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Distance Bounds for Periodically Time-Varying
and Tail-Biting LDPC Convolutional Codes

Dmitri Truhachev,Member, IEEE, Kamil Sh. Zigangirov,Fellow, IEEE, and
Daniel J. Costello, Jriellow, IEEE

Abstract

Existence type lower bounds on the free distance of perdiglicime-varying LDPC convolu-
tional codes and on the minimum distance of tail-biting LDB&@olutional codes are derived. It is
demonstrated that the bound on free distance of periogitialle-varying LDPC convolutional codes
approaches the bound on free distance of general (nondi@rtone-varying LDPC convolutional codes
derived in [1] as the period increases. The proof of the basfised on lower bounding the minimum

distance of corresponding tail-biting LDPC convolutiogables, which is of interest in its own right.

Index Terms

Free distance, minimum distance, lower bounds, low-dgmmrity-check (LDPC) codes, LDPC

convolutional codes, tail-biting LDPC convolutional cade

. INTRODUCTION

LDPC block codes were invented by Gallager [2] in the 196Q3e Tonstruction of the

corresponding convolutional counterparts, LDPC convohal codes (LDPCCCs), was first
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presentetlin [3]. While minimum distance bounds for block LDPCs wereided in Gallager’'s
original work [2], the first analytical lower bound on the drelistance of LDPCCCs was only
derived recently [1]. The proof presented in [1] holds foreansemble of general (non-periodic)
time-varying LDPCCCs and must employ a special expurgdgohnique to compensate for the
non-periodic structure of the ensembile.

In this paper, we derive an existence type lower bound onrdeedistance of periodically time-
varying LDPCCCs. We show that, as the period increases,diebound approaches the bound
on free distance of non-periodic LDPCCCs derived in [1]. Pheof presented for the new bound
is based on considering the minimum distance of tail-bitifigPCCCs (TB-LDPCCCs) [8].
In particular, we lower bound the minimum distance of TB-LDECs constructed from an
ensemble of periodically time-varying LDPCCCs and use thikwer bound the free distance
of the original ensemble.

Tail-biting was introduced by Solomon and van Tilborg [9]daimdependently by Ma and
Wolf [10] as a method of terminating a convolutional codehwitt the rate loss caused by
standard termination. The resulting tail-biting codeseéhawdual nature, i.e., they simultaneously
have the properties of both block and convolutional codes.afconsequence, their minimum
distance depends both on the block length of the tail-bitade and the constraint length of
the convolutional code.

The minimum distance of conventional (non-LDPC) tail4gticodes equals the minimum of
two related distance measure&,,, and di,.. [11]. The intra minimum distance d;,, reflects
the convolutional code properties of the tail-biting codhel @& lower bounded by the Costello
bound [6] on the free distance of convolutional codes. it minimum distance d;..., reflects
the block code properties of the tail-biting code and is lolv@unded by thé&/arshamov-Gilbert
bound [4], [5] on the minimum distance of block codes. Analogoustmventional tail-biting
convolutional codes, the minimum distance of TB-LDPCCClowger bounded by the minimum
of dintra @Nd dinter, Whered;., is lower bounded by the bound on free distance of LDPCCCs
derived in [1] andd;.., IS lower bounded by Gallager’s bound on minimum distance DPC
block codes [2].

The paper is organized as follows. Section Il presents thimiten of the LDPCCC code

The basic idea of LDPCCCs was first described in Tanner'snpateplication [7].
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ensemble considered. Section Il is devoted to lower boyghdine minimum distance of TB-
LDPCCCs, and a lower bound on the free distance of peridgitiahe-varying LDPCCCs is
proved in Section IV. Numerical results are given in Sectgrand Section VI concludes the

paper.

1. AN LDPC CoNvOLUTIONAL CODE ENSEMBLE

In [3], a rate R = b/c binary convolutional code was defined as the set of sequences
V[o,00] = (V0,1,...), v; € 3, satisfying the equality;[ovoo}H[%m] = 0, where the semi-infinite

syndrome former (transposed parity-check) maﬁ%m} is given by

HI(0) ... HT (my)

Hi(t) ... H} (t+ms)

and each entnH (t + i) is ac x (c — b) binary matrix. To satisfy an easy encoding property
(see [3], [13]), the matrice#T  (t) must have full rank for all time instants and hence we
assume that the lagt — b) rows of H{ (t) are linearly independent for afl Then the firsth
symbols ofv, at each time instarntare information symbols and the Igst-b) symbols are parity
symbols. The largestsuch thatFH} (¢+4) is a non-zero matrix for someis called thesyndrome
former memory ms. A (J, K) regular LDPCCC is defined by a syndrome former that contains
exactly J ones in each row an& ones in each column (starting from thie: — b)ms + 1)th
column).

