajoind ST yoIeas € Jnoyim S)uresjsuod adueu
-q)urewr ‘9ouo sidjwered ay) 198 ATUO [[Im JuTEDS RGIENIAS (301101 Jurens
-UOD QOURUQIUIBW © [PIM JUIBNSUOD UYoIeas Y | -ed [onuod (9 10) / X Q pue San[ea 9JUAIJAI § | -UOD ‘dN[BA ‘SIXE ‘Quelj 102[q0) ¢ | -U0D QdouBUIUIBIN
'0) JUTENSUOD
s3U0[aq IT UOT)OR Y} QJLUIULIS) [[IM UOTIIPUOD Y, uonIpuod | (stxe 10 odK) pue onjeA) ¢ [eurj/1o1rg

* Surdwep pue ssouyns ‘porrad Surdwes
30 quiof 1ad siojowered jonuod 9 are Y[,

‘SI9)ouIex
-ed Jonuod (9 I0) / X 9 pUB SANEA JDUAIJAI 9

(K110072A ‘sTX® ‘el 909(qo)

UoToW YoIeag

*(wre 1od sonjeA [7]) SOOLIEW SSBW PUB [0U0D

ureyo
onewaury jo Sun

‘(sowreay 4-¢ AqreordAy) owrery 1od sioyowered g onewony | -19sar pue Sumnjes
9pod AIdVd
Jo sour] (OGS Sursnar pue ‘g pue yod uonOAU UOTEITUNUITIOD
-uo0d dn Sumjas pue 109[qo wwoHqeT Jo uonear) onewony Jo dmyes enuy
*SUOT}OAIIP JUIIJJIP UL 19[[01)

SurAow UAYM JUAISIJIP 9q UBD IS, ‘payroads

-uod oouepadur

9q 0} spaau J0joey sseuyns pue Surdwep ayj, V/N (Surdwrep pue ssougns) ¢ 1od dmos [entug
‘A[renuewt 1o A[[ed ey

-ydess 1oy payroads 9q 0) Spedu dwrely yory V/N s1ajowered [enuew 9 J0 YOI[O SUQ 1od dnjes rentuy
JUSUIIOD) JIeyoJeIn [/s1ajowered Jo roquinN 1ND/s110wered Jo oquinN AImeo,]

31

32

Part 11

Papers

33

Paper I

Knowledge-Based Instruction of Manipulation Tasks
for Industrial Robotics

Maj Stenmark Jacek Malec

Department of Computer Science
Lund University
maj.stenmark@cs.lth.se
jacek.malec@cs.lth.se

ABSTRACT

When robots are working in dynamic environments, close to humans lacking extensive
knowledge of robotics, there is a strong need to simplify the user interaction and make the
system execute as autonomously as possible, as long as it is feasible. For industrial robots
working side-by-side with humans in manufacturing industry, Al systems are necessary to
lower the demand on programming time and system integration expertise. Only by building
a system with appropriate knowledge and reasoning services can one simplify the robot
programming sufficiently to meet those demands while still getting a robust and efficient
task execution.

In this paper, we present a system we have realized that aims at fulfilling the above de-
mands. The paper focuses on the knowledge put into ontologies created for robotic devices
and manufacturing tasks, and presents examples of Al-related services that use the semantic
descriptions of skills to help users instruct the robot adequately.

Robotics and Computer-Integrated Manufacturing, 33 (2015), pages 56—67.

1. INTRODUCTION

1 Introduction

The availability of efficient and cheap computing and storage hardware, together with in-
tensive research on big data and appropriate processing algorithms on one hand, and on
semantic web and reasoning algorithms on the other hand, makes the existing results of
artificial intelligence studies attractive in many application areas.

The pace of adoption of the knowledge-based paradigm depends not only on the com-
plexity of the domain, but also on the economic models used and the perspective taken
by the leading actors. It may be quite well illustrated by opposing the service robotics
area (mostly research-oriented, mostly publicly funded, using open source solutions, acting
in non-standardized and not-yet-legally codified domain) with industrial robotics (applica-
tion-oriented, privately funded, using normally closed software, enforcing repeatability and
reliability of the solutions in legally hard-controlled setting).

When robots are working in dynamic environments, close to humans lacking extensive
knowledge of robot programming, there is a strong need to simplify the user interaction and
make the system execute as autonomously as possible (but only as long as it is reasonable).
This also motivates the integration of Al techniques into robotics systems. For industrial
robots working side-by-side with humans in manufacturing industry, Al-based systems are
necessary to lower the programming cost with respect to the required time and expertise. We
believe that only by building a system with appropriate knowledge and reasoning services,
we can simplify the robot programming sufficiently to meet those demands and still get a
robust and efficient task execution.

In this paper, we present a knowledge-based system aimed at fulfilling the above de-
mands. The paper is focusing on the knowledge and ontologies we have created for the
robotized manufacturing domain and is presenting examples of Al-related services that are
using the semantic descriptions of skills to help the user instruct the robot adequately. In
particular, the adopted semantic approach allows us to treat skills as compositional pieces
of declarative, portable and directly applicable knowledge on robotized manufacturing.

The paper is organized as follows: first we introduce the robot skill, then we describe
the system architecture. Next section introduces our robot skill ontology and other relevant
ontologies available in the knowledge base, as well as some services provided by the system.
Next we introduce the interface towards the user, i.e. the Engineering System, and briefly
describe the program execution environment exploiting the knowledge in a non-trivial way,
then we describe the related research. We conclude by suggesting future work.

2 Robot SKkills

Our approach is anchored on the concept of a robot skill. As it may be understood in
many different ways, both by humans and machines, it needs to be properly defined and
made usable in the context of our domain of applications. The presentation in this section
adopts a historical perspective, showing how our understanding of skills pushed forward the
capacities of systems we have created.

Our earliest deployed system has been developed in the context of the EU project
SIARAS: Skill-Based Inspection and Assembly for Reconfigurable Automation Systems.
Its main goal was to build fundamentals of an intelligent system, named the skill server,
capable of supporting automatic and semi-automatic reconfiguration of the existing manu-
facturing processes. Even though the concept of skill was central, we have assumed devices
as the origin of our ontology. Our idea then has been that skills are just capabilities of de-

37

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

{ Divide)
(pass)

(Feed b
AL

(Rotate ¥

("convey)

~ :
(Arrange)

.
 LinearMove)<

- Displace)

_(Detach)

Unclamp)

A Grasp B
(ChangeToal)

"?'Ré\m;ef

_ (StoreinOrder)

oreUnOrdered)

 StorePardyQrdered

Figure 1: Manipulation and handling skills, as defined by SIARAS ontology.

vices: without them no (manufacturing) skill can exist. A device can offer one or more skills
and a skill may be offered by one or more devices. We have not introduced any granularity
of such distinction; all the skills were, in a sense, primitive, and corresponded to operators
as understood by Al planning systems (models of operations on the world, described us-
ing preconditions, postconditions, sometimes together with maintenance conditions). This
understanding laid ground to the development of a robotic skill ontology, siaras.owl,
that has been used to verify the configurability of particular tasks given current robotic cell
program expressed as a (linear) sequential function chart (SFC). This approach has been
proven to be valid, but the ontology grew quite fast and became problematic to maintain,
given dozens of robots with a number of variants each, thus multiplying the number of
devices. The details of SIARAS approach have been described in [32]. Fig. [and Fig. &
illustrate the basic hierarchy of skills available in the siaras.owl ontology.

The dual hierarchy, that of devices, has been illustrated in Fig. B and Fig. B, while

38

2. ROBOT SKILLS

CollectStatistical Dar;)

CollectErrorimages

@agnﬂsricFu nction

T_Perfor

Qertomsrest>

LightingFuncti D

Proces s@

ManufacturingFu ru:mEp

@inFuncrinn

Sensorfu ru:riDD

LoadParamete rSe>

|(Ihin9<]—m—<< s:kill

SetParamete N@

e
G
G

SavePara mere@

@irinmlFu nction

CalibrarD

(sme)
e

AquireTest] magD

ChangeErwianmeD

P ==~
((:Pﬂ:— ionAndk _“:‘i'l"_'r':)

G i ruln.liur_ll>

Compou ndAbsrrachiiTD

CompoundManufacturingFu nchcErD

Figure 2: Top skill classification, as defined by SIARAS ontology.

