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Some Structural Properties of Il. CONVOLUTIONAL GENERATOR MATRICES OVER RINGS
Convolutional Codes over Rings Let R be a commutative ring with identity and IR[D] be
_ the polynomial ring ovelR: The trailing coef cient of a nonzero
Rolf Johannessorkellow, IEEE Zhe-Xian Wan, polynomial is the coefcient of the smallest power & with a
and Emma WittenmarkStudent Member, IEEE nonzero coef cient. LetR(D) be the set
. . . f(D). . : .t -
AbstractD Convolutional codes over rings have been motivated by mlf (D);q(D) 2 R[D]; and the trailing coef cient of
phase-modulated signals. Some structural properties of the generator q
matrices of such codes are presented. Successively stronger notions of D) i it inR 1
invertibility of generator matrices are studied, and a new condition for a q(D) is a unit in 1)

convolutional code over a ring to be systematic is given and shown to be
equivalent to a condition given by Massey and Mittelholzer. It is shown . .
that a generator matrix that can be decomposed into a direct sum is basic, Modulo the equivalence relation
minimal, and noncatastrophic if and only if all generator matrices for the

constituent codes are basic, minimal, and noncatastrophic, respectively.  f(D)  f1(D)
It is also shown that if a systematic generator matrix can be decomposed D D

: : ; . q(D) (D)
into a direct sum, then all generator matrices of the constituent codes
are systematic, but that the converse does not hold. Some results on
convolutional codes overZ,- are obtained.

if and only if f (D)au(D) = f1(D)qg(D): (2)

That this is an equivalence relation follows from the assumption
that the trailing coef cients of the denominator polynomials are units.
_ Index‘ TermsDConvqutiongiI codes over rings, d_irect sum Qecomposi- The equivalence class 6{D)=g(D) will be denoted bm
tion of rings, proper convolutional codes, systematic convolutional codes. or sometimes by the abbreviatiéiiD )=g(D): It is clear thatR(D )
is a ring with addition and multiplication de ned by
|. INTRODUCTION

Massey and Mittelholzer [1] introduced convolutional codes over f(D) + h(D) = F(D)k(D)+ h(D)q(D)
rings together with their motivation by phase-modulated signals. They q(D) k(D) q(D)k(D)
showed that convolutional codes over rings behave very differently
than convolutional codes over elds. Some structural properties Gl
convolutional codes over rings were given in [2] and [3]. Further
structural properties are presented in this correspondence.

For convolutional codes over rings, there are three successively

stronger notions of invertibility of generator matrices. The rst is We call R(D) the ring of rational functionsover R in the

transducer invertibility, which is equivalent to a one-to-one m . i .
between information words and codewords. It is shown that thi:?:rédetermlnateD. Each element oR(D) can be expanded into a

. . ) ormal Laurent series irD:

equivalent to the rows of the generator matrix being free over the ring

R(D): The second is right invertibility, which is the existence of a Remark: Without the condition in the de nition of the ring of

right R(D)-inverse to the generator matrix. The last is the existengational functions oveR, that the trailing coef cients of the denom-

of a realizable righR(D)-inverse to the generator matrix, which isinator polynomials are units, then

equivalent to systematicity. Systematicity implies right invertibility

which implies transducer invertibility, but the converse implications f (D)  f1(D)

do not hold. g(D) (D)
In Section I, we de ne rings of rational functions and realizable

rational functions and some fundamental coding concepts suchiagot always an equivalence relation. For exampleRlet Z4; then

generator matrix, equivalence, right invertibility, catastrophicity, an@=2 2=D and0=2 2=D?, but2=D and2=D? are not equivalent.

minimality for the ring case. Section Il is devoted to systematicity Let R, (D) be the subring oR(D) consisting of those elements

of ring codes. After having de ned a systematic convolutional codégquivalence classes) which contain a representh(iizg =g(D ) with

we give a new condition for a convolutional code over a ring tg(0) a unit inR: We call this thering of realizable functionand the

be systematic. In Section IV, we prove that our new conditioelements ofR; (D) realizable functions

for systematicity is equivalent to a condition given by Massey and

Mittelholzer [2]. Section V treats codes over a direct sum of rings. V\{e

show that if a systematic generator matrix can be decomposed in

a direct sum, then all generator matrices for the decomposed code R(D)b | R(D)®

are systematic, but the converse does not hold. Various examples are )

given. We also give some results on convolutional codes @yer u(D) 7t v(D) (4)

f(D) h(D) _ f(D)h(D).
q(D) k(D)  q(D)k(D)"

if and only if f (D) (D) = f1(D)g(D) (3)

