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On Distributed Optimal Control of Traf ¢ Flows in
Transportation Networks

Christian Rosdah| and Gustav Nilssdn Giacomo Comb?

Abstract—We propose and analyze distributed computation In this paper, we follow the approach in [8] and consider
algorithms for nite-horizon optimal control problems in trans- formulations of the DTA and FNC problems in network
portation networks. We model traf c ow dynamics by the ow dynamics modeled by theCell Transmission Model

cell-transmission model and focus on two problems: system- . -
optimum dynamic traf ¢ assignment (where the routing is part (CTM) [9], [10] and their exact convex relaxations gener-

of the optimization) and freeway network control (where the @lizing [6] and [11]. Our main contributions are distributed
routing is exogenous and the optimization is con ned to speed optimization algorithms solving such convexi ed DTA and
limits and ramp-metering controls). While these are non-convex FNC problems, based on the Alternating Direction Method of
problems, we focus on some recently proposed provably exact Multipliers (ADMM) method [12]. The proposed algorithms

convex relaxations and apply Alternating Direction Method of L .
Multipliers techniques. We present fully distributed iterative al- are fully distributed, in the sense that each road segment only

gorithms and implement them on some transportation network N€eds information from its neighboring segments to com-

testbeds, testing their convergence speed and accuracy. pute the optimal speed limit, ramp-metering signal or route
choices for the outgoing vehicles. Moreover, our method
|. INTRODUCTION is scaleable, so when the controlled network grows, only

segments connected to the newly built area need to update

With the pervasive diffusion of interconnected GPS-basegheir algorithms. We then present numerical implementations
devices and novel intelligent traf c control actuators, anchf these algorithms for both the DTA and the FNC problem.
with connected and autonomous vehicles around the corner,Another distributed algorithm for solving the considered
it is now possible to both obtain traf ¢ state data and provideyTA problem is proposed in [13]. Except for that both
real-time route guidance to drivers. Ideally, this data, togethefiethods are inspired by ADMM, the approaches are quite
with traf ¢ control and route guidance possibilities, shouldgitferent. In [13], the constraints on the decision variables
be used to reduce congestion, in order to decrease both traged not included in the Lagrangian, and must thus instead be
times for the users and pollution. This has renewed th@ken into account when solving the distributed subproblems.
interest of the control systems community for the analysighis allows for dividing the the decision variables into two
and synthesis of transportation networks. groups and performing the Lagrangian minimization in two

Two classical optimal traf ¢ ow control problems are the steps. In contrast, our method includes the constraints in the
Dynamic Traf ¢ Assignment (DTAgnd theFreeway Network Lagrangian. By performing the Lagrangian minimization in
Control (FNC) problems. The former, originally introduced more steps, this still allows the algorithm to be distributed,
in [2], [3], has been widely studied by the transportationwhile each subproblem can be solved easily and ef ciently.
research community [4]. In itsystem-optimurversion (as The paper is organized as follows. In the rest of this section
opposed to the user-optimum framework), it entails theue will introduce some basic notation. In Section Il we
minimization of a global cost of the whole network assumingresent the dynamical model we use for the transportation
that one has the ability to control the drivers' route choicegetwork together with the optimization problems we want
(something that might be achievable, e.g., through route solve and their convex relaxations. In Section lll, the
guidance with GPS unit, or proper incentives and pricing). ldistributed algorithm is presented, and simulations of it for
the latter, see, e.g., [9], [6], [7], the traf ¢ ow in the network one DTA problem and one FNC problem are shown in
is controlled by variable speed limits on the freeways angection IV. The paper is concluded in Section V.
ramp-metering to achieve a system optimal ow in the We letR, denote the (non-negative) reals. For aAet
network. we denote the vector indexed By asRA, . We letG =

