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On Distributed Optimal Control of Traf�c Flows in
Transportation Networks

Christian Rosdahl1, and Gustav Nilsson1, Giacomo Como1;2

Abstract— We propose and analyze distributed computation
algorithms for �nite-horizon optimal control problems in trans-
portation networks. We model traf�c �ow dynamics by the
cell-transmission model and focus on two problems: system-
optimum dynamic traf�c assignment (where the routing is part
of the optimization) and freeway network control (where the
routing is exogenous and the optimization is con�ned to speed
limits and ramp-metering controls). While these are non-convex
problems, we focus on some recently proposed provably exact
convex relaxations and apply Alternating Direction Method of
Multipliers techniques. We present fully distributed iterative al-
gorithms and implement them on some transportation network
testbeds, testing their convergence speed and accuracy.

I. I NTRODUCTION

With the pervasive diffusion of interconnected GPS-based
devices and novel intelligent traf�c control actuators, and
with connected and autonomous vehicles around the corner,
it is now possible to both obtain traf�c state data and provide
real-time route guidance to drivers. Ideally, this data, together
with traf�c control and route guidance possibilities, should
be used to reduce congestion, in order to decrease both travel
times for the users and pollution. This has renewed the
interest of the control systems community for the analysis
and synthesis of transportation networks.

Two classical optimal traf�c �ow control problems are the
Dynamic Traf�c Assignment (DTA)and theFreeway Network
Control (FNC) problems. The former, originally introduced
in [2], [3], has been widely studied by the transportation
research community [4]. In itssystem-optimumversion (as
opposed to the user-optimum framework), it entails the
minimization of a global cost of the whole network assuming
that one has the ability to control the drivers' route choices
(something that might be achievable, e.g., through route
guidance with GPS unit, or proper incentives and pricing). In
the latter, see, e.g., [5], [6], [7], the traf�c �ow in the network
is controlled by variable speed limits on the freeways and
ramp-metering to achieve a system optimal �ow in the
network.
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In this paper, we follow the approach in [8] and consider
formulations of the DTA and FNC problems in network
�ow dynamics modeled by theCell Transmission Model
(CTM) [9], [10] and their exact convex relaxations gener-
alizing [6] and [11]. Our main contributions are distributed
optimization algorithms solving such convexi�ed DTA and
FNC problems, based on the Alternating Direction Method of
Multipliers (ADMM) method [12]. The proposed algorithms
are fully distributed, in the sense that each road segment only
needs information from its neighboring segments to com-
pute the optimal speed limit, ramp-metering signal or route
choices for the outgoing vehicles. Moreover, our method
is scaleable, so when the controlled network grows, only
segments connected to the newly built area need to update
their algorithms. We then present numerical implementations
of these algorithms for both the DTA and the FNC problem.

Another distributed algorithm for solving the considered
DTA problem is proposed in [13]. Except for that both
methods are inspired by ADMM, the approaches are quite
different. In [13], the constraints on the decision variables
are not included in the Lagrangian, and must thus instead be
taken into account when solving the distributed subproblems.
This allows for dividing the the decision variables into two
groups and performing the Lagrangian minimization in two
steps. In contrast, our method includes the constraints in the
Lagrangian. By performing the Lagrangian minimization in
more steps, this still allows the algorithm to be distributed,
while each subproblem can be solved easily and ef�ciently.

The paper is organized as follows. In the rest of this section
we will introduce some basic notation. In Section II we
present the dynamical model we use for the transportation
network together with the optimization problems we want
to solve and their convex relaxations. In Section III, the
distributed algorithm is presented, and simulations of it for
one DTA problem and one FNC problem are shown in
Section IV. The paper is concluded in Section V.

We let R(+) denote the (non-negative) reals. For a setA ,
we denote the vector indexed byA as RA

(+) . We let G =
(V; E) denote a directed multigraph, whereV is the set of
nodes andE the set of directed links. For a linki = ( n; m) 2
E, we denote its head! i = m 2 V and its tail� i = n 2 V .

II. PROBLEM FORMULATION

In this section, we �rst introduce the controlled traf�c �ow
dynamics model as a discrete-time control system that can
be thought of as a generalized version of Daganzo's CTM.
We then formulate the FNC and DTA problems as �nite-
horizon optimal control problems for this model. Finally,



we present exact convex relaxations of these problems and
prove their tightness, i.e., that every optimal solution of the
relaxed problem can be mapped into an optimal solution of
the original problem. Both the presented setup and tightness
results are to be considered the discrete-time analogue of [8].

