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Systematic Feed-Forward Convolutional Encoders Are
Better than Other Encoders with an -Algorithm Decoder

Harro Osthoff, John B. Anderson,Fellow, IEEE,
Rolf Johannesson,Fellow, IEEE, and Chin-foo Lin

Abstract—Consider nonbacktracking convolutional decoders that keep
a fixed number of trellis survivors. It is shown that the error performance
of these depends on the early part of the distance profile and on
the number of survivors kept, and not on the free distance or the
details of the code generators. Particularly, the encoder may be feed-
forward systematic without loss. Furthermore, this kind of encoder solves
the correct path loss problem in reduced-search decoders. Other kinds
do not. Therefore, with almost any other decoding method than the
Viterbi algorithm, systematic feed-forward encoders should be used. The
conclusions in this correspondence run counter to much accepted wisdom
about convolutional codes.

Index Terms—Correct-path loss problem, list decoder,M -algorithm
decoder, systematic feed-forward encoders.

I. INTRODUCTION

Growing evidence in recent research has shown that the error
performance of a channel decoder depends primarily on the decoder’s
resources, and only secondarily on the qualities of the error-correcting
code itself, such as its free distance and the state-space size of
its minimal encoder. It is well established, for example, that the
performance of a sequential decoder of the Fano or stack algorithm
type depends on how many code trellis paths the decoder can visit.
The precise choice of the code matters little, so long as the code has
a good distance profile and a reasonable memory.

In a traditional sequential decoder, the design begins by assuming
a long code and by assuming that the decoding of a data symbol
will be correct with certainty; an analysis then finds the expected
number of code trellis paths (or tree paths, or tree branches) that are
required to do this. So long as the code rate is less than the cutoff
rate, this expectation is finite, but the actual path number outcome
may on occasion exceed any bound, a phenomenon called erasure.
The working storage for these paths and the speed in which they may
be viewed comprise the resources of the decoder, and it is the need
for these that depends weakly on the code.

In more recent times, this design philosophy has often been
reversed. Rather than fix the error probability at zero, the storage
of the paths is fixed; by means of analysis and measurement, the
error probability or the number of correctable errors is found. Two
examples of this philosophy are the Viterbi algorithm and theM -
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algorithm (list decoder). In the first, the storage is fixed to the encoder
state-space size, and depends therefore critically on the code. In
the second, the storage is fixed atM paths, independently of the
code. Decoders of theM -algorithm type, whose storage is fixeda
priori , show a strong independence between error performance and
code.

The purpose of this correspondence is to relate the storage and
error performance of simple breadth-first decoding of convolutional
codes, and to investigate how dependent they really are. We will
show that the important aspect of a code is the early growth of its
distance profile [1], and that apart from this, the error performance
of M -algorithm type decoders depends to a first approximation
on their storage only. We do this by two methods, for best-dfree,
QLI [2], and feed-forward systematic encoders. First, we construct
decoders and test them over a simulated binary-symmetric channel
(BSC); second, we estimate error performance by counting the error
sequences that each decoder corrects. All of these turn out to have
the same event error performance, so long as the path storage and
their distance profiles approximately match. Conversely, codes with
markedly different distance profiles have markedly different decoder
error rates.

As a consequence, an encoding by a feed-forward systematic
encoder with a proper distance profile decodes incorrectly about
as often as with any other encoder in a fixed-storage decoder.
Such encoders are easily designed. More important, they address a
major shortcoming of convolutional decoders that do not search the
entire code trellis. These decoders occasionally lose the correct path
completely from the storage and need a long time to find it again,
an event that leads to a long error burst in the estimated data. feed-
forward systematic encoders make it easy to get the correct path at
least back into the storage, and from there, correct decoding rapidly
follows. Consequently, they should perform much better than other
encoder types with a reduced-search trellis decoder, and we show in
later sections that this is indeed the case.