(V;E) denote a directed multigraph, wheeis the set of
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we present exact convex relaxations of these problems and
prove their tightness, i.e., that every optimal solution of the
relaxed problem can be mapped into an optimal solution of
the original problem. Both the presented setup and tightness
results are to be considered the discrete-time analogue of [8].
We model the transportation network topology as a di-
rected multigraphG = (V;E), whereV is the set of nodes Fig. 1.
andE is the set of links. Every link 2 E is directed from
its tail node ; 2 V to its head nodé; 2V nf ;g. Notice
that we allow for the possibility of parallel links, i.e., links capacity, and supply function of a cell can be interpreted as
with the same tail node and head node, hence the prethe rising, constant, and decreasing parts of a fundamental
in “multigraph’, but we do not allow for sel oops, i.e., links diagram. A standard case is illustrated below.
whose head node coincides with its tail node. Eachiliake Example 1:Consider a non-onramp cdll2 E n R with
represents aell, i.e., a portion of road. One particular nodelinear uncontrolled demand functia(x;) = vix; and af ne
W 2 V represents the external world, with cellsuch that supply functions;(x;) =  wix; + x{"w;. This leads to a
i = w representing onramps and cellsuch that' ; = w  standard trapezoidal fundamental diagram (see Fig. 1). Here,
representing offramps. We shall denote by the constants; > 0 andw; > 0 are referred to as the free-
ow speed and the shock-wave speed, respectively.

traf ¢ volume

X{am

Trapezoidal fundamental diagram in Example 1.

R=fi2E: = wg; S=fi2E: ! =wg; o
Then, the controlled demand function is set equal to
the sets of onramps and offramps, respectively. Throughout, . i
di(xi;ui) =min fdi(xi);uiCig;  i2R 1)

we shall assume that every link2 E lies on a cycle in
G that passes through node This assumption amounts to on the onramp cells and to
saying that every cell is reachable from at least one onramp . ) .
an)él that from every cell at least one offramp can be reached. di (xi; ui) = min fuidi(xi); Cig; i2EnR (2
The network topology is typically illustrated by omitting the on the non-onramp cells. Equation (1) is to be interpreted as
external world nodav and letting sources have no tail nodethe possibility of implementing ramp-metering by setting up
and sinks have no head node. We shall denote the setth& maximum out ow from an onramp2 R to an arbitrary
adjacent pairs of cells by = f(i;j ) 2 E2 : i ="!i6 wg, valueu;C; between0 and the maximum ow capacity;.
so that direct ow from a cell to another celj is possible On the other hand, (2) is to be interpreted as the possibility to
only if (i;j ) 2 L . We let the exogenous in ow to an onramp control the speed limit in a non-onramp ceby rescaling the
i 2 R be denoted by ; 0 and let 0 denote the uncontrolled demand functiod (x;). Indeed, for trapezoidal
out ow from an offrampi 2 S towards the external world. fundamental diagrams as in Example 1, (2) is equivalent to
Conventionally, we shall set; = 0 for every non-onramp the modulation of the free- ow speedtv;.
celli 2 EnR, and ; =0 for all non-offramp celld 2 EnS. We assume that the system is sampled at tihesty <

We consider a controlled trafc ow dynamics model t; < ::: that are equally spaced at distanice> 0 from
describing the evolution of the traf c volume among theeach other, so thai = hk for k = 0;1;:::. At the k-th
different cells. The trafc volume in every ceil 2 E is time instantty, the state of the network is a nonnegative
denoted by the variablg; 0, while we use the notation vector x* 2 RE whose entriesx represent the current
ui 2 [0;1] to denote a local control variable. Every celltraf c volumes in the cellsi in E, while the control is the
i 2 E is equipped with asupply functions;(x;) that returns vectoruk 2 [0; 1]F, whose entriesi® represent the the local
the maximum possible in ow to the cell when the currentcontrol variables currently actuated at the cell$loreover,
traf c volume on it is equal tox; 0, as well as with the split rates at thé-th time instant are reported in the
a controlled demand functiond; (xi;u;) that returns the routing matrixR* 2 REE  whose entriesRi‘J? represent the
maximum possible out ow from the cell when the currentfraction of out ow from cell i that moves towards cell.
traf ¢ volume on it is equal tox; 0 and the local control To satisfy mass-conservation and topological constraints, the
variable is set to the value;. routing matrixR¥ is assun;(ed be such that

On every non-onramp cell2 E n R, the supply function L . L .
si(xj) is gssumed to Ft))e continuous, non-increasing, anngJ$ 0; ©j 2E; j Rﬁ =1; 12EnS; @)
concave for values of the trafc volume; in the interval sypported on the set of adjacent pdirsi.e., such that
[0; x!%™], wherex®™ = supfx;  0: si(x;) > Og is the jam . o
traf ¢ volume. Conventionally, for all onramp cells2 R, Rj =05  8(ij)2L: )
we setsi(x;) =+ 1 . On the other hand, we assume that thg\le denote the exogenous in ow vector at tketh time
controlled demand functions have the following structureinstant by X 2 RE, with the property that ¥ = 0 for all
Every celli 2 E is equipped with a ow capacityCi > 0  non-onramp cell$ 2 EnR for all k 0. For a given initial
and a continuous, strictly increasing, concave functiq®i)  statex?, the traf ¢ ow dynamics update rule then reads
such thatd;(0) = 0, to be referred to as thencontrolled Kol ‘ ‘ Kok k.
demand function. The uncontrolled demand function, ow Xpi = Xxp+th 0+ j Riz z¢ | ®)