We model the transportation network topology as a di-
rected multigraphG = ( V; E), whereV is the set of nodes
and E is the set of links. Every linki 2 E is directed from
its tail node� i 2 V to its head node! i 2 V n f � i g. Notice
that we allow for the possibility of parallel links, i.e., links
with the same tail node and head node, hence the pre�x
in `multigraph', but we do not allow for sel�oops, i.e., links
whose head node coincides with its tail node. Each linki 2 E
represents acell, i.e., a portion of road. One particular node
w 2 V represents the external world, with cellsi such that
� i = w representing onramps and cellsi such that! i = w
representing offramps. We shall denote by

R = f i 2 E : � i = wg; S = f i 2 E : ! i = wg;

the sets of onramps and offramps, respectively. Throughout,
we shall assume that every linki 2 E lies on a cycle in
G that passes through nodew. This assumption amounts to
saying that every cell is reachable from at least one onramp
and that from every cell at least one offramp can be reached.
The network topology is typically illustrated by omitting the
external world nodew and letting sources have no tail node
and sinks have no head node. We shall denote the set of
adjacent pairs of cells byL = f (i; j ) 2 E2 : � j = ! i 6= wg,
so that direct �ow from a celli to another cellj is possible
only if (i; j ) 2 L . We let the exogenous in�ow to an onramp
i 2 R be denoted by� i � 0 and let � i � 0 denote the
out�ow from an offrampi 2 S towards the external world.
Conventionally, we shall set� i = 0 for every non-onramp
cell i 2 E nR, and� i = 0 for all non-offramp cellsi 2 E nS.

We consider a controlled traf�c �ow dynamics model
describing the evolution of the traf�c volume among the
different cells. The traf�c volume in every celli 2 E is
denoted by the variablex i � 0, while we use the notation
ui 2 [0; 1] to denote a local control variable. Every cell
i 2 E is equipped with asupply functionsi (x i ) that returns
the maximum possible in�ow to the cell when the current
traf�c volume on it is equal tox i � 0, as well as with
a controlled demand functiondi (x i ; ui ) that returns the
maximum possible out�ow from the cell when the current
traf�c volume on it is equal tox i � 0 and the local control
variable is set to the valueui .

On every non-onramp celli 2 E n R, the supply function
si (x i ) is assumed to be continuous, non-increasing, and
concave for values of the traf�c volumex i in the interval
[0; x jam

i ], wherex jam
i = supf x i � 0 : si (x i ) > 0g is the jam

traf�c volume. Conventionally, for all onramp cellsi 2 R ,
we setsi (x i ) = + 1 . On the other hand, we assume that the
controlled demand functions have the following structure.
Every cell i 2 E is equipped with a �ow capacityCi > 0
and a continuous, strictly increasing, concave functiondi (x i )
such thatdi (0) = 0 , to be referred to as theuncontrolled
demand function. The uncontrolled demand function, �ow

traf�c volume

�ow

di (x i ) si (x i )

x jam
i

Ci

Fig. 1. Trapezoidal fundamental diagram in Example 1.

capacity, and supply function of a cell can be interpreted as
the rising, constant, and decreasing parts of a fundamental
diagram. A standard case is illustrated below.

Example 1:Consider a non-onramp celli 2 E n R with
linear uncontrolled demand functiondi (x i ) = vi x i and af�ne
supply functionsi (x i ) = � wi x i + x jam

i wi . This leads to a
standard trapezoidal fundamental diagram (see Fig. 1). Here,
the constantsvi > 0 andwi > 0 are referred to as the free-
�ow speed and the shock-wave speed, respectively.

Then, the controlled demand function is set equal to

di (x i ; ui ) = min f di (x i ); ui Ci g; i 2 R (1)

on the onramp cells and to

di (x i ; ui ) = min f ui di (x i ); Ci g; i 2 E n R (2)

on the non-onramp cells. Equation (1) is to be interpreted as
the possibility of implementing ramp-metering by setting up
the maximum out�ow from an onrampi 2 R to an arbitrary
value ui Ci between0 and the maximum �ow capacityCi .
On the other hand, (2) is to be interpreted as the possibility to
control the speed limit in a non-onramp celli by rescaling the
uncontrolled demand functiondi (x i ). Indeed, for trapezoidal
fundamental diagrams as in Example 1, (2) is equivalent to
the modulation of the free-�ow speedui vi .