The phenomena in this correspondence are easiest to see when the
test data are presented in terms of an underlying Gaussian channel.
Our channel can be thought of as an antipodal binary modulation
(such as binary PSK) passed through additive white Gaussian noise,
modeled as a BSC. For noise densityN0=2, data bit energyEb, and
code rateR, the crossover probabilityp in the BSC is given by [3]

p = Q( 2REb=N0) (1)

with

Q(x) (1=
p
2�)

1

x

exp(�u2=2) du; x � 0: (2)

Although the decoder sees a BSC, its error performance is a function
of Eb=N0 through these formulas, and the performance takes on the
familiar “waterfall” shape when plotted againstEb=N0 in decibels.
Error performance has two meanings in this correspondence. The
error event probabilityPev of a decoder is the probability that a trellis
error begins at a certain trellis level, given that decoding has been
correct so far. Trellis error events begin when the decoded trellis
path splits from the correct path and end when it merges again.
Events can be short, if for example the decoder chooses a nearest
neighbor in the trellis, or they can be long. The second measure
of decoder error in this correspondence is the overall bit-error rate
(BER). Most decoder properties are easiest to see fromPev. Pev is
thus an important analysis tool, although, of course, BER remains a
measure of practical importance.

Data-bit errors are caused, of course, by error events, but the BER
andPev can differ widely, depending on how many data-bit errors
occur in the events. After losing the correct path, a reduced-search
decoder can flounder about for an indefinite number of trellis levels
trying to find it again. During this time, the BER is essentially 50%,
and the BER is only barely related to thePev, which is defined
independently of any correct-path loss event. We will show that the
choice of a feed-forward systematic encoder solves the correct-path
loss problem.

As we have mentioned, much of the recent work in reduced-
search decoding focuses on decoders with fixed storage or with some
other strict limitation to the search. Early work onM -algorithm
convolutional decoders was performed by Zigangirov and Kolesnik
[4]. Simmons and Wittke [5], Aulin [6], Balachandran [7], and
Palenius [8], among others, have applied theM -algorithm to CPM
modulation codes. They all report asaturationphenomenon, in which
the plot of Pev versusEb=N0 improves steadily withM only
up to a certain smallM , after which there is little improvement.
In the removal of intersymbol interference with theM -algorithm,
Seshadri and Anderson [9], and Gozzo [10], also find an even stronger
saturation effect. The effect appears as well in decoders whose search
is confined to the range of path metrics, rather than by a limit to the
number of paths. Aulin has discussed vector Euclidean distance and
some other related matters in [11] and [12].

In our previous work [13], we treatM -algorithm decoding of
convolutional codes over the BSC. That work reports the saturation
phenomenon, but reports a new one as well. For the QLI convolu-
tional encoders tested andM below the saturation value, thePev

versusEb=N0 plot does not depend on the encoder, but only onM .
Our purpose now is to extend this work and determine what quality
of a convolutional code, if any, sets thePev, whenM is below the
saturationM .

Since theM -algorithm and its strict limit to path storage play
a central role in the correspondence, we summarize the state of
knowledge about it here. A practical implementation keeps in storage
M paths of lengthtD, wheretD, the decoderdecision depth, is the
number of trellis levels behind the front of the search at which a
data bit is released as output. In each basic cycle of the algorithm, a
data bit is released attD behind the front, all paths are extended one
trellis level deeper, and the bestM survivors are retained. We also
delete any paths that do not correspond to the released data bit and
that represent state duplications of a better path in storage, although
these features do not much change the decoder performance. Further
implementation details appear in [3].

The proper value fortD (see [3] or [14]) for nonbacktracking
decoders and known, concrete codes is approximately

tD � 2e=�c (3)

whereR = b=c is the code rate,e is the number of errors the decoder
is assumed to correct, and� is the Gilbert–Varshamov parameter, i.e.,
the solution of

hB(�) = 1�R (4)

wherehB(�) is the binary entropy function. We use thistD in our
decoders, although considerably shorter values may be used without
compromisingPev very much. Regarding the size ofM , certain
properties are known. If the design of the decoder is to guarantee
the correction of anye errors in the lengthtD, a bounded- distance
decoder(BDD) design, thenM must satisfy [15]–[17]

M � (2
1�R � 1)

�e
: (5)
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On the other hand, if the design specifies that the decoder must
achieve a certainPev, then the path numbers are entirely different;
this is discussed in [3] and [18].