for everyi 2 E andk 0, where and the following relaxation of the FNC problem

K= K (ke Kegax X
zt = {di(x;u 6
i i I( i k) ( ) min k i(X!(): (16)
is the total out ow from celli and fx< K fkgim o k=0 e
n (10); (11) (12) (13) (15)
f=sup 2[0;1]: . .
X o We then have the following result that mirrors the continuous
max RE dn(xK;uk)  s(xK) 0 : time results in [8, Propostion 1].
'2E>'0 h2E Propostion 1:Let G= ( V; E) be a network topology =

(7)  0;1;:::;Kmax Wherekmax > O'is the time horizonx® 2 RE
We are now ready to formulate the DTA and the FNGa vector of initial traf ¢ volumes, and ¥ exogenous in ows
as optimization problems. In the former, we assume thailp the onramps 2 R at timek. Then:
given the initial traf c volume and the exogenous inows, (i) for every feasible solutionfxX;fk; kgt;”?{ of the
we can control both the demand functions as in (1)—(2) convex optimization problem (14), let

and the routing matrix within the constraints (3)—(4). In the X Kt roky e

; - K— k k. k_ Z=d(x) if i2R
latter, we assume that the routing matrix is exogenous and  z =+ fIJ ;U= k=c, it i2R:
the control action is limited to the demand functions, i.e., 4= o (17)
onramp metering and speed limits. We shall consider a nite ande _ _( K + f k) foralli:j 2 E, with the

time horizonknax > 0 and convex separable costs(X;)
of the traf ¢ volumes. Given initial traf ¢ volumesx® and
exogenous in owsf kgt”:“gx , the DTA problem then reads

conventlon thauk -1 if d (x¥) = zK =0 on a non-
onramp celli 2 EnR, and that, ifz¢ =0, thenR¥ =

ffl2E: | =1;gj * forallj 2EsuchthatJ =1;.
Kgax X Then, for allk =0;:::; kmax, the matrixR¥ satis es
m|n (XK (8) the constraints (3) (4) andk satis es the controlled
Fx!;uk; 24 Ré gime ko i2e traf ¢ dynamics (5)—(7), so thatx*;uk;z*;R*g is a
(3); (4); (5); (6); (7) feasible solution of the DTA problem (8).

On the other hand, given initial traf ¢ volumes®, exoge- Moreover, letf R“gi™ be routing matrices satisfying (3)-
nous in ows f kgkmgx , and an exogenous routing matrix (4)- Then:

f Rkgkm satisfying (3)—(4), the FNC problem reads (i) for every feasible solutionfx*;fk; *gime of the
convex optimization (16), letk anduk be as in (17).

m|n e X ((xK) : Q) Then,x* satis es the controlled traf ¢ dynamics (5)—
fx'; uk; z gkm"x D k=0 i2E S (7), so thaﬁXk;Uk;ZkgEZE‘f is a feasible solution of
. = |
(5) (6) (7) the DTA problem (9).

. 1. DISTRIBUTED ALGORITHM
We now present convex relaxations of the problems above.

For this, we introduce the ow variable‘%‘ and ¥ fori;j 2 If the standard augmented Lagrangian method is used to
E, k=0;:::;kmax, that satisfy the constramts solve the relaxed DTA and FNC problems, the algorithm can
not be implemented in a fully distributed manner. However,
kK o0; i6S =) K=0; (10) as we will now show, it is possible to obtain a distributed
K ) B K . solution method by introducing copies of the variables, and
fi 0; 6! =) fj=0; (11)

force those copies to be equal through additional constraints.
In [13], another algorithm inspired by ADMM for solving
the DTA problem distributively is presented. Our approach
solves the same problem and is also inspired by ADMM,
X X but differs signi cantly from the one in [13]. There, the
ktl = yky h kg gk fk (13) constraints on the decision variables are not included in
' ' ' ' ! the Lagrangian, and must be handled when solving the

