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Preface

My interest in the effects of advanced driving assistance systems started with incredulity at the
blame assigned to the driver in every situation that goes awry, even if the driver is using a “smart”
system to help them. The driver is responsible for the vehicle and its actions according to the
Vienna convention (1968), but what are the opportunities for the driver to behave safely when
aided by automation? Research sometimes seemed to indicate that driving with automation was
more risky than driving without; at least in situations when automation failed to act and the
driver had to respond (Nilsson, 1996; Stanton and Young, 1998). Thus, my curiosity was drawn
to what the driver actually understood about a system’s capabilities, and how they were able to
handle its possible shortcomings. System limitations, whether a conscious decision by designers
or not, require the driver to revert to manual control fairly often.

At the beginning, the intention was to study the hand-over of control between automation
and human. In essence, to investigate the ”bumpy transfer’-problem from aviation (e.g. Sarter
et al,, 1997), and see how it manifested in driving. Bumpy transfer is the term sometimes used
for problems that occur when automation hands control back to the operator when it cannot
handle a situation. The operator is then thrust back into control at a point where she not only
needs to handle a hazard, but also understand how she ended up in the situation in order to
resolve it safely. Thus, the operator has to spend some time diagnosing the situation.

After having started the project, it soon appeared that “bumpy” transfer was difficult to
identify in driving. A handover of control might not even be a good way of characterising what
goes on between driving automation like ACC and the driver. As the ACC does not make any
tactical decisions beyond keeping the set THW according to what its sensors can detect, there
might not be a transfer of control the way there is in aviation.

A different angle was needed. Instead of viewing the driver’s use of ACC as a supervisory
task, as is often done in automation research, I started using the concept of “delegation”. If using
automation could not be seen as giving up control, maybe drivers were incorporating the system
more into their actions? The term “delegation” also points to the necessities of informing the
operator, and elucidates to what a human might (erroneously) expect from automation that is
working toward the same goal as them. Drivers not only have the opportunity to delegate parts
of driving, they should also be affected by that delegation. As the system takes over part of the
longitudinal control, such shared control of driving may also alter the drivers’ motivation for
looking at and responding to traffic and make them perceive the world differently.

The influence ACC exerts on tactical decisions made by the driver was unclear. In aviation,
the auto-pilot can make strategic decisions, as well as the tactical ones, and does not communicate
this to the pilot other than by the use of instruments and alerts. ACC on the other hand, while
having a tactical component, still does not handle so much of driving that the driver is left
outside of tactical considerations. Instead, the driver needs to handle the tactical side of driving
regardless of being in manual control or not. The focus of the thesis therefore became the effects
of delegating control to driving automation on tactical considerations. Mainly, how drivers work
with ACC, instead of how driving may be made more complicated with the system.
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ADAS - Advanced Driving Assistance Systems
ACC - Adaptive Cruise Control

CCC - Conventional Cruise Control

THW - Time HeadWay

TTC - Time To Collision
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The fact that we live at the bottom of a deep gravity well,
on the surface of a gas covered planet going around a nuclear
Sfireball 90 million miles away and think this to be normal is
obviously some indication of how skewed our perspective tends
to be.

- Douglas Adams (The Salmon of Doubt: Hitchhiking the
Galaxy One Last Tine)

1 Introduction

Human means for mobility have changed notably in the past two centuries; travel was primar-
ily by horse or bicycle until the introduction of automobiles, the modes coexisting for a period
of time until automobiles eventually took over. Development subsequently moved towards im-
proving these automobiles, by increasing speed, comfort and safety. When automobiles were
introduced in the 19th century, the public perception was that they were quite dangerous as they
travelled significantly faster than other means of transport. To mitigate this, it was required that
a man walk in front of the automobile waving a flag, in order to alert others. For horse car
drivers, the arrival of the automobile also constituted a big change. From being alerted by the
horse about certain dangers and learning to work with a specific horse, drivers of automobiles
were now on their own, dealing with a machine (Norman, 2007).

Vehicle design has always been an area in rapid development, evident by the increase in speed,
comfort and passive safety since the first automobiles were manufactured. From the invention of
power steering, automatic gearboxes, and ABS brakes onward, drivers are no longer as involved
in the mechanics of driving as they once were. In the past decade or two, development has
focused increasingly upon facilitating the cognitive demands placed on the driver, by allowing
automation to handle some tasks associated with driving, From having hands-on control of the
steering wheel and pedals, drivers are now offered the opportunity to rely on the usage of various
systems to handle the car.

With the invention of active safety systems and driver support systems that are able to handle
a large portion of not only clutch control but also speed control, the act of driving is taking the
next leap and is changing into something as yet unknown. Advanced driving assistance systems
such as adaptive cruise control (ACC) are available in an increasing number of car models, and
thus affect a growing number of drivers. The safety and robustness of the systems in various
scenarios are of course tested thoroughly before market release, but the full effects on the driver
and the transport system will not become apparent until systems are more extensively used.
Long-term effects of system usage on the driver’s actions, effects when using several systems
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in combination, and how or if experience with one system may transfer to another one cannot
be fully predicted either, as drivers develop behaviours over time (e.g. Saad, 2004). The advent
of systems that control central aspects of driving for prolonged periods of time therefore also
necessitates further research into how drivers approach and make use of these systems in every-
day traffic. The driver’s understanding and opportunities to behave safely with the system are
important, as the driver is responsible for all actions of the vehicle, including those that are the
result of any automation present in the vehicle (Vienna convention, 1968).

The overall aim of this thesis is to improve the understanding of how drivers deal with the
addition of continuous automation, more specifically adaptive cruise control, to their cars during
a normal drive. Particularly, how drivers handle driving with ACC in common traffic situations
that may require them to resume manual control. Examples will relate to ACC when possible,
rather than to other systems. ACC is currently one of the more advanced systems available, and
the only one capable of handling some actions of surrounding traffic without the need of driver
interference. As such, it is also uniquely suited for a discussion of how the driver’s role and
actions may change with the addition of further automation.

1.1  General scope

The focus of this thesis lies on delegation of primarily longitudinal control while driving, mainly
operationalised by the delegation of control to adaptive cruise control (ACC). ACC is a contin-
uous driver support system that has been present on the market for over a decade. The results
from this thesis will generalise to the use of continuous driving automation in cars, but not
necessarily directly to the effects of using automation in other domains.

The thesis is written neither focusing on vehicle performance parameters nor merely studying
automation from the human’s perspective. Instead, an attempt is made to investigate driving
itself; how the driving task changes for the driver, taking a qualitative stance. In conjunction
with this, quantitative measures will be used to detail how drivers respond when working with
the system. There will also be a review of how drivers adapt their utilisation of the system
by using it and learning about its behaviours. Taking this perspective means other aspects fall
outside the constraints, such as studying traffic dynamics, social aspects of using driver assistance
systems, and effects on the transport system at large.

Further limitations include that only the actions directly associated with the system will be
studied. Driver distraction and the use of ACC in combination with other systems are all beyond
the scope of this thesis. The scope is also developed further in Chapter 2 on page 9.

1.2 Structure of the thesis

Next in the current chapter, ACC functionality and the definitions used throughout the thesis
are detailed. In chapter 2, a conceptual framework focusing on cognition and control, mainly
task delegation, is presented. Next, previous research on the use of automation in general and
ACC in particular is discussed in Chapter 3, followed by the research questions in Chapter 4.
Summatries of the empirical studies conducted in the course of this thesis are introduced and the
results presented in Chapter 5, along with answers to the research questions (Section 5.5). The
methodological considerations and the results are then discussed in a broader setting in Chapter
6, where recommendations for future research and an improved ACC are also suggested (Section
6.3.1). The thesis terminates with the conclusions in Chapter 7.
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1.3 ACC functionality

Adaptive cruise control systems expand on the capabilities of conventional cruise control (CCC)
systems by the addition of radar, allowing ACCs to respond to the position of the vehicle in
front and adjust the ACC vehicle’s speed to maintain a set minimum distance to it (see Figure
1.1). CCC systems maintain a constant set speed, therefore being of most use when there is
no other traffic around. With ACC, the driver does not need to use the gas and brake pedals
as much, thus providing relief during long drives. The time headway (THW) or time distance
to the vehicle in front, can normally be set in five steps between about 1 and 2.5 seconds. If
the vehicle in front speeds up or turns off, the ACC vehicle speeds up, but no more than to
the set maximum speed. If a new vehicle enters between the ACC vehicle and the lead vehicle,
ACC locks onto this new vehicle, making it the new lead vehicle. The ACC system thus switches
automatically to any new vehicle in front. In cases with a very small time headway, it may take
the ACC system a fraction of a second to identify that there is a new lead vehicle in front, making
it accelerate until it identifies the new leader and locks onto it.

Has target, target slower than set speed

Speed: 80 km/h Speed: 80 km/h
Set: 120 fkm/h

Figure 1.1: The ACC vehicle has a set speed of 120 km/h, but the lead vehicle is driving at 80 km/h. Thus,
the ACC slows the vehicle down automatically to keep the set minimum distance, and drives at
80 km/h. If the lead vehicle were to disappeat or speed up, the ACC would accelerate toward
the set speed.

In the first versions of ACC, there was no forward collision warning (FCW) if there was
a sudden low time to collision (TTC). FCW is a system that warns the driver about imminent
collision by sound or visual signals, to allow the driver to respond by braking or by employing
another avoidance manoeuvre. Current versions of ACC, to this author’s knowledge, always
come bundled with FCW. When ACC is off, FCW can still be active but it is not possible to
activate ACC without FCW.

The ACC can interact with the driver in three modalities; visually, by haptics, and to a lesser
degree, auditory. Icons on the dashboard show the set speed, set THW; if the system is active,
and if the system is following the vehicle in front or not (see figure 1.2). An icon can also indicate
whether the system has dirt on its sensors that needs to be cleaned off.

The ACC system has a maximum brake force as well as a maximum acceleration force, and
the maximum brake force may or may not be enough to brake before collision given the char-
acteristics of the specific driving situation. ACC is therefore not a collision avoidance system.
Present ACC systems are generally able to brake the vehicle down to a standstill (known as full
range ACC), but the systems studied for this thesis did not have this feature.
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Figure 1.2: Adaptive Cruise Control

ACC systems are available under different names from a variety of different makers. They
are primarily available in the premium vehicle segment.

1.3.1 Activation and deactivation

The driver activates the system by pressing buttons typically available on the steering wheel,
either to resume a previously set speed, or to set the current speed as the maximum speed of
the vehicle. The driver can also increase or decrease the vehicle speed as regulated by the system
with the buttons on the steering wheel (Figure 1.3), as with CCC.

If the driver presses the brake, the ACC system no longer regulates speed and the driver
resumes manual control. In order to allow the system to regulate speed again, the driver needs
to activate the system by pressing the resume button. The throttle does not deactivate the system,
but can always be used to drive faster than the set maximum speed. When the throttle is released,
the ACC system once again automatically regulates speed.

Figure 1.3: Control buttons for ACC, clockwise from top left: Resume, activate, distance and speed
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1.3.2 Functional limitations

Being an automated system, ACC can only “see” what its sensors allow it to. Therefore, bad
weather or dirt on the sensors can radically affect the system’s opportunities to collect data. If
the sensors are too dirty, the system cannot be engaged. In rain or snow, the effectiveness of the
system’s sensors is impeded and it may not respond to other vehicles as well as it normally does.

According to Winner (2012) the ISO standard ISO 15622, regulating the functional limits
of ACC, states that priority is always given to driver interventions, and at steady speeds below 5
m/s, the driver is to be requested to resume manual control. Limitations for system settings are
also regulated, and the minimum allowed time gap (THW) is 1 second. Acceleration is allowed
within the limits of -3.5 m/s® to +2.5 m/s®>. Some limitations are also present with the ACC
system. The ACC radar only detects vehicles straight ahead within a specific viewing angle by
predicting their driving path, and at a specific maximum distance depending on the reach of the
radar. It may also take a little while for the system to detect a vehicle, due to the movement or
properties of that vehicle and the drive path predicted (Winner, 2012).

However, as Winner (2012) also notes, there are also situation-dependent constraints that
complicate target identification. For comfortable braking when driving at high speeds, braking
needs to commence before coming too close to a much slower vehicle in front. Still, with a
large difference in speeds, it is likely that the slower moving vehicle will instead be overtaken.
Early deceleration would in that case be disturbing to the ACC driver, hindering the overtaking
process. Winner also mentions that the ACC system is slower at detecting a vehicle cut-in than
the human driver is: The driver can identify a cut-in before that vehicle has crossed the lane
marking, The system, due to its selection of targets and assigned driving paths, is slower by
about two seconds (Winner, 2012, page 637). Furthermore, this slower response on the part of
ACC could also only be rectified by the addition of situational knowledge, which according to
Winner puts the transparency of ACC system behaviour at risk. If ACC had knowledge of the
situations it acts in, it would be more difficult for the driver to understand when and why the
system acts the way it does, if the system does not communicate this fully.

According to Winner (2012), ACC incorrectly identifies what should be seen as a lead vehicle
about once every hour, something he notes as being difficult to improve upon. Thus, ACC will
always continue to be an imperfect system. This imperfectness, however, could be an advan-
tage. Winner suggests that it is more difficult to prepare drivers for something that they never
experience, rather than having the current situation where drivers are used to having to get back
into control occasionally. If an incorrect lead vehicle is identified at several occasions during a
long drive, the driver will know that the system is fallible, and therefore be prepared to resume
control if necessary. Had the system been too competent and almost never made these mistakes,
mis-identification of a lead vehicle could have more hazardous consequences as the driver would
struggle to identify something, to them, very improbable.
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1.4 Definitions

The term ”ACC vebicle” will be used to refer to the vehicle that is equipped with the ACC system.
The “lead vebicle” is the vehicle that the ACC vehicle is currently following.

The systems included in the concept “driver support system” in this thesis are only those that
rely on responding to events outside the vehicle, and relieve the driver of a continuous cogni-
tive task (see Young et al., 2007). These atre systems that also fall into the category of “driving
automation” rather than “’vehicle automation”; see Figure 1.4. Systems such as electronic stabil-
ity control (ESC) and anti-lock braking system (ABS) are not included in this term, as they are
more an enhancement of hardware functionality than systems that respond to events outside the
vehicle. Automatic gearboxes are perhaps more closely related to advanced driving assistance
systems (ADASs) such as ACC, being both continuous and attempting to respond to vehicle
states. Typically, automatic gearboxes do not take the outside world into account, they are there-
fore not included in the current definition of “driver support system”. Warning systems such
as lane departure systems could also be seen as driver support systems or driving automation,
though they only step in at discreet occasions, not continuously.

Vehicle antomation | Driving automation

CCC ACC

ABS FCW
Blind spot information
Emergency braking
systems

Automatic gearbox

Figure 1.4: Systems as divided into driving automation or vehicle automation.

"Behavionral adaptation” has been defined by the OECD (1990) as ”those behaviours which
may occur following the introduction of changes to the road-vehicle-user system and which were
not intended by the initiators of the change”. This thesis will extend behavioural adaptation to
signify any behaviour by the driver that may follow changes to the road-vehicle-user system,
intended or not by the initiators of the change.

"Control” will be mentioned several times in this thesis. What is normally meant by the term
control is the physical, manual control employed, but the term also includes monitoring that
the actions taken are having the intended effect on the manipulated object. An example of this
would be the physical control needed when intending to follow a curve by turning the steering
wheel, but also looking to see if the angle of the steering wheel is enough to take the curve
appropriately or if it needs adjustment. Any other meanings will be specified in the text.

The driver constantly needs to attend to events outside his or her vehicle in order to avoid
potential collisions and stay on course. Such potential collisions will henceforth be called “#raffic
conflicts”. Traffic conflicts are defined in transport engineering as an event where two (or more)
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vehicles approach each other such that a collision will occur if not at least one of the vehicles
makes an avoidance manoeuvre (Hydén, 2008). The term is mainly used in urban traffic be-
tween two vehicles. For the purposes of this thesis, it will be applied to motorways and rural
roads. Traffic conflict is not normally a term used in the area of human factors, but it is a useful
definition in the descriptions of traffic events that are to follow.

In order to describe these traffic conflicts, the words “event”, “situation” and "scenario” will be
used depending on context. ”Event” is intended to be understood as the class of occurrence,
say a cut-in event. When an event occurs and thus becomes a specific instance of that event,
it is referred to as a situation”, in real life or when simulated. Lastly, a ”scenario” is an event
designed for use in for example a driving simulator, and so is a highly specified event where all
variables except driver response are controlled.

"Borderline” traffic conflicts or events is a concept that will be used to describe traffic conflicts
that may or may not be within the system’s ability to respond to, a situation very similar to one
where the system can respond. One example of this would be a vehicle cutting in front of
the ACC vehicle, resulting in the system having to brake just above its maximum brake level in
order to avoid a collision. In a very similar situation, the system’s maximum brake level could be
enough. To the driver, it will not be apparent until after the fact which of these hold true.

Having "excperience” with a system is defined as having previously used and become familiar with
system, on more than a single occasion.






Anything that happens, happens. Anything that, in bappen-
ing, causes something else to happen, causes something else to
happen. Anything that, in happening, causes itself to happen
again, happens again. 1t doesn’t necessarily do it in chrono-
logical order, though.

- Douglas Adams (Mostly Harmless)

2 Conceptual framework

Operator tasks and behaviour change with the addition of automation, and in order to analyse
driver adaptation to ACC an short review of human cognition and a framework of control is
needed. The text on cognition is chiefly intended as a background and introduction to how
the author approaches the subject of driving automation. The framework on control is then
explored from a mainly cognitive petspective, introducing theories and concepts that are useful
for discussing some changes for the driver brought by the introduction of automation.

2.1  Cognition

Cognitive processes are those mental processes that describe how agents think about and know
the world, including perception, attention, memory, learning, problem solving, and many more.
Thinking and perceiving does not, however, take place in a vacuum independent of the world
around it. Instead, all human action and cognition is mediated, filtered, through the artefacts and
tools that surround us (Norman, 1993). It is therefore impossible to add or remove artefacts or
systems, expecting to see the same behaviour or thinking in people as in the original setting. The
addition of automation to the driving task will therefore modify driver behaviour, it does not
merely remove responsibilities. As Bainbridge (1983) pointed out, the introduction of advanced
automation into a task still leaves humans responsible for crucial monitoring and dealing with
emergency situations.

2.1.1  Situated cognition

Generally, the concept of situated cognition is used to describe how the thinking of an individual
is affected by their goals and experiences as modified by for example automation. With ACC,
the driver and system are both observant for obstacles ahead, but the system can detect and do
things that the driver cannot, as the driver can detect and do things the system cannot. This
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implies that the driver can both make use of the system to extend their cognition, and have their
goals affected by the functionality of the ACC. Some things are better handled by the ACC, and
others better handled by the driver.

The addition or removal of even just a small part of a task means that the task in its en-
tirety will be changed (e.g. Hollnagel, 2001; Norman, 1993), as cognition is dependent on its
surroundings. The reason is that the tools and artefacts we use affect our cognition, as it filters
the world through the actions afforded by these artefacts, and guide our attention. Cognition
thus cannot be taken out of context, as the experience of that context shapes our perception of
the world and also constrains and shapes our perceived opportunity for action. Neisser’s (1976)
“perceptual cycle” provides a description of how perception, action and knowledge influence
each other in the achievement of goals: An experienced driver may see a ball in the side of
the road and immediately slow down and start looking for children, whereas the inexperienced
driver only sees the ball, lacking knowledge of any implicit meaning, If the inexperienced driver
then sees a child, they too may start to make a connection between a ball and children and thus
adjust their attention in such circumstances. Having experience with a system or an event type
therefore makes people more prepared to perceive some things than others. The three parts of
action, perception and experience thus interact with each other, in a circular fashion, to provide
a suitable interpretation of an event (Neisser, 1976). With the use of automation, the system
also provides other means for exploration, perception and action than the human has alone
(Norman, 1993).

Other researchers have also emphasised that as attention is to a large extent guided by ex-
perience and goals (e.g. Most et al., 2005), drivers can easily miss relevant information because
it is unexpected or not relevant to the current goal (Hills, 1980 and Rumar, 1990 in Trick et al.,
2004). Most and Astur (2007) have also shown that when sudden obstacles are unexpected in
a given environment, collision rates in simulated driving are substantially greater. However, the
goals guiding attention need not be constrained to being vigilant for hazards, but can be more
fuzzy as well. The task of following another vehicle can capture driver attention, as the goal
of driving along a road changes to that of following another vehicle manually (Crundall et al.,
2004). The introduction of ACC will allow drivers to act differently than they would without the
system, these new behaviours then modifying drivers’ attention and interpretation of events.

2.1.2  Summary

Tools and artefacts, by their design, constrain actions and the construction of experience (Not-
man, 1993). Operators need to coordinate their actions with those of the automation, as well as
intervene with the automation when necessary and respond to any disturbances. The addition of
automation thereby causes humans to incorporate monitoring not only of the situation, but also
of the system’s actions and performance. The opportunity to partly rely on ACC functionality
constrains and extends the opportunities for driver actions in ways that a car without ACC does
not. Instead of having the continuous goal of keeping the distance to the vehicle in front man-
ually, the driver allows the system to manage this task. With ACC, drivers have the opportunity
to exploit system actions and to attend to things slightly differently, but also need to watch out
for any traffic conflicts the system might have difficulties handling,

A driver is likely to act qualitatively different with ACC than without it, both by their be-
haviour and attention, as their experience of driving will be different with the system. Having
access to a system that can handle some of the distance keeping to vehicles in front allows drivers
to use ACC to accomplish goals of for example perception. The use of ACC to fulfil goals can

10



2 CONCEPTUAL FRAMEWORK

also change how the driver attends to surrounding traffic.

One question that remains, howevet, is how the driver makes decisions of how to make use
of and rely on ACC, and when not to. Another aspect is what the driver’s chances are to continue
driving well when delegating control to ACC, as the system affects their drive and their need to
respond.

2.2 Control

To discuss what tasks can be managed with the help of ACC, it is useful to introduce framework
of driving behaviour. The choice has fallen to Michon’s well-known separation of control tasks
in driving (Michon, 1979, 1985), for its usefulness to the perspective of actions and cognition
taken in this thesis. The main reason for using Michon’s model as a framework is to establish
the boundaries of what will be observed, rather than as an explanatory model or to determine
the demands placed on the driver. The model is not concerned with finding the reasons be-
hind specific behaviours or responses, but rather aims at describing different aspects of driver
behaviour when interacting with the vehicle, with traffic, and when planning the overall goal of
the trip. Such a general framework can be more useful for describing possible changes in the
driving task as a whole, on different levels, rather than in specific sub-tasks such as monitoring,
regulating or operating the steering wheel.
For a comparison of different theories relevant to studying driver behaviour, see Table 2.1.

Table 2.1: A comparison of theories used to study and describe driver behaviour

Starting point Time frame | Level of detail Identified
changes
Three control Driver choices Varied Mainly lower Vehicle
levels behaviour
(Michon, 1979, 1985)
Field of safe travel | Driver perception | Instances Very low Based on
(Gibson and Crooks, enironment
1938)
Joint cognitive Driver actions Short Mainly higher In sub-tasks
system
(e.g. Hollnagel et al.,
2003)
Cognitive task Driver demands Short Very high In sub-tasks/
analysis demands
(e.g. Stanton, 2006)

2.2.1 'Three levels of driver behaviour

Michon (1979; 1985) categorises driver problem-solving and behaviour into three main levels of
control: strategic, tactical and operational. The strategic level concerns the main planning stage
of the trip including route choice, the goal of the trip, and even modal choice. At the tactical
level, there is the negotiation of the more acute traffic situation. Thus, the tactical level applies

11
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for example to obstacle avoidance, gap acceptance, overtaking and turning. These tactical goals
are adapted to the strategic goals, and may also adapt the strategic goals to fit more acute tactical
ones for example by deciding on a detour to handle a build-up of traffic. Lastly, the operational
level concerns the actual manual control, such as turning the wheel, pressing the brakes and so
on - the basic motor skills of driving. ACC primarily affects motor actions and gap acceptance,
or the operational level and parts of the tactical control level (see Figure 2.1).

By keeping a set speed and distance to the vehicle in front, ACC manages some of the
operational parts of driving, mainly those of operating the accelerator and brake pedal. Due
to its functional limitations, ACC cannot manage these parts completely independently and so
more acute braking is still the main responsibility of the driver. Not only operational tasks are
handled by ACC. The tactical task of gap acceptance is also delegated to the system during most
car following, As the ACC system cannot detect more about the traffic situation than what is
made possible by its sensors, the tactical decision of whether an action is appropriate or not
given the circumstances still lies with the driver.

Effects of vebicle antomation and driving antomation

Strategic Modal choice GPS/ route
) Route choice planner
Tactical Overtaking
Obstacle avoidance ACC
Gap acceptance FCW
Opemz‘z'am/ Brake operation Autom transm.
Gear operation ABS
ccC

Adapted from Michon (1979; 1985)

Figure 2.1: Michon’s three levels of control when driving, where ACC primarily affects the operational and
to some degree the tactical level of control

The operational tasks of driving are the easiest to automate, as has already been done with
automatic gearboxes, ABS, and CCC (conventional cruise control). The automation of opera-
tional tasks, however, assigns the tactical task of determining if the system’s response is adequate
or appropriate to the driver (see Figure 2.2).

As the ACC system does not have sensors to perceive situations the same way an experienced
driver does, the automation of operational (and to a certain degree tactical) tasks poses challenges
for the driver. Comparing the event in Figure 2.3 to the event in Figure 2.4, it is clear that two
situations can appear very similar if one only has access to a radar and no knowledge of the
road or the traffic surroundings. The driver is therefore needed to determine if the system’s
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Operational
min THW | :
i
Driver: ACC:
Is ACC braking Braking,
enough? THW too low

Figure 2.2: When the minimum THW is reached, the driver needs to determine if the ACC braking is
adequate.

interpretation of the situation is correct or not. Situations such as these that are potentially
difficult to respond to for the system will be called borderline traffic conflicts or borderline
events. In these situations, drivers may be uncertain of system behaviour, and if manual control
is necessary or not.

Tactical #1
THW: free
Driver: ACC:
Curve, keep speed/ Accelerate, free way
slow down

Figure 2.3: The ACC vehicle enters a sharp curve (or a roundabout), causing the system radar to lose
contact with the lead vehicle. The ACC accelerates.

2.2.2  Delegating control

Whilst ACC can be conceived as being part of the driver’s distributed cognition, it is also a sep-
arate system. As such, it needs to be designed as well as possible to correspond to the driver’s
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Tactical #2
THW: free
Driver: ACC:
Accelerate, free way Accelerate, free way

Figure 2.4: The lead vehicle switches lane, thus making the ACC vehicle lose radar contact with it. The
ACC accelerates.

intentions and goals. As previously stated (see Section 1.3.2), ACC has and always will have cer-
tain functional limitations such as technical limitations of its sensors, and a lack of understanding
of the traffic situation at large. When control is delegated to ACC, it may be unclear what the
driver can do to identify, handle, and work with its shortcomings but also its strengths. Problems
with the system’s sensors for example, may not be apparent except in very bad weather, but ACC
could also potentially be used in somewhat less adverse weather to maintain a safe distance in
poor visibility.

To make full use of the automation, it needs to be allowed to accomplish its tasks without
constant interference. Working with automation could thus be conceived as delegating certain
tasks to it, and allowing it to control those tasks and regulate them itself. To understand task
delegation from a more needs based perspective, instead of finding solutions to specific interac-
tion design problems, the more general issues faced when delegating tasks need to be identified.
Castelfranchi and Falcone (1998) propose a model of cooperative behaviour and task delega-
tion between agents. This model specifically emphasises the more communicative and human
aspects of delegation, and does not require a study of the transfer of information or the details
in accomplishing one task alone. The advantage of using this theory, instead of others, is the
focus on the relative independency of the two parties. Castelfranchi and Falcone specify types of
communication and understanding that are necessary in order to achieve optimum cooperation,
something not covered in other theories on cognitive systems.

Castelfranchi and Falcone describe delegation in broad terms as the action of trusting an-
other agent to perform a task (Castelfranchi and Falcone, 1998; Castelfranchi, 1998; Falcone and
Castelfranchi, 2002, 2001). Their model primarily describes task delegation as something pos-
sible between goal-directed agents, agents that regulate their actions based on feedback of the
results. For vehicle automation, both the driver and the ACC system have a joint goal: Keeping a
speed up to a set maximum without coming too close to the vehicle in front. ACC can therefore
be concieved as not merely a tool, but more like an agent. It is capable of handling its tasks
independently, without the driver’s constant input.

The framework by Castelfranchi and Falcone assumes that both parties are not only goal-
directed but also cognitive agents. That is, agents that have an internal representation of beliefs
that can be manipulated generated and reasoned about. ACC is not an example of a cognitive
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agent, nor is this thesis arguing that ACC or similar systems will be cognisant in the coming
years. People working in teams with automation do not make this distinction between cognitive
and non-cognitive goal-directed agents, though. Instead, people behave towards automation the
same way as to humans, in terms of coordination and similar social actions, if they are perceived
to share the same goals (Nass et al., 1996). When working with complex systems, a heuristic
approach like approaching the system as an intentional agent may also be more practical for the
user in explaining and predicting its behaviour than an incomplete description of the system’s
workings (Wooldridge and Jennings, 1995). With complex systems such as ACC, a complete
understanding and description of a system is not possible to achieve anyway, as the system’s
behaviour depends on too many factors and data sources for a full prediction of its behaviour
in all circumstances.

Determining what can be delegated When allowing a system to regulate some aspects of
driving, there needs to be an element of faith in the system’s ability to accomplish its task in a
particular situation. Falcone and Castelfranchi (2002) take the view that task delegation is the
action of trusting another agent to do a specific task. This action of trusting is not necessarily
only grounded in knowledge of what the other agent (or system) is capable of, or what it “under-
stands”. Rather, it is based on a combination of the safety and reliability of the environment and
circumstances surrounding the action, the reliability of the other agent, as well as how conve-
nient it is to trust the other agent in the current situation. To achieve delegation, trust is therefore
necessary but not sufficient as preferences and conveniences are also taken into account.

Once deciding to make use of a system, the first step before task delegation is coordination
according to Castelfranchi (1998). Coordinating actions can be accomplished in a range of dif-
ferent ways, from passively waiting for something to happen to actively negotiating the terms of
the task delegation. With ACC, all these types of coordination are not possible. The driver can
only adjust her own plan to accommodate the system’s behaviour, or deactivate the system to
make it abandon its goal. Changing the ACC system’s goal outside that of the settings available
to the driver is, however, not possible. Both positive and negative interference from the ACC
system can be experienced at the tactical and the operational levels (see also “Monotoring dele-
gated tasks”, ahead). Adapting to the actions (or interference) by another agent does not involve
active participation in the other, whereas the introduction of an action or the ceasing thereof is
accomplished only by taking action towards the other. With ACC, adaption to the system could
be exemplified by avoiding to use the brake at the exact time one would prefer to, as one knows
that the system will respond shortly. The induction of action on the other hand is accomplished
by switching on the system, regulating the set speed, or moving to the outer lane in order to go
faster. In Castelfranchi’s view, it is not delegation until one agent tries to induce a specific action
(or avoidance of action) in another. Otherwise, there merely is coordination.

The driver delegates distance and speed keeping to ACC by pressing a button to start the
ACC, not by asking for agreement. Complete delegation is not possible as the system is not aware
that the driver intends to exploit its actions, it cannot fully adopt the driver’s goals. Drivers also
have several potentially conflicting goals, all in various ways directing their priorities when driving
(see Figure 2.5). Such higher-level goals are natural to humans, but would need to be explicitly
stated and programmed into a computer system. Any such implicit aspects of task delegation
may be missed by the system, as the designer cannot think of all possible uses (or ”’mis”-uses, cf.
Parasuraman, 1997) of the system.
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Driver goals
Arrive at target Comfort
Time Scenery
Habit !
Safety

Fuel economy
Social factors
Speed

...and more

Figure 2.5: Some of the goals directing driver priorities

With any system designed by a human, designers and engineers decide what is to be del-
egated and how (Hoc, 2001). System designers decide on cut-off levels and when to trust or
not trust the sensors, and it will be up to the operator/driver to learn about these limitations.
Thus, what the driver believes to be delegated may not necessarily be what the system designer
envisions (Castelfranchi and Falcone, 1998). Consider this example: As the task of ACC is to
keep the distance to a lead vehicle, it would not be unreasonable to assume that the system could
handle the lead vehicle pressing the brake very hard. Such an event, however, depends on the
specification of the system, as well as the current time headway and the speed both vehicles
are travelling at. The ACC system cannot make a change in its braking power even if it often
encounters such situations, and the driver can only determine system limits by trial and error.
Some understanding of system limitations and behaviour in situations can be achieved by trial
and error, but it is likely that the drivers’ understanding is imprecise due to the many variables
present.

Upon activation, ACC keeps a maximum set speed and minimum set distance to the vehicle
in front, these being the main goals of the system. The ACC, however, has no way of knowing
whether the driver is presently prioritising speed, safety or something completely different (see
Figure 2.5). There is no communication between the driver and the ACC system about what the
situation calls for, thereby making the driver’s understanding of which tasks are delegated less
clear. Drivers can therefore assume that more tasks have been delegated than is reality, as no
confirmation can be had from the system. For instance, ACC systems have a maximum brake
force, and cannot apply full braking force in the case of imminent collision. In order to adapt
more to the driver’s tacit goal of safety, ACC is generally bundled with forward collision warning
(FCW). Through this bundle, the activation of ACC also entails being warned about possibly
driving into other vehicles, such that the driver is made aware of the need to intervene. Through
a solution like that, the system emulates a more complete delegation, behaving more in tune
with driver goals. Other goals, like social factors or habit, can be more difficult to anticipate
or respond to by system designers, and therefore the success of delegation relies on the driver
knowing what to expect from the system.

As previously stated, it is likely that drivers construct heuristics to cope with system actions.
The driver is the only one that can adapt, and needs to form strategies to enable using the system
to her or his liking, despite perhaps not using the system to its full potential.

Coordinating and cooperating with ACC It may be tempting to characterise driver us-
age of automation as ”cooperation” with automation, but in Falcone and Castelfranchi’s (2001)
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view the possibility of doing so is limited by the capacities of the agents involved. For efficient
coordination and actual cooperation, the agents need to be aware of each other’s goals (Falcone
and Castelfranchi, 2001). Then, and only then, can they coordinate proactively and mutually
and achieve cooperation. Today’s driver assistance systems have no mind of their own, and are
merely reactive in their attempts to respond to changes in the outside environment. Systems
with minds of their own are also unlikely if the systems are supposed to be used in traffic where
vehicles operated by humans ate driving. The sensors used by the ACC systems are only directed
outwards, to the world outside the vehicle, so the system can only respond to the external world
and not to the human operator other than the settings mentioned in Figure 2.6. ACC is therefore
not able to coordinate with the driver, but is wholly dependent on the driver’s understanding of
the system’s goals and the driver’s ability to adapt to the system.

ACC Driver
controls controls
- Cut-off levels - Minimum THW within range
- What vehicle to follow - Maximum speed
- Deceleration and acceleration - System active/inactive
behaviour

- System override
- What can be delegated

Figure 2.6: The items controlled by ACC, and what the driver can control.

A non-cognisant system can only be proactive if it has complete knowledge of the world, as
it cannot otherwise perceive visual signals such as turning indicators or brake lights of a vehicle
far ahead. Such “understanding” is only possible if the world it occupies is artificial and fully
defined (with plenty of infrastructure communication), and one where system control is the
only control available. If artificial systems and humans are mixed, there will always be a case
where humans behave in ways that automation cannot anticipate, or where automation behaves
in a way humans dislike. As this highly specified world does not exist, the system is dependent
on the drivers’ ability to anticipate events and coordinate their actions to those of the system.
Additionally, drivers can only adjust system behaviour within a small functional envelope, as
there are limits to what system designers allow drivers control over. Drivers have no power over
system logic or goals, but only over activating or deactivating the systems, and setting the time
headway and maximum speed (see Figure 2.6).

Monitoring delegated fasks When a task is delegated, there is also the question of con-
trolling that the actions are appropriate given the situation (Falcone and Castelfranchi, 2002).
With ACC, the driver will need to delegate the continuous control of distance management to
a certain degree in order to make use of the system. This leaves the driver having to focus on
identifying disturbances and situations in which the system may not act in an ideal way.

Drivers can respond to borderline conflicts interfering with their goals on three levels (see
Figure 2.7): the action level, planning level, and meta-cooperation level (Hoc, 2001; Hoc et al.,
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2009). These levels broadly correspond to Michon’s operational, tactical and strategic levels. On
the action (operational) level, interference management takes place with minimal anticipation,
locally and in the short term, by reacting to sudden stimuli such as a FCW warning or uncom-
fortable acceleration. On the planning (tactical) level, coordination is managed in the medium
term by the monitoring of actions and establishment of roles. With ACC, this can correspond
to a determination to allow the system to handle situations where the ACC vehicle is overtaken,
enabling it to regulate the speed and distance to the new lead vehicle. Lastly, on the meta-
cooperation (strategic) level agents form and adapt their models about each other and about the
communication. By agreeing on a meaning for a new code or signal, the outcomes on this level
are used to facilitate the actions on previous levels. With ACC, this type of cooperative response
is not possible as it requires that the system is able to learn and understand what the driver is
doing,

Inference management

Meta- - Form and adapt agent models
cooperation - Form and adapt communication

Coordination - Monitor actions
- Establish roles

Action - Minimal anticipation

- Short-term, locally
Adapted from Hoc (2001) and Hoc et al. (2009)

Figure 2.7: Three levels of interference management, broadly corresponding to Michon’s three levels

Only the driver can form models or try to find a common frame of reference; a non-cognisant
system such as ACC has no such capabilities. As a result, cooperating to deal with borderline
conflicts on the planning level and the meta-cooperation level is more difficult to achieve with
artificial systems (also see Figure 2.8). Instead, the driver has to adapt to system behaviour at the
planning (tactical) level, rather than explicitly agreeing when ACC should handle an event, and
when the driver should.

The effect of excperience  Previous experience directs what is seen as important and danger-
ous. Evaluating the outcome of an action, such as allowing the system to handle an event, in
turn builds new experiences that direct attention as well as driver actions (see also Section 2.1.1
on page 9). If the ACC successfully handles a situation, the driver’s monitoring in similar sit-
uations may be different than in new situations that the driver has not previously experienced
with ACC. Which borderline conflicts relevant to ACC that drivers are able to anticipate, are
therefore dependent on the experiences they have had with and without the system.

With today’s systems, interference on the planning level extends to drivers forming an un-
derstanding of the ACC system’s frame of reference, functional limitations, and of function
delegation. Such understanding is not straightforward, but needs clarity in the communication
of actions and status by the system, as well as extensive experience with the system in various cir-
cumstances to learn its behaviours and actions. Only then can a more usable model be formed
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Cognisant Non-cognisant
Systemn System
De /eg ation - Can agree explicitly - Can emulate agreement
- Adopts goal - ”Unaware” of exploitation
- Can renegotiate tasks - Has a pre-programmed task
Control - Interprets situations based - Knows only what its sensors and
on experience algorithms tell it
- Forms dynamic models - Has a set image of the world
about the world dependent on its programming
- Can form a common frame - Has its own frame of reference, can
of reference communicate it if well-made

Figure 2.8: The difference between delegating control to a cognitive and a non-cognitive agent.

about the system’s abilities and reliability. Falcone and Castelfranchi (2001) also mention the
importance of both explicit and implicit communications by the system, and attributions to the
role or category the system belongs to. For example, previous experience of a CCC system
may facilitate the use of an ACC system as they are both varieties of cruise control systems. The
driver’s previous expetience of system acceleration/deceleration or FCW can also influence their
ability to interfere in bordetline situations.

2.3 Summary

With the addition of ACC, drivers no longer need to constantly regulate their distance to the
vehicle in front. Still, the functional limitations of the system entails that ACC cannot predict
events or understand the tactical side of driving even though it accomplishes some tactical actions
(see Section 2.2.1 on page 11). Thus, the driver is required to monitor traffic to determine if ACC
responses are appropriate. Meanwhile, only the ACC system is ’aware” of the set minimum
THW as it relates to distance, and is more adept at keeping this distance constant than is the
driver. The driver is therefore compelled to allow the system to handle most distance and speed
control, if the system is active.

To determine how a bordetline traffic conflict unfolds, however, the dtiver needs to mon-
itor the situation more actively. In such situations, control is exercised when monitoring for
inappropriate system behaviour or exceeded system limitations (see also figures 2.3 and 2.4 in
Section 2.2.1). The addition of a system such as FCW can mitigate some of the difficulties with
diagnosing risky situations, but most tactical decisions still rest with the driver.

When delegating control to a fellow human, the understanding of goals can be re-negotiated
and there can be an understanding of how to communicate the goals so that both parties un-
derstand them in the same way. In the case of ACC, drivers can only respond and adapt their
own behaviour to that of the system based on the actions of the ACC in specific situations, or by
reading the manual. This also limits the opportunities for drivers to learn how the system works,
as they may not read about or experience all types of situations they may encounter. Drivers are
instead required to create their own ideas of system functionality and communication, in order
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to find strategies and heuristics that allows them to make use of the system as a tool.

Thus, learning how the system works is pivotal to coping with system behaviour. System
capabilities in various situations as well as system communication are important aspects that the
driver needs to identify. As the system is adept at handling its tasks, the driver mainly needs to
learn when to allow the system to manage a situation, and when and how to intervene. This
could be done either by proactively responding by identifying types of events that the system
can or cannot handle, or by responding to system action or reactions.

Changes to driving brought on by using ACC  When first learning to drive, drivers learn
to recognise potential traffic conflicts and plan their actions accordingly. This separates human
thinking from the functionality of automation. Drivers are able to handle occurrences like the
build-up to traffic conflicts proactively, something that may transfer to their planning of when
to use a system such as ACC. When driving with ACC, the driver also needs to make the tactical
decision of either letting ACC handle a situation in its own fashion or stepping in herself, and in
that case when.

The delegation of control to the system also means that the driver’s perception and attention
to the surrounding traffic may be affected, as some of the driver’s actions are now coupled with
those of the ACC system. The ACC system can therefore be seen by the dtivers as a new intrinsic
part of driving their vehicles, the system’s actions and ability to control itself can also be taken
into account when making tactical decisions.

Resuming manual control from ACC requires the driver to switch the system back on again
if the manual control has been resumed by any other means than through the accelerator. Hence,
the decision of when to resume control may be affected by the system’s performance and how
well it fits with the driving situation and the event in question. The drivers’ goals when driving
with ACC are probably similar to driving without ACC, but how they aim at accomplishing these
driving goals and what sub-goals they have may be different with ACC than without (see Figure
2.9).

Driving without ACC Driving with ACC

- Constant distance - Include ACC performance in
Tactical regulation to vehicle ahead tactical decisions
- Determine response to all - Respond to ACC actions

traffic conflicts - Determine if ACC response
is appropriate

- Determine if and when to
reclaim manual control

. - Handle throttle and brake - Handle throttle and brake
Opﬁ‘ ational continuously occasionally

- Brake now also shuts off

ACC

Figure 2.9: Driving with ACC changes not only operational parts of driving, but also large aspects of the
tactical element of the driving task.

With ACC, the driver’s motivation for attending to the lead vehicle may decrease as distance
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keeping has largely been delegated. The driver’s attention to traffic conflicts may also change
depending on the attention strategies used to determine when to resume control. If the driver
stays in automated mode, attention is also likely to be different from when choosing to resume
manual control. In the next chapter, previous research on the use of ACC is presented and
reviewed.
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Everything starts somewhere,
althongh many physicists disagree.

- Terry Pratchert (Hogfather)

3 Previous research

The supervisory addition to the operator’s tasks brought on by automation is one of the
main issues studied in automation research (e.g. Stanton et al., 1997; Molloy and Parasuraman,
1996). Researchers have been sceptical about delegating headway control to automation, mainly
pointing out the risks that may be involved if the system were to fail (Nilsson, 1996; Stanton
and Young, 1998). Several studies have also been conducted on how driving behaviour may be
affected when using ACC and similar systems, and also on how attention may be affected when
using automation. These will be reported and discussed in the current chapter.

This chapter starts with a review of how drivers learn to use automation and ACC in particu-
lar, moving onto describing previous studies on behavioural adaptation when driving with ACC
as well as field studies of ACC. Theteafter, reseatch on how operator/driver attention changes
with the use of automation is reviewed, and a recount of studies on driver responses to critical
traffic conflicts is presented. Lastly, the previous research is summarised and some gaps in the
research are identified before moving on to the next chapter and forming the research questions.

3.1 Learning to use ACC

As previously pointed out in Section 2.2.2, the driver is the only one who can coordinate with the
ACC system. It is therefore important that the driver learns how to work well with the system,
and knows its limitations.

Simon & Kopf (2001, in Simon, 2005) found several, not necessarily linear, learning phases
in understanding ACC behaviour during a four-month field study with five participants. The
drivers generally started out by testing the limits of the system and learning system reactions
in different environments. After having done that, they learned the ACC’s situation-specific
limits, and lastly started integrating the system into their own driving style. Similar learning
strategies were mirrored in a telephone survey of ACC owners by Llaneras (2007). Llaneras
declares that drivers initially behave cautiously with the ACC system, but with time extend their
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usage of it and probably test its limits in doing so. After that initial testing period, Llanetas
found that drivers seemed to go back to a more conservative way of using the system. Simon
(2005) concludes, from the same field study as before, that there are four main difficulties in
learning to work with the system: Handling the take-over in situations where system limits are
exceeded, using the system in adverse conditions (e.g. bad weather or bad roads), operating the
system’s settings, and missing or faulty explicit knowledge about the system. Simon infers, from
panic brake situations identified during the study, that after the four months of driving with the
system some misconceptions about it were still at play. Some of these misconceptions were
a lack of knowledge about the selectable distances, but also about the ability of the system to
handle specific situations or not.

With increasing experience of the ACC system, more ACC limitations are known. According
to a survey with 58 ACC users who had used ACC for up to five years, drivers who were more
unaware of system limitations tend to use ACC in riskier environments, something that probably
over time makes them more aware of limitations (Dickie and Boyle, 2009). Simon (2005) also
points out that driver learning appeats to be self-paced, so that drivers with risky behaviour push
the system more in the beginning, thus learning about its limitations more rapidly. Drivers may
also, depending on where and when they drive, take longer to experience events that reveal system
limitations. Mainly, drivers do not appear to generalise limitations regarding sensor capacity, but
link their knowledge of the system to specific situations that they apparently need to experience
in order to know what the system may have difficulties with (Strand et al., 2011). Similar results
can also be found in Jenssen (2010). Despite reading the manual where such information was
available, 99% of 148 ACC owners in Llaneras’ (2007) sample were unaware that the ACC system
did not stop for stationary vehicles. Beggiato and Krems (2013) also found that drivers did
not remember events they were merely told about, but did remember events they had personal
experience of. So, it appears that drivers must experience events in order to learn from them.

Weinberger et al. (2001) found in a four-week field test that drivers claim that their learning
period to learn to assess take-over situations properly with ACC is around 2-3 weeks. A further
analysis of changes in TTC confirmed this self-reported learning period. It is important to note
that the drivers in Weinberget’s study drove about 1400 km/week, well over average, wherefore
the learning period may be longer for other drivers who encounter fewer types traffic situations.
Fancher et al. (1998) note that 95% of of those who tested ACC felt able to recognise situations
where they need to reclaim control after one week with an ACC system. Sixty per cent felt
comfortable doing so after just one day with the system.

3.1.1 Communication by the ACC

Learning how the system functions is made possible by how the driver understands what is
going on with the system. How the automation interacts with the operator is therefore at least
as important as the technical functionality of the system when learning to handle events safely.
The system may use icons as its prime means of information, but the visual mode is not the
only mode used by operators to learn about driving support system status. Dijksterhuis et al.
(2012) found that drivers preferred using the actions by their driver support system as a warning
signal rather than the information provided on a head-up display. A similar effect was found by
Aust et al. (2013), who suggest that with experience, drivers learn to respond to system warnings
rather than to the event causing the warning.

The system’s actions therefore communicate what it has been able to detect about the world
around it. When the system’s logic indicates that it has no vehicle in front or that the vehicle
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in front is very far away, it accelerates. When it determines it does have a vehicle in front, and
that the vehicle in front is slower than the current set speed, it decelerates (also see Figure 1.1
on page 3). These actions can both be felt and, in the case of acceleration, heard by the driver.
The decelerations by the ACC system have also been suggested to draw the driver’s attention to
potential conflicts (Ervin et al., 2000).

Donald Norman (1990) has suggested that inappropriate and inadequate feedback and inter-
action is the main problem when working with automation. Systems are also very rarely designed
to communicate how certain they are of a particular diagnosis. This lack of communication by
automation means the operator cannot proactively learn if something is wrong or not, Norman
argues, and the lack of information thus keeps the operator “out of the loop”. It could, as done
by Ervin etal. (2000), be argued that the behaviour of ACC constitutes continuous information in
itself. The semi-continuous nature of ACC acceleration as a cue to system status is coherent with
research pointing to the importance of indirect information building a shared context between
operator and automation (Wiese and Lee, 2007; Norman, 2007). Providing context-relevant in-
formation about system reliability can also lead drivers to allocate attention more appropriately
and thus improve driver-automation performance (Bagheri and Jamieson, 2004). The ACC’s
behaviour, however, misses out on also communicating the system’s view of what is going on
between accelerations and decelerations, thus leaving out one key factor in understanding why
it responds the way it does. A human co-driver might not communicate such considerations
either, but can always be asked to divulge them. Thus, drivers are required to respond to system
actions rather than be able to predict them.

3.2 Behavioural adaptation to ACC

Studies of behavioural adaptation to driving with ACC generally focus on changes in speed be-
haviour, adopted safety margins, lateral control of the vehicle, and lane occupancy/lane change
behaviour (Saad, 2004). Of these, lane occupancy and lane change behaviour are the only more
complicated tactical behaviours by the driver that are being measured. As Saad and Elslande
(2012) point out, such a focus does not provide a deeper understanding of the underlying prin-
ciples of behavioural adaptation.

The results from the studies on behavioural adaptation are not always in agreement with each
other either. With regard to safety margins and driving speeds, results point in different directions
according to two meta studies (Saad, 2004; Dragutinovic and Brookhuis, 2005). Dragutinovic
and Brookhuis propose that the diverging results may, at least to some extent, be due to the design
of the ACC systems used in the various studies. The methods used, such as simulator study or
closed-track field studies, could also according to Saad et al. (2004) have had some influence on
the findings. The level of support provided by the ACC system may also affect behaviour, as
full-range ACC appears to lead to an increase in speed and decrease in time headway whereas
ACC active only over 30 km/h does not (Dragutinovic and Brookhuis, 2005). Tactical driving
decisions may lie behind these changes, but as more composite behaviours by the drivers were
not studied, it is difficult to say.

Those who have studied tactical behaviour with ACC have indeed found changes in driver
strategies with the system active. Drivers’ overtaking strategies appear to change when driving
with ACC, as drivers initiate the manoeuvre earlier in order to avoid being slowed down by the
system detecting the vehicle in front and braking (Rajaonah et al., 2008). The tactical decisions
made by the driver therefore appear to change, as drivers are affected by what actions are afforded
by the ACC system. Reports also consistently point out that drivers are more prone to stay in the
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fast lane with ACC active (Saad, 2004; Hoedemacker and Brookhuis, 1998). Saad and Villame
(1996) speculate that the preference for the fast lane may be the result of drivers not wanting to
intervene with the vehicle too often, and instead opting to change their strategies to allow for
driving where they need to reclaim control as little as possible. In a field operational test from
the 1990%, Fancher et al. (1998) also found that drivers adopt strategies in order to explicitly
prolong the period of ACC engagement. Such strategies were for example not overriding the
system by pressing the accelerator when the system was accelerating, even though drivers felt
the ACC acceleration was insufficient. Further evidence of this type of strategy was found by
Jamson et al. (2013), reporting that drivers using automation while driving in a simulator study
were less prone to change lanes and overtake. Through aspects such as these, ACC-type systems
appear to make the driving behaviour of the users more uniform (Saad and Villame, 1996).

3.2.1 Experience with ACC

When gathering experience with ACC, certain patterns emerge. Kopf and Nirschl (1997) found
that both workload and intervention frequencies decreased with driver experience of ACC, in-
dicating that drivers take system behaviour into account in their tactical decisions. These results
were mirrored by Simon (2005), who also determined that drivers intervene less with ACC over
time as they improve their ability to integrate ACC into their driving, Despite these effects, little
research has thus far explicitly compared the behaviours of experienced and inexperienced ACC
users. In a simulator study by Rajaonah et al. (2008), six of the forty-two participating drivers had
experience with ACC from a previous trial. These six drivers were more likely to use ACC on
motorways than the novices, though not on other major roads. The participants with previous
experience also exhibited a more homogenous behaviour with ACC than the other participants
did. Drivers with more experience of ACC also demonstrated a more conservative driving pat-
tern than did other users, and so challenged the system less. This is similar to the results found
by Llaneras (2007), that after the initial learning period drivers return to a mote conservative
driving pattern with ACC.

3.3 Field operational test studies of ACC

Analysis of data from real-world usage and real-wotld effects are important to understand the
effects ACC can have on traffic safety, as the number of cars with the option of adding an ACC
system increases. While some older vehicle automation systems such as ABS brakes are part of
the car registry in Sweden and other countries, there are no public records of vehicles equipped
with advanced driver assistance systems. Accident statistics are therefore difficult to come by. To
gain knowledge of the effects and usage of ACC in real traffic, another option is to use data from
a field operational test (FOT) study, where instrumented vehicles are driven for a longer time
period. FOTSs are large-scale testing programmes, designed to evaluate functions and vehicles
under normal operating conditions, using a quasi-experimental method (FESTA, 2008). FOT
data also provide an opportunity to study ACC with real drivers using ACC as and when they
wish. The fact that the drivers select if and when to use the available systems fundamentally
differentiates FOT studies from controlled studies. As participants are normally allowed to
drive as they ordinarily would during FOT studies, comparisons between different vehicles and
situations are wholly dependent on finding them in the data. The quasi-experimental manner of
the method also means that results may be biased due to factors such as where drivers choose
to activate their systems.
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The analyses in FOT projects have generally focused on describing when and how systems
are used, but some have attempted to study effects on safety as well. Driver behaviours have been
analysed in situations where ACC initiates braking, using the data from a three-week FOT study
(Xiong and Boyle, 2012). The authors attempted to predict driver behaviour by constructing
a model through logistic regression, and found that several situational factors seem to affect
driver responses to system-initiated braking. The propensity for drivers to brake after ACC has
initiated braking appeats to depend on factors such as road type, speed, gap setting and driver
age. In the data, drivers were more likely to intervene in near-crash closing situations (drivers
intervened in about 50% of the cases) than in low-risk situations (drivers intervened in about 7%
of cases), and more likely to intervene if they were not on a motorway, or middle-aged (40-50)
rather than youger (20-30). The model has not been tested on other FOT data, or on data from
a longer measurement period. Viti et al. (2008) suggest that deactivation of ACC often occurs
because the ACC does not act the way the driver would prefer, not necessarily because of a
need to brake because of a dangerous situation. The situations where ACC acts in an unwanted
manner would, according to Viti et al., account for 65% - 70% of the total number of cases
where drivers deactivate the ACC system, as identified by very soft braking. In 5% - 10% of
the total number of deactivations, the situations were judged to be more acutely risky, as drivers
braked hard straight away.

In the results from the EuroFOT trials, where the behaviours of 100 vehicles were recorded
for 18 months, video analysis indicated neither a significant increase nor decrease in critical traffic
conflicts with ACC (Malta et al., 2012). The lack of significance is probably due to the rarity of
such more severe conflicts; only 68 were found in the data. More general safety indicators may,
however, be affected by the use of ACC. Researchers (e.g. Ervin et al., 2005; Alkim et al., 2007)
have found that the number of very short following distances is smaller with ACC active than
without. Results from EuroFOT (Malta et al., 2012) also suggest that ACC is connected to an
increase in average THW and a decrease in the number of critical THWs below 0.5 seconds,
when using ACC on both motorways, urban and rural roads. The increase in general THW was
about 15%, and the frequency of critical THWSs decreased by over 60%. The authors suggest
that the reason for this was the limitations in possible THW with ACC: The system does not
allow for THW to be as low as 0.5 seconds, whereas drivers are completely free to choose THW
when driving without the system. After deactivating ACC by pressing the brake pedal, THW
decreases again (Pauwelussen and Feenstra, 2010). Nevertheless, results pointing to larger THW
with ACC may be biased by the conditions in which the system is typically used. Viti et al. (2008)
found that drivers do not use ACC in congested traffic, suggesting this might be due to the
system not allowing such short headways as are needed in queues.

Alkim et al. (2007) as well as Rudin-Brown and Parker (2004) and Fancher et al. (1998) found
that drivers engage more in secondary tasks with ACC, the number of those tasks also increasing
with time according to Alkim et al. However, ACC is seldom used in traffic where it may be more
likely that attention is needed outside the vehicle, such as congestion or in urban areas (Alkim
etal., 2007). Instead, drivers predominantly use ACC during free flow on motorways, something
also reflected in the driver statements collected by Strand et al. (2011).

To summarise, ACC does not appear to affect driving safety in a negative way. Instead, the
use of ACC increases the THW to the vehicles in front. In combination with drivers using ACC
in less congested traffic, this may be the reason behind a lack of adverse effects. Drivers do
however still appear to deactivate the system in circumstances where it does not respond in a
manner preferred by the driver.
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3.4 Attention when working with automation

Visual attention is one of the most important aspects of car driving, as most information while
driving comes from a visual source. Driver attention is often operationalized and then studied
by eye-tracking, as what the driver attends to can then be studied by doing a comparison of gaze
distributions or the number of gazes to specific areas.

Victor et al. (2009) found that active ACC was correlated with more focused driver gazes,
much as in the study on manual car following by Crundall et al. (2004) reported in Section 2.1.1.
Victor et al. do not speculate as to why, and it was unclear whether they compared gazes with
ACC to car following without ACC or driving without following another vehicle. Contrary to
this, Carsten et al. (2012) suggest that with increasing automation, the amount of gazes into
the middle of the road ahead decreases. With the addition of lateral control to ACC (assisted
steering), drivers tended to be less attentive to the roadway than when driving with longitudinal
support alone.

3.4.1 Monitoring automation

Parasuraman and Wickens (2008) argue that with active automation, operators tend to allocate
attention away from monitoring and controlling automation by decreased attention to “raw data”,
the information operators normally use to achieve a task. One reason given for this effect is the
lower workload, or even ”underload,” afforded by automation. Young and Stanton (2002a) have
suggested that a decrease in workload could affect the amount of attentional resources available.
The authors argue that if task demands are too low, the available pool of attention decreases,
thus making it less likely that drivers notice potentially important things.

Over-reliance, depending on the system outside its functional limits, has also been pointed
out as a risk when using systems that have proven themselves over a longer period of time. With
ACC, this would be the case if the system suddenly malfunctioned and did not brake in a situation
it normally would. Over-reliance may even cause the operator not to intervene, or intervene too
late upon realising the system cannot, in fact, cope (Stanton and Marsden, 1996). This brings
the concept very close to that of trust in automation.

Factors that may influence monitoring behaviour 1t has been suggested that “compla-
cency”, not monitoring the system “enough”, is the effect of automation competing with man-
ual tasks for the operator’s attention when using reliable automation (Parasuraman and Manzey,
2010). With reliable automation, operators (or drivers) are thought to stop monitoring automa-
tion, believing that the automation does well anyway. The operator’s level of trust in automation
is mainly measured by operators’ subjective ratings on several dimensions, such as predictability,
dependability, responsibility and confidence (Muir, 1994). Other factors that come into play are
desirable and consistent system behaviour (Muir and Moray, 1996), and the trust the operator
has in cooperating with the automation (Rajaonah et al., 2008). In a study by Rajaonah et al.
(2008), drivers who trusted ACC more waited until it was clear that a system response was insuf-
ficient before they responded themselves. Drivers with less trust intervened before the ACC did
so. Increased trust in automation has thus been suggested to lead to decreased monitoring of
automation performance, especially with higher levels of system reliance (e.g. Muir and Moray,
1996; Bailey and Scerbo, 2007). Xiong et al. (2012) however, did not find that the group with the
highest trust in ACC was behaving in the most risky manner. Instead, risky behaviour was rather
connected to participants having less knowledge of system limitations. A slightly different result
was found by Dickie and Boyle (2009), who state that drivers with higher levels of trust in ACC
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were more likely to be unaware of its functional limitations. Lee and See (2004) in their review
found no conclusive evidence that higher levels of trust in a system wete associated with less
monitoring, but still concluded that what is important is not high trust, but appropriate trust.

Trust is thus seen by some researchers as something to be influenced and ”corrected” so
that operators exhibit the “right amount” of trust and thereby behave correctly” (e.g. Dickie
and Boyle, 2009; Lee and See, 2004). These are normative statements, and tend to be dependent
on hindsight in determining ”correct” behaviour. The perspective also ignores whether drivers’
behaviours may be making sense to them, and in that case why. Studying “’trust” alone misses out
on a wider perspective that could offer more insight into how operators handle and understand
working with automation. Whether measuring trust in the system or in one’s cooperation with
the system, ”trust” appears to be more a proxy of the understanding the operators have of system
capabilities.

Measuring monitoring behaviour  Farrell and Lewandowsky (2000) suggest that the reason
for a possible decline in monitoring reliable systems is mainly that automation makes the opera-
tors learn to avoid responding to cues when automation is active, which is why the effect can be
mitigated by the operator periodically going back to manual control. The delegation of control
to automation has for example been seen with intelligent speed adaptation, ISA (Hjidlmdahl and
Virhelyi, 2004). Hjilmdahl and Varhelyi found that outside the ISA test area, where the system
no longer provided indication of the current legal speed, drivers neglected to adapt their speed
when entering a new speed zone.

However, successful monitoring might not be the best measure of attention. Moray (2003)
and Moray and Inagaki (2000) state that monitoting may be a bad way to determine over-reliance
or over-trust in a system as it is impossible to determine a ’correct” monitoring strategy except
with hindsight. Monitoring also depends on when a signal appears and what the operator’s
priorities are at that moment. The attention strategies employed by the operator are therefore
be a better item of study (Moray et al., 2000).

3.4.2 Attention in traffic conflict situations

The results reported above largely imply that driving with automation decreases driver attention
to both automation and roadway regardless of the situation. However, several studies compare
gaze or workload over a longer period of time that is not situation-specific (e.g Victor et al,,
2009; Carsten et al., 2012), thus only forming general ideas of how attention may be affected.
Some exceptions can also be found. Studying driving in more detail, Brookhuis et al. (2009)
found that driving with a congestion assistant (a congestion warning system with integrated ACC
stop and go) led to a decrease in workload, except just as the driver approached the congestion
the system warned about. Garrison (2011) found there was no difference in gaze frequency to
hazards for distracted drivers compared to non-distracted drivers. For traffic signs, which were
not connected to hazards in any way, there was a decrease in the amount of gazes in that direction
of distracted drivers compared to non-distracted drivers. Similarly, though driver attention is
directed away from the roadway in light traffic, in heavy traffic driver gazes to the road centre
increase again (Jamson et al., 2013). Video analysis in the EuroFOT project (Malta et al., 2012)
also found that while drivers were more prone to do secondary tasks when using ACC with FCW
while driving, no such difference could be found in crash-relevant events. So, drivers appear to
adjust their attention strategies according to situational demands.
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3.5 Responding to traffic conflicts with automation

The term "traffic conflict” has previously been defined in Section 1.4 on page 6. It is important
to keep in mind that traffic conflicts need not be very serious. The traffic conflict only entails
that at least one of the vehicles involved needs to do an avoidance manoeuvre to avoid collision.
The avoidance manoeuvre, however, does not need to be abrupt, but can involve just a minor
decrease of speed.

de Waard et al. (1999) surmise that system functionality needs to be communicated very
cleatly in a highly automated situation. They also suggest that drivers should not have a com-
pletely passive role in the system if a sudden system failure requires the driver to reclaim control
(see also Young and Stanton, 2007). Farrell and Lewandowsky (2000) argue that a decline in mon-
itoring performance reflects that operators are suppressing their natural responses to driving with
regard to e.g. the longitudinal control. Using automation therefore means that operators need
to actively stop themselves from intervening in order to allow automation to handle a situation.
One way to counteract this effect is to make the operator intermittently reclaim control, as this
diminishes the effects of learning not to react (Mouloua et al., 1993; Farrell and Lewandowsky,
2000). Though intermittently reclaiming control may be a good approach, drivers seem to be
reluctant to perform actions that cause them to actively disengage or engage the system, at least
with regard to tactical decisions such as overtaking, as explained in Section 3.2 on page 25 (Jam-
son et al., 2008; Fancher et al., 1998; Rajaonah et al., 2008). Such strategies might therefore be
difficult to implement.

Drivers of fully autonomous vehicles have, in simulator studies, found to respond more
slowly to alarms signalling imminent collision than manual control drivers (Merat and Jamson,
2009). Vollrath et al. (2011) also found that drivers were several seconds slower when driving
with automation to reduce their speed when cued by a sign or when driving into a fog bank,
compared to driving manually. In simulated traffic conflicts where there is a need to brake for
stationary vehicles, drivers have been shown to not necessarily respond when ACC systems fail
to react. Instead, around 30% collide with the stationary vehicle (Stanton et al., 1997; de Waard
etal,, 1999; Nilsson, 1995). Researchers have sought to explain this in a number of different ways,
ranging from driver expectations of system capabilities to bad communication by the system, or
that the driver is no longer an integral part of the control loop. Going back to the previous
discussions on delegating control (see Chapter 2.3), it is important to point out that a slower
driver response is not in itself faulty behaviour. It is suitable when using ACC to allow it a
chance to respond before deciding to step in. Ervin et al. (2000) also speculate that the rarity
of traffic conflicts exceeding system braking capacity makes it difficult for drivers to assess the
situation correctly straight away.

Despite the fairly concurrent research pointing to drivers’ slower response times with au-
tomation, problems with slower response times or a neglect to respond have so far not been
apparent with commercially available systems in real traffic. One reason may be the addition of
forward collision warning (FCW), alerting drivers to the risk of imminent collision. FCW was
not present in the studies by Nilsson or Stanton et al.; drivers had to diagnose the situation by
themselves. A signal like FCW could have led to results being more similar to that of Merat
et al. (2012), who found that the response time when drivers performed a lane change to avoid
collision as advised by a sign was similar to that in manual driving. There are other studies that
indicate a lack of difference in response times between manual and automated modes as well,
but only in certain situations. In Nilsson (1995), another scenario required drivers to respond
to a sudden cut-in situation after the vehicle cutting in had activated its indicators. Here, no
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difference between supported and unsupported modes was found. Why the drivers responded
differently in Nilsson’s cut-in situation compared to imminent collision in other studies is not
clear. Malta et al. (2012) also report from the EuroFOT trials that when real driving situations
exceeded the braking capabilities of ACC, the warnings presented by ACC+FCW were enough
and drivers responded in timely fashion. Proactive responses are not mentioned, but drivers had
no worse or better response times with ACC than without when responding to FCW warnings.

The next step in continuous vehicle automation is likely to be automated steering, which
could further “disconnect” drivers from the immediate driving task. However, the addition of
automated steering to an ACC function does not necessarily affect brake response times more
than ACC does (Stanton et al., 2001; Young and Stanton, 2007), even though automated steering
may decrease workload (Stanton et al., 2001; Flemisch et al., 2008; Carsten et al., 2012). Even
so, steering responses may be affected. Flemisch et al. (2008) suggest that when drivers were
allowed to use their hands for other things than steering and not told to always keep their hands
on the wheel, they failed to keep the vehicle on the road when the automated steering stopped
working, Shared control with automation by always insisting on physical driver contact with
vehicle controls may be preferred, as it would allow the driver to experience more aspects of
vehicle control as the system communicates its actions with the driver to a larger extent (e.g.
Kienle et al., 2009; Norman, 2007). In a study of a shared control lane keeping assistance system,
assisted and non-assisted drivers both were equally successful in avoiding an obstacle by steering
(Mas et al., 2011).

3.6  Summary and empirical gaps

Drivers largely appear to learn ACC limitations on the go, and do not remember limitations
they have merely read about (Llaneras, 2007; Beggiato and Krems, 2013). This also means that
with time, more of the system’s limitations are known to the drivers (Dickie and Boyle, 2009).
Researchers (e.g. de Waard et al., 1999) also suggest that improving the driver’s understanding of
the system’s limits ought to function as a mitigating factor to make the driver respond quicker
in critical situations. However, knowing system limitations and the criticality of a traffic conflict
may not necessarily be the cause of driver responses: drivers may instead learn to respond to
the system’s response to events (Aust et al., 2013; Ervin et al., 2000). The speed and perhaps
manner in which experienced users and novice users respond to ACC behaviour may therefore
be different.

The use of ACC does not affect THW or speed in a distinct way: results point both to in-
creases and decreases (Saad, 2004; Dragutinovic and Brookhuis, 2005). However, drivers’ tactical
driving decisions are affected: Drivers are reluctant to intervene with the ACC and prefer to stay
in the fast lane with the system (Hoedemaceker and Brookhuis, 1998; Fancher et al., 1998; Saad
and Villame, 1996). There are some indications that drivers change their overtaking behaviour
with ACC, in order to avoid the system’s distance adjustment interfering (Rajaonah et al., 2008).
Tactical behaviour has not been studied in FOTs, but the research so far indicates that drivers
keep fewer very short time headways with ACC (Ervin et al., 2005; Alkim et al., 2007; Malta et al.,
2012) which may serve as indicative of changed driver behaviour. Saad and Villame (1999) in
Saad (20006) also stress the importance of taking context into account when studying the effects
of driving automation. Semi-automated vehicles add to the drivers’ sources of information and
provide novel ways to interact with the vehicle. These changes affect the conditions in which
the driving task is performed, influencing it by its design. Driving with ACC or similar systems
may entail that some environments change importance, as what was before a simple curve re-
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quiring the driver to ease off the accelerator may require a different response or behaviour with
the system. However, few studies have aimed specifically at investigating driver interaction with
ACC (Saad et al., 2004). Therefore, the question of how drivers take ACC system behaviour into
account when driving is still not quite clear.

Researchers ate also interested in the ability of drivers to reclaim control in traffic conflicts
if the system fails (Stanton et al., 1997; de Waard et al., 1999; Nilsson, 1995). Results indicate
that drivers are slower to respond in situations with automation failure than in a manual con-
trol situation. System failures have so far not been reported from FOT studies, wherefore such
occurrences are likely to be highly uncommon. Responses to critical traffic conflicts in the Euro-
FOT study do not point to any significant changes in response times (Malta et al., 2012). Systems
are unlikely to fail, having been tested extensively before release. However, their functional and
operational limitations will force the driver to reclaim control at some point while driving with
the system, prompted by the system or not. It would therefore be of great interest to study
situations that arise more often, where the driver still feels compelled to reclaim control.

The appearance and handling of more commonly appearing traffic conflict situations also
constitute the learning set for drivers learning system limitations (Simon, 2005; Dickie and Boyle,
2009; Strand et al., 2011). The studies reviewed above, bar very few, study novice users and their
responses to driving with ACC. There is a lack of studies looking at experienced users’ responses,
and knowledge of how they may be different from those of novices. Having learned how ACC
works should lead to a difference between experienced users and novice users in their response
to system actions and tactical considerations in vatious circumstances. When drivers become
accustomed to driving with ACC, they do appear to change their usage of the system (e.g. Dickie
and Boyle, 2009). It is likely that drivers’ plans and tactical behaviours for accomplishing the
task of driving change as they become used to the system handling some of the car following
itself. The events requiring driver attention are likely to be different when driving on their own
compared to when delegating control to a continuous support system of some sort. Having
previous experience with ACC may therefore also affect drivers’ use of future automation, such
as ACC with the addition of active steering (ACC+AS). With the addition of lateral control, some
of the drivers’ habitual behaviours with ACC may transfer. As it is likely that those who own
ACC today will be among the first to use ACC+AS, it is interesting to study if and how those
used to ACC respond when driving with ACC+AS.

32



Perbaps it wonld be simpler if you just did what you're told
and didn’t try to understand things.

- Terry Pratchett (Sourcery)

4 Research questions

The main setting for this thesis is driver delegation of control to ACC in commonly occurring
borderline traffic conflicts where drivers may or may not wish or need to reclaim manual control.
The focus lies on how drivers incorporate longitudinal automation into their tactical driving
decisions, by studying both experienced and inexperienced ACC users. The aim and how the
research questions connect to the four papers can be seen in Figure 4.1. There are three studies,
reported in the four papers appended to the thesis. One questionnaire study (Paper I), one
simulator study (Paper IT and Paper III) and a FOT database study (Paper IV). The results in
Paper II reported in Chapter 5 also include some further analysis of the data only reported in
the thesis.

First, the effects of experience with ACC on responding to common traffic conflict situa-
tions is studied to provide an answer to how experience may matter when studying the effects
of longitudinal automation. Then, a broader description of changes to mainly tactical driving
behaviour brought on by ACC is studied, to expand on any findings in the previous question.
Lastly, a comparison between ACC and ACC+AS is made in order to see if experience with ACC
may affect how drivers behave with an even more advanced type of continuous automation.

4.1 Research question 1 - Experience

o How do experienced ACC users understand and respond to the ACC system in common
traffic conflict situations, compared to novice users? (Paper I, IIT and II)

With more knowledge of system functionality and actions, experienced drivers could delegate
control to ACC in a different way than novices, having adapted to the system’s limitations. Study-
ing the behaviour and understanding of experienced ACC users compared to new users can also
reveal whether there is a difference in how drivers resolve which traffic conflicts the system
can handle, and which borderline conflicts that require a manual response. A combination of
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Figure 4.1: How the empirical studies in the papers connect to the research questions

approaches can therefore provide a more extensive understanding of how response times, strate-
gies, and knowledge of system limitations interact.

This question is first addressed with a questionnaire study looking at how drivers with various
amounts of experience with ACC understand the system (Paper I). Then, experienced and novice
users of ACC are compared in a simulator study, contrasting their response times (Paper I1I) and
strategies (Paper II) when using automation.

4.2 Research question 2 - Tactical considerations

o Which tactical driving consideration can be found in common traffic conflict situations
when delegating control to ACC? (mainly Paper II and IV, also Paper IIT)

Previous studies of changes in the tactical aspects of driving with automation have largely been
described quantitatively, such as time spent in a specific lane or if the driver overtakes other
vehicles at all. A more qualitative approach should be of benefit to describing broader patterns of
how driver strategies change when using automation, helping to elucidate on the reasons behind
the changes in overtaking or lane positioning. By comparing response times in a simulated
scenario to the corresponding real-world events as in EuroFOT, further considerations made by
drivers in the real world may be ascertained.

This research question is mainly investigated by determining driver responses to common
borderline traffic conflict scenarios set up in a simulator. Driver behaviour with automation
will be studied in and during the approach to these traffic conflicts, where drivers may wish to
reclaim manual control. The EuroFOT database will also be used to contrast response times in
a real-world event to the similar cut-in event in Paper 111 (Paper IV).
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4.3  Research question 3 - Effects on future automation

o Do drivers behave and respond the same way with ACC that also includes a lateral com-
ponent as they do with ordinary ACC in common traffic conflict situations? (Papers 11
and 1II)

There is little understanding of why drivers’ attention strategies are different with lateral automa-
tion than longitudinal automation (Carsten et al., 2012), and also what may be the mechanisms
behind behavioural adaptation. Uncovering the workings behind any changes in tactical driver
behaviour would enable a prediction of the effects of future systems, and allow the design of
systems better suited to human cognition. Comparing both tactical driver responses and pure
response time measures in different scenarios with ACC and ACC+AS enables a discussion of
some of the behavioural effects and considerations that drivers make with these systems.

This research question is addressed by designing borderline traffic conflict scenarios and
testing them in a simulator. Here, comparisons are made between driver responses when driving
with ACC and ACC with active steering (ACC+AS). Comparisons are also made to intentional
car following, a “manual” way to delegate decisions of where to drive, in order to determine
whether cognitive and automation based delegation are similar.
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There isn't a way things should be.
There’s just what happens, and what we do.

- Terry Pratchett (A Hat Full of Sky)

5 Empirical studies

This chapter summarises the methods and results from the empirical studies performed for
this thesis. For a more detailed description of the methods chosen and the data, see the papers
attached. The studies were conducted from 2009 to 2012, using three main methods: a survey
by questionnaire (Study I), a simulator study (Study II) and a database study (Study IIT).

5.1 StudylI
Driver understanding of ACC limitations

This study is reported in Paper I. The purpose of the study was to investigate to what extent
owners of ACC equipped vehicles know the limitations of the ACC system, and how they use
the systems in real-life situations. A questionnaire was employed in order to reach as many users
as possible.

5.1.1 Method

A questionnaire, comprising 16 questions (translated version in appendix), was sent by post to
owners of Volvo XC60 identified with the help of the Swedish car register. Volvo XC60 was
chosen due to the high rate of ACC systems bought by owners, around 30% according to Volvo
Cars Sweden (personal communication, 2009). The XC60’s were registered in Sweden between
2008 and 2009, as this was then a new model. Currently, no records of the addition of ADAS to
vehicles exist in the Swedish car register. Through the car register, 632 addresses of Volvo XC60
owners were identified, providing a maximum of roughly 200 respondents with ACC. To assist
drivers in determining if they should answer the questionnaire or not, a thorough explanation of
the differences between conventional cruise control and ACC was enclosed. Only drivers with
ACC were encouraged to answer the questionnaire.
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The aim of the questionnaire was for the respondents to provide their understanding of ACC
and its limitations, and to generate hypotheses for future studies. The questionnaire comprised
16 questions, and took about 20 minutes to complete. As this was an explorative and predom-
inantly qualitative study, no statistical analysis of the answers was undertaken. Instead, answers
should be seen as an indication of what types of limitations owners are aware of. Questions were
primarily in free form, and respondents were required to write down their answer manually. Free
form questions were used to avoid influencing the respondents unnecessarily. As knowledge of
system limitations was sparse at the time of this study on behalf of the author, including a list of
the known limitations may have caused the respondents to focus on them unduly, thus not listing
or referring to other limitations they knew about. The disadvantage of free form questions is
that this design relies on the respondents’ memory and understanding to a higher degree, as well
as being more time consuming and effortful to complete. Therefore, the results are probably
on the conservative side compared to giving participants a list of possible system limitations to
select from.

Experience with ACC

NN W
wm O

Participants
)
o w (=]

o

| — | —

(==}

unknown owned for owned for owned for owned for owned for
1-3 months 4-6 months 7-9 months 10-12 over 12
months months

Figure 5.1: Driver’s experience of using their ACC-equipped vehicle

5.1.2  Participants

Of the 632 questionnaires, 131 were returned. Questionnaire responses were examined to elim-
inate drivers who did not have ACC, and one answer was discarded as a result. This left 130
respondents with ACC in their vehicles, at a response rate of 65% compared to the theoretical
maximum of 200 respondents (30% of the total number of XC60 owners). Of these, 106 were
men and 23 were women. One respondent did not provide information on gender. Nine of the
respondents, four women and five men, claimed to never use the system (several mentioning
that it did not suit their driving style) and were excluded from the analysis, leaving a total of 121
respondents.
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5.1.3 Results

The participants had used the system for up to approximately 12 months; half of them less than
6 months and the other half more than 6 months (see Figure 5.1). Respondents drove a median
of 23 750 km/yeat, to be compared to the Swedish national average of 13 360 km/year (in 2009,
see SIKA, 2010). Ages ranged through all age brackets provided, from below 25 to over 66, with
half of the respondents in the age bracket 45-55 years. Drivers reported primarily using ACC on
motorways and other larger roads. Half of the respondents disengaged the system when entering
cities.

Drivers mention the physical sensation of acceleration as a cue to the system having lost
radar contact with the lead vehicle in sharp curves (see Table 5.1). 31 of the 121 respondents
(26%) also reported having experienced insecurity of whether the system was on or off until
action/lack thereof alerted them to the fact.

Most respondents reported being aware of limitations in the system, but 36 did not. The
most commonly reported limitation was car following in sharp curves, where the radar can lose
contact and the system subsequently speeds up. Other known limitations can be seen in Table
5.1.

Limtation Quote

Sharp bends "The car ‘loses’ contact in relatively sharp bends, and speeds
up as a consequence.”’

Vehicle in front braking sharply "W hen the vebicle in _front brakes sharply, I sometimes have
to revert to manual control.”

Overtaking on the fly "The speed goes down just as I am about to overtake [the car
that I have just reached].”

Vehicle cutting in "W hen someone squeezes into my lane in front of me.
Sharp braking!”

Translation from Swedish by the author

Table 5.1: Sample of the limitations reported by the participants, with quotes.

Depending on how long the driver had used the system, the number of drivers who state
knowledge of at least one system limitation increased (see Figure 5.2). For the more experienced
users, ”simple” limitations such as problems in sharp curves were mentioned less, with more
specific examples such as system performance in snowfall surfacing;

Brief discussion  The key finding from this study was that the knowledge of system limita-
tions increased with the amount of time spent with the system. The complexity of the limitations
mentioned also increased when drivers had more experience with the system. Drivers also men-
tion the physical sensation of acceleration as an important cue to system state. It was also evident
that some drivers chose not to use the system as they claimed it did not suit their driving style.
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Declaring ACC system is withont limitations
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Figure 5.2: Percentage of respondents in the respective groups who claim that the ACC system has no
limitations, each adds up to 100%.

5.2 Study II
Responding in tactically important driving situations

The results of this study are reported in Paper II and Paper III.

A simulator study was designed to allow the investigation of driver responses in different
traffic scenarios requiring a tactical evaluation of the situation. The intention was also to compare
novice users of ACC to those with previous experience of the system, thus limiting the relevant
sample. Four different driving conditions were tested in the study to examine the effects of
mentally or physically delegating longitudinal and lateral control.

The automation included the use of two ACC-type systems; one was a typical ACC system,
the other was based on the same ACC system but with the addition of active steering (ACC+AS).
Both systems lacked FCW due to limitations in the simulator. Two types of manual driving were
also tested; manual driving with the instruction to follow the road, and manual driving with the
instruction to follow a specific vehicle in front (intentional car following, ICF). Intentional car
following has previously been shown to focus drivers’ gaze on the vehicle in front, and affect
their attention to the forward roadway (see Section 2.1.1 on page 9). Delegating lateral physical
control as well as longitudinal control to a system has been hypothesised to affect driver attention,
as it removes the driver further from the manual aspects of driving (eg. Carsten et al., 2012).

All scenarios were designed so that the driver would feel the need to intervene if driving in
manual mode. If driving in automated mode, the system would respond at the last second to
avoid a collision if the driver neglected to act.
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5.2.1 Participants

Participants were recruited in two steps. Participants new to ACC were recruited by means of the
Swedish National Road and Transport Research Institute (VTT) database of interested members
of the public. Participants with previous experience of ACC were recruited with the help of
Volvo Cars Sweden. Both sets of participants were first sent an e-mail describing the basics
of the study and asking if they were interested. If responding in a positive manner, they were
booked for the study and sent the background questionnaire. As those driving cars with ACC
generally drive more than the national average (see Paper I), an effort was made to recruit novices
to ACC who also drove more than average. More information on the participants can be seen
in Table 5.2.

Due to technical difficulties, not all participants completed all conditions. Details follow in
the results of the specific studies.

Experienced with ACC,  Novices to ACC, Total, n = 31

n =21 (sd) n =10 (sd) (5d)
Age 55 (sd 10) 38 (sd 9) 50 (sd 12)
Years with driving license 36 (sd 10) 19 (sd 8) 31 (sd 12)
Ammal mieage () % 0SSN0 2500 medns 23000
Years with ACC 1.6 (sd 2) - N
Annunal mileage with 18 000 (sd 11 000) . .
ACC (km) median: 15 000

Table 5.2: Background information on the participants in Study II, means (standard deviation in brackets)

5.2.2  Equipment and materials

The simulator used was the VTI Driving Simulator III, a moving-base simulator with linear
motion in the lateral direction, roll and pitch movement of the whole simulator, as well as a
vibration table for simulating bumps and road roughness. The simulator is equipped with six
HD projectors, and has a field of view of 115 degrees. Three LCD screens were used as mirrors.
For further information about the simulator, see Papers IT and III.

Participants were asked to complete a questionnaire on their demographic background and
experience with ACC before coming to drive the simulator. Participants were later issued with
questionnaires on their trust in the systems, their attitudes towards the automated systems, and
how they experienced the scenarios.

The ACC and ACC+AS systems both had a maximum brake and acceleration force, and took
a second to lock on to a vehicle entering in front of it. Drivers were requested to always keep
at least one hand in contact with the steering wheel, when driving with ACC+AS. The assisted
steeting could follow most turns, but when the yaw rate exceeded 45°/second the system was
simulated to stop functioning and issued a warning signal. At the warning signal, the driver must
immediately resume control as the steering system no longer is active. The drivers could not
adjust system speed or chosen THW. These were pre-set at 75 km/h and 1.6 seconds respectively,
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to allow for some acceleration. The choice of 1.6 seconds was made as informal interviews with
users (not reported) had indicated that a mid-level THW was the most commonly used.

Gaze behaviour was measured with the Smart Eye Pro remote eye-tracking system with
four cameras. Gaze tracking availability lay at over 95%. The time during which the gaze cases
were sampled varies both with event and individual, but encompassed about 3-8 seconds. As an
indicator of attention to the roadway, per cent road centre (PRC) was computed for the moments
of a scenario during which an action was required. PRC is defined as the percentage of valid gaze
cases located within a circle of eight degrees radius around the centre of the gaze distribution
of the whole trip (Kircher et al., 2009). The percentage of glances to the mirrors were also
registered as an indicator for monitoring behaviour.

5.2.3 Procedure

Drivers first completed a training scenario of 10 minutes, allowing them to get used to the ACC
and ACCHAS systems. Before the training scenario, all drivers were informed about the systems’
functionality and functional limitations. The scenarios were driven in a within-subjects repeated
measures design in four different conditions; manual driving, intentional car following, ACC and
ACC+AS. Driving conditions as well as event order were counterbalanced. For each condition,
driving took 15 minutes over a course of approximately 18 km. The drive consisted of five events
(four of which are reported in this chapter) as well as single carriageways connecting them. The
fifth event is the subject of a forthcoming paper.
Further information can be found in Papers II and III (appended).

5.2.4 Paper II: Driver strategies when using ACC and ACC+AS in borderline
traffic conflicts

The changes in tactical driving behaviