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Some Structural Properties of
Convolutional Codes over Rings

Rolf Johannesson,Fellow, IEEE, Zhe-Xian Wan,
and Emma Wittenmark,Student Member, IEEE

AbstractÐ Convolutional codes over rings have been motivated by
phase-modulated signals. Some structural properties of the generator
matrices of such codes are presented. Successively stronger notions of
invertibility of generator matrices are studied, and a new condition for a
convolutional code over a ring to be systematic is given and shown to be
equivalent to a condition given by Massey and Mittelholzer. It is shown
that a generator matrix that can be decomposed into a direct sum is basic,
minimal, and noncatastrophic if and only if all generator matrices for the
constituent codes are basic, minimal, and noncatastrophic, respectively.
It is also shown that if a systematic generator matrix can be decomposed
into a direct sum, then all generator matrices of the constituent codes
are systematic, but that the converse does not hold. Some results on
convolutional codes over p are obtained.

Index TermsÐConvolutional codes over rings, direct sum decomposi-
tion of rings, proper convolutional codes, systematic convolutional codes.

I. INTRODUCTION

Massey and Mittelholzer [1] introduced convolutional codes over
rings together with their motivation by phase-modulated signals. They
showed that convolutional codes over rings behave very differently
than convolutional codes over �elds. Some structural properties of
convolutional codes over rings were given in [2] and [3]. Further
structural properties are presented in this correspondence.

For convolutional codes over rings, there are three successively
stronger notions of invertibility of generator matrices. The �rst is
transducer invertibility, which is equivalent to a one-to-one map
between information words and codewords. It is shown that this is
equivalent to the rows of the generator matrix being free over the ring
R(D ): The second is right invertibility, which is the existence of a
right R(D )-inverse to the generator matrix. The last is the existence
of a realizable rightR(D )-inverse to the generator matrix, which is
equivalent to systematicity. Systematicity implies right invertibility
which implies transducer invertibility, but the converse implications
do not hold.

In Section II, we de�ne rings of rational functions and realizable
rational functions and some fundamental coding concepts such as
generator matrix, equivalence, right invertibility, catastrophicity, and
minimality for the ring case. Section III is devoted to systematicity
of ring codes. After having de�ned a systematic convolutional code,
we give a new condition for a convolutional code over a ring to
be systematic. In Section IV, we prove that our new condition
for systematicity is equivalent to a condition given by Massey and
Mittelholzer [2]. Section V treats codes over a direct sum of rings. We
show that if a systematic generator matrix can be decomposed into
a direct sum, then all generator matrices for the decomposed code
are systematic, but the converse does not hold. Various examples are
given. We also give some results on convolutional codes overp :
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II. CONVOLUTIONAL GENERATOR MATRICES OVER RINGS

Let R be a commutative ring with identity and letR[D ] be
the polynomial ring overR: The trailing coef�cient of a nonzero
polynomial is the coef�cient of the smallest power ofD with a
nonzero coef�cient. LetR(D ) be the set

f (D )
q(D )

jf (D ); q(D ) 2 R[D ]; and the trailing coef�cient of

q(D ) is a unit inR (1)

modulo the equivalence relation

f (D )
q(D )

�
f 1(D )
q1(D )

if and only if f (D )q1(D ) = f 1(D )q(D ): (2)

That this is an equivalence relation follows from the assumption
that the trailing coef�cients of the denominator polynomials are units.
The equivalence class off (D )=q(D ) will be denoted byf (D )=q(D )
or sometimes by the abbreviationf (D )=q(D ): It is clear thatR(D )
is a ring with addition and multiplication de�ned by

f (D )
q(D )

+
h(D )
k(D )

=
f (D )k(D ) + h(D )q(D )

q(D )k(D )

and

f (D )
q(D )

h(D )
k(D )

=
f (D )h(D )
q(D )k(D )

:

We call R(D ) the ring of rational functions over R in the
indeterminateD: Each element ofR(D ) can be expanded into a
formal Laurent series inD:

Remark: Without the condition in the de�nition of the ring of
rational functions overR, that the trailing coef�cients of the denom-
inator polynomials are units, then

f (D )
q(D )

�
f 1(D )
q1(D )

if and only if f (D )q1(D ) = f 1(D )q(D ) (3)

is not always an equivalence relation. For example, letR = 4; then
0=2 � 2=D and0=2 � 2=D2, but2=D and2=D2 are not equivalent.

Let Rr (D ) be the subring ofR(D ) consisting of those elements
(equivalence classes) which contain a representativef (D )=q(D ) with
q(0) a unit inR: We call this thering of realizable functionsand the
elements ofRr (D ) realizable functions.

De�nition 1: A rate-b=cconvolutional transducerover the ring of
rational functionsR(D ) is a linear mapping

R(D )b ! R(D )c

uuu(D ) 7! vvv(D ) (4)

which can be represented as

vvv(D ) = uuu(D )G(D ) (5)

whereG(D ) is a b � c matrix (called the transfer function matrix)
with entries inR(D ) whose rows are free overR(D ):

0018±9448/98ƒ10.00ã 1998 IEEE
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De�nition 2: The set

C = f uuu(D )G(D )juuu(D ) 2 R(D )bg (6)

whereG(D ) is the transfer function matrix of a rate-b=c convolu-
tional transducer overR(D ), is arate-b=cconvolutional codeoverR:
The outputvvv(D ) = uuu(D )G(D ) is the code sequencearising from
the information sequenceuuu(D ):

It follows immediately from De�nition 2 that a rate-b=c convo-
lutional codeC over R with transfer function matrixG(D ) can be
regarded as theR(D ) row module ofG(D ): Hence, it can also be
regarded as the rate-b=cblock code overR(D ) which hasG(D ) as
its (block code) generator matrix.

Obviously, we must be able to reconstruct the information sequence
uuu(D ) from the code sequencevvv(D ) when there is no noise on the
channel. Therefore, we require that the transducer map be injective,
i.e., that the rows of the transfer function matrixG(D ) be free over
the ringR(D ): However, the entries inG(D ) need not be realizable
functions.

De�nition 3: The transfer function matrixG(D ) of a rate-b=c
convolutional transducer overR(D ) is a generator matrixof the
corresponding rate-b=c code overR if its entries are all realizable
functions.

Let F (( D )) denote the �eld of formal Laurent series over the
�eld F in the indeterminateD , and let R(( D )) denote the ring
of formal Laurent series over the ringR in the indeterminateD:
Since the seminal work by Forney [4], it is customary to regard a
convolutional code over a �eldF as the vector space overF (( D ))
generated by a generator matrix overF (D ) or, equivalently, as the
rate-b=c block code over the in�nite �eld of formal Laurent series
havingG(D ) as its generator matrix (see also [5]). Massey, however,
persists in viewing convolutional codes as theF (D ) vector space of
the generator matrix [6]. Although we prefer the �rst view in the
�eld case as being more natural since it does not require information
sequences to be ultimately periodic, we have adopted the second
view in this correspondence in order not to restrict the generator
matrices overR(D ) to those whose rows are free overR(( D )) (see
Remark after the proof of Theorem 1). Mittelholzer [7] has recently
shown that there indeed exist generator matrices overR(D ) whose
rows are free overR(D ) but not overR(( D ))! The corresponding
problem does not arise in the �eld case. For rings of practical interest
for convolutional codes, for example, �nite rings, Mittelholzer has
also showed that there is no difference between the rows of the
generator matrix being free overR(D ) or overR(( D )) [7]. However,
other dif�culties will be encountered, for example, those concerning
equivalence and in results where Theorem 1 is used.

Analogously to the �eld case we introduce

De�nition 4: Two generator matrices areequivalentif they gen-
erate the same code.

A square matrixT (D ) is invertible overR(D ) if there exists
a square matrixT 0(D ) of the same size overR(D ) such that
T (D )T0(D ) = T 0(D )T(D ) = I: The inverse is obviously unique
and is denotedT � 1(D ):

Theorem 1: Two rate-b=c generator matricesG(D ) and G0(D )
are equivalent if and only if there exists ab � b invertible matrix
T (D ) over R(D ) such thatG(D ) = T(D )G0(D ):

Proof: If G(D ) = T(D )G0(D ), whereT(D ) is invertible over
R(D ), then the generator matricesG(D ) and G0(D ) are obviously
equivalent.

Conversely, assume thatG(D ) and G0(D ) are equivalent. Then
we can �nd input sequences,uuui (D ); uuu0

i (D ) 2 R(D )b; 1 � i � b;

such thatG(D ) = T(D )G0(D ) andG0(D ) = S(D )G(D ) where

T(D ) =

uuu1(D )
...

uuub(D )

and S(D ) =

uuu0
1(D )

...
uuu0

b(D )

:

Hence,

G(D ) = T(D )G0(D ) = T(D )S(D )G(D )

and, thus, since the rows ofG(D ) are free overR(D ); T (D )S(D ) =
I b whereI b is theb� b identity matrix. Similarly,S(D )T(D ) = I b

so thatS(D ) is indeed an inverse ofT (D ):

Remark: Let G(D ) be a matrix overR(D ) whose rows are free
over R(D ) but not over R(( D )) : Then there exists auuu(D ) 2
Rb(( D )) such that

uuu(D )G(D ) = 0 2 Rc(D ):

If in De�nition 1 input sequences overR(( D )) were allowed, then
we could not have transducer invertibility. Moreover, in our proof
of the converse part of Theorem 1, bothT (D ) and S(D ) would
be matrices overR(( D )) , and from G(D ) = T(D )S(D )G(D ),
or, equivalently, from(T(D )S(D ) � I b)G(D ) = 0; we could not
conclude thatT (D )S(D ) = I b: A theory for convolutional codes
over rings without Theorem 1 would be impoverished.

De�nition 5: A convolutional codeC is right invertible if it has a
generator matrixG(D ) which has a right inverse overR(D ):

The following theorem shows that this de�nition is independent of
the chosen generator matrix.

Theorem 2: If a convolutional codeC has a generator matrix
G(D ) which has a right inverse overR(D ), so does every generator
matrix for this code.

Proof: Let G0(D ) be any generator matrix of the codeC: Then
there exists an invertibleb � b matrix T (D ) over R(D ) such that
G0(D ) = T(D )G(D ): Let G� 1(D ) be a right inverse ofG(D );
thenG� 1(D )T � 1(D ) is a matrix overR(D ) and is a right inverse
of G0(D ):

It is well known that every generator matrix of convolutional
codes over a �eld is right invertible [4], [5]. Over ringsR there
exist convolutional codesC which are not right invertible. However,
as recently shown by Mittelholzer, this cannot happen ifR is
commutative and satis�es the descending chain condition (DCC) [7].
Every �nite ring satis�es the descending chain condition. Thus for
codes over �nite commutative rings, every generator matrix has a
right inverse.

Example 1: Consider the convolutional codeC over the integers
with the 1 � 1 generator matrix

G(D ) = (2 + D ):

The row is free over (D ); but G(D ) does not have a right inverse
over (D ) and henceC is not right invertible.

However, the code over 4 (the ring of integers modulo 4),
with G(D ) = (2 + D ) has a right inverse over 4(D ); namely,
G� 1(D ) = ((2+ D )=D2), and hence the convolutional codeC over

4 with generator matrixG(D ) is right invertible.

Remark: The convolutional code over in Example 1Ðwith bi-
in�nite code sequencesÐappears as [8, Example 6], where it was
shown that the trellis ofG(D ) generates an incomplete code. The
deep reason whyG(D ) does not have a right inverse is the lack of
the DCC property [7].
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Theorem 3: Let G(D ) be ab� c generator matrix. If there exists
a b � b submatrix ofG(D ) whose determinant is a unit inR(D ),
then the convolutional codeC generated byG(D ) is right invertible.

Proof: Without loss of essential generality, assume that
G(D ) = ( A(D ) B (D )) , whereA(D ) is theb � b submatrix whose
determinant is a unit inR(D ): Then,A(D ) has an inverseA� 1(D )
over R(D ): Letting

G0(D ) =
A� 1(D )

0

gives

G(D )G0(D ) = ( A(D ) B (D ))
A� 1(D )

0
= I b

so that G0(D ) is a right inverse ofG(D ) and hence the codeC
generated byG(D ) is right invertible.

From Theorem 1 follows immediately

Corollary 4: If a generator matrixG(D ) of a convolutional code
C has ab� b submatrix whose determinant is a unit inR(D ), so do
all the generator matrices ofC:

It is worth noting that the corresponding conclusion for units over
the ring ofrealizablerational functionsRr (D ) does not hold. That a
convolutional codeC has a generator matrix having ab� b submatrix
whose determinant is a unit inRr (D ) does not imply that every
generator matrix ofC has ab � b subdeterminant which is a unit in
Rr (D ); as the following example shows.

Example 2: Consider the1 � 1 generator matrixG(D ) = (1)
over the ring M : Its determinant,1, is a unit in( M )r (D ), but the
equivalent generator matrixG0(D ) = ( D ) does not have a realizable
inverse.

In connection with Example 2, Forney [9] suggested the notion of
causal equivalence.

De�nition 6: Two generator matricesG(D ) and G0(D ) are said
to be causally equivalentif there exists ab � b matrix T (D )
which is realizable and has a realizable inverse such thatG(D ) =
T(D )G0(D ):

From Theorem 1 it is quite easy to show that having ab � b
submatrix whose determinant is a unit inRr (D ) is a property which
is preserved between causally equivalent generator matrices.

Theorem 5: If a generator matrixG(D ) of a convolutional code
C has ab � b submatrix whose determinant is a unit inRr (D ), so
do all causally equivalent generator matrices ofC:

The following example shows that for a generator matrix to have
a right inverse overR(D ) it is not necessary that it has ab � b
submatrix whose determinant is a unit inR(D ):

Example 3: The generator matrix

G(D ) = (2 3)

over 6(D ) does not have a1 � 1 submatrix whose determinant is a
unit in 6(D ), but it does have a right inverse, viz.,

G� 1(D ) =
2
1

:

In the �eld case, a convolutional generator matrix is said to be
basic if it is polynomial and has a polynomial right inverse; we use
this de�nition for the ring case as well.