We assume that the system is sampled at times0 = t0 <
t1 < : : : that are equally spaced at distanceh > 0 from
each other, so thattk = hk for k = 0 ; 1; : : :. At the k-th
time instanttk , the state of the network is a nonnegative
vector xk 2 RE

+ whose entriesxk
i represent the current

traf�c volumes in the cellsi in E, while the control is the
vectoruk 2 [0; 1]E, whose entriesuk

i represent the the local
control variables currently actuated at the cellsi . Moreover,
the split rates at thek-th time instant are reported in the
routing matrixRk 2 RE�E

+ whose entriesRk
ij represent the

fraction of out�ow from cell i that moves towards cellj .
To satisfy mass-conservation and topological constraints, the
routing matrixRk is assumed be such that

Rk
ij � 0 ; i; j 2 E ;

X

j
Rk

ij = 1 ; i 2 E n S; (3)

supported on the set of adjacent pairsL , i.e., such that

Rk
ij = 0 ; 8 (i; j ) =2 L : (4)

We denote the exogenous in�ow vector at thek-th time
instant by� k 2 RE

+ , with the property that� k
i = 0 for all

non-onramp cellsi 2 E n R for all k � 0. For a given initial
statex0, the traf�c �ow dynamics update rule then reads

xk+1
i = xk

i + h
�

� k
i +

X

j
Rk

ji zk
j � zk

i

�
; (5)



for every i 2 E andk � 0, where

zk
i = � k

i di (xk
i ; ui

k ) (6)

is the total out�ow from celli and

� k
i = sup

n
� 2 [0; 1] :

� � max
l 2E :

R k
il > 0

X

h2E

Rk
hl dh (xk

h ; uk
h ) � sl (xk

l ) � 0
o

:

(7)
We are now ready to formulate the DTA and the FNC

as optimization problems. In the former, we assume that,
given the initial traf�c volume and the exogenous in�ows,
we can control both the demand functions as in (1)–(2)
and the routing matrix within the constraints (3)–(4). In the
latter, we assume that the routing matrix is exogenous and
the control action is limited to the demand functions, i.e.,
onramp metering and speed limits. We shall consider a �nite
time horizonkmax > 0 and convex separable costs i (x i )
of the traf�c volumes. Given initial traf�c volumesx0 and
exogenous in�owsf � k gkmax

k=0 , the DTA problem then reads

min
f xk ; uk ; zk ; Rk gkmax

k=0 :
(3); (4); (5); (6); (7)

kmaxX

k=0

X

i 2E

 i (xk
i ) : (8)

On the other hand, given initial traf�c volumesx0, exoge-
nous in�ows f � k gkmax

k=0 , and an exogenous routing matrix
f Rk gkmax

k=0 satisfying (3)–(4), the FNC problem reads

min
f xk ; uk ; zk gkmax

k=0 :
(5); (6); (7)

kmaxX

k=0

X

i 2E

 i (xk
i ) : (9)

We now present convex relaxations of the problems above.
For this, we introduce the �ow variablesf k

ij and� k
i for i; j 2

E, k = 0 ; : : : ; kmax , that satisfy the constraints

� k
i � 0 ; i 6= S =) � k

i = 0 ; (10)

f k
ij � 0 ; � j 6= ! i =) f k

ij = 0 ; (11)
X

j
f k

ji � si (xk
i ) ;

X

j
f k

ij � minf di (xk
i ); Ci g: (12)

We then rewrite the dynamics as

xk+1
i = xk

i + h
�

� k
i +

X

j
f k

ji �
X

j
f k

ij

�
: (13)

For given x0 and f � k gkmax
k=0 , we consider the following

relaxation of the DTA problem

min
f xk ; � k ; f k gkmax

k=0 :
(10); (11); (12); (13)

kmaxX

k=0

X

i 2E

 i (xk
i ) : (14)

Analogously, givenx0, f � k gkmax
k=0 , and f Rk gkmax

k=0 satisfying
(3)–(4), we consider the additional constraint

f k
ij = Rk

ij (� k
i +

X

l
f k

il ) (15)

and the following relaxation of the FNC problem

min
f xk ; � k ; f k gkmax

k=0 :
(10); (11); (12); (13); (15)

kmaxX

k=0

X

i 2E

 i (xk
i ) : (16)

We then have the following result that mirrors the continuous
time results in [8, Propostion 1].

