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A fissioning muonic atom is represented by two point charges. The time-dependent Schrédinger equation for the muon
in the field generated by the two separating point charges is studied. Results of the study indicate that the muon excitation
probability is of the order of a few percent. Some of the excited states would correspond to orbits around the lighter frag-

ment.

Negative muons are becoming an increasingly use-
ful tool in the study of nuclear fission [1-3]. After a
muon is captured by an atom, it will “cascade down”
through its “atomic” orbitals. During this process
gamma rays are emitted or the nucleus is excited by
inverse conversion. The energy released from the tran-
sitions to the lowest muon orbital may lead to fission
in heavy nuclei. This process is usually denoted prompt
fission because of its short time scale compared to de-
layed fission following the absorption of the muon by
the nucleus.

While in muon absorption the muon is transformed
in an inverse beta process, in prompt fission the muon
will survive the fission process.

A few general remarks are required as to the prompt
fission process. Because the muon binding energy de-
creases with increasing deformation, the muon atom
system will have a higher fission barrier than the con-
ventional atomic system (by about 1 MeV [4]). This
may, for example, lead to new shape isomers. A study
of the fission barrier in muonic systems may also
yield important information about the properties of
the fissioning nucleus, such as the sequences of shapes
assumed by the nucleus on its way to fission, in parti-
cular the deformation of the nucleus at the saddle
point [4].

After prompt fission the muon in most cases ap-
pears to remain orbiting around one of the two fission
fragments. If the motion of the nuclear system were
infinitely slow, that is adiabatic, the muon would al-

ways occupy the orbital of lowest energy and, conse-
quently, follow the heavier fission fragment. In fact
experimental results [2] give indications that the
muon remains with the heavy fragment with the largest
probability. However the motion of the orbiting muon
is probably not adiabatic in the barrier penetration
process. Nor is this the case in the later stages of the
process of fragment repulsion. One therefore expects
that there is a nonnegligible probability of exciting

the muon to higher orbitals. Some of the latter orbitals
would finally lead over to orbit around the lighter|
fragment. One may separate the problem of calculating
the excitation probability of the muon to higher or-
bitals during the fission process into two separate
parts. First, one should calculate the excitation proba-
bility during the penetration of the fission barrier.
Second, one should calculate the contribution to the
excitation probability as the nucleus deforms from a
shape close to the saddle point into two separated
fragments. After the penetration of the barrier the ex-
citation probability is governed by the time-dependent
interaction dH/dr. The latter quantity can be rewrit-
ten (Vg H) + dR/dt in terms of the vector R between
the two fragments. In this quantity the interaction as

a function of separation and the velocity history of
the system both enter critically.

Let us first consider the motion beyond the scission
point. Here the main feature of the evolution of the
system may be understood by considering in some
model the mutual Coulomb repulsion between the two
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fragments. Although the velocity of the system is
larger after scission than before, the overlap of the
muonic wave functions is there very small and the
(b |0H/dt | a) transitional term consequently small.
Therefore one expects the effect on the excitation
probability of the muon from the part of the trajec-
tory preceeding scission to be very important. Because
this contribution depends on the velocity of the fis-
sioning system, it should be sensitive to the effect on
the motion from vicosity and also to the sequences of
shapes assumed by the fissioning nucleus. A very in-
teresting prospect is associated with a possible mea-
surement of the number of muons ultimately following
the heavy and light fragments and of their distribution
in higher orbitals. By comparing such measurements
to the results of very realistic calculations one might
be able to learn about the descent from saddle to scis-
sion of the fissioning system.

To investigate in an illustrative fashion the fissioning

muonic system we employ here only a very simple mod-

el. We thus consider the time-dependent Schrodinger
equation for a muon in the field of two separating
point charges in a basis of two wave-vectors. Follow-
ing the time-honoured methods used in molecular
physics these two basis functions are generated by the
linear combination of atomic orbitals (LCAO) method
[5]. We have thus two point charges Z; and Z;, respec-
tively, at a distance R with masses 4 and 4, (expres-
sed in units of the nucleon mass). The ground state
muon wave functions referring to each separate one
of the two point charges are denoted ¢ and ¢,. To
find the eigenstates of the entire system we consider
the new linear combinations

2
uk(r,R)=’§1 Ckn(R)¢n (k= 1,2),

where 7 refers to the muon position. The coefficients
Cy, are determined from the minimization of

E]Ié = (ulelukV(ukl“k) .