For given x° and f kgllirznax , we consider the following Qistributed subproblems. This allows, by a suitable partition-

X
s Jfi minfdi(x);Cig: (12)
We then rewrite the dynamics as

X

relaxation of the DTA problem ing of the variables, for the Lagrangian minimization to be
carried out in two steps in each subproblem. In contrast, our
g X ‘ approach starts with a Lagrangian which directly includes the
min i(x): (14)

constraints for the optimization problem. By choosing vari-
ables suitably and carrying out the Lagrangian minimization
in a few more steps, this still yields a distributed method.
Analogously, givenx?, kgkmax andekgﬁZ‘g satisfying Also, in our case, each subproblem becomes very simple.
(3) (4) we consider the additional constraint For the prOblemS, we Separate the out ows from each cell
and the in ows to each cell. This is done for the DTA by

fi = RE( I+ |fii|<) (15)  introducing the matrixg 2 R ™ ") and imposing the

fX k. fkgkmax .

. k=0 i2E
(20, (ll) (12) (13)



additional constraint = g. Each variabley¢ is considered Furthermore, ¥; * 2 RE, k 2 R, and ¥; ¥ 2 RE

as anout ow from celli to cellj at timek, and is associated are dual variables for the problem ang 0 is an penalty
with cell i, while each variabléi}‘ is thought of as aimn ow  parameterto be chosen. Note that for the last time step;

to cellj from celli at timek, and is associated with cgll  kmax the two sum terms containir@+1 must be removed
By updating the variables ih and g separately, we obtain from the augmented Lagrangian. For the FNC problem, the
a cell-wise decoupling of the optimization problem, whereadditional terms

only the variables associated with a particular cell and itX ‘ ‘ v

neighboring cells are needed in order to update the variables ; i 9j Rj J. g9 * 35 G Rj j Qi

for the cell in question. To decouple the equations in time, ) £
we introduce the matriy 2 RE (kmax +1) |\ hose entries are ar€ added to the augmented Lagrangian, whére R

required to ful ll y& = X|k+1 for 0 Kk <Kma andi 2 E. are dual variables for the extra constraint. The augmented

By updatingx andy separately, only variables associated td_aggl_?glan for the WQOIG optimization problem is then, in
the previous and next time points are needed to update tm.? case, given by
variables associated with a speci ¢ time point.

o L (sxyifigs 5555 )=
For the DTA problem, the optimization problem becomes ( y:t9 )
S X LEG Xy tiogs . i)
min i (Vi) k=0
fx* g, I k=0 i2E i i i
fyk; Kif K gk gkmax In the augmented Lagrangian method, constrained opti-

mization problems are solved by iteratively minimizing the
augmented Lagrangian for given dual variables and then
yk=xk+h K K 4 P kK P j gi;j< : updatjng the dual variables .by taking a step in the grgdient
K K e roky . " « P direction of the dual function. In ADMM, as described
Pt st Pt d(x)s in [12], a similar approach is employed, with the difference
fori 2E,and k=0 fori2s. that the primal _varigb]e; are inided into two sets and that
the Lagrangian is minimized with respect to one of these sets
h’:g a time, while keeping the remaining variables constant. It
is this idea that allows the ADMM to be used distributively,
in difference form the augmented Lagrangian method. Since
the problems we are considering yield couplings between
variables both for different cells and different time points,

subject tof K = gk, xk*1 = yk,

For the FNC problem, the turning ratid®; are pre-
determined. This can beF;aken into account by adding t
extra constraln'gIl = Rk g,] The corresponding aug-
mented Lagrangian at tlrrie is then

Lk(xk; Ky kgl ke ke ke ke k) = X ~i(x¥y we are making use of the idea to minimize the augmented
: Lagrangian in several steps, but generalize it to ve steps
o Coyloxk o K ].fjli( jgilj( instead of two. This enables a decoupling both between
K Kl cells and between time points. The resulting optimization
* (.J)e i i (f i Ot i o X)) algorithm for the DTA problem thus consists in an iterative
| |k + X fjli( 5 (Xik) procedure in which rst the following steps are performed
X i X J + — H ayge fe s s s e e .
A S BRI foaamnt Gayifign s )
g" =argmin L (xy;f*50r 1o );
whereM ¥ consists of penalty terms which have been added g
to the Lagrangian. These are zero when the constraints are  * :=argmin L (x;y;f*;g"; ::::: );
satis ed and positive otherwise. This procedure is described
in [12] for equality-constrained problems, but here we have y* :=argmin L (x;y;f*;9"; " 555 );
applied the analogous idea for inequality constraints as v e oes e .
well. Note that the penalty terms are squared, so that the X = argmin Loy s f75gs 7ases )

augmented Lagrangian is differentiable. Then, . )
In each iteration, these steps are then followed by dual