It is well known that a good computational performance for
sequential decoding requires a rapid initial growth of the column
distances. This led to the introduction of thedistance profile[1]:

Definition: Let C be a convolutional code encoded by a minimal-
basic generatorG [19] of memorym. The (m+ 1)-tuple

ddd
p = d

c
0; d

c
1; � � � ; d

c
m

wheredcj ; 0 � j � m; is the jth-order column distance ofG, is
called the distance profile of the codeC.

A generator matrix of memorym is said to have a distance profile
dddp superior to a distance profiledddp0 of another generator matrix of
the same rateR and memorym, if there is somel such that

d
c
j

= dc0j ; j = 0; 1; � � � ; l� 1
> dc0j ; j = l:

(6)

Moreover, a convolutional code is said to have anoptimum distance
profile (ODP) if there exists no generator matrix of the same rate and
memory whose code has a better distance profile. An ODP generator
causes the fastest possible initial growth of the minimal separation
between the encoded paths diverging at the root in a code tree.

Furthermore, it has been shown [20] that there exists a binary, rate
R = b=c, time-invariant convolutional code with a generator matrix
of memorym whose column distances satisfy the inequality

d
c
j � �c(j + 1) (7)

for 0 � j � m, and where� is the Gilbert–Varshamov parameter.
From (7) it follows that at lengthtD = j+1 we can have a distanced
between paths out of a trellis node that is at least�ctD, or equivalently

tD � d=�c: (8)

This again suggests rule (3) for the decoder decision depth.
The organization of the correspondence is as follows. In Section II

we give the observedPev versusEb=N0 for anM -algorithm decoder
with best-dfree, QLI, and feed-forward systematic encoders, and find
that Pev depends only on the distance profiles andM . In Section
III we estimatePev by an error sequence counting argument, and
come to the same conclusion. Section IV compares thePev of theM
and Viterbi algorithms. In Section V we turn to the BER, a quantity
that depends critically on how the decoder recovers from losses of
the correct path; we conclude that only the systematic encoder can
improve upon the Viterbi BER.

II. DISTANCE PROFILE AND M :
SIMULATIONS

In this section we will establish by tests of an actual en-
coder/decoder that the error event performance of anM -algorithm
type decoder depends for the BSC almost entirely on the distance
profile and apparently not on the details of the code generators or
on the free distance. The tests measure the error event frequency,
as discussed in Section I, and thus do not measure the efficiency of
recovery from an error event (this is studied in Section V). (In the
following simulations we used frames consisting of 1024 information
bits. The number of simulated frames was chosen such that at least
100 distinct error events occurred; for example, with BSC crossovers

Fig. 1. Event error probabilities observed in tests of three different types of
encoders with approximately the same distance profiles.

G11 = (4000000 7144655);m = 20; dfree = 13;
G12 = (6055051 4547537);m = 20; dfree = 22;
G13 = (7404155 5404155);m = 20; dfree = 18:

p = 0:037 and 0:033, the numbers of frames were respectively
250 000 and 500 000 or more. In addition, there were selected tests
of very long frames to confirm that catastrophic events occur with
negligible probability.)

Fig. 1 plots the observedPev againstEb=N0 for a systematic and a
nonsystematic encoder that have the same distance profile, as well as
a best-dfree QLI encoder, whose distance profile is approximately the
same. All encoders have the same memory, which means that they all
use the same resources. At theM ’s in the figure(16; 32; 64; 128)
the difference in the measuredPev is statistically insignificant across
the three encoders. This occurs despite the fact thatdfree varies
widely among the three encoders. We have noticed similar behavior
for smallerM ’s in our earlier work [13].

A very different result occurs when encoders with widely varying
early distance profiles are tested. Fig. 2 compares the observedPev

for the memory 12 best-dfree QLI encoder, decoded withM = 32,
to Pev for the encoder with both generators reversed. This reversal
creates an encoder with the samedfree, but with a distance profile
that develops late in the trellis rather than early. Despite the identical
free distance,Pev for the reversed encoder is nearly tenfold worse.