39

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

_ MechanicalFixture)

e —— —

P e
[Fixture /.'{I—'-S—J—'; VacuumFixture)

el . =
'_‘\facuumGrlppe_r/'

i
. -
is —
./ . . ™~
-__‘_I_rlngerGrlpp%.r_}
e
~— <a— — .
(" Gripper éJ—‘q—‘]—'\/_MagnetGripper D)
s et
T ——

> ER R
'__f'lncerGrlppe_r__D

-] —
'}‘JEartesmnRob?_t'/'

(scaraRohat)

—-(:-_-I}-!anipulationAndHandIingDevic-E;__-:)'
— o = i

':_-_SpeciaIKinematicRobot_.:‘.-

- TN
'_ﬁfxapodRob_o__t/'

—————

'f:__SimpIeKinematicRoboE:T'

- —_—

T ™
SO

Figure 3: Manipulation and handling devices, as defined by SIARAS ontology.

Fig. [3 shows some of the properties that can be attributed to devices.

The deficiencies of the STARAS ontology, that is, atomicity of skills and devices, fixed
parameterizations and scalability issues, have led us to reconsider the idea. These time de-
vices did not play a central role any longer, but rather skills have been put in the center.
In the ROSETTA project? the definition of skills has been based on the so-called produc-
tion (PPR) triangle: product, process, resources [20] (see Fig. B). The workpieces being
manufactured are maintained in the product-centered view. The manufacturing itself (i.e.,
the process) is described using concepts corresponding to different levels of abstraction,
namely tasks, steps, and actions. Finally, the resources are materialized in devices (capable
of sensing or manufacturing). The central notion of skill links all three views and is one of

2RObot control for Skilled ExecuTion of Tasks in natural interaction with humans;
based on Autonomy, cumulative knowledge and learning, EU FP7 project No. 230902,
http://www.fp/rosetta.org/.

40

http://www.fp7rosetta.org/

3. ARCHITECTURE

¢ UltrasonicDistanceSensar
i3 = e
= __{ TactileProximitySwitch)
_(Pat) [e
—{ Patt) {5 e
4 OpticDistances

(" owl: Thing B<t—i=2—(ObjectBase

T Assembly)

Pa T
S { LaserScanne2D

¢ TomueForceSensor
" OpticCalarsensor) OpticThroughBeamSwiteh

iga— —_—

t ~op

icReflexSuiteh)

A Device F:)—&J—\'s

LuminescenceScanner

\ | k-r-’i/ . B ']
\ | { Lighterid)
% LY e
% ~—_CInductiveP roximitySw

SR N

¢ WireDrawEncoder)

Figure 4: Sensor devices, as defined by SIARAS ontology.

the founding elements of the representation.

In case of a robot-based production system, skills may be defined as coordination of
parameterized motions. This coordination may happen on several levels, both sequencing
(expressed, e.g., via a finite state machine or a similar formalism), configuring (via ap-
propriate parameterization of motion) and adapting (by sensor estimation). On top of this
approach, based in our case on feature frame concept [21], we have built a set of reasoning
methods related to task-level description, like, e.g., task planning. The details are presented
in the following sections

3 Architecture

The generic setup describing the intended usage of our approach is illustrated in Fig. O.
The system architecture is very roughly depicted in Fig. B. The Knowledge Integration
Framework (KIF) is a server that contains data repositories and ontologies. It provides
computing and reasoning services. There are two main types of clients of the KIF server,
the Engineering System, which is a robot programming environment, and the robot task
execution system.

The task execution system is a layer built on top of the native robot controller. Given the
task, the execution system generates the run-time code files utilizing online code generation
(see Section B), then compiles and executes the code.

The Engineering System uses the ontologies provided by KIF to model the workspace
objects and downloads skills and tasks from the skill libraries. Similarly, new objects and
skills can be added to the knowledge base by the Engineering System. Skills that are cre-

41

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

¥) DeviceProperty
¥ @ Arrangement
@ CoordinateReferenceSystem
@ MountedDeviceOrientation
@ MountedDevicePaosition
@ WorkCoordinates
@ WorkFrame
¥ @ Communication
@ Businterface
@ CommunicationProtocol
@ Electricallnterface
¥ @ ControlSystem
@ IntelligentCtrl
@ MumericalCtrl
@ PlaybackCtrl
@ simpleControl
@ Cost
@ Ceometry
@ Identifier
p 0 PhysicalProperties
¥ @ Toollnterface
@ ElectricalConnector
p @ MechanicalConnector
@ isEditable
v @ skillProperty
p @ QualityCriteria
p @ Timing

Figure 5: Device properties, as defined by SIARAS ontology.

Product

Resources Process

Figure 6: The PPR model, with skills as common coordinating points for the three views.

42

3. ARCHITECTURE

Knowledge
Integration
Framework
KIF

Library V

What? When? ¥ "o
How? Why? ... Device Z o N
L
s
S

——

Figure 7: The Knowledge Integration Framework provides services to the Engineering Sys-
tem and the Task Execution. The latter two communicate during deployment and execution
of tasks. The Task Execution uses sensor input to control the robot and tools.

Figure 8: The Knowledge Integration Framework provides services to the Engineering Sys-
tem and the Task Execution. The latter two communicate during deployment and execution
of tasks. The Task Execution uses sensor input to control the robot and tools.

43

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

ated using classical programming tools such as various state machine editors (like, e.g.,
JGrafchart2® [94]), can be parsed, automatically annotated with semantic data and stored in
the skill libraries.

The services, described later in the paper, are mainly used by the Engineering System
to program, plan and schedule the tasks.

4 Knowledge Integration Framework

The Knowledge Integration Framework, KIF? is a module containing a set of robotics on-
tologies, a set of dynamic data repositories and hosting a number of services provided for
the stored knowledge and data. Its main storage structure is a Sesame® triple store and a set
of services stored in Apache Tomcat® servlet container.

The ontologies we use in our system come from several sources and are used for dif-
ferent purposes. The main, core ontology, rosetta.owl, is a continuous development
aimed at creating a generic ontology for industrial robotics. Its origins is the FP6 EU
project SIARAS described earlier in Section D. It has been further modified within the
FP6 EU project RoSta (Robot Standards and reference architectures, http://www.robot-
standards.eu/, [58]). Within the FP7 EU Rosetta project this ontology has been extended,
refactored and made available online on the public KIF ontology server http://kif.cs.
Ith.se/ontologies/rosetta.owl. However, this is just the first of a set of ontologies
available on KIF and useful for reasoning about robotic tasks.

The ontology hierarchy is depicted in Fig. B, where arrows denote the ontology import
operations. We used extensively the QUDT ontologies and vocabularies (Quantities, Units,
Dimensions and Types, initiated by NASA and available at http://www.qudt.org) in
order to express physical units and dimensions. This ontology has been slightly modified
to suit the needs of our reasoner. However, as QUDT ontologies led to inconsistencies, we
have introduced the possibility to base the quantities, units and dimensions on the alternative
OM ontology® [71].

The core Rosetta ontology (as its predecessors) is focusing mostly on robotic devices
and skills. According to it, every device can offer one or more skills, and every skill is
offered by one or more devices. Production processes are divided into tasks (which may be
considered specifications), each realized by some skill (implementation). Skills are compo-
sitional items: there are primitive skills (non-divisible) and compound ones. Skills may be
executed in parallel, if the hardware resources and constraints allow it.

On top of the core ontology we have created a number of "pluggable” ontologies, serv-
ing several purposes:

Frames The frames.owl ontology deals with feature frames and object frames of phys-
ical objects, normally workpieces involved in a task. In particular, the feature frames are re-
lated to geometrical locations and therefore the representation of location is of major impor-
tance here. The constraints among feature frames are expressed using kinematic chains [21],

3 http://www.control.lth.se/grafchart/

4We realize the name coincidence with Knowledge Interchange Format [29], but as this name has
been used for more than six years by now, we have decided to keep it.

5 http://www.openrdf.org

6 http://tomcat.apache.org

TTechnically speaking, the triple store is also a servlet.

8 http://www.wurvoc.org/vocabularies/om-1.6/

44

http://kif.cs.lth.se/ontologies/rosetta.owl
http://kif.cs.lth.se/ontologies/rosetta.owl
http://www.qudt.org
http://www.control.lth.se/grafchart/
http://www.openrdf.org
http://tomcat.apache.org
http://www.wurvoc.org/vocabularies/om-1.6/

4. KNOWLEDGE INTEGRATION FRAMEWORK

FRAMES.OWL INJURY.OWL PARAMS.OWL SFC.OWL
CC-BY-3.0 / CC-BY-3.0
ROSETTA.OWL
CC-BY-3.0
» R
QUDT 1.1 OM 1.8
CC-BY-SA-3.0 CC-BY-3.0

Figure 9: The KIF ontologies used by the Rosetta project. In case an ontology is openly
available, the type of license is quoted.

also introduced by this ontology.