Propostion 1: Let G = ( V; E) be a network topology,k =
0; 1; : : : ; kmax wherekmax > 0 is the time horizon,x0 2 RE

+
a vector of initial traf�c volumes, and� k

i exogenous in�ows
to the onrampsi 2 R at timek. Then:

(i) for every feasible solutionf xk ; f k ; � k gkmax
k=0 of the

convex optimization problem (14), let

zk
i = � k

i +
X

j
f k

ij ; uk
i =

�
zk

i =di (xk
i ) if i =2 R

zk
i =Ci if i 2 R ;

(17)
andRk

ij = f k
ij =(� k

i +
P

j f k
ij ), for all i; j 2 E, with the

convention thatuk
i = 1 if di (xk

i ) = zk
i = 0 on a non-

onramp celli 2 E n R, and that, ifzk
i = 0 , thenRk

ij =
jf l 2 E : � l = ! i gj� 1 for all j 2 E such that� j = ! i .
Then, for allk = 0 ; : : : ; kmax , the matrixRk satis�es
the constraints (3)–(4) andxk satis�es the controlled
traf�c dynamics (5)–(7), so thatf xk ; uk ; zk ; Rk g is a
feasible solution of the DTA problem (8).

Moreover, letf Rk gkmax
k=0 be routing matrices satisfying (3)-

(4). Then:
(ii) for every feasible solutionf xk ; f k ; � k gkmax

k=0 of the
convex optimization (16), letzk anduk be as in (17).
Then,xk satis�es the controlled traf�c dynamics (5)–
(7), so thatf xk ; uk ; zk gkmax

k=0 is a feasible solution of
the DTA problem (9).

III. D ISTRIBUTED ALGORITHM

If the standard augmented Lagrangian method is used to
solve the relaxed DTA and FNC problems, the algorithm can
not be implemented in a fully distributed manner. However,
as we will now show, it is possible to obtain a distributed
solution method by introducing copies of the variables, and
force those copies to be equal through additional constraints.

In [13], another algorithm inspired by ADMM for solving
the DTA problem distributively is presented. Our approach
solves the same problem and is also inspired by ADMM,
but differs signi�cantly from the one in [13]. There, the
constraints on the decision variables are not included in
the Lagrangian, and must be handled when solving the
distributed subproblems. This allows, by a suitable partition-
ing of the variables, for the Lagrangian minimization to be
carried out in two steps in each subproblem. In contrast, our
approach starts with a Lagrangian which directly includes the
constraints for the optimization problem. By choosing vari-
ables suitably and carrying out the Lagrangian minimization
in a few more steps, this still yields a distributed method.
Also, in our case, each subproblem becomes very simple.

For the problems, we separate the out�ows from each cell
and the in�ows to each cell. This is done for the DTA by
introducing the matrixg 2 RL� (kmax +1)

+ and imposing the



additional constraintf = g. Each variablegk
ij is considered

as anout�ow from cell i to cell j at timek, and is associated
with cell i , while each variablef k

ij is thought of as anin�ow
to cell j from cell i at timek, and is associated with cellj .
By updating the variables inf and g separately, we obtain
a cell-wise decoupling of the optimization problem, where
only the variables associated with a particular cell and its
neighboring cells are needed in order to update the variables
for the cell in question. To decouple the equations in time,
we introduce the matrixy 2 RE� (kmax +1)

+ whose entries are
required to ful�ll yk

i = xk+1
i for 0 � k < k max and i 2 E.

By updatingx andy separately, only variables associated to
the previous and next time points are needed to update the
variables associated with a speci�c time point.

For the DTA problem, the optimization problem becomes

min
f x k gk max

k =1

f y k ;� k ;f k ;gk gk max
k =0

kmaxX

k=0

X

i 2E

 i (yk
i )

subject tof k = gk , xk+1 = yk ,

yk
i = xk

i + h
�

� k
i � � k

i +
P

j f k
ji �

P
j gk

ij

�
;

� k
i +

P
j f k

ji � si (xk
i ) ; � k

i +
P

j gk
ij � di (xk

i ) ;

for i 2 E, and� k
i = 0 for i =2 S.