De nition 1: A rateb=cconvolutional transduceover the ring of
gonal functionsR(D) is a linear mapping
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De nition 2: The set such thatG(D) = T(D)GYD) andG%D) = S(D)G(D) where
C= fu(D)G(D)ju(D) 2 R(D)"g 6) u1(D) u?(D)

where G(D) is the transfer function matrix of a rate=c convolu- T(D)= : and S(D)= :
tional transducer oveR (D), is arate-b=cconvolutional codeverR: u,(D) up(D)
The outputv(D) = u(D)G(D) is the code sequencarising from Hence,
the information sequence(D):

— 0, —
It follows immediately from De nition 2 that a raté=c convo- G(D)= T(D)G(D)= T(D)S(D)G(D)

lutional codeC over R with transfer function matridxG(D) can be and, thus, since the rows 6f(D) are free oveR(D); T(D)S(D) =
regarded as th&(D) row module ofG(D): Hence, it can also be |, wherel, is theb b identity matrix. Similarly,S(D)T(D) = Iy
regarded as the rate=cblock code oveiR(D) which hasG(D) as 5o thatS(D) is indeed an inverse of (D): O
its (block code) generator matrix.

Obviously, we must be able to reconstruct the information sequencétemark: Let G(D) be a matrix oveiR(D) whose rows are free
u(D) from the code sequenagD) when there is no noise on the OVer R(D) but not overR((D)): Then there exists a(D) 2
channel. Therefore, we require that the transducer map be injectie (D)) such that

i.e., that the rows of the transfer function mat@D) be free over u(D)G(D)= 02 R°(D):
the ringR(D): However, the entries iG(D) need not be realizable '
functions. If in De nition 1 input sequences oveR((D)) were allowed, then

we could not have transducer invertibility. Moreover, in our proof

of the converse part of Theorem 1, bot{D) and S(D) would

be matrices oveR((D)), and fromG(D) = T(D)S(D)G(D),

or, equivalently, from(T(D)S(D) 1,)G(D) = 0; we could not

conclude thafT (D)S(D) = Ip: A theory for convolutional codes
Let F((D)) denote the eld of formal Laurent series over theover rings without Theorem 1 would be impoverished.

eld F in the indeterminateD, and letR((D)) denote the ring

of formal Laurent series over the ring in the indeterminateD:

Since the seminal work by Forney [4], it is customary to regard

convolutional code over a eld as the vector space over((D)) The following theorem shows that this de nition is independent of

generated by a generator matrix owe(D) or, equivalently, as the the chosen generator matrix.

rateb=c block code over the in nite eld of formal Laurent series ) .

havingG(D) as its generator matrix (see also [5]). Massey, however Theorem 2: If a convolutional codeC has a generator matrix

persists in viewing convolutional codes as f&D ) vector space of C(P) which has a right inverse ovét(D), so does every generator

the generator matrix [6]. Although we prefer the rst view in theMatrix for this c%de. ,
Proof: Let G*(D) be any generator matrix of the cofe Then

eld case as being more natural since it does not require information ’ ’ . A
e exists an invertible b matrix T(D) over R(D) such that

sequences to be ultimately periodic, we have adopted the sec - i 1 . i i
view in this correspondence in order not to restrict the generatgr(P) = T(D)G(D): Let G *(D) be a right inverse of5(D);

1 1 ; ; ; ht
matrices oveR (D) to those whose rows are free oWR((D)) (see thenOG .(D)T (D) is a matrix overR(D) and is a right inverse
Remark after the proof of Theorem 1). Mittelholzer [7] has recentl9f GI(D): =

shown that there indeed exist generator matrices 8(&) whose |t js well known that every generator matrix of convolutional
rows are free oveR(D) but not overR((D))! The corresponding codes over a eld is right invertible [4], [5]. Over ringR there
problem does not arise in the eld case. For rings of practical intereskist convolutional code€ which are not right invertible. However,
for convolutional codes, for example, nite rings, Mittelholzer hagg recently shown by Mittelholzer, this cannot happenRifis
also showed that there is no difference between the rows of témmutative and satis es the descending chain condition (DCC) [7].
generator matrix being free ovB(D) or overR((D)) [7]. However, Every nite ring satis es the descending chain condition. Thus for

other dif culties will be enCOUntered, for example, those Concerni%des over hite commutative ringsy every generator matrix has a
equivalence and in results where Theorem 1 is used. right inverse.

