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Abstract

Given images of a scene taken with a moving camera or recordings of a moving smart
phone playing a song by a microphone array, how hard is it to reconstruct the scene
structure or the moving trajectory of the phone? In this thesis, we study and solve sev-
eral fundamental geometric problems in order to provide solutions to these problems.
Of particular interests are the minimal problems, where only minimal information or
measurements are available for the problems to be solvable. In this thesis, we have
identified and solved several important minimal problems in computer vision and sen-
sor network calibration.

The key underlying technique for solving such geometric problems is solving sys-
tems of polynomial equations. In this thesis, several general techniques are developed.
We utilize numerical schemes and explore symmetric structures of polynomial equa-
tions to enable fast and stable polynomial solvers.

These enable fast and robust techniques for reconstruction of the scene structures
using different measurements. One of the examples is structure from sound. By mea-
suring the time-of-arrivals of specific time instances of a song played on a phone, one
can reconstruct the trajectory of the phone as well as the positions of the microphones
up to precision of centimeters.
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Preface

In this thesis, we focus on solving systems of polynomial equations for geometric
problems in computer vision and sensor networks. In particular, we are interested in
well-defined and solvable configurations for these geometric problems where abso-
lute minimal information are available. These minimal configurations are not only
of theoretical importance, but also crucial for robust estimation in the presence of ex-
treme noise - outliers. In many cases, these minimal problems lead to constructing and
solving systems of polynomial equations. For a particular geometric problem, there
are in general many ways to parameterize the unknowns to form polynomial systems.
Choosing a proper parameterization to reduce number of unknowns and degrees of
the polynomial equations is an essential step to solve the problem. As for solving
a polynomial system, numerical techniques are key to ensure numerical stability of
polynomial solvers. In this thesis, we study parameterization for a wide range of ge-
ometric problems as well as general techniques to improve numerical stability and
efficiency for state-of-the-art polynomial solvers.

Another topic of this thesis is optimization for image recognition. Image recog-
nition relies largely on training the machine with prior information or labelled data.
We study a formulation to encode such prior information as a continuous optimization
problem to improve the capability of the recognition pipeline.
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Chapter 1

Introduction

Geometric problems in computer vision and sensor networks in general involve the
inverse problems of recovering certain geometric property e.g. positions and rotations
of the cameras, positions of sensors, given specific measurements. For computer vi-
sion, such geometric problems can be to estimate the scene structure and the camera
motions based on image measurements. For sensor network calibration, one of the
important geometric inverse problems is to estimate the positions of the sensors based
on time-of-arrival or time-difference-of-arrival measurements.

The main focus of this thesis is to solve such inverse problems with minimally
available measurements such that the problems are solvable. In many cases, these min-
imal problems can be formulated as systems of polynomial equations. The solvability
of these problems is then closely related to the algebraic geometry of the correspond-
ing polynomial systems. For a solvable problem, an effective and stable polynomial
solver is essential for practical application. This thesis devotes efforts both to iden-
tifying unsolved minimal problems in computer vision and sensor networks and to
deriving general techniques to improve numerical stability and efficiency of polyno-
mial solvers.

1.1 Overview
This section gives an overview of the thesis and describes the connections between
different papers.

Part I: Solving Systems of Polynomial Equations

Chapter 3 This chapter presents a scheme for optimizing the numerical stability
and efficiency of polynomial solvers which is mainly based on the work in [54]. The
optimization scheme consists two steps (i) equation removal (ii) permissible selection.
Our results show that with simple greedy schemes, one can improve the polynomial
solvers for a wide range of geometric problems in computer vision, thus outperforming
state-of-the-art polynomial solvers in terms of both speed and stability.

1



CHAPTER 1. INTRODUCTION

Chapter 4 The symmetric structures in the monomials are explored to enable faster
and more stable polynomial solvers. Full symmetry in the polynomial systems was
first exploited in [3] and was later generalized to partial symmetry in [63]. The impor-
tance and advantages of utilizing symmetry are demonstrated for geometric problems
in computer vision. One of the examples with full symmetry was also discussed for
the optimal pose estimation problem [104].

Part II: Geometric Problems in Computer Vision

Chapter 5 This chapter focuses on camera pose estimation problem in computer
vision. Specifically, we study and identify a new set of solvable minimal problems
of pose estimation with unknown focal length with line, points and direction features.
The results are published in [56].

Chapter 6 We study the problem of estimating relative pose with a single unknown
radial distortion on one of the two cameras. Three previously unsolved minimal prob-
lems are identified. We study ways of parameterization and develop efficient poly-
nomial solvers for these minimal problems. The materials of this chapter are based
on [62].

Part III: Geometric Problems in Sensor Networks

Chapter 7 The minimal problems of bipartite sensor network calibration using time-
of-arrival (TOA) measurements are studied. We identify the minimal problems for
general 2D and 3D configurations. We study a new parameterization based on rank-
constraints of the measurement matrix and present a saturation scheme that is essential
to solve the underlying polynomial system [60]. For cases where the dimension of the
receivers and transmitters are different, we derive a linear solver based on factorization
for reconstructing the sensor positions [16].

Chapter 8 In this chapter, we study the problems of recovering unknown time off-
sets in sensor network calibration with time-difference-of-arrival (TDOA) measure-
ments. The key technique is to utilize the rank constraints of the measurement matrix
and to formulate the unknown offsets in terms of the determinant constraints. We
study thoroughly the minimal measurements needed to solve for the unknown off-
sets [57]. For overdetermined cases, we present a formulation that aims to minimize
the rank of the compacted measurement matrix [48].

Chapter 9 We study sensor network self-calibration in far-field setup where the
distances between the receivers are much smaller than their distances to any of the

2



1.2. CONTRIBUTIONS

transmitters. We show that in the far-field setup, TOA self-calibration and TDOA self-
calibration are equivalent. In this setup, one can reconstruct the receivers positions and
the directions from the transmitters to the receivers. By using the rank constraints, the
minimal case of this problem can be solved linearly [53]. We also test the linear solver
on UWB signals where multipath propagation is utilized to synthesize the existence
of multiple transmitters [59].

Chapter 10 In this chapter, we extend the analysis of far-field setup to unsynchro-
nized receivers and transmitters i.e. unsynchronized time-of-arrival (UTOA) measure-
ments. We derive a minimal solver based on linear factorization that is general for 2D
and 3D problems [17].

Part IV: Optimization in Image Retrieval
Chapter 11 Given matching image patches, we study the effects of vocabulary
learning for local features in image retrieval. We integrate an entropy optimization
into the vector quantization step and derive efficient training schemes [58, 61].

1.2 Contributions
All of the published papers or manuscripts during my study are collaborative works
from all the authors. I describe in this section the contributions of the author and
coauthors for all these works.

Main Papers

• Y. Kuang, J.E. Solem, F. Kahl and K. Åström, Minimal Solvers for Relative
Pose with a Single Unknown Radial Distortion, accepted to IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014

In the process of solving two-sided unknown radial distortion, I came up with
the problems of radial distortion calibration with a single unknown radial dis-
tortion. I was responsible for all the algorithms, codes, experiments as well as
the writing. Jan Erik Solem, Kalle Åström and Fredrik Kahl worked on real
data collection and provided helpful discussions on several issues of the paper.

• Y. Kuang, Y. Zheng and K. Åström, Partial Symmetry in Polynomial Systems
and Its Application in Computer Vision, accepted to IEEE Conference on Com-
puter Vision and Pattern Recognition, Columbus, Ohio, 2014

I developed the algorithms and wrote the solvers for partial symmetric prob-
lems. Yinqiang Zheng first brought up the partially symmetric examples in
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computer vision and worked on the experiments. Kalle Åström and I derived
the theoretical part of partial symmetry. I have written most of the paper and
run half of the experiments.

• Y. Kuang, K. Åström, Pose Estimation with Unknown Focal Length using Points,
Directions and Lines, International Conference on Computer Vision, Sydney,
Australia, 2013

I and Kalle Åström had the idea to extend the minimal solvers with richer fea-
tures. I developed algorithms for all the solvers and most of the experiments.
Kalle Åström worked on generating reconstruction from real data.

• Y. Kuang, S. Burgess, A. Torstensson and K. Åström, A Complete Character-
ization and Solution to Microphone Position Self-Calibration Problem, Inter-
national Conference on Acoustics, Speech and Signal Processing, Vancouver,
Canada, 2013.

Kalle Åström, I and Anna Torstensson developed the algorithms together. I
implemented and optimized the solvers and did all the synthetic experiments. I
wrote most of the paper and Simon Burgess worked on real experiments.

• Y. Kuang and K. Åström, Stratified sensor network self-calibration from TDOA
Measurements, European Signal Processing Conference, Morocco, 2013.

I first developed the linear solver. Kalle Åström came up with the concept of
rank constraints and I developed all the minimal solvers based on rank con-
straints. I did all the synthetic experiments. Kalle Åström and I worked together
on the writing as well as real experiments.

• Y. Kuang, K. Åström, Single Antenna Anchor-Free UWB Positioning based
on Multipath Propagation, International Conference on Communications, Bu-
dapest, Hungary, 2013

I worked on the algorithmic part and RANSAC experiments for the paper. Kalle
Åström processed the data and did the reconstruction. Fredrik Tufvesson col-
lected the data and wrote the signal processing part of the paper.

• F Jiang, Y Kuang, K. Åström, Time Delay Estimation for TDOA Self-Calibration
using Truncated Nuclear Norm, International Conference on Acoustics, Speech
and Signal Processing, Vancouver, Canada, 2013

I developed the algorithm with truncated nuclear norm and ran most of the
experiments based on Kalle Åström’s suggestions of utilizing nuclear norm.
Fangyuan Jiang was responsible for both the experiments and writing.

• S. Burgess, Y. Kuang, J. Wendeberg, K. Åström, Minimal Solvers for Unsyn-
chronized TDOA Sensor Network Calibration using Far Field Approximation,
ALGOSENSOR 2013
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I came up with the idea of a linear solver for the minimal problem and developed
the algorithm together with Simon Burgess. I wrote most of codes and the
section for the linear solver. Simon Burgess and Johannes Wendeberg did most
of analysis, writing and experiments.

• Y. Kuang and K. Åström, Numerically Stable Optimization of Polynomial Solvers
for Minimal Problems, European Conference on Computer Vision, Florence,
Italy, 2012

Kalle Åström first had the idea of optimizing polynomial solver. We developed
and implemented the algorithms and theories together. I wrote most of the paper
and conducted most of the experiments.

• E. Ask, Y. Kuang and K. Åström, Exploiting p-Fold Symmetries for Faster
Polynomial Equation Solving, International Conference in Pattern Recognition,
Japan, 2012

Erik Ask and Kalle Åström developed the main theory and methods. I was
involved in developing the method at a later stage. I worked on optimizing the
solvers and was responsible for one of synthetic experiments and optimization
of the solvers.

• Y. Kuang, E. Ask, S. Bugeress, K. Åström, Understanding TOA and TDOA
Network Calibration using Far Field Approximation as Initial Estimate, in Proc.
International Conference on Pattern Recognition Applications and Methods,
Vilamoura, Algarve, Portugal, 2012

Kalle Åström first came to the linear solution. I worked on the alternating op-
timization and other experiments. Erik Ask, and Simon Burgess were also re-
sponsible for the experiments.

• Y. Kuang, M. Byröd and K. Åström, Supervised Feature Quantization with En-
tropy Optimization, IEEE Workshop on Information Theory in Computer Vision
and Pattern Recognition, Barcelona, Spain, 2011.

I implemented the algorithms and did all the experiments and writing. Martin
Byröd came up with the speed-up scheme.

• Y. Kuang, K. Åström, L. Kopp, M. Oskarsson and M. Byröd, Optimizing Visual
Vocabularies Using Soft Assignment Entropies, Asian Conference in Computer
Vision, Queens Town, New Zealand, 2010.

Kalle Åström and I developed the formulation and implemented the algorithm
together. I was responsible for most of experiments. Other coauthors con-
tributed in comments and discussions.
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Subsidiary Papers

• Z. Shimayijiang, S. Burgess, Y. Kuang and K. Åström, Minimal Solutions for
Dual Microphone Rig Self-calibration, submitted to European Signal Process-
ing Conference, 2014

I came up with the formulation of dual-microphone sensors and developed two
of the minimal solvers myself. Together with Zhayida Shimayijiang, Simon
Burgess and Kalle Åström, we developed the rest of the solvers and experi-
ments. I did part of the writing.

• E. Ask, Y. Kuang and K. Åström, A Unifying Approach to Minimal Problems
in Collinear and Planar TDOA Sensor Network Self-Calibration, submitted to
European Signal Processing Conference, 2014

I developed and implemented several minimal solvers in the paper. I wrote parts
of the algorithmic section of the paper. Erik Ask wrote most of the paper and
did most of experiments together with Kalle Åström.

• Z. Shimayijiang, F. Andersson, Y. Kuang, and K. Åström, An Automatic Sys-
tem for Microphone Self-Localization Using Ambient Sound, submitted to Eu-
ropean Signal Processing Conference, 2014

I worked on revising the paper. Zhayida Shimayijiang, Fredrik Andersson and
Kalle Åström and did most of the work.

• Y. Zheng, Y. Kuang, S. Sugimoto, K. Åström, M. Okutomi, Revisiting the PnP
Problem: A Fast, General and Optimal Solution, International Conference on
Computer Vision, Sydney, Australia, 2013

I developed and optimized the customized symmetric solver for the problem
and wrote about details on generating the solver. Yinqiang Zheng is the main
contributor of this paper.

• S. Burgess, Y. Kuang and K. Åström, TOA Sensor Network Calibration for Re-
ceiver and Transmitter Spaces with Difference in Dimension, European Signal
Processing Conference, Morocco, 2013

I was responsible for experiments of the paper and the later the algorithm and
codes of double-compacted solver for the problem.

• S. Burgess, Y. Kuang and K. Åström, Pose Estimation from Minimal Dual-
Receiver Configuration, International Conference on Pattern Recognition, Japan,
2012

I worked on optimizing and speeding up the polynomial solvers for different
problems. Simon Burgess did most of the writing and experiments.
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• S. Burgess, Y. Kuang and K. Åström, Node Localization in Unsynchronized
Time of Arrival Sensor Networks, International Conference on Pattern Recog-
nition, Japan, 2012

Simon did most of the writing and experiments as well as theories together
with Kalle Åström. I was responsible for part of the writing and the algorithm
development.

• T. Schoenemann; Y. Kuang, F. Kahl, Curvature Regularity for Multi-Label
Problems - Standard and Customized Linear Programming, in Proc. Energy
Minimization Methods in Computer Vision and Pattern Recognition, Saint Pe-
tersburg, Russia, 2011.

I worked on the multi-label formulation, algorithm implementation and writing
for the part of inpainting. Thomas Schoenemann did the other works together
with Fredrik Kahl.

• Y. Kuang, D. Stork, F. Kahl, Improved Curvature-based Inpainting applied to
Fine Art - Recovering van Goghs Partially Hidden Brush Strokes , in Proc.
IS&T/SPIE Electronic Imaging, Computer image analysis in the study of art II,
San Francisco, California, 2010.

David Stork started the discussions with Fredrik Kahl on recovering hidden
strokes. I developed the pipeline and codes for the processing and wrote most
of paper.
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Chapter 2

Preliminaries

To attack any problems in the real world in a mathematical way, a proper abstraction
or modeling of the real world is essential. For geometric problems in computer vision
and sensor networks, the key is to build up mathematical models between sensors
(e.g. cameras, microphones) and the corresponding measurements. In this chapter,
we introduce several geometric concepts and models in computer vision and sensor
network calibration. Then we review the key concepts in algebraic geometry and the
action matrix method for solving systems of polynomial equations.

2.1 Geometry in Computer Vision

2.1.1 Camera Model

We consider the standard pinhole camera model widely used in computer vision [43].
In the pinhole camera model, it is assumed that all light-rays towards the camera
pass through a common point C in space. Here C is also called the camera center.
An image is formed by the intersection of these light-rays with the image plane Π.
For a 3D point X =

[
x y z 1

]T
and its corresponding 2D image projections

x =
[
u v 1

]T
in homogeneous coordinates, the projection equation is,

ηx = PX. (2.1)

Here, the scalar η is the depth of the 3D point X and P is a 3×4 camera matrix which
can be factorized as,

P = K
[
R | t

]
. (2.2)

The rotation matrix R encodes the orientational part of the camera pose specifying in
which direction the camera is pointing and t relates to the coordinate of the camera
center t = −RC. Here, K is the calibration matrix that compensates for the intrinsic
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setup of the camera as follows:

K =

f α u
0 γf v
0 0 1

 . (2.3)

Here f is the focal length that indicates the distance of the camera center to the image
plane. In most applications, it is assumed that the image coordinate system is perpen-
dicular such that α = 0 (no skew), the pixels are square i.e. aspect ratio γ = 1 and the
position of the principle point (u, v) is at the center of the image. A camera if said to
be calibrated is the calibration matrix K is completely known. Otherwise, the camera
is uncalibrated.

2.1.2 Epipolar Geometry
In computer vision, epipolar geometry relates to geometric relations of the image
points of a 3D scene between two camera views. Given two image projections x =[
u v 1

]T
and x′ =

[
u′ v′ 1

]T
of the same 3D world point from two cameras

P and P′, there exist bilinear constraints between the corresponding points x and x′.
Specifically, if both cameras are uncalibrated, then the epipolar constraint is

x′
T
Fx = 0, (2.4)

where F ∈ R3×3 is the fundamental matrix. A fundamental matrix F is only defined
up to scale and it satisfies det(F) = 0.

As for calibrated cameras, the bilinear constraint is determined by an essential
matrix E ∈ R3×3. The corresponding points x and x′ satisfy

x′
T
Ex = 0. (2.5)

It is shown in [43] that a 3×3 matrix E is an essential matrix if and only if det(E) = 0
and it satisfies the trace constraints

2EETE− tr(EET )E = 0,

which indicate that the two non-zero singular values of E are equal.

2.1.3 Radial Distortion
With the presence of radial distortion from camera lens, the linear pinhole camera
model in (2.1) is not valid any more for image projections. To model the nonlinear
effects of radial distortion, the undistorted image projection xu =

[
xu yu 1

]T
and

distorted image projection xd =
[
xd yd 1

]T
are related as

xd = L
(
r(xu)

)
xu. (2.6)
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Here L(r) = 1 + k1r + k2r
2 + k3r

3 + k4r
4 + . . . which can be seen as a Taylor

expansion of an arbitrary smooth function and r(xu) is the distance of the undistorted
image points to the principle point. In this thesis, we assume a one-parameter division
model for radial distortion as in [36] which is an effective approximation of the gen-
eral smooth function. Under the one-parameter radial distortion model, the relation
between undistorted point coordinates xu and radially distorted point coordinates xd
can be written as xuyu

1

 ∼
 xd

yd
1 + λr2d

 , (2.7)

where λ is the distortion coefficient and rd is the distance of xd to the distortion center.

2.2 Geometry in Bipartite Sensor Networks

We consider a particular type of sensor networks where the graph structure is bipartite.
A graph is bipartite if the vertices of the graph can be divided into two independent
sets (such that there are no edges between vertices within each set). In sensor net-
work, these two independent sets can be regards as receivers and transmitters. Let
ri, i = 1, . . . ,m and sj , j = 1, . . . , n be the spatial coordinates of m receivers and
n transmitters, respectively. In this thesis, we consider the problem of reconstructing
the spatial positions of the receivers {ri} and the transmitters {sj} by measuring the
arrival time instances {tij} of signals for the receivers. Here we assume that the speed
of the signal v is known and constant. We further assume that each receiver ri has its
own clock offset τi (time of transmission) and the same applies to each transmitter sj
with clock offset µj (time of recording). Then we have the following model between
the positions and the measurements

‖ri − sj‖2 = v(tij + τi − µj)
= fij + qi + oj , (2.8)

where fij = vtij , qi = vτi and oj = −vµj . We call this unsynchronized time-of-
arrive (UTOA) measurements. If the receivers are synchronized i.e. τ = τ1 = τ2 =
. . . , we have

‖ri − sj‖2 = fij + oj , (2.9)

where oj = v(τ − µj). Then we know the relative arrival time or time difference of
arrival (TDOA) of the signals from different transmitters to receivers. If we further
assume that the transmitters and receivers are synchronized under the same clock, i.e.
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Figure 2.1: A configuration of 3 transmitters (circles) and 3 receivers (squares) with
known pairwise distances dij in 2D.

τ1 = τ2 = · · · = µ1 = µ2 = . . . , then based on (2.8), we have time of arrival (TOA)
measurements

‖ri − sj‖2 = dij , (2.10)

where dij = vtij is the absolute distance between the receiver i and transmitter j
(Figure 2.1). We have the following calibration problems to consider:

Problem 2.2.1 (UTOA Bipartite Network Calibration) Given relative distance mea-
surements fij determine receiver positions ri , i = 1, . . . ,m, transmitter positions
sj , j = 1, . . . , n, offsets qi, i = 1, . . . ,m and oj , j = 1, . . . , n such that fij =
‖ri − sj‖2 + qi + oj .

Problem 2.2.2 (TDOA Bipartite Network Calibration) Given relative distance mea-
surements fij determine receiver positions ri , i = 1, . . . ,m, transmitter positions sj ,
j = 1, . . . , n and offsets oj , j = 1, . . . , n such that fij = ‖ri − sj‖2 + oj .

Problem 2.2.3 (TOA Bipartite Network Calibration) Given absolute distance mea-
surements dij determine receiver positions ri , i = 1, . . . ,m and transmitter positions
sj , j = 1, . . . , n such that dij = ‖ri − sj‖2.

For all these problems, one can only reconstruct positions of receivers and trans-
mitters up to an Euclidean transformation and mirroring.
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Figure 2.2: Approximation of distance between receivers and transmitters in far-field
configuration.

2.2.1 Far-Field Approximation

In practice, there are spatial configurations for the sensors such that distances between
receivers are small and transmitters are all very far away from the receivers. In this
case, a good approximation is to assume that the directions from transmitter to each
of the receivers are parallel and independent of the positions of the receivers. If we
denote these directions as n, then we have the following far-field approximation of the
distance measurement between r and s

d = ‖r− s‖2
≈ ‖r0 − s‖2 + (r− r0)Tnj

= rTn + (‖r0 − s‖2 − rT0 n)︸ ︷︷ ︸
c

, (2.11)

where r0 is a reference receiver position (Figure 2.2). Here, we can see that the dis-
tance d can be approximately expressed as inner product of the receivers position r
and its direction form transmitter n and a constant c that is related to the position of
transmitter. Using this approximation, the inverse problems of interests are to recon-
struct the receiver positions and the directions of transmitters to the receivers given
TOA, TDOA or UDOA measurements.
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2.3 Minimal Cases
We define a minimal case to a problem as follows:

Definition 2.3.1. A minimal case to a problem is the case that consists of the minimal
set of constraints or equations such that the problem generally has finite number of
solutions.

Minimal cases to different geometric problems are of particular interests. First
of all, identifying such minimal cases as well as understanding the solution space of
these cases shed light on the intrinsic structures of a problem. In practice, solving these
minimal cases are essential for robust parameter estimation in computer vision [95]
and sensor network calibration.

2.4 Algebraic Geometry
Many of the geometric problems studied in this thesis lead to systems of polynomial
equations. Tools and techniques in algebraic geometry are key to derive solvers for
polynomial systems. In this section, we review some of the key definitions in alge-
braic geometry as well as techniques to solve polynomial systems based on algebraic
geometry. For general introduction or detailed proofs of the concepts discussed in this
section, one can refer to [26] and [28]. To start with, we consider solving polynomial
system as the following problem:

Problem 2.4.1 Given a set of m polynomials fi(x) ∈ C(x) in n variables x =
(x1, . . . , xn), determine the complete set of solutions to

f1(x) = 0,
... (2.12)

fm(x) = 0.

where C(x) denotes the collection of all polynomials with coefficients of the monomi-
als in the field of complex numbers C. We denote a monomial xγ = xγ11 x

γ2
2 . . . xγnn ,

where γ = (γ1, γ2, . . . , γn) is the vector of exponents. The degree of xγ is defined as
the sum of the exponents |γ| = γ1 + · · ·+ γn.

To solve multivariate polynomial systems, we utilize results and techniques from
algebraic geometry. We start by introducing several concepts in algebraic geometry
that are closely related to polynomial solving. The zero set (solution set) of a sys-
tem of polynomial equations defines an affine variety V . In this thesis, we focus on
solving systems of a finite variety i.e. problems with finite number of solutions. The
implication of infinite-dimensional variety is also of interest in a theoretical point of
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view. The set of polynomials {fi(x)} generates an ideal I =
∑
mi(x)fi(x), where

mi(x) ∈ C(x). An ideal I is said to be radical if I is identical to the set of all polyno-
mials that vanish on V . The equivalence of two polynomials with respect to ideal I is
defined as : if two polynomials f and g is equivalent modulo I iff f − g ∈ I denoted
as f ∼ g. With this, we can define the quotient space C(x)/I as all the equivalence
classes modulo I . For a finite and radical ideal I , it is shown in [28] that C(x)/I is
isomorphic to Cr, where r = |V | is the number of solutions to the set of polynomials
that form I .

2.4.1 The Action Matrix
The action matrix method is a multivariate extension of the companion matrix for
solving uni-variate polynomial equations. To start with, we consider first the linear
mapping Ta(x) : f(x) 7→ a(x)f(x) in the r-dimensional C[x]/I where a(x) ∈ C(x).
In this thesis, we limit the choice of a(x) to be a monomial instead of any polynomial
and we call a(x) as action monomial. Given that C(x)/I is finite dimensional, one
can choose a linear basis of monomials B = {xα1 , . . . ,xαr} for C(x)/I . Now the
mapping Ta(x)

can be represented as a r× r matrix Ma, which is the so-called action
matrix. The solutions of the polynomial system are closely related to the action matrix.
The eigenvalues of Ma are the values of a(x) evaluated at the solution points i.e. V .
Also, the eigenvectors of MT

a are the values of the basis monomials in B evaluated at
the solution points.

2.4.2 Constructing Action Matrix
In this section, we describe several important techniques for constructing the action
matrix in a numerically stable manner including the single eliminate scheme and the
basis selection technique.

Single Elimination

The single elimination technique has been widely adapted e.g. [20, 64]. It starts by
multiplying the equations in (2.13) by a set of multiplication monomials and produces
an equivalent and expanded set of equations. This is in contrast to the Buchberger’s
algorithm for computing Gröbner bases where equations are generated incrementally.
By stacking the coefficients of the expanded set of equations in a coefficient matrix
Cexp which is usually called elimination template, we have

CexpXexp = 0. (2.13)

where Xexp is a vector of the set of monomials in the expanded equations. In general,
the set of multiplication monomials can be chosen such that the resulting equations
are all up to a certain degree.
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Basis Selection

To select B in a numerically stable way, several techniques for basis selection were
described in [20]. In the following, we present the column-pivoting scheme for basis
selection which has been shown to be a good tradeoff between speed and numerical
stability. For all the polynomial solvers derived in this thesis, we have applied the
column-pivoting basis selection to improve the numerical stability of solvers.

To enable basis selection, one first partition the set of all monomialsM occurring
in the expanded set of equations as M = E ⋃R⋃P . Specifically, P represent a
subset of the set of monomials (permissible set) that remain inM after multiplying
with a(x). The reducible set a(x)xαk /∈ P for xαk ∈ P is denoted as R. We denote
the remaining monomials as the excessive set E . By reordering the monomials such
that E > R > P , we obtain

[
CE CR CP

] XE
XR
XP

 = 0. (2.14)

Traditionally, the Gröbner bases are used to generate B for some ordering on the
monomials (e.g. grevlex [64]). In this case, the permissible set is the same as basis set.
The key idea of of [19] is to select B adaptively from a permissible set P where |P| >
r. Note that, in practice, the subset P is chosen from the permissible set as the last
nP(> r) monomials based on grevlex ordering. To achieve this, a scheme involving
two linear elimination steps was proposed. The first step eliminate the monomials in
E : UE1 CR1 CP1

0 UR2 CP2

0 0 CP3

XE
XR
XP

 = 0, (2.15)

where UE1 and UR2 are upper triangular. One can safely remove the top rows of the
coefficient matrix involving the E , which gives[

UR2 CP2

0 CP3

] [
XR
XP

]
= 0. (2.16)

In the second elimination step, the goal is to reduce CP3 into upper triangular ma-
trix. In [19], column-pivoting QR is utilized, which introduces a permutation CP3Π,
where Π is a permutation matrix. With such permutation, the numerical stability is
improved. The basis is thus selected as the last r monomials after the reordering of Π

i.e.
[
XP′ XB

]T
. This gives[

UR2 CP4 CB1

0 UP3 CB2

]XR
XP′

XB

 = 0. (2.17)
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To this end, monomials inR and P ′ are linear combinations of monomials in B:[
XR
XP′

]
= −

[
UR2 CP4

0 UP3

]−1 [
CB1

CB2

]
XB. (2.18)

By finding the corresponding indices of the monomials {a(x)xαk | ∀xαi ∈ B} in
[XR XP′ ], the action matrix Ma can be extracted from the linear mapping (2.18).
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Part I

Solving Systems of Polynomials
Equations





Chapter 3

Optimizing Polynomial Solvers

The state-of-the-art method for constructing polynomial solvers is based on the use
of numerical linear algebra on large but sparse coefficient matrix that represents the
original equations multiplied with a set of monomials. The key observation in this
chapter is that the speed and numerical stability of a solver depends heavily on (i) the
set of multiplication monomials (ii) the set of so called permissible monomials from
the basis monomials of the corresponding quotient ring are chosen. We show in this
chapter that, optimizing with respect to these two factors can gain both computational
efficiency and significant improvements in numerical stability compared to state-of-
the-art polynomial solvers.

3.1 Motivation

The single elimination template and the column-pivoting basis selection techniques
discussed in Section 2.4.2 give generally good performance with respect to speed
and numerical accuracy for most minimal problems in computer vision [20]. How-
ever, there are two parameters that are chosen adaptively for different problems (1)
the set of multiplication monomials and (2) the set of permissible monomials. For
different problems, there is no general criterion on how to choose the set of mul-
tiplication monomials to construct the single elimination template. In [19, 20], an
elimination template is constructed for a specific problem by fine tuning manually the
set of monomials based on numerical stability. On the other hand, in [64], the multi-
plication monomials are chosen automatically by removing equations from an initial
large elimination template while keeping the solver well-conditioned. For the permis-
sible set, it was suggested that one should choose it as large as possible, since this in
theory should provide better chance getting stable column-pivoting QR. One may ask,
will we gain more numerical stabilities by adding more equations to an elimination
template or using a smaller set of permissible monomials?

We present here an example to show the effects of these two factors on current
state-of-the-art polynomial solvers. The problem we study is the estimation of fun-
damental matrix for uncalibrated cameras with radial distortion [21], which will be

21



CHAPTER 3. OPTIMIZING POLYNOMIAL SOLVERS

5 6 7 8

−10.6

−10.4

−10.2

−10

−9.8

−9.6

Max degree of multiplication monomials

m
e

a
n

(l
o

g
1

0
(e

rr
))

20 30 40 50 60 70
−12

−10

−8

−6

−4

−2

0

Numer of Permissibles

M
e
a
n
 o

f 
lo

g
1

0
 e

rr
o
rs

Figure 3.1: Numerical accuracy (mean of log10(errors) ) of the solver in [21] for
uncalibrated camera with radial distortion. Left: With multiplication monomials of
degree 5 (393×390), 6 (680×595), 7 (1096×865) and 8 (1675×1212). The numbers
in the parenthesis are the sizes of corresponding Cexp. Right: Vary the number of
permissible monomials. Note the minimal size of the permissible set is 24 which is
the number of solutions.

discussed in more details in Section 3.3.1. In [21], the original equations are mul-
tiplied with set of monomials so that the highest degree of resulting equations is 5.
To shed light on the effects of more equations, we allow the highest degree to be
8. We note that adding equations by simply increased degrees will actually hurt the
overall numerical accuracy (Figure 3.1, Left). On the other hand, we also vary the
size of permissible set used in the solver, where we choose the last few monomials in
grevlex order similar to [21]. We can see in Figure 3.1 (Right), by reducing the size
of permissible set in this way, the solver retains numerical stability for permissible set
of large sizes, while lose its accuracy for smaller permissible set (in this case when
size is smaller than 36). We will show in the next few sections that one can actually
gain numerical accuracy by adding equation if we carefully choose the multiplication
monomials. Similarly, we can also achieve similar or even improved accuracy with
smaller permissible set.

3.2 Optimizing Size and Accuracy for Solvers

In this section, we describe our method for optimizing numerical accuracy of poly-
nomial solvers. We focus on improving the numerical accuracy of the basis selection
method in [19] with respect to the permissible set and the equations of the template.
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3.2.1 Permissible Selection
As discussed in 2.4.2, the permissible set P is the set of monomials where the optimal
basis can be selected from. In [19], it is suggested to choose the permissible set as large
as possible. Specifically, the permissible set is usually chosen as last few monomials
with grevlex order. In general, larger permissible set will gives better accuracy since it
gives high freedom in choosing the optimal basis. However, for some problems, it is
possible to obtain slightly better numerical accuracy with smaller set of permissible as
indicated by the local minima in Figure 3.1 (Right) . However, it is not clear how the
size of permissible set will affect the overall numerical accuracy of the final solvers.
On the other hand, it should also be noted that the larger the permissible set is, we need
in theory more equations for the template to be solvable. This is related to the fact that
we need at least |P| + |R| − r equations to yield the system in (2.17). Therefore, to
generate solvers with smaller elimination template, one step to go is to select a set of
permissible monomials that is more compact while keeping the solvers numerically
stable.

Choosing the optimal permissible set of size K is a combinatorial problem, and it
is difficult to fully access the optimality of such sets with respect to numerical accu-
racy. Our approach here is to start with a over-complete set of permissible monomials.
We then run the solvers as in [19] with basis selection for N random problem exam-
ples. We collect for each run the basis monomials selected for the specific problem in
B = {B1, . . . ,BN}. In this way, we have information of what monomials are selected
as basis monomials for random problems. Typically, in our experiments, we find no
unique optimal set of monomials among the permissibles, which are selected by all
the random problems. One criterion for selecting a smaller permissible set of size K
is to choose the most selected K monomials. The drawback of this is that such mono-
mials as a set might have never been selected as basis in any random runs. To avoid
such cases, we formulate this as a optimization problem. Essentially, a subset P∗ of P
would retain numerical accuracy if it is a superset of as many as basis sets as possible.
Therefore, for optimal P∗ of size K, we have the following optimization problem.

Problem 3.2.1 Given a set P and a collection of sets B = {B1, . . . ,BN} where
Bi ⊆ P for i = {1, . . . N}, find P∗ ⊆ P ,

max
P∗

N∑
i=1

δ(Bi ⊆ P∗),

s.t. |P∗| = K, (3.1)

where δ(.) is 1 for true boolean expression and 0 otherwise.

This is a hard problem itself. However, since |P| is generally small for most
minimal problems, we can solve it with branch and bound in reasonable time.
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3.2.2 Equation Removal
In all previous polynomial solvers applying single elimination template, the equa-
tions in an elimination template are generated with redundancy. This will affect
both the speed and the overall numerical accuracy of the solvers. This is because
all previous methods involve steps of generating upper triangular form of partial or
full template, with LU or QR factorization or Gauss-Jordan elimination. For large
template with many equations, this step is slow and might be numerically unstable.
For [19–21], the multiplication monomials are manually tuned for different minimal
problems. Both [64] and [78] investigated the possible techniques of automatic re-
moving equations while keeping the solvers numerical stable. They showed that one
can remove equations along with corresponding monomials without losing numerical
stability and even gain better numerical performance with single precision for certain
minimal problem.

To further improve numerical stability of polynomial solvers, we apply a simple
greedy search on what equations to remove while keeping the numerical accuracy of
solvers as good as possible. Given a redundant set of equations, we try to find the
best equation to remove and then iterate until no equations can be removed i.e. when
removing any of the equations makes the template unsolvable. Specifically, we first
remove a candidate equation from the original template. We then measure the mean
log10-errors of the resulting template on a random set of problem examples (as training
data). After running through all equations, we remove the equation without which the
resulting solver gives the lowest mean errors. Generally, we can use any polynomial
solver to evaluate the errors at each removal step. We have chosen the solver with
basis selection based on column pivoting [21] since it generally gives better numerical
accuracy.

By exploiting the fact that the set of excessive monomials do not contribute to the
construction of the action matrix, we can remove certain equations without any local
search and maintain the numerically stability of template. Specifically, when expand-
ing the equations, there can be some excessive monomials that appear only in one of
the equations. We call these excessive monomials as singular excessive monomials.
For the first elimination in (2.15), if an equation contains singular monomials, remov-
ing it will not affect the overall numerical condition of the LU or QR with proper piv-
oting. Therefore, any equation containing singular excessive can be safely removed.
One can always apply this trimming step within each local search step to speed up the
removal process.

It could be good to start with even more equations which might introduce better
numerical conditioning for the first linear elimination in (2.15). To achieve this, the
greedy removal step is crucial to select equations to improve the overall numerical
accuracy. We have not exploited the numerical routines to remove columns as in [78].
Here, we simply remove columns that become all zeros after certain equations are
removed.
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3.2.3 Optimization Scheme

Given the tools introduced in the previous sections, we should be able to optimize the
polynomial solvers by finding the best combination of permissible set and equations
for a specific problem. This is a difficult combinatorial problem. Therefore, as a first
attempt, we here first optimize the permissible set by fixing the set of equations. We
select the optimal permissible sets of different sizes on the original template (no equa-
tion removal). Then we apply greedy search to remove equations with these optimal
permissible sets. All these training are done with a fixed set of random problem exam-
ples. By investigating the error distributions of all these solvers, the size of template
(number of equations, number of monomials), we will be able to choose these opti-
mized solvers with trade-off in accuracy and speed. Generally, we have the following
steps for optimizing polynomial solver for a minimal problem:

Algorithm 3.2.1 Polynomial Solver Optimization
Input: Expanded coefficient matrix Cexp, initial permissible set P , a training set of
problem examples, size of the permissible set K and threshold parameter ε.
Output: Permissible set P∗K and elimination template Cslim.

1. Perform permissible selection to choose P∗K for r ≤ K ≤ |P| as in Problem 2.

2. For each P∗K , perform equation removal, initialize Cslim = Cexp,

(a) Remove equation(s) containing singular excessive monomials

(b) For each remaining rows i in Cslim, evaluate the average errors of the
solver with Cslim/i on a random subset of problem examples

(c) Update Cslim by removing the row i∗ that gives lowest mean error

(d) Go back to (a)-(c) if the lowest average error in (c) is less than ε or a
predefined number of iterations is reached.

Note here if the resulting solver after equation removal fails during the iterations
in step 2, we set the error to be infinite. Therefore, if we choose ε to be large enough,
it will be similar to using solvability as removal criterion in [64].

3.3 Experimental Validation
In this section, we apply our method on different minimal geometry problems in com-
puter vision. The first two problems are the estimation of fundamental or essential
matrix with radial distortion for uncalibrated or calibrated cameras [21,66]. The third
problem is three-point stitching with radial distortion [18, 49, 78]. All these prob-
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Figure 3.2: Nine-point uncalibrated cameras with radial distortion. Left: Effects of
permissible selection and equation removal on numerical accuracy of the polynomi-
als solver. BS - basis selection with column-pivoting [19] , AG - automatic gener-
ator [64]), CO - permissible selection with combinatorial optimization, ER0 - ours
equation removal without removing equations with singular excessive monomials, ER
- same as ER0 but with extra removal on singular excessive equations. Right: Effects
of removing equations with fixed permissible (a) ER - degree 5, 393 × 390 template
and (b) ER - degree 6, 680 × 595 template.

lems has been studied before and were shown to be challenging in the sense that it
is difficult to derive numerically stable solvers. We compare our method with previ-
ous methods with respect to both numerical accuracy as well as the size of template.
The state-of-the-art method is the column-pivoting basis selection [20] which is also
the building block of our method. We also compare with other two methods [64, 78]
with template reduction procedures. In our implementation of a general solver with
column-pivoting basis selection, we have used QR factorization to perform all the
elimination steps. Our method involves a training stage where we perform equation
removal and permissible selection on a fixed set of random problem examples. For
all the comparisons, we test the resulting solvers on an independent set of random
problems.

3.3.1 Nine-Point Uncalibrated Radial Distortion
The problem of estimating fundamental matrix with radial distortion was studied
in [66]. Numerically stable solutions were provided by [21, 64]. The minimal case
for this problem is 9-point correspondences. In general, there are 10 equations and
10 unknowns. By linear elimination, one can reduced the polynomial system to 4
equations and 4 unknowns [66]. The reduced system has 24 solutions. In [64], the
equations are first expanded to 497 equations which are then reduced to 179 equations
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Figure 3.3: Histogram (left) and quantiles (right) of log10 (errors) of different solvers
for the uncalibrated radial distortion problem BS - [19], AG - [64] and ER - equation
removal (ours) with different initial templates.

and 203 monomials. There is no basis selection in this method and the basis set is
chosen from the output of Macaulay2, which is of size 24. On the other hand, in [21],
a fine-tuned template of 393 equations and 390 monomials are used. In this case, we
use the template in [21] as our starting point. We denote this as the original template.
For the set of permissible monomials, we choose also exactly the same set as in [21]
which is of size 69. We note that further increasing the set of permissible makes the
template unsolvable.

Selecting Permissibles

Following the steps in Section 3.2.1, we first run the solver for 393 equations and 390
monomials, and with the set of permissible of size 69 on 5000 random problem exam-
ples. First of all, we notice that there are monomials that are never selected as basis
by any problem examples. Ideally, we can easily remove these monomials from the
permissible set. However, we need to force {x1, x2, x3, x4, 1} to be in the permissible
set even if they are never selected. This is because without these monomials we can
not extract the solutions of the unknowns {x1, x2, x3, x4} with the method in [20]1.
Therefore, excluding {x1, x2, x3, x4, 1}, we are able to remove 8 monomials that are
never selected from the permissible set. To this end, we have the possible permissible
set of size 61. We then continue to solve the problem in (3.1) with varying K. We
manage to solve the problem for K up to 27 with branch and bound. We can see the
effects of permissible selection in Figure 3.2 (Right, blue - solid), the solver is still
stable using only smallest permissible set of size 32 (we force the 5 monomials to

1Note that in general, this is not required for action matrix method e.g. see [27] or Chapter 4.

27



CHAPTER 3. OPTIMIZING POLYNOMIAL SOLVERS

be included) which is better than without basis selection (Figure 3.1). The improve-
ment gained by permissible selection is more significant for permissible set of smaller
size. We also note that permissible selection alone fails to improve the accuracy of the
solver consistently.

Removing Equations

We first study the interplay between equation removal and permissible selection. To
do this, we perform equation removal on the template with the optimal permissible
sets of different sizes from branch and bound. We can see that by performing several
steps of equation removal (10 steps in this case), one get consistent improvement of
solvers for different optimal permissible sets (ER0 in Figure 3.2). This suggests that
one need to combine permissible selection and equation removal to get compact and
numerical stable solvers. We also show that removing equations containing singular
excessive monomials have little effect on the numerical stability (ER in Figure 3.2).
Therefore, we can always apply this to speed up the removal process.

To further understand the mechanism of removing equations, we fix the size of
permissible set to 69. We work with both template T1 (393× 390) and the further ex-
panded template T2 (680×595 up to degree 6). We then proceed to remove equations
using local search described in Section 3.2.2. For each removal step, we evaluate the
mean log-errors on 100 random samples and we remove the equation without which
gives the best numerical accuracy. We can see that the greedy search improves both
templates at the beginning, and the templates get worse when more equations are
removed (Figure 3.2, right)2. Ideally, by optimization, the large template should con-
verge to better template with smaller size. This reason that we do not achieve this
ideal situation there is because of the nature of greedy optimization as well as the
randomness involved in the training data. Nevertheless, we can see that by removing
equations using the greedy search, we can improve significantly the numerical behav-
ior of T2. Note that the initial mean log10(errors) of T2 (Figure 3.1, left - degree 6) is
around −10.10. We can reduce the size T2 to 585 × 572 (local minima in Figure 3.2,
right) while in the meantime improve the accuracy to −11.15. This is even slightly
better than the best template reduced from T1 (356 × 367). This indicates that one
could improve numerical accuracy with large template if one carefully optimize the
set of equations. We also show the distribution of test errors for solvers producing the
lowest errors from our training comparing to state of the art in Figure 3.3. We can see
that both our optimized solvers improve over [19] on accuracy. From the iteration of
optimization, one get a spectrum of solvers which can be chosen with preference to
speed or accuracy.

2The initial errors (see Figure 3.1, left) are omitted for better visualization
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Figure 3.4: Six-point uncalibrated cameras with radial distortion. Effects of permissi-
ble selection and equation removal. BS - [19], CO - permissible selection with com-
binatorial optimization, ER - 5 steps of equation removal with permissible monomials
from CO.

3.3.2 Six-Point Calibrated Radial Distortion

For estimation of essential matrix for calibrated cameras with radial distortion, the
minimal case is 6 points [66]. The polynomial system for the minimal problem con-
sists of 16 equations in 9 unknowns. It can be reduced to 11 equations in 4 unknown
with linear elimination, which has 52 solutions. In [64], a solver with template of 238
equations and 290 monomials is automatically generated. While in [21], a template
with 320 equation and 363 monomials is used after fine tuning the degree of mono-
mials multiplied with. For this problem, we do not find the tuning parameters for the
smaller template (320 by 363). Therefore, we work with a larger template reported in
the paper (356 by 378, with monomials up to degree eight).

We notice in Figure (3.4) that the initial template (356 by 378) is fairly unstable
compared to the one reported in [21]. Here we perform first permissible selection
on the template. We observe that reducing the permissible size hurts the numerical
accuracy even with permissible selection. The equation removal step gives consis-
tent improvement on all permissible sizes. We illustrate this example here to show
that the local method can be applied to numerically unstable template and still gives
improvements.

3.3.3 Three-Point Stitching

For two cameras with common focal point, we can solve for the unknown rotation, the
unknown but common radial distortion and focal length. The minimal case for this
problem is 3 point correspondences [49]. A numerically stable solver based on action
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Figure 3.5: Performance of different polynomials solvers on three-point stitching
problem. Left: log10 (errors) with respect to number of equations. Original - 90×132
template as in [18], ICCV’11- optimization with sequential equation and monomial
removal [78] , ER - our equation removal and PS - permissible selection. Right: (best
view in colors) Quantile for the log10(errors).

matrix method was proposed in [18]. The polynomial system contains 2 equations in
2 unknowns with 18 solutions. By multiplying the equations with monomials up to
degree eight, the expanded template consists of 90 equations in 132 monomials. For
this problem, a truncation technique [20] is also applied to obtain numerical solver.
It is essentially a way to gain numerical stability by allowing false solutions. Specif-
ically, instead of 18 (number of solutions), the size of the basis r is chosen to 25. In
this case, the size of permissible set is also 25. To further improve numerical stability
and speed, in [78], a reduction procedure is performed on the same template which is
trimmed down to 54 equation in 77 monomials. The resulting smaller template tends
to give more stable solvers that are also faster.

Removing Equations

For original solver in [18], the permissible set used was of the same size of the basis
(both are 25). Therefore, we do equation removal without permissible selection. We
will explore in the next section on possible ways for permissible selection. We can see
that one can actually remove fairly many equations and also gain numerical accuracy
compared to the original template. Note that our optimized template is also smaller
(48 × 77 for the smallest one) than the one in [78] with slightly better numerical
accuracy (mean log-errors -10.56 v.s. -10.27). For fair comparison, similar to [78],
we only modify the publicly available solver from [18] with corresponding equations
and monomials removed.

For the solver in [18], it turns out the choice for dimension of the basis also affects
the numerical accuracy. We studied this by running solvers for different pairs of |P| =
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25 and r. We find that the best combination of |P| and r is using 25 permissible with
r = 22. It is shown that by simply reducing r, we gain almost one order of magnitude
of improvement on accuracy (Figure 3.5 , green - dash line) . Note that this is a local
search itself and there might exist better combinations. We leave this as future research
direction. We can further reduce the size of the template by removing equations. In
this case, the smallest and actually also the best template we have obtained consists
of 53 equations in 93 monomials. The equation removal step again improves the
numerical accuracy of the solver further.

Permissible Selection

Given that we have a working solver with |P | > r i.e. |P| = 25 and r = 22, we
can investigate the potential of permissible selection. By solving Problem (2) with
K = 22, 23, 24, we find that having a large permissible set is always better for this
problem. It is here of interest to see what numerical accuracy can we get with the
smallest set of permissible monomials. Using 22 permissible selected by branch and
bound and equation removal step, the resulting solver (Figure 3.5, red - dotted line)
is not as good as the best solver of size 53 with 25 permissibles and r = 22. It
is a slightly slimmer solver (52 × 84) with a trade-off in slight decreased numerical
stability.

3.4 Conclusions
We have made several observations on the stability of polynomial equation solving
using the action matrix method. Firstly, it is shown that adding more equations can
improve numerical accuracy, but it only does so up to a point. Adding too many
equations can actually decrease numerical accuracy. Secondly, it is shown that the
choice of permissible monomials also affects the numerical precision.

We propose two optimization schemes that exploit these observations. Thus we
are able to produce solvers that range from very compact, while still retaining good
numerical accuracy to solvers that involve larger set of multiplication monomials and
larger set of permissible monomials to optimize for numerical accuracy. Our method
is easy to implement and is general for different problems. Therefore, it can serve as
an initial tool for improving minimal problem involving large templates.

There are several interesting avenues of future research. First, the interplay be-
tween numerical linear algebra routines used and the choice of multiplication mono-
mials and permissible monomials should be better understood. Second, the under-
standing of the mechanisms for numerical accuracy could open up for further im-
provements.
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Chapter 4

Symmetries in Polynomial
Systems

In this chapter, we explore another direction for improving the stability and speed of
polynomial solvers - symmetry. By detecting and utilizing symmetry in the monomial
structure of polynomial equations, we can reduce the size of elimination template for
polynomial solvers and develop stable solution extraction techniques for the action
matrix method. We first discuss full symmetry in the polynomial systems which is
further generalized to partial symmetry i.e. where symmetry lies in a subset of the
variables. We derive theoretical results as well novel numerical schemes to utilize
these symmetries.

4.1 Full Symmetry
We first define the full symmetry with respect to a polynomial system as follows:

Definition 4.1.1. A polynomial f(x) has full symmetry of type p on the set of variables
x, if for each monomial in the polynomial, the sum of the exponents on x has the same
remainder q modulo p as

A polynomial system is said to have full symmetry of type p on x if all polynomial
equations in the system have symmetry of type p. To understand the characteristics of
the solution set to a polynomial system with full symmetry, we define the symmetry
operator Sjx,p on x of type p as

Sjx,p(x) = ei2jπ/px, (4.1)

where j ∈ Z+. By definition, we have Spx,p(x) = x. With this, we can define full
symmetry of a solution set as follows:

Definition 4.1.2. A solution set is said to have full symmetry of type p on x if for each
solution x∗, the point Sjx,p(x

∗) is also a solution.
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Example 1. We illustrate the full symmetry of type-2 in the following polynomial
system: {

x2
1 − x2

2 = 0
x3

2x1 + 1 = 0 . (4.2)

This polynomial system has obviously two real solutions, (1,−1) and (−1, 1). We
see that the two solutions are symmetric and only differ in sign.

4.2 Partial Symmetry
In the following, we introduce the concepts of partial symmetry in a polynomial and
in a solution set, respectively. To facilitate the discussion, for each polynomial f(x)
we divide the variables into two sets x = {xs,xt} such that

f(x) =
∑
k

ckx
γk
s xβk

t . (4.3)

Here, ck ∈ C are the coefficients of monomials.

Definition 4.2.1. A polynomial f(x) has partial symmetry of type p on a subset of
variables xs if for each monomial in the polynomial, the sum of the exponents corre-
sponding to xs has the same remainder q modulo p.

Before we discuss partial symmetry of a solution set, we define the partial sym-
metry operator on xs of type p:

Sjxs,p(x) = (ei2jπ/pxs,xt), (4.4)

where j ∈ Z+. By definition, we have Spxs,p(x) = x.

Definition 4.2.2. A solution set is said to have partial symmetry of type p on a subset
of variables xs if for each solution x∗, the point Sjxs,p(x

∗) is also a solution.

Example 2. The following polynomial system has partial symmetry (p = 2) to x1,
and there is no symmetry for the unknown x2.

x2
1 − x2

2 − 2 = 0
x2

1 − 3x2 = 0 (4.5)

For this system, the two pairs of partial symmetric solutions are {[
√

6 2]
T
, [−
√

6 2]
T }

and {[
√

3 1]}T , [−
√

3 1]
T }.

With the definitions and theorem of partial symmetry, we can interpret that full
symmetry is a special case of partial symmetry. Specifically, it corresponds to the
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cases where xs = x. The following theorem shows that partial symmetry in a poly-
nomial system has a solution set that is partially symmetric. On the other hand, the
existence of a partially symmetric solution set implies that the polynomial system is
partially symmetric.

Theorem 4.2.1. A system of polynomial equations, where every polynomial has par-
tial symmetry of type p on the subset of variables xs has a solution set with partial
symmetry of type p on xs. Vice versa, each system of polynomial equations, whose so-
lution set has partial symmetry of type p on xs, can be written as a set of polynomial
equations with partial symmetry of type p on xs.

Proof. We first prove that partial symmetry in polynomial systems indicates partially
symmetric solution sets. Assume that for a polynomial equation f(x) = 0 in the
system, the sum of the exponents |γk| has constant remainder q modulo p i.e. ∀k,
q ≡ |γk| mod p. Let b = ei2π/p, we have b|γk| = ei2π|γk|/p = bqi . Then for
f
(
S1
xs,p(x)

)
= f

(
(bxs,xt)

)
, we have

f
(
(bxs,xt)

)
=
∑
k

ck(bxs)
γkxβk

t

=
∑
k

b|γk|ckx
γk
s xβk

t

=
∑
k

bqckx
γk
s xβk

t

= bq
∑
k

ckx
γk
s xβk

t

= bqf(x). (4.6)

Thus if f(x∗) = 0, then f
(
(bx∗s,x

∗
t )
)

= bqf(x∗) = 0. One can prove the same
for f

(
Sjxs,p(x

∗)
)

= f
(
(bjxs,xt)

)
by induction. This proves the assertion in one

direction.
We then prove the existence of partially symmetric solutions indicates partial sym-

metry in the corresponding polynomial systems. Assume for a certain p that for every
solution x∗ = (x∗s,x

∗
t ) holds also

f
(
(bjx∗s,x

∗
t )
)

= 0, j = 0, . . . , p− 1. (4.7)

Divide the polynomial into p parts according to |γk| mod p so that

f(x) = g0(x) + g1(x) + . . .+ gp−1(x). (4.8)
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Then we have

f
(
(xs,xt)

)
= g0(x) + g1(x) + . . .+ gp−1(x),

f
(
(bxs,xt)

)
= g0(x) + bg1(x) + . . .+ bp−1gp−1(x),

...
...

...
f
(
(bp−1xs,xt)

)
= g0(x) + bp−1g1(x) + . . .+ bgp−1(x).

which is equivalent to the following linear system

F(x) = HpG(x) (4.9)

where

F(x) =
[
f
(
(xs,xt)

)
f
(
(bxs,xt)

)
. . . f

(
(bp−1xs,xt)

)]T
, (4.10)

G(x) =
[
g0(x) g1(x) . . . gp−1(x)

]T
(4.11)

and

Hp =


1 1 1 . . . 1
1 b b2 . . . bp−1

...
...

...
. . .

...
1 bp−1 bp−2 . . . b

 . (4.12)

From (4.7), it can be seen that F(x∗) = 0. Since Hp is invertible for all p (it is ba-
sically the matrix representing the discrete Fourier transform of p-vectors), it follows
that gj(x∗) = 0, for all j = 0, . . . , p− 1. Thus if there exist a set of partially symmet-
ric solutions, then it follows that each polynomial fi(x) can be split into p parts i.e.
gij(x), where each part has x∗ as the solution.

With the definitions of partial symmetry in polynomial system and solution set,
we can interpret that full symmetry is a special case of partial symmetry. Specifically,
full symmetry corresponds to partial symmetry with xs = x.

4.3 Utilizing Symmetry
In this section, we present general techniques to integrate symmetry into the action
matrix method. Specifically, we discuss (i) the concept of symmetric action matrix (ii)
the construction of elimination template for problems with symmetry (iii) the solution
extraction step given a symmetric action matrix.
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4.3.1 Zero Solutions
Before we start the discussion on utilizing symmetry, we discuss a scheme for poly-
nomial systems with zero solution(s). The existence of zero solution can be common
of polynomial system with symmetry e.g. a polynomial system of type-2 symmetry
with only 1st and 3rd monomials. That is, if none of the polynomial equations in a
system has a constant term, then there always exists one zero solution. For a polyno-
mial system with r solutions, one can use the constant 1 as the rth basis monomial in
B. To simplify the discussion, assume that x1 is the action monomial and is chosen as
the (r−1)

th basis monomial. Then we obtain an action matrix in the form of

M =


a1,1 . . . a1,r−1 0
. . . . . . . . . 0

ar−1,1 . . . ar−1,r−1 1
0 . . . 0 0

 . (4.13)

The last column of the action matrix corresponds to the mapping of the constant term
to x1. Since no other reduction involves the constant, it follows immediately that[
0 . . . 0 1

]T
is an eigenvector with eigenvalue 0, i.e. the zero solution. Fur-

thermore, any of the n − 1 eigenvectors to Ma = {aij} can be used to produce a
corresponding eigenvector to MT

a . Thus without loss of generality we can consider
the eigenvalue problem for the modified action matrix Ma instead. In practice if there
is a zero solution it can be extracted before solving the full system. We assume in the
following that the action matrix is reduced to the form where trivial zero solution is
removed.

4.3.2 Symmetric Action Matrix
Recall from Theorem 4.2.1 that for a type-p partially symmetric polynomial in xs,
there exist a set of type-p partially symmetric solutions in the form of (ei2πj/pxs,xt)
where j = 0, . . . , p − 1. This suggests that there is a p-fold ambiguity in the r
solutions, which can be utilized to simplify the action matrix construction step. To
simplify the discussion, we assume that there is no zero solution or one have used
the scheme in [3] to remove the zero solution. The idea is then to construct a linear
mapping Ta(x) : f(x) 7→ a(x)f(x) that preserve the underlying partial symmetry of
the system. To achieve this, we first need to choose the action monomial a(x) such that
the sum of exponents of xs in a(x) is p. This follows that the p ambiguous solutions
collapse into a single solution point in a(x) which effectively reduces the dimension
of the solution space to rp = r

p
1. Thus, instead of considering the original solution

space, we can express the reduced solution space with a monomial basis Bp of size rp.
To this end, the size of the reduced action matrix Mrp with partial symmetry is rp×rp.

1r is divisible by p, if there exists no zero solution.
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The computational advantage of this reduction is that the eigenvalue decomposition
step for the action matrix is done on a much smaller matrix.

4.3.3 Elimination Template with Symmetry
The next step is to construct an elimination template with partially symmetry in mind.
The idea again is to generate the expanded set of equations that preserve the sym-
metry in xs. To facilitate the elimination step for partially symmetric systems, we
propose a scheme to achieve this: choose the multiplication monomials that results
in the same remainder modulo p (for the symmetric subset) across the set of different
equations (not only within each equation). This scheme ensures good overlapping of
the expanded monomials between different equations which improves the efficiency
(reduced size of the elimination template) and stability of the elimination step. We
will illustrate the scheme in Section 4.4.4 with detailed examples.

4.3.4 Extracting Solutions
In action matrix method, once we have constructed the action matrix M, we can ex-
tract the solutions from the eigenvectors of MT . We also know that the each eigenvec-
tor v are values of the basis monomials B evaluated at a solutions up to an unknown
scalar λ. Specifically, we have for each element vk in v

λvk = xγk1
1 xγk2

2 . . . xγkn
n . (4.14)

To extract the solution from v, the simplest scenario is that all the first-order mono-
mials as well as the constant term i.e. {x1, . . . , xn, 1} are in the basis monomials. In
this case, the solutions can be extracted by reading off the corresponding values of
{λx1, . . . , λxn, λ} from v and the solutions for {x1, . . . , xn} can be calculated via
division by λ.

For type-p partially symmetric cases where p > 1, the general idea for solution
extraction is to find a mapping from monomials in B to xpi for i = 1, . . . , n and the
p-fold ambiguity of xi’s can be solved directly. For example, if we know v1 = λx1x2
and v2 = λx1x

3
2 are in the basis, one can calculate the solution values x2

2 = v2/v1.
The two solutions of x2 can then be extracted directly. In general, this mapping is not
unique. To find one of such mappings automatically, we describe a two-step scheme
involving (i) a random sampling step and (ii) solving an integer linear system.

We first introduce an equivalent expression of (4.14). We can treat the unknown
constant λ as a proxy unknown xn+1 such that

vk = xγk1
1 xγk2

2 . . . xγkn
n x

γk,n+1
n+1 , (4.15)

where xn+1 = 1/λ and γk,n+1 = 1.
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For x =
[
x1 . . . xn+1

]T
and an integer matrice A ∈ Zr×(n+1), define the

exponential xA of x : Rn+1 7→ Rr as

xA := exp(A log(x)). (4.16)

Although the logarithm is ill-defined for complex numbers, the exponential is well-
defined since A has integer coefficients.

Let A be the integer matrix with elements Akj = γkj as in (4.15). Then we can
express the eigenvector v in the form of exponential map, i.e. v = xA. The problem
of calculating x from v can thus be written as : find all x such that v = xA. If there
exists an integer matrix B ∈ Z(n+1)×(n+1), such that BAsub = I, then there is only
one solution. Here, Asub is a (n+ 1)× (n+ 1) sub-matrix of A. This solution can be
written as x = vB

sub, since

vB
sub = (xA

sub)B = xBAsub = xI = x,

where vsub the subset of v corresponding to Asub. One way of generating such a
matrix is to search for (n+ 1)× (n+ 1) sub-matrices in A with determinant 1 or −1.
The inverse of such a sub-matrix Asub, its inverse is also an integer matrix and B is
constructed as the inverse of Asub. When Asub is an identity matrix, it is equivalent to
choosing the subset as {x1, . . . , xn, 1}.

In the general case, one may search for an invertible sub-matrix Asub, whose ab-
solute value of its determinant is as low as possible. For cases with full or partial
symmetry of type-p, it is possible to find a sub-matrix with p = |det(Asub)|. We
know that the inverse of Asub can be written as

A−1
sub =

adj(Asub)

|det(Asub)| ,

where adj(.) is the adjoint operator of a matrix. By setting B = |det(Asub)|A−1
sub , we

have BAsub = pI. This gives vB
sub = (xAsub)B = x(BAsub) = xpI. From this, we can

recover the absolute values of x (denoted as x0). Now it is possible to solve for x up
to an unknown phase parameterized by k

x = x0 � exp(ik2π/p), (4.17)

where k ∈ Zn+1
p and � denotes the element-wise multiplication. Thus the absolute

value x0 of x is well defined and the phase is known up to a type-p uncertainty. Given
v = xA, by plugging in (4.17) and take logarithm on both sides, we have

log(v) = A log(x0) + Ak(i2π/p) + ij2π,

which can be written

Ak = p(log(v)−A log(x0))/(i2π)︸ ︷︷ ︸
z

+pj,
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which can be interpreted as a system of integer linear equations Ak = z. It is straight-
forward to write a solver for such problems based on Gaussian elimination on Zp. In
the case of p being prime is particularly simple. The solution has in general one free
parameter and can be written as

k = k0 + ck∗ , with c ∈ Zp ,

which gives the solutions after substitution in (4.17) . Note that in our discussions
above, we have chosen the mappings Asub from monomials in B. In fact, given that
the values of monomials (up to an unknown constant) in R and P ′ can be calculated
from (2.18), we can actually choose the mappings from {R,P ′,B}.

The choice of Asub which is found in our algorithm by randomly choosing (n+1)
rows from A. Therefore, the resulting mapping for solution extraction is not unique.
It has been seen in our experiments that the stability of these mappings varies and
most of them can be very unstable. This is due to the fact that most of these mappings
involve (i) evaluation of the solutions for monomials of high degrees (ii) numerical
operations e.g. division of monomial of high degrees. Therefore, while one can eas-
ily use the general technique introduced here for symmetric cases, it is preferable to
select problem-specific mappings either by observing the structure in the problems or
post-selection step based on criterion like avoiding the existence of monomial of high
degrees in the mappings. We will discuss such selection steps for different problems
in Section 4.4.

4.3.5 Detecting Symmetry

Based on the Theorem 4.2.1, we describe a simple strategy for detecting partially
symmetric polynomial system. Specifically, if d is lowest degree of any monomials
in all the polynomial equations, we check for each subset of xs, whether type-p (2 ≤
p ≤ d) partial symmetry is fulfilled. This is done by checking whether the remainders
of the sum of exponents for xs modulo p are the same for all monomials in each of the
polynomial equations. It is an exhaustive scheme and involves combinatorial search
over all subsets of variables. However, for general problems in computer vision where
the number of variables are among 2 to 10, the search is completely feasible.

4.4 Applications

In this section, we discuss full symmetry and partial symmetry in the context of geo-
metric problems in computer vision. We present several formulations of these prob-
lems that yield polynomial systems with either full symmetry or partial symmetry.

All the problems discussed below involve the rotation matrix R. One choice for
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parameterizing R is using quaternion with {a, b, c, d}a2+b2−c2−d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2−b2+c2−d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2−b2−c2+d2

 . (4.18)

However, the scale of R can still be choose freely. There are in general two ways to
fix the scale of the parameterization. One is the Cayley representation where one of
the variable in {a, b, c, d} is set to 1 [45, 76]. The other way is to enforce the unit-
norm constraint such that ‖q‖2 = 1 where q = [a, b, c, d]T . There are advantages and
drawbacks for both choices. For the Cayley representation, it generally leads to sim-
pler polynomial systems but it can be degenerate in all cases of 180 degree rotations
around the x-, y- and z-axis (corresponding to where one of the variables in {a, b, c, d}
is 0). As for the fix with unit-norm constraint, it avoids the degeneracy completely but
generally results in polynomial systems that are more difficult to solve. In this sec-
tion, we explore the symmetric structures in the non-Cayley representation. While
the formulations avoid certain degeneracy, the resulting polynomial systems have not
been solved before due to the difficulty in constructing efficient and stable polynomial
solvers. We illustrate the proposed techniques in details for these examples and ob-
tain faster and more stable solvers than previous state-of-the-art general polynomial
solvers.

4.4.1 Optimal Perspective-n-Point
Given n (n ≥ 3) 3D reference points in the object framework and their correspond-
ing 2D projections, determining the orientation and the position of a fully calibrated
perspective camera is known as the perspective-n-point (PnP) problem [43]. In [104],
a formulation (OPnP) that aims to find the global optimal of an algebraic error is
presented. This formulation avoids several degeneracies that are suffered by other
previous formulations and implicitly impose the normal constraints for the quaternion
parameterization.

Problem 4.4.1 (Optimal Perspective-n-Point) Given n 3D points Xi =
[
xi, yi, zi

]T
,

and their corresponding projections xi =
[
ui, vi

]T
, find the optimal rotation R∗ and

the translation t∗ =
[
tx, ty, tz

]T
of the camera such that

{R∗, t∗} = arg minR,t

n∑
i=1

(
(1 + rT3 X̃)ui − r1Xi − tx

)2

n∑
i=1

(
(1 + rT3 X̃)vi − r2Xi − ty

)2
(4.19)
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where ri is the ith row of R (i = 1, 2, 3) and X̃i = Xi − X̄ with X̄ =
∑n
i=1 Xi/n

denoting the centroid of the 3D points. Given R, the optimal t∗ can be calculated as:

t∗ =

ū+ rT3 (
∑n

i=1 uiX̃i

n )− rT1 X̄

v̄ + rT3 (
∑n

i=1 viX̃i

n )− rT2 X̄
1− rT3 X̄

 (4.20)

By substituting (4.20) to (4.19) and parameterizing R with the quaternion (4.18), we
can arrive at the following optimization problem:

min
a,b,c,d

‖Mα‖22 (4.21)

where α =
[
a2, ab, ac, ad, b2, bc, bd, c2, cd, d2, 1

]T
and M ∈ R2n×11 is a coefficient

matrix calculated based on the substitution.

4.4.2 Optimal Euclidean Registration
We then study the Euclidean registration problem given point-point, point-line or
point-plane correspondences [80]. This problem has been solved using a branch-and-
bound method that exploits the quasi-convexity property of the minimization problem.
The mixture of correspondences can be formulated into a unified error function [80].
While the symmetry as well as the solver introduced here can be applied to the unified
error function, for simplicity, we discuss the point-plane correspondences only.

Problem 4.4.2 (Optimal Euclidean Registration) Given n 3D points Xi, and their
corresponding planes in another coordinate system, each of which is represented by
the normal ei and a supporting point Yi, to find the optimal rotation R∗ and transla-
tion t∗ such that

{R∗, t∗} = arg min
R,t

n∑
i=1

(
eTi (RXi + t−Yi)

)2
. (4.22)

Given R, the translation t can be directly solved as

t =

(
n∑
i=1

eie
T
i

)−1 n∑
i=1

eie
T
i (Yi −RXi) . (4.23)

After parameterizing R by the quaternion with norm constraints and plugging t
back into (4.22), we obtain a constraint optimization problem

{q∗} = arg min
q

n∑
i=1

(
eTi (R(q)Xi + t(q)−Yi)

)2
,

s.t. ‖q‖22 = 1.

(4.24)
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4.4.3 PnL Problem
The Perspective-n-Line (PnL) problem is to estimate the absolute pose of a calibrated
camera by using n (n > 3) known lines and their image projections. It was studied
in [76].

Problem 4.4.3 (Perspective-n-Line) Given n lines with direction li in the world
framework, and their corresponding image lines, each of which determines a plane
passing through the optical center with normal ei, to find the optimal rotation R∗

such that

{R∗} = arg min
R

n∑
i=1

(
eTi Rli

)2
. (4.25)

After the rotation R is determined, the estimation of translation t becomes trivial.
To parameterize R by the unit quaternion q would lead to a constrained optimization
problem

{q∗} = arg minq

∑n
i=1

(
eTi R(q)li

)2
, (4.26)

s.t. ‖q‖22 = 1.

4.4.4 Symmetric Systems and Solvers
To solve for global optimal of the geometric or algebraic errors defined in this section,
we use the first order optimality condition i.e. to find all stationary points of the error
functions [93]. To do that, we calculate the partial derivative of the error functions
with respect to the unknowns {a, b, c, d} in the quaternion as well as the Lagrange
multiplier w for problems with explicit unit-norm constraints. For problems where
unit-norm constraints are handled implicitly i.e. (OPnP), we will see in the following
discussion that, the resulting polynomial system is fully symmetric while the other
two problems are partially symmetric.

Full Symmetry

The resulting polynomial systems with first order optimality for the OPnP problem
(4.4.1) consist of 4 equations and can be written in the following matrix form

Uw = 0, (4.27)

where U is a 4× 24 coefficient matrix calculated for each specific problem and w =
[ a3, a2b, a2c, a2d, ab2, abc, abd, ac2, acd, ad2, b3, b2c, b2d, bc2, bcd, bd2, c3, c2d, cd2,
d3, a, b, c, d ].

43



CHAPTER 4. SYMMETRIES IN POLYNOMIAL SYSTEMS

It is verified with algebraic geometry tools [39] that a polynomial system with
these monomial structures have 81 solutions . The state-of-the-art automatic gener-
ated solver [64] without considering symmetry has an elimination template of size
576 × 656. We observe first that there exist no constant term in any of the equations.
Therefore, there is a trivial all-zero solution. On the other hand, for all the variables
{a, b, c, d}, only monomials of 3rd and 1st degrees appear in the equations. From
Theorem 4.2.1, we know that this polynomial system is fully symmetric of type-2.
Thus, the remaining 80 solutions consist of 40-pairs of symmetric solutions.

To construct a solver that exploit the symmetry, we have derived the following
problem-specific procedures. The general technique discussed in Section 4.3.4 for
extracting the symmetric solutions from the action matrix is unfortunately both slow
and unstable for this problem. First, we handle the zero solution implicitly by ignoring
the last row and last column of the action matrix. To extract the 40 independent
solutions, we first construct the elimination template by multiplying the 4 original
equations with monomials of even degrees. We choose the action monomial to be a
2nd degree monomial to preserve the symmetry. In this way, the two-fold symmetry is
preserved. Specifically, we have found that it is sufficient to multiply all monomials of
even degrees up to degree 6. This results in an elimination template of size 520×420.
Using the similar strategy in [64], the size of the elimination template is reduced to
348×376. We have chosen ac as the action monomial. With this elimination template
and the basis selection technique, we are able to stably construct an 40 × 40 action
matrix. The size of permissible set is chosen to be 100. The eigenvectors v’s of
transpose of the action matrix are solutions to the set of basis monomials up to an
unknown constant. Note that, both the basis and permissible monomials are only of
odd degrees by construction.

For the solution extraction step, we further utilize the problem structure to improve
numerical stability and speed of the solver. We first utilize the fact that the monomial
set {a, a3, a2b, a2c, a2d} are either in the basis or permissible monomial set. This
means that we can extract the values of these monomials easily from v’s up to a
common unknown constant λ. To start with, we can extract the solutions for a2 by
using values of λa and λa3. In this way, we can trivially get the two solutions of a. To
resolve for the rest of the variables, the values for {ab, ac, ad} are calculated with the
division of {λa2b, λa2c, λa2d} by λa. Given these, we can extract the corresponding
solutions for {b, c, d} of the two symmetric solutions of a. The same procedure for
each of the eigenvector gives the 40 pairs of symmetric solutions.

The potential issue for the aforementioned extraction step is that the division oper-
ation becomes degenerate (or unstable) when a is 0 (or close to 0). The way to fix this
potential numerical instability is to have one extra extraction step that uses the infor-
mation on other monomials. Specifically, in a similar manner, we extract another 3 sets
of (40 solutions) with the monomial set {b, b3, b2a, b2c, b2d}, {c, c2, c2a, c2b, c2d} and
{d, d3, d2a, d2b, d2c}. Thus, we actually extract four sets of solutions. Since at least
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one of {a, b, c, d} is non-zero and sufficiently large in absolute value (at least so when
compared with the smallest one in absolute value), it is guaranteed that at least one set
of the solutions avoids the numerical instability issue. Though it seems that we extract
more solutions than needed, most of solutions can be discarded by checking repeti-
tiveness, keeping only the real solutions and checking the Hessian of the solutions.
The cost for computing these extra solutions is also negligible compared to the QR
factorization or eigenvalue decomposition step. We would like to emphasize that this
strategy is designed to improve numerical stability so that the developed GB solver is
stable even when some variables of a, b, c, d are 0 (or close to 0).

Partial Symmetry

For optimal Euclidean registration problem in Section 4.4.2, we have the polynomial
system of the form [

V 04×4 −I 04×1
01×24 11×4 01×4 −1

]
w = 0, (4.28)

where V is a 4 × 24 coefficient matrix calculated from a specific problem and w is a
monomial vector [a3, a2b, a2c, a2d, ab2, abc, abd, ac2, acd, ad2, b3, b2c, b2d, bc2, bcd,
bd2, c3, c2d, cd2, d3, a, b, c, d, a2, b2, c2, d2, wa,wb, wc, wd, 1]T .

As for the PnL problem in Section 4.4.3, we have the following polynomial system[
U 04×4 −I 04×1

01×20 11×4 01×4 −1

]
w = 0, (4.29)

where U is a 4 × 20 coefficient matrix calculated from each specific problem and w
is a vector of monomials [a3, a2b, a2c, a2d, ab2, abc, abd, ac2, acd, ad2, b3, b2c, b2d,
bc2, bcd, bd2, c3, c2d, cd2, d3, a2, b2, c2, d2, wa,wb, wc, wd, 1]T .

By checking the monomials in both systems, we can see that the variables in the
subset xs = {a, b, c, d}, only appear with 3rd and 1st degree in the first 4 equations
(p = 2, q = 1), and only 2nd and 0th degree in the last equation (p = 2, q = 0). Thus,
these two polynomial systems are both partially symmetric of type 2 to {a, b, c, d}
according to Theorem 4.2.1.

By using tools in algebraic geometry [33], we verify that there are in general 80
solutions to these two polynomial systems or equivalently 40 pairs of partially sym-
metric solutions. Using automatic generator in [64] which does not utilize partial
symmetry, we obtain general solvers that solve for the 80 solutions directly. The elim-
ination templates of these solvers are of size 1523 × 1603 and 688 × 788 for the
optimal Euclidean registration and the PnL, respectively. Note that the two elimi-
nation templates are obtained after the build-in optimization for template size [64].
There is little possibility to reduce the sizes of the templates further.
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Now we discuss in details the construction of our partially symmetric solver. It
turns out that the same elimination template and solution extraction scheme work
for both problems due to their similarity in structures. To start with, we can choose
any quadratic monomials in {a, b, c, d} as the action monomial to utilize type-2 par-
tial symmetry. There is no significant effect for the choice of action monomial on
the numerical stability for this problem. Here we use a2. The second step is to
choose the set of multiplication monomials for generating the elimination template.
The idea is to ensure the expanded set of monomials after multiplication coincide
between different equations. This will facilitate the elimination step so that the nu-
merical stability is improved. To start with, for the first 4 equations, we choose
{H1,H3, a

2H3, wH1, wH1, wa
2H3, w

2H1, w
2H1, w

2a2H3} as the set of multipli-
cation monomials. HereHk denotes the set of monomials in {a, b, c, d}where the sum
of exponents is k. In the resulting expanded set of monomials, the sum of exponents
for variables {a, b, c, d} in the monomials are all even. Correspondingly, the multi-
plication monomials for the last equation are chosen as {H2,H4, a

2H4, wH2, wH4,
wa2H4, w

2H2, w
2H4, w

2a2H4, w, w
3}. This also yields a set of expanded monomi-

als where the sum of exponents for variables {a, b, c, d} are even. After these two
expansion, we have generated a stable elimination template of size 770× 854, which
is already much smaller than the 1523 × 1603 elimination template for the optimal
Euclidean registration problem. With further tuning with similar equation removal
technique in [64], we obtain a more compact elimination template of size 433× 487.
This is used for all our experiments later. With this elimination template, to further en-
hance the numerical stability, we follow the column-pivoting basis selection technique
(the size of the permissible set is set to 60) and construct a 40× 40 action matrix.

The last remaining step is to extract solutions from eigenvectors of the transpose
of the action matrix. To enhance the numerical stability, we have derived the following
extraction scheme. The first observation is that, for these two problem, one can en-
force the constant term i.e. 1 to be in B,R or P ′ without breaking the type-2 partially
symmetry. Extracting the values for the unknown constant λ’s is simply reading off
the corresponding values from the vectors. We note also that {a2, ac, ab, ad} are ex-
pressible by linear combination of the basis, which means that one can obtain their val-
ues up to an common unknown constant for each solution i.e. {λa2, λac, λab, λad}.
Thereafter, the solutions of a2 can be calculated by division of the corresponding val-
ues of λa2 by λ. We retrieve the two sets of 40 solutions for a by taking square root.
Given that λ and a are known, the values for {b, c, d} can be extracted using division
of {λab, λac, λad} by λa. Again, the 2-fold ambiguity of the solutions are handled
naturally in the extraction step which is much simpler than solving it directly as in the
general methods. In case of Cayley degeneracy i.e. where a = 0 (a ≈ 0) , the division
when we extract {b, c, d} is ill-conditioned. In those cases, we can extract the solu-
tions with {b2, ba, bc, bd}, {c2, ca, cb, cd} or {d2, da, db, dc} in a similar way to avoid
such degeneracy. Note that these extraction steps are fast given that the bottleneck is
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Figure 4.1: Numerical stability of the polynomial system solvers. The investigated
solvers include the blind GB solver without utilizing symmetry (Blind GB), the GB
solver using two-fold symmetry (Symmetric GB), the Symmetric GB followed by
one damped Newton polishing step (Symmetric GB + Polish) and the resultant based
solver used in DLS [45]. The horizontal axis shows the log10 value of the absolute
error between the ground truth of unit-norm quaternion and the estimated quaternion
after normalization, while the vertical axis shows the counts over 5,000 independent
runs. This figure is best viewed in color.

generally in the elimination step. Therefore, we can extract all possible solutions in an
very efficient way to avoid degeneracy. This is much superior to the schemes in [45]
which requires solve several different polynomial problems with specific solvers.

4.5 Experiments
In this section, we investigate the numerical stability, speed as well as noise sensitivity
of symmetric polynomial solvers.

PnP Problem To generate synthetic examples for the PnP problem, we assume a
virtual perspective camera with image resolution of 640× 480 pixels and focal length
800 pixels. The principle point lies in the image center and n 3D reference points are
randomly generated in the camera framework. The 3D reference points are randomly
distributed in the x, y and z with range of [−2, 2]×[−2, 2]×[4, 8]. Then, we choose the
ground-truth translation ttrue such that the origin of the object framework coincides
with the centroid of these 3D points, and rotate these 3D points by using a randomly
generated ground-truth rotation matrix Rtrue.

To evaluate the numerical stability of the solvers, we randomly generate 50 or-
dinary 3D points and simulate their noise-free projections for fully-random, near-
Cayley-degenerate (a ≈ 0) and Cayley-degenerate rotations (a = 0), respectively.
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We can see that the symmetric solver is superior to the general (blind) GB solver that
does not utilize the symmetry in all different configurations. The stability of the DLS
solver [45] is superior to the OPnP formulation in general random configuration. On
the other hand, the accuracy of the OPnP solver can be improve drastically with even
one step of damped Newton refinement (blue line). As degenerated configurations
for Cayley’s representation, the OPnP solver consistently better than the DLS solver
which suffers from such degeneracy. As for computation efficiency, given that the de-
generated Cayley parameterization in DLS solver yields a simpler polynomial system
(3 variables and 3rd degree equations), it can be solved very efficiently with resultant
method (5.8 ms). Besides the numerical stability, we can see that the solver utilizing
symmetric is much faster than the general GB solver (18.5 ms compared to 37.2 ms
on average).

Param. Solution Technique Template Time (ms)

OPnP 81 GB (general) 576× 656 37.2
OPnP 81 GB (Symmetry) 348× 376 18.5

DLS [45] 27 Resultant 120× 120 5.8

Table 4.1: Average time performance of different solvers for Perspective-n-Point
problem. The timing are measured on a MacBook Air with 1.8 Ghz i5 CPU.

Optimal Euclidean Registration For this experiment, we simulate point-to-plane
correspondence in 3D randomly. We first study the numerical stability of the general
solver generated by [64] and our solver that utilizes partial symmetry. In Figure 4.2,
we can see that our method is superior to the general solver with respect to the stability.
On the other hand, our solver is around three times faster than the general solver (Table
4.2). The formulation in [80] is a quadratic programming problem and a branch-and-
bound scheme (bnb) for the global optima was derived. It is much more difficult
problem to solve and is in general very slow with increasing number of points. Our
formulation along with our solver is much fast and guarantee to find the global optimal
of the same geometric error.

bnb∗ [80] General [64] Symmetric

> 1s 75ms 23ms

Table 4.2: Average time performance of different solvers for the optimal Euclidean
registration problem. (∗) based on the time reported in [80]. The other timing are
measured on a MacBook Air with 1.8 Ghz i5 CPU.
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Figure 4.2: Numerical stability of the general polynomial solver [64] and our sym-
metric solver for the optimal Euclidean registration problem. The histogram of log10
relative errors of unit quaternion for 1000 noise-free random problems is shown.

PnL Problem For the synthetic experiments in this section, we first randomly gen-
erate 3D lines at around the origin, with cameras pointing towards the origin ap-
proximately. Then we calculate 2D projections of the lines onto the image plane.
We perturb endpoints of lines to simulate noise. We will first look at the numeri-
cally stability of the proposed solvers under different configurations. In Figure 4.3,
we first observe that our partially symmetric solver is better than the general solvers
across different experiments. Our solver is also faster (23ms) compared to the general
solver (55ms) which has a larger elimination template. On the other hand, for ran-
dom configurations, we can see that the solver based on Cayley parameterization of
the quaternion [76] performs better than both the general solver and the partially sym-
metric solver with unit-norm constraints. However, when the configuration is close to
Cayley-degeneracy, the performance of such solve deteriorate drastically (Figure 4.3,
mid). And for degenerated cases (e.g. a = 0), the solver in [76] fails completely.

It is also of interest to study the performance of the solvers under noise (Figure
4.4). In this experiment, we generate camera pose in fully-random manner. With for-
mulation presented here, we can see that the solvers are much prone to degeneracy
which causes the large variance in mean errors for Cayley-based method. The RPnL
method described in [103] yields better results than Cayley-based method, but still
inferior to the formulation here. With the same formulation, our solver performs sim-
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Figure 4.3: Numerical stability of the Cayley PnL solver [76], general polynomial
solver [64] and our symmetric solver under varying configurations. The histogram of
log10 relative errors of unit quaternion parameterization for 2000 noise-free random
problems is shown.

ilarly to the general solver under varying noise level and number of lines, while being
much faster.

4.6 Conclusions
We present a general framework for utilizing symmetry in solving polynomial sys-
tems. We study and prove the correspondence between symmetric polynomial sys-
tems and symmetric solution sets. We have also identified several examples in com-
puter vision that are fully symmetric or partially symmetric. We verify the advantages
of utilizing symmetry in improving both speed and numerical stability of polynomial
solvers.

As future work, it is of practical importance to achieve automatic detection and
reformation of symmetric polynomial systems. While the techniques presented in this
chapter can be combined with previous optimization schemes for polynomial solvers,
it is of interest to see whether specific optimization scheme can be derived for symmet-
ric systems. Moreover, it is important to derive schemes for automatically selecting
mapping for solution extraction in a numerically stable manner. Another direction is
to explore other types of symmetries in polynomial systems.
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Figure 4.4: Top: noise sensitivity of different PnL solvers with varying noise levels
for fixed n = 10 lines. Bottom: noise sensitivity of different PnL solvers with varying
number of lines with fixed noise level (2 pixels).

51



CHAPTER 4. SYMMETRIES IN POLYNOMIAL SYSTEMS

52



Part II

Geometric Problems in
Computer Vision





Chapter 5

Pose Estimation

In this chapter, we study the camera pose estimation problem. Specifically, we study
the geometric problems of estimating camera pose with unknown focal length using
combination of geometric primitives. We consider points, lines and quivers, i.e. points
with one or more directions. We identify several minimal cases and formulate minimal
cases as polynomial systems where the constraints for different primitives are handled
in a unified way. We develop efficient polynomial solvers for each of the derived cases.
The availability of these solvers enables robust pose estimation with unknown focal
length for wider classes of features. Such rich features also allow for fewer feature
correspondences and generate larger inlier sets with higher probability.

5.1 Pose Estimation with Unknown Focal
To be able to estimate camera pose given 2D-3D correspondences of geometric prim-
itives e.g. points, lines etc. is of great interest to applications like vision-based local-
ization [46]. In typical scenarios, focal length of the camera is the only unknown that
is most difficult to determine accurately (exif-tag could provide erroneous estimate)
and can render large errors in the pose estimation. All previous methods for pose es-
timation with unknown focal length use point correspondences. The contribution of
this chapter is to enable a wider class of geometric features (combinations of points,
lines and n-quivers, Figure 5.1) for simultaneous pose estimation and focal length
calibration.

Related Works The problem of camera pose estimation has been studied exten-
sively in the computer vision community. The minimal case of pose estimation using
3 points was studied in [35] and several other formulations are compared and reviewed
in [40]. For line-to-line correspondences, solutions are derived for minimal of 3 lines
in [25, 32]. Recently, the minimal cases using combination of points and lines are
solved in [89]. In [34] a solver is derived for a minimal problem of 2 points and
their corresponding tangent directions (equivalently any direction vector through each
of the points). The required correspondence is reduce to a single local patch corre-
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Point
Line

2-quiver

Figure 5.1: The figure illustrates three examples of image features in an image, a
point with 2 degrees of freedom, a line with 2 degrees of freedom and a 2-quiver with
4 degrees of freedom. The 2-quiver consists of a point and two directions out from the
point.

spondence in [52] . However, this specific setting is unfortunately very sensitive to
measurement noise of the patches.

For camera pose estimation with unknown focal length, the planar case was stud-
ied and solved in [1]. For general non-planar cases, the close to minimal case using
4 2D-3D correspondences was first studied in [96]. Efficient and numerically stable
solvers are developed in [12]. By combining 2D-2D and 2D-3D correspondences, [51]
investigated several minimal cases for pose estimation with unknown focal length.
Additionally, for camera with unknown radial distortion and unknown focal length,
the 4-point minimal case was solved in [14, 50]. By using 5 point correspondences,
a fast but overdetermined solver with real-time RANSAC performance was proposed
in [67]

Many other works focus on solving the overdetermined problem of estimating
camera pose with more than three points [45, 70, 76] or lines [76]. Very recently, the
approach in [70] was extended to handle unknown focal length [82]. All of these
methods are based on a formulation that minimizes certain algebraic errors and gen-
erally assume that there exist no outliers in the data. Minimal solvers are the key
components of the preprocessing steps for such overconstrained solvers to robustly
remove outliers.

5.2 Problem Formulation
We start with the pinhole camera model. The projection equations for a 3D point X
and its corresponding 2D image projections x is,

ηx = PX, (5.1)

where η is the depth of X and the projection matrix can be decomposed as P =
K
[
R t

]
. In practical camera setups, it is generally assumed that the cameras have

centered principle points, square pixels with zero skew. We thereafter assume that the
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o

WoR,t

DX

l

world coordinatecamera coordinate

Figure 5.2: Camera coordinate, world coordinate, and the geometric relations between
point, line and direction correspondences.

calibration matrix K only involves the unknown focal length f . Based on (2.3), the
matrix K can be written equivalently as

K =

1 0 0
0 1 0
0 0 w

 , (5.2)

where w = 1/f . Therefore, the problem of determining camera pose with unknown
focal length has in total 7 degrees of freedom (3 in rotation R, 3 in translation t and 1
in f ).

5.2.1 Number of Constraints
In this section, we discuss in details the constraints given by different geometric prim-
itives.

Point Constraints. Given a known 3D point X and its corresponding image point
x, it is well known that there are two constraints on P [41]. The two constraints can
be chosen from the three linearly dependent equations based on (5.1) :

[x]×PX = 0, (5.3)
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where

[x]× =

 0 −1 v
u 0 −1
−v u 0

 .
Line Constraints. Given a known 3D line L and its corresponding image line l,
there are also two constraints on P. If the 3D line L is represented as a 3D point X
and the direction of the line D, one can obtain two equations for the two points in the
following form based on (5.1):

lTPX = 0,
lTP(X + kD) = 0, (5.4)

where k is an arbitrary constant.

Quiver Constraints. For a known 3D point X and a directional measurement D
through X, given the corresponding image projection x and d, there are 3 constraints
on P. We hereafter call the geometric primitive with a point and n directions passing
through the point as an n-quiver. For a 1-quiver, we first obtain two constraints from
the point correspondence according to (5.3). The other constraint comes from the
directional measurement. To see this, we first convert the measurement d along with
x to a line measurement l. Then we utilize the equations in the form of (5.4) and take
the difference between them. Equivalently, we have

lTPD = 0. (5.5)

For a 2-quiver, we have in total four constraints including two point constraints and
two constraints in the form of (5.5). In general, there are n + 2 constraints for an
n-quiver (two constraints from the point and n constraints from the n directional cor-
respondences).

The number of constraints for points, lines and quivers are summarized in Ta-
ble 5.1.

Point Line n-Quive

2 2 n+2

Table 5.1: Number of constraints enforced by 2D-3D correspondences of different
geometric primitive for camera pose estimation.
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5.2.2 Useful Cases
With 2D-3D correspondences of points, lines and n-quivers, one can form several
novel minimal cases by searching for combination such that 2mp+2ml+(n+2)mq =
7, where mp,ml,mq are the number of point, line, n-quiver correspondences, respec-
tively. We present and solve two of such minimal cases and also study a slightly
over-determined cases using 4 lines.
Two Points and One 1-Quiver (P2Q1) : Given three points and one direction pass-
ing through one of the points, we can form 6 equations based on (5.3) and 1 equation
based on (5.5). Thus this problem is minimal.
One 1-Quiver and One 2-Quiver (Q1Q2) : For two points, where one line passing
through one point, and two lines passing through the other point are known, we can
form 4 point equations (5.3) and 3 equations with respect to the directions (5.5). This
yields also a minimal problem.
Four Lines (P4L) : Given 4 3D-2D line correspondences, there are in general 8
independent constraints. Thus, the problem of camera pose with unknown focal length
is over-determined with 4 lines. We can choose 7 from the 8 equations, and use the
eighth equation to verify a unique solution.

In a similar manner, other minimal cases include the setups: (i) one point, one line
and one 1-quiver (ii) two lines and one 1-quiver which can be solved in similar manner
as the presented solvers.

5.2.3 Parameterization
There are many ways to parameterize the problems related to camera pose estimation.
In [96], Triggs first parameterizes the camera as an arbitrary matrix with 12 unknowns,
the solutions then lie in the null space of the linear constraints given by the point
constraints. Then the quadratic constraints (orthogonality and equal norm) on the
rotational part of the camera matrix are enforced afterwards. The benefits of this
formulation is that one needs to solve only quadratic polynomial systems. Once the
rotational part is recovered, the focal length can easily be calculated using the ratios
between the norms of the third and the first two rows of R. The drawback of this
formulation is that non-planar and planar scenes need to be handled separately and
explicitly as shown also in [14].

On the other hand, Bujnak et al. [12] formulate the P4P problem with unknown
focal length using the invariance of the ratios of distances between the 3D points under
rigid transformation. For directional correspondences, one can similarly make use of
the invariance of the angles between the directions [34]. Here, we discuss briefly the
application of such geometric invariance to the P2Q1 problem i.e. two points (X1,X2)
and one point (X3) with a known direction (D). To start with, we can use the three
points to form 2 independent distance ratio equations involving three unknowns (two
relative stretch ratios α1,α2 and f ) as in [12]. Then for the known direction, one can
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form equations using the invariance of angles for (D,X3 −X1) and (D,X3 −X2).
This again produces two independent equations involving all 4 unknowns (α1, α2, α3,
f ). Thus, we obtain 4 equations with 4 unknowns. However, the resulting equations
consists at least one equation of degree 6 (after substitution and simplification), which
makes the resulting polynomial system very difficult to solve. While the use of ge-
ometric invariance might yield polynomial system with fewer solutions for the P4P
problem with unknown focal length, it is not straightforward to see that such property
is preserved for other primitives like directions with unknown focal length.

Here, we choose to parameterize the rotation matrix R with quaternion and con-
struct equations directly based on (5.3), (5.4) and (5.5). It turns out that this straight-
forward parameterization, produces polynomial systems that are relatively easy to
solve and general for both planar and non-planar scenes. In the rest of discussions,
the rotation matrix R is parameterized with quaternion asa2+b2−c2−d2 2bc− 2ad 2ac+ 2bd

2ad+ 2bc a2−b2+c2−d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2−b2−c2+d2

 . (5.6)

To fix the scale of the quaternion, we can choose Cayley’s representation by setting
a = 1. By setting a = 1, we reduce the number of unknowns which eases the
polynomial system solving. As discussed in Chapter 4, this will in general introduces
degenerated rotations (a = 0) or potential numerical instability (a ≈ 0). To avoid this
degeneracy, one can alternatively fix the scale with the unit-norm constraint a2 + b2 +
c2 + d2 = 1. Then the problem is partially symmetric to {a, b, c, d} of type-2 and the
techniques in Chapter 4 can be applied. Here, we present the solvers with Cayley’s
parameterization. Due to the rare occurrences of degenerate configurations, we will
demonstrate in the experimental section such degeneracy does not affect the practical
usage of the solvers.

From the factorization in (2.2), we know that P = K[R t] can be rewritten asa2+b2−c2−d2 2bc−2ad 2ac+2bd tx
2ad+ 2bc a2−b2+c2−d2 2cd−2ab ty

w(2bd− 2ac) w(2ab+ 2cd) w(a2−b2−c2+d2) wtz

 .
where t = [tx ty tz]

T . If we additionally set t′z = wtz , we have in total 7 unknowns
{b, c, d, tx, ty, t′z, w}. Given different geometric primitives, the constraints (5.3), (5.4)
and (5.5) are linear to {tx, ty, t′z}. Thus, we can conveniently eliminate all three
of them and rewrite the equations with respect to the 4 unknowns {b, c, d, w} only.
Specifically, for all the useful cases presented in Section 2.2, we can choose 3 of
the equations to eliminate {tx, ty, t′z} and obtain 4 cubic equations with 4 unknowns
(for P4L, there are 5 such cubic equations). In the next section, we will discuss the
solutions to these polynomial systems.
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5.3 Polynomial Solvers

We utilize the techniques based on Gröbner basis to solve the resulting polynomial
systems. Instead of using the automatic solver generator [64], we choose to use the
techniques in [20] with column pivoting basis selection for better numerical stability.
For polynomial systems with small number of unknowns, Gröbner basis methods are
generally fast and numerically stable.

We start by verifying the number of solutions. For instance, for minimal prob-
lem of two points and one 1-quiver (P2Q1), we verify using algebraic geometry tools
Macaulay2 [38] in Zp that there are in general 20 solutions. Recall from Section 2.3
that, after linear elimination, we are left with 4 equations with 4 unknowns {b, c, d, w}.
To solve the polynomial system, we first multiply the 4 equations with all the mono-
mials of total degree up to 6 and maximum degree of each variable as [2, 2, 2, 3],
respectively. In this way, we obtain an elimination template of 372 equations and 386
monomials. To enhance numerical stability, we employ the basis selection technique
by choosing the permissible set to be the last 35 monomials in grevlex ordering. After
the QR factorization with column pivoting, we can construct the action matrix of size
20×20 from which the solutions can be obtained by eigenvalue decomposition. After
we solve for {b, c, d, w}, we can calculate the values of other unknowns using linear
substitution.

For the other two minimal cases Q1Q2 and P4L, we find that the number of
solutions to the corresponding polynomial systems is also 20 and the same elimination
template and choice of permissible monomials give very similar numerical stability.
This could be due to the similar structures in the constraints of these problems.

5.4 Experiments

In this section, we study the performance of polynomial solvers on both synthetic and
real data.

5.4.1 Synthetic Data

For the synthetic experiments, we choose the size of image to be 1024×800. Random
scenes were generated by drawing points uniformly from a cube with side length 800
centered at the origin. Then the directions through points were chosen randomly (ei-
ther in planar or in non-planar fashion). A camera was placed at a distance of around
1000 from the origin, pointing approximately at the center. The camera was calibrated
except for the focal length.
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Figure 5.3: Two point and one 1-quiver (P2Q1), synthetic experiments for 5000 ran-
dom problems on noise-free data with focal length set to approximately 1000. Left:
Histogram of relative errors for rotation, translation, focal length; Right: Histogram
of number solutions with real and positive focal lengths.

Stability and Number of Solutions

We evaluate first the solvers on noise-free data to check the numerical stability of the
solvers and distribution of number of valid solutions. For P2Q1, in Figure 6.2 (left),
we can see that the numerical errors are fairly low for most of the random cases. We
note that the solutions to w are coupled i.e. if w is solution, so is –f , which also
corresponds to equivalent pairs of camera matrices P and –P1. Since only the real
and positive f are geometrically valid, one can safely remove the other solutions. In
the simulation, it is shown that there are up to 8 solutions with real and positive f
while in most of the cases only 2 or 4 solutions (Figure 6.2, right).

The boxplot in Figure 5.4 shows the medians, 25 percentiles and 75 percentiles of
the distribution of the relative errors. We can see that for noise-free data, the Gröbner
basis solver for (P2Q1) is consistently stable for different focal lengths for both planar
and non-planar scenes (Figure 5.4). Similar numerical behaviors are observed for the
solver using lines (P4L, Figure 5.5). Given that the performance of other solvers are
similar, related figures are not shown individually here.

The solvers implemented in MATLAB take approximately 15ms. The computa-
tion is dominated by the first elimination using QR factorization. For comparison, the
optimized P4P solver in [12] runs at around 2ms. Our solvers can also be further
optimized for speed using strategies in [54,64]. The time performance is measured on
a Macbook Air with 1.8 GHz Intel Core i5 and 8 GB memory.

1This seems to indicate the partial symmetry of type-2 discussed in Chapter 4. In fact, there exists no
symmetry for the variable w in the monomials. We conjecture that such symmetry is either induced by the
coefficients or another kind of symmetry in the underlying system.
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Figure 5.4: Synthetic experiments of P2Q1 on noise-free data with varying focal
lengths. Left: Boxplot of relative errors of focal lengths for non-planar points and
directions; Right: planar cases.

Noise Sensitivity

To study the behaviors of the solvers with noisy measurements, we add noise of dif-
ferent levels both to the image point positions and the angles of the directions. In Fig-
ure 5.6, it is shown that the P2Q1 solver gives fairly good estimates for focal lengths
with small noise, and is still able to provide (though not as frequently) reasonably
good initial solutions when the noise is around 5 pixels. We have also noticed that the
solvers can be sensitive to errors in the direction measurements. We also test the P4L
solvers for noisy line measurements by perturbing the intersections between the lines
and the x, y axis. From Figure 5.7, we can see that the P4L solver is capable of re-
covering the focal length accurately for small perturbation and can become unreliable
for large perturbation. To further understand the noise sensitivity, we demonstrate the
performance of the solvers on real image measurements in Section 5.4.2.

RANSAC Experiments

To test the advantage of the proposed solvers for different geometric primitives, we
simulate data with outliers and RANSAC is used to obtain robust initial solution. For
a fixed camera with focal length 1000, we generate randomly 1000 scene points as
in the previous section, directions through points are also generated randomly. Then
both the image point positions and projected directions are perturbed with random
noise. A subset of the points (30%) are chosen as outliers with large perturbations on
both the positions and angles of the directions. We compare the solvers for two points
and one 1-quiver (P2Q1) and one 1-quiver and one 2-quiver (Q1Q2) with the P4P
solver in [12]. For each of the solvers, we choose the minimal set of data required for
RANSAC, the distribution of the ratio of inliers of each RANSAC loop in shown in
Figure 5.8. Here we define the inliers as the image points with reprojection errors less

63



CHAPTER 5. POSE ESTIMATION

−15

−10

−5

0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Focal length 

L
o
g

1
0
 (

re
la

ti
v
e
 e

rr
o
rs

)

−16

−14

−12

−10

−8

−6

−4

−2

0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Focal length 
L
o
g

1
0
 (

re
la

ti
v
e
 e

rr
o
rs

)

Figure 5.5: Synthetic experiment of P4L on noise-free data with varying focal lengths.
Left: Boxplot of the relative errors of focal lengths for non-planar line configurations
Right: planar cases.

−4

−3

−2

−1

0

1

2

0.1 0.3 0.5 1 2 3 4 5

Noise (pixels)

L
o
g

1
0
 (

re
la

ti
v
e
 e

rr
o
rs

)

−4

−3

−2

−1

0

1

2

0.1 0.3 0.5 1 2 3 4 5

Noise (pixels)

L
o
g

1
0
 (

re
la

ti
v
e
 e

rr
o
rs

)

Figure 5.6: Synthetic experiments for P2Q1 on noisy data with varying noise lev-
els on image point positions with fixed f = 1000 and angle perturbation of degree
[−0.1, 0.1]. Left: Relative errors of focal lengths for non-planar points and direc-
tions; Right: planar cases.
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Figure 5.7: Synthetic experiments for P4L with varying noise on the intersection
points of between the lines and x, y axes with fixed f = 1000. Left: Relative errors
of focal lengths for non-planar lines; Right: planar cases.

than a predefined threshold. It is not surprising to see that the Q2Q1 solver performs
the best with respect to recovering inliers since it only requires two points. While
(P2Q1) performs slightly worse, it still gives better results than the P4P solver which
needs at least 4 point correspondences.

5.4.2 Real Data
We took 16 images of seven cardboards placed in a non-planar configuration with
varying focal lengths (Figure 5.9), using a standard Canon EOS 50D camera. Each
cardboard is attached with a pattern with dark and light squares for the ease of line
detection. The automatic line detection algorithm detected 6 lines for each of the card
board, and 9 points as the intersections of those lines. Thus, we have in total 63 points,
42 lines and 63 2-quivers.

We used these images to verify the applicability of the proposed solvers on real
images with point, line and quiver features. The lines were estimated by sub-pixel
edge-detection, cf. [4]. This makes it possible to both estimate edge positions and
edge position uncertainty. Lines as well as the uncertainty in their parameters were
then obtained by fitting to these data. Finally points and their uncertainty were esti-
mated by intersection of two or more such lines. For 16 images, there are in total 621
visible measurements of the points (2-quivers) and 456 measurements of lines. The
output is thus a number of image points, image lines, and image quivers as illustrated
in Figure 5.1. Given correspondences of these image features, we reconstructed both
scene structure, camera motion as well as the focal length. The resulting reconstruc-
tion of the 3D points and the camera poses as well as the focal lengths after bundle
adjustment are fairly accurate and thus serves as ground truth. In the bundle adjust-
ment we have also used the estimated uncertainties in the image features.
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Figure 5.8: Distribution of inlier proportions for 1000 RANSAC runs for different
solvers P4P, P2Q1 and Q1Q2.

Given the correspondences between the image features and 3D reconstruction,
we use the proposed solvers to estimate both the camera pose and the focal length
for each of the image. The estimations are then compared with the results given by
the reconstruction. Due to the high quality of the reconstruction, the data can be
seen as outlier-free. We first look at the reprojection errors for the camera poses
and focal lengths estimated using different solvers and investigate whether the solvers
adapt to real image noisy measurements. To measure the reprojection errors, we run
different solvers in a RANSAC manner by choosing random minimal measurements.
The average reprojection errors of image points for different solvers are reported in
Table 5.2. We can see from Table 5.2 that the errors of all our proposed solvers are
similar to the P4P solver.

P4P P2Q1 Q1Q2 P4L

Errors 2.463 2.531 3.123 3.141

Table 5.2: Average reprojection errors (in pixels) of image points with camera poses
and focal lengths of the 16 images estimated with different solvers.

To further test the performance of the solvers, we also generate outliers by adding
large synthetic perturbations to a random subset (30%) of image point positions,
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Figure 5.9: One of the Images of cardboards with detected lines and points.

quiver directions and lines. We then run RANSAC (1000 runs for each image) on
the perturbed data. For the inlier threshold of 3 pixels, the number of inliers (among
in total 621 measurements) and the average reprojection errors for inliers are reported
in Table 5.3. For this specific example, P4P and P2Q1 output higher count of inliers
and in the meantime give lower average reprojection errors. The slightly inferior per-
formance of Q1Q2 and P4L solvers might be due to the sensitivity of these solvers to
measurement errors in the directions of quivers or lines.

P4P P2Q1 Q1Q2 P4L

Inliers 309 298 253 223
Errors 1.502 1.330 1.402 1.633

Table 5.3: Number of inliers and average reprojection errors (in pixels) of inliers with
30% synthetic outliers for the cardboard dataset.

To evaluate the accuracy of the solvers, we compare the best focal length esti-
mated (the one with maximum number of inliers) for each solver against the output
from bundle adjustment as well as those extracted from EXIF-tag (conversion from
35mm film equivalent). We set the inlier threshold to be 2 pixels and run RANSAC on
the original data without synthetic perturbation. The statistics of the estimated focal
lengths are shown in Figure 5.10. It is noted that the focal lengths given by the exif
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Figure 5.10: Statistics of focal length estimation of different solvers, bundle adjust-
ment and exif-tag for the Cardboard dataset.

information seems to be very coarse compared to those estimates from image data di-
rectly. We can also see that all solvers give fairly similar estimates to the results from
bundle adjustment.

5.5 Discussions

For the calibrated pose estimation problem where focal length is known, we see the
potential of combining the simplicity the quaternion parameterization and the stabil-
ity of Gröbner basis solvers. In [34], the minimal case of equivalently two 1-quivers
(the direction is detected as the tangent to curves instead of arbitrary direction) for
pose estimation was studied. A closed form solution for a polynomial equation of
degree 16 was derived through rather involved calculation. With the quaternion for-
mulation, we directly arrive at 3 quadratic equations on 3 unknowns {b, c, d} which
is extremely fast to solve using Gröbner basis solver (approximately 1ms) compared
to a few milliseconds of the released implementation for [34]. Though it is not fair
to compare the time performance for unoptimized codes (both of them), it could still
suggest superiority of the easy formulation and implementation of the Gröbner basis
based solvers.
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5.6 Conclusions
In this chapter, we present several novel cases for pose estimation with unknown focal
length with combinations of points, lines and quivers. Pose estimation from mixtures
of features allow for fewer feature correspondences and generate larger inlier sets with
higher probability.

One of the key directions in research is to evaluate the application of new solvers to
discriminative feature like SIFT to ease the correspondence problem for edges (direc-
tion of a quiver and line). One potential way is to make use of the dominant gradient
directions given by SIFT and treat them as quiver directions. In this way, the corre-
spondence problem is made relatively easier. In this case, one need to verify whether
the solvers are robust against noisy estimation of the gradient directions. To improve
the speed and numerical stability of the solvers, it is of interest to resolve the intrinsic
symmetry in the quaternion parameterization either by algebraic manipulation or by
deriving alternative set of constraints using geometric invariances.
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Chapter 6

Radial Distortion

In this chapter, we study the problems of estimating relative pose between two cam-
eras in the presence of radial distortion. Specifically, we consider minimal problems
where one of the cameras has no or known radial distortion. There are three useful
and previously unsolved cases for this setup with a single unknown radial distortion (i)
fundamental matrix estimation where the two cameras are uncalibrated, (ii) essential
matrix estimation for a partially calibrated camera pair, (iii) essential matrix estima-
tion for one calibrated camera and one camera with unknown focal length. We study
the parameterization of these three problems and derive fast and stable polynomial
solvers.

6.1 Single Unknown Radial

Taking radial distortion into account is important in pose estimation and structure
from motion problems. Problems for relative poses with unknown radial distortion
have been studied extensively in the past [5, 36, 42, 65, 66, 68]. For all these cases,
either constant or varying radial distortion is assumed on the cameras. Such settings
are useful for self-calibrating cameras with no prior knowledge on the cameras’ in-
trinsic parameters. Estimating relative pose and the radial distortion simultaneously is
achieved by solving either a linear system or a polynomial system. Due to the diffi-
culty of these problems, they either require many point correspondences or dedicated
polynomial solvers. In fact, some of the important minimal problems have still not
been solved due to their difficulty, like estimating the relative pose with unknown fo-
cal length and radial distortion (both constant). In a general structure from motion
pipeline, however, it is common that certain seed images have pre-calibrated or al-
ready known radial distortion. For these cases, the prior on the calibration of one
of the cameras can reduce the complexity of the problem. In [13], a similar strategy
has been applied in focal length estimation where the focal length of one camera is
assumed to be known. This motivates us to study the problem of relative pose esti-
mation with a single unknown radial distortion (sometimes referred to as one-sided
radial distortion problem). We are particularly interested in solving the related mini-
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Figure 6.1: Example of modeling one-sided radial distortion for estimating relative
pose. Left: an image taken with an GoPro-Hero3 with unknown radial distortion.
Right: an image taken with a Nikon D60 camera which has known radial distortion.
Yellow diamonds are the common inliers for fundamental matrix estimation obtained
by both the standard 7-point method [41] and our minimal one-sided 8-point method.
By considering radial distortion, our method obtains many extra inliers (red circles)
while misses only a few inliers (cyan crosses) compared to the 7-point method.

mal problems for robust estimation purposes.

Related Works To model radial distortion, we have followed the one-parameter
division model proposed by Fitzgibbon [36] and assumed that the radial distortion
center is known. For fundamental matrix and constant radial distortion on both cam-
eras, Fitzgibbon proposed an overdetermined 9-point solver which involves solving a
quadratic eigenvalue problem that has two solutions. The minimal case of this problem
was solved in [65], and has in general 12 solutions. For a fundamental matrix with
varying radial distortion, a linear solution using 13 point correspondences was pro-
posed in [5]. An efficient and stable 9-point minimal solver was later derived in [68]
with 24 solutions. For an essential matrix with constant radial distortion, which re-
quires minimally 6 point correspondences, there are in general 56 solutions. It was
also solved in [68]. The most related work is [11], which considered the one-sided
fundamental matrix estimation problem. Instead of solving the minimal case with 8
point correspondences, 9 point correspondences were used to simplify the problem
into solving a cubic equation. While obtaining a simple overdetermined solver is use-
ful, the study of the minimal cases is of both of theoretical interest and of great practi-
cal importance in robust estimation, for example using RANSAC [35]. Non-iterative
solvers for estimating the radial distortion center (both one-sided and two-sided cases)
were also studied in [9, 10, 71]. Even though the additional modeling of radial distor-
tion center is useful, it has been shown that the estimation can be very sensitive to
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noise [10].

Contributions In this chapter, we study the three unsolved minimal cases for rela-
tive pose estimation with a single unknown radial distortion: (i) 8-point fundamental
matrix and radial distortion, (ii) 7-point essential matrix, focal length and radial dis-
tortion, and (iii) 6 point essential matrix and radial distortion. For each of these cases,
we derive a parameterization and a linear elimination scheme to simplify the polyno-
mial systems. We study the polynomial systems and verify the number of solutions.
We then develop fast and stable polynomial solvers for all these minimal cases. These
solvers are minimal, fast and more accurate than previous non-minimal solvers, for ex-
ample [11]. The availability of these fast solvers enables the possibility of initializing
a large-scale structure from motion pipeline with radial distortion taken into account.
We demonstrate the benefits of modeling radial distortion on real images by using our
proposed solvers.

6.2 Problem Formulation
We use the pinhole camera model and assume a one-parameter division model for
radial distortion as in [36]. Under radial distortion, the relation between undistorted
point coordinates pu =

[
xu yu 1

]T
and radially distorted point coordinates pd =[

xd yd 1
]T

can be written asxuyu
1

 ∼
 xd

yd
1 + λr2d

 , (6.1)

where λ is the distortion coefficient and rd is the distance of pd to the distortion
center. Here we assume that the distortion center is known and at the center of the
image. We further assume that the cameras have centered principal points and square
pixels. Therefore, the two unknown calibration parameters we consider here are focal
length f and radial distortion λ. The calibration matrix K can be expressed as

K =

1 0 0
0 1 0
0 0 w

 , (6.2)

where w = 1/f . Then we have the undistorted image point coordinates

pn ∼ Kpu. (6.3)

In two-view geometry, it is well known that for uncalibrated cameras, the funda-
mental matrix F has 7 degrees of freedom, and for calibrated cameras, the essential
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matrix E has 5 degrees of freedom [41]. On the other hand, we know that each image
point correspondence gives one constraint. We consider here the one-sided case where
calibration matrix K′ and radial distortion λ′ is fully known for the second camera.
Note that the prior knowledge on the calibration of the second camera does not reduce
the degrees of freedom of the epipolar geometry. In Table 6.1, we summarize the re-
lated minimal problems on relative pose with radial distortion for both two-sided as
well as the one-sided cases. We also show the number of solutions to these minimal
problems in general.

Points Case Two-sided One-sided

9 F + λ + λ′ 24 [68] -
8 F + λ 16 [65] 8 (this chapter)
7 E + λ +f 68∗ 19 (this chapter)
6 E + λ 52 [68] 26 (this chapter)

Table 6.1: Minimal problems and corresponding number of solutions to relative pose
with unknown radial distortion on both cameras (two-sided) and a single camera (one-
sided). (∗) To the best of our knowledge, the minimal problem for two-sided E + λ
+ f has not been solved before. The analysis on number of solutions is based on
Macaulay2 [33].

In the following sections, we describe the geometric constraints for these problems
including the epipolar constraints from the point correspondences and the intrinsic
constraints on the fundamental matrix and the essential matrix.

6.2.1 Fundamental Matrix and Radial Distortion
Given n point correspondences, the epipolar constraints are

pTni
(λ)Fp′ni

= 0, i = 1, . . . , n. (6.4)

where pn and p′n are corresponding undistorted image points in the first and the sec-
ond image, respectively.

The singularity of the fundamental matrix F is enforced as

det(F) = 0. (6.5)

6.2.2 Essential Matrix and Radial Distortion
Depending on whether the focal length f is known for the first camera, we have two
minimal cases as follows.
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Radial Distortion Only. If two cameras are calibrated up to an unknown radial
distortion on the first camera, given n point correspondences, the epipolar constraints
on the essential matrix E are

pTui
(λ)Ep′ui

= 0, i = 1, . . . , n. (6.6)

Radial Distortion and Focal Length. Here we study the case where the first cam-
era is calibrated up to an unknown focal length and an unknown radial distortion.
Based on (6.1) and the calibration matrix K, we can parameterize the undistorted case
and normalize points as a function of λ and w. Similarly, the constraints are

pTui
(λ,w)Ep′ui

= 0, i = 1, . . . , n. (6.7)

We then use the intrinsic constraints on essential matrices. The singularity of the
essential matrix is enforced as

det(E) = 0. (6.8)

The trace constraints, which indicate that the two singular values are equal, are ex-
pressed as

2EETE− trace(EET )E = 0. (6.9)

6.3 Polynomial Solvers

In this section, we describe the numerical schemes for solving the polynomial sys-
temsḞor all of these problems, the solution involves the following steps: (i) a linear
elimination step [65] to reduce the number of unknowns in the polynomial system, (ii)
solving the reduced polynomial system using Gröbner basis methods [20].

6.3.1 8 Point Case: F + λ

We parameterize the fundamental matrix F as

F =

f1 f4 f7
f2 f5 f8
f3 f6 f9

 . (6.10)

To fix the scale of the fundamental matrix, we assume that f9 6= 0 and choose f9 = 1.

75



CHAPTER 6. RADIAL DISTORTION

Linear Elimination. We first look at the 8 equations in (6.4) given by 8 point
correspondences. This gives a polynomial system in matrix form as follows

Gx = 0, (6.11)

where G is a 8×12 coefficient matrix, and x is a vector of monomials [λf3, λf6, f1, f2,
f3, f4, f5, f6, f7, f8, λ, 1]T . Given that {f1, f2, f4, f5, f7, f8} are linear in (6.11), we
can eliminate these 6 unknowns using 6 of the 8 equations. We can further choose
to eliminate one more unknown f3 or f6 using the remaining 2 equations. Here we
choose to eliminate f3. To achieve this, we use the two last equations to eliminate
f3 and λf3. To this end, we can rewrite the two equations as f3 = g1(f6, λ) and
λf3 = g2(f6, λ). Thus, we obtain a new polynomial system with only 2 unknowns
i.e. f6 and λ. With the singularity constraint on F in (6.5), we can then obtain a
bivariate polynomial system

λg1(f6, λ)− g2(f6, λ) = 0, (6.12)
det (F(f6, λ)) = 0. (6.13)

The two equations are of degree 3 and 6, respectively.

Polynomial System. By expressing the resulting polynomial system with coeffi-
cients in Zp, and using algebraic geometry tools [33], we find that there are in general
8 solutions for this problem. This size of the solution set is much smaller than two-
sided cases with varying (24 solutions) and constant (16 solutions) radial distortion.
Then we generate the single elimination template by multiplying the two equations
with a set of multiplication monomials. The multiplication monomials are chosen in
such a way that (i) the maximum monomial degree in the resulting polynomial equa-
tions is 7, and (ii) the highest degree of any of the two unknowns in the multiplication
monomials is 4. We arrive at an elimination template of 12 equations and 24 monomi-
als. Then we use the column-pivoting scheme to select the monomial basis to form the
8× 8 action matrix. For this problem, we find that choosing the last 9 monomials (in
grevlex order) as the permissible set gives good stability. After we construct the action
matrix, solutions to the polynomial system can be extracted from the eigenvectors of
the transpose of the action matrix. Once we have found solutions for λ and f6, the
solutions of the other unknowns can be calculated linearly.

6.3.2 7 Point Case: E + λ + f

For this problem, instead of parameterizing the essential matrix directly, we choose
to parameterize F and solve for E implicitly. The reason is that, with this implicit
parameterization, we achieve a simpler elimination step.
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Linear Elimination. Similar to Section 6.3.1, we first use point equations in (6.4)
given by 7 point correspondences. We use 6 of the equations to linearly eliminate
{f1, f2, f4, f5, f7, f8}. With the last remaining equation, we can rewrite λf6 as a
quadratic function h(f3, f6, λ) of f3, f6 and λ such that

λf6 − h(f3, f6, λ) = 0. (6.14)

Now we can write the fundamental matrix F as a function of f3, f6 and λ.

With the parameterization of K as in (6.2), we can express the essential matrix E
with respect to the fundamental matrix:

E = K(w)TF(f3, f6, λ)K′. (6.15)

By substituting (6.15) into (6.8) and (6.9), along with (6.14), we obtain in total 11
equations in 4 unknowns f3, f6, w and λ.

Polynomial System. Before verifying the number of solutions, we need to simplify
the equation system further. The first observation is that there are 4 equations where
w is the common multiplier. This will potentially introduce a set of false solutions
corresponding to w = 0. To cope with this, we simply divide all these 4 equations by
w (this is done implicitly by changing the monomials in the equations). Secondly, we
find that after this division step, monomials involving w only appear in the 9 equations
from (6.9) in quadratic form as w2. We therefore substitute w2 with a new variable
z = w2. To this end, we have one quadratic equation (6.14), one 5th degree equation
(6.8) and 9 equations from (6.9) (3 equations of 5th degree and 6 equations of 6th

degree).

With these simplification and using [33], we verify that in general there are 19
solutions for this system. We generate the elimination template by multiplying a set
of multiplication monomials such that (i) the maximum degree of the monomials in
the resulting equations is 8, and (ii) the highest degrees of the unknowns in the mul-
tiplication monomials are [3, 4, 2, 4], respectively. The resulting elimination template
consists of 200 equations and 231 monomials. We observe that further reducing the
size of the template by limiting the degrees in the multiplication monomials generally
deteriorate the numerical stability of the solver. We then choose the last 40 monomials
in grevlex order as the permissible set for basis selection. Again, solutions to the poly-
nomial system can be extracted from the eigenvectors of the transpose of the 19× 19
action matrix.
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6.3.3 6 Point Case: E + λ
Similar to the fundamental matrix, we parameterize the essential matrix E as

E =

e1 e4 e7
e2 e5 e8
e3 e6 e9

 . (6.16)

and set e9 = 1 to fix the scale.

Linear Elimination. From point equations in (6.6) given by 6 point correspon-
dences, we have a polynomial system in matrix form as follows

Hx = 0, (6.17)

where H is a 6×12 coefficient matrix, and x is a vector of monomials [λe3, λe6, e1, e2,
e3, e4, e5, e6, e7, e8, λ, 1]T . Again, since {e1, e2, e4, e5, e7, e8} are linear in (6.17), we
can eliminate these 6 unknowns using the 6 point equations.

With the two intrinsic constraints (6.8) and (6.9), we arrive at a well-defined poly-
nomial system of 10 equations (one from (6.8) and 9 from (6.9)) in 3 unknowns e3, e6
and λ. These equations are of degree 5 and 6.

Polynomial System. We find that there are in general 26 solutions for this prob-
lem using [33]. In contrast, the two-sided case with constant unknown radial distor-
tion [68] has in general 52 solutions and is much more difficult to solve. To generate
the elimination template, we choose the set of multiplication monomials such that (i)
the maximum monomial degree in the resulting equations are up to degree 8, and (ii)
the highest degrees of the unknowns in the multiplication monomial set are [3, 4, 4]
respectively. We then obtain an elimination template of 48 equations and 70 mono-
mials. For the basis selection step, we have chosen the permissible set to be the last
32 monomials in grevlex order. Solutions of e3, e6 and λ can be extracted from the
eigenvectors of the transpose of the 26× 26 action matrix.

6.3.4 Alternative Parameterization
In [5, 11], another way to form polynomial systems for these minimal problems is
described. Let us consider the example of estimating fundamental matrix and a single
radial distortion. Instead of parameterizing λ and F directly, in [11], image points
are lifted to 4D space with a corresponding 4 by 3 radial distortion matrix which has
11 parameters (after fixing the scale). In this way, the point equations in (6.4) can be
written as linear equations. By parameterizing the solutions as the null space of the n
linear equations, we can eliminate n unknowns. Thus, for the one-sided 8-point case,
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we will have a polynomial system of 3 unknowns. Recall that in Section 6.3.1, using
the linear elimination scheme, we obtain a polynomial system of only 2 unknowns
which facilitates the subsequent polynomial solving step. And for the other two cases
with even fewer correspondences, straightforward adaption of such lifting technique
yields much more involved polynomial systems than the linear elimination scheme
used here.

6.3.5 Degenerated Cases

It is well-known that for planar scenes, the problem of determining the fundamen-
tal matrix from two views degenerates [43]. Therefore, both one-sided 8-point and
one-sided 9-point for estimating fundamental matrix and radial distortion degenerate
for planar scenes. On the other hand, there are two degeneracies related to our for-
mulation. The first one is the degeneracy for planar scenes for one-sided 7 point and
one-side 6 point formulation. This is caused by the rank-deficiency in the linear elim-
ination step of our formulation. The other degeneracy relates to fixing f33 or e33 to
be 1, which leads to failures of the algorithms for forward motions where f33 = 0
or e33 = 0. Using different parameterization or constructing specialized solvers for
planar scenes can resolve these problems. Further works are needed to derive general
and fast solvers that avoid these degeneracies.

6.4 Experiments
In this section, we first study numerical stability and noise sensitivity of the proposed
solvers with synthetic data. Then, we demonstrate the usefulness of the solvers on real
image data.

6.4.1 Synthetic Experiments

To simulate synthetic scenes, we randomly generate 3D points within a cube of width
1000 units centered at the origin. We place the two cameras to be around 1000 units
away from the origin with a random rotation pointing approximately to the origin.
The length of translation between the cameras is chosen to be around 300 units. The
focal lengths of the cameras are uniformly generated in the range of [1000, 2000].
Then we generate image point correspondences by projecting the 3D points onto the
image planes (1000 × 1000 pixels) of both cameras. The image point coordinates
are then distorted based on (6.1) with radial distortion coefficients chosen randomly
from the interval [−0.2, 0.2]. Note that we specify the radial distortion with respect
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Figure 6.2: Left : Numerical stability of the different solvers (from top to bottom: 8
point, 7 point and 6 point minimal cases for one-sided radial distortion). Error distri-
bution compared with ground-truth radial distortion and focal length on synthetic ex-
periments with 5000 randomly generated problems. Right: Distribution of the number
of valid solutions.
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Figure 6.3: Noise sensitivity of different solvers in estimating radial distortion (Left)
and focal length(right) with varying noise levels. Blue box specifies the 25 and 75
percentiles for the log10 relative errors.

to normalized image point coordinates in the range [-1, 1]. Outliers are simply image
points randomly generated with a uniform distribution.

Numerical Stability. We first look at the numerical stability of the solvers on noise-
free data. We evaluate the solvers with relative errors between the estimated f, λ and
the ground truth. The distributions of log10 relative errors for different solvers are
shown in Figure 6.2. We can see that both λ and f are estimated with high accuracy.
For 5000 random problems, the medians of the log10 relative errors for λ are -11.58,
-9.54 and -10.01 for 8-point, 7-point and 6-point cases, respectively. The median of
the log10 relative errors for f estimated in the 7-point algorithm is -10.65.

Number of Solutions. It is of interest to investigate the number of valid solutions
for these minimal cases under general settings. By valid solutions, here we mean
real solutions for the radial distortion λ and positive solutions for f . For the 8-point
problem, we see that (Figure 6.2, right) that there can be up to 8 real solutions in
general. On the other hand, for the 7-point problem where there are in general 19
solutions, only 3-8 of those solutions are valid in most of the cases. As for the 6-point
problem which has 26 solutions, we observe that very often, only fewer or equal to
16 of those solutions are real. The small number of valid solutions compared to the
double-sided solvers further facilitates the solution verification step in RANSAC.

Noise Sensitivity. To understand the performance of the solvers in the presence of
noise, we perturb the image points with Gaussian noise of varying standard deviations
σ. Here we are interested in the noise sensitivity of estimating the radial distortion.
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Figure 6.4: Sensitivity of the different solvers on calibration errors in radial distortion
(λ′) of the second camera. Blue box specifies the 25 and 75 percentiles for the log10
relative errors.

For small perturbations (σ = 0.01, 0.1, 0.5) on the image point coordinates, we see
that all solvers give fairly good initial solutions to the radial distortion (Figure 6.3,
left). For larger perturbations, e.g. σ = 1, 2, the relative errors become higher. This
is similar to previous minimal solvers with radial distortion [11, 68]. These solutions
from minimal configurations can be utilized in the kernel voting scheme or serve as
initial solutions (after RANSAC) for bundle adjustment. While one is not aiming for
better noise tolerance, the three minimal solvers proposed here perform marginally
better than the non-minimal 9-point solver in [11]1.

Estimating Focal Length. We also test and compare different solvers in estimat-
ing focal lengths with noisy measurements. For the cases where only the fundamental
matrix is estimated i.e. the 9-point in [11] and our 8-point solver, we have extracted
the focal length from the fundamental matrix using the method in [11]. We can see
from Figure 6.3 (right) that all the solvers perform similarly under settings with low
noise levels. When the measurements are perturbed by noise of higher or equal to
1 pixel, our proposed solvers perform better, while requiring fewer number of corre-
spondences. This further justifies the usefulness of the new minimal solvers in robust
estimation settings. When comparing to the estimation of radial distortion, we observe
that the estimating focal length is less sensitive to the noise i.e. the errors are lower for
focal length than radial distortion under the same noise level.

Effects of Calibration Errors. In this experiment, we investigate how the errors
in the calibration of the second camera affect the estimation of λ and f . We focus

1For all comparisons in this chapter, we have used the publicly available solvers at
http://www.cvg.ethz.ch/research/distortion-in-multiple-view-geometry/
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on the effects of inaccurate calibration on the radial distortion of the second camera.
To study this, we add uniform random noise to the true radial distortion λ′ of the
second camera. Here, we have chosen fixed values for λ and λ′ such that λ = −0.2
and λ′ = −0.1. We observe (Figure 6.4) that for all solvers, the errors of estimating
λ increase approximately linearly with respect to the calibration errors in λ′. On the
other hand, there is no significant difference between the sensitivity of different solvers
to the calibration errors.

Speed. All minimal solvers have been implemented in MATLAB. On a Macbook
Air with 8GB memory and 1.8 GHz i5 CPU, the average runtime for the different
solvers are: 1.0 ms (milliseconds) for the one-sided 8-point, 8.6 ms for the one-sided
7-point and 3.2 ms for the one-sided 6-point. The solvers can be further optimized
in C or C++, e.g. with a more efficient construction of the coefficient matrix, which
is one of the current bottleneck in MATLAB. For comparison, the one-sided 9-point
method in [11] solves a cubic equation system, which takes on average 0.5 ms.

6.4.2 Real Experiments
In this section, we evaluate and validate the proposed solvers on real images. We have
used an Nikon D60 camera as the fully calibrated camera in our setup. It has been
verified that the Nikon D60 has very small radial distortion thus we assume that there
is no radial distortion in it. We have also captured images (3000×2292) with a GoPro
Hero3 camera, which shows significant radial distortion. To evaluate the estimation
of the essential matrix as well as focal length, we calibrated the fixed focal length
of the GoPro camera using the OpenCV calibration toolbox, which then serves as
ground truth. For the experiments, we collected in total 25 pairs of images of different
scenes with the two cameras. For each image in the dataset, we detect interest point
and extract SIFT [72] features. Then for each pair of images, we obtain tentative
descriptor matches based on Lowe’s criterion. Given these preliminary matches, we
estimate the fundamental matrix or the essential matrix using different solvers in the
RANSAC loop.

In Figure 6.5, we show several example image pairs where we compare inliers
from our minimal solvers to those obtained by the standard 7-point fundamental es-
timation. It can be seen that, by modeling radial distortion, we obtain more geomet-
rically correct inliers for the image pairs. The comparison with the standard 8-point
method [44] for fundamental matrix is very similar and thus is not shown here.

We then look at the gain of inliers for different minimal problems with the same
number of RANSAC iterations. In Table 6.2, we can see that all the one-sided radial
methods obtain around 60-70% more inliers than the baseline 7-point method. Our
proposed minimal solvers obtain slightly more (3-5%) inliers than the non-minimal
solver in [11]. We can also see that the inlier set for different one-sided solvers are
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Figure 6.5: Examples on real image pairs. Left: images taken with an GoPro-Hero3;
Right: images taken with a Nikon D60 camera. Yellow diamonds are inliers obtained
by the standard 7-point method. Cyan crosses are inliers only obtained by the 7-point
method. The others are extra inliers obtained by the specific one-sided minimal solver
from the 1st to the 3rd row: one-sided 8 point, one-sided 7 point, one-sided 6 point.
The last row is the comparison of inliers obtained by different one-side solvers where
yellow diamonds are the common inliers by the four one-sided method.

84



6.5. CONCLUSIONS

−0.5

−0.4

−0.3

−0.2

−0.1

0
ra

d
ia

l 
d
is

to
rt

io
n
 λ

 

 

One−sided 9 point  [4]
One−sided 8 point

One−sided 7 point
One−sided 6 point

1300

1400

1500

1600

1700

1800

1900

2000

fo
c
a

l 
le

n
g

th
 f

 

 

ground truth
One−sided 9 point  [4]

One−sided 8 point
One−sided 7 point

Figure 6.6: Estimation of radial distortion and focal length for the GoPro Hero3 cam-
era from 25 image pairs.

consistent with each other (Figure 6.5, last row).

9 point [4] 8 point 7 point 6 point

1.67 1.71 1.72 1.70

Table 6.2: Average ratio of inliers obtained by different one-sided radial solvers to
inliers obtained by the standard 7-point algorithm on the dataset.

We then study the noise sensitivity and consistency of the one-sided solvers on
real images. In Figure 6.6 (Left), the estimates of the radial distortion for 25 GoPro-
Nikon pairs are shown. We can see that the estimates from all solvers are centered at
approximately −0.25. However, the variance of the estimates is fairly large due to the
presence of noise. For the focal length (6.6, right), we again observe that the estimates
for solvers are close to the ground truth from the calibration. To mitigate the effects
of noise, we can also apply the kernel voting scheme of [71] to obtain better estimates
for focal length and radial distortion. In Figure 6.7, we show an example of corrected
images according to radial distortion estimated from different one-sided methods. We
can see that most of the radial distortion are correctly reduced.

6.5 Conclusions

These minimal solvers introduced in this chapter enable calibration of a camera with
unknown radial distortion using another camera with known or no radial distortion.
More importantly, these simpler one-sided solvers enable robust estimation of radial
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Figure 6.7: Example of corrected images based on the estimated λ by different solvers.
Top left: Original image. Top right, bottom left and bottom right are images corrected
according to 8-point, 7-point and 6-point one-sided method respectively.

distortion in large-scale unordered structure from motion. In large-scale unordered
structure from motion, the proposed solvers can estimate a fundamental or essential
matrix robustly with respect to seed images with known or no radial distortion. Such
estimation can be readily integrated with both sequential and non-sequential structure
from motion methods. The study of these one-sided cases could pave the way to a
deeper understanding of the previous unsolved two-sided cases as well. In particular,
our solution to the one-sided essential matrix with unknown focal length and radial
distortion shed light to the unsolved two-sided minimal problem of essential matrix
with constant unknown focal length and radial distortion. In our initial study, with the
similar elimination and parameterization for the one-sided problem, we have imple-
mented a fairly stable polynomial solver for this problem with 68 solutions.

There are several interesting avenues for one-side radial distortion calibration. Of
particular theoretical interest is the critical configuration of these minimal problems.
Solving minimal problems for essential matrix for one-sided radial with unknown
distortion center is another direction to pursue.
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Chapter 7

TOA Self-Calibration

In this chapter, we study the sensor network self-calibration problem with time-of-
arrival (TOA) measurements. Traditionally, the calibration of sensor network relies
on with prior knowledge on receiver positions and local optimization. An efficient
solution to the TOA self-calibration problem opens up new technological possibilities
e.g. calibration of a sensor network on the fly, determining positions of receivers and
transmitters while moving in an unknown terrain etc. We provide a complete charac-
terization of TOA self-calibration problem and derive fast and stable minimal solvers
for different spatial configurations of receivers and transmitters.

7.1 Background

Sensor network calibration with time-of-arrival measurements arises in application
such as calibration of radio antenna networks, audio or ultra-sound arrays and WiFi
transmitter arrays. Extensive works has been done in the literature previously. For
completely connected graph i.e. given all pair-wise distances between sensor nodes,
the problem can be solved using multi-dimensional scaling [101]. For general graph,
the well-studied semi-definite programming [6, 105] is very efficient for large scale
network. However, it requires at least k + 1 anchor sensors with known positions,
where k is the dimension of the affine span of the sensor positions. In anchor-free
setup, [88] explored graph rigidity to find a fold-free graph embedding as the initial
solution and refined the solution using local gradient method based on heuristics. The
main contribution of [88] is that it proposed a way to generate a good initial solution
based on graph rigidity. It was shown that, the method as well as other methods based
on local iterative optimization will fail drastically without a good initial solution. An-
other line of works have focused on anchor-free localization for sensor network with
bipartite structures. In [7], Bolker and Roth discussed and proved the minimal cases
in 2D and 3D. However, no numerical solutions were given. The minimal cases are
also studied by [92], where solutions to the minimal case of 3 transmitters and 3 re-
ceivers in the plane is given. However, no practical methods for general 3D positions
are given. In [87], a non-minimal linear solution to 3D TOA self-calibration problem
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is derived for 10 (4) receivers and 4 (10) transmitters. In [30, 31], a solution is given
to the bipartite TOA self-calibration problem, if one may additionally assume that the
position of one of the receivers coincides with the position of one of the transmitters.

7.2 The TOA Self-Calibration Problem
Let ri, i = 1, . . . ,m and sj , j = 1, . . . , n be the spatial coordinates of m receivers
(e.g. microphones) and n transmitters (e.g. sound events), respectively. For measured
time of arrival tij from transmitter ri and receiver sj , we have vtij = ‖ri − sj‖2
where v is the speed of measured signals. We assume that v is known and constant, and
that we at each receiver can distinguish which transmitter j each event is originating
from. This can be done e.g. if the signals are temporally separated or using different
frequencies. We will in the sequel work with the distance measurements dij = vtij .
The TOA calibration problem can then be defined as follows.

Problem 7.2.1 (TOA Self-Calibration) Given absolute distance measurements dij
determine receiver positions ri, i = 1, . . . ,m and transmitter positions sj , j =
1, . . . , n such that dij = ‖ri − sj‖2.

In TOA self-calibration problem, the underlying graph is bipartite (the two disjoint
sets of vertices are the receiver nodes and transmitter nodes, respectively). Note also
that for such problems, one can only reconstruct locations of receivers and transmit-
ters up to an Euclidean transformation and mirroring, henceforth referred to as gauge
freedom. In the following discussions, we assume that the dimensionality of the affine
space spanned by ri and sj is the same and it is denoted as k. Typical value in practice
is k = 3 for transmitters and receivers in general 3D positions.

For this special type of bipartite network structure, one also aims to identify and
solve the minimal problem i.e. minimal number of receivers and transmitters required
for the problem to be well-defined (or solvable). Note that for this problem, the roles of
receivers and transmitters are equivalent. Therefore, when discussing minimal cases,
the number for receivers and transmitters are exchangeable. To identify minimal prob-
lems, a straightforward way is to calculate the number of degrees of freedom in the
measurements dm and the number of degrees of freedom in the manifold of unknown
parameters df The necessary condition for a configuration or a case to be minimal is
that dm = df . For TOA self-calibration problem in general Rk space, dm = mn and
df = k(m + n) − g(k), where g(k) = k(k + 1)/2 is the gauge freedom in general
k-dimensional space. However, to be more precise one has to study the equations us-
ing algebraic geometry and graph theory, to make certain that there are no anomalies
in the set of constraints. The corresponding statement for the minimal cases of TOA
self-calibration problem is to decide when a bipartite graph is rigid given the edge
lengths between two independent sets of m nodes and n nodes. It is known in 19th
century that (m = 3, n = 3) in R2 is rigid and Bolker and Roth [7] also show that

90



7.2. THE TOA SELF-CALIBRATION PROBLEM

rigid cases in R3 are (m = 6, n = 4) and (m = 5, n = 5). We denote in the sequel the
cases with m receivers and n transmitters as mr/ns. We will in the following derive
a general parameterization for these minimal cases that yield stable numerical solvers.

7.2.1 Minimal Cases
In this section, we describe a parameterization of TOA self-calibration problem and
derive algorithms for minimal cases.

Since the distance measurements are assumed to be real and positive, one does not
lose any information by squaring the basic measurement equations dij = ‖r− sj‖ on
both sides, i.e.

d2
ij = (ri − sj)

T (ri − sj) = rTi ri + sTj sj − 2risj .

Notice that these are now polynomial equations in the unknowns. We then form new
equations by the following linear combinations of d2

ij :
d2
11 d2

12 − d2
11 . . . d2

1n − d2
11

d2
21 − d2

11
. . . D̄

d2
m2 − d2

11

 (7.1)

where D̄ is a (m− 1)(n− 1) matrix with entries as d̄ij = d2
i,j − d2

i1− d2
1j + d2

11, with
i = 2, . . .m and j = 2, . . . , n. These mn new equations are equivalent to the mn
equations formed by d2

ij . The new ones are in fact an invertible linear combinations
of the old ones.

These equations are of four types:

(A) One equation: d2
11 = (r1 − s1)T (r1 − s1).

(B) n− 1 equations: d2
1j − d2

11 = sTj sj − sT1 s1 − 2rT1 (sj − s1), j = 2, . . . n.

(C) m− 1 equations: d2
i1 − d2

11 = rTi ri − rT1 r1 − 2(ri − r1)T s1, i = 2, . . .m.

(D) (m − 1)(n − 1) equations: d2
ij − d2

i1 − d2
1j + d2

11 = −2(ri − r1)T (sj − s1),
i = 2, . . .m, j = 2, . . . n.

The problem is symmetric in transmitters and receivers. Without loss of generality
we may assume that m ≥ n. It turns out that the characterization of the problem
depends on the dimensions of the affine span of the transmitters and the receivers.

We first describe the factorization step using equations of Type D. Let r̄i = (ri+1−
r1) and s̄j = −2(sj+1 − s1). The equations of Type D can be written as D̄ = R̄T S̄
with r̄i as columns of R̄ and s̄j as columns of S̄. The ranks of R̄ and S̄ depend solely
on the dimension of the affine span of the receivers and the transmitters respectively.
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As we assume that both of these are k, then the matrix D̄ also has rank k. This also
implies that in order to solve the problem, it is required thatm ≥ k+1 and n ≥ k+1.
We have the following lemma.

Lemma 7.1. For positions of m transmitters and n receivers in k-dimensional affine
space, the matrix D̄ is at most of rank k.

Proof. The matrix R̄ and S̄ are of size k × (m − 1) and k × (n − 1) respectively. It
can be easily seen that D̄ = R̄T S̄ is at most of rank-k as we increase m and n.

Given that D̄ is of rank k, we can factorize D̄ = R̂T Ŝ using e.g. singular value
decomposition. Note that, using factorization, we can only determine R̄ and S̄ up to an
unknown full-rank k×k transformation matrix L such that D̄ = R̂TL−1LŜ = R̄T S̄.
To determine the unknown transformation L and the unknown initial positions r1 and
s1, we need to utilize the remaining constraints in equations of Type A, B and C.

First we fix the translational part of the gauge freedom by choosing the location r1
at the origin. Given that R̄ = L−T R̂ and S̄ = LŜ, by parameterizing s1 as Lb where
b is a k × 1 vector, we have :

r1 = 0, (7.2)
s1 = Lb, (7.3)

ri+1 = L−T r̂i, i = 1 . . .m− 1, (7.4)
sj+1 = L(ŝ∗j + b), j = 1 . . . n− 1, (7.5)

where ŝ∗j = ŝj/(−2).
We have the following constraints from the distance measurements of Type A, B

and C on ri and sj :

d2
11 = (r1 − s1)T (r1 − s1) = sT1 s1

= bTLTLb, (7.6)
d2
1,j+1 − d2

11 = sTj sj − sT1 s1

= ŝ∗Tj LTLŝ∗j + 2bTLTLŝ∗j , (7.7)

d2
i+1,1 − d2

11 = rTi ri − 2rTi s1

= r̂Ti (LTL)−1r̂i − 2bT r̂i. (7.8)

Since all the equations above involve only LTL (and its inverse) and b, we can repre-
sent (LTL)−1 by a symmetric matrix H parameterized with k(k + 1)/2 unknowns1.

1This introduces implicitly a non-equality constraint that H must be positive definite denoted as H � 0.
We leave the discussion and optimization scheme on this to Section 7.5.
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The constraints in (7.6), (7.7) and (7.8) can then be simplified as

d2
11 = bTH−1b, (7.9)

d2
1,j+1 − d2

11 = ŝ∗Tj H−1ŝ∗j + 2bTH−1ŝ∗j , (7.10)

d2
i+1,1 − d2

11 = r̂Ti Hr̂i − 2bT r̂i. (7.11)

By utilizing H−1 = adj(H)/ det(H), where adj(H) is the adjoint of H, we can
multiply equations in (7.9) and (7.10) on both sides by det(H) to rewrite them as
polynomials equations. With this parameterization, we have in total k(k + 1)/2 + k
unknowns k(k + 1)/2 and k unknowns for H and b, respectively). For 3D problems
(k = 3), we have (n+m−1) equations, among which the (m−1) equations in (7.11)
are linear, the (n − 1) equations in (7.10) are polynomial equations of degree 3 and
Equation (7.9) is of degree 4. Thus we need n+m− 1 ≥ 9 or n+m ≥ 10 in order to
solve for the 9 unknowns. Since both m ≥ 4 and n ≥ 4, there are two minimal cases
4r/6s (6r/4s) and 5r/5s. These cases correspond to the minimal cases proved in [7].

7.2.2 Solving the Polynomial Systems
In this section, we will present the related polynomial systems with unknowns H and
b for each minimal problems. We derive a necessary saturation step and study the
solution space of these systems. We then develop efficient and stable solvers based
on action matrix method for both problems. For simplicity we will in the following
presentation below concentrate on the 2 minimal cases for 3D problems. Notice, how-
ever, the method and theory are straightforward to generalize to other dimensions. A
discussion on the self-calibration problem in other dimensions is given in Section 7.3.

4 Receivers and 6 Transmitters

For the minimal case of 4 receivers and 6 transmitters (6 transmitters and 4 receivers),
there are 5 linear equations of type C. By linear elimination we can express H and b
in terms of 9− 5 = 4 unknowns x = (x1, x2, x3, x4). We now obtain four equations

det(H)d2
11 = bT adj(H)b, (7.12)

det(H)(d2
12 − d2

11) = ŝ∗T1 adj(H)ŝ∗1 + 2bT adj(H)ŝ∗1, (7.13)
det(H)(d2

13 − d2
11) = ŝ∗T2 adj(H)ŝ∗2 + 2bT adj(H)ŝ∗2, (7.14)

det(H)(d2
14 − d2

11) = ŝ∗T3 adj(H)ŝ∗3 + 2bT adj(H)ŝ∗3. (7.15)

in the four unknowns. Here both H and b depend on x. Using tools from algebraic ge-
ometry it can be shown that the solution set to equations (7.12-7.15) in general consists
of 38 points and a set of dimension 1 (a curve) of false solutions that fulfill det(H) =
0. This is done by running the system of equations in Macaulay2 [38]. To remove
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the one-dimensional curve of false solutions corresponding to z = det(H) = 0, we
employ a saturation technique similar to [93] as follows2. We rewrite the equations
using an additional unknown z and an additional equation det(H) = z, i.e.

zd2
11 = bT adj(H)b, (7.16)

z(d2
12 − d2

11) = ŝ∗T1 adj(H)ŝ∗1 + 2bT adj(H)ŝ∗1, (7.17)
z(d2

13 − d2
11) = ŝ∗T2 adj(H)ŝ∗2 + 2bT adj(H)ŝ∗2, (7.18)

z(d2
14 − d2

11) = ŝ∗T3 adj(H)ŝ∗3 + 2bT adj(H)ŝ∗3, (7.19)
det(H) = z. (7.20)

We then multiply all equations with monomials such that the highest degree of mono-
mials in the expanded set of equations is up to degree 9. By doing this one can con-
struct 966 equations involving 715 monomials which do not contain z and 210 mono-
mials that do contain z. These equations can be represented by a sparse coefficient
matrix M = [M0 Mz] of size 966 × 925, where the coefficients corresponding to
monomials without z are in M0 and those corresponding to monomials with z are in
Mz . After multiplication with QT , where QT = M0 is the QR-factorization of M0,
we obtain

QTM = [T QTMz].

Here the last 336 rows of T is zero and thus the last 336 equations can all be written in
the form of zf(x) = 0. After division with z, we obtain 336 equations of degree 6 in
x. It can be verified using algebraic geometry that the solution set to these equations
consist of 38 points.

We then use these equations for solving for the 38 solutions. To solve the poly-
nomial system, we have used the action matrix method with column-pivoting basis
selection.

Conjecture 1 (Solutions to Four (Six) Receivers and Six (Four) Transmitters)
Given four (six) receivers and six (four) transmitters in general 3D positions, if the
Euclidean distances between each receiver and each transmitter are known, there are
in general 38 solutions.

For each such solution, we then calculate H and b and then generate the solutions
for ri and sj according to (7.2), finding L by e.g. Cholesky factorization of H. L
is thus only determined up to a matrix G where GTG = I , which coincides with
the gauge freedom of rotating and/or mirroring our solution. Some of the solutions
obtained are complex. Some solutions, although real, give invalid matrices H that are
not positive definite which does not have a real decomposition into (LTL)−1. The

2Another technique to remove undesired solutions is called Rabinovich’s trick which introduces one
additional equation detH.z − 1 = 0. In our experiment, it turns out that this technique is extremely
numerically unstable. Thus, we were not able to generate any working solver with this technique.
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number of real and valid solutions varies. Typical values are shown in a histogram, cf.
Figure 7.2 (left).

5 Receivers and 5 Transmitters

The case of 5 receivers and 5 transmitters (5 transmitters and 5 receivers) is interesting.
It is an overdetermined case in the sense that there are 25 measurements and 24 degrees
of freedom in the solutions set. There is thus one constraint that has to be satisfied,
i.e. the constraint that the 4× 4 matrix D̄ has determinant zero. However for all such
data, the problem of determining H and b is minimal. There are m + n − 1 = 9
equations (1 of type A, 4 of type B and 4 of type C) and 9 unknowns. We follow
a similar solution scheme as for the 4r/6s case. By linear elimination using the 4
linear constraints of type C, we can express H and b in terms of 9− 4 = 5 unknowns
x = (x1, x2, x3, x4, x5). The remaining five constraints

det(H)d2
11 = bT adj(H)b (7.21)

det(H)(d2
12 − d2

11) = ŝ∗T1 adj(H)ŝ∗1 + 2bT adj(H)ŝ∗j (7.22)

det(H)(d2
13 − d2

11) = ŝ∗T2 adj(H)ŝ∗2 + 2bT adj(H)ŝ∗j (7.23)

det(H)(d2
14 − d2

11) = ŝ∗T3 adj(H)ŝ∗3 + 2bT adj(H)ŝ∗j (7.24)

det(H)(d2
15 − d2

11) = ŝ∗T4 adj(H)ŝ∗4 + 2bT adj(H)ŝ∗j (7.25)

gives 42 solutions after a saturation procedure similar to the previous case. Specifi-
cally, we first multiply all equations in (7.21-7.25) with all possible monomials in x
such that highest degree of monomials in the resulting equations is x up to degree 8.
This expanded set of 1386 equations involving 1287 monomials which do not contain
z and 252 monomials that do contain z. These equations can be represented by a
sparse coefficient matrix M of size 1386 × 1539. After similar QR-factorization and
multiplication with QT , we obtain 420 equations that can all be written zf(x) = 0.
After division with z, we obtain 420 equations of degree 5 in x. Using algebraic ge-
ometriy, we verify that this solution set to these equations consists of 42 points. With
these equations, we again use the action matrix method with column-pivoting basis
selection to obtain numerically stable solutions.

Conjecture 2 (Solutions to Five (Five) Receivers and Five (Five) Transmitters)
Given five (five) receivers and five (five) transmitters in general 3D positions, if the
Euclidean distances between each receiver and each transmitter are known, there are
in general 42 solutions.

The solver for 2D minimal case (m = 3, n = 3) can be derived in a similar manner.
To summarize, the solvers for the minimal cases for TOA self-calibration problem in
general k-dimensional space consists of (i) a factorization step (ii) a polynomial solver
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Algorithm 7.2.1 Minimal Solvers for TOA Self-Calibration
Given TOA measurements D = {dij} of m receivers and n transmitters (correspond-
ing to a minimal case in k-dimensional space), outputs the receivers positions {ri}
and transmitters positions {sj}.

1. Construct D̄ = {d̄ij} where d̄ij = dij − d1j − di1 + d11.

2. Apply SVD on D̄ = UΓVT , Ŝ∗ = −VT
k /2 and R̂ = (UkΓk)T .

3. Solve for H and b that satisfy (7.9), (7.10) and (7.11).

4. Solve for L by Cholesky factorization on H = (LTL)−1.

5. Reconstructing {ri} and {sj}. r1 = 0, s1 = Lb, s2,...,n = L(ŝ∗ + Lb), and
r2,...,m = L−T r̂.

for the unknown transformation parameterized by H and b. This is summarized in
Algorithm 7.2.13.

7.3 Lower and Higher Dimensions
The ideas presented here are relatively easy to generalize to other dimensions. The
one-dimensional case is trivial. Only one measurement is needed to solve for the
problem. In 2D planar case, the same approach can be used to solve the minimal
problem 3s/3r. The problem has in general 8 solutions. It was solved with a different
approach by Stewénius in [92]. In that approach, the positions of the receivers and
transmitters are recovered by solving for the tri-sonal tensor. The solver is also based
on Gröbner basis and has a elimination template of size 31× 35. In our approach, the
size of our elimination template for saturation is 70× 76, and becomes 18× 20 after
the saturation.

For 4-dimensional space, similar analysis gives constraints m ≥ 5, n ≥ 5,m +
n ≥ 15. Hence we conjecture that there are three minimal cases 5r/10s, 6r/9s, 7r/8s.
Similar to the 5r/5s case in 3D, for cases 6r/9s and 7r/8s, there are additional
nonlinear constraints on the entries in D̄ whose determinant should be zero. In [7],
it is proved formally that 6r/7s which satisfies mn = 4m + 4n − 10, is in fact
an underdetermined case. This is also confirmed with our formulation such that
m + n = 13 < 15. While in practice, all such 4D measurements might be rare, we
believe the analysis here is of theoretical interest regarding hardness of the problem or
limitation of our formulation. All the cases in 4D are much more difficult to solve than

3For k = 3, the two cases are 4r/6s (6r/4s) and 5r/5s. For k = 2, the minimal case is 3r/3s.
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the lower dimensional problems using the same formulation. To this end, we have not
constructed any numerically stable solver for these problems. Nevertheless, we have
the following conjecture on the solutions to the 10r/5s case using algebraic geometry.

Conjecture 3 (Solutions to Five (Ten) Receivers and Ten (Five) Transmitters)
Given five (ten) receivers and ten (five) transmitters in general 4-dimensional space, if
the Euclidean distances between each receiver and each transmitter are known, there
are in general 223 solutions.

7.4 Difference in Dimension
In this section, we study a variant of the TOA self-calibration problem where the di-
mensions of the affine span of the receivers and transmitters are different. This occurs
e.g. in the configurations where the receivers lie on a common plane and the trans-
mitters are located at general 3D positions. Utilizing the same parameterization, we
derive a linear solution to the minimal cases for TOA self-calibration with difference
in dimensions. In the following, we assume that receivers lie in affine space of di-
mension k and transmitters in affine space of dimension k + 1. We parameterize the
positions of receivers and transmitters as ri ∈ Rk+1 and sj ∈ Rk+1 respectively. To
fix the gauge freedom of the problem, we choose the coordinate systems such that
r1 is at the origin and the (k + 1)th coordinate of ri is 0. With this and the type D
equations used in TOA of general dimension:

d̄ij = d2
ij − d2

i1 − d2
1j + d2

11 = −2(ri − r1)T (sj − s1),

we can see that the matrix D̄ = {d̄ij} is at most of rank k as we increase m and
n. Specifically, the zeros at (k + 1)

th coordinates ri’s reduce the rank to the corre-
sponding lower dimension spanned by the receivers. Given at least k+1 receivers and
k + 1 transmitters, we apply the linear factorization to find the projections of ri and
sj onto the lower k dimensional space are retrieved and we denote them as r̂i and ŝj
up to unknown transformation. We can then use the set of linear equations (7.11) in a
similar manner as TOA in general dimension:

d2
i1 − d2

11 = rTi ri − 2rTi s1

= r̂Ti Hr̂i − 2bT r̂i (7.26)

where H ∈ Rk×k is symmetric and positive definite. For the unknown H and b, there
are in total k(k + 1)/2 + k unknowns. Given m = k(k + 1)/2 + k + 1, we obtain
the same number of linear equations as the number of unknowns and we can solve
for H and b linearly. To this end, we can reconstruct the positions of the receivers as
well as the projections of the transmitters onto the k-dimension affine space spanned
by the receivers (up to an Euclidean transformation and mirroring). The remaining
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nonlinear equations in (7.9) and (7.10) can then be utilized to recover the distance of
the transmitters to the projected lower-dimensional space spanned by the receivers. To
summarize, the linear solver requiresm = k(k+1)/2+k+1 receivers and n = k+1
transmitters.

7.4.1 Minimal Problems
To identify the minimal problems of TOA self-calibration with difference in dimen-
sion, we start by counting the degrees of freedom of the problem. For m receivers in
Rk and n transmitters in Rk+1, the degrees of freedom is df = km+ (k+1)n− g(k)
where g(k) = (k + 1)k/2 is the gauge freedom. The necessary condition for a case
to be minimal is that the number of measurement dm = mn is equal to the degrees of
freedom of the problem. We can see that if m = (k + 1)k/2 + 1 and n = k + 1, we
have dm = df for TOA self-calibration with difference in dimension. This shows
that the linear solver in the previous section actually solves the minimal case for
TOA self-calibration with difference in dimension. For instance, if receivers lie on
a plane and transmitters located in general 3D positions (k = 2), the minimal case is
m = 6, n = 3. Note that, in [16], the same minimal case is solved with rank-(k + 1)
factorization in a slightly more complicated manner than the algorithm presented in
this section.

7.4.2 Discussion
We have focused on the cases where the difference in dimensions of the receivers and
the transmitters is 1. For larger difference in dimension, there exist infinite number
of solution to the underlying problems. For instance, if receivers lie on a line and the
transmitters lie on general 3D space, then one can only determine the projection of
the transmitters positions onto the line, and their distances to the line. Therefore, the
solutions to the positions of the transmitters are represented as one-parameter circles.

7.5 Failure Modes
In this section, we discuss the cases where our proposed method will fail in providing
solutions. There are basically two failure modes for noise-free data. The first failure
mode relates to the rank-k constraint on the transformed measurement matrix D̄ in
(7.1). If rank(D̄) < k, then the assumption for factorization is not satisfied. Hence,
our method fails. This corresponds to cases where either the positions of receivers or
the transmitters span a affine space of dimension lower than k. Specifically, for k = 3,
the failures mode corresponds to cases when either the receivers or transmitters lie
on a plane or a line. The method for solving these degenerate cases are discussed in
Section 7.4. The second failure case relates to special configurations of positions of
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the receivers and the transmitters, which could lead to graphs that is not infinitesimal
rigid [7]. Hence, there exist infinitely many solutions to the problems. Specifically, the
bipartite graph is not infinitesimal rigid if transmitters and receivers lie on a quadratic
surface. For instance, in 2D, this corresponds to the 3 transmitters and 3 receivers lie
on a conic.

For noisy data, there exist a failure case that is related to the implicit non-equality
constraint that H must be positive definite. For noise-free data, it is always possible for
our method to recover an H that satisfies the positive definite condition. However, for
noisy data, there can be cases where no solutions for H from the minimal solvers that
are positive definite. Thus, in these cases, our minimal solvers also fail in providing
valid initial solutions. One scheme to resolve this is to formulate an intermediate semi-
definite programming (SDP) step. Specifically, we have the following minimization
problem based on (9)-(12) :

minH,b

(
det(H) ∗ d11 − bTH−1b

)2
+

n∑
j=2

(
det(H)(d2

1j − d2
11)

−ŝ∗Tj adj(H)ŝ∗j + 2bT adj(H)ŝ∗j

)2
,

s.t. H � 0. (7.27)

For this nonlinear optimization, we can use the solutions from our minimal solvers
as initial solutions. This step may be applied when there exists relatively high magni-
tude of noise in the measurements.

7.6 Overdetermined Cases

In this section, we discuss the construction of solvers for overdetermined cases.

7.6.1 General Overdetermined Solvers

The general strategy to solve overdetermined cases is a two-step procedure (i) use
minimal solvers to reconstruct robustly the positions of a subset of receivers and trans-
mitters (ii) calculate the positions of the remaining receivers and transmitters with
trilateration. Assuming that all the measurements are inliers, we use nonlinear opti-
mization (Section 7.6.3) to obtain maximum likelihood estimates. One drawback of
this approach is the accumulation of errors in the trilateration step. In the following,
we study non-iterative solvers for a subset of overdetermined cases that can be very
useful for initialization with outlier-free measurements.
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7.6.2 Specialized Overdetermined Solvers

We study a subset of overdetermined cases that are solvable in a non-iterative manner.
In 3D, these cases are (m = 4, n > 6), (m = 5, n > 5) or (m = 6, n > 4). Here,
we assume that the factorization step has been done as in Algorithm 7.2.1 and present
two methods for solving H and b for these overdetermined cases.

To solve H and b for overdetermined cases, the first scheme is to use all the
linear equations of Type C and choose only a subset of the nonlinear equations of
Type A, B. For instance, for (m = 7, n = 4) case, we can first utilize the 6 linear
equations of Type C. With linear substitution, we are left with only 3 unknowns. There
are still 1 Type A equation and 3 Type B equations. By choosing 3 equations from
the 4 equations, we can solve the resulting system of polynomials. The remaining
equation can be used to choose the solution based on the residues. Note that when
(m > 9, n = 4) or (m = 4, n > 9), the solution can be extracted in one step using
only the Type C linear equations, which corresponds to the solver in [87]. This scheme
can still involve solving polynomial systems and computationally it can be expensive4.

The second method uses all available constraints and solve for H and b linearly.
The general idea is that for noise-free data, there generally exists one unique solution
given the additional constraints in overdetermined cases. For noise-free cases, the
unique solution can be extracted by finding the null space of an expanded coefficient
matrix based on the equations. For noisy measurements in overdetermined systems,
the solution to can be found directly using SVD.

To illustrate the formulation, we start by a simple overdetemined system of equa-
tions with two unknowns x = {x1, x2} and coefficient vector a,b, c

a1x
3
1 + a2x1 + a3x2 + a4 = 0

b1x
2
1 + b2x1x2 + b3x2 + b4 = 0

c1x
2
2 + c2x1 + c3x2 + c4 = 0

It can be written as matrix multiplication form between a coefficient matrix C and a
monomial vector v as follows:

a1 0 0 0 a2 a3 a4
0 b1 0 b2 0 b3 b4
0 0 c1 0 c1 c2 c4


︸ ︷︷ ︸

C



x3
1
x2

1
x2

2
x1x2
x1
x2
1


︸ ︷︷ ︸

v

= 0. (7.28)

4The saturation step as in the minimal cases is needed for cases (m = 6, n = 7) and (m = 5, n = 4).
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One can expand the polynomial system by multiplying the original equations with
monomials formed by the unknowns. We denote the coefficient matrix and the mono-
mial vector after the expansion as Cexp and vexp, respectively. Assuming there are le
equations and lm monomials after expansion i.e. Cexp is a le × lm matrix and v is a
lm × 1 vector. By ignoring the constraints between the monomials in vexp (e.g. for v
in (7.28), v5v6 = x1x2 = v4), we have a linear system Cexpvexp = 0. For noise-free
overdetermined systems, it can be shown that rank(Cexp) < lm. Since there exists
a unique solution to the system, if one choose a proper set of monomials to multiply
with, one will get a Cexp that is of rank-(lm − 1). Therefore, the unique solution can
be found by first computing the row null space of Cexp. Then after normalizing the
solution such that the last entry is 1, one can read off the solutions to x from the nor-
malized solution. For noisy data, the rank-deficiency generally does not preserve and
the solution can be obtained with SVD. In this case, the constraints between mono-
mials in the solutions are also not satisfied. The effects of noise on this approach are
studied in details in the experiment section. With this formulation, the overdetermined
systems is solved linearly. For the TOA self-calibration problem studied here, we first
use max{m,n} − 1 Type C linear equations to reduce the number of unknowns as
much as possible. By using all nonlinear equations of Type A and B for the remaining
unknowns, we can then derive linear solvers for H and b.

7.6.3 Nonlinear Optimization

In the presence of noise, the best parameter estimate is obtained by maximum likeli-
hood estimates based on measurement noise model. The solutions obtained from the
minimal solvers or the over-determined solvers can be used as initial solutions to the
following nonlinear optimization problem:

min
ri,sj

∑
ij

(
dij − ‖ri − sj‖2

)2
,

which minimizes the sum of square deviation between the TOA measurements and the
reconstruction. This minimization problem is solved using standard local optimization
algorithm (Levenberg-Marquardt) and can be easily extended to measurements with
missing data.

7.7 Experiments

In this section, we present extensive experimental results for our proposed solvers on
both synthetic and real data. In particular, we investigate the numerical stability of the
solvers, efficiency of the solvers as well as the sensitivity of the solvers to noise.
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Figure 7.1: Synthetic experiment on 5000 noise-free random 2D TOA problems. Left:
Distribution of the number of real and valid solutions each run produces by our solver,
showing the relative frequency of number of real and valid solutions among the 8
solutions. Right: Performance of [92] (black, dotted line) and our solver (blue, solid
line)
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Figure 7.2: Synthetic experiment on 5000 noise-free random 3D TOA problems. Left:
Distribution of the number of real and valid solutions among the 38 (or 42) solutions.
Right: the error distribution (RMSE) of reconstructed positions of microphone and
sound sources.
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7.7.1 Synthetic Experiments

For synthetic data, we simulate the positions of receivers and transmitters as 2D or 3D
points with independent Gaussian distribution of zero mean and identity covariance
matrix. For noise-free synthetic data, we can see in Figure 7.2 (Right) that both the
4r/6s solver and 5r/5s solver are numerically stable. For 2D solver with 3r/3s, we
also compare our solver with the publicly available solver by Stewénius [92]. We can
see in Figure 7.1 that, our solver is superior in numerical stability both in terms of
average and worst case performance. To investigate sensitivity of the minimal solvers
to noise, we also test 4r/6s and 5r/5s solvers on data under different relative mag-
nitudes of noise and we observe that the solvers gives fairly good solutions under
reasonable level of noise (Figure 7.3, left, solid lines). Using the solutions from the
minimal solvers as initial solutions, we also apply nonlinear optimization step (Fig-
ure 7.3, dash lines). With respect to the failure cases, the two 3D solvers encounter
relatively high count of failures when the noise level reaches 10−3. Specifically,
for different noise magnitudes at {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}, the failure
percentages are approximately {0.4%, 0.8%, 2%, 5%, 20%, 60%}. We also test the
solvers on over-determined cases with fixed noise level, m = 10 and varying n (Fig-
ure 7.3, right). Both minimal solvers give fairly good initial solutions. We can see
that as n increases, the reconstruction errors after nonlinear optimization also become
smaller.

As for the linear solvers based on SVD for slightly overdetermined cases, we also
run these solvers on both noise-free and noisy data. We can see that (Figure 7.4) the
linear solvers for 4r/ns (n>6) are fairly stable numerically. In our experiments, the
solvers for 5r/ns (n>5) perform similarly. With respect to varying noise levels, the
linear solvers show similar behaviors to the minimal cases with 5r/ns solvers perform
slightly better than 4r/ns solvers as showed in Figure 7.5.

Regarding the speed of the minimal solvers, the current implementation in Matlab
takes on average 800ms, 300ms and 8ms for the 4r/6s, 5r/5s and 3r/3s solvers,
respectively, on a Macbook Air with 1.8 GHz Intel Core i5 and 8 GB memory. The
most expensive part of the computation is the saturation step which involves a QR-
factorization for a relative large matrix. One may replace the QR-factorization with
other elimination methods e.g. LU-factorization. In our experiments, QR-factorization
gives the best numerical stability with a tradeoff of slightly slower performance. The
computation time can be improved by using efficient C implementation or utilizing
schemes of optimizing polynomial solvers (e.g. [55]). For overdetermined solvers, the
linear solvers run approximately 5ms since only a SVD on small coefficient matrices
are performed.
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Figure 7.5: Performance of overdetermined linear solvers on 3D synthetic TOA data
under varying noise magnitudes.

7.7.2 Real Experiments

For real experiments, we have first verify the solvers in a publicly available dataset
[30]. In the dataset [30], the distances between the 8 microphones and 21 sounds are
estimated based on the time-of-arrival measurements. The first microphone is assumed
to be at the same location as first sound. For our formulation, no such assumption is
needed. To verify this, we simply remove the distance measurements corresponding
to the first microphone and first sound, which gives us a 7 × 20 matrix. For this re-
duced set of measurements, the root mean square errors (RMSE) of our reconstructed
positions of microphones and sound sources after nonlinear iterative optimization are
0.0083m and 0.0108m, respectively. This is similar to the accuracy [30] achieves
(0.0091m for microphones and 0.0111m for sound sources) with the additional as-
sumption. For the full set of data (8 microphones and 21 sounds), our solvers also
gives similar errors as in [30].

Another set of real data was obtained using seven T-bone MM-1 microphones
and five Roxcore portable speakers, connected to a Fast Track Ultra 8R sound card
in an indoor environment, with speakers and microphones placed in an approximate
1.5 × 1.5 × 1.5 m3 volume (Figure 7.6, Left). TOA measurements were obtained
by heuristically matching sounds from different speakers to sound flanks recorded
from different microphones. To convert TOA measurements to distances, we assume
the speed of sound during our measurement condition is 343 m/s. For this set of
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Figure 7.6: Real microphone and speaker calibration setup. Left: the setup of micro-
phones and speakers in an office, Right: the reconstructed microphone positions using
TOA measurements (red) aligned with the positions estimated based on computer vi-
sion (blue).

measurements, we also reconstructed the positions of the microphones using computer
vision based algorithms as ground truth. The reconstruction based on sound (Figure
7.6, Right) when compared to the vision-based reconstruction has RMSE 0.0088m
and 0.0131m for microphones and speakers respectively.

7.8 Conclusions
In this chapter, we completely characterize the TOA self-calibration problem. We first
solve the minimal problems and identify the failure modes for receivers and trans-
mitters with k-dimensional affine span. We have also studied a linear technique for
solving over-determined cases. For the degenerate cases where there exists difference
in the dimensions of receivers and transmitters, we derive a linear solver that recon-
struct the projections of the sensor positions onto the lower-dimensional affine space.
The theoretical results as well as practical algorithms described in this chapter should
serve as a building block for solving robustly large-scale TOA sensor network calibra-
tion problem. On the other hand, as we will see in the next Chapter that the solution
to the TOA self-calibration problem is also essential to understanding and solving the
TDOA self-calibration problem.
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Chapter 8

TDOA Self-Calibration

This chapter studies the problem of sensor network self-calibration from time-difference-
of-arrival (TDOA) measurements. To solve this problem, a stratified approach is to
first recover the unknown offsets and then solve the remaining TOA calibration prob-
lem. In this chapter, we focus on solving the unknown offsets and the methods dis-
cussed in Chapter 7 are used to solve the TOA self-calibration problem. Based on the
rank constraints of the measurement matrix, we present two methods to estimate the
unknown time offsets (i) a non-iterative algorithm that uses a set of rank constraints
(ii) an iterative method suitable for overdetermined cases that seeks for minimal rank
of the compacted matrix over the unknown offsets.

8.1 Background

Self-calibration of bipartite sensor networks using TDOA measurements is a nonlinear
optimization problem, for which proper initialization is essential. The minimal prob-
lems for the complete 2D TDOA self-calibration have been studied in [92]. Given the
difficulty of TDOA self-calibration problem, there is no existing non-iterative method
to find all the solutions to the minimal problems in general affine space even for 2D
cases. Several efforts to find all solution in a non-iterative manner has been made. A
non-iterative linear solver based on matrix factorization was studied in [87], where so-
lutions were given to non-minimal cases (e.g. 10 receivers, 5 transmitters in 3D). For
2D TDOA calibration, a recursive search algorithm was proposed in [98]. In [2], the
minimal problems where all receivers lie on a line are solved for both TOA and TDOA.
On the other hand, extensive works have been done on iterative methods. For instance,
in [37], the rank constraint was explored and the unknown offsets are solved itera-
tively as a nonlinear alternating optimization with rank constraint enforced. In [81],
an iterative method based on auxiliary functions is proposed to solve the full TDOA
self-calibration problem.
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8.2 Minimal Cases for Unknown Offsets
To recall, the TDOA self-calibration problem for bipartite networks is defined as

Problem 8.2.1 (TDOA Bipartite Network Calibration) Given relative distance mea-
surements fij , determine receiver positions ri , i = 1, . . . ,m, transmitter positions sj ,
j = 1, . . . , n and offsets oj , j = 1, . . . , n such that fij = ‖ri − sj‖2 + oj .

In this section, we study two schemes to estimate the offsets {oj} based on the
intrinsic rank constraints on the TDOA measurement matrix. With a slightly looser
rank constraint, we first derive a linear factorization scheme to estimate the unknown
offsets. By tightening the rank constraints, we arrive at several minimal problems for
determine unknown offsets. In the following, we assume that both the m receivers ri
and n transmitters sj lie in general affine space of dimension k. Note that if the offsets
{oj} are known or recovered, the TDOA self-calibration problem can be converted to
a TOA self-calibration problem i.e. dij = fij − oj = ‖ri − sj‖2.

8.2.1 Rank-(k + 1) Constraint
In this section, we present a linear solver that utilizes rank-(k + 1) constraints of the
TDOA measurement matrix. To illustrate this, we first rewrite the constraints into
matrix form. From the basic measurement equation, we know that

(fij − oj)2 = (ri − sj)
T (ri − sj) = rTi ri − 2rTi sj + sTj sj .

And we have
fij − 2o2ij = rTi ri − 2rTi sj + (sTj sj − o2j ).

By constructing
r̂i =

[
1 rTi rTi ri

]T
and

ŝj =
[
sTj sj − o2j −2sTj 1

]T
,

we obtain
f2
ij − 2fijoj = r̂Ti ŝj .

By collecting r̂i and ŝj into matrix R ∈ R̂(k+2)×m and Ŝ ∈ R(k+2)×n, we have
F̂ = R̂T Ŝ, where F̂ ∈ Rm×n with entries {f2

ij − 2fijoj}. This suggests that matrix
F̂ is at most of rank k+ 2 as we increase m and n. This is the rank-(k+ 2) constraint
used in [87]. Based on this constraint, in 3D, a linear solver requiring at least 10
receivers and 5 transmitters was derived.

We show that one can further reduce the rank-constraint to k + 1 and reduce the
required number of receivers by 1. The idea is to exploit the structure of Ŝ - ones
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in the last row. By multiplying F̂ from the right by a matrix Cn ∈ Rn×(n−1) of the
form [−1n−1 In−1]

T where 1n−1 ∈ R(n−1)×1 is a vector with all 1’s and In−1 is the
(n− 1)× (n− 1) identity matrix. This operation subtracts the first column from each
column of Ŝ and results in a matrix with all zeros at the last row. Equivalently, this
gives F̃ = F̂Cn = R̃T S̃, where F̃ ∈ Rm×(n−1) with

f̃ij = f2
i,j+1 − f2

i1 − 2fi,j+1oj+1 + 2fi1o1

and
r̃i =

[
1 rTi

]T
,

s̃j =
[
sTj+1sj+1 − o2j+1 − (sT1 s1 − o21) −2(sj+1 − s1)T

]T
.

We can see that the columns of both R̃ and S̃ are in Rk+1. This effectively gives
a constraint that the matrix F̃ is at most of rank k + 1. Let A ∈ Rm×(n−1) with
aij = f2

i,j+1 − f2
i1, B ∈ Rm×(n−1) with bij = −2fi,j+1, c ∈ Rm×1 with ci = 2fi1

and e = [o1, . . . , o1]T ∈ R(n−1)×1 and T ∈ R(n−1)×(n−1) is a diagonal matrix with
{oj}j≥2 as diagonal entries. We have

F̃ = R̃T S̃ =
[
A B c

] In−1
T
eT

 . (8.1)

Given that the first column of R̃T are all ones, there exist (k+1) columns of F̃ whose
linear combination forms a column of ones. If we choose m = 2k + 3 (

[
A B c

]
is of full rank) and n = k + 2 (F̃ is of rank k + 1), we can find a unique solution for
u to the following linear system

F̃w =
[
A B c

] In−1
T
eT

w

︸ ︷︷ ︸
u

=
[
A B c

]
u = 12k+3 . (8.2)

Then we can recover the offsets {oj} from u as o1 =
u2k+3∑k+1
j=1 uj

and oj =
u
j+k

uj−1
for

j = 2, ..., k + 2. Specifically, we need at least 9 receivers and 5 transmitter in 3D
(k = 3) and at least 7 receivers and 4 transmitters in 2D (k = 2) to solve for the
unknown offsets.

8.2.2 Rank-k Constraint
In this section, we further exploit the tighter rank-k constraints. This is done by
utilizing the similar structure in R̃. By multiplying F̃ from the left with Cm =
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m \ n 4 5 6 7 8 9

5 - - - - - I
6 - - I - III -
7 - I III - - -
8 - - - - - -
9 - III - - - -
10 I II - - - -

m \ n 3 4 5 6

4 - - I -
5 - - - III
6 I - - -
7 - III - -
8 - II - -
9 - - - -

Table 8.1: Cases for TDOA problem for 3D (left) and 2D (right). (I) minimal cases,
(II) solvable cases for [87] and (III) solvable cases based on methods in this chapter.

[−1m−1 Im−1]
T , we have correspondingly F̄ = CT

mF̂Cn = (R̂Cm)T (ŜCn). Here
F̄ ∈ R(m−1)×(n−1) and the entries f̄ij of F̄ can be expressed with respect to the
unknown {oj} as

f̄ij = gij − g0j − gi0 + g00 (8.3)

where gij = f2
i+1,j+1 − 2fi+1,j+1oj+1. Given that the first row of R̂Cm and the

last row of ŜCn are all zeros, we have equivalently F̄ = R̄T S̄, where the columns
of R̄ ∈ Rk×(m−1) and S̄ ∈ Rk×(n−1) are r̄i = ri+1 − r1 and s̄j = sj+1 − s1,
respectively. It is clear that the matrix F̄ is at most of rank k. Therefore, given that
each entry of F̄ is a function of the unknown offsets {o1, . . . , on}, we can solve for
the offsets by enforcing these rank constraints on the sub-matrices of F̄. Specifically,
all (k + 1) × (k + 1) sub-matrices of F̄ (if there exist any) will be rank-deficient
and have rank k. This gives equivalently constraints on the determinants of the set of
(k + 1)× (k + 1) sub-matrices Λk+1 :

det Q = 0, ∀Q ∈ Λk+1. (8.4)

For a (m − 1) × (n − 1) matrix F̄ of rank k, there exist Nc = |Λk+1| =(
m− 1
k + 1

)(
n− 1
k + 1

)
constraints among which (m − 1 − k)(n − 1 − k) constraints

are linearly independent. Each constraint is a polynomial equation of degree k + 1 in
{o1, . . . , on}. For different choices of m and n, this system of polynomial equations
can either be well-defined, overdetermined or underdetermined. To resolve this, we
rely on algebraic geometry tools and make use of Macaulay2 [39]. It turns out that
there are several choices for m and n that produce well-defined and solvable polyno-
mial systems. We summarize those cases and the number of solutions of the related
polynomial systems for k = 3 and k = 2 in Table 8.1. In the following discussions,
we denote the case withm receivers and n transmitters asmr/ns. Given these solvable
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k Rank m n Nsol

3 5 10 5 1
3 4 9 5 1
3 3 7 6 5
3 3 6 8 14

2 4 8 4 1
2 3 7 4 1
2 2 5 6 5

Table 8.2: Number of solutions to the polynomial systems given by constraints on
unknown offsets for different cases (3D and 2D).

cases, we have developed numerically stable polynomial solvers for the unknown off-
sets. Note that we can verify the number of solutions and sufficiency for rank-(k+ 2)
and rank-(k + 1) constraints in a similar manner. For those cases, the algebraic tools
indicate that all those cases have only 1 solution. For example, the two cases with
only 1 solution: 9r/5s in 3D and 7r/4s in 2D correspond to the linearly solvable cases
discussed in Section 8.2.1.

8.2.3 Discussions

One could say that we are using necessary rank constraint on the calibrated matrix D
with entries d2

ij = (fij − oj)
2 to determine the offsets. Notice, however, the rank

constraint is necessary, but not sufficient condition on D coming from TOA measure-
ments. For instance, although 7r/6s is a minimal case for determining the offsets
from the rank(CT

mF̂Cn) = 3, the remaining TOA problem after we compensate for
the offsets is actually overdetermined, where the minimal problems for TOA is 4r/6s,
6r/4s and 5r/5s (Chapter 7). From Table 8.1, it can be seen that the solvers based on
tighter constraints in this chapter yield cases that are closer to the minimal cases for
the TDOA self-calibration problem.

8.3 Rank Optimization
In this section, we study an iterative method for determining the unknown offsets. This
method is suitable for overdetermined cases as well as measurements with missing
data. The idea is to utilize the rank-k constraint on the measurement matrix and to
formulate a rank-constrained optimization problem with respect to unknown offsets.

To start with, we know from Section 8.2 that the modified measurement matrix F̄
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is of rank k. When we have an overdetermined case, we can formulate the following
optimization problem for finding the unknown offsets o = {oj}

mino,X ‖X‖∗,

s.t. B0 +

n∑
j=1

ojBj = X. (8.5)

Here ‖.‖∗ is the nuclear norm of a matrix X defined as ‖X‖∗ =
∑min(m,n)
i=1 σi,

where σi is the ith singular value of a matrix X in Rm×n. B0, . . . ,Bn are con-
stant matrices in R(m−1)×(n−1) derived from (8.3). Specifically, B0 = CT

mF̂Cn,
B1 = [b1, . . . ,b1] and Bj (j ≥ 2) is a matrix with (n− 2) columns of zeros and the
(j − 1)

th column is –bj where bj = [2(f2j − f1j) . . . 2(fm,1 − f1j)]T .
Due to the existence of noise in real measurements, we relax the strict equality

constraints on the measurements as

min
o,X
‖X‖∗ +

µ

2
‖B0 +

n∑
j=1

ojBj −X‖2F , (8.6)

where µ is some positive constant scalar parameter and ‖.‖F is the Frobenius norm.
When minimizing the nuclear norm of X, instead of getting a low rank approxima-
tion of X, one might minimize the singular values evenly1. To avoid this, we ap-
ply the same strategy in [102] called truncated nuclear norm, where the sum of the
(min{m,n} − k) smallest singular values is minimized. To achieve this, the mini-
mization problem in (8.6) is modified as

min
o,X,U,V

‖X‖∗ − Tr(UXVT )

+
µ

2
‖B0 +

n∑
j=1

ojBj −X‖2F . (8.7)

where U ∈ Rk×m, V ∈ Rk×n, and UUT = Ik and VVT = Ik. It was shown
in [102] that adding the term −Tr(UXVT ) in the minimization is equivalent to min-
imizing the truncated nuclear norm. Now (8.7) is a non-convex optimization problem
and an optimization scheme for obtaining local minima is presented in the next sec-
tion.

8.3.1 Optimization Scheme
In the section, we discuss the optimization scheme for the proposed problems. We use
a two-step iterative scheme as in [102]. In Step 1, we fix o, X and solve for U and

1This is indeed what happens for this problem in our initial implementation without the term
−Tr(UXVT ))
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V as an outer loop and in Step 2, with U,V fixed, we optimize over o,X iteratively
in an inner loop until X converges. The first step is relatively simple (as shown in
Algorithm 8.3.1) and we will discuss in details the optimization in Step 2.

Algorithm 8.3.1 Nuclear Norm Regularization for TDOA Unknown Offsets
Input: TDOA measurements {fij} of m receivers and n transmitters, threshold ε :
Output: The offsets o = {o1, . . . , on}.
Initialize: Construct {Bj}, j = 0, . . . , n based on (8.3), set o = 0, X1 = X̂1 =

Y = F̂
Repeat at iteration k:

1. Solve for Uk and Vk given Xk .

(a) (Ak,Σk,Ck) = svd(Xk)
where Ak = (a1, . . . ,am−1) ∈ R(m−1)×(m−1) and Ck =
(c1, . . . , cn−1) ∈ R(n−1)×(n−1)

(b) Uk = (a1,a2,a3)T , Vk = (c1, c2, c3)T

2. Solve {Xk+1,ok+1} = arg mino,X ‖X‖∗ − Tr(UkXVT
k ) + µ

2 ‖B0 +∑n
j=1 ojBj −X‖2F

Until:
√
‖Xk+1 −Xk‖2F + ‖ok+1 − ok‖2F < ε

Optimization using ADMM

To optimize w.r.t X,o with U,V fixed in Step 2, we use the alternating direction
methods of multipliers (ADMM) [8]. First, by introducing a new variable X̂, we
rewrite (8.6) as

mino,X,X̂ ‖X‖∗ − Tr(UX̂VT )

+
µ

2
‖B0 +

n∑
j=1

ojBj − X̂‖2F ,

s.t. X = X̂. (8.8)
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We can see that the augmented Lagrange function of (8.8) is as follows

L(o,X, X̂,Y) = ‖X‖∗ − Tr(UX̂VT )

+
µ

2
‖B0 +

n∑
j=1

ojBj − X̂‖2F +
λ

2
‖X− X̂‖2F

+ Tr
(

(YT (X− X̂)
)
, (8.9)

where λ is a positive scalar. With the schemes in ADMM, we alternate the optimiza-
tion on a subset set of variables by fixing the rest of the variables. Specifically, starting
with initial values that o1 = 0, X1 = X̂1 = Y = F̂, we have the following three
iterative steps for iteration k + 1:

Computing Xk+1: Given ok, X̂k, and Yk, we minimize L(ok,X, X̂k,Yk, λ)
over X,

Xk+1 = argminX

(
‖X‖∗ − Tr(UX̂kV

T )

+
µ

2
‖B0 +

n∑
j=1

ojkBj − X̂k‖2F +
λ

2
‖X− X̂k‖2F

+ Tr
(
YT
k (X− X̂k)

))
, (8.10)

which is equivalent to the following by ignoring the constants

Xk+1 = arg minX

(
‖X‖∗ +

λ

2
‖X− (X̂k −

1
λ

Yk)‖2F
)
. (8.11)

This can be solved via Singular Value Thresholding theorem [23].
Computing ok+1, X̂k+1 : Fix Xk+1 and Yk, we can calculate ok+1 and X̂k+1 as

follows:

{ok+1, X̂k+1} = arg mino,X̂

(µ
2
‖B0 +

n∑
j=1

ojBj − X̂‖2F

+
λ

2
‖Xk+1 − (X̂− 1

λ
Yk)‖2F

)
, (8.12)

which is sum of two quadratic functions and can be solved by finding {o, X̂} such
that ∂L(o,Xk+1, X̂,Yk) = 0.

Computing Yk+1 : Y can be updated as

Yk+1 = Yk + λ(Xk+1 − X̂k+1). (8.13)

We iterate the steps described above in an inner loop until X converges. Then we feed
the updated X to the outer loop as in Step 1 of the algorithm to update U, V. The

outer loop runs until
√
‖Xl+1 −Xl‖2F + ‖ol+1 − ol‖2F < ε or a maximum number

of iterations is reached.
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Missing Data The previous iterative steps can be easily modified for TDOA mea-
surements with missing data. In this case, we only need to replace the term in the
above ‖B0 +

∑n
j=1 ojBj − X̂‖2F by ‖B0 +

∑n
j=1 ojBj − X̂‖2F,Ω, where Ω is set of

measurements that have been observed2. This modification will only change slightly
the iterative updating step for ok+1, X̂k+1 and the other steps remain the same.

8.4 Solving TDOA Self-Calibration
We can combine the steps for unknown offsets and the TOA problem to solve the full
TDOA problem. To this end, we have devised a set of close-to-minimal solvers as
well as an iterative method to solve for unknown offsets TDOA self-calibration prob-
lem. For overdetermined measurements, we can apply similar strategy as incremental
structure from motion in computer vision. One starts by choosing m∗ receivers that
have largest number of correspondences from n∗ transmitters and solves for the off-
sets. Then the offsets of remaining transmitters can then be solved incrementally with
least square followed by also a nonlinear optimization to refine the solution. We can
then recover the positions of the chosen receivers and transmitters. The positions of
remaining receivers and transmitters are calculated by trilateration e.g. [24]. In the
presence of outliers, our proposed solvers can be utilized for robust fitting technique
e.g. RANSAC. The parameters obtained can then be used as initial estimates to local
optimization of the nonlinear least squares

min
ri,sj ,oj

∑
ij

(
fij − (‖ri − sj‖2 + oj)

)2
using standard techniques (Levenberg-Marquart) in order to obtain the maximal like-
lihood estimate of the parameters.

8.5 Experiments

8.5.1 Synthetic Data
In this section, we study the numerical behaviors of the TDOA solvers on synthetic
data. We simulate the positions of receivers and transmitters as 3D points with in-
dependent Gaussian distribution of zero mean and identity covariance matrix. We
generate the offsets randomly with independent Gaussian distribution with zero mean
and standard deviation 10. We study the effects of zero-mean Gaussian noise on the
solvers, where we vary the standard deviation of the Gaussian noise added to the

2Here we can assume that there is one receiver that has complement measurements of the n transmitters,
and one transmitter that is measured by all m receivers.
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Figure 8.1: Numerical stability of different solvers on 500 noise-free synthetic exam-
ples. Errors compared to ground truth are shown (left) Offsets (right) Positions of the
sensors.

TDOA measurements. When solving TOA problem, we have used the methods pre-
sented in the Chapter 7. To compare the reconstructed positions of receivers and
transmitters with the true positions, we rotate and translate the coordinate system and
register the solutions with the ground truth positions, accordingly.

Minimal Solvers

We first study the numerical stability of the solvers on noise-free synthetic data. From
Figure 8.1, we can see that both linear solvers 10r/5s and 9r/5s perform very well in
terms stability. The solvers 7r/6s and 6r/8s are stable enough but are not as good as
the linear ones. This is mainly due to the high degree and large number of unknowns
in the corresponding polynomial systems.

We then study the effects of zero-mean Gaussian noise on the solvers. In this
experiment, we vary the standard deviation of the Gaussian noise added to the TDOA
measurements. We can see from Figure 8.2 that, our proposed solvers for 3D space i.e.
9r/5s, 7r/6s and 6r/8s give numerically similar results as the 10r/5s case in [87]
for both minimal settings and overdetermined cases (m = 20, n = 20). Specifically,
we also observe that for noise level lower then 10−3, the errors of the estimated offsets
and positions are approximately the same scale as the noise level. As the noise level
increases, the errors of the initial estimates from the all the solvers are slightly larger.

Rank Optimization

First of all, we study the convergence of the algorithm for noise free cases. For well-
constrained over-determined cases, we can see that in Figure 8.3 (left) that the ADMM
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Figure 8.2: Synthetic experiments for TDOA solvers on 3D under Gaussian noise.
The errors of estimated time offsets (left) and reconstructed positions of microphones
and sounds (right) are shown. (Top) Performance of different solvers (10r/5s [87],
9r/5s, 7r/6s and 6r/8s) with their corresponding minimal settings for solving offsets;
(Bottom) with 20 receivers and 20 microphones.
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Figure 8.3: Synthetic TDOA measurements with no noise ( m = n = 50). Left:
Singular values of the matrix X after optimization; Right : Speed of convergence
(‖o− ogt‖F ) for the ADMM algorithm (µ = 10, λ = 1, ε = 10−12).

algorithm converges to a rank-3 matrix X and the ground truth offsets ogt in a few
outer iterations.

To further understand the effects of increasing number of measurements, we run
the algorithm on noise-free data for different fixed number of receivers m and varying
number of transmitters n. For this experiment, we set ε = 10−12 and the maximum
number of iterations to 5000. We observe that in Figure 8.4 (left) for small m e.g.
m = 5, the method does not converge to a reliable initial solution for the offsets. This
can be related to results for minimal cases for offsets in 3D (see Table 8.1) where at
least 6 receivers are needed to recover the unknown offsets. For larger m’s (m ≥ 6),
we can see that the relative errors of recovered offsets decrease as we have more
transmitters, suggesting the benefits of increasing number of measurements. Due to
the fact that the function we are optimizing are non-convex, over-constrained case
with more measurements might reduce the number of local minima, thus gives better
convergence behavior for random initialization. It is also noted that for a fixed m,
when n is larger than 20, the convergence of the method does not change much.

We also test the method under different levels of noise with increasing number of
measurements. We see that in Figure 8.4 (right) the errors of the recovered offsets
decrease as the number of measurement increases. Up to certain number of measure-
ments, we see that the method does not give better performance e.g. m = n = 30
gives similar errors as m = n = 100. It is also observed that when the noise level
reaches standard deviation of 10−1, the method performs poorly no matter how much
the number of measurements increases.

While the previous experiments assume that measurements are complete, it would
be of interest to see how the algorithm performs with missing data. In this experiment,
we run the algorithm on noise-free synthetic TDOA examples where we randomly
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Figure 8.4: Synthetic experiments - average errors ‖o− ogt‖F/‖ogt‖F on 100 ran-
dom synthetic TDOA measurements. Left: Noise-free data - varying n for different
fixed m; Right: Noisy data - varying m and n for different levels of noise
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Figure 8.5: Synthetic TDOA measurements with varying percentage of missing data.
Left : noisy-free data for different m and n; Right : noisy data with Gaussian noise of
standard deviation 10−2.
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remove certain percentage of entries in the measurements. We vary the percentage
of the missing entries in the measurement matrix, we can see that in Figure 8.5 for
relatively large m and n, the algorithm only breaks down when more than 50% of the
measurements are missing (m = n = 30). For smaller m and n (m = n = 10), the
method fails to provide good estimate when there are more than 20% missing entries.
For noisy measurements with missing data, with noise level as 10−2, which is typical
in practice, for m = n = 20, the algorithm works well until there are more than 30%
missing data (Figure8.5, right). For cases that have more constraints i.e. m = n = 30,
the algorithm is more robust to increasing number of missing entries (up to 50%) and
it gives fairly good initial guess of the offsets even under noise.

8.5.2 Real Data

To collect real TDOA data, we work with sound signals and microphones. We placed
8 synchronized microphones (Shure SV100) recorded at 44.1kHz in an office. They
are approximately 0.3-1.5 meters away from each other and placed in a non-planar
fashion. We connected them to an audio interface (M-Audio Fast Track Ultra 8R),
which was connected to a computer. We generated sounds by moving around in the
room and clapping approximately 1-2 meters from the microphones. We collected
5 independent recordings of approximately 20s. Each recording contains roughly 30
claps (transmitters).

To obtain TDOA measurements, we coarsely matched sounds of the claps to sound
flanks (edges between periods with low energy and periods with high energy) recorded
from different microphones. For the experiment, we used only those claps that were
detected in all 8 channels. We run both the 7r/6s and 6r/8s solvers to determine the
offsets followed by an alternating optimization as in [87] that refines the offset estima-
tion. After calibrating the TDOA measurements with the unknown offsets, we recover
an initial euclidean reconstruction for the locations of microphones and claps using the
TOA solvers described in the last Chapter. Finally we refine the reconstruction with
nonlinear optimization. The result of one of these 5 reconstructions are shown in Fig-
ure 8.6 (middle). The reconstructed microphone positions from these 5 independent
multi-channel recordings were put in a common coordinate system and compared to
each other. The average distance from each microphone to its corresponding mean po-
sition (estimated from corresponding reconstruction of the 5 recordings) is 2.60 cm.
It is important to point out that without proper initialization using our methods, the
solutions we get converge poorly (with large reconstruction errors). Previous solvers
do not work here due to either insufficient number of receivers (10 receivers needed
in [87]) or violating the assumption that one of the microphones collocates with one
of the claps [31] .

As an additional evaluation, we have also reconstructed the locations of the micro-
phones based on computer vision techniques. We took 11 images of the experimental
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Figure 8.6: Results on TDOA with microphones and sounds. Left : Reconstruction
of microphone (8, red - ’o’) and sound (21, blue - ’�’) positions for one the 5 record-
ings; Right : Reconstructed microphone positions estimated from 5 different tracks
of TDOA measurements and the corresponding reconstruction from computer vision
(black - ’+’)

setup. Figure 8.6 (left) shows one of the 11 images used. We manually detected the
8 microphone center positions in these 11 images and used standard structure from
motion algorithms to estimate the positions of the 8 microphones. The resulting re-
construction is also compared to that of the five structure-from-sound reconstructions.
The comparison is shown in Figure 8.6 (right). We can see the TDOA-based recon-
structions are consistent with the vision-based reconstruction.

8.6 Conclusions
In this chapter we have studied the sensor network self-calibration problem in the
time-difference-of-arrival (TDOA) setting, where only relative distances between the
transmitters and receivers are given. To solve for the unknown time offsets, we uti-
lize the rank constraints on the measurements. We have derived several non-iterative
solvers that require minimal information on the measurements. We also have studied
an iterative scheme with nuclear norm regularizer.

There are several interesting avenues of future research. Although, the presented
non-iterative solvers improve on the state-of-the-art, the minimal cases for bipartite
TDOA self-calibration have not been solved. It would be interesting to solve these
cases, to study the failure modes, both generic failure modes (or critical configura-
tions) for the generic problem, and also if there are additional failure modes of the
presented algorithms. For the iterative method, it is of interest to improve the ro-
bustness by using L1-norm ‖B0 +

∑n
j=1 ojkBj − X̂k‖1 in the cost function. An

extension to optimization for UTOA problems will also enable wider application of
the scheme.
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Chapter 9

Far-Field TDOA

This chapter presents a study of the far-field approximation to sensor network self-
calibration from TDOA measurements. The problem can be present in many applica-
tions e.g. calibration of microphone, WiFi-transmitter arrays and cellular base stations.
In the far-field approximation, we assume that the relative motion of the receiver or
the inter-distances between different receivers are small in comparison to their dis-
tances to the transmitters. In far-field setup, we aim to reconstruct the positions or
motions of the receivers and the directions from the transmitters to the receivers. We
derive a linear method to solve the minimal problems in general dimensions and study
the failure modes for the algorithms. For overdetermined cases, the linear method is
also applicable to provide an initial solution to the refinement step using nonlinear
optimization.

9.1 Far-Field TDOA Self-Calibration

We consider the far-field setup that the receivers are moving or placed in a small area,
and the transmitters are far away from the receivers. A moving receiver can be seen
as virtual receivers at varying positions. In the following discussion, we make no
difference between real and virtual receivers or transmitters. To model this formally,
we assume that two receivers at positions r0 and r, and a transmitter at location s. We
assume that both the receivers and transmitters have affine span of dimension k i.e.
r ∈ Rk and s ∈ Rk. For far-field setup, we have the distances ‖r0 − s‖2 � ‖r− r0‖2
and ‖r− s‖2 � ‖r− r0‖2. If we assume that the direction n from s to the two
receivers is parallel (see also Section 2.2.1), we have the following approximation for
the distance between r and s

d = ‖r− s‖2
≈ ‖r0 − s‖2 + (r− r0)Tnj

= rTn + (‖r0 − s‖2 − rT0 n)︸ ︷︷ ︸
ô

(9.1)
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Here n is the direction vector with unit length. For TDOA measurements, we have

f = ‖r− s‖2 + õ,

where õ is the unknown offset related to unknown clock of the transmitter. By setting
o = õ+ ô, one obtains the far-field approximation for TDOA measurements

f ≈ rTn + o.

Note that the offset o is only related to the transmitter and the reference position r0.
To put it more formally, the far-field TDOA (FFTDOA) problem that arises from this
approximate relative distance measurement is the following

Problem 9.1.1 Given measurements fij , i = 1, . . . ,m and j = 1, . . . , n from the
receiver at m different positions to n transmitters, determine both the positions ri of
the receivers and the directions nj from the transmitters so that for each (i, j) pair:

fij = rTi nj + oj (9.2)
s.t. ‖nj‖2 = 1

where oj is a constant distance offset for transmitter i.

From the formulation above, we can see that unknowns offsets exist for both
FFTOA and FFTDOA problems, thus the TOA and TDOA problems are equivalent
in far-field setting. In the following, we will focus on the discussions in terms of
FFTDOA.

Lemma 9.1. A problem with m measurements to n transmitters with unknown offset
oj can without loss of generality be converted to a problem with m− 1 measurements
to n transmitters with known offset.

Proof. Because of the unknown constant oj , the problem does not change in character
by modification f̄ij = fi+1,j−cj where cj is an arbitrary constant. If we set cj = f1,j ,
then

f̄ij = fi+1,j − f1,j
= (ri+1 − r1)Tnj

By also setting r1 = 0 which is equivalent to choosing the first receiver’s position
r1 to be at the origin to fix the gauge freedom of the unknown coordinate system,
we get f̄ij = rTi+1nj . This is essentially a problem with known offsets for m − 1
receivers.

For the original problem, this is equivalent to setting oj = f1j . For simplicity we
will in the sequel assume that oj = 0 and assume that the measurements of one of
receivers has already been used to resolve the ambiguity. With the modified measure-
ment f̄ij = fi+1,j − f1,j , we have
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Problem 9.1.2 Given measurements f̄ij , i = 1, . . . ,m and j = 1, . . . , n from the
receiver at m different positions to n transmitters, determine both the positions ri of
the receiver during the relative motion and the direction from the transmitters nj so
that

f̄i,j = rTi nj (9.3)
s.t. ‖nj‖2 = 1

Lemma 9.2. The matrix F̄ ∈ Rm×n with elements f̄ij is of rank at most k.

Proof. The measurement equations are f̄i,j = rTi nj . By setting

R =
[
r1 r2 . . . rm

]
and

N =
[
n1 n2 . . . nn

]
we see that F̄ = RTN where R ∈ Rk×m and N ∈ Rk×n. Both R and N have at
most rank k, therefore the same holds for F̄.

In the following, we focus on the 3D problems (k = 3). The algorithm as well
as the theory can be generalized to 2D. Assuming that m and n are large enough and
assuming that the motion ri and the directions to transmitters nj are in general enough
constellation, the matrix F̄ will have rank 3. In that case, it is possible to reconstruct
both R and N up to an unknown transformation. This can be done using singular
value decomposition, F̄ = UΣVT . By setting e.g. R̃ = UT

3 and Ñ = S3V
T
3 , we get

all possible solutions by and R = R̃A−1 and N = AÑ, with A a general full rank
3 × 3 matrix. Changing A corresponds to rotating, affinely stretching and possibly
mirroring the coordinate system. The true reconstruction also fulfills nTj nj = 1,
which gives constraints on A of type

nTj ATAnj = 1,

which after substitution B = ATA becomes linear

nTj Bnj = 1

in the unknown elements of B. Since symmetric 3 × 3 matrices have 6 degrees of
freedom we need at least 6 transmitters to determine the matrix uniquely. Once B
has been determined A can be determined by Cholesky factorization. This gives the
transformation A up to an unknown rotation and possible mirroring of the coordinate
system. We summarize the above in the following theorem.
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Theorem 9.1.1. The minimal case for reconstructing m positions ri and n directions
nj from relative distance measurements f̄i,j as formulated in Problem 9.1.2 is m = 4
and n = 6.

Accordingly, we have the following algorithm for the minimal case of the problem.
Note that using minimal information m = 4 and n = 6 results in estimates that fulfill
the measurements exactly (up to machine precision) even if the measurements are
disturbed by noise.

Algorithm 9.1.1 Far-Field TDOA in 3D - Linear Method

Given the measurement matrix F ∈ R4×6, outputs the receivers positions {ri} and
transmitter directions {nj}.

1. Construct matrix F̄ such that f̄i,j = fi+1,j − f1,j ,

2. Calculate a singular value decomposition F̄ = UΣVT .

3. Set R̃ to first 3 rows of UT and Ñ to first 3 rows of ΣVT .

4. Solve for the six unknowns in the symmetric matrix B using the 6 linear con-
straints ñTj Bñj = 1.

5. Calculate A by Cholesky factorization of B, so that ATA = B.

6. Calculate receiver position as ri = A−T r̃i and transmitter direction as nj =
Añj .

9.1.1 Failure Modes of the Algorithm
The algorithm fails in certain configurations of the positions of receivers and transmit-
ters. This is captured by the following theorem.

Theorem 9.1.2. The minimal case for reconstructing m positions ri and n directions
nj from relative distance measurements f̄i,j as formulated in Problem 9.1.2 is for
m = 4 and n = 6. As long as the orientations nj do not lie on a common quadratic
cone nTj Ωnj = 0 and the measurement positions ri do not lie on a plane, there will
not be more than one solution to the problem of determining both ri and nj up to an
unknown translation, orientation and reflection of the coordinate system.

Proof. The algorithm can fail if the measurement matrix F̄ has rank 2 or lower. This
could e.g. happen if either all measurement positions ri lie in a plane or if all directions
nj lie in a plane (or both). The algorithm can also fail if there are two solutions to the
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matrix B in nTj Bnj = 1. But then the difference Ω = B∗−B of these two solutions
is a 3× 3 matrix for which

nTj Ωnj = 0,

which in turn implies that the directions nj lie on a common conic as represented by
the matrix Ω.

Another type of failure mode of the algorithm related to the existence of noise in
measurements and the far-field approximation. If the data is corrupted by noise or far-
field approximation is not valid, it could lead to an estimate of the matrix B that is not
positive definite. Then the algorithm fails because there is no Cholesky factorization
of B into ATA. If B is unique, then there are no real solutions to the problem in this
case.

Further Analysis of Failure Modes

If the rank of the matrix F̄ is 2, this could be because the points ri lie on a plane
or that nj lie on a plane. In the case of coplanar ri, it is still possible to estimate
the planar coordinates R = U2A

−1 and N = AS2V
T
2 up to an unknown 2 × 2

matrix A representing a choice of affine coordinate system. Here we do get inequality
constraints that ∣∣∣∣A(nj,x

nj,y

)∣∣∣∣ ≤ 1.

Each such A is a potential solution. It is possible to extend with a third coordinate in
the normal direction according to

nj,z = ±
√

1− n2
j,x − n2

j,y.

Another possibility is that the directions nj lie on a plane. In this case it is possible
to reconstruct two of the coordinates for both the positions ri and the directions nj .
Since the normals are assumed to lie in a plane, we can exploit the equality constraints
nTj ATAnj = 1 similar to the rank 3 case. In this particular case we only need three
directions nj , i.e. the minimal case is for m = 3 and n = 3. This gives the full
reconstruction of both points and directions up to an unknown choice of Euclidean
coordinate system and unknown choice of z-coordinate for receiver positions ri.

If the rank of F̄ is 1, this could be because the directions are parallel or the re-
ceivers lie on a line. In the case of parallel directions, similar to the discussions above
we can obtain one of the coordinates of the positions ri, but this is trivial since the
measurements f̄i,j are such coordinates by definition. As for cases when receivers lie
on a line, we obtain a one-parameter family of reconstructions based on R = U1a
and N = aΣ1V

T
1 , where a is an unknown constant that has to fulfill a ≤ 1/l, where

l = maxj |Σ1V1,j |. For each such a it is possible to extend the directions nj so that
they have length one, but there are several such choices.
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9.1.2 Overdetermined Cases
When more measurements are available than the minimal case discussed in the pre-
vious section, we need to solve an overdetermined system in least-square sense or
with robust error measures e.g. L1-norm. Here we focus on the following least-square
formulation of the problem.

Problem 9.1.3 Given measurement matrix F̄ = {f̄ij} from receivers at m different
positions to n transmitters, determine both the relative motion of the receiver ri and
the direction to the transmitters nj so that

minR,N ‖F̄−RTN‖2F , (9.4)
s.t. ‖nj‖2 = 1,

where ‖.‖F denotes the Frobenius norm.
For the overdetermined cases, it is possible to modify Algorithm 9.1.1 to obtain

an efficient but not necessarily optimal algorithm that finds a reconstruction using
the following three modifications (i) the best rank 3 approximation can still be found
in Step 4-5 using the singular value decomposition, (ii) the estimate of B in step 6
can be performed in a least squares sense and (iii) re-normalize the columns of N
to length 1. This results in a reconstruction that differs from the measurements, but
both steps are relatively robust to noise. The problem of B not being positive semi-
definite can be attacked by nonlinear optimization. Here we try to optimize A so that∑n
j=1(nTj ATAnj − 1)2 is minimized. This can be achieved e.g. by initializing with

A = I and then using nonlinear optimization of the error function.
Clearly, we lose any guarantee on the optimality of the solution when we enforce

the constraints as in step (iii). However, the solution can serve as a good initialization
for subsequent optimization algorithms we present in this section. We discuss how
to use alternating optimization and Levenberg-Marquardt algorithm (LMA) to obtain
better solution. The first algorithm starts with an initial feasible solution for R and
N, and then it alternates between optimizing R given N and vice versa. In the latter
approach, the directions are parameterized in a way such that the norm constraints are
preserved. For both methods, we need to treat the constraints on the direction vectors
properly to ensure convergence.

Alternating Optimization

In order to find the local minima of Problem 9.1.3, we can use a coordinate descent
scheme. Specifically, we would like to iteratively optimize the cost function in Prob-
lem 9.1.3 with respect to R given N, and then find the optimal feasible N with fixed
R. If we initialize N such that it satisfies the norm constraints, we can easily see that
the alternating procedure is converging.
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To enable the alternating optimization, we need to solve two separate optimization
problems. The first one is to find the optimal R given N. This is the classic least-
square problem and is known to be convex and can be solved linearly. On the other
hand, solving for optimal nj given R is not convex due to the additional constraints
on the nj’s. In this case, we seek the local minima for each nj as a constrained
minimization problem. We solve each small constrained minimization problems (3
variables each) independently with interior point method. Alternatively, we can solve
the constrained optimization as solving polynomial equations. This can be related
to the fact that for a given R, level sets of the cost function with respect to nj are
surfaces of a ellipsoid in R3 (the centers are in this case the solution from singular
value decomposition). The norm 1 constraints on nj geometrically means that the
feasible solutions lie on the unit sphere centered at origin. Therefore, the optimal
solution of nj is one of the points that the ellipsoid is tangent to the unit sphere,
which can be found by solving polynomial equations. While there could exist multiple
solutions, we can choose the one with minimum Euclidean distances to the center
of the ellipsoid. Unlike interior point solver, we always find the global optimum.
However, in practice, we found that in the alternating procedure, interior point method
and polynomial solving give similar performance.

Levenberg-Marquardt Algorithm

It is well-known that alternating optimization as a coordinate descent scheme con-
verges slowly in practice. Alternatively, we can solve the minimization problem by
iteratively finding the best descent direction for N and Z simultaneously. Given
that Problem 9.1.3 is a nonlinear least-square problem with constraints, Levenberg-
Marquardt algorithm can be applied. The difficulty here is again the constraints on
the direction vectors nj . The key idea here is to re-parameterize the direction vectors.
Given a direction vector n having unit length, any direction vectors can be represented
by exp(S)n, where S is a 3 × 3 skew-symmetric matrix. This is due to the fact that
the exponential map of any such matrix is a rotation matrix. In this case, if we use
the (current) direction n as axis direction, any local change of the direction on the
sphere can be easily parameterized via the exponential map. Therefore, the Jacobian
with respect to nj can be expressed without any constraints. To this end, we can then
construct the Jacobian for the Levenberg-Marquardt algorithm to compute the optimal
descent direction.

9.2 Synthetic Experiments
In this section, we present experimental results for simulated data. We focus on the
performance of the minimal solver as well as verification of the far-field approxima-
tion. We also study the performance of two iterative solvers for overdetermined cases.
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Figure 9.1: Left: Performance of the minimal solver. Bars show failure rate (left y-
axis) and curve shows the errors of estimated position as a function of distance (right
y-axis). Right: Performance on non-minimal cases. In the legend, rm-sn denotes m
receivers and n transmitters. Plots are best viewed in color.

9.2.1 Minimal Solver Accuracy

The numerical performance of the algorithm was evaluated on non-degenerate ran-
dom problems where the far-field approximation is true. In essence, we generate the
directions as general 3D directions and the receiver positions ri in general 3D posi-
tions such that relative distance measurements fij = rTi nj . Specifically, the receiver
positions were selected as the corners of a tetrahedron with arc-length one. The errors
are then evaluated as the Euclidean distances between the estimated receiver positions
and the ground truth positions after registration. Average error of 10000 such tests
was 6.8× 10−15, which is close to machine epsilon.

9.2.2 Far-Field Approximation Accuracy

Minimal Case

To evaluate the effects of the far-field approximation, we first generate 3D positions
for both transmitters and receivers with different ratio between the transmitter-receiver
distances and the intra-receiver distances. The constellation of receivers is a unit-
length tetrahedron centered at the origin and transmitters are randomly placed on a
sphere also centered at the origin. We study the errors as a function of radius of the
sphere (that is relative distance of the transmitters to the receivers). As expected, the
far-field approximation gets better (smaller errors when compared to ground truth) as
the relative distance increases (Figure 9.1, Left). We also investigate the failure rate of
the minimal solver with respect to the far-field approximation. A failure corresponds
to a case in which the B matrix in Algorithm 9.1.1 is not positive definite. As can
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Figure 9.2: Convergence of alternating optimization and LMA on simulated TDOA
measurements with Gaussian noise σ = 0.1. Here m = 10 and n = 10.

be seen (Figure 9.1, Left), this is infrequent even at small relative distances when one
would not expect a far-field approximation to work.

Initialization for Overdetermined Cases

As described in Section 9.1.2, Algorithm 9.1.1 can be used for overdetermined cases.
In these situations, these solutions can serve as initial guess for the nonlinear opti-
mization problems. The additional constraints should however affect the numerical
stability and it is interesting to evaluate the algorithm for initial estimates in overde-
termined cases. In this experiment, we generate the positions of the receivers in a
unit-cube, while the transmitters are placed on a sphere centered at the origin with
varying radius. In 9.1 (right), we can see that as we increase the number of m and n,
the failure rate drops, in some of the cases to zero. We can also see that adding more
measurements will in general result in smaller errors.

9.2.3 Overdetermined Cases
We also investigate the performance of the two iterative schemes for over-determined
cases. In all experiments below, we initialize both the alternating optimization and
LMA based on the linear solver. The simulated data is of a true far-field approximation
with Gaussian white noise, i.e. measurements are simulated as fi,j = rinj + oj + εij
where the i.i.d Gaussian noise εij ∈ N(0, σ). In Figure 9.2, we can see that alternating
optimization and LMA all decrease the reconstruction errors after initialized by the
linear solver. On the other hand, from figure 9.2, we can see that LMA converges in
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Figure 9.3: Performance on non-minimal cases with simulated TDOA measurements
with Gaussian white noise. The mean errors in positions of the receivers are plotted
against standard deviations of the noise. Here m = 5, n = 10 and the relative dis-
tance to receivers and transmitters are 107 (left) and 102 (right). Failure rates for the
initialization are also shown for completeness.

around 20 iterations which is much faster than alternating scheme (150 iterations) and
results in relatively lower reconstruction errors. This verifies the superiority of LMA
over coordinate descent. This observation is consistent over different m and n as well
as a variety of noise levels. Note that here for all the experiments, we set the damping
factor λ for LMA to 1.

It it also of interest to view the complete system when the measurements fi,j
does not fulfill the far-field approximation and when the measurements are corrupted
by noise. The relative distances of the simulated transmitters and receivers are set to
102 for a mediocre far-field approximation and 107 for a good far-field approximation.
TDOA measurements fij are then simulated and perturbed with Gaussian white noise.
It is shown in Figure 9.3, the solution of the linear method as initialization is fairly
good, and in many cases the LMA further decreases the position errors. The system is
also fairly robust to noise.

9.3 Real Experiment

In this section, we apply the far-field TDOA self-calibration algorithm to anchor free
positioning using UWB measurements from one single transmitter to a single mov-
ing receiver. Base on estimated time delay of multipath components (MPC) on the
receivers, simultaneous estimation of both receiver motion and transmitter positions
and its reflections are performed using the factorization based approach followed by
nonlinear least squares optimization.

132



9.3. REAL EXPERIMENT

9.3.1 Signal model
If we assume that pulse distortion can be neglected, the impulse response of the UWB
channel can be modeled as [74]

h(τ, t) =
∑
l

αl(t)δ(τ − τl(t)), (9.5)

where t denotes time, δ(·) is the Kronecker delta function, αl(t) and τl(t) are the
channel gain and delay of the lth multipath component (MPC), respectively. We as-
sume that the scatterers in the environment and the transmitter (Tx) are fixed during
the movement of the receiver (Rx), and hence that the only change of the impulse is
due to movements of the Rx (or vice versa). The impulse response is sampled at dif-
ferent positions in space, and we replace the time continuous variable t with a sample
index i. For the tracking method described later on, we further assume that there is a
maximum movement between the samples of the impulse response. For the position
tracking, for each i we extract the gains, αi,l, and delays, τi,l, of the 100 strongest
MPCs from the impulse responses by the method described in [90]. This method is
basically is a variant of the CLEAN algorithm [29], and is based on a detect and sub-
tract approach when extracting the MPCs. The major MPCs typically stem from the
dominating scatterers in the environment and the change of delay between successive
samples of a particular MPC reflects the movement of the antenna in relation to this
scatterer.

9.3.2 Finding Correspondences among MPCs
After multiplication with the speed of light c, each delay corresponds to a propagation
distance di,k = cτi,k, between the transmitter and receiver for that particular MPC,
possibly as it has been scattered and reflected in the surroundings. Each scatterer,
being a planar surface or a smaller reflecting object, gives rise to a virtual transmitter
position sj . If one can find the correspondences, i.e. for each virtual transmitter sj
can find all those distances di,j , then one obtains a structure from motion problem
of the following type: given measurements di,j determine both transmitter positions
sj and receiver positions ri such that di,j = ‖ri − sj‖2. As we will see in the next
section, the far-field approximation (9.1) can be safely applied to our experiment setup
where receiver motions is constrained within a small region in space while the virtual
transmitters are sufficiently far away.

9.3.3 Measurement Setup
Measurements were conducted in a furnished lecture room of size 8.1 x 6.3 x 2.6 m3

(Figure 9.4). A transmit antenna at a height of 1.47 m was put in the middle of the
lecture room. The receiver antenna is put at a distance on a straight line of sight away
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from the transmit antenna, the x direction. The motion of the receiver is controlled by a
3D positioner which gives ground truth motion with an accuracy of 50 µm. As a proof
of concept, and due to practical constraints with the positioner, the movements are
limited to a cube measuring 0.30 x 0.30 x 0.30 m3. The receiving antenna first moves
linearly in x, y, z directions and then moves on the surface of xy, xz and yz, making
a shape of square on each surface. The steps between successive antenna positions
are 1 cm each, but not that we make no assumptions on the movements other than
that there is a maximum distance between measurements. The measurements were
performed with an HP 8720C vector analyzer (VNA) using SkyCross UWB antennas
SMT-3TO10M-A at both the Tx and Rx end. The VNA measures S21, the channel
transfer function, for 1601 frequency points, sweeping the whole bandwidth of 3.1
GHz to 10.6 GHz. Note that the expected delay resolution, as measured by the inverse
of the bandwidth is 133 ps, corresponding to a distance of 4 cm. The IF bandwidth
was set to 100 Hz in order to minimize the impact of noise. The environment was
static during the measurements and except for the moving receiver there are no other
movements in the close environment. The measurements of the matching strength
between transmitted and received signal are shown in Figure 9.5 (Left).

9.3.4 Data Processing

The results from the signal matching are the travel times τi,l for the 100 strongest
peaks i = 1, . . . , 100 at each of the 404 measurements positions where l = 1, . . . , 404.
These are shown in Figure 9.5 (right). We used a semi-automatic tracking method to
find as long and as complete matched tracks as possible, for 6 of the most prominent
tracks in the data, j = 1, . . . , 6, i.e. di,j = di,l(i,j). As can be seen in Figure 9.5, it is
relatively straightforward to determine the travel times for the direct path from the sin-
gle stationary transmitter to the moving receiver. As we will see later on the five other
tracks correspond to reflections in roughly planar structures (walls) in the building.
Each such path can thus be considered as originating from a stationary transmitter
in an unknown (reflected) position. For 387 of these 404 time instants i a matched
distance can be found to all 6 (real or virtual) transmitters. After computing D̄ as in
Algorithm 9.1.1 from the 387× 6 measurement matrix, it is observed that D̄ is almost
of rank 2, which indicates that either (i) the receiver motion is roughly planar or (ii) the
directions nj to the transmitters are roughly planar. The planar version of Algorithm
9.1.1 (planar version) is then used to obtain an initial estimate of (ri,nj , oj), which is
used as a starting point for a nonlinear least squares refinement of the parameters

(ri,nj , oj) = argminri,nj ,oj ,‖nj‖2=1

∑
i,j

‖di,j − (rTi nj + oj)‖
2
, (9.6)

using the Levenberg-Marquart algorithm.
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Figure 9.4: Overview of the measured scenario. Tx antenna in front and Rx antenna
in the back.

9.3.5 Position Estimates

The results of estimated receiver motion is shown in Figure 9.7 (left). Note that since
the tracked paths all correspond to reflections in the horizontal plane (mainly walls),
we found no reflections in the floor or ceiling, only the planar coordinates of the mo-
tion can be estimated. We believe that the reason that we find no reflections from the
ceiling or floor is that the antenna patterns are fairly omnidirectional in the horizontal
plane, but have a very low gain in the elevation angles close to 0 or 180 degrees. Due
to this, the vertical motion cannot be obtained.

Once the initial estimate has been found for 387 of the 404 receiver positions, it is
straightforward to extend the solution to all receiver positions and to additional trans-
mitter positions. In our experiments, assuming the motion of the receiver is smooth,
we initialized these additional 17 receiver positions by linear interpolation and refined
the whole reconstruction using nonlinear minimization. Notice that for the nonlin-
ear optimization it is possible to refine all parameters even if there are missing data
simply by letting the sum in (9.6) be over all index pairs (i, j) for which there are
measurements.

As a final step, we implemented a RANSAC approach, cf. [35], for finding ad-
ditional multipath component matches. In this step we exploited the fact that such
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multipath component tracks are constrained to two parameters (θ, w), i.e.

di ≈ rTi

(
cos θ
sin θ

)
+ w. (9.7)

Here the changing the parameterw corresponds to horizontal translations in Figure 9.5
(right) and changing parameter θ corresponds to changing the shape of the matched
curve. In the RANSAC loop, one iterates on (i) hypothesizing that two peaks corre-
spond to the same transmitter, (ii) for such a hypothesis one then calculates the two
parameters (θ, w) and thus the corresponding matched curve and finally (iii) assessing
how many additional matches this curve contains within a threshold. By iterating (i)-
(iii) and choosing the matched curve with the most inliers one can obtain additional
multipath component matches. Again once a good inlier set has been found it is re-
fined with nonlinear optimization. Unfortunately, no additional multipath component
was found with the RANSAC step.

The final reconstruction is shown in Figure 9.7 (right). In the figure is shown
both the real transmitter location s1 as a square, the reflected transmitter locations
s2 . . . s6 as circles and the receiver positions ri as dots. Note that the receiver motion
is relatively small and difficult to perceive in this figure. In the figure we have also
illustrated the geometry of the reflective surfaces, which in this case act as the major
scatterers.

In order to make a comparison between ground truth motion rtrue,i and the esti-
mated motion ri, we first rotate and translate the ground truth motion, i.e. we optimize

(R,b) = argminR,b,RTR=I

∑
i

‖ri − (Rrtrue,i + b)‖2 (9.8)

and then set

rfit,i = Rrtrue,i + b. (9.9)

In Figure 9.7 (left) we show both the estimated receiver positions ri and overlaid the
fit rfit,i of the ground truth motion. The estimated standard deviation (RMS error) for
n = 404 receiver positions

σ? =

√√√√ 1
(n− 3)

n∑
i=1

‖rfit,i − ri‖2 (9.10)

was 1.34 cm. Notice that most residuals (cf. Figure 9.6) are in the order of ±1 cm,
whereas the residuals corresponding to transmitter j = 4 and receivers i ≈ 50 . . . 120
there are significantly larger residuals. One hypothesis here is there are matching
errors here that influence the reconstruction. The receiver positions i ≈ 50 . . . 120,
correspond to the wiggly upper part in Figure 9.7 (left).
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Figure 9.7: Left: ground truth motion (red circles) and the estimated receiver posi-
tions ri (blue dots, 387 of the 404 measurement positions). In the figure is also shown
the directions to the real and virtual antenna positions (−nj’s). Right: Positions of
the ’source’ (red square) and virtual (reflected) transmitters (black circles). The hy-
pothesized reflective wall positions based on the relative positions between source and
reflections are also plotted.

9.3.6 Discussions
In this real experiment, we have showed that how the far-field approximation TDOA
calibration scheme can be applied to anchor-free indoor localization. We achieve with
roughly centimeter precision using UWB measurements from a single transmitter in
an unknown environment to a moving antenna. The absolute travel times of the MPCs
from the transmitter to the receivers are measured using a VNA both for the direct
path and for reflections in natural indoor features, such as walls. The reconstruction
of both receiver positions and real and virtual (reflected) transmitters is cast as a struc-
ture from motion problem. Such problems have received increased attention lately
and the knowledge on how to solve such problems are refined. Using a combina-
tion of factorization, calibration and nonlinear least squares optimization we obtain
such estimates of receiver and transmitter positions. A crucial problem here is also
the correspondence problem, i.e. the matching of identified distances to transmitter
ids. We have used a semi-automatic approach to get an initial estimate. We have also
shown how such structure from motion algorithms can be used in a RANSAC fash-
ion to obtain additional matched tracks. Future research includes the development of
algorithms for automatic matching already for the initial estimate.
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Chapter 10

Far-Field UTOA

In this chapter, we extend the far-field approximation to a more general setting where
the clocks for both receivers and transmitters are unsynchronized i.e. far-field unsyn-
chronized time-of-arrival (FFUTOA) problem. By utilizing the same approximation
formulation, we describe an extension to the linear factorization technique that recover
unknown offsets for both receivers and transmitters.

10.1 Far-Field UTOA Self-Calibration
To start with, we first recall the regular UTOA problem where neither receivers nor
transmitters are synchronized. Specifically, the measurements between the receiver
i and transmitter j will be of the form fij = ‖ri − sj‖ + qi + õj where qi, õj are
unknown offsets for receivers and transmitters respectively. Following the derivation
in (9.3), UTOA measurements in far-field setup can be approximated by

fij = ‖ri − sj‖+ qi + õj

≈ ‖r1 − sj‖+ (ri − r1)Tnj + qi + õj

= rTi nj + ōj + qi + õj (10.1)

where ōj = ‖r1 − sj‖ − rT1 nj and nj is the direction of unit length from transmitter
j to the receivers. By setting oj = ōj + õj we get the far field approximation

fij ≈ rTi nj + qi + oj .

When the far-field approximation is valid, we will call fij far-field UTOA (FFUTOA)
measurements.

Problem 10.1.1 Given FFUTOA measurements fij taken from m receivers and
n transmitters, estimate receiver positions ri, directions nj from transmitter j to re-
ceivers, receiver and transmitter offsets qi, oj such that

fij = rTi nj + qi + oj , (10.2)
s.t. ‖nj‖2 = 1.
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Note that the problem is symmetric in receivers and transmitters, i.e. if each re-
ceiver instead could be viewed as having a common direction to all transmitters, the
same problem can be solved. We denote q = [q1, . . . , qm]T , o = [o1, . . . , on]T , R =
[r1, . . . , rm] and N = [n1, . . . ,nn]. In the following discussion, we assume that the
receivers and transmitters are in general affine space of dimension k, i.e. ri ∈ Rk and
nj ∈ Rk. The unknown parameters (R,N,q,o) have certain degrees of freedom that
does not change the measurements i.e. gauge freedom. Based on (10.2), any transla-
tion t, rotation matrix Rrot of coordinate system and offset change c can be applied to
the solution as follows without changing the measurements fij .

• Translation

ri,trans = ri + t

oj,trans = oj − tTnj

• Rotation

ri,rot = Rrotri,

nj,rot = Rrotnj

• Offset

qi,offs = qi + c

oj,offs = oj − c

Thus, we can only reconstruct the unknowns up to these degrees of freedom.

10.2 A Matrix Factorization Method
In this section, we utilize the bilinear expression and derive a linear technique to

solve Problem 10.1.1 for receiver positions, transmitter directions and offsets. With-
out loss of generality we assume that the solution is partially normalized for gauge
freedom as the first receiver r1 = 0 and q1 = 0, see Section 10.1.

Using the FFUTOA measurements fij , collected in the matrix F = {fij}, we can
obtain unknowns oj based on f1,j = rT1 nj + q1 + oj = oj , since r1 = 0 and q1 = 0.
We then form F̄ = {f̄ij} where f̄ij = fi+1,j − f1,j This is done by subtracting the
first row containing oj from all other rows of F and removing the first row of zeros to
obtain a new matrix that fulfill

F̄ =
[
R̃T q

] [N
1Tn

]
(10.3)
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where 1n is a vector of n ones and R̃ =
[
r2 . . . rm

]
. F̄ is a product of two

matrices of rank ≤ k+ 1 and is thus itself of rank ≤ k+ 1. This is used in [15]. Here
we further reduce the rank of the factorization by subtracting the first column of F̄
from all the other columns. This manipulation of F̄ can be done using the compaction
matrix Cn of size n× (n− 1)

Cn =


−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (10.4)

Then we have

F̃ = F̄Cn =
[
R̃T q

] [Ñ
0

]
= R̃T Ñ, (10.5)

where Ñ is a k × (n − 1) matrix with the jth column ñj = nj+1 − n1. Given
that R̃ ∈ Rk×(m−1) and Ñ ∈ Nk×(n−1), now we have a rank-k factorization. To
enable such rank-k factorization for F̃ ∈ R(m−1)×(n−1), at least (k+1) receivers and
(k+1) transmitters are required. After applying singular value decomposition to F̃ =
UΣVT we obtain the rank-k factorization such that F̃ = R̄T N̄ where R̄ = UT

k

and N̄ = ΣkV
T
k . Uk, Σk and Vk are the truncated parts of the SVD corresponding

to the k largest singular values. This factorization of F̃ is unique up to an unknown
transformation L i.e. F̃ = r̄TL−1Ln̄. We will find ñj = Ln̄ i.e. nj+1 − n1 = Ln̄j
by using the constraints that

ñTj ñj = (nj+1 − n1)T (nj+1 − n1)

= 2− 2nTj+1n1

= 2− 2(Ln̄j + n1)Tn1

= −2n̄Tj LTn1

= n̄Tj LTLn̄j . (10.6)

We apply a change of variables with a symmetric matrix H = LTL ∈ Rk×k and a
k × 1 vector v = LTn1. From (10.6), we have the following equation for transmitter
j:

n̄Tj Hn̄j + 2n̄Tj v = 0. (10.7)

These equations are linear in the elements of H and v which have in total nv =
k(k+1)/2+k variables. In general, with nv−1 such equations (thus nv transmitters),
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We can extract the solutions for H and v from the solution to the linear equation
which is valid up to an unknown scaling factor and sign. We can determine the sign
by using that H is positive definite and compute L by applying Cholesky factorization
H = LTL.

We can find the scale by using the constraint ‖n1‖2 = ‖L−Tv‖2 = 1. Note that
fixing the scale in this way will also guarantee that nTj nj = (LT n̄j + n1)T (LT n̄j +

n1) = n̄Tj LTLn̄j + 2n̄Tj LTn1︸ ︷︷ ︸
=0 by (10.6)

+nT1 n1 = nT1 n1 = 1. Summarizing these steps gives

Algorithm 10.2.1.

Algorithm 10.2.1 Far-Field UTOA Matrix Factorization Method
Given FFUTOA measurement matrix F ∈ Rm×n, outputs receiver positions {ri},
transmitter directions {nj}, receiver offsets q and transmitter offsets o.

1. Set oj = f1,j , r1 = 0, q1 = 0, and form matrix F̃ = f̃ij where f̃ij = fi+1,j+1−
f1,j+1 − fi+1,1 + f1,1

2. Calculate singular value decomposition of F̃ = UΣVT and set R̄ to first k
rows of UT and N̄ to first k rows of ΣVT

3. For the unknowns in the symmetric matrix H and vector v, get the solution
space for the equations n̄Tj Hn̄j + 2n̄Tj v = 0 where n̄j is the jth column of N̄

4. Set the sign of the solution H,v such that h11 > 0

5. Calculate the Cholesky decomposition H = LTL

6. Fix the scale of the solutions L,v so that ‖L−Tv‖ = 1

7. Set n1 = L−Tv, nj+1 = Ln̄j + n1 and r = L−T r̂

The condition for the validity of the algorithm is (i) F must have rank k, (ii) the
linear equations (10.7) must only have a null space of dimension one, (iii) H must be
positive definite. To sum up, to ensure the rank-k factorization, at least k+1 receivers
and transmitters are needed. On the other hand, solving for the unknown L and v, at
least k(k + 1)/2 + k transmitters are required. For instance, in general 3D space i.e.
k = 3, the minimal case is 4 transmitters (receivers) and 9 receivers (transmitters).
The algorithm is general for arbitrary k.
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Figure 10.1: Mean relative error of reconstructed receiver positions for 100 runs,
plotted against the approximate distance from receivers to transmitters. Bars are ±1
standard deviation for the different transmitter distances.

10.3 Experimental Validation
To verify the matrix factorization method, we evaluate its performance with both syn-
thetic and real data. We also compare its numerical stability and accuracy with two
other methods [15] and [17], respectively. Specifically, [15] uses a similar factoriza-
tion technique based on rank-(k+1) constraints thus requiring one more receivers and
the ellipsoid method in [17] solves the minimal problem based on a geometrical for-
mulation. In the following experiment setup, we assume k = 3. For all simulations,
offsets qi and oj are drawn from i.i.d. uniform distributions over [0, 10].

10.3.1 Synthetic Experiments

We first study the numerical stability of the matrix factorization method for min-
imal problems. We generated noise-free random problems where the measurement
matrix F̃ are FFUTOA (10.2). Receivers are drawn from i.i.d. uniform distributions
in a unit cube centered around the origin. 9 transmitter directions and 4 receivers
were simulated. Here, we compared the matrix factorization method with the ellip-
soid method. The error distribution for 1000 such experiments can be seen in Figure
10.4 (left). We can see that both methods are fairly stable and the matrix factorization
method performs slightly better (fewer large errors).

To evaluate the effects of far-field assumption, we first place 4 receivers at a tetra-
hedron centered around the origin with side length 1 and the 5th receiver is uniformly
distributed in the cube of which the tetrahedron of the 4 receivers were inscribed to.
To be able to control how much further away transmitters were from receivers than the
distances between receivers, transmitter positions sj were uniformly distributed over
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Figure 10.2: Numerical stability of matrix factorization method and ellipsoid method
in 1000 simulated experiments for exact far-field measurement.

a sphere centered at the origin of radius d. In this experiments, 15 transmitters were
used. UTOA measurements were then constructed as fij = ‖ri − sj‖2 + qi + oj .

The mean relative errors for 100 random runs with respect to different d’s can be
seen in Figure 10.1 (left) for the minimal 4 receivers and in Figure 10.1 (right) for
5 receivers. Figure 10.1 (left) shows that using only four receivers, both the matrix
factorization method and the ellipsoid method can get under 5% relative error when the
transmitters are approximately 4 times further away than the inter-distance between
receivers. In Figure 10.1 (right), we have also shown the comparison with the method
in [15] of which at least five receivers are needed. The results indicate that for varying
relative distances, the matrix factorization method presented here is in general better
than the ellipsoid method and the overdetermined solver in [15]. Mean execution time
is 2.1 ms, 8.0ms and 30 ms for matrix factorization method, the ellipsoid method and
the method in [15] each.

To test the noise sensitivity of the methods, Gaussian noise was added to the mea-
surements. In Figure 10.3.1, relative errors of reconstructed receiver positions are
plotted against the standard deviation of the noise. The results indicate that the el-
lipsoid method is slightly better with higher noise level when using 4 receivers, and
the matrix factorization method outperforms both the ellipsoid and the method in [15]
using five receivers.
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Figure 10.3: Measurements with additive Gaussian white noise. The standard devi-
ation is plotted against the mean relative error of reconstructed receiver positions for
100 runs for 4 receivers, 15 transmitters (left) and 5 receivers, 15 transmitters (right).
For this experiment, we choose d = 107.

10.3.2 Real Data

To test the solvers on real measurements, we generate the far-field UTOA measure-
ments in an indoor stadium with sound recordings. The measurements were obtained
from an experimental setup using 8 SHURE SV100 microphones as receivers and ran-
dom distinct manually made sounds as transmitters. The microphones were connected
to a M-Audio Fast Track Ultra 8R audio interface and placed within a cube of roughly
100 × 105 × 60 cm3 centered in the stadium. A picture of the experiment setup can
be seen in Figure 10.4. The 19 sound sources were approximately 30 m away from
the microphones. Given that the microphones are synced, we can create TDOA mea-
surements after matching beginning of each sound across different microphones with
a heuristic cross correlation algorithm. To generate UTOA measurements, we syn-
thetically generate offsets for each microphone as i.i.d. random silence intervals of 0
to 1 second at the beginning of each sound track, effectively starting the recordings at
different unknown times.

As we have more than five microphones, we compare all three available algorithms
i.e. the matrix factorization method, ellipsoid method and the method in [15]. To eval-
uate the results, we have compared with the reconstruction of microphone positions
from computer vision. The mean reconstruction errors on the microphone positions
are 15 cm, 14 cm and 5 cm for the ellipsoid method, the method in [15] and the matrix
factorization method, respectively. Most of the error are in the floor-to-roof direction.
This can be explained by the sounds all being made close to ground level and thus the
transmitter directions will be close to being in a plane, giving poor resolution in the
floor-to-roof direction.
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Figure 10.4: Setup for indoor experiment using microphones and distinct manually
made sounds.

10.4 Conclusions
In this chapter, we have studied the problem of far-field UTOA self-calibration. We
identify the minimal cases for this problem e.g. in 3D, at least 4 receivers and 9 trans-
mitters are required. We show that in general there exists one solution to the minimal
case and present a linear solver based on matrix factorization. The linear solver is
general to 2D and 3D configurations and it is applicable to both minimal and overde-
termined problems.

From the discussion in Chapter 9 and this chapter, we can see that in far-field
setups, the bipartite self-calibration problems with TOA, TDOA and UTOA measure-
ments are solvable linearly. On the other hand, the geometric problems in near-field
settings is much more involved. So far for near-field setups, only minimal problems
for TOA self-calibration (Chapter 7) and close-to-minimal problems for TDOA mea-
surements (Chapter 8) are solved. In our initial study with near-field UTOA, we see
that the resulting polynomial systems even for the unknown offsets involve large num-
ber of unknowns and equations of very high degrees. To solve these problems, we will
require the advancements in polynomial solving or other effective and robust strategies
to initialize the corresponding non-linear optimization.
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Image Retrieval





Chapter 11

Entropy Optimization

Feature quantization is a crucial component for efficient large-scale image retrieval
and object recognition. By quantizing local features into visual words, one hopes that
features that match each other obtain the same word ID. Then, similarities between
images can be measured with respect to the corresponding histograms of visual words.
Given the appearance variations of local features, traditional quantization methods
do not take into account the distribution of matched features. In this chapter, we
investigate how to encode additional prior information on the feature distribution via
entropy optimization by leveraging ground truth correspondence data. We propose a
computationally efficient optimization scheme for large-scale vocabulary training.

11.1 Introduction

In large-scale image retrieval and object recognition, most state of the art techniques
are based on the bags of words (BOW) technique. [79,84,85,91]. By quantizing local
features (e.g. SIFT [73]) (sampled densly or from keypoints) into a visual vocabulary
it is possible to index images similarly to how documents are indexed for text retrieval.
The time-consuming exhaustive nearest neighbor search for local feature matching is
approximated by feature quantization. The main advantage of BOW for retrieval is the
efficient similarity computation between images based on histograms of visual words.
Feature quantization is the process of clustering features into discrete unordered sets
based on certain criteria. Generally, in image retrieval and object recognition, the cri-
teria can be similarity between features, labels of the features and so on, which lead to
unsupervised and supervised feature quantization. For example, k-means and its vari-
ants are widely used as unsupervised feature quantization methods to generate large
visual vocabularies from e.g. SIFT features based on Euclidean distances. For local
feature matching, such a similarity measure is generally a proper criterion. However,
due to lighting conditions, perspective transformation, etc. local features can be very
different from each other. In this case, unsupervised feature quantization based solely
on similarity might fail to capture the intra-class variation of local features. On the
other hand, supervised feature quantization utilizes correspondence labels (extracted
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as ground truth from some databases) and improves matching performance with re-
spect to such intra-class variation.

In this chapter, we study a supervised feature quantization approach based on en-
tropy optimization. By minimizing the entropy of the quantized vocabulary, we obtain
(i) higher matching true positive rate on corresponding local features and (ii) better
separation of unmatched features. While the computational complexity for the under-
lying optimization is high, we propose analytical and numerical schemes to enable
large-scale training. We explore the generalization issues of this approach by exten-
sive experiments on datasets with ground truth. Furthermore, we propose a training
formulation in the spirit of max-margin clustering that achieves better image retrieval
performance than the baseline hierarchical k-means which is widely used.

Related Work Supervised feature quantization has been studied from different per-
spectives in computer vision. For image categorization, the aim of supervised feature
quantization is to incorporate semantic categorical information into the training vo-
cabulary. In such a way, the histogram representation of images encodes the patterns
of each category more accurately. Winn et al. [100] optimized the intra-class com-
pactness and inter-class discrimination by merging words from unsupervised k-means.
In [83], Perronnin et al. modeled class-specific visual vocabularies with Gaussian mix-
ture models and combine them with a universal vocabulary. In [47], Ji et al. introduced
hidden Markov random fields for semantic embedding of local features to facilitate
large-scale categorization tasks. On the other hand, with entropy as a criterion, Moos-
mann et al. constructed random forests based on class labels [77] and Lazebnik et
al. [69] simultaneously optimized the cluster centers initialized by k-means and the
posterior class distributions. For image retrieval and object recognition, feature quan-
tization is utilized to approximate and speed up the matching process between images.
There exist several variants on utilizing existing correspondence information for su-
pervised feature quantization. One way of supervision is to learn optimal projection or
apply metric learning before quantization such that the matched pairs of features have
small distances than non-matched pairs in the new mapping [22, 86, 94]. All methods
achieves substantial improvement in the retrieval tasks. Finally, there are works based
on k-means and vocabulary trees. By using a huge dataset with ground truth corre-
spondences, Mikulik et al. [75] train unsupervised vocabulary tree and the apply a su-
pervised soft-assignment of visual words based on the distribution of matched feature
points. On the other hand, in [58], initialized by k-means, entropy-based optimiza-
tion is used to improve the matching performance of the visual vocabulary. Recent
works also aim to construct discriminative hashing function for feature quantization
with ground truth information [97].

Our approach works on the original feature space and encodes the ground truth
correspondences in the process of vocabulary generation. Unlike [69], we focus on
optimizing the feature quantization for large-scale feature matching. We also extend
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the work in [58] with a formulation for image retrieval, efficient computation for finer
quantization and larger correspondence class. There are several limitations of the
work in [58]. Firstly, the ground-truth set experimented is too small to generalize.
Secondly, very coarse hierarchical quantization (K = 3 at each level) is used and it
suffered clearly from the quantization errors. We see that the quantization errors can
seriously affect the overall true positive rate and false positive rate that suppress the
gain from optimization. In this work, we focus on efficient entropy optimization over
K in the order of 102 and large number of correspondence classes.

11.2 Vocabulary Optimization

In this section, we present the formulation for entropy-based vocabulary optimization.
In this formulation, we work with data with partial matching ground truth e.g. local
features with labels specifying their corresponding 3D points. To optimize the energy,
we have used gradient-descent method. We also utilize the low-rank property to speed
up the gradient computation. Finally, we discuss the connection of this formulation to
large margin clustering.

11.2.1 Formulation

Entropy traditionally used in information theory for coding has also been applied in
supervised learning of vocabulary [58, 69, 77]. In [58], entropy has been shown to be
a good criterion to optimize feature matching with respect to true positive rate (TPR)
and false positive rate (FPR) in the sense that minimizing the entropy increases the
TPR and in the meantime decreases FPR. Given N features of Nc correspondence
classes, for a visual vocabulary of NK words, the entropy is defined as

E = −
NK∑
k=1

rk

Nc∑
j=1

pjk log pjk, (11.1)

where rk is the percentage of features in cluster k and pkj is percentage of features
belonging to correspondence class j that falls in word k. We have used logarithm with
base 2 here. By minimizing entropy, one can make each word in the vocabulary more
discriminative such that features belonging to the correspondence class tend to fall
into the same word.

Now let us denote the total number of features in cluster k as nk and the number
of features of correpondence class j in clustering k as hjk. Substituting rk = nk

N , and
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pjk =
hjk

nk
into (11.1), we have

E = −
NK∑
k=1

nk
N

Nc∑
j=1

hjk
nk

log pjk

= − 1
N

Nc∑
j=1

NK∑
k=1

hjk log pjk (11.2)

The entropy defined above is not continuous with respect to the word assignments. To
enable optimization with gradient descent in the continuous settings, we smooth the
word assignment with soft-assignment weights. The weight of a feature xi assigned
to word k with cluster center ck is defined as

wik =
vik∑NK

j=1 vik
, (11.3)

where vik = exp(
−‖xi−ck‖2

m ) and m is the size of the margin that controls the degree
of distance smoothing. ‖.‖2 denotes the L2 norm. For each feature xi, the weights are
normalized such that

∑NK

k=1 wik = 1. We can immediately see that both nk and hkj
can be written as functions of wik’s: nk =

∑N
i=1 wik and hkj =

∑
i∈πj

wik, where
πj is the set of features belonging the correspondence class j.

Optimizing the entropy in (11.1) with respect to the NK cluster centers amounts
to the following minimization problem:

min
c
− 1
N

Nc∑
j=1

∑
i∈πj

NK∑
k=1

wik log

∑
i∈πj

wik∑N
i=1 wik

, (11.4)

where c = [cT1 , c
T
2 , . . . , c

T
NK

]T .
In [69], the probability of each feature belonging to each correspondence class can

also be updated. In the case here, we assume the correspondence classes estimated
from geometry models are of high quality. Due to the fact that Nc is large in our
setting, it is generally quite difficult to obtain good estimation of such probabilities,
which is also quite different from the scenario in [69] where categorical labels of
local patches obtained from image labels are generally very noisy. Therefore, we
only focus on optimizing c. Here m is seen as parameter and is determined by cross-
validation. For the non-linear optimization, we initialize the center c with k-means
and use gradient descent method L-BFGS to obtain a local minima. We derive the
analytical gradient and relevant efficient implementation in the next section.
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11.2.2 Efficient Gradient Computation
The gradient of E with respect to the centers c can be derived analytically. Given
(11.2), we have

∇E = − 1
N

Nc∑
j=1

NK∑
k=1

(
∇hjk log pjk −

1
ln(2)

nk∇pjk
)

(11.5)

Since
∑NK

k=1 nkpjk = |πj | is a constant, we can see that

∇(

NK∑
k=1

nkpjk) =

NK∑
k=1

nk∇pjk = 0.

We then have

∇E = − 1
N

Nc∑
j=1

NK∑
k=1

∇hjk log pjk (11.6)

And we know that hkj =
∑
i∈πj

wik, therefore, we have∇hjk =
∑
i∈πj
∇wik and

∇E = − 1
N

Nc∑
j=1

∑
i∈πj

NK∑
k=1

∇wik log pjk (11.7)

where ∇wik = (∂wik

∂c1

T
, . . . , ∂wik

∂cNK

T
)T . It can be shown that, given (11.3) ,

∂wik
∂ck′

=
1
2

(δkk′wik′ − wik′wik)
xi − ck′

m||xi − ck′ ||2
(11.8)

where δkk′ = 1 if k = k′, else δkk′ = 0.
Regarding computational complexity, ∇wik is a vector of length dNK and com-

puting it takes O(dNK), where d is the number of dimension of the features. There-
fore, the overall computational complexity for computing∇E isO(dNNK

2). We can
enable more efficient gradient computation by utilizing the structure of the problem.
Firstly, we can observe that

NK∑
k=1

∇wiklog(pjk) =
∂wi

∂vi

∂vi
∂c

α (11.9)

where wi = (wi1, . . . , wi,NK
)T , vi = (vi1, . . . , vi,NK

)T and α = (log pj1, . . . ,
log pj,NK

)T . On the other hand, we have

∂wi

∂vi
=

1∑NK

k=1 vik
Id×NK

− 1∑NK

k=1 vik
wi 1

T
d×NK

(11.10)
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Figure 11.1: The convergence of the L-BFGS with exact and approximate function
and gradient calculation. Eexact is the convergence of the exact calculation. Eappr
and E∗appr are the convergence with approximate calculation, while evaluated for all
features and only those features within distance threshold µm. The relative difference
between the approximate and exact computation is of order 10−4, which takes 40s
and 275s respectively.

where Id×NK
is a identity matrix of size dNK×dNK and 1Td×NK

is a dNK×1 vector
of all 1’s, and

∂vi
∂c

α = (log pi1
∂vi1
∂c1

T

, . . . , log pi,NK

∂vi,NK

∂cNK

T

)T (11.11)

We can see that β = ∂vi

∂c α is a vector of length dNK . Substituting (11.10) and
(11.11) into (11.9), we have

NK∑
k=1

∇wik log pjk =
1∑NK

k=1 vik

(
β −wi (1T β)

)
(11.12)

Here both β and the inner product 1T β can be calculated in O(dNK). Therefore,
by exploring calculation ordering of the terms, the overall computational complexity
for ∇E is reduced to O(dNNK). As N and NK increase for large-scale training,
utilizing this scheme is crucial.
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11.2.3 Approximate Computation

In the L-BFGS iterations, both the entropy and its gradient are evaluated multiple
times. As the size of the vocabulary and the number of features increase, the opti-
mization procedure takes considerable amount of time even with the scheme discussed
in Section 11.2.2. One way to speed up the optimization to further reduce the com-
putational complexity for the energy and gradient computation. To do this, we first
observe that as NK increases, only a small number of centers will contribute to the
sum

∑NK

k=1 in both (11.2) and (11.6). This is because a specific feature tends to have
large euclidean distances to most of the centers which means that wij is very small for
j’s. In this case, for each feature, we can compute the sum only over the active set of
centers Φi,µ = {j|wij ≤ µm}, where µ is the parameter controlling the magnitude of
approximation. Specifically, with sufficiently large µ, we have equivalently the exact
computation since then Φi,µ = {1, 2, . . . , NK}. Generally, with large NK and small
µ, |Φi,µ| � NK . This enables fast approximate calculation, if we pre-compute Φi,µ.
However, as we update the centers, the active set is also altered for each feature. To
overcome this, we also update the active set as outer iterations. Specifically, we up-
date the active sets for all the features after a few approximate L-BFGS updates on
c. Empirically, we observe that the active set becomes relatively stable (close to those
of local minima) after 2-3 outer iterations updates. This motivate the idea of progres-
sively decrease update frequency of the active sets. For instance, for 100 approximate
L-BFGS iterations, we update the active set at 10th and 30th iteration respectively. As
it is shown in Figure 11.1, we achieve similar convergence as exact computation with
such approximation in significantly less amount of time.

11.2.4 Connection to Max-Margin Clustering

In this section, we discuss another application of the entropy optimization and its con-
nection to max-margin clustering. For unsupervised learning, max margin clustering
tends to have better generalization as its supervised counterpart support vector ma-
chine. In this training scenario, each feature is treated as belonging to a singular class
(with only one feature). For each feature i, if the weights wik’s are scattered over NK
clusters, the entropy will increase. Therefore, minimizing the entropy as defined in the
previous section, we tend to refine the centers such that each single feature is close to
only a very few of centers. Due to the duality of Vononoi diagram (separating planes)
and the cluster centers, the minimization is equivalent to pulling features away from
the separating planes, which resembles the mechanism of max margin clustering.
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Figure 11.2: Patches of two correspondence classes from the Prague dataset with
lighting variation and perspective transformation

11.3 Ground-Truth Dataset
To encode the learned vocabulary with correspondence information, ground-truth data
is needed. Specifically, in this work, we focus on local descriptors e.g. SIFT of
patches around 3D points of a scene where the correspondences are already extracted
from geometric models. A good ground-truth dataset should encapsulate for each 3D
point, a set of local descriptors of large appearance variations due to viewing angles
or lighting conditions etc. This is crucial for the generalization of the vocabulary
learning.

There exist several large datasets with partial matching information e.g. the UBC
patch data [99] and Prague patch data [75]. UBC patch data contains three landmarks
(Statue of Liberty, Notredame and Yosemite) with approximately 1.5M features of
500K correspondence classes. On average, there are 2-5 features for each class in
the UBC patch set. By correspondence class, we mean features that correspond to
the same 3D point. On the other hand, Prague patch data consists of 564M features
belonging to 111M correspondences classes. Some of correspondence classes in this
dataset contains up to 102 features, which have high possibility of capturing vari-
eties of the same patch. Therefore, in our work here, we used Prague patch data for
experiments. In Figure 11.2, we show features of correspondence classes tracked by
graph-based geometry models from [75].

11.4 Experiments
We demonstrate the performance of the entropy formulation in (11.4) in different
settings. We compare its performance against widely used k-means. Generally, we
evaluate the resulting vocabularies with respect to TPR and FPR. To understand the
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Figure 11.3: The effects of iterations and m for vocabularies of different sizes (NK =
5, 10, 20, 50, 100 ) (S1). Left: the effects of number of iterations when m = 5; Right:
the effects of m with 100 iterations.

generalization of the method, given a subset S of data with correspondence ground
truth, we split data into training set and test set in two ways: (S1) for each correspon-
dence class in S, we randomly select 50% of features in that class and include them
to the training set, and the others as part of test set; (S2) we construct the training
set by randomly selecting 50% of the correspondence classes in S (i.e. all features in
those classes), and the test set consists of the features in the non-overlapping set of
correspondence classes.

For the following experiments, we generate S by randomly picking 20K tracks
from the Prague patch set. To guarantee that each correspondence class in the training
set has balanced number of features, we limit the number of features in each corre-
spondence class to be 20 to 60. To evaluate the vocabularies, we need to generate
matched pairs and non-matched pairs of features. Given the partial ground truth, all
distinct pairs of features in the each correspondence class form the matched pairs. And
we construct non-matched pairs by randomly pairing up features from two different
correspondences classes. The number of possible non-matched pairs is quadratic to
the number of correspondence classes. Therefore, we randomly construct 500N pairs
which should sufficient to avoid bias in estimating FPR.

11.4.1 Parameter Sensitivity

We investigate the effects of different choices of parameters i.e. size of the margin
m, the number of iterations in the L-BFGS. For all experiments in this section, we
split the data according to (S1). Firstly, we would like to understand how the overall
performance is affected by the convergence of the optimization. On the left of Figure
11.3, for different NK , we can see that as we increase the number of iteration from
50 to 100, one only gain very slightly in performance. This suggests that in large-
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Figure 11.4: Compare entropy-optimized vocabulary with k-means under non-
overlapping correspondence classes (S2)

scale application, we can trade-off training time without too much loss in performance
by limiting the number of iterations. To overcome the local minima, we also try
optimization with multiple k-means initialization. In our experiments, we do not gain
much improvement with the extra initialization. On the other hand, it turns out that the
size of margin m can also affect the performance. In essence, m is dependent on the
distribution of the data e.g. the magnitude of the variances within each correspondence
class. On the right of Figure 11.3, it can be seen that during testing, one achieves the
best performance with m = 5 for the data we test on. The inferior performance when
m = 1 and m = 20, can be related to under-smoothing and over-smoothing of the
distances to centers, respectively.

11.4.2 Generalization

We can see that for training and test setting S1, by encoding matched information
into the entropy optimization gives much better performance compared to k-means.
To further understand the generalization of the method, we test the method with data
split setting (S2). In this case, it is expected that the method has more difficulty to
generalize. Since in (S1), the distribution of each correspondence class is similar both
in the training set and test set. However, in (S2), the distribution of the correspondence
classes in the test set can be very different from those in the training set. In Figure 11.4,
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Figure 11.5: Entropy-optimized vocabulary on subspaces [x1, ..., x32] , . . . ,
[x97, ..., x128] under non-overlapping correspondence classes (S2).

we can see that the method only generalize well for vocabularies of small sizes i.e.
when NK = 5, 10. Otherwise, for large K, the vocabulary is equivalent or worse than
the unsupervised k-means, which is a clear indication of overfitting. This behavior
could be explained by the difference of the distributions of training set and test set, as
well as the curse of dimensionality.

11.4.3 Optimization over Subspace

To gain better insight of the generalization of the method, we also try entropy opti-
mization on subspace of the SIFT features. The reason we investigate this settings is to
see how the dimensionality would alter the behavior of the method. The subspaces we
work with are simply subdivision of the 128 dimension of the SIFT feature x evenly
with a factor of s e.g. when s = 32, the subspaces are [x1, ..., x32], ..., [x97, ..., x128].
In Figure 11.5, we can see that the entropy-based method improves over the k-means
slightly but consistently for all NK’s for subspaces [x1, ..., x32] and [x97, ..., x128].
On the other hand, for subspaces [x33, ..., x64] and [x65, ..., x96], applying optimiza-
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Figure 11.6: Entropy-optimized vocabulary on subspaces [x1, ..., x64] , . . . ,
[x65, ..., x128] under non-overlapping correspondence classes (S2).

Level k-means Eopt (m = 5) Eopt (m = 10)

3 0.4642 0.4738 0.4743

Table 11.1: Image retrieval performance of hierarchical k-means and entropy-
optimized vocabulary.

tion does not gain much improvement against k-means. We have similar observations
for different partitions of the SIFT feature spaces (e.g. s = 8, 16, 64). Similarly, as
seen in Figure 11.6, for the subspace division with 64 dimensions [x1, ..., x64] and
[x65, ..., x128], we still only gain better matching performance for small NK . This
suggests that it is possible to obtain better generalization by reducing the dimension-
ality of the feature space. However, further investigation is required on better subspace
projection than the natural partition here

11.4.4 Image Retrieval
To evaluate the method in a more formal setting, we use the entropy-optimized vo-
cabulary as the quantization step in bags-of-words recognition pipeline . We test the
method on the Oxford 5K dataset [84,85]. The task is to retrieve similar images to the
55 query images (5 for each of the 11 landmarks in Oxford) in the dataset of 5062 im-
ages. The performance is then evaluated with mean Average Precision (mAP) score.
Higher mAP indicates that the underlying system on average retrieves the similar cor-
responding images at the top of the ranked list.

In this case, we treat each feature as a correspondence class and the optimized
vocabulary will tend to have large margin between features. As an initial evaluation,
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to make the entropy-optimization feasible for such large-scale data, we follow the
hierarchical k-means strategy. We first applied the hierarchical k-means on the top
levels, and use entropy optimization at the last level to reduce the number of features
to optimize over. Specifically, we train a vocabulary tree with L−1 levels andK splits
at each level, at the level L, we apply the entropy optimization. In Table 11.1, we show
the retrieval performance of the optimize vocabulary against normal k-means with L
= 3, K = 100 (1M words). We can see that the entropy optimization does improve
the mAP by approximately 1% with some margin sizes (further increasing m to 20
deteriorate the performance) .The results on the same tree with L = 2, show similar
performance boost when m = 5, but are actually worse when we increase margin to
10 (the word distribution of vocabulary becomes non-uniform). We suggest that such
improvement is due to the fact that the entropy optimization increases the margins of
the dual separating planes of the k-means centers. In this way, corresponding features
(of smaller distances) would have lower probability being separated by separating
planes.

11.5 Conclusions
In this chapter, we study and extend the idea of entropy-optimized feature quantization
in large-scale training. The approach outperforms the unsupervised k-means when the
distribution of training data and test data is similar. However, our experiments show
that the gain of the optimization is less obvious due to the difference of the distribution
of training and test data. This is related to the high dimensionality of the SIFT features.
On the other hand, we explore the resemblance of the entropy optimization and max-
margin clustering. By optimizing the entropy on single-feature correspondence class,
the method tends to produce quantization that respects both the intra-cluster variation
and pair-wise distances. The effectiveness of the idea is verified in image retrieval
task.

To improve the generalization of the approach, one idea is to study the optimal
subspace projection that enables the better generalization to diverse distributions of
training data and test data. Another possibility is to quantized the local features into
coarse clusters with k-means, and then apply the entropy optimization on each cluster.
In this way, one can ensure similar distributions locally in each cluster, which might
then facilitate the generalization of the optimization.

161



CHAPTER 11. ENTROPY OPTIMIZATION

162



Bibliography

[1] Mongi A. Abidi and T Chandra. A new efficient and direct solution for pose
estimation using quadrangular targets: Algorithm and evaluation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 17(5):534–538, 1995. 56

[2] Erik Ask, Simon Burgess, and Kalle Åström. Minimal structure and mo-
tion problems for toa and tdoa measurements with collinearity constraints. In
ICPRAM, 2013. 107

[3] Erik Ask, Yubin Kuang, and Kalle Åström. Exploiting p-fold symmetries for
faster polynomial equation solving. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 3232–3235. IEEE, 2012. 2, 37

[4] K. Åström and A. Heyden. Stochastic analysis of scale-space smoothing. Ad-
vances in Applied Probability, 30(1), 1999. 65

[5] J. Barreto and K. Daniilidis. Fundamental matrix for cameras with radial dis-
tortion. In IEEE International Conference on Computer Vision, Beijing, China,
2005. 71, 72, 78

[6] Pratik Biswas, Tzu-Chen Lian, Ta-Chung Wang, and Yinyu Ye. Semidefinite
programming based algorithms for sensor network localization. ACM Trans.
Sen. Netw., 2(2):188–220, May 2006. 89

[7] E.D. Bolker and B. Roth. When is a bipartite graph a rigid framework. Pacific
J. Math, 90(1):27–44, 1980. 89, 90, 93, 96, 99

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–
122, 2011. 113

[9] José Henrique Brito, Roland Angst, Kevin Köser, and Marc Pollefeys. Radial
distortion self-calibration. 2013. 72

163



BIBLIOGRAPHY

[10] José Henrique Brito, Roland Angst, Kevin Köser, Christopher Zach, Pedro
Branco, Manuel Joao Ferreira, and Marc Pollefeys. Unknown radial distortion
centers in multiple view geometry problems. In ACCV 2012, pages 136–149.
Springer, 2012. 72, 73

[11] José Henrique Brito, Christopher Zach, Kevin Köser, Manuel João Ferreira, and
Marc Pollefeys. One-sided radial fundamental matrix estimation. In BMVC,
2012. 72, 73, 78, 82, 83

[12] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. A general solution to the
p4p problem for camera with unknown focal length. In Proc. Conf. Computer
Vision and Pattern Recognition, Anchorage, USA, 2008. 56, 59, 62, 63

[13] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. 3d reconstruction from
image collections with a single known focal length. In Computer Vision, 2009
IEEE 12th International Conference on, pages 1803–1810. IEEE, 2009. 71

[14] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. New efficient solution
to the absolute pose problem for camera with unknown focal length and radial
distortion. In Computer Vision–ACCV 2010, pages 11–24. Springer, 2011. 56,
59

[15] Simon Burgess, Yubin Kuang, and Kalle Astrom. Node localization in un-
synchronized time of arrival sensor networks. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 2042–2046. IEEE, 2012. 141,
143, 144, 145

[16] Simon Burgess, Yubin Kuang, and Kalle Aström. Toa sensor network calibra-
tion for receiver and transmitter spaces with difference in dimension. In 21st
European Signal Processing Conference (EUSIPCO 2013), 2013. 2, 98

[17] Simon Burgess, Yubin Kuang, Johannes Wendeberg, Kalle Åström, and Chris-
tian Schindelhauer. Minimal solvers for unsynchronized tdoa sensor network
calibration using far field approximation. In 9th International Symposium on
Algorithms and Experiments for Sensor Systems, Wireless Networks and Dis-
tributed Robotics (ALGOSENSORS 2013). Springer, 2013. 3, 143

[18] M. Byröd, M. Brown, and K. Åström. Minimal solutions for panoramic stitch-
ing with radial distortion. In Proc. British Machine Vision Conference, London,
United Kingdom, 2009. 25, 30

[19] Martin Byröd, Klas Josephson, and Kalle Åström. A column-pivoting based
strategy for monomial ordering in numerical gröbner basis calculations. In The
10th European Conference on Computer Vision, 2008. 16, 21, 22, 23, 24, 26,
27, 28, 29

164



BIBLIOGRAPHY

[20] Martin Byröd, Klas Josephson, and Kalle Åström. Fast and stable polynomial
equation solving and its application to computer vision. Int. Journal of Com-
puter Vision, 84(3):237–255, 2009. 15, 16, 21, 24, 26, 27, 30, 61, 75

[21] Martin Byröd, Zuzana Kukelova, Klas Josephson, Tomas Pajdla, and Kalle
Åström. Fast and robust numerical solutions to minimal problems for cameras
with radial distortion. In Proc. Conf. Computer Vision and Pattern Recognition,
Anchorage, USA, 2008. 21, 22, 24, 25, 26, 27, 29

[22] H. Cai, K. Mikolajczyk, and J Matas. Learning linear discriminant projections
for dimensionality reduction of image descriptors. Transactions on Pattern
Analysis and Machine Intelligence, 2010. 150

[23] J.F. Cai, E.J. Candès, and Z. Shen. A singular value thresholding algorithm for
matrix completion. Siam Journal of Optimization, 20(4):1956–1982, 2010. 114

[24] YT Chan and KC Ho. A simple and efficient estimator for hyperbolic location.
Signal Processing, IEEE Transactions on, 42(8):1905–1915, 1994. 115

[25] Homer H Chen. Pose determination from line-to-plane correspondences: ex-
istence condition and closed-form solutions. In Computer Vision, 1990. Pro-
ceedings, Third International Conference on, pages 374–378. IEEE, 1990. 55

[26] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer
Verlag, 1997. 14

[27] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer Verlag,
1998. 27

[28] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer,
2007. 14, 15

[29] R.-M. Cramer, R. Scholtz, and M. Win. Evaluation of an ultra-wide-band prop-
agation channel. IEEE Transactions on Antennas and Propagation, 50(5):561
– 570, May 2002. 133

[30] M. Crocco, A. Del Bue, M. Bustreo, and V. Murino. A closed form solution to
the microphone position self-calibration problem. In 37th International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP 2012), Kyoto,
Japan, March 2012. 90, 105

[31] Marco Crocco, Alessio Del Bue, and Vittorio Murino. A bilinear approach to
the position self-calibration of multiple sensors. Trans. Sig. Proc., 60(2):660–
673, feb 2012. 90, 120

165



BIBLIOGRAPHY

[32] Michel Dhome, Marc Richetin, J-T Lapreste, and Gerard Rives. Determination
of the attitude of 3d objects from a single perspective view. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 11(12):1265–1278, 1989. 55

[33] D. Eisenbud, Daniel R. Grayson, E. Stillman Michael, and Bernd Sturmfels, ed-
itors. Computations in algebraic geometry with Macaulay 2. Springer-Verlag,
2001. 45, 74, 76, 77, 78

[34] Ricardo Fabbri, BenjaminB. Kimia, and PeterJ. Giblin. Camera pose estimation
using first-order curve differential geometry. In ECCV, 2012. 55, 59, 68

[35] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–95, 1981. 55, 72, 135

[36] A. W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry
and lens distortion. In Proc. of Computer Vision and Pattern Recognition Con-
ference, pages 125–132, 2001. 11, 71, 72, 73

[37] N. D. Gaubitch, W. B. Kleijn, and R. Heusdens. Auto-localization in ad-hoc
microphone arrays. In ICASSP, 2013. 107

[38] D. Grayson and M. Stillman. Macaulay 2. Available at
http://www.math.uiuc.edu/Macaulay2/, 1993-2002. An open source computer
algebra software. 61, 93

[39] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system
for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/. 44,
110

[40] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle. Analysis and solutions for
the three point perspective pose estimation problem. In Proc. Conf. Computer
Vision and Pattern Recognition, pages 592–598, 1991. 55

[41] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000. 57, 72, 74

[42] Richard Hartley and Sing Bing Kang. Parameter-free radial distortion correc-
tion with center of distortion estimation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(8):1309–1321, 2007. 71

[43] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003. 9, 10, 41, 79

[44] Richard I Hartley. In defense of the eight-point algorithm. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 19(6):580–593, 1997. 83

166



BIBLIOGRAPHY

[45] Joel A Hesch and Stergios I Roumeliotis. A direct least-squares (dls) method
for pnp. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 383–390. IEEE, 2011. 41, 47, 48, 56

[46] Arnold Irschara, Christopher Zach, J-M Frahm, and Horst Bischof. From
structure-from-motion point clouds to fast location recognition. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
2599–2606. IEEE, 2009. 55

[47] R. Ji, H. Yao, X. Sun, B. Zhong, and W. Gao. Towards semantic embedding in
visual vocabulary. 2010. 150

[48] Fangyuan Jiang, Yubin Kuang, and Kalle Åström. Time delay estimation for
tdoa self-calibration using truncated nuclear norm. Proc. of ICASSP, 2013. 2

[49] Hailin Jin. A three-point minimal solution for panoramic stitching with lens
distortion. In Computer Vision and Pattern Recognition 24-26 June 2008, An-
chorage, Alaska, USA, 2008. 25, 29

[50] K. Josephson and M. Byröd. Pose estimation with radial distortion and un-
known focal length. In Proc. Conf. Computer Vision and Pattern Recognition,
San Fransisco, USA, 2009. 56

[51] K. Josephson, M. Byröd, F. Kahl, and K. Åström. Image-based localization us-
ing hybrid feature correspondences. In The second international ISPRS work-
shop BenCOS 2007, Towards Benchmarking Automated Calibration, Orienta-
tion, and Surface Reconstruction from Images, 2007. 56

[52] Kevin Köser and Reinhard Koch. Differential spatial resection-pose estimation
using a single local image feature. In ECCV 2008, pages 312–325. Springer,
2008. 56

[53] Y. Kuang, E. Ask, S. Burgess, and K. Åström. Understanding toa and tdoa net-
work calibration using far field approximation as initial estimate. In ICPRAM,
2012. 3

[54] Yubin Kuang and Kalle Åström. Numerically stable optimization of polynomial
solvers for minimal problems. In ECCV 2012, pages 100–113. Springer Berlin
Heidelberg, 2012. 1, 62

[55] Yubin Kuang and Kalle Åström. Numerically stable optimization of polynomial
solvers for minimal problems. In Andrew Fitzgibbon, editor, Lecture Notes
in Computer Science, volume 7574, pages 100–113. Springerm, Heidelberg,
2012. 103

167



BIBLIOGRAPHY

[56] Yubin Kuang and Kalle Åström. Pose estimation with unknown focal length us-
ing points, directions and lines. Proceedings of IEEE International Conference
on Computer Vision (ICCV2013), 2013. 2

[57] Yubin Kuang and Kalle Åström. Stratified sensor network self-calibration from
tdoa measurements. In EUSIPCO, 2013. 2

[58] Yubin Kuang, Kalle Åström, Lars Kopp, Magnus Oskarsson, and Martin Byröd.
Optimizing visual vocabularies using soft assignment entropies. In ACCV 2010,
pages 255–268. 2011. 3, 150, 151

[59] Yubin Kuang, Kalle Åström, and Fredrik Tufvesson. Single antenna anchor-
free uwb positioning based on multipath propagation. In Communications
(ICC), 2013 IEEE International Conference on, pages 5814–5818. IEEE, 2013.
3

[60] Yubin Kuang, Simon Burgess, Anna Torstensson, and Kalle Åström. A com-
plete characterization and solution to the microphone position self-calibration
problem. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 3875–3879. IEEE, 2013. 2

[61] Yubin Kuang, M Byrod, and K Åström. Supervised feature quantization with
entropy optimization. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1386–1393. IEEE, 2011. 3

[62] Yubin Kuang, Jan Erik Solem, Fredrik Kahl, and Kalle Åström. Minimal
solvers for relative pose with a single unknown radial distortion. In Computer
Vision and Pattern Recognition, Conference on. IEEE, 2014. 2

[63] Yubin Kuang, Yinqiang Zheng, and Kalle Åström. Partial symmetry in poly-
nomial systems and its application in computer vision. In Computer Vision and
Pattern Recognition, Conference on. IEEE, 2014. 2

[64] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator of minimal prob-
lem solvers. In Proc. 10th European Conf. on Computer Vision, Marseille,
France, 2008. 15, 16, 21, 24, 25, 26, 27, 29, 44, 45, 46, 48, 49, 50, 61, 62

[65] Z. Kukelova and T. Pajdla. A minimal solution to the autocalibration of radial
distortion. In In Proc. Conf. Computer Vision and Pattern Recognition, 2007.
71, 72, 74, 75

[66] Z. Kukelova and T. Pajdla. Two minimal problems for cameras with radial
distortion. In OMNIVIS, 2007. 25, 26, 29, 71

168



BIBLIOGRAPHY

[67] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Real-time solution to the
absolute pose problem with unknown radial distortion and focal length. Pro-
ceedings of IEEE International Conference on Computer Vision (ICCV2013),
2013. 56

[68] Zuzana Kukelova, Martin Byröd, Klas Josephson, Tomas Pajdla, and Kalle
Åström. Fast and robust numerical solutions to minimal problems for cameras
with radial distortion. Computer Vision and Image Understanding, 114(2):234–
244, 2010. 71, 72, 74, 78, 82

[69] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks
by information loss minimization. IEEE Trans. Pattern Analysis and Machine
Intelligence, 31(7):1294 – 1309, 2009. 150, 151, 152

[70] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate
o (n) solution to the pnp problem. International Journal of Computer Vision,
81(2):155–166, 2009. 56

[71] Hongdong Li and Richard Hartley. A non-iterative method for correcting lens
distortion from nine point correspondences. OMNIVIS 2005, 2005. 72, 85

[72] D. G. Lowe. Object recognition from local scale-invariant features. In Proc.
7th Int. Conf. on Computer Vision, Kerkyra, Greece, pages 1150–1157, 1999.
83

[73] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int.
Journal of Computer Vision, 60(2):91–110, 2004. 149

[74] N. Michelusi, U. Mitra, A. F. Molisch, and M. Zorzi. UWB sparse/diffuse
channels, part i: Channel models and bayesian estimators. IEEE Transactions
on Signal Processing, 60(10):5307 –5319, Oct. 2012. 133

[75] A. Mikulik, M. Perdoch, O. Chum, and J. Matas. Learning a fine vocabulary. In
Proc. 10th European Conf. on Computer Vision, Marseille, France, 2010. 150,
156

[76] Faraz M Mirzaei and Stergios I Roumeliotis. Globally optimal pose estimation
from line correspondences. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 5581–5588. IEEE, 2011. 41, 43, 49, 50, 56

[77] F. Moosmann, B. Triggs, and F. Jurie. Randomized clustering forests for build-
ing fast and discriminative visual vocabularies. In Twentieth Annual Conference
on Neural Information Processing Systems, Vancouver, Canada, 2006. 150, 151

169



BIBLIOGRAPHY

[78] Oleg Naroditsky and Kostas Daniilidis. Optimizing polynomial solvers for min-
imal geometry problems. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 975–982. IEEE, 2011. 24, 25, 26, 30

[79] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 2161–
2168, June 2006. 149

[80] Carl Olsson, Fredrik Kahl, and Magnus Oskarsson. Branch and bound methods
for euclidean registration problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(5):783–794, 2009. 42, 48

[81] N. Ono, H. Kohno, N. Ito, and S. Sagayama. Blind alignment of asyn-
chronously recorded signals for distributed microphone array. In WASPAA’09,
2009. 107

[82] Adrian Penate-Sanchez, Juan Andrade-Cetto, and Francesc Moreno-Noguer.
Exhaustive linearization for robust camera pose and focal length estimation.
2013. 56

[83] F. Perronnin. Universal and adapted vocabularies for generic visual catego-
rization. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(7):1243–
1256, 2008. 150

[84] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval
with large vocabularies and fast spatial matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2007. 149, 160

[85] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization:
Improving particular object retrieval in large scale image databases. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2008. 149, 160

[86] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for efficient
retrieval. In Proc. 10th European Conf. on Computer Vision, Marseille, France,
2010. 150

[87] M. Pollefeys and D. Nister. Direct computation of sound and microphone loca-
tions from time-difference-of-arrival data. In Proc. of International Conference
on Acoustics, Speech and Signal Processing, 2008. 89, 100, 107, 108, 110,
116, 117, 120

[88] N.B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free dis-
tributed localization in sensor networks. In Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 340–341. ACM,
2003. 89

170



BIBLIOGRAPHY

[89] Srikumar Ramalingam, Sofien Bouaziz, and Peter Sturm. Pose estimation using
both points and lines for geo-localization. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 4716–4723. IEEE, 2011. 55

[90] T. Santos, J. Karedal, P. Almers, F. Tufvesson, and A. Molisch. Modeling
the ultra-wideband outdoor channel: Measurements and parameter extraction
method. IEEE Transactions on Wireless Communications, 9(1):282 –290, Jan-
uary 2010. 133

[91] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object
matching in videos. In Proceedings of the International Conference on Com-
puter Vision, 2003. 149, 160

[92] H. Stewénius. Gröbner Basis Methods for Minimal Problems in Computer
Vision. PhD thesis, Lund University, April 2005. 89, 96, 102, 103, 107

[93] H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is three-view triangu-
lation really? In Proc. Int. Conf. on Computer Vision, pages 686–693, Beijing,
China, 2005. 43, 94

[94] Christoph Strecha, Alex Bronstein, Michael Bronstein, and Pascal Fua. Lda-
hash: Improved matching with smaller descriptors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 99(PrePrints), 2011. 150

[95] M. Bujnak T. Pajdla, Z. Kukelova. http://cmp.felk.cvut.cz/minimal/index.php.
14

[96] B. Triggs. Camera pose and calibration from 4 or 5 known 3d points. In Proc.
7th Int. Conf. on Computer Vision, Kerkyra, Greece, pages 278–284. IEEE
Computer Society Press, 1999. 56, 59

[97] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. NIPS,
9(1):6, 2008. 150

[98] J. Wendeberg and C. Schindelhauer. Polynomial time approximation algo-
rithms for localization based on unknown signals. In ALGOSENSORS, 2012.
107

[99] S. Winder and M. Brown. Learning local image descriptors. In Proceedings
of the International Conference on Computer Vision and Pattern Recognition
(CVPR07), Minneapolis, June 2007. 156

[100] J. Winn, T. Criminisi, and T. Minka. Object categorization by learned visual
dictionary. 2005. 150

171



BIBLIOGRAPHY

[101] G. Young and A.S. Householder. Discussion of a set of points in terms of their
mutual distances. Psychometrika, 3(1):19–22, 1941. 89

[102] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He. Matrix completion by truncated
nuclear norm regularization. In CVPR, pages 2192–2199, 2012. 112

[103] Lilian Zhang, Chi Xu, Kok-Meng Lee, and Reinhard Koch. Robust and efficient
pose estimation from line correspondences. In Computer Vision–ACCV 2012,
pages 217–230. Springer, 2013. 49

[104] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Åström, and
Masatoshi Okutomi. Revisiting the pnp problem: A fast, general and optimal
solution. Proceedings of IEEE International Conference on Computer Vision
(ICCV2013), pages 2344–2351, 2013. 2, 41

[105] Z. Zhu, A.M.C. So, and Y. Ye. Universal rigidity and edge sparsification for
sensor network localization. SIAM Journal on Optimization, 20(6):3059–3081,
2010. 89

172


	Introduction
	Overview
	Contributions

	Preliminaries
	Geometry in Computer Vision
	Camera Model
	Epipolar Geometry
	Radial Distortion

	Geometry in Bipartite Sensor Networks
	Far-Field Approximation

	Minimal Cases
	Algebraic Geometry
	The Action Matrix
	Constructing Action Matrix


	I Solving Systems of Polynomials Equations
	Optimizing Polynomial Solvers
	Motivation
	Optimizing Size and Accuracy for Solvers
	Permissible Selection
	Equation Removal
	Optimization Scheme

	Experimental Validation
	Nine-Point Uncalibrated Radial Distortion 
	Six-Point Calibrated Radial Distortion
	Three-Point Stitching

	Conclusions

	Symmetries in Polynomial Systems
	Full Symmetry
	Partial Symmetry
	Utilizing Symmetry
	Zero Solutions
	Symmetric Action Matrix
	Elimination Template with Symmetry
	Extracting Solutions
	Detecting Symmetry

	Applications
	Optimal Perspective-n-Point
	Optimal Euclidean Registration
	PnL Problem
	Symmetric Systems and Solvers

	Experiments
	Conclusions


	II Geometric Problems in Computer Vision
	Pose Estimation
	Pose Estimation with Unknown Focal
	Problem Formulation
	Number of Constraints
	Useful Cases
	Parameterization

	Polynomial Solvers
	Experiments
	Synthetic Data
	Real Data

	Discussions
	Conclusions

	Radial Distortion
	Single Unknown Radial
	Problem Formulation
	Fundamental Matrix and Radial Distortion
	Essential Matrix and Radial Distortion

	Polynomial Solvers
	8 Point Case: F +  
	7 Point Case: E +  + f 
	6 Point Case: E + 
	Alternative Parameterization
	Degenerated Cases

	Experiments
	Synthetic Experiments
	Real Experiments

	Conclusions


	III Geometric Problems in Sensor Networks
	TOA Self-Calibration
	Background
	The TOA Self-Calibration Problem
	Minimal Cases
	Solving the Polynomial Systems

	Lower and Higher Dimensions
	Difference in Dimension
	Minimal Problems
	Discussion

	Failure Modes
	Overdetermined Cases
	General Overdetermined Solvers
	Specialized Overdetermined Solvers
	Nonlinear Optimization

	Experiments
	Synthetic Experiments
	Real Experiments

	Conclusions

	TDOA Self-Calibration
	Background
	Minimal Cases for Unknown Offsets
	Rank-(k+1) Constraint
	Rank-k Constraint
	Discussions

	Rank Optimization
	Optimization Scheme

	Solving TDOA Self-Calibration
	Experiments
	Synthetic Data
	Real Data

	Conclusions

	Far-Field TDOA
	Far-Field TDOA Self-Calibration
	Failure Modes of the Algorithm
	Overdetermined Cases

	Synthetic Experiments
	Minimal Solver Accuracy
	Far-Field Approximation Accuracy
	Overdetermined Cases

	Real Experiment
	Signal model
	Finding Correspondences among MPCs
	Measurement Setup
	Data Processing
	Position Estimates
	Discussions


	Far-Field UTOA
	Far-Field UTOA Self-Calibration
	A Matrix Factorization Method
	Experimental Validation
	Synthetic Experiments
	Real Data

	Conclusions


	IV Image Retrieval
	Entropy Optimization
	Introduction
	Vocabulary Optimization
	Formulation
	Efficient Gradient Computation
	Approximate Computation
	Connection to Max-Margin Clustering

	Ground-Truth Dataset
	Experiments
	Parameter Sensitivity
	Generalization
	Optimization over Subspace
	Image Retrieval

	Conclusions