Fig. 3 comparesPev tests atM = 32 for a sequence of five
encoders, all withdfree = 10, each of whose distance profile
successively underbounds the others. The result is a sequence of
widely varyingPev curves arranged in the same order.

Almost all the variation in decoderPev for the encoders that we
tested can be traced to variations in the early distance profile. It is
reasonable that variation later in the distance profile might affectPev

for largeM , but theseM are of less practical interest. The following
hardly affectPev: The type of encoder (systematic or not, QLI or
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Fig. 2. Event error probabilities observed in tests of a QLI encoder and the
corresponding reversed encoder when decoded withM = 32.

G21 = (76414 56414);m = 12; dfree = 14;
G22 = (60574 60564);m = 12; dfree = 14:

not), the free distance, the encoder memory. Depending onM , the
last two must exceed a minimum threshold.

As a final example, we compare a nonsystematic encoder to its
equivalent systematic encoder. Consider the memorym = 31 QLI
ODP nonsystematic convolutional generator matrix (octal notation)
Gnonsys = (74041567512 54041567512) with dfree = 25. By long
division of the generator polynomials and truncation after degree
m, we obtain the memorym = 31 ODP systematic convolutional
generator matrixGsys = (40000000000 67115143222) with dfree =

16. These two generator matrices are equivalent over the first memory
length, and consequently they have the same distance profile. In Fig. 4
we compare for variousM the error event probabilityPev observed
at the root of the code tree for these two encoders. The outcomes of
the two simulations are virtually identical at eachM .

III. D ISTANCE PROFILE AND M :
COUNTING ESTIMATE

Because the error rates among different encoders with the same
distance profile are so close, a more accurate measurement than
experimental observations is needed forPev. Also, experiments do
not give accurate estimates at smallPev. We therefore estimatePev
combinatorically by counting the number of channel error sequences
that can lead to a decoding error in the first data symbol. Let the
BSC crossover probability bep, the decoder decision depth betD
trellis levels, ornD = ctD bits, and suppose the encoder,M , and
tD are sufficient to guarantee the correction of all combinations ofe

or fewer channel errors. Furthermore, for thisM -algorithm decoder
suppose thatN(d) channel error sequences of Hamming weightd can
potentially lead to decoder error. Then the error event probability is

Fig. 3. Simulated event error probabilities observed in tests of a set of
systematic encoders, each of whose distance profiledddp successively under-
bounds the others, when decoded withM = 32. The heavy line is the ODP
feed-forward systematic encoderG31 which always performs best.

G31 = (400000 714474);m = 15; dfree = 10;
dddp = (2;3; 3; 4; 4; 5; 5; 6; 6; 6; 7; 7; 8; 8; 8; 8);

G32 = (400000 552234);m = 15; dfree = 10;
dddp = (2;2; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 7; 7; 8; 8);

G33 = (400000 447254);m = 15; dfree = 10;
dddp = (2;2; 2; 3; 3; 3; 3; 4; 5; 6; 6; 6; 6; 7; 7; 7);

G34 = (400000 427654);m = 15; dfree = 10;
dddp = (2;2; 2; 2; 3; 3; 4; 5; 5; 5; 5; 5; 5; 6; 6; 6);

G35 = (400000 417354);m = 15; dfree = 10;
dddp = (2;2; 2; 2; 2; 3; 4; 5; 5; 6; 6; 6; 6; 6; 6; 7)

.

overbounded by

Pev �

n

d=e+1

N(d)p
d
(1� p)

n �d
: (9)

The remaining task is to count the sequences that can lead to decoder
error. This is done by a search of the decoder trellis withM paths
retained, once for each candidate error sequence. As the search
progresses, at each level there will be a certain number of trellis
paths at or below the Hamming distance of the correct path. If this
number never exceedsM , the correct path cannot be dropped, it
eventually is closer to the received path than any incorrect-subset
path, and decoding of the first trellis branch is correct with certainty.
If the number exceedsM , the correct path can be worse thanM
paths at some trellis level, or it can be tied for worst among theM .
In either case, we count the error sequence in the totalN(d), which
makes (9) an overbound.