Injury The injury.owl ontology deals with the levels of injury risks when humans
and robots cooperate, or at least share common space. The ontology specifies the possible
injury kinds, while the associated data, either extracted from earlier work [93], or gathered
during the Rosetta project [50], are provided as the upper limit values that may be used in
computations of injury risks or of evasive trajectories for a robot.

Params Each skill may be parameterized in a number of ways, depending on the gran-
ularity level of control, available information or the demands posed on the skill. In order
to provide knowledge about skill parameterization for knowledge services (like, e.g., task
consistency checking), the params. owl ontology describes skills and their mandatory and
optional parameters, their units and constraints.

SFC The sfc.owl ontology characterizes various behavior representations using vari-
ants of executable state machines (Sequential Function Charts are one of them; the others
included are OpenPLC, Statecharts, rTFSMs and IML). It also contains the semantic descrip-
tion of several graph-based representations of assembly, like assembly graphs, constraint
graphs or task graphs [48], that may also be considered to be behavior specification, al-
though at a rather high level of abstraction.

This solution illustrates two important principles of compositionality and incrementality:
every non-trivial knowledge base needs to be composable out of simpler elements, possible
to be created by a single designer or team without the need to align it with all the other
elements. The alignment, or conflict resolution (e.g., inconsistency), should be performed
(semi-)automatically, after plugging the element into the system. So, every "top" ontology
should only be forced to adhere to QUDT (or OM) and ROSETTA ontologies, possibly
neglecting other elements existing in parallel.

45

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

The incrementality principle ensures that every "top" ontology should be amenable to
incremental change without the risk of breaking the whole system. Thus, changes to, e.g.,
Params ontology should not affect the consistency and utility of, e.g., SFC ontology. On the
other hand, one can imagine situations where changes in one module (e.g., introduction of
a new constraint type between feature frames, described in frames.owl) might facilitate
improvements in another (e.g., easier specification of parameters for a given skill, described
in params.owl).

Besides storing the ontologies, the triple store of KIF provides also a dynamic semantic
storage used by Engineering System to update, modify and reload scene graphs and task
definitions. Depending on the kind of repository used, some reasoning support may be
provided for the storage functionality. More advanced reasoning, and a generic storage of
arbitrary kind of data, is provided by KIF services, described below.

5 Knowledge-Based Services

The knowledge base provides storage and reasoning services to its clients. The most basic
service it offers is access to libraries with objects and skills, where the user can upload and
download object descriptions and task specifications. Some of them are stored with seman-
tic annotations, as triples, e.g., workpieces, scene graphs or skill definitions. Others are
stored as uniform chunks of data without semantically visible structure (e.g., RAPID pro-
grams or COLLADA files), although other tools may access and meaningfully manipulate
them for various purposes.

The services are mostly user-oriented, providing programming aid, and can be used
step-by-step to create a workspace and then to refine a task sequence from a high-level
specification to low level code. The workspace is created by adding a robot, tools, sen-
sors and workpieces to the scene, giving the object properties relevant values and defining
relations between objects (see Section B).

The user specifies a task using the workpieces and their relations. On the highest level,
the task is represented by an assembly graph [48]. An example assembly graph of a cell
phone is shown in Fig. M. The assembly graph is normally a tree (not necessarily binary).
The leaves are the original workpieces which are joined into subassemblies represented by
parent nodes and the full assembly is represented by the root. Each subassembly can be
annotated by more information, such as geometrical relations between the objects, or what
type of joining mechanism to use (e.g., glueing, snapping, screwing). The tree imposes a
partial order on the operations, where child assemblies have to be carried out first. When
going from the task specification given by the assembly graph to an executable program, the
task has to be sequentialized. Depending on the robot, or on the number of collaborating
robots, the sequence can be realized in several ways, hence, an assembly graph specification
can be shared by several robot systems, even though the sequences realizing it will differ.

KIF provides a planning service that transforms an assembly graph to a sequence of
operations using preconditions and postconditions of the skills. Initially the service verifies
the device requirements of a skill. Fig. [T displays the device requirements of an imple-
mentation of the skill that inserts a shieldcan onto a printed circuit board (PCB). This skill
has only three device requirements: a mounted tool (which is a manipulation requirement),
a fixture and a force sensor, which (though it is not displayed in the figure) must be aligned
vertically. When planning the sequence, the planner adds actions that fulfill the precondi-
tions (see the example in Fig. [), such as moving objects into place.

However, the sequence can also be created directly by the user, either manually or by

46

5. KNOWLEDGE-BASED SERVICES

Figure 10: An assembly graph for a partial assembly of a cell phone. A metal plate, a shield
can, is pressed onto a printed circuit board (PCB) and a cell phone camera is inserted into
a socket. The camera socket is then fastened on the PCB.

v DeviceRequirement
v ManipulationRequirement
v ShieldcanDeviceRequirement
ShieldcanFixtureRequirement
ShieldcanForceSensorRequirement
> SnapfitDeviceRequirement

Figure 11: The device requirements of the skill ShieldCanlInsertion are modelled in an on-
tology. The ManipulationRequirement which several skills inherit from, is that a gripper
has to be mounted on the robot. The ShieldcanFixtureRequirement and the Shieldcan-
ForceSensorRequirement /ist that there must exist a fixture and a force sensor that have
to be vertically aligned (not shown in the picture).

v Precondition
v ShieldcanPreCondition
ShieldcanFixedFrameInFixture
ShieldcanHeoldActuatingFrame
ShieldcanStandAboveFixture

Figure 12: There are three preconditions to the ShieldCanlnsertion skill. The skill has two
feature frames (relative coordinate frames) as input parameters, where one is a reference
object frame and the other is attached to the object in the gripper, i.e., an actuating frame.
The first precondition is that the object with the reference frame has to be on the fixture.
Secondly, the object with the actuating frame should be attached to the gripper, see Fig. [3,
and finally, the position of the actuating object should be above the fixture. Imprecise geo-
metrical relations such as “Above” are given concrete values by the Engineering System.

47

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

SubClass Of
hasFeatureFrame some ShieldcanActuatingFrame
ObjectAttachedToGripper
ShieldcanPreCondition

‘||:| ur -J'-I"I". mous -J'-I'(-. stor
hasPhysicalObjectProperty some Gripper

(hasPhysicalObjectProperty some PhysicalObject)
or (hasFeatureFrame some Frame)

hasGeometricalRelation some Attached

Figure 13: The ontology description of the precondition ShieldcanHoldA ctuatingFrame
which is a subclass of ObjectAttachedToGripper.

Instructions | Setup speech

Natural language programming. Type what the
robot should do ..

Describe the task

Assemble the shieldcan to the PCB
using shieldcaninsertion.\

[Send || Becte |[Cancel |

Figure 14: The user can describe the task using English sentences.

using a natural language instruction interface. Later, the same planner can be used to verify
that the sequence fulfills the preconditions of each action (Fig. [3).

The natural language interface is described in more detail elsewhere [83] and [81]. The
user either dictates or types English instructions in a text field (see an example in Fig. [4).
The input text is sent to a natural language service on KIF where the sentences are parsed
into predicates (verbs) and their corresponding arguments. Each verb has several different
senses depending on the context and meaning, e.g., the predicate take in take off the shoes
has sense take.0I, but in the sentence Take on the competition it has sense take.09. The
shoes and (on) the competition are arguments to the predicates. Each sense has a number of
predefined arguments for, e.g., the actor doing the deed, the object being manipulated, the
source or the destination. These arguments are labelled as A0, A, etc. Both the sense of
the verbs and the arguments are determined using statistical methods described in [10].

The natural language service outputs a preliminary form of program statements derived
from the sentences. However, the matching to actions and objects existing in the world
is done in the Engineering System. In the simplest form a program statement contains
an action (the predicate) and a few arguments (objects). The action is then mapped to
a robot program template while the arguments are mapped to the physical objects in the
workspace, using their names and types. Actions described this way can be picking, placing,
moving and locating objects. More complicated program structures can be expressed using
conditions that have to be maintained during the action or for stopping it, as in the sentence

48

5. KNOWLEDGE-BASED SERVICES

Assemble shieldcan using | shieldcaninsertion

assemble .02 AM-ADV

use.01

Parsing sentence required 22ms.