A generator matrixG(D ) of a convolutional code in the �eld case
is said to becatastrophicif there exists an information sequenceuuu(D )
with an in�nite number of nonzero symbols that gives a codeword
vvv(D ) of �nite weight, a de�nition that we also take over to the ring
case.

A convolutional codeC over a ringR can be regarded as a group
code. De�ne

C0 = f vvv 2 Cjvi = 0 8i < 0g

and

C0 = f vvv 2 Cjvi = 0 8i � 0g:

ThenC0 andC0 areR-submodules ofC: The quotientR-module
C=(C0 + C0 ) is called thecode state spaceof C at time0 [10].

In the case of convolutional codes over a �eld, a generator matrix
is de�ned to be minimal when the abstract state space is of minimal
dimension. It has been proved that this is ful�lled if and only if the
abstract state space is isomorphic to the code state space [3], [11]. It
is hence natural in the case of convolutional codes over a ringR to
de�ne a generator matrix to beminimal when this is ful�lled [3].

Surprisingly enough, there exist convolutional codes over rings
which do not have a minimal generator matrix, e.g., the convolutional
code over 4 generated byG(D ) = (2 2 + D ) [3].

III. SYSTEMATIC CONVOLUTIONAL CODES OVERRINGS

A convolutional generator matrix is said to besystematicif it
causes the information symbols to appear unchanged among the code
symbols, i.e., if someb of its columns form the identity matrix. Here
a symbol means an element ofR(D ):

Systematic rational generator matrices are of prime interest in
connection with iterative decoding of convolutional codes [2]. The
systematic bits seem to give a ªleg upº in decoding. Also, it was
recently shown that systematic polynomial generator matrices are
superior to other types of generator matrices with list (M -algorithm)
decoding of convolutional codes; they support a spontaneous recovery
of a lost correct path [13].

For convolutional codes over �elds, every code has both systematic
and nonsystematic generator matrices. Thus in the �eld case, being
systematic is an encoder property. However, this is not the case for
codes over rings. In the ring case, being systematic is a code property
[2]. Hence, we have

De�nition 7: A convolutional codeC over a ringR is systematic
if it has a systematic generator matrix.

The following theorem states precisely when a convolutional code
over a ring is systematic.

Theorem 6: A convolutional codeC over a ringR is systematic if
and only if it has a generator matrixG(D ) that has ab� b submatrix
whose determinant is a unit inRr (D ), the ring of realizable functions
over R:

Proof: Assume that the generator matrixG(D ) is systematic,
i.e., G(D ) can be written asG(D ) = ( I b G0(D )) : The determinant
of I b is a unit in R (and in Rr (D )). Conversely, assume that
a generator matrixG(D ) has a b � b submatrix A(D ) whose
determinant is a unit inRr (D ): Without loss of essential generality,
let G(D ) = ( A(D ) B (D )) : Then, A(D ) has an inverseA� 1(D )
over Rr (D ) and

Gsys (D ) = A� 1(D )G(D ) = ( I b B 0(D ))

is an equivalent generator matrix for the codeC: Hence,C has a
systematic generator matrix.

An element that is a unit inRr (D ) is also a unit inR(D ): Thus
Theorem 3 immediately implies
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Corollary 7: Let C be a systematic convolutional code. ThenC is
right invertible.

It is not required thateverygenerator matrix of a systematic code
C has ab� b submatrix whose determinant is a unit inRr (D ): For
example, the determinant of the generator matrixG0(D ) = ( D ) in
Example 2 is not a unit inRr (D ), but the equivalent generator matrix
G(D ) = (1) is trivially systematic and hence the code generated by
G0(D ) = ( D ) is systematic. However, by combining Theorem 6 and
Corollary 4 we obtain

Corollary 8: A generator matrixG(D ) that does not have ab� b
submatrix whose determinant is a unit inR(D ), the ring of rational
functions, cannot generate a systematic code.

The generator matrixG(D ) = (2 + D ) over 4(D ) in Example
1 generates a systematic code since it is equivalent toG0(D ) = (1) ,
though it has no right inverse over( 4)r (D ): The generator matrix
G(D ) over 6(D ) in Example 3 has a right inverse over6[D ],
but no 1 � 1 submatrix whose determinant is a unit of6(D ), so
it generates a right invertible convolutional codeC but C is not
systematic.

IV. A N ALTERNATIVE CONDITION FOR SYSTEMATICITY

Let C0 be the start moduleof a rate-b=c convolutional codeC
over a ringR; i.e., C0 consists of allc-tuplesvvv(0) for which vvv(D )
is a causal codeword inC: Massey and Mittelholzer [2] de�ned a
convolutional codeC over a ring R to be proper if C0 is a free
R-module of rankb and one can selectb components such that the
c-tuples in C0, when restricted to these components, form the free
module Rb: Then they proved

Proposition 1: A convolutional code is systematic if and only if
it is proper.