Now we define a special sub-class (of K) regular LDPCCCs, where the component sub-
matrices H (t) are composed of\/ x M binary permutation matricésLet « = gcdJ, K)
denote the greatest common divisor.bfand K. Then there exist positive integes$ and K’
such that/ = aJ’ and K = aK’ and gcdJ', K') = 1. Fori =0,1,...,a—1,the K'M x J'M

%This subclass was considered in [1] in order to prove a loveemb ondiree for non-periodic LDPCCCs.
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sub-matricesH; (¢ +7) of the syndrome former are

Pt +iy P+ ... POV +9)
PMO(t 4 Pt +i)y . P (4
PRy PE iy o P 04

where eaChPZ(-k’j)(t+i), k=0,1,....,.K'—1, j=0,1,...,J —1,is anM x M permutation
matrix. All other entries of the syndrome former ak€ M x J'M zero matrices. We assume

that the matrixH[TO,oo] is periodically time-varying with period’, i.e.,
H(t+i)=H (t+i+T) Vit. (3)

In this case, a code is characterized by a secﬁqﬁT_H of the semi-infinite syndrome former
T
H[O,OO].
A syndrome formerH[%,T_l] for a periodically time-varying3, 6) regular LDPCCC is shown
in Fig. 1. In this case, the code construction parameterdiate6, J = 3, a = 3, ¢ = 2M, and

b = M. Each matrixH (¢ + i) consists of twoM x M permutation matrices, i.e.,

= (P0F0) @
P (t+4)
where (4) has full rank equal td/. Therefore the code rate i /2. Note that by permuting
rows of the syndrome former, an equivalent rate (3,6) regular LDPCCC with syndrome
former memory at mostM — 1 can be obtained (see [1]).

Now suppose that thé/ x M permutation matrices comprising the sub-matrices (2) ef th
syndrome formerH[T)vT_l} are chosen independently and such that each ofMhepossible
permutation matrices is equally likely. Then we obtain ad@n ensemble ofJ, K') regular
T-periodic LDPCCCs, which we designaté(J, K, M, T).

The syndrome formers in the ensemBle/, K, M, T) have memoryns = a — 1, independent
of M, while b and ¢ depend on)M. This ensemble of codes is different from the LDPCCCs
considered in [3], [12], and [13], where the codes have vargyndrome former memoriess,
while the rate parameteisand c are fixed. For the ensembl& J, K, M, T), as M increases,
i.e., asb andc increase, the syndrome formers become increasingly sparse

During the encoding process, the information sequencesdiatded into blocks ofb =

(K" — J")M symbols, which are input to an LDPC convolutional encodeeaath time instant

January 5, 2008 DRAFT
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M x M permutation
matrices

H[T(),T—l] = J=3 = 2T M

N—

Fig. 1. One period of a syndrome former for a code in the enset\(3, 6, M, T).

t, and a block ofc = K’'M encoded symbols is generated at the output. For any code in
C(J,K,M,T), an equivalent systematic LDPC convolutional encoder cardnstructed such
that the computational complexity per encoded parity-khanbol depends only o&™ and is
independent of the permutation matrix sixe (see [3]).

Since there are at leagt linearly dependent columns i (¢) for any code irC(J, K, M, T),
H, ;. , defines a raté > 1- M1 code. The constraint length of codes fréif, K, M, T)
is defined asv = (ms+ 1) - ¢ = a- K'M = KM. For example, the codes in the ensemble
C(3,6, M, T) have constraint length = 611.