Analogously to the eld case we introduce

De nition 3: The transfer function matrixg(D) of a rateb=c
convolutional transducer oveR(D) is a generator matrixof the
corresponding rate=c code overR if its entries are all realizable
functions.

De nition 5: A convolutional codeC is right invertibleif it has a
%enerator matrixG(D) which has a right inverse ovét(D):

Example 1: Consider the convolutional code over the integers
De nition 4: Two generator matrices aexjuivalentif they gen- 7 with thel 1 generator matrix

erate the same code.
: o : . G(D)=(2+ D):

A square matrixT (D) is invertible overR(D) if there exists
a square matrixTYD) of the same size oveR(D) such that The row is free oveZ(D); but G(D) does not have a right inverse
T(D)TYD) = TYD)T(D) = I: The inverse is obviously unique over Z(D) and henceC is not right invertible.
and is denotedr !(D): However, the code oveZ, (the ring of integers modulo 4),
with G(D) = (2+ D) has a right inverse oveZs(D); namely,
G (D)= ((2+ D)=D?), and hence the convolutional coGever
Z4 with generator matrixG(D) is right invertible.

Theorem 1: Two rateb=c generator matrice§(D) and G%D)
are equivalent if and only if there existska b invertible matrix
T(D) overR(D) such thatG(D) = T(D)GYD):

Proof: If G(D)= T(D)GYD), whereT (D) is invertible over Remark: The convolutional code ovef in Example 1Pwith bi-
R(D), then the generator matric€(D) andG%D) are obviously in nite code sequencesPappears as [8, Example 6], where it was
equivalent. shown that the trellis of5(D) generates an incomplete code. The

Conversely, assume th&(D) and GYD) are equivalent. Then deep reason wh(D) does not have a right inverse is the lack of
we can nd input sequencest; (D);u’(D) 2 R(D)*;1 i b; the DCC property [7].
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Theorem 3: Let G(D) be ab c generator matrix. If there exists A generator matrixG(D) of a convolutional code in the eld case
ab b submatrix ofG(D) whose determinant is a unit iR(D), is said to becatastrophidf there exists an information sequengD)
then the convolutional cod@ generated bys(D) is right invertible. with an in nite nhumber of nonzero symbols that gives a codeword

Proof: Without loss of essential generality, assume that(D) of nite weight, a de nition that we also take over to the ring
G(D)=(A(D)B(D)), whereA(D) is theb b submatrix whose case.

determinant is a unit ilR(D): Then,A(D) has an invers& (D) A convolutional codeC over a ringR can be regarded as a group
over R(D): Letting code. De ne

1 G+ =fv2Cjvy =0 8i< 0Og

0 and

G-=fv2Cjvy =0 8i Og:

. ThenGy+ andG,- areR-submodules ofZ: The quotientR-module
G(D)GYD) = ( A(D) B(D)) <A (D)> . C=(G- + Gy+) is called thecode state spacef C at time 0 [10].

gives

0 In the case of convolutional codes over a eld, a generator matrix
is de ned to be minimal when the abstract state space is of minimal
so thatG’(D) is a right inverse ofG(D) and hence the cod€ gimension. It has been proved that this is ful lled if and only if the
generated by5(D) is right invertible. U abstract state space is isomorphic to the code state space [3], [11]. It
is hence natural in the case of convolutional codes over aRing
de ne a generator matrix to beinimal when this is ful lled [3].
Corollary 4: If a generator matrdxG(D) of a convolutional code  Surprisingly enough, there exist convolutional codes over rings
Chas ab b submatrix whose determinant is a unitR{D), so do  which do not have a minimal generator matrix, e.g., the convolutional