It can happen that the errors in a sequence concentrate later in the
sequence, and because the decoder keeps onlyM paths, all incorrect
subset paths are dropped before the errors are reached. In this case,
correct decoding of the first symbol is certain; the reduced search has
in fact rescued the decoder, so far as the first branch is concerned. If
the candidate error sequences are tested in the right order, most can
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Fig. 4. Event error probabilities observed in tests of a systematic and
nonsystematic encoder that are equivalent over the first memory length.

G41 = (40000000000 67115143222);m = 31; dfree = 16;
G42 = (74041567512 54041567512);m = 31; dfree = 25:

be skipped over for this reason and the counting becomes a relatively
efficient procedure.

If the correct path fails to be unquestionably within the bestM
paths, the most likely event is that it is one Hamming unit too heavy
and that it is therefore tied with others as a candidate to be dropped.
We assign a probability of1=2 to the event that the tie-break keeps
the correct path; we thus apply a factor of1=2 to (9). Finally, the
tail of (9) beyond, say, weightw is easy to compute, if we assume
a decoder error is certain

Ptail = 1�

w

d=0

nD!

(nD � d)!d!
p
d
(1� p)

n �d
: (10)

Beyond a certainw, this expression decays rapidly. In order to reduce
the calculation ofN(d), it can be substituted for the tail in (9) at the
earliest convenient moment; the effect will make (9) a little more of
an overbound.

We turn now to results obtained with (9). Fig. 5 plots the counting
estimate ofPev for another collection of encoders with similar good
distance profiles and relatively smallM . This time, the encoders are
the best-dfree encoders of memories4, 6, and10, in addition to an
ODP feed-forward systematic encoder, denoted ODP-FFS. ThePev

estimates are almost identical for the sameM , and in fact the traces of
the encoders resemble the intertwined strands of a rope. We claim this
is because the early ranges of the distance profiles are very similar.

The same progression occurs for these encoders in the counting
estimate, as shown in Fig. 6, which treatsM = 4; 8; 16; 32. Oc-
casionally, the ordering of a single pair of encoders reverses at a
particularM (e.g., atM = 4, the order isacbde). Overall, however,
the pattern is clear: A nested set of distance profiles leads to a nested
set of Pev curves.

Fig. 5. Counting estimate of the event error probabilities for a set of encoders
with different memories but with similar early ranges of the distance profiles.

BDF10 = G51 = (4672 7542); m = 10; dfree = 14;
BDF6 = G52 = (554 744); m = 6; dfree = 10;
BDF4 = G53 = (46 72); m = 4; dfree = 7;
ODP-FFS= G54 = (4000 7153); m = 11; dfree = 9:

Fig. 6. Counting estimate of the event error probabilities for the same
encoders as in Fig. 3.

a = G31; b = G32; c = G33; d = G34; ande = G35:

IV. COMPARISON OF THEM AND VITERBI ALGORITHMS

The object of a reduced-search decoder is to reduce the survivor
number—and hopefully, the computation—for the same error perfor-
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Fig. 7. Observed event error probabilities for a nonsystematic encoderG71

with theM -algorithm and three different best-dfree nonsystematic encoders
G71; G72; G73 with Viterbi decoders.

G71 = (4734 6624); m = 9; dfree = 12;
G72 = (712 476); m = 7; dfree = 10;
G73 = (561 753); m = 8; dfree = 12:

mance. We have shown thatPev for a decoder of theM -algorithm
type will depend almost entirely on the distance profile, but we have
not shown how much better it might be than the Viterbi algorithm
(VA) for a given number of survivors. Actually, the answer depends
strongly on whether the error criterion is bounded distance or error
rate.

We have already explored the BDD criterion for all rates in an
earlier paper [15]. At rate1=2, for example, convolutional codes that
correcte or fewer errors closely follow the ruleM � (1 +

p
2)e �

(2:414)e, while the VA requires state size� 4e; i.e., the disparity in
survivors grows exponentially as� (1:7)

e.
If the decoder is to be judged by itsPev, the disparity turns out to

be much less. At very largeEb=N0, the comparison must track the
BDD result, since the lightest weight uncorrected error sequence will
dominate thePev calculation. At relatively highPev, we show the test
results in Fig. 7. Nonsystematic best-dfree encoders are compared; the
M -algorithm decodes them = 9 encoder atM = 16; 32; 64; 128,
while the VA works with the three encoders of memory7, 8, and9,
whose survivor numbers are 128, 256, and 512. Some study of the
figure will show that the VA requires somewhat more than twice the
survivors for the samePev.