This yields two solutions %4 and u, which are approxi-
mate solutions to the stationary Schrédinger equation

H(f, R) d’k(r’ R) = Ekwk(r’ R) .

For the muonic motion we use in our calculation the
model hamiltonian
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The distances 7, and r, are obviously the distances to
the muon from the two point charges Z; and Z, and p
is the muonic momentum. We calculate |R(f)], the
distance between the two point charges, by considering
the Coulomb repulsion of the two point charges.
Boundary conditions for the separating motion are
discussed below. The influence of the muon on
|R(¢)| is neglected. Thus | R(?)| is predetermined,
based on a purely classical calculation.

In the time-dependent Schrédinger equation

HIR@);ry(r, ) =ik 0y (r, )]0t

R (%) is then considered a C-number.

From energy conservation it is easy to find dR/dt
as a function of R while the explicit relation between R
and ¢ is analytically complicated and therefore seldom
exhibited in the literature. As a point of curiosity one
may cite the solution applicable to two point charges
pushed apart by the Coulombic repulsion

2(R?2 — Rd)V2 + 2R — d]

ta=R2 - RV +3dn [ 7
where
and d is the value of |R | at £ = 0. The quantities 4,
and A, are the masses of the two fragments (expres-
sed in units of the nucleon mass).

Subsequently one makes the Ansatz

V0= 21 a0, RE)
ot
1 [ i
X exp[—ﬁ fEk(t ) dt] .
0
The time-dependent Schrodinger equation is then

equivalent to a corresponding equation for the coef-
ficients a; (1) [6]:

t
ay Ek"En ,)
a = E ex (i ——dt
k n#k Ex — Ey P *Of n

X (W | (VgH) + AR/ ¥,) .




nary 1980

n).

ances to
Zyandp
)|, the
onsidering
ges.

n are

n

ined,

n

| dR/d¢
tween R
e seldom
sity one
charges

2R—d]

ies A
expres-

then
e coef-

1)

&y

Volume 90B, number 3

For (Vg H) we find the following expression

€2 Ay n @2y A n
47T€0 (Al +A2) r% 47T€0 Al +A2 r% .

(VRH) =

We have solved eq. (1) for a; to desired accuracy for
our two-level system by standard numerical methods
for a system of linear differential equations. Thus, the
accuracy of the calculation is, as discussed previously
determined by the Ansatz for the hamiltonian and by
the limited space of two levels only (both relatively
severe approximations). On the other hand, the re-
sulting time-dependent equations are, in principle,
treated exactly. The matrix element (u; |3H/d¢t |u;) -
is calculated by numerical integration. Some care has
to be taken in this integration. For large R-values
there are important contributions to the integral from
region far apart in space, namely the regions around
each point charge. For this reason the numerical inte-
gration procedure has to include more meshpoints in
these regions than elsewhere.

We have studied our illustrative model for a partic-
ular set of parameters that corresponds to fission of
240U. We thus consider the two-point system with
Z1=38,4,;=100,Z, = 54 and 4, = 140. We study
our time-dependent equations for two sets of initial
conditions. The value R = 11 fm, at which point we
start integrating eq. (1), corresponds to the distance
between the centers of mass of two touching spherical
nuclei with Z; = 38,4, =100, Z, = 54 and 4, = 140.

First we solve the time-dependent equation with
la;| = 1.0 and |a, [ = 0.0. This means we assume that
the muon was not excited during the penetration of
the barrier, i.e. the tunneling process is assumed to be
adiabatic. The resulting solution is shown in fig. 1.
The bottom two curves in the figure show the change
in energy of the two basis states # and u, as functions
of the distance R between the two asymmetric point
charges. The lower curve in the upper part of the dia-
gram shows the change in |a, |2, also as a function of
R. We see that |2, |2 fluctuates as a function of R, or
time, with an amplitude of about 0.005.

We also solve the time-dependent equation (1) with
initial conditions determined in another limit. The
two-level occupation amplitudes a4 and @, at the bar-
rier exit point are in this limit calculated in the sudden
approximation. For a barrier of 6 MeV the uncertainty
relation AF - At > 7 gives a time for the penetration

PHYSICS LETTERS

25 February 1980

Time (10'22 s)
10

TT T T T

2
o
3
T
a1y

fag|

005 .