We now prove the following result:

Theorem 9: Proposition 1 is equivalent to Theorem 6.
Proof: Assume that the codeC has a generator matrixG(D )

that has ab � b submatrix whose determinant is a unit inRr (D ):
Without loss of essential generality, letG(D ) = ( A(D ) B (D ))
where det A(D ) is a unit in Rr (D ): Then, A(D ) has an inverse
A� 1(D ) over Rr (D ) and the matrix

G0(D ) = A� 1(D )G(D ) = ( I b A� 1(D )B (D ))

is an equivalent generator matrix of the codeC which is systematic.
The rows ofG0(0) are free overR and generate the start module.
The c-tuples inC0, when restricted to the �rstb components, form
the free moduleRb: Hence, the code is proper.

Conversely, assume that the codeC is proper. We can then �nd
b causal codewords

f vvvi (D ) = ( v1
i (D ) � � � vc

i (D )) ; 1 � i � bg

such thatf vvvi (0) ; 1 � i � bg is a free basis ofC0 and we can select
b components of the codewords such that

f vvv0
i (0) = ( vj

i (0) � � � vj
i (0)) ; i = j 1; � � � ; j bg

form the free moduleRb: Without loss of essential generality, we
can take

f vvv 0
i (D ) = ( v1

i (D ); � � � ; vb
i (D )) ; 1 � i � bg

and

vvv 0
i (0) = (0 � � � 0 1 0 � � � 0)

where the1 is in the i th position. We now want to show that the
matrix

G(D ) =

vvv1(D )
...

vvvb(D )

is a generator matrix for the codeC: Consider any causal codeword
vvv(D ): Sincef vvvi (0) ; 1 � i � bg generatesC0, there exists auuu0 2 Rb

such that

vvv(0) = uuu0G(0)

and hencevvv(D ) � uuu0G(D ) is a causal codeword with0 constant
term. We writevvv(D ) � uuu0G(D ) = Dvvv0(D ) wherevvv0(D ) is a causal
codeword. There exists auuu1 2 Rb such thatvvv0(0) = uuu1G(0) and
hencevvv(D ) � (uuu0 + uuu1D )G(D ) is a causal codeword whose constant
term and coef�cient ofD both are zero. Continuing in the same
manner, we can �nd a sequenceuuu(D ) 2 R[[D ]]b such that

vvv(D ) = uuu(D )G(D ):

Let vvvb(D ) and Gb(D ) denote the �rstb components ofvvv(D )
and the �rst b columns of the matrixG(D ), respectively. Then,
vvvb(D ) = uuu(D )Gb(D ): The determinantdet(Gb(D )) is a causal
rational function anddet(Gb(0)) = 1 , i.e.,

det(Gb(D )) = 1 + Dr (D )

wherer (D ) is a causal rational function so thatdet(Gb(D )) is a unit
in Rr (D ): The sequenceuuu(D ) can then be expressed as

uuu(D ) = vvvb(D )Gb(D )� 1

which shows thatuuu(D ) is a b-tuple of rational functions. Moreover,
every causal codeword inCcan be generated by the matrixG(D ) and,
sinceC is time-invariant, so can every codeword ofC: It has already
been shown that the generator matrixG(D ) has ab � b submatrix
whose determinant is a unit inRr (D ) and hence, by Theorem 6,C
is systematic.

V. CONVOLUTIONAL CODES OVER M

In this section we mainly consider rate-b=c convolutional codes
over rings M whereM = pe

1 � � � pe
m andp1; � � � ; pm are distinct

primes. The ring M is �nite and can be decomposed into a direct sum
of rings M ' p � � � � � p : The results in this section reduce
the study of generator matrices overM to the study of generator
matrices over p : Apart from the mere results, it simpli�es the study
of generator matrices, which is especially nice when working with
concrete examples. We start more generally as follows.

Theorem 10: Suppose that the ringR can be decomposed into a
direct sum of ideals asR = R1 � R2 � . . . � Rs : Then

i) the ring R(D ) of rational functions can be decomposed into
a corresponding direct sum of rings of rational functions, i.e.,
R(D ) ' R1(D ) � R2(D ) � � � � � Rs (D );

ii) the ring Rr (D ) of realizable rational functions can be decom-
posed into a corresponding direct sum of rings of realizable
rational functions, i.e.,

Rr (D ) ' (R1)r (D ) � (R2)r (D ) � � � � � (Rs )r (D );

iii) the ring R[D ] of polynomials can be decomposed into a
corresponding direct sum of rings of polynomials, i.e.,R[D ] '
R1[D ] � R2[D ] � � � � � Rs [D ]:
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Proof:
i) The identity element of the ringR(D ) is the element1 = 1=1:

We have the following decompositions1 = e1 � � � � � es whereei

is the identity element ofRi ; i = 1 ; 2; � � � ; s; and

R(D ) = R(D )e1 � � � � � R(D )es :