For the FNC problem, the turning ratiosRij are pre-
determined. This can be taken into account by adding the
extra constraintgk

ij = Rk
ij

P
j gk

ij . The corresponding aug-
mented Lagrangian at timek is then

L k
� (xk ; xk+1 ; yk ; f k ; gk ; � k ; � k ; � k ; � k ; � k ) =

X

i
 i (xk

i )

+
X

i

 k

i

�
yk

i � xk
i � h

�
� k

i � � k
i +

X

j
f k

ji �
X

j
gk

ij

��

+
X

( i;j )
� k

ij (f k
ij � gk

ij ) +
X

i
� k

i (yk
i � xk+1

i )

+
X

i
� k

i

�
� k

i +
X

j
f k

ji � si (xk
i )

�

+
X

i
� k

i

�
� k

i +
X

j
gk

ij � di (xk
i )

�
+

�
2

M k ;

whereM k consists of penalty terms which have been added
to the Lagrangian. These are zero when the constraints are
satis�ed and positive otherwise. This procedure is described
in [12] for equality-constrained problems, but here we have
applied the analogous idea for inequality constraints as
well. Note that the penalty terms are squared, so that the
augmented Lagrangian is differentiable. Then,

M k = M k (xk ; xk+1 ; yk ; f k ; gk ; � k )

=
X

i

�
yk

i � xk
i � h

�
� k

i � � k
i +

X

j
f k

ji �
X

j
gk

ij

�� 2

+
X

( i;j )
(f k

ij � gk
ij )2 +

X

i
(yk

i � xk+1
i )2

+
X

i

�
max

n
0; � k

i +
X

j
f k

ji � si (xk
i )

o� 2

+
X

i

�
max

n
0; � k

i +
X

j
gk

ij � di (xk
i )

o� 2
:

Furthermore,
 k ; � k 2 RE, � k 2 RL , and � k ; � k 2 RE
+

are dual variables for the problem and� > 0 is an penalty
parameterto be chosen. Note that for the last time step,k =
kmax, the two sum terms containingxk+1

i must be removed
from the augmented Lagrangian. For the FNC problem, the
additional terms
X

i
� k

i

�
gk

ij � Rk
ij

X

j
gk

ij

�
+

X

i

�
2

�
gk

ij � Rk
ij

X

j
gk

ij

� 2

are added to the augmented Lagrangian, where� k 2 RE

are dual variables for the extra constraint. The augmented
Lagrangian for the whole optimization problem is then, in
the DTA case, given by

L � (x; x; y; f; g; � ; �; �; �; � ) =
kmaxX

k=0

L k
� (xk ; xk+1 ; yk ; f k ; gk ; � k ; � k ; � k ; � k ; � k ) :

In the augmented Lagrangian method, constrained opti-
mization problems are solved by iteratively minimizing the
augmented Lagrangian for given dual variables and then
updating the dual variables by taking a step in the gradient
direction of the dual function. In ADMM, as described
in [12], a similar approach is employed, with the difference
that the primal variables are divided into two sets and that
the Lagrangian is minimized with respect to one of these sets
at a time, while keeping the remaining variables constant. It
is this idea that allows the ADMM to be used distributively,
in difference form the augmented Lagrangian method. Since
the problems we are considering yield couplings between
variables both for different cells and different time points,
we are making use of the idea to minimize the augmented
Lagrangian in several steps, but generalize it to �ve steps
instead of two. This enables a decoupling both between
cells and between time points. The resulting optimization
algorithm for the DTA problem thus consists in an iterative
procedure in which �rst the following steps are performed

f + := argmin
f

L � (x; y; f; g; � ; 
; �; �; �; � ) ;

g+ := argmin
g

L � (x; y; f + ; g; � ; 
; �; �; �; � ) ;

� + := argmin
�

L � (x; y; f + ; g+ ; � ; 
; �; �; �; � ) ;

y+ := argmin
y

L � (x; y; f + ; g+ ; � + ; 
; �; �; �; � ) ;

x+ := argmin
x

L � (x; y+ ; f + ; g+ ; � + ; 
; �; �; �; � ) :

In each iteration, these steps are then followed by dual
variable updates according to

(
 k
i )+ := 
 k

i + �
�

yk
i � xk

i � h
�

� k
i � � k

i +
X

j
(f k

ji � gk
ij )