)
wn
Ty
| I

E (MeV)
1
=3

]
>

| | |
10 20 30 40
R (tm)

O T T T T

Fig. 1. The lower part of the figure shows the two lowest
muon energy levels of a two-center point charge system. The
distance between the two point charges is R. For their charge
and mass we have Z; = 38,4, =100, Z, =54 and 4, = 140.
The top part of the figure shows the occupation probability
of the higher level in our two-level system calculated as a
function of R. The integration of the time-dependent
Schrédinger equation is started at R = 11. The two curves for
lag |2 refer to the two sets of initial conditions discussed in
the text.

of the barrier of about 10~22 s which is also approxi-
matively the rotational period of the muon orbital in
our point-charge model. In this model we find for the
overlap between the muon ground-state wave function
and the states at R = 11 fm, the point where we start
integrating eq. (1), that:

@) ={uy(r,R=4fm,Z,=Z, =46,
A=A, =120)|uy(r,R=11fm,Z; =38,
Z,=54,4,=100,4, = 140))|2 = 0.891

and

(d2)2 = {uy(r,R=4fm,Z,=2, =46,
A1=A4)=120)|uy(r{,R=11fm,Z; =38,
Zy=54,4,=100,4, =140)}|2 = 0.058 .

For the muonic ground state orbital we nave used the
two-center potential described previously, with two
equal charges placed 4 fm apart. This choice is made

so as to roughly reproduce the ground state quadrupole
moment for uranium. From the values of the compo-
nents of the muon wavefunction at 11 fm it is clear
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that only half of the probability corresponding to ex-

cited states is located in our truncated two-level space.

The rest of the probability can be said to lie in higher-
lying states. Since we wish to represent all the proba-
bility with our two-level system we put somewhat ar-
bitrarily as initial value a% = E:’._.Zag. Thus as initial
values of ¢y and a, we have

2,=094388 +0+i, a,=0.33029+0"i.

We now proceed to solve the time-dependent
Schrédinger equation with this second set of initial
conditions. The result is given as the top curve of fig.
1. This curve shows the change in g, |2, as a function
of the distance R between the two separating point
charges. We see that the value of |a, 12 fluctuates
around the value 0.1 with an amplitude of about 0.02.
For large values of R the fluctuations disappear and
lay |2 approaches a final value of about 0.12.

One may ask about the relevance of the present
model calculation in a real muonic atom. Since the
point charges will pull the muon ground-state wave
function closer to the fragment centers compared to
a more realistic model, it appears that we have under-
estimated the overlap between the groundstate wave
function at 4 fm with the groundstate wave function
at 11 fm and thus overestimated our initial value for
the excited components of the muon wave function.
On the other hand it seems probable that we have
underestimated the fluctuations in |a, |2 given by the
solution to the time-dependent Schrddinger equation.
This is due to the fact that the use of point charges
yields too large a value of the denominator £}, — E;
and too small a value of the matrix element (u; | 0H/
dH/dt|u;) compared to a more realistic calculation
with extended charges. Thus a; in the time-dependent
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Schrodinger equation will be underestimated. How-
ever, the calculation illustrates some interesting as-
pects of the fissioning muonic system and should give
an order of magnitude estimate of the probability of
exciting the muon from the lowest orbital. An excita-
tion probability exceeding a few percent is indicated
by the results of the above calculation.

The problem is obviously complicated by other
processes not described by the simple two point-
charge model. One has, for instance, observed experi-
mentally that after fission the muon has sometimes
been captured by an element lighter than any of the
two fission fragments [2]. It is therefore valuable in
the future to perform a more sophisticated calculation
with extended charges and a considerably larger basis.
Since the excitation probability is sensitive to the
velocity and the path followed in nuclear deformation
space in the initial stages of the separation process,
such a calculation and a comparison of the results with
experimental data may yield information on nuclear
viscosity and the shape of the scission configuration.

We are grateful to P.G. Hansen for many valuable
discussions.

References

[1] W.D. Fromm et al., Nucl. Phys. A278 (1977) 387.

[2] Dz. Ganzorig et al., Phys. Lett. 77B (1978) 257.

[3] W.W. Wilcke, M.W. Johnson, W.U. Schréder, J.R. Huizinga
and D.G. Perry, Phys. Rev. C18 (1978) 1452.

[4] G. Leander and P. Moller, Phys. Lett. 57B (1975) 245.

[5] L. Pauling and E.B. Wilson, Introduction to quantum
mechanics (McGraw-Hill, New York, 1935) p. 326 ff.

[6] L.L Schiff, Quantum mechanics (McGraw-Hill, New York,

1949) p. 207 ff.

e,

n e