It remains to prove thatR(D )ei ' Ri (D ): De�ne the map
 by


 : R(D )ei ! Ri (D )
f (D )
q(D )

ei 7!
f (D )ei

q(D )ei
(7)

where

f (D )ei = a0ei + a1ei D + � � � + an ei D
n

if

f (D ) = a0 + a1D + � � � + an D n ; ai 2 R:

The trailing coef�cient of q(D ) is a unit in the ringR so, for all
i = 1 ; � � � ; s; the trailing coef�cient ofq(D )ei is a unit in Ri , and
hence

f (D )ei

q(D )ei
2 Ri (D ):

The map
 is well-de�ned; it preserves addition and multiplication
and it is both injective and surjective. Hence,R(D )ei ' Ri (D ) and
R(D ) ' R1(D ) � � � � � Rs (D ):

ii) Following the proof of part i), for the ringRr (D ) we have the
decomposition

Rr (D ) = Rr (D )e1 � � � � � Rr (D )es :

For

f (D )
q(D )

2 Rr (D )

the elementq(0) is a unit inR so, for all i = 1 ; � � � ; s; the constant
term of q(D )ei is a unit in Ri : Hence, we haveRr (D )ei '
(Ri )r (D ) and

Rr (D ) ' (R1)r (D ) � � � � � (Rs )r (D ):

iii) Follows from the proof of part i).

From Theorem 10 we have immediately

Theorem 11: Suppose that the ringR is a direct sum of ideals
R1; R2; � � � ; Rs ; i.e., R = R1 � R2 � � � � � Rs : Let G(D ) be a
matrix overR(D ): Under the isomorphism

R(D ) ' R1(D ) � R2(D ) � � � � � Rs (D )

denote the image ofG(D ) in Ri (D ) by Gi (D ): We write symbol-
ically

G(D ) = G1(D ) � G2(D ) � � � � � Gs(D )

whereGi (D ) is a matrix overRi (D ) for i = 1 ; 2; � � � ; s: Then
i) G(D ) is polynomial over R[D ] if and only if Gi (D ) is

polynomial overRi [D ] for i = 1 ; 2; � � � ; s;
ii) G(D ) is a generator matrix overRr (D ) if and only if Gi (D )

is a generator matrix over(Ri )r (D ) for i = 1 ; 2; � � � ; s;
iii) G(D ) has a right inverse overR(D ) (or overRr (D ) or over

R[D ]) if and only if Gi (D ) has a right inverse overRi (D )
(or over (Ri )r (D ) or overRi [D ]) for i = 1 ; 2; � � � ; s:

From Theorem 11 follows

Theorem 12: Suppose that the ringR is a direct sum of ideals
R1; R2; � � � ; Rs ; i.e., R = R1 � R2 � � � � � Rs and that a generator
matrix G(D ) over R(D ) has been decomposed into

G(D ) = G1(D ) � G2(D ) � � � � � Gs (D ):

Then
i) G(D ) is basic if and only ifGi (D ) is basic fori = 1 ; 2; � � � ; s;
ii) G(D ) is noncatastrophic if and only ifGi (D ) is noncatas-

trophic for i = 1 ; 2; � � � ; s;
iii) G(D ) is minimal if and only if Gi (D ) is minimal for i =

1; 2; � � � ; s:

Proof:
i) and ii) are obvious; iii) follows from the facts that the abstract

state space ofC relative toG(D ) is a direct sum of abstract state
spaces ofCi relative toGi (D ) for i = 1 ; 2; � � � ; s and that the code
state space ofC at time 0 is isomorphic to the direct sum of code
state spaces ofCi for i = 1 ; 2; � � � ; s:

For a generator matrix that can be decomposed into a direct sum,
we have the following

Theorem 13: Suppose that the ringR can be decomposed into a
direct sum of ideals,R = R1 � R2 � � � � � Rs : If a generator matrix

G(D ) = G1(D ) � G2(D ) � � � � � Gs (D )

of a convolutional code overR is systematic, thenGi (D ) is also
systematic fori = 1 ; 2; � � � ; s:

Proof: If the generator matrix

G(D ) = G1(D ) � G2(D ) � � � � � Gs (D )

has ab � b submatrix whose determinant is a unit inRr (D ), then,
since R(D ) is a direct sum,Gi (D ) must have ab � b submatrix
whose determinant is a unit in(Ri )r (D ) for i = 1 ; 2; � � � ; s:

The following example shows that the converse of Theorem 13
does not hold.

Example 4: The generator matricesG1(D ) = (2 0) and
G2(D ) = (0 3) over 3 and 2, respectively, are both systematic.
However, the generator matrix

G(D ) = G1(D ) � G2(D ) = (2 3)

does not have ab� b submatrix whose determinant is a unit inR(D )
(see Example 3), so that the convolutional code generated byG(D )
is not systematic.