From Theorem 1 follows immediately

all the generator matrices @ code overZ, generated byG(D) = (2 2+ D) [3].
It is worth noting that the corresponding conclusion for units over
the ring ofrealizablerational functionsR, (D) does not hold. That a 1. SYSTEMATIC CONVOLUTIONAL CODES OVERRINGS

convolutional codeC has a generator matrix havingoa b submatrix A convolutional generator matrix is said to lsystematicif it
whose determinant is a unit iR, (D) does not imply that every causes the information symbols to appear unchanged among the code
generator matrix oC has ab b subdeterminant which is a unit in symbols, i.e., if somé of its columns form the identity matrix. Here

R (D); as the following example shows. a symbol means an element BfD):

Systematic rational generator matrices are of prime interest in
connection with iterative decoding of convolutional codes [2]. The
systematic bits seem to give a 2leg up® in decoding. Also, it was
recently shown that systematic polynomial generator matrices are
superior to other types of generator matrices with Idt-algorithm)

In connection with Example 2, Forney [9] suggested the notion decoding of convolutional codes; they support a spontaneous recovery
causal equivalence. of a lost correct path [13].

For convolutional codes over elds, every code has both systematic
and nonsystematic generator matrices. Thus in the eld case, being
systematic is an encoder property. However, this is not the case for
codes over rings. In the ring case, being systematic is a code property
[2]. Hence, we have

Example 2: Consider thel 1 generator matrixG(D) = (1)
over the ringZy : Its determinantl, is a unit in(Zw ), (D), but the
equivalent generator matri@%(D) = ( D) does not have a realizable
inverse.

De nition 6: Two generator matrice§(D) and GYD) are said
to be causally equivalentif there exists ab b matrix T(D)
which is realizable and has a realizable inverse such @&{&) =
T(D)GYD):

From Theorem 1 it is quite easy to show that havindgp a b
submatrix whose determinant is a unitfp (D) is a property which
is preserved between causally equivalent generator matrices.

De nition 7: A convolutional codeC over a ringR is systematic
if it has a systematic generator matrix.

The following theorem states precisely when a convolutional code

Theorem 5: If a generator matrixG(D) of a convolutional code over a ring is systematic.

Chas ab b submatrix whose determinant is a unitiy (D), so
do all causally equivalent generator matricesCof Theorem 6: A convolutional codeC over a ringR is systematic if

and only if it has a generator matr(D) that has & b submatrix

The fpllowmg example S_h(_)WS that for a generato.r matrix to ha\(ﬁhose determinant is a unit R, (D), the ring of realizable functions
a right inverse oveR(D) it is not necessary that it haska b

. . . . ) over R:
submatrix whose determinant is a unitR(D): Proof: Assume that the generator mati®&(D) is systematic,
Example 3: The generator matrix i.e., G(D) can be written a&5(D) = (|, GYD)): The determinant
of 1, is a unit in R (and in R,;(D)). Conversely, assume that
G(D)=(23) a generator matrixg(D) has ab b submatrix A(D) whose

determinant is a unit iR, (D): Without loss of essential generality,
let G(D) = (A(D) B(D)): Then,A(D) has an inversA (D)
over R, (D) and

overZs(D) does not have & 1 submatrix whose determinant is a
unit in Zs(D), but it does have a right inverse, viz.,

2
G (D)= (1); Gos(D)= A X(D)G(D) = ( I» BYD))
is an equivalent generator matrix for the co@eHence,C has a
In the eld case, a convolutional generator matrix is said to bgystematic generator matrix. (I

basicif it is polynomial and has a polynomial right inverse; we use An element that is a unit ifR, (D) is also a unit inR(D): Thus
this de nition for the ring case as well. Theorem 3 immediately implies
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Corollary 7: Let Cbe a systematic convolutional code. Theis
right invertible.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

where thel is in theith position. We now want to show that the
matrix

It is not required thaeverygenerator matrix of a systematic code v.(D)
Chas ab b submatrix whose determinant is a uniti (D): For G(D) =
example, the determinant of the generator maBD) = ( D) in vb(.D)

Example 2 is not a unit iR, (D), but the equivalent generator matrix
G(D) = (1) is trivially systematic and hence the code generated by a generator matrix for the cod® Consider any causal codeword
GYD) = ( D) is systematic. However, by combining Theorem 6 ang¢(D): Sincefv;(0);1 i bg generatey, there exists alp 2 R®
Corollary 4 we obtain such that

Corollary 8: A generator matriXG(D) that does not havela b
submatrix whose determinant is a unitR{(D), the ring of rational
functions, cannot generate a systematic code.