Fig. 8 aims at relatively lowPev and is based on the counting
estimate. The VA error event probability is computed from [3, p. 223]

Pev;va

d�d

�(d)[4p(1� p)]
d=2 (11)

in which �(d) is the number of paths of weightd in the trellis. The
figure works by comparing the VA with nonsystematic ODP encoders
to anM -algorithm (MA) that retains1=4 the survivors; the MA works

Fig. 8. Counting estimates of the event error probabilities for the
M -algorithm decoding of the ODP feed-forward systematic encoderG81

with M = 4; 16;32, and 64 and for the four-fold larger Viterbi decoder
of sizes 16;64;128; and 256. The Viterbi algorithm (VA) encoders are
ODP feed-forward nonsystematic with memorym = 4; 6; 7, and 8. The
quarter-sizeM -algorithm has lower error probabilities above VA size128.

G81 = (400000 671166); m = 17; dfree = 12;
G82 = (62 56); m = 4; dfree = 7;
G83 = (634 564); m = 6; dfree = 10;
G84 = (626 572); m = 7; dfree = 10;
G85 = (751 557); m = 8; dfree = 12:

always with them = 16 ODP systematic encoder(400000;671166).
For the combination (VA size16)/(MA size 4), for which the VA uses
anm = 4 ODP encoder, the VA is 0.5 dB better. For the combination
(VA size 64)/(MA size 16), the VA gain drops to about 0.2 dB. By
the time (VA size256)/(MA size 64) is reached, the MA is actually
a little better. Note that all the codes in the figure have nearly the
same early distance profile.

As one would expect, we are seeing here that the VA/MA com-
parison begins to feel the influence of the bounded distance case as
Pev drops. We can predict that the VA will require 2–4 times the
survivors that theM algorithm does, depending on the decoder error
rate. It is widely acknowledged that the MA executes 1.5–2 times
the calculations of the VA per survivor kept, so that this rate of 2–4
needs to be reduced somewhat. We can claim that overall the MA
has up to half the cost of the VA, whenPev is the criterion.

V. THE PATH LOSS ISSUE

With the probability of error design criterion, more errors than are
guaranteed corrected by the list sizeM may occur sometimes, or
even often. These errors may lead to loss of the correct path from
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Fig. 9. Bit error probabilities observed in tests of the three types of encoders,
all of memorym = 20.

G91 = G11; G92 = G12; andG93 = G13.

the decoder memory, an event that the decoder must deal with. Tests
show that the overall bit-error rate of anM -algorithm decoder with
a nonsystematic encoder is much worse than the same decoder with
a systematic encoder having a similar distance profile. Yet the error
event rate is almost identical. The reason is that once the error event
occurs the rest of the frame almost always follows an incorrect trellis
path. This is the correct-path loss problem. Tests show that with
systematic encoders theM decoder quickly recovers a lost correct
path, and can even outperform the Viterbi decoder that works with a
matching nonsystematic encoder. An example is shown in Fig. 9,
which compares the BER of systematic, nonsystematic, and QLI
encoders atM = 16 and 128. All have approximately the same
initial distance profile. The free distance of the systematic encoder is
by far the least, yet its BER is more than ten times better.

Fig. 10, which is a companion figure to Fig. 7, compares theM
and Viterbi decoders in terms of the BER measure. It shows that
theM algorithm is again 2–4 times more efficient than the Viterbi
algorithm in terms of survivor numbers, just as it was against thePev

measure, but only when the encoder is systematic.
Fig. 11 shows both thePev and BER for some systematic and

nonsystematic rateR = 2=3 encoders whose memories and early
distance profiles are similar (the nonsystematic encoder has much
larger dfree). As we saw with rateR = 1=2, the Pev ’s for both
encoders are almost identical at the sameM , but the BER’s are
grossly different. Only the systematic encoder leads to an acceptable
decoder BER.