ForT > J, a syndrome formeﬁ?(;T_l} for a(J, K) regular TB-LDPCCC can be constructed
from one period of a syndrome forméI[fJ,T_l] for a (J, K') regularT-periodic LDPCCC. This
can be done by wrapping back the last 1 blocks of columns ofH[TO,T_l]. For the(3,6) case,
I?[I(;,T_l] can be constructed frorH[TOvT_l} (see Fig. 1) for anyl’ > 3, as illustrated in Fig. 2.
TB-LDPCCC's created in this way form an ensemble which weotledoy C(J, K, M, T). The
block length of these codes 2§ M. In the following section we will use this ensemble to derive

a lower bound on the minimum distance of TB-LDPCCCs.

3A discussion of the definition of constraint length for LDPCEis given in [1].

January 5, 2008 DRAFT
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Hyr )= : 2TM

Fig. 2. Syndrome former of a TB-LDPCCC in the ensembld, K, M, T')

IIl. AL OWERBOUND ON THE MINIMUM DISTANCE OFTB-LDPCCCs

To avoid cumbersome notation, we focus on tBe6) regular TB-LDPCCC case, i.e., we

consider the ensemblé(3,6, M, T), although the same technique can also be applied more

generally.
Consider a lengtleTM vector o7y = (83, 65,7, 8, %)), v e FY, where
fbﬁh) = (17&%@?,...,@55(}), t=20,1,....,.7T =1, h = 0,1. A vector vy is a codeword

in a (3,6) regular TB-LDPCCC iff it satisfies th& M equations (constraints) defined by the
syndrome formerEI[TO,T_l], ie.,

~ ~ T

Vo, r-Hypgr =0 (5)

For the ensembl€ (3,6, M, T), theseT M parity-check equations can be divided irfosets
where thetth setS®, ¢t =0,1,...,T — 1, consists of thel/ parity-check equations determined
by the six permutation matrices located in thtk block of columns of the syndrome former
il

Let Jﬁh) be the Hamming weight of the vectﬁfh), h=0,1,t=0,1,...,7—1. We then say
that @71 has weight compositiod), 1 = (dgo),dél), . ,dg)ll,dgll), and the Hamming
weight of the vectotdy -y with weight compositiondy, 7y is dr_1 = dy) + dy + - - +
d¥ | + d\" . Now note that there existB[|, ( 10) ITizo (ji0) vectorsdjr—y with weight
compositiondy, r—;;. Our goal is to calculate the average number of codeweorgls_,; with

weight compositiorfi[ovT_l} for a code in the ensembi®&3, 6, M, T'). Finally, in the asymptotic

January 5, 2008 DRAFT
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case, asM — oo, it is more convenient to operate with the normalized weighiposition
~ ~(0) ~(1 ~(0 1
p[O,T—l} - (p(())7p(())7"'7p§“)17p§")1>’Wherep /M

Letting 5") = pT 9 andp") = pT , for b =0, 1, the probability that a vectar, r_;; satisfies
the tth set of constraintsS®, t =0,1,...,7 — 1, in the ensemblé’(B, 6, M,T) can be upper

bounded (see [1], Appendix I) as

r- t t t) 0) ~(1 ~(0 ~(1 ~ ~(1
€xXp |:MF()‘§)7)‘5)7 )‘é 7p1§ 27p1§ )27p1§ )17p§ )17p§ )api )):|

P(pyor-1,SY) < ; ,  (6)
I H ( <h)M)
i=t—2 h=0
where A A . A" are arbitrary constants,
6
F<)\17 )\27 SR )\67/)17/)27 s 7/)6) d_efg<)\17 )\27 R )\6) - Z )\kpk (7)

and

6 A 6 A
|| 1 k 1 — etk
(A, Mgy 5 Xg) % re(l+e );Hk:l( € )

We notice that there argé independent constraint se$$”, t = 0,1,...,7 — 1, and the number

(8)

of vectorsv r—1) having normalized weight compositigs, _; is

. T—1 M T—1 M
N(pyor-1)) : fH <ﬁ§O)M) H <~(1)M) : 9

Pt
t=0
Thus the expected number of vectors with normalized weigibgosition p;, ,_;; satisfying
all T sets of constraints, i.e., vectors that are codewords iTBi#&DPCCCC code defined by
I~{[T07T_1], is given by
def T-1
E(b[o,T-l}) =N P[OT 1] HP Plo,T-1)s )) . (10)
t=0
Substituting (6) into (10), we obtain the upper bound