v(0) = uoG(0)

and hencev(D) uoG(D) is a causal codeword with constant
term. We writev(D) UuoG(D) = Dw(D) wherev®(D) is a causal
codeword. There exists @; 2 R® such thatv’0) = u;G(0) and
hencev(D) (up+u;:D)G(D) is a causal codeword whose constant
term and coefcient ofD both are zero. Continuing in the same
manner, we can nd a sequencD) 2 R[[D]]° such that

The generator matrixG(D) = (2+ D) overZ4(D) in Example
1 generates a systematic code since it is equivale@®) = (1) ,
though it has no right inverse ovéZ4), (D): The generator matrix
G(D) over Zg(D) in Example 3 has a right inverse ov&g[D],
but nol 1 submatrix whose determinant is a unit £§(D), so
it generates a right invertible convolutional co@ebut C is not V(D) = u(D)G(D):
systematic.

Let vp,(D) and Gp(D) denote the rstb components oiv(D)
and the rstb columns of the matrixG(D), respectively. Then,
V(D) = u(D)Gu(D): The determinandet(Gp(D)) is a causal
rational function anddet(G,(0)) =1, i.e.,

IV. AN ALTERNATIVE CONDITION FOR SYSTEMATICITY

Let G be thestart moduleof a rateb=c convolutional codeC
over a ringR; i.e., G consists of allc-tuplesv(0) for which v(D)
is a causal codeword i€ Massey and Mittelholzer [2] de ned a
convolutional codeC over a ringR to be proper if G is a free
R-module of rankb and one can seledt components such that thewherer (D) is a causal rational function so thaet(Gp(D)) is a unit

c-tuples inG, when restricted to these components, form the freg R, (D): The sequence(D) can then be expressed as
module R®: Then they proved

det(Gp(D)) =1+ Dr (D)

u(D) = vp(D)Gp(D) *
Proposition 1: A convolutional code is systematic if and only if (D) 5(D)Go(D)

It Is proper. which shows that(D) is ab-tuple of rational functions. Moreover,
every causal codeword fDcan be generated by the mat@D ) and,
sinceC is time-invariant, so can every codeword@flt has already
been shown that the generator mat@XD) has ab b submatrix
whose determinant is a unit iR, (D) and hence, by Theorem €,
is systematic. O

We now prove the following result:

Theorem 9: Proposition 1 is equivalent to Theorem 6.

Proof: Assume that the cod€ has a generator matrig (D)
that has a& b submatrix whose determinant is a uniti (D):
Without loss of essential generality, I&(D) = (A(D) B(D))
wheredetA(D) is a unit inR,(D): Then, A(D) has an inverse

A 1(D) over R, (D) and the matrix V. CONVOLUTIONAL CODES OVER Zy

In this section we mainly consider rabesc convolutional codes
over ringsZy whereM = p{*  pi™ andp:;  ;pm are distinct
primes. The rin@y is nite and can be decomposed into a direct sum
is an equivalent generator matrix of the cadevhich is systematic. of ringszy 2, Z,.: The results in this section reduce
The rows ofG%(0) are free oveR and generate the start modulethe study of generator matrices ov&y to the study of generator
The c-tuples inG, when restricted to the rsb components, form matrices ovei,-: Apart from the mere resullts, it simpli es the study
the free moduleR®: Hence, the code is proper. of generator matrices, which is especially nice when working with

Conversely, assume that the coGds proper. We can then nd concrete examples. We start more generally as follows.
b causal codewords

GYD)= A *(D)G(D)=(I, A *(D)B(D))

Theorem 10: Suppose that the rinR can be decomposed into a
direct sum of ideals aR = R;  R» Rs: Then

i) the ring R(D) of rational functions can be decomposed into
a corresponding direct sum of rings of rational functions, i.e.,
R(D)" Ri(D) Rz(D) Rs(D);

i) the ring R, (D) of realizable rational functions can be decom-
posed into a corresponding direct sum of rings of realizable
rational functions, i.e.,

fvi(D)=(vi(D) Vv/(D);1 i by

such thatfvi(0);1 i bgis a free basis o6& and we can select
b components of the codewords such that

fvl(0)= (V1) V*(0):i=j1 :ibg

form the free moduleR®: Without loss of essential generality, we

can take .
Ri(D)" (R1)r(D) (R2)/(D) (Rs)r (D);
ODY=(viD): V(D)1 i
fvi(@)=(vi(D)i svi(P);1 1 b i) the ring R[D] of polynomials can be decomposed into a
and corresponding direct sum of rings of polynomials, iR[D]"
viO=@0 010 0) R:[D] Rz[D] Rs[D]:
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Proof:

i) The identity element of the rin@(D) is the element. = 1=1:
We have the following decompositiods= e; es whereeg
is the identity element oR;;i = 1;2; ;s; and