MK = M KK xket s ykop kg k) variable updates according to
X ) 7y1 1g 7 X X X
2 +
= yox h s .fjli( g:f (7= ¥ x h K+ .(fjli( gilj()
1 X X ] J !
k k \2 k+1y2 + . . + . .
NI Ry o x) (7= 5+ (0 g (97 = i+ o ™)
. X . . 0 2 n X 0
0 omax 0 F+ o si(xf) (9" =max 0 F+ K+ 1k s
X n " 0 2 n X : 0

+ o max 0+ jgilj( i (x{) : ()" =max 0; K+ K+

o (x)



Note that the dual variablest and ¥ always are non-
negative, which is required in the solution of the dual
problem. For the FNC problem, the augmented Lagrangian
is a function of the extra dual variable§ 2 RE as well,
and also these variables must be updated in the end of each
iteration according to

X Fig. 2. Network used for test of the DTA solving algorithm.
kyt .— k k k k .
(D" =7+ & R g : TABLE |

The fact that the algorithm is distributed can, e.g. in the RESULTS FOR TESTS OF THDTA ALGORITHM.

case of updating the variabquli (an inow to cell i), be 01 T 0 100
seen as nbr. of itr. 1 000 000 100 000 11 285 100 000
comp time. [s] 84 835 6 962 765 6 837
£k + _ inL Gevifag - _ rel. cost err." 35 10 ¢ 34 10 © 13 10 © 168 10 °©
jai T argmn xy:figr saas )= mean err”", 60 10 © 674 10 © &7 10 3 12 10 °
i max err." 497 10 & 48 10 % 47 10 % 170 10 B
o kpoke kogk.ogak o kY. k. ke k.ao k.opy-. feasibility res. 2:9 10 ¢ 29 10 ° 56 10 ® 10 10 ®
argmin L°(x{'; y; ’fii ’(gji + G JE ji :0; 150): duality gap 51 10 % 52 10° 10 10 % 16 10 °

k
fil‘

It follows that in order to compute the new ow from

cell j; to cell i at time k, only information about state This is in order to simulate a time dependent bottleneck in
variables and Lagrange multipliers associated withicalid the traf ¢ network. The cost function associated with each
its neighboring cells are needed. Furthermore, only variablegll at each time point is chosen to bg(x;) = x?.

at time stepk are needed. In general, for all the variable An optimal solution is found when a set of feasible
updates, variable values for the adjacent time pdints1 decision variables are found such that the duality gap, i.e., the
andk+1 are also needed, but not for any other times. Thuslifference between the cost function and the dual function
only information associated to neighboring cells and timef the constrained optimization problem, is zero. Thus, the
points is needed to update the primal variables. algorithm iterations should continue until these criteria are

The total number of variables needed in the optimizatioful lled within some small error tolerance. To check the
problem is proportional to the number of time steps as wetluality gap criterion we consider an approximation of the
as the number of cells or the number of adjacent cells. Thiuality gap obtained by approximating the dual function as
number of adjacent cells are in practice not increasing fatiie Lagrangian evaluated at the primal variables obtained
with the size of the network, since each cell typically has ah the last iteration, and then evaluating the cost function
most two or three adjacent cells in each direction. and the dual function approximation for the primal and dual
variables obtained in the last iteration. Both the feasibility
and duality tolerances were chosenli 3.

In this section, we present simulations for both the DTA | order to verify that the correct results are obtained from
and FNC problem, on two different networks. the algorithm, the optimization problem is also solved in a
A DTA centralized manner by CVX [14]. Values that are compared
are the relative error in the cost functidh,, the mean error
(over all time points and cells) in the cell traf ¢ volumes,,