T-1 _
exp |:M Z F()\gt)7 )\gt)a R )\ét)u ﬁg(i)% ﬁil_)w te 7ﬁ1€1)):|

t=0
-1 T 2
(I G TL ()

E(por-1y) < : (11)

t=0

January 5, 2008 DRAFT
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where we recall thaﬁ( 5 = p(Th 9 andp”(h1 = ﬁ(T)l, h = 0,1. Now using Lemma 1 and Appendix II

from [1], we can further upper bounl(p(, ;) as

-1 2
< |0t 20 L")

t=0

P[o T— 1]

T-1
+ eXp [M F()‘gt)v )‘g)a < )‘((St ,ﬁEO 2 ﬁzg,l)% e aﬁil))] ) (12)
t=0

where

6
2
F()\17)\27"'7)\67p17p27"'7p6) F()\17)\27"'7)‘67p17p27'"7p6)_gZH(pk)7 (13)

k=1

1, if p=0,
olp. M) < - (14)
12Mp(1 — p), otherwise,
and
H(p) € —plnp—(1—p)In(1—p) . (15)

Now suppose that for a particular normalized weight contposip, r_,;, there exists a set
O A0 AD AT AT ATTYY of 6T coefficients such that the sum of the
functions ' FOAY AL LAY ,ﬁEOZ,ﬁf)z, ..., ") is negative. Then the average number
of codewords having normalized weight compositjaf,_, goes to zero exponentially as
tends to infinity. The tightest bound di(p;, +_;)) can be obtained by minimizing each function
FOW D AW 50 50 a8, ¢t = 0,1,...,T — 1, with respect to its parameters
A AP AD,

We begin by defining

G<p17 P25 - - - 7P6) dzef)\ gnln)\ F()\lu )\27 R )\67/)17 P2 - 7/)6)- (16)
..... 6
Then from (12) we obtain
T-1 2 T-1
Pio.r- 1 = [HU Pi s Ha(pil),M)] exp [MZG(ﬁEO)zaﬁil)m---»ﬁil)) 3
t=0 t=0
or alternatively
T-1 T-1 2
~ 0 1 ~
E(P[O,T—l}) < [H (PE )7 M) H U(pg )7 M)] €xXp [MG(p[O,T—l})} ) (17)
t=0 =0

January 5, 2008 DRAFT
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where
d fT—l
~ e 0 ~(1 ~(1
G(P[O,T—l}) = G(PE )27p£ )2> e 7P§ )) (18)
t=0
is a function of theT-dimensional normalized Welghtvectp@;)T 1] (ﬁf)),ﬁél),...,pgg)l,ﬁg)l).
We now let oz = 5:(3 A + ST 5Y) be the normalized Hamming weight

of the vectorpy, _y;. If the functlon G(pp,r—1)) is negative for allp, r_;; with normalized
weight pjo r—1] = po, then the corresponding mathematical expectatip, r_,;) goes to zero
exponentially with)M/ as M tends to infinity.

The total number of weight compositiods, 1, = Mpyy 7y is upper bounded by +1)*".
Hence, ifG(pjr—1;) < 0 for a py ;) having normalized weight 1) < p*, andT is finite,
the average number of nonzero codewords having we]gﬂtu < 2p*MT tends to zero as/
tends to infinity.

Note that any code id(3,6, M, T') always has codewords, 7 ;| = (vg >,vg”, . @&9)1,1}(;)1)
with 5 = 3" = 1 for somet, where1 is the M-dimensional all-ones vector, and the
remaining27" — 2 components ofv, r—;; equal to theM-dimensional all-zero vector. Such a
codewordv, r—q has weigh)/, and this is an upper bound on the minimum distance of codes
in 5(3, 6, M, T). Hence, it is sufficient to look at weight compositions witlarAming weight
dio.r—1) < 2M, i.e., por_1) < =

We now summarize the arguments above in the following theore

Theorem 1: Suppose that the functio(p(, r_;)) is negative for allp, _;; of normalized
weight pjo r—1) < p*. Then, in the ensemblé(J, K, M, T), there exists a TB-LDPCCC with

minimum distancel}, r_,; lower bounded by

djo.r—1 > min{2MTp*,2M}. (19)

The parametep* can be calculated numerically. The results of this caleutafre presented
in Section V. There we will see that, analogous to convealitail-biting convolutional codes,
for relatively smallT" the inter minimum distancé.., determines the minimum distance of the
TB-LDPCCC, while for largefl’ the intra minimum distancé;, i.€., the free distance of the
T-periodic LDPCCC, determines the minimum distance of theLTB’CCC.