��

(� k
ij )+ := � k

ij + � (f k
ij � gk

ij ) ; (� k
i )+ := � k

i + � (yk
i � xk+1

i ) ;

(� k
i )+ := max

n
0; � k

i + �
�

� k
i +

X

j
f k

ji � si (xk
i )

�o
;

(� k
i )+ := max

n
0; � k

i + �
�

� k
i +

X

j
gk

ij � di (xk
i )

�o
:



Note that the dual variables� k
i and � k

i always are non-
negative, which is required in the solution of the dual
problem. For the FNC problem, the augmented Lagrangian
is a function of the extra dual variables� k 2 RE as well,
and also these variables must be updated in the end of each
iteration according to

(� k
i )+ := � k

i + �
�

gk
ij � Rk

ij

X

j
gk

ij

�
:

The fact that the algorithm is distributed can, e.g. in the
case of updating the variablef k

j 1 i (an in�ow to cell i ), be
seen as

�
f k

j 1 i

� +
= argmin

f k
j 1 i

L � (x; y; f; g; � ; 
; �; �; �; � ) =

argmin
f k

j 1 i

L k
� (xk

i ; yk
i ; f k

ji ; (gk
ji ; gk

ij ); � k
i ; 
 k

i ; � k
ji ; 0; � k

i ; 0) :

It follows that in order to compute the new �ow from
cell j 1 to cell i at time k, only information about state
variables and Lagrange multipliers associated with celli and
its neighboring cells are needed. Furthermore, only variables
at time stepk are needed. In general, for all the variable
updates, variable values for the adjacent time pointsk � 1
andk +1 are also needed, but not for any other times. Thus,
only information associated to neighboring cells and time
points is needed to update the primal variables.

The total number of variables needed in the optimization
problem is proportional to the number of time steps as well
as the number of cells or the number of adjacent cells. The
number of adjacent cells are in practice not increasing fast
with the size of the network, since each cell typically has at
most two or three adjacent cells in each direction.

IV. SIMULATION RESULTS

In this section, we present simulations for both the DTA
and FNC problem, on two different networks.

A. DTA

The algorithm for solving the DTA problem is tested on
a setup obtained from [8]. In this example, the single-source
single-sink network in Fig. 2 is considered. The network
is initially assumed to be empty, and the time horizon
is chosen as 250 seconds with time discretization interval
h = 10. The exogenous in�ow at cell 1 is prescribed to
be � 1

1 = 0 :8, � 2
1 = 1 :6, � 3

1 = 0 :8 and � k
1 = 0 for

k � 4, and exogenous out�ow is only allowed at cell 10.
Furthermore, the supply and demand functions are given by
si (x i ; k) = min

n
wi (x

jam
i � x i )=Li ; Ck

i

o
and di (x i ; k) =

min
�

vi x i =Li ; Ck
i

	
, where vi , wi , Ck

i , L i and x jam
i are

the free-�ow speed, the speed of the congestion wave, the
capacity (at time stepk), the cell length and the jam traf�c
volume for cell i respectively. In the simulations we set
vi = wi = 50 feet/s,L i = 500 feet for all cellsi . Moreover,
for cell 1, 2, 9 and 10 we let theCk

i = 1 :2 vehicles/s for
all k and x jam

i = 20 vehicles. For all other cells,x jam
i = 10

vehicles andCk
i = 0 :6 for all k, apart from cell4 where

C5
4 = C6

4 = 0 vehicles/s andC7
4 = C8

4 = 0 :3 vehicles/s.

1 2
3 4

5

6

7 8

9 10

Fig. 2. Network used for test of the DTA solving algorithm.

TABLE I

RESULTS FOR TESTS OF THEDTA ALGORITHM .