R(D)= R(D)ex R(D)es:

It remains to prove thaR(D)e ' R;(D): De ne the map by

R(D)ei! Ri(D)
f(D)_ -, f(D)e
a0 " qD)e )
where
f(D)e = age + azeD+  + a,eD"
if

f(D)= ap+ ayD+ +a,D";a 2R:

The trailing coef cient ofg(D) is a unit in the ringR so, for all

843

Theorem 12: Suppose that the ring is a direct sum of ideals

Ri;R2;  (Rs;i.e,R=R:1 Rz Rs and that a generator
matrix G(D) over R(D) has been decomposed into

G(D)= Gi(D) G2(D) Gs(D):
Then

i) G(D) is basic if and only ifG; (D) is basic fori = 1;2; ;s;
ii) G(D) is noncatastrophic if and only i6; (D) is noncatas-
trophic fori = 1;2; ;s;
iii) G(D) is minimal if and only ifGi(D) is minimal for i
1;2; ;S:
Proof:

i) and ii) are obvious; iii) follows from the facts that the abstract
state space o€ relative toG(D) is a direct sum of abstract state
spaces ofG relative toG; (D) fori =1;2; ;s and that the code
state space o€ at time 0 is isomorphic to the direct sum of code
state spaces af fori =1;2; ;s: O

For a generator matrix that can be decomposed into a direct sum,

i =1; s, the trailing coefcient ofg(D)e is a unit inR;, and we have the following
hence
Theorem 13: Suppose that the rinR can be decomposed into a
f((D))ei Ri(D): direct sum of idealsR = R1  R2 Rs: If a generator matrix
q(D)e;
' G(D)= G1(D) Gz(D) Gs(D)
The map is well-de ned,; it preserves addition and multiplication ) ] ) )
and it is both injective and surjective. Hen&D)e ' R;(D) and of a convolutional code oveR is systematic, thert; (D) is also
R(D) ' Ru(D) Rs(D): systematic fori = 1;2; ;s:

if) Following the proof of part i), for the rindR, (D) we have the
decomposition

R/(D)= R/ (D)&; R (D)es:

For
f (D)

a(b)

the elemeng(0) is a unit inR so, for alli =1; ;s; the constant
term of q(D)e is a unit in R;: Hence, we haveR,(D)e
(Ri) (D) and

2 R(D)

Rr(D)" (R1):(D) (Rs)r(D):

iii) Follows from the proof of part i).
From Theorem 10 we have immediately

Theorem 11: Suppose that the ring is a direct sum of ideals
Ri;R2;  ;Rs;ie, R = R1 R Rs: Let G(D) be a
matrix overR(D): Under the isomorphism

R(D)" Ri(D) R2(D) Rs(D)
denote the image d&(D) in Ri(D) by G;(D): We write symbol-

ically

G(D)= G1(D) G2(D) Gs(D)
whereG; (D) is a matrix overR; (D) fori =1;2; ;s: Then
i) G(D) is polynomial overR[D] if and only if Gi(D) is
polynomial overRi[D] fori =1;2; ;s;
ii) G(D) is a generator matrix oveR, (D) if and only if G; (D)
is a generator matrix oveiR;), (D) fori =1;2; ;s;
i) G(D) has a right inverse oveR(D) (or overR, (D) or over
R[D]) if and only if G;(D) has a right inverse oveR; (D)
(or over(Ri)/ (D) or overR;[D]) fori =1;2; ;s:

From Theorem 11 follows

Proof: If the generator matrix

G(D)= Gi(D) G2(D) Gs(D)

has ab b submatrix whose determinant is a uniti (D), then,
sinceR(D) is a direct sumG; (D) must have & b submatrix
whose determinant is a unit i{fRi), (D) fori =1;2; ;s: (I

The following example shows that the converse of Theorem 13
does not hold.