4See [1] for a mathematically precise formulation of thisutes

January 5, 2008 DRAFT
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In the following section, we show how this existence boundtio& minimum distance of
TB-LDPCCCs leads to an existence bound on the free distahttee@ -periodic LDPCCCs.

V. ALOWERBOUND ON THE FREE DISTANCE OFT-PERIODICLDPCCGCs

We begin by considering TB-LDPCCCs of leng?kT' M, wherex is an integer satisfying

x > 1. Any codewordv, .r—) in this code satisfies

~ ~ T
Vjo,er-11H g 1) = 0, (20)

where the transposed parity-check matfi%TOﬁT_l} of the TB-LDPCCC is constructed from a
syndrome formerH[TO,HT_l} of a T-periodic LDPCCC by wrapping back the last two blocks
of columns (see Section Il). The product of a codewarg._; in the length2<T'M TB-
LDPCCC and the syndrome formH[TO,HT_H of the T-periodic LDPCCC defines al/ (kT +2)-

dimensional syndrome vector

S[0,xT+1] = @[O,RT—HH’[I(‘),RT_H , (21)
where the syndrome vector

S[o,xT+1] = (30, 81,4, S,-;T+1) (22)
is a concatenation ol/-dimensional subvectors, = (s, s2, ..., ), t = 0,1,..., kKT + 1.

Since vy .- satisfies (20) an(ﬂ[TO,RT_H is constructed frorTH[TMT_l] using the wrapping

back procedure of Fig. 2, the subvectassatisfy the conditions

S0 = Sk1) (23)
81 = Spri1, (24)

and
$,=0, t=23,... kT —1. (25)

Therefore (20), which defines the codewords of the TB-LDPC{S&quivalent to (21), where
the syndrome vectos), .7, satisfies conditions (23)—(25).

Lemma 1. Let d~[07nT—1]s for any integerx > 1, be the minimum distance of the TB-LDPCCC
defined by (20). Then there existg > 0 such that for any > x, the free distancéee Of the
T-periodic LDPCCC with syndrome formetf ;.. _,; is lower bounded by

dfree > CZ[O,HT—H . (26)

January 5, 2008 DRAFT
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Proof: The proof follows from the definitions of free distance and/ mistance. Thel th
order row distancel; of a periodically time-varying convolutional code is defing1] as the
minimum weight of all code sequences having a nonzero segafdength at most. + m + 1
(in this case, the code sequences are composed of blocksgth 2V/), wherem is the encoder

memory. In turn, the free distanckee is defined as

dfree = mLin dy, , (27)
whered] is monotonically decreasing with and there exists an integéy such that

dj, = d,, = diree (28)

for any L > L.
Thus, we can find a sufficiently large, such that, for any > kg, the code sequences of
the length2x<T M tail-biting code include all possible nonzero segmentseojthZy + m + 1

blocks of theT-periodic convolutional code. This implies that

dy, > diper—1 (29)
which, along with (28), leads to (26). [ ]
Now let @y .1 = (85", 90", ..., 8% |, "% ,) be a codeword in the lengttxTM TB-

LDPCCC, i.e., it satisfies (20). Note that this codeword carrdpresented as

V(0,e7—1] = (V0,711 V[1,271]5 - - - » V(1) TkT—1])» (30)
where
3 (0 _a _0) -~ :
V(-1 TiT—1] = (vgzll)w "’Eizl)w ce ’UZ(-T)_l, vET)_l), 1=1,...,K. (31)

Then consider the sequence

_ def - 5 3
Blor_1] = Vjor_1] + Vrar—1] + - - + V(w115 (32)

i.e., the moduld sum of the components of the codewarg..—;; given in (30). The following
lemma proves thab, r_q; is a codeword in the TB-LDPCCC consisting of only one periéd o
the T-periodic LDPCCC.

Lemma 2: The sequenc® ;) satisfies

_ ~ T
'U[O,T—l}H[o,T_” =0, (33)

January 5, 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 12

i.e., it is a code sequence of the TB-LDPCCC with length etpane period of th& -periodic
LDPCCC.
Proof: Equality (33) is equivalent (see (21)) to the equality

’l_f[o,T—l]H[To,T_” = Sj0,74+1] = (80,81, -, 8741), (34)
where
o = Sr, (35)
S1 = Sr141, (36)
and
s =0, t=23,....,T—1 (37)

Therefore, instead of proving (33), we can alternativelyverthat the syndrome vectors in (34)
satisfy conditions (35)—(37). We begin by defining

~ def (4 i i i .
v[(i—l)T,iT—l}H[TQT_l} = SEOTT_FI] = ( é),sg),...,s(Tll), 1 = 1,2,...,/{ . (38)

Then it follows from (21) and (38) that the syndrome veckqy,.r,, of the length2xT M
TB-LDPCCC satisfies

(so,sl,...,SHT+1):(381),3§1),...,sgzl,sg),sgil, 0, 0, ..., 0,0 0, ... )
+ (0, O, ..., O, s(()Q),sgz),séz),...,sgzl,sg),sgil,o,..., )
+(0©, 0,...,0 0, ...,0 0, 0, s s &2 . s 0.
T
(39)

where the addition is modul®.

Since vy .r—1) ia a codeword in the lengtdxT'M TB-LDPCCC, conditions (23)—(25) are
satisfied for the syndrome vectsy ..r;1). This, together with (39), implies that the vect@iféJ
should satisfy

s = ), (40)
Sgl) = 35217 (41)
s(()i) = sgﬁ_l), 1=2,3,...,K, (42)
sV =580, =23,k (43)

January 5, 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 13

and
sV=0, t=23,....T-1,i=12,...,k (44)

From the definition ofvy, r_; in (32), the definition of its syndrome vectsf 14 in (34), and

the definition ofs"”. . in (38), it follows that

[0,7+1]
_ <M (2) (~)
S[0,7+1] = S[o;1741] + Sl0,7+1] +et Slo,7+1) (45)

where the addition is modulo 2. It can be checked that (40)-{#ply (35)-(37), and hence the
lemma is proved. [ ]

The next lemma relates the minimum distances of the leggitil/ TB-LDPCCC and the
length27'M TB-LDPCCC constructed from the sarfieperiodic LDPCCC.

Lemma 3: For any positive integek, the minimum distanceZ[O,HT_H of the length2xT M
TB-LDPCCC defined by (20) is lower bounded by the minimumaﬁsEJ[O,T_l] of the length
2T M TB-LDPCCC, i.e..djo 11 > djp1-1.

Proof. For any codeword .r—qj in the length2xT'M TB-LDPCCC represented by (30),

wi (Vo er—1]) = wn (Vpo.r—1)) + wh (Orar—1)) + -+ + wh (Vje—nyrmr—1]) (46)

where wy(+) is the Hamming weight operator. From (32) and the triangkyirality it then
follows that

w (Vjo.r—1)) < wh (D, r—1)) + - - -+ wh (Dje—1yrnr—1]) - (47)

Since from Lemma 2 we know that, r_,) is a codeword in the lengt?l'}/ TB-LDPCCC, it
follows that

djo.r—1) < wn (Vpp,r-1y) - (48)

Combining (46)—(48) we obtain for the codewosg ..., of the length2xT'M TB-LDPCCC
that

dior—1) < wy (Vpo,er—1]) (49)

which directly implies
J[O,T—l} < CZ[O,HT—H , (50)
and the lemma is proved. [ |

Theorem 2 now follows directly from Lemmas 1 and 3.

January 5, 2008 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 14

Theorem 2: The free distancéy.. of anyT-periodic LDPCCC from the ensemiafé3, 6, M, T')
is lower bounded by the minimum distance of the correspandiB-LDPCCC of block length
2T M, i.e.,

diree > djo. -1 - (51)

The distance properties of convolutional codes are cheniaet! by the ratiodyee/v. In

Section V, we use Theorems 1 and 2 to numerically calculageldtver bounda ppccc =

J[O,T—l}/V on dfree/V-

V. NUMERICAL RESULTS

Consider the functiortx(p;, +_;) defined in Section Ill. According to the condition of The-
orem 1, we must find the maximumy, ;. ,, such thatG(pp _y)) < 0 for all p;g_y with
normalized weigh r—1) < pjy 7_y-

The numerical procedure used to fipHT_l] can be outlined as follows. For a givep r_1,
we find the vectopy, ,-_;; with normalized weighpo 11 that maximizes the functio@(p, _1))
using numerical optimization. It7(pjyr_;) > 0 , we decreasey r—y; otherwise (i.e., if
G(pyr-1;) < 0) we increasepp r—1) and repeat the procedure until the functiGitpy, 1))
becomes less than, for examplel0~°. The end result of the procedure is a vec,b@'T =

0) ~ ~(0) . . . ~(0)
B, 50, A% ) and its normalized weighty, -y = 57>, T s,

In Fig. 3, the resulting maximizing vectogs, ,-_;; are shown forl" = 5,12,13. In partlcular,
for T =5, we have
Pjo.r—1 = (0.023,0.023,...,0.023). (52)

The normalized weighpj,r—1) = 0.023 of this vector is close to Gallager's lower bound on
the minimum distance to block length ratio of LDPC block cedkerived in [2]. This confirms
the general rule that, for relatively small block lengthg tnter minimum distanceé,,;, which
reflects the block code properties of tail-biting convalual codes, determines their minimum
distance. Indeed, the same tendency is observed fer3, 4, ..., 11, i.e., each component of the
maximizing vector is approximately equal ®023, resulting in a normalized weight ©¥023.
ForT = 11, we see from (52) that the sum of the components of the makigizctorpy, ;_;,

is approximately0.5. The same is also true faf = 12 and7" = 13 (even though as shown in
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Maximizing py, _q; vector forT =5
0.03

(@)

Maximizing py, _q; vector forT = 12
0.06

0.04

0.02

(b)

Maximizing pj, r_y) vector forT = 13
0.06

0.04

0.02

(©)

Fig. 3. Maximizingpjy r_1) vectors forT = 5,12, 13.

Figs. 3 (b) and 3 (c), the components of the maximizing vearer no longer approximately
equal in these cases), and further increases in the periadtdead to higher values of this sum.
It follows that the normalized weight drops dSincreases beyondll. This effect is observed
due to the intra minimum distanegy., Which is lower bounded by the bound on free distance
of LDPCCCs derived in [1]. This bound scales @$pccc(3,6)v = 6arppcec(3,6)M ~ 0.5M
and represents an upper bound on the minimum distance of OBECCs. In other words, the
minimum distance to block length ratio of TB-LDPCCCs dese=aasl’ increases beyondll,
since the block length continues to increase while the mimindistance cannot grow beyond

the constantlia.
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The distance ratios for the various LDPCCC ensembles asepted in Fig 4. We see that
the minimum distance to block length ratio for TB-LDPCCCsegual to Gallager’s ratio for
LDPC block codes when the periddis small. For larger periods, however, the ratio drops and
tends to zero, due to the effect @fi2, as noted above. On the other hand, the free distance to
constraint length ratio foff-periodic LDPCCCs grows with increasirij and approaches the

ratio derived in [1] for general (non-periodic) time-vargiLDPCCCs ag’ increases beyontll.

0.1

0.09F Non-periodic LDPCCCs ]
0.08F 7 ]
//
0.07f .’ o 1
© .7 T-periodic LDPCCCs
S 0.06f ’ i
.2 .’
o5 .
A 0.05f . i
/,/
0.04F L7 i
4
,/
e LDPCs 1
oo2r T ]
0.01- TB-LDPCCCs " !
o L L L L L L L L
4 6 8 10 12 14 16 18 20

Fig. 4. Distance ratios fof-periodic LDPCCCs and TB-LDPCCCs as a function of the pefiod

VI. CONCLUSIONS

In this paper, we derived a lower bound on the free distancpeoiodically time-varying
(J, K) regular LDPCCCs and a lower bound on the minimum distancéefassociated TB-
LDPCCCs. Theorems 1 and 2 give analytical expressions &getibounds in the general case.
Using these expressions, we calculated numerically thed®on free distance and minimum
distance for the practically interesting, 6) regular LDPCCC case. In the limiting cases, for

T > 11 the free distance bound corresponds to the bound for gefmenalperiodic) time-varying
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LDPCCCs derived in [1], and fof' = 3 the minimum distance bound corresponds to Gallager’s
bound for LDPC block codes.
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