Many other demonstrations of the superiority of feed-forward
systematic encoders may be seen in [21]. Apparently, the only
advantage of nonsystematic (and feedback) encoders is the larger
dfree they offer at a given encoder state-space size. Yet this extra
distance seems to have almost no effect onPev or the BER. Nor

Fig. 10. Comparisons of the bit error probabilities observed indecoder tests.

G101 = G11;
G102 = (712 476); m = 7; dfree = 10;
G103 = (561 753); m = 8; dfree = 12;
G104 = (4734 6624); m = 9; dfree = 12:

does it change theM needed to correcte errors, so long ase falls
within the powers of the systematic encoder.

A suggestion of why systematic encoders offer rapid recovery of
a lost correct path may be found by considering the trellises of rate
R = 1=2 random systematic and nonsystematic encoders. Suppose
the correct path is the all-zero one and no errors occur for a time, and
consider an arbitrary trellis node. The0-branch (the one that inserts
a zero into the encoder shift register) is the one leading back to the
correct path. For a systematic encoder, the distance increment of this
“correct” branch is0:5 on the average, while the incorrect branch has
increment1:5. For a nonsystematic encoder, these average increments
are both1, and give no particular direction of the search back to the
correct path. Finally, we should use a feed-forward, rather than a
feedback, systematic encoder, because a driving sequence of zeroes
does not in general lead back to state0 with the feedback encoders.

VI. CONCLUSION

We have given strong evidence that only feed-forward systematic
encoders should be used with reduced-search decoders. To review
the train of logic, we first showed that nonbacktracking decoder error
performance depends almost entirely on the number of survivors kept
and on the early part of the distance profile. We then compared tests
of systematic and nonsystematic encoders with the same distance
profile, and showed that because the systematic encoder allows quick
recovery of a lost correct path, it has a much better overall error rate
than a nonsystematic encoder has. Since both kinds of encoders have
the same error rate in the absence of correct-path loss, systematic
encoders are clearly superior to nonsystematic ones.

We have also reached other conclusions. Apparently, the survivor
numbers required in a bounded-distance decoder also depend only
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Fig. 11. Observed bit and event error probabilities forR = 2=3 systematic
and nonsystematic ODP encoders.

G111 =
40000 00000 57371
00000 40000 63225

;m = 14; � = 28; dfree = 8;

G112 =
51630 25240 42050
05460 61234 44334

; m = 12; � = 23; dfree = 16.

very weakly on free distance, encoder state-space size, and the precise
digits of the code generators; instead, they are simply and directly
related to the desired error correction.

While we have studied only the performance of theM algorithm
in this correspondence, the estimates of the maximum BDD storage
size such as (5) are known to hold for any breadth-first decoder. In
addition, our conclusions about distance profiles in Sections II and
III are known to apply to backtracking decoders [22]. We can thus
conjecture that our conclusions extend quite widely.

The conclusions here do run counter to much accepted wisdom
about convolutional codes. For instance, much of the search for
good codes has focused on maximizing the free distance for a given
encoder memory. Yet we show that the free distance has almost no
effect on the performance of a reduced decoder with a fixedM
survivors, so long as the distance exceeds a certain minimum. Second,
the widespread use of the Viterbi decoder has motivated the design
of codes with the smallest possible encoder state spaces, but the
complexity of a reduced-search decoder for a given error performance
depends hardly at all on the encoder state-space size, again so long as
it exceeds a certain minimum. We have shown that the BER of anM -
algorithm decoder is several times better than a Viterbi algorithm, for
the same decoder complexity. There is thus little practical reason to
search at length for encoders, e.g., feedback encoders, with a minimal
encoder state space or with the absolute largest free distance. What
really matters is the early distance profile, and the search for a good
profile can concentrate on systematic feed-forward encoders only.

While we have tested only a handful of code rates, the mechanism
of how decoders perform seems clear and not really difficult. With
just a little prudence in the encoder design, error performance simply
depends on how many survivors are stored in the decoder.
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