Remark: Note that Theorem 13 implies that if a convolutional
code C = C1 � C 2 � � � � � C s over R is systematic, thenCi is
systematic fori = 1 ; 2; � � � ; s:

Now, if G(D ) is a generator matrix overM , then

G(D ) = G1(D ) � G2(D ) � � � � Gm (D )

where

Gi (D ) = G(D ) mod pe
i ; 1 � i � m:

By the foregoing discussion, the study of codes overM can be
reduced to the study of codes overp : This follows also from the
fundamental theorem of �nite Abelian groups as was already pointed
out in [14], cf. also [15]±[19].

Consider a generator matrixG(D ) over p : We can write

G(D ) = G0(D ) + G1(D )p + � � � + Ge� 1(D )pe� 1

where the entries of allGi (D ) are over ( p )r (D ): Then,
G(D ) mod p = G0(D ): The relation between the generator matrix
G(D ) and G(D ) mod p will be studied next.
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Theorem 14: Let G(D ) be a generator matrix overp : Then
i) G(D ) is catastrophic ifG(D ) mod p is catastrophic and,

for polynomial generator matrices, only ifG(D ) mod p is
catastrophic.

ii) Assuming thatG(D ) is polynomial,G(D ) is basic if and only
if G(D ) mod p is basic.

Proof:
i) Assume thatG(D ) mod p = G0(D ) is catastrophic. Then

we can �nd an input sequenceuuu(D ) which has in�nite weight and
where everyui 2 b

p , such thatuuu(D )G0(D ) has �nite weight. Then
uuu(D )pe� 1 also has in�nite weight and

uuu(D )pe� 1G(D ) = uuu(D )pe� 1(G0(D )

+ G1(D )p + � � � + Ge� 1(D )pe� 1)

= uuu(D )pe� 1G0(D ):

This shows thatuuu(D )pe� 1G(D ) also has �nite weight and hence
that G(D ) is catastrophic.

To prove the converse part whenG(D ) is polynomial, suppose
thatG(D ) is catastrophic. Then there exists an information sequence
uuu(D ) with in�nite weight such thatuuu(D )G(D ) has �nite weight.
We can write

uuu(D ) = uuu0(D ) + uuu1(D )p + � � � + uuue� 1(D )pe� 1

where eachuuui (D ) belongs to p(D )b: Then at least oneuuui (D ) has
in�nite weight. Suppose that

uuu0(D ); uuu1(D ); � � � ; uuuj � 1(D ) (1 � j � e)

have �nite weight anduuuj (D ) has in�nite weight. Then

uuu(D )G(D ) = ( uuu0(D ) + uuu1(D )p + � � � + uuue� 1(D )pe� 1)

� (G0(D ) + G1(D )p + � � � + Ge� 1(D )pe� 1)

= uuu0(D )G0(D ) + ( uuu0(D )G1(D )

+ uuu1(D )G0(D )) p+ � � �

+ ( uuu0(D )Ge� 1(D ) + uuu1(D )Ge� 2(D ) + � � �

+ uuue� 1(D )G0(D )) pe� 1

has �nite weight and the coef�cients ofp0; p1; � � � ; pe� 1 all have
�nite weight. In particular, the coef�cient ofpj , which is

uuu0(D )Gj (D ) + uuu1(D )Gj � 1(D ) + � � � + uuuj (D )G0(D );

has �nite weight. SinceG(D ) is polynomial,

uuu0(D )Gj (D ); uuu1(D )Gj � 1(D ); � � � ; uuuj � 1(D )G1(D )

all have �nite weight. Hence,uuuj (D )G0(D ) has �nite weight showing
that G0(D ) is catastrophic.

ii) If G(D ) is basic, then there exists a polynomial matrixG� 1(D )
such thatG(D )G� 1(D ) = I b whereI b is theb� b identity matrix.
We can write

G� 1(D ) = G� 1
0 (D ) + G� 1

1 (D )p + � � � + G� 1
e� 1(D )pe� 1

whereG� 1
i (D ) is polynomial,0 � i � e � 1: Then

(G0(D ) + G1(D )p + � � � + Ge� 1(D )pe� 1)

� (G� 1
0 (D ) + G� 1

1 (D )p + � � � + G� 1
e� 1(D )pe� 1) = I b

which shows that

G0(D )G� 1
0 (D ) = I b:

Thus G0(D ) = G(D ) mod p has a right polynomial inverse and
hence is basic.