J NOD

|f ROOT] ‘WIOD VIOD [:7]
<root= Assemble the shieldcan to the FPCE using shieldcaninsertion
assemble the shieldcan 1o the pch use shieldcaninsertion

VB DT MM TO DT MWMP VBG RN

Figure 15: The result given by the parser of the sentence from Fig. [A. At the top, each line
displays a found predicate with its arguments. Assemble was evaluated to assemble.02 with
the arguments the shieldcan (A1), to the PCB (A2) and a manner using shieldcaninsertion.
The bottom of the picture displays the dependency graph (actually a tree). The arrows
point, beginning from the root of the sentence, from parents to children. Each arrow is
labelled with the grammatical function of the child. Under each word the corresponding
part-of-speech tag (determiner - DT; noun - NN, etc) can be found.

Search in the x-direction until contact while keeping 5 N in the z-direction. The example
sentence Assemble the shieldcan to the PCB using ShieldCanlnsertion given in Fig. [4
has a skill, ShieldCanlinsertion, as argument to use (which in turn is a nested argument to
assemble, see bottom of Fig. [3). Use is not mapped to a robot action, but rather prompts
a search for a corresponding skill in the KIF libraries. The skill is instantiated with the
arguments as parameters or, when no matching parameter can be found, with default values.
For example, the ShieldCanlnsertion is described in the ontology with an actuated object
and a fixated object, which are mapped to Al — the shieldcan and A2 — the PCB.

These programs can be further edited or directly executed on a physical robot or in the
virtual environment of the Engineering System.

There exists also a scheduling service that helps the user to assign actions to a system
with limited resources. The current implementation of the service is based on the list-
scheduling. The manipulation skills require different end effectors, e.g., for gripping and
for screwing. By adding a tool changer to the cell, the robot can change end effectors during
the task. The time it takes to change tools is added as penalty on the priority of the actions.
When there are multiple arms, one arm can of course change a tool while waiting for the
other arm to finish its operation during a two-arm manipulation skill. A typical input to the
service can be to schedule a partially ordered task on a two-armed robot with three tools
and one force sensor. Each action lists its estimated time and the resource requirements,
required tool(s) and resources. Given the estimated time to change tools and the number of
cycles, the service will output a suggested schedule that minimizes the total time.

The last service named here is a code generation service used by the task execution
system. It is described below in Section [.

49

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

o™ | q.p,&vcloseRosetta =

| Rosetta | Home Modeling Simulation Controller RAFID Add-Ins
T - oA i o 2 o 2 2 v =
e = L&y e ¥ < 0 ¥ Fv
World Robot Tool Fixture Tray Camera Workpiece Controllers Task Sequence Step Action Matural Prace Check | Execute
Description~ - - - - - - - Description~ - - - language GUI Task -
World Definition | Task Definition |
_Project " Sequence s % myteststation:View1 X |
[=]-257 Basic assembly sequence - H
B-&7 Pick PCB i
O Approach PCB
- O+ Open gripper

- Move to gasp
@ Close gripper
~ @ Retract
27 Place PCB at Foture
@ Approach Fodure
-~ & Mave to place
-~ @ Open gripper
v Retract
- Pick ShieldCan
- Approach ShieldCan
@ Open gripper
@ Move to grasp
- O Close aripper
- Retract
&7 Agsemble ShieldCan with
- & Approach PCB
Move to assemble
g7 Step
shieldcaninsertion
(- @ Retract
£-27 Pick Camera
- & Approach Camera
- O Open gripper
& Move to grasp
@ Close gripper
~ @ Retract
27 Assemble Camera with So
O Approach Socket
~ @ Move to assemble
-~ @ AssembleAction
@ Open gripper
~ @ Retract
&7 Pick Socket
@ Approach Socket
- (3 Open gripper
- @ Maove to grasp
< Close gripper
~ @ Retract

m

Figure 16: The engineering system is a plug-in the programming environment ABB Robot-
Studio.

6 Engineering System

The Engineering System is a high level programming interface implemented as a plugin
to the programming and simulation IDE ABB RobotStudio, ¥ shown in Fig. [8. When
creating a station, objects such as the robot, workpieces, sensors, trays and fixtures can be
manually generated in the station or downloaded from KIF together with the corresponding
ontologies.

A physical object is characterized by its local coordinate frames, the object frame and
a number of relative coordinate frames called the feature frames, see Fig. [Cl. Geometrical
constraints are expressed as relations between feature frames, and may be visualized as in
Fig. 3.

An example program sequence is shown in Fig. [9. The program has a nested hierarchy,
where steps (such as pick or place) may contain atomic motions and gripper actions.

r'htt:p ://new.abb.com/products/robotics/robotstudic

50

http://new.abb.com/products/robotics/robotstudio

7. EXECUTION

Figure 18: A geometrical relation between two objects.

7 Execution

The sequence from Fig. [is sent to the execution system, which in turn calls the code
generation service that returns a complete state machine (serialized in an XML file), which
is visualized, compiled and executed using JGrafchart tool [94]. It creates a task state
machine, where each state is either a call to primitive functions on the robot, or a nested
skill. Fig. 20 shows a small part of a generated state machine. Each skill is either retrieved
from KIF and instantiated with the new parameters, or generated from scratch by creating
a closed kinematic chain for a given robot and the objects. The vendor-specific code is
executed using the native robot controller, while the more complex sensor-based skills are
executed using an external control system [14] and the state machine switches between
these two controllers when necessary.

To guarantee a safe execution, the injury risk for different velocities is evaluated using
the data stored in KIF and the final robot speed is appropriately adjusted.

8 Related Work

Task representation has been an important area for the domain of robotics, in particular for
autonomous robots research. The very first approaches were based on logic as a universal
language for representation. A good overview of the early work can be found in [16]. The
first autonomous robot, SHAKEY, exploited this approach to the extreme: its planning sys-
tem STRIPS, its plan execution and monitoring system PLANEX and its learning compo-
nent (Triangle tables) were all based on the first order logic and deduction [60]. This way of
thought continued, leading to such efforts as "Naive physics" by Patrick Hayes (see [16]) or
"Physics for Robots" [77]. This development stopped because of the insufficient computing
power available at that time, but has recently received much attention in the wider context
of semantic web. The planning techniques [30] have also advanced much and may be used

51

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

IRB140_6_81_C_02
-2+ Basic assembly sequence
37 Pick PCB
' Place PCB at Fidure
' Pick ShieldCan
* Assemble ShieldCan with PCB
- Approach PCB
- Move to assemble
< Step
------ shieldcaninsertion
- Retract
' Pick Camera
[#-- & Approach Camera
----- @ Open gripper
[~ @ Move to grasp
----- @ Close gripper
[@ Retract
=2+ Assemble Camera with Socket
[& Approach Socket
- @ Move to assemble
----- @ AssembleAction
----- @ Open gripper
[@ Retract
-2+ Pick Socket
[#-57 Assemble Socket with PCB

Figure 19: An example sequence of the cell phone assembly. First, the PCB is moved to the
fixture. Then, the shieldcan is picked and inserted on the PCB using a sensor-based skill
called shieldcaninsertion. The cell phone camera is assembled with the socket, and then the
socket is inserted on the PCB.

nowadays for cases of substantial complexity, although generic automation problems are
usually still beyond this limit.

Later, mixed architectures begun to emerge, with a reasoning layer on the top, reactive
layer in the bottom, and some synchronization mechanism, realized in various disguises, in
the middle. This approach to building autonomous robots is prevalent nowadays [6], where
researchers try to find an appropriate interface between abstract, declarative description
needed for any kind of reasoning, and procedural one needed for control. The problem
remains open until today, only its complexity (or the complexity of solutions) grows with
time and available computing power.

Task description in industrial robotics setting comes also in the form of hierarchical
representation and control, but the languages used are much more limited (and thus more
amenable to effective implementation). There exist a number of standardized approaches,
based, e.g., on the IEC 61131 standards [36] devised for programmable logic controllers,
or proprietary solutions provided by robot manufacturers, however, to a large extent the
solutions are incompatible with each other. EU projects like RoSta™ are attempts to change
this situation.

At the theory level all the approaches combining continuous and discrete formalisms
may be considered as variants or extensions of hybrid systems [31], possibly hierarchical.
Hybrid control architectures allow us to some extent separation of concerns, where the con-
tinuous and real-time phenomena are handled in their part of the system, while the discrete
aspects are treated by appropriate discrete tools. Our earlier work attempted at declaratively
specifying such hybrid systems, but was limited to knowledge-based configuration [32].

Robotics systems are usually build from a number of distributed heterogenous hardware

0yyw. robot-standards. org

52

8. RELATED WORK

LC.proc.status == 1

Tum on ExtCtrl

:ig i.extCtrlRunningl ==1

AN

r

W

3
skilll

1

Switch of f ExtiCt

'\%
%Lc.proc.status == 1 & i.extCtrlRunningl ==

Figure 20: Each box is a state in the task state machine. The state called Skill 1 with marked
corners is a nested state machine containing a (dynamically generated) sensor-based skill.
Before and after the sensor-based skill the external controller is started and turned off,
respectively.

and software components that have to seamlessly interact during execution phase. In order
to simplify configuration, communication and hide the complexity of the system, as well as
to promote portability and modularity, there exist several frameworks for robotics middle-
ware (see comprehensive surveys [22] and [54]). Module functionality can be provided as
nodes in the ROS 10 environment, or as standardized components in RT-components [61],
where the modules can provide blackbox-type computations with well-specified interfaces.
Task descriptions come in different disguises, depending on the context, application
domain, level of abstraction considered, tools available, etc. Usually tasks are composed
out of skills, understood as capabilities of available devices [11], but the way of finding
appropriate composition varies heavily, from manual sequencing in many workflows, via
Al-influenced task planning [30], hybrid automata development tools [31], Statecharts [34]
and Sequential Function Charts (SFCs) [36], iTaSC specifications [21], to development of
monolithic programs in concrete robot programming languages, like, e.g., ABB RAPID.
There have been several attempts to codify and standardize the vocabulary of robotics.
There exists an old ISO standard 8373 requiring however a major revision to suit the de-
mands of contemporary robotics. IEEE Robotics and Automation Society is leading some
work towards standardization of robotic ontologies. In particular, there are first drafts of
robotic core ontology [19], although not as developed as the ROSETTA ontology described

53

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

in this paper. Regarding industrial robotics, the work on kitting ontologies, originated at
NIST [4], may be considered as an early attempt to address the problem.

In the area of service robotics there are several systems exploiting the knowledge-
based approach, and relying on an underlying ontology, like KNOWROB [89] (based on
the generic OPENCYC ontology [51]), used in ROBOHOW project™ or several participants
in the ROBOEARTH project“:z [98]. However, they do not attempt to standardize the do-
main, as the variance of tasks and skills in the service robotics is very large. On the other
hand, the KNOWROB ontology became a de-facto standard used in several experimental
robot systems.

9 Conclusions

We have shown a generic knowledge-based system architecture and its possible use in in-
dustrial robotic systems. In particular, we have employed the approach for representing
and realizing force-controlled tasks realized by one- and two-armed ABB robots in an in-
dustrial setting. The presented generic ontologies are either novel, or a derivative of our
earlier research. The use of semantic tools and explicit knowledge in industrial robotics
is in its early stage, with only a few other published examples [4]. The ideas have been
experimentally verified and work well in the currently ongoing EU-projects PRACE™ and
SMErobotics™ The implemented system is just a proof of concept, and systems that are
derived from this work must undergo usability, security and performance testing, before
they might be considered to be ready for industrial practice. But already now it can be
stressed that the knowledge-based approach allowed us to create composable representa-
tions of non-trivial assembly skills, shown to be reusable among different models of ABB
robots, but also portable to other vendors and control architectures (like the one reported
in [40] and running on a Kuka LWR4 robot).

The already ongoing continuation of the work presented above involves integration of a
heterogeneous system consisting of a mobile robot platform (Rob@Work) running a ROS-
based control system, and a real-time-enabled ABB-manipulator running the ABB-specific
control software, so that the two parts can operate seamlessly together as an integrated,
knowledge-based, productive robotic system. This work includes deploying knowledge-
based services in the context of chosen robotic middleware.

Future work involves contribution to the IEEE standardization efforts, and aligning and
sharing robotic ontologies with other research groups. An online documentation of the core
ROSETTA ontology is also expected. The number of knowledge-based services should
be extended with, e.g., online reasoning during execution, geometrical reasoning and inte-
grated path planning and optimization. We are also verifying this approach in other domains
of manufacturing, like wood-working and machining, expecting to extend the ontologies
appropriately.

We have found out during the work described in this paper that skills are much more
than just a potential to execute coordinated motions. This line of thought has been already
present in [59], where business aspects of skills have been pointed to. We plan to explore
this topic in the nearest future.

1 http://robohow.eu

12 http://roboearth.org/

13 http://prace-fp7.eu/

14 http://www.smerobotics.org/

54

http://robohow.eu
http://roboearth.org/
http://prace-fp7.eu/
http://www.smerobotics.org/

9. CONCLUSIONS

Acknowledgments

The research leading to these results has received partial funding from the European Union’s
seventh framework program (FP7/2007-2013) under Grant agreement nos. 230902 (project
ROSETTA), 285380 (project PRACE) and 287787 (project SMErobotics).

The work described in this paper has been done in tight collaboration with many people
from the project consortia. The authors are indebted for many fruitful discussions.

An early version of this paper has been presented during the 12th Scandinavian Con-
ference on Artificial Intelligence, Aalborg, Denmark, October 2013.

55

PAPER I: KNOWLEDGE-BASED INSTRUCTION OF MANIPULATION
TASKS FOR INDUSTRIAL ROBOTICS

56

Paper 11

Natural Language Programming of Industrial
Robots

Maj Stenmark Pierre Nugues

Department of Computer Science
Lund University
maj.stenmark@cs.lth.se
pierre.nugues@cs.lth.se

ABSTRACT

In this paper, we introduce a method to use written natural language instructions to program
assembly tasks for industrial robots. In our application, we used a state-of-the-art semantic
and syntactic parser together with semantically rich world and skill descriptions to create
high-level symbolic task sequences. From these sequences, we generated executable code
for both virtual and physical robot systems. Our focus lays on the applicability of these
methods in an industrial setting with real-time constraints.

The 44th International Symposium on Robotics, Seoul, South Korea, Oct 24-26, 2013.

1. INTRODUCTION

1 Introduction

Robot programming is time consuming, complex, error-prone, and requires expertise both
of the task and the platform. Within industrial robotics, there are numerous vendor-specific
programming languages and tools, which require certain proficiency. However, to increase
the level of automation in industry, as well as to extend the use of robots in other domains,
such as service robotics and disaster management, it has to be possible for non-experts to
instruct the robots.

Since humans communicate with natural language (NL), it is appealing to use speech
or text as instruction means for robots as well. This is complicated for two main reasons:
First, NL can be ambiguous and its expressivity is richer than that of a typical programming
language. Secondly, tasks can be expressed as goals as well as imperative statements, hence,
even if the instructions are correctly parsed, the description itself is often not enough to
create a successful execution. There has to be a substantial amount of knowledge in the
system to translate the high-level language instructions to executable robot programs.

In this paper, we introduce a method for using natural language to program robotized
assembly tasks and we describe a prototype of it. The core idea of the method is to use a
generic semantic parser to produce a set of predicate-argument structures from the input sen-
tences. Such predicate-argument structures reflect common semantic situations described
through language and at the same time use a logical representation. Using the predicate-
argument structures, we can extract the orders embedded in a user’s sentences and map
them more easily onto robot instructions.

2 Related Work

Natural language programming for robots has been investigated for both service and nav-
igational robots from the early 1970’s. SHRLDU [99] is an oft-cited example of the first
attempts to give robots conversational competences. To interpret and convert a user’s sen-
tences into instructions, robotic system often make use of an intermediate representation.
Examples include [87, 47, 78], where the authors have developed their own domain specific
semantic representation for navigational robots.

Tenorth et al. [88] parse pancake recipes in English from the World Wide Web and
generate programs for their household robots. They use the WordNet lexical graph [69] with
a constituent parser and they map WordNet’s synsets to concepts in the Cyc [51] ontology.
Finally, they add mappings to common household objects.

In order to bridge the sentence to the robot actions, all the examples mentioned above
seem to use ad-hoc intermediate formalisms that are difficult to adapt to other domains,
languages, or environments. Frame semantics [24] is an attempt to provide generic models
of logical representations of sentences. Frame semantics starts from prototypical situations
shared by a language community, English for instance, and abstracts them into frames.
While frame semantics is only a theory, FrameNet [28, 76] is a comprehensive dictionary
that provides a list of lexical models of the conceptual structures. Commercial situations
like selling are represented with the Commerce_sell predicate-argument structure, where
the arguments include a buyer, a seller, and goods. Given a sentence and a verb belonging
to this frame, like vend, sell, or retail, a semantic parser will identify the predicate and its
arguments.