Example 4: The generator matricess1(D) (2 0) and
G2(D)=(0 3) overZs; andZ,, respectively, are both systematic.
However, the generator matrix

G(D)= Gu1(D)

G2(D)=(2 3)

does not have B b submatrix whose determinant is a unitR{D)
(see Example 3), so that the convolutional code generated(By)
is not systematic.

Remark: Note that Theorem 13 implies that if a convolutional
codeC= G C, C s over R is systematic, therG is
systematic fori = 1;2; ;s:

Now, if G(D) is a generator matrix ovefy , then

G(D)= Gi(D) Gz(D) Gm (D)
where
Gi(D)= G(D)mod p*;1 i m:

By the foregoing discussion, the study of codes o¥gr can be
reduced to the study of codes ov&s-: This follows also from the
fundamental theorem of nite Abelian groups as was already pointed
out in [14], cf. also [15]+[19].

Consider a generator matri¥(D) over Zy-: We can write

G(D)= Go(D)+ Gi(D)p+  + Ge 1(D)p° *

where the entries of allGi(D) are over (Z,).(D): Then,
G(D) mod p = Go(D): The relation between the generator matrix
G(D) andG(D) mod p will be studied next.
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Theorem 14:Let G(D) be a generator matrix ovéf,-: Then

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Conversely, assume th@, (D) is basic. Then there existsca b

i) G(D) is catastrophic ifG(D) mod p is catastrophic and, Polynomial matrixG, *(D) over Z, such that

for polynomial generator matrices, only &(D) mod p is

catastrophic.

ii) Assuming thatG(D) is polynomial,G(D) is basic if and only We will constructc b polynomial matricess, *(D);

if G(D) mod p is basic.
Proof:

i) Assume thatG(D) mod p = Go(D) is catastrophic. Then
we can nd an input sequenag(D) which has in nite weight and
where every; 2 Zg, such thau(D)Go(D) has nite weight. Then G(D)G (D)=(Go(D)+ G:(D)p+

u(D)p® ! also has in nite weight and

u(D)p° *G(D)= u(D)p® *(Go(D)
+Gi(D)p+  + Ge 1(D)P° 1)
u(D)p°® *Go(D):

This shows thau(D)p® *G(D) also has nite weight and hence

that G(D) is catastrophic.

Go(D)Go }(D) = I, mod p:
;G '1(D)
such thatG(D)G (D) = I, where
G (D)= Go'(D)+ G '(D)p+  + G, (D)p®
Consider the product
+Ge 1(D)p° 1)
(Go'(D)+ G '(D)p+  + G '1(D)p® V)
= Go(D)G, '(D) +( Go(D)G, *(D)
+ G1(D)G, '(D))p+
+(Go(D)G, "1(D) + G1(D)G, (D) +
+ Ge 1(D)G, *(D))p° *

To prove the converse part wheB(D) is polynomial, suppose Where the operations are done modpfo We have

thatG(D) is catastrophic. Then there exists an information sequence

u(D) with in nite weight such thatu(D)G(D) has nite weight.
We can write

u(D)= up(D)+ ui(D)p+ +ue 1(D)p° *

where eachu; (D) belongs toZ,(D): Then at least on@; (D) has
in nite weight. Suppose that

U (D);ui(D); ;u (D) (@ | e

have nite weight andu; (D) has in nite weight. Then
u(D)G(D) =(uo(D)+ uy(D)p+  + Ue 1(D)p° 1)
(Go(D)+ Gu(D)p+  + Ge 1(D)p° 1)
= Uo(D)Go(D )+ (uo(D)G1(D)
+ u1(D)Go(D))p+
+(Uo(D)Ge 1(D)+ ui(D)Ge 2(D)+
+ Ue 1(D)Go(D))p°

has nite weight and the coefcients op’;p'; ;p°® ! all have

nite weight. In particular, the coef cient of, which is
U (D)G;j (D) + ui(D)Gj 1(D)+  + uj(D)Go(D);

has nite weight. SinceG(D) is polynomial,
Uo(D)G;j(D);u1(D)G; 1(D);

;U 1(D)G1(D)

all have nite weight. Hencey; (D)Go(D) has nite weight showing
that Go(D) is catastrophic.

ii) If G(D) is basic, then there exists a polynomial magix* (D)
such thatG(D)G (D)= |, wherely, is theb b identity matrix.
We can write

G (D)= Go'(D)+ G, '(D)p+  + Ge'y(D)p° *
whereG, (D) is polynomial,0 i e 1: Then
(Go(D)+ Gu(D)p+  + Ge 1(D)P° 1)
(Go'(D)+ Gy '(D)p+  + Ge 4 (D)p* )=l
which shows that

Go(D)G, H(D) = Ip:

Go(D)Go Y(D) = I
in Z,:We can assume that
Go(D)Go (D) = Ip+ pK1(D)+ p’K2(D)+
in Zpe: Then
G(D)G (D)= lp+(K1(D)+ Go(D)G, *(D)
+ G1(D)G, '(D))p+
+(Ke 1(D)+ Go(D)G, 1(D)
+ G1(D)G, (D) +
+ Ge 1(D)G, '(D))p° *

+p° 'Ke 1(D)

and we can choose
G1'(D)= Go'(D)(K1(D)+ G1(D)G, '(D))

where the operations are done modptcClearly, G, *(D) is poly-
nomial and

K1(D)+ Go(D)G; *(D) + G1(D)G, '(D) =0
in Z,: We can assume that
K1(D)+ Go(D)G; *(D)+ G1(D)G, *(D)
= pL1(D)+ p’L2(D)+  +p° 'Le 1(D)
in Zpe: Then
G(D)G (D)= lp+0p+(K2(D)+ L1(D)
+ Go(D)G, *(D) + G1(D)G; *(D)
+ G2(D)G, '(D))p” +
+(Ke 1(D)+ Le 2(D)
+ Go(D)G, 1(D)
+ G1(D)G, (D) +
+ Ge 1(D)G, *(D))p° *

and we can choose

G,* (D)= Gy'(D)(K2(D)+ L1(D)+ Go(D)G, (D)

+ G1(D)G,; 1(D) + G2(D)G, (D))

where the operations are done modpi@henG, *(D) is polynomial

Thus Go(D) = G(D) mod p has a right polynomial inverse andand the coef cient ofp? in G(D)G (D) is 0. Continuing in the

hence is basic.

same way, we can choose polynomial matriGgs*(D);1 i
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e 1;in such a way thaG(D)G (D) = I,: ThusG(D) has a
polynomial inverse and is basic. O 7
Theorem 14 i) implies that, for a polynomial generator matrix

G(D) overZ,-; G(D) is catastrophic if and only i6(D) mod p is
catastrophic, which was pointed out by Massey and Mittelholzer ir{8]
[1]. The following example shows that for a nonpolynomial generator

matrix G(D) over Zp-, the catastrophicity o66(D) does not imply  [9]

catastrophicity ofG(D) mod p: [10]
Example 5: Let C be a convolutional code over the rirfy,:

generated byG(D) =1+ (1 =(1 D))p: The in nite weight input 111

sequence

D D \* D \° [12]
HeI=( D)<1+ 1+p" <1+ p) ' <1+ p) ' )
gives a nite weight outputu(D)G(D) = 1+ p and hence the [13]
generator matrix is catastrophic. Howev&(D) mod p = (1) is

noncatastrophic ove,: (14
The following result on systematicity of codes over the rfg-
was stated by Mittelholzer in 1993 [3] and can be proved in the sartie]

way as Theorem 14.

Theorem 15: A convolutional codeC is systematic if and only if (16]
it has a generator matrig(D) such thatG(0) mod p has full rank

(17]
over Zy:

There is no correspondingly simple relation between the minimali{)l/g]
of the generator matri&6(D) and that ofG(D) mod p: An example
is given here of a generator matrix which is not minimal over thE9]
ring Zpe but is minimal overZ,:

Example 6: Consider the polynomial generator mat®(D) =
(1 + pD) over Z,2: This generator matrix is not minimal since
G(D) is equivalent to the generator mat®®(D) = (1) : However,
G(D) mod p = (1) is minimal overZp:

VI.

For elds we usually de ne convolutional codes for inputs that are
Laurent series, but for general rings we have to restrict the inputs to
be rational functions. However, when considering rings satisfying the
descending chain condition we could allow Laurent series as inputs.
Even for these rings many important properties differ from the eld
case.
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