] ) . _ k ! C% well as the maximal error in any cell traf c volume at any
_smgl_e_—smk network in Fig. 2 is considered. The netv_vorlﬁme’ "max Tap. | shows the performance of the algorithm
is initially assumed to be empty, and the time horizoRy,, jiferent values of . The algorithm was iterated either
is chosen as 250 second; with time d|sqret|zat|oq mtervaht” the stopping criteria were ful lled or until a maximal

h = 110; Th.e exogenous mgw_at _Ce” lis kprfscnbed ©threshold L0 for = 0:1 and10® otherwise) of the number
be 1 =08 2 =186 3 =08 and 1 = 0 for . ierations was reached. Changes of the cost function, of
k=4, and exogenous outow is only allowed at cell 10.y,q feasibility residual, and of the duality gap with number
Furthermore, thg supply and demand dunctions are given by jarations for different values of are presented in Fig. 3.
si(xi;k) = min - wi(x™™  x)=L;i;C¥ anddi(xi;k) = From these results, we can conclude that the algorithm
min ViXi:Li;Cik , Where vj, w;, cik, L; and X%am are manages to nd the optimal decision variables for the tested
the free- ow speed, the speed of the congestion wave, tHeTA problem with high accuracy, as long ass suf ciently
capacity (at time stef), the cell length and the jam traf ¢ small.

volume for celli respectively. In the simulations we set

vi = w; =50 feet/s,L; =500 feet for all cellsi. Moreover, B. FNC

for cell 1, 2, 9 and 10 we let theCk = 1:2 vehicles/s for In order to test the FNC algorithm for a realistic trans-
all k andx!®™ = 20 vehicles. For all other cell®™ = 10  portation network, a network inspired by the freeway system
vehicles andCk = 0:6 for all k, apart from cell4 where in Los Angeles is used. The topology is a slightly modi ed
C; = C2 = 0 vehicles/s andC] = C$ = 0:3 vehicles/s. version of the one described in [15].

IV. SIMULATION RESULTS

The algorithm for solving the DTA problem is tested on



Cost Feas. res. Duality gap
2,000 ——— — 600—
1,500(" | 200 N 400
1,000 | | 200
500 | 100 0
0 : 0 : 200——
10°10°10*10° 10°10°10*10° 10°10°10%10°
Fig. 3. Cost function, feasibility residual and duality gap for the DTA

problem with different penalty parameters In the plots
=1 is green, =10 is blue and =100 is violet.

=0:1is red,

Cost Feas. res. Duality gap
3 10 150 1 2 o
2 | 100 . [2]
1 50 05
[3]
0 ! 0L o4 !
10t 10° 10° 10t 10° 10° 10t 10° 10° "
Fig. 4. Cost function, feasibility residual and duality gap for the FNC

problem. After an initial decrease, the cost increases until it corresponds t{b]
a feasible solution.

[6]

The supply and demand functions are chosen as the af ne
functionss;(xi) = wi(x™  xj)=L; anddi(x;) = Vixi=Li, 7]
wherew;, Li, vi, x®" are the wave speed, the cell length,
the free- ow vehicle speed and the jam mass on dell
respectively. We let the intersection between the supply ang
demand function determine the maximum ow capacity. The
routing matrix is chosen such that 10% of the vehicles Ieavc?gl
the network at each offramp, while the traf c is equally
distributed among the other out-links in each intersection.

The initial state, consisting of the initial cell traf ¢ vol-
umes, is chosen as the equilibrium obtained by runnings)
CTM without any controls applied for the constant in ow

i = 0:05 vehicles per second at each source cell. F
the optimization horizon, the in ow at each source cell is
assumed to be; = 0:1 vehicles per second. The time
horizon is chosen ag& minute and the time discretization [*
interval ash = 10 seconds, fullling the CFL-condition
maXe % < 1. The used penalty parameter is= 10. [14]

When running the algorithm on this setup, the resultingls]
evolution of the cost function, feasibility residual and duality
gap are as shown in Fig. 4. Note that the cost function
increases after an initial decrease until the obtained c
corresponds to a feasible solution. The obtained cost, wi
the cell cost functions j(x) = x2, is 25 204. When the
same setup is simulated with CTM without any control!*]
the corresponding cost is 30 434. Thus, the optimal control
manages to achieve a 17% decrease of the cost.

[10]
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V. CONCLUSION

We presented a distributed algorithm for the optimal traf ¢
ow control in transportation networks. By applying the
algorithm to test scenarios, we demonstrated that it can be
used for solving both the DTA and the FNC problems.

For future development, it would be desirable to formally
prove under which conditions the algorithm converges by,
e.g., giving an upper limit of the penalty and to further
examine is how many iterations are necessary to yield
a solution with sufcient accuracy. Finally, it would be
interesting to study stability and robustness of the resulting
optimal controls with respect to dynamic routing [16], [17].
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