� 0.1 1 10 100

nbr. of itr. 1 000 000 100 000 11 285 100 000
comp time. [s] 84 835 6 962 765 6 837
rel. cost err."  3:5 � 10� 6 34 � 10� 6 13 � 10� 6 168 � 10� 6

mean err.�" y 69 � 10� 6 674 � 10� 6 6:7 � 10� 3 12 � 10� 3

max err." max
y 497 � 10� 6 4:8 � 10� 3 47 � 10� 3 170 � 10� 3

feasibility res. 2:9 � 10� 6 29 � 10� 6 5:6 � 10� 6 10 � 10� 3

duality gap 5:1 � 10� 3 5:2 � 10� 3 1:0 � 10� 3 16 � 10� 3

This is in order to simulate a time dependent bottleneck in
the traf�c network. The cost function associated with each
cell at each time point is chosen to be i (x i ) = x2

i .
An optimal solution is found when a set of feasible

decision variables are found such that the duality gap, i.e., the
difference between the cost function and the dual function
of the constrained optimization problem, is zero. Thus, the
algorithm iterations should continue until these criteria are
ful�lled within some small error tolerance. To check the
duality gap criterion we consider an approximation of the
duality gap obtained by approximating the dual function as
the Lagrangian evaluated at the primal variables obtained
in the last iteration, and then evaluating the cost function
and the dual function approximation for the primal and dual
variables obtained in the last iteration. Both the feasibility
and duality tolerances were chosen to10� 3.

In order to verify that the correct results are obtained from
the algorithm, the optimization problem is also solved in a
centralized manner by CVX [14]. Values that are compared
are the relative error in the cost function,"  , the mean error
(over all time points and cells) in the cell traf�c volumes," y ,
as well as the maximal error in any cell traf�c volume at any
time, "max

y . Tab. I shows the performance of the algorithm
for different values of� . The algorithm was iterated either
until the stopping criteria were ful�lled or until a maximal
threshold (106 for � = 0 :1 and105 otherwise) of the number
of iterations was reached. Changes of the cost function, of
the feasibility residual, and of the duality gap with number
of iterations for different values of� are presented in Fig. 3.
From these results, we can conclude that the algorithm
manages to �nd the optimal decision variables for the tested
DTA problem with high accuracy, as long as� is suf�ciently
small.

B. FNC

In order to test the FNC algorithm for a realistic trans-
portation network, a network inspired by the freeway system
in Los Angeles is used. The topology is a slightly modi�ed
version of the one described in [15].
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Fig. 3. Cost function, feasibility residual and duality gap for the DTA
problem with different penalty parameters� . In the plots� = 0 :1 is red,
� = 1 is green,� = 10 is blue and� = 100 is violet.
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Fig. 4. Cost function, feasibility residual and duality gap for the FNC
problem. After an initial decrease, the cost increases until it corresponds to
a feasible solution.

The supply and demand functions are chosen as the af�ne
functionssi (x i ) = wi (x

jam
i � x i )=Li anddi (x i ) = vi x i =Li ,

wherewi , L i , vi , x jam
i are the wave speed, the cell length,

the free-�ow vehicle speed and the jam mass on celli ,
respectively. We let the intersection between the supply and
demand function determine the maximum �ow capacity. The
routing matrix is chosen such that 10% of the vehicles leave
the network at each offramp, while the traf�c is equally
distributed among the other out-links in each intersection.

The initial state, consisting of the initial cell traf�c vol-
umes, is chosen as the equilibrium obtained by running
CTM without any controls applied for the constant in�ow
� i = 0 :05 vehicles per second at each source cell. For
the optimization horizon, the in�ow at each source cell is
assumed to be� i = 0 :1 vehicles per second. The time
horizon is chosen as1 minute and the time discretization
interval ash = 10 seconds, ful�lling the CFL-condition
maxe

ve h
L e

< 1. The used penalty parameter is� = 10.
When running the algorithm on this setup, the resulting

evolution of the cost function, feasibility residual and duality
gap are as shown in Fig. 4. Note that the cost function
increases after an initial decrease until the obtained cost
corresponds to a feasible solution. The obtained cost, with
the cell cost functions i (x) = x2, is 25 204. When the
same setup is simulated with CTM without any control,
the corresponding cost is 30 434. Thus, the optimal control
manages to achieve a 17% decrease of the cost.

V. CONCLUSION

We presented a distributed algorithm for the optimal traf�c
�ow control in transportation networks. By applying the
algorithm to test scenarios, we demonstrated that it can be
used for solving both the DTA and the FNC problems.

For future development, it would be desirable to formally
prove under which conditions the algorithm converges by,
e.g., giving an upper limit of the penalty� and to further
examine is how many iterations are necessary to yield
a solution with suf�cient accuracy. Finally, it would be
interesting to study stability and robustness of the resulting
optimal controls with respect to dynamic routing [16], [17].
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