Conversely, assume thatG0(D ) is basic. Then there exists ac � b
polynomial matrixG� 1

0 (D ) over p such that

G0(D )G� 1
0 (D ) = I b mod p:

We will constructc� b polynomial matricesG� 1
1 (D ); � � � ; G� 1

e� 1(D )
such thatG(D )G� 1(D ) = I b where

G� 1(D ) = G� 1
0 (D ) + G� 1

1 (D )p + � � � + G� 1
e� 1(D )pe� 1:

Consider the product

G(D )G� 1(D ) = ( G0(D ) + G1(D )p + � � � + Ge� 1(D )pe� 1)

� (G� 1
0 (D ) + G� 1

1 (D )p + � � � + G� 1
e� 1(D )pe� 1)

= G0(D )G� 1
0 (D ) + ( G0(D )G� 1

1 (D )

+ G1(D )G� 1
0 (D )) p + � � �

+ ( G0(D )G� 1
e� 1(D ) + G1(D )G� 1

e� 2(D ) + � � �

+ Ge� 1(D )G� 1
0 (D )) pe� 1

where the operations are done modulope: We have

G0(D )G� 1
0 (D ) = I b

in p :We can assume that

G0(D )G� 1
0 (D ) = I b+ pK 1(D )+ p2K 2(D )+ � � � + pe� 1K e� 1(D )

in p : Then

G(D )G� 1(D ) = I b + ( K 1(D ) + G0(D )G� 1
1 (D )

+ G1(D )G� 1
0 (D )) p + � � �

+ ( K e� 1(D ) + G0(D )G� 1
e� 1(D )

+ G1(D )G� 1
e� 2(D ) + � � �

+ Ge� 1(D )G� 1
0 (D )) pe� 1

and we can choose

G� 1
1 (D ) = � G� 1

0 (D )( K 1(D ) + G1(D )G� 1
0 (D ))

where the operations are done modulop: Clearly, G� 1
1 (D ) is poly-

nomial and

K 1(D ) + G0(D )G� 1
1 (D ) + G1(D )G� 1

0 (D ) = 0

in p : We can assume that

K 1(D ) + G0(D )G� 1
1 (D ) + G1(D )G� 1

0 (D )

= pL1(D ) + p2L 2(D ) + � � � + pe� 1L e� 1(D )

in p : Then

G(D )G� 1(D ) = I b + 0 p + ( K 2(D ) + L 1(D )

+ G0(D )G� 1
2 (D ) + G1(D )G� 1

1 (D )

+ G2(D )G� 1
0 (D )) p2 + � � �

+ ( K e� 1(D ) + L e� 2(D )

+ G0(D )G� 1
e� 1(D )

+ G1(D )G� 1
e� 2(D ) + � � �

+ Ge� 1(D )G� 1
0 (D )) pe� 1

and we can choose

G� 1
2 (D ) = � G� 1

0 (D )( K 2(D ) + L 1(D ) + G0(D )G� 1
2 (D )

+ G1(D )G� 1
1 (D ) + G2(D )G� 1

0 (D ))

where the operations are done modulop: ThenG� 1
2 (D ) is polynomial

and the coef�cient ofp2 in G(D )G� 1(D ) is 0. Continuing in the
same way, we can choose polynomial matricesG� 1

i (D ); 1 � i �
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e � 1; in such a way thatG(D )G� 1(D ) = I b: Thus G(D ) has a
polynomial inverse and is basic.

Theorem 14 i) implies that, for a polynomial generator matrix
G(D ) over p ; G(D ) is catastrophic if and only ifG(D ) mod p is
catastrophic, which was pointed out by Massey and Mittelholzer in
[1]. The following example shows that for a nonpolynomial generator
matrix G(D ) over p , the catastrophicity ofG(D ) does not imply
catastrophicity ofG(D ) mod p:

Example 5: Let C be a convolutional code over the ringp

generated byG(D ) = 1 + (1 =(1 � D )) p: The in�nite weight input
sequence

u(D ) = (1 � D ) 1 +
D

1 + p
+

D
1 + p

2

+
D

1 + p

3

+ � � �

gives a �nite weight outputu(D )G(D ) = 1 + p and hence the
generator matrix is catastrophic. However,G(D ) mod p = (1) is
noncatastrophic over p :

The following result on systematicity of codes over the ringp
was stated by Mittelholzer in 1993 [3] and can be proved in the same
way as Theorem 14.

Theorem 15: A convolutional codeC is systematic if and only if
it has a generator matrixG(D ) such thatG(0) mod p has full rank
over p :

There is no correspondingly simple relation between the minimality
of the generator matrixG(D ) and that ofG(D ) mod p: An example
is given here of a generator matrix which is not minimal over the
ring p but is minimal over p :

Example 6: Consider the polynomial generator matrixG(D ) =
(1 + pD) over p : This generator matrix is not minimal since
G(D ) is equivalent to the generator matrixG0(D ) = (1) : However,
G(D ) mod p = (1) is minimal over p :

VI. COMMENT

For �elds we usually de�ne convolutional codes for inputs that are
Laurent series, but for general rings we have to restrict the inputs to
be rational functions. However, when considering rings satisfying the
descending chain condition we could allow Laurent series as inputs.
Even for these rings many important properties differ from the �eld
case.
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