As of today, FrameNet has not a complete coverage of English verbs and nouns. Prop-
bank [66] and Nombank [52] are subsequent projects related to FrameNet that both de-

59

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

veloped comprehensive databases of predicate-argument structures for respectively verbs
and nouns and annotated large volumes of text with it. As training data is essential to the
development of statistical semantic parsers, most of the current parsers use the Propbank
nomenclature, as they are easier to train.

To the best of our knowledge, few robotics systems use existing predicate-argument
nomenclatures. An exception is RoboFrameNet [92], a language-enabled robotic system
that adopts frame semantics. However, the authors wrote their own frames inspired from
FrameNet. Their model includes a decomposition of the frames into a sequence of primi-
tives. They built a semantic parser that consists of a dependency parser and rules to map
the grammatical functions to the arguments. Such techniques have been used from the early
Absity system [35] and are known to have a limited coverage.

In the project, we describe below, we used a multilingual high-performance statistical
semantic parser [12, 10] trained on the Penn Treebank and using the Propbank and Nom-
bank lexicons. In contrast to RoboFrameNet, the parser we adopted can accept any kind of
sentence.

3 System Overview

Architecture

The central part of the system architecture [11] is the knowledge integration framework
(KIF). KIF consists of a client-server architecture where the server hosts ontologies, pro-
vides services, and object and skill libraries. The ontologies represent the world objects,
such as robots, sensors, work-pieces and their properties, as well as robot skills. The skills
are semantically annotated, platform-independent state machines, which are parameterized
for reuse and executed using JGrafchart [94].

KIF interacts with the engineering system (ES), which is the high-level programming
interface, and the robot controller. The ES is implemented as an extension to the program-
ming and simulation environment ABB RobotStudio [1]. When creating the robot cell, the
objects, such as sensors, work-pieces, and trays, can be generated or downloaded from KIF
together with the ontology. Every physical object has an object frame, and a number of
feature frames related to its object frame. These frames are used to express geometrical
constraints; see Fig. [ll.

A program consists of a sequence of steps, which in turn consists of actions, motions,
skills, or nested steps. The sequence is created using the graphical interface of the ES. The
steps for picking a printed circuit board (PCB) and placing it on a fixture are shown in Fig. DI.
To execute the sequence, platform specific code (robot code or the XML file used by the
state machine executor) is generated for the motions, actions and skills, and deployed on the
target platform. To help the user quickly setup a skeleton sequence of a task, we provide a
natural-language parsing service on KIF; see Fig. B. The service reads the text input, parses
the text in search of predicate-arguments structures, and returns those containing predicates
that match the task vocabulary.

On the client side, the predicates are mapped to programs; the arguments representing
station objects and the other parameters are filled with default values or geometrical rela-
tions taken from the station. The programmer can then check the sequence, possibly alter
it, and finally execute it.

60

3. SYSTEM OVERVIEW

_/'iject]/-SEIJUEHEE]

r_.’.'- Robots
-8 IRB120_3_58__01
3": i"uIIIIII"Ij
(-4 ShieldCan
M. Fodure
- St
: & Step
57 Pick
---f_g, Camera socket - Approach PCE
- Camers B @ Open gripper
Elf_é, FCE [) Movetolgmsp
i : R R @ Close gripper
i 1z BottomCenterPaoint B Retract
i 1 TopCenterPoint <7 place
¢ i@ ShieldCan = PCB [H- @ Approach Fidure
1_: Toal - @ anetn. place
— e @ Open gripper
iz Task - @ Retract

Figure 1: In the object browser, the robots Figure 2: The visual rendering of a pro-
are listed under robots; all physical objects gram for picking and placing a PCB.

are listed under world and each object lists

its own frames and relations.

Predicate-Argument Structures

An assembly task can be defined as e.g.: Pick the PCB from the input tray and place it on
the fixture. Then take a shield can and insert it on the PCB. These sentences are parsed to
extract the predicates-argument structures pick(PCB, input tray) and place(it, fixture), while
the agent parameter, robot, is implicit.

The parser is trained on the Penn Treebank that uses the Propbank lexicon [37]. Prop-
bank labels each English verb with a sense and defines a set of arguments that is specific to
each verb. In the sentence: Pick the PCB from the input tray and place it on the fixture, both
pick and place have sense 1 (pick.01 and place.01):

e Pick.01 has three possible arguments; arg0: agent, entity acquiring something, arg!:
thing acquired and arg2: seller.

e Place.01 has arg0: putter, argl: thing put, and arg2: where put.

The parsing output is shown in Fig. B. As shown in this figure, the arg/ and arg2 arguments
to pick.01 are matched to the PCB and the input tray respectively, while the robot (arg0)
is implicit. Before mapping the identified arguments to the station objects, the arguments
corresponding to the same entity have to be gathered into coreference chains; see Fig. B.
The last step links the coreference chains to the entities in the station using the object name
or type.

Task Vocabulary

The vocabulary is currently rather limited. We only considered predicates matching pro-
grams that the robot could generate. Each program has arbitrary language tags such as
take, insert, put, calibrate, either predefined or edited by the user. Possible arguments to the
programs are the objects in the station, which is a well-defined, finite world.

61

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

the NL text in

. ES
User writes KIF NL parser

The text is sent
as a request

a text box.

Forwards the text The parser
| finds the

Returns the parsed result| predicates and
D arguments in

Matches the Returns the filtered he KIF service fiterd) | T
arguments to _ predicates and their | [the result and returns € sentences
the objects in arguments only those predicates

the station and that are relevant for

generates the
sequence

ES

NL parser

Figure 3: The data flow between the user, the KIF service and the semantic parser.

pick.01

place.01

Figure 4: Parsing result from the first sentence. The parser identified two predicates, pick
and place, and two arguments for each predicate.

4 High-level Programming Prototype

On the highest level, the task is represented by an assembly graph [48], which is a partially
ordered tree of assembly operations; see Fig. B. The graph describes the assembly of an
emergency stop button box.

Each operation specifies the desired geometrical relations of the involved objects and
the skill type for the assembly. Examples of skill types in the ontology are screw, glue and
peg-in-hole, where each type can have several different implementations. The assembly op-
erations are subgoals, and the root node represents the final goal of the task. The motivation
for the assembly graph is to have a platform independent task description, so that different
implementations can be compared and reasoned about.

The assembly graph is realized by sequences of actions and motions for each robot.
The sequence can be: 1) created manually by adding actions and motions one by one and
editing their properties, 2) generated from the assembly graph or 3) created by using a
natural language interface. An example of the latter is shown in Fig. [I: two assembly steps
of a stop button box assembly are described by natural language. Fig. B shows the parsed
result from Fig. 0.

Each predicate is mapped to a type of skill. For example, a pick or take consist of a
sequence of primitive actions: approaching the object to be picked, opening the gripper,
moving slowly to a grasp position, closing the gripper, and then retracting. The mapping of
the objects are rudimentary: by name (ignoring space and case) or, if this is unsuccessful,

62

5. CONCLUSIONS

‘Project | Sequence |
iZ- Robaots
IRB120_3 58_ 01
;r_. World
l ShieldCan

Arg@:
pick.01: |Arg{:the PCB_
Arge

place.01:

=" PCB

. Lo t: BottomCenterPoint
‘. b TopCenterPoirt

: & ShieldCan -> PCB

+-@= Tool

= Task

Figure 5: Coreference solving of entities in the first sentence. Mentions corresponding to
the same entity are gathered into coreference chains.

by the ontology type (e.g. fixture, tray or pin). When generating the motions for picking and
placing the objects, the application uses the existing grasp positions and relations between
the work-pieces as default values. If no relations exist, a new one is created with zero
offset. The actions for opening and closing the gripper are taken from the selected tool,
since each tool describes its own procedures. The resulting sequence is shown in Fig. B.
Using reasoning services available from KIF, the generated sequence can then be checked
for inconsistencies and additional skills are suggested to solve missing constraints (e.g. an
object has to be placed in a fixture before an assembly or a tool needs to be exchanged
between drilling and picking). The code generated from the sequence is executable on both
virtual and physical robots; see Fig. [. To expand the vocabulary, the user can add natural
language tags to existing steps and upload them to KIF.

5 Conclusions

In this paper, we have presented a system to describe robot assembly tasks in the RobotStu-
dio environment using natural language. From an input sentence, the processing pipeline
applies a sequence of operations that parses the sentence and produces a set of predicate-
argument structures. The semantic module uses statistical techniques to extract automati-
cally these structures from the grammatical functions.

The NLP pipeline is designed so that it reaches high accuracies and has short response
times required for user interaction. Parsing a sentence takes from 10 to 100 milliseconds.

63

PAPER II: NATURAL LANGUAGE PROGRAMMING OF INDUSTRIAL
ROBOTS

Figure 6: The assembly graph is created by dragging and dropping icons of the objects.
Here, the first assembly operation involves the base of the emergency button (left) and the
switch (right). In the second operation the lid is added to the subassembly.

Natural language programming. Type what the

robot should do Review the suggested sequence.
Describe the task
Please pick the switch and Toal hd
insert it on the base. Then, the
lid should be taken and put on Sequence
the base'| 1 Pick switch
1 Insert it base
2 Take Iid
2 Put lid base
Figure 7: The commands are written into Figure 8: The result the parsed predi-
a simple text field, the narrative is then cates along with their arguments.
sent to the KIF service that facilitates se-
mantic parsing.

Drawing from the frame semantics theory, the semantic parser uses a standardized inventory
of structures and can be applied to unrestricted text. This makes the pipeline more easily
adaptable to new tasks and new environments.

As second step, the system maps the predicate and the arguments extracted from the
sentence to robot actions and objects of the simulated world. These objects and actions are
stored in a unified architecture, the knowledge integration framework that represents and
manages the entities, services, and skill libraries accessible to the robot.

Making the application part of a tool already used by industry is a conscious choice:
high-level natural language programming is convenient to get an application up and running
quickly. However, when tuning the parameters of a task, the programmer can still use the
traditional tools, e.g. to edit the generated code directly. Also, because of the industrial
focus, we have real-time performance on the underlying sensor and control systems, which
is necessary for many manipulation tasks in assembly operations.

Unlike previously reported results, our approach supports both a command-like inter-
face and parsing of longer texts, yielding multistep programs.

64

6. FUTURE WORK

- Re03s801
-7 Step
-7 Pick

[@ Approach switch
----- @ Open gripper
- @ Move to grasp
----- @ Close gripper
- @ Retract
e Insert
(- @ Approach base
- @ Move to assemble
----- @ Assemblefction
----- @ Open gripper
[@ Retract
=27 Take
[#- @ Approach box
----- @ Open gripper
- @ Move to grasp
----- @ Close gripper
- @ Retract
e Put

@ Approach base
H- @ Move to place

&~ @ Open gripper

E- @ Retract
Figure 9: The generated sequence for in- Figure 10: The sequence from Fig. 8 ex-
serting a switch on the base of a stop bot- ecuted on a physical robot.
tom and putting the top of the box on the

base.

6 Future Work

The obvious drawback of this implementation is the lack of speech as an input modality.
However, since many smartphones have sufficient speech recognition for our purposes, this
was not our main scientific concern. Rather, we wanted to extend the skill library with
relevant and generic assembly skills. We plan to extend our application with tools that
make it simple to extract the natural language predicate-argument structures given a skill,
its parameters (objects, velocities, forces), and a textual description of the skill. Another
extension is to automatically search after suitable implementations that are tagged with
synonyms to the used words.

7 Acknowledgments

The research leading to these results has received funding from the European Union’s sev-
enth framework program (FP7/2007-2013) under grant agreements N° 230902 (ROSETTA)
and N° 285380 (PRACE) and from the Swedish Research Council grant N° 2010-4800 (SE-
MANTICA).

65

Paper I11

Paper III: Describing Constraint-Based Assembly
Tasks in Unstructured Natural Language

Maj Stenmark Jacek Malec

Department of Computer Science
Lund University
maj.stenmark@cs.lth.se
jacek.malec@cs.lth.se

ABSTRACT

Task-level industrial robot programming is a mundane, error-prone activity requiring ex-
pertise and skill. Since humans easily communicate with natural language (NL), it may
be attractive to use speech or text as instruction means for robots. However, there has to
be a substantial amount of knowledge in the system to translate the high-level language
instructions to executable robot programs.

In this paper, the method of [83] for natural language programming of robotized as-
sembly tasks is extended. The core idea of the method is to use a generic semantic parser
to produce a set of predicate-argument structures from the input sentences. The algorithm
presented here facilitates extraction of more complicated, advanced task instructions involv-
ing cardinalities, conditionals, parallelism and constraint-bounded programs, besides plain
sequences of commands.

The bottleneck of this approach is the availability of easily parametrizable robotic skills
and functionalities in the system, rather than the natural language understanding by itself.

The 19th [FAC World Congress, Cape Town, South Africa, Aug 24-29, 2014.

1. INTRODUCTION

1 Introduction

Programming of a traditional robot cell requires considerable expertise and effort. The
new generation of robots, that work in an unstructured environment, that might have more
degrees of freedom and two arms, introduces an increased level of complexity in user in-
teraction and instruction. Therefore, methods of robot instruction that are accessible to
non-experts would lead to greater usability of industrial robotics. Yet another aspect of the
problem lies in vendor-specific solutions, available for each brand of robots. Different tools
of varying complexity, different robot programming languages and different abstraction lev-
els of task descriptions make them inaccessible for a plain user.

Since humans communicate with natural language (NL), it may be attractive to use
speech or text as instruction means for robots. This is non-trivial for two main reasons:
First, NL is often ambiguous and its expressivity is richer than that of a typical programming
language. Secondly, tasks can be expressed as goals as well as imperative statements, hence,
even if the instructions are correctly interpreted, the description itself is often not enough
to create a successful execution. There has to be a substantial amount of knowledge in the
system to translate the high-level language instructions to executable robot programs.

In this paper, the simple method from [83] for natural language programming of as-
sembly tasks is extended. The core idea of the method is to use a generic semantic parser
to produce a set of predicate-argument structures from the input sentences. The original
algorithm allows extraction of only plain sequences of commands. Here we show that us-
ing the predicate-argument structures together with the dependency graphs facilitates also
extraction of more complicated task instructions, which involve cardinalities (e.g., pick two
bolts and rwo nuts), conditionals (e.g., if...then...else) and constraint-characterized programs
(e.g., do...until...)

2 Related Work

By abstracting away the underlying details of the system, e.g., by demonstration, high-
level programming can make robot instruction accessible to non-expert users and reduce
the workload for an experienced programmer. A survey of programming-by-demonstration
models in robotics is presented by [7].

In industrial robotics, programming and demonstration techniques are normally used
to record trajectories and positions. As it is desirable to minimize downtime for the robot,
much programming and simulation is done offline whereas only the fine tuning is done
online [33]. There is a plethora of tools, often visual, for robot programming. In robotics,
standardized graphical programming languages include Ladder Diagrams, Function Block
Diagrams and Sequential Function Charts [36]. Using a touch screen as an input device,
icon-based programming languages such as in [9] can also lower the threshold to robot
programming.

Natural language programming for robots has been investigated since the early 1970’s.
SHRLDU [99] is an example of the first attempts to give robots conversational competences.
To interpret and convert a user’s sentences into instructions, robotic system often make use
of an intermediate representation. Examples include [47] and [87], where the authors have
developed their own domain-specific semantic representations for robot navigation.

[88] parse pancake recipes in English from the World Wide Web and generate programs
for their household robots. They use the WordNet lexical database [69] with a constituent
parser and they map entries in the WordNet dictionary to concepts in the Cyc ontology [51].

69

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Finally, they add mappings to common household objects.

In order to bridge the sentence to robot actions, all the examples above use ad-hoc for-
malisms. FrameNet [76], based on frame semantics, is a comprehensive dictionary that
provides a list of lexical models of the conceptual structures. Propbank [66] has devel-
oped a extensive database of predicate-argument structures for verbs and nouns, and anno-
tated large volumes of text. The Propbank nomenclature is used by most current statistical
parsers, including ours.

Only few robotics systems use existing predicate-argument nomenclatures. An excep-
tion is RoboFrameNet [92]. However, the authors wrote their own frames inspired by
FrameNet. They built a semantic parser that consists of a dependency parser and rules
to map the grammatical functions to the arguments. Such techniques are known to have a
limited coverage.

In the project described below we have used a multilingual high-performance statis-
tical semantic parser [12, 10] using the Propbank and Nombank lexicons. In contrast to
RoboFrameNet, the parser we adopted can accept any kind of sentence. The NL processing
module is a knowledge-based service in a larger programming environment [80]. In particu-
lar, it allows one to create constraint-based task descriptions based on the iTaSC formalism,
a property exploited here.

3 Background

The system has been described in detail in our previous work [83, 80]; a simplified view of
its components is shown in Fig. [Il. It is a cloud-based system for knowledge sharing and dis-
tributed Al reasoning. The knowledge and reasoning services are stored on a server called
Knowledge Integration Framework (KIF), which contains data repositories and ontologies
modeling objects and actions. KIF also provides servlets for planning, scheduling and code
generation, as well as the NL-programming servlet described in this paper. These services
are used for offline programming by the Engineering System (ES), which is a user-interface
implemented as a plug-in to ABB RobotStudio [1] visual IDE.

Objects in the World The core ontology, rosetta.owl [80], contains devices such as

Engineering System a_2a
Robot system E 5\ | O\
+ Sensors S

Figure 1: A view of the system architecture.

70

3. BACKGROUND

~ IRB120.3.58_01
[=]-&7 Sequence
=27 Pick
. - Approach BoxBottom
... 0 Open gripper
- @ Move to grasp

i (1 Close gripper
- & Retract

Ei,':---,:;i Flace
+. » Approach Fodure
- @ Moveto place
----- {» Open gripper

- & Retract

Figure 2: A sequence of skills.

sensors and robots. The ES also uses a separate ontology to describe parts, such as trays
and workpieces. The ontologies describe object types and properties, while the data repos-
itories contain instances of the types. E.g., a ForceSensor is a subtype of Sensor and of
PhysicalObject, has property measures with value Force, and it also inherits properties
such as weight from PhysicalObject. The object types and their property types are later
used by the natural language programming system to link arguments to real world objects.
Objects are displayed by ES using their CAD models. Each object has a number of rela-
tive coordinate frames called feature frames, attached to its main object frame. The feature
frames are used to express relations between objects. A typical case is a gripping pose
described as a relation between a gripper frame and an object feature frame.

Task Vocabulary The task vocabulary is limited to existing robot capabilities. In the
KIF repositories, robot actions are stored as program templates, called skills. There are
primitive actions, such as search, locate and move which can be combined into more com-
plex skills such as pick and place. Each skill has parameters, e.g., velocities, other objects,
their feature frames, or relations. Each skill has also a set of device requirements, pre - and
post-conditions as well as optional properties such as natural language labels. The skills are
downloaded from the KIF libraries into the ES and added to a task sequence, see Fig. D. This
sequence can be edited by drag-and-dropping objects and by editing parameters of each ac-
tion or skill. As an additional modality, we have extended the system with natural language
support for sequence generation. Using language to express a task is faster than download-
ing or selecting each skill separately; besides, speech allows hands-free instruction of the
robot.

Natural Language Programming The task is expressed in unstructured English, either
by typing it in a text box directly in the user interface, or by connecting an Android app to the
ES and using its speech-to-text conversion. The text is sent to a servlet on KIF, which in turn
calls a general purpose statistical parser™ [10] that outputs predicate-argument structures

5The parser is available as open source software, freely accessible at
http://barbar.cs.lth.se:8081/.

71

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

in standard format (cf. Fig. B).

. ES
User writes KIF NL parser

the NL text in

The text is sent
as a request

a text box.

Forwards the text The parser
1 finds the

Returns the parsed result| predicates and
D arguments in
the sentences

Matches the Returns the filtered
arguments to __ predicates and their
the objects in arguments

the station and
generates the
sequence

The KIF service filters)
the result and returns
only those predicates
that are relevant for

ES

NL parser

Figure 3: The NL parsing sequence.

Predicate-Argument (PA) Structures As an example we use an assembly where a
printed circuit board, a PCB, is covered with a metal plate, a shieldcan. First the PCB
should be fixated, which can be expressed in English as Take the PCB from the input tray
and place it on the fixture. The PA structures are take(PCB, input tray) and place(it, fixture).
The parser labels verbs with different senses depending on the context in which they are
used. For example, take off (like a plane) is take. 19 and take down is take.22.

The parsing pipeline uses logistic regression to produce the PA structures, see Fig. Bl.
First, the dependency graph is extracted. The dependency graph connects the words in the
sentence using their grammatical functions. It is technically a tree, where the root is the
dominant word in the sentence, most often a verb describing an action, and the arrows (see
for example bottom part of Fig. B) point from the parent or head to its children. Then the
predicates are identified, labelled with a sense and finally the arguments are identified and
labelled. Take in our example has sense 1. The predicate take.01 has three arguments named
A0-A2, the actor (A0), the thing being taken (A7) and the source (A2). In this case, the robot
is not explicitly mentioned, hence there is no A0. Pronouns, such as it or them are linked to
their antecedents in the sentence.

Previous work [83] defined an algorithm describing how predicates can be mapped to
robot skills, and arguments linked to specific world objects in order to create an executable
sequence of the task, as displayed in Fig. . However, the supported programming features
were limited, excluding e.g., such control structures as conditionals, temporal constraints,
control parameters, parallell execution and references to program features. The contribu-
tions of this work are that predicate-argument pairs can be mapped to complex skills and
the novel methods we are using to extract constraints and control structures from NL in-
structions.

Code Generation and Execution The executable code for primitive actions is gener-
ated in native controller language (RAPID). E.g., each gripper can have a predefined native
code to open and close it. On the other hand, the sensor-controlled skills use a framework
based on iTaSC [21], together with external force/torque sensors. These skills are specified
by state machines using Grafchart [94] language, where states are simple motions and tran-
sition conditions are, e.g., timeouts or force and torque thresholds. A motion is specified by

72

4. PATTERN-MATCHING ALGORITHM

[Take the PCB from the input tray and place it on the fixture.]

Predicate identification

(Take the PCB from the input tray and place it on the fixture.)

take.?? place.??

- J/

Predicate sense

Y

()
Take the PCB from the input tray and place it on the fixture.

take.01 place.01

- J/

Argument identification
4y t+Argument labeling

A2 A2
Al

Al
Take [the PCB|[from the input tray] and place [it|[on the fixture |

Figure 4: The parsing pipeline.

constraining outputs (e.g., positions or force values) from a kinematic chain. The kinematic
chain is a specification of the relation between task variables and the robot, which are rep-
resented by a list of transformations. The state machine is generated by ES for all skills and
all constrained motions [84].

4 Pattern-Matching Algorithm

In this section, we present our method of extracting motion constraints and control struc-
tures from unstructured English in more detail. At the moment, the system supports car-
dinality, parallel execution, conditionals and program references. The algorithm that runs
on KIF server is presented in Algorithm [. It matches the output from the semantic parser
to program statements, using the semantic labels, the part of speech (POS) tags and depen-
dency relations between the words. The following examples illustrate how the matching of
the different statements is carried out.

Cardinality refers to the number of elements. In the sentence Take all needles and put
them in the pallet, the cardinality of the needles is all. Take three of the needles ... has
cardinality three. The cardinality is easily extracted from the arguments. In these examples,
the arguments Al to take.0l are all needles, and three of the needles, respectively. In the
first case, the verb is labelled as plural (NNS) and the determiner all is used. In the second
case, where there is an explicit numbering (CD) in the argument, it is used as cardinality.
Personal pronouns, such as them or it, are assumed to refer to all the objects in the previous
argument (this is done in the ES). There is a subtle difference between Take the needle and
Take a needle, which is expressed in the use of determiner. In the first case, a specific

73

PAPER III: DESCRIBING CONSTRAINT-BASED ASSEMBLY TASKS IN
UNSTRUCTURED NATURAL LANGUAGE

Algorithm 1: Pattern-matching algorithm. Non-trivial functions are de-
scribed separately.

Data: Input text zext, set of predicates that have an action-mapping,

understoodPredicates
Result: list of program statements, list of unknown statements
Let sentences be a list of sentences in text split by ".", "!" and "?"

Let actions be an empty list

Let unknownStatements be an empty list
sentenceNbr < 0

foreach sentence s in sentences do

Increase sentenceNbr

semQOut put < semParse(s)

g < sortPredicates(semQOut put)

while q is not empty do

p < poll first element in ¢

if not(p is negated or an auxiliary verb) then

end

end

end

if understoodPredicates does not contain p then

stm < create Args(p,q)
Add stm to unknownStatements
wildcard < getWildcard(p)
if wildcard found then

Add wildcard to unknownStatements
end

stm <— createArgs(p, p)
Add stm to actions with sentenceNbr
wildcard < getWildcard(p)
if wildcard found then
Add wildcard to actions with sentenceNbr
end

Remove nested predicates in stm from ¢

return actions and unknownStatements

needle is referenced, while in the second, it is only the object type that is mentioned and
any needle can be chosen. When linking entities to specific objects in the world, the system
will look for a specific object where the name matches the argument value in the first case,
but in the second case, the argument value is an object type and the system will return
objects of the given type instead. When the cardinality of an argument is larger than one,
the resulting program structure is a loop, the sentence number is used to determine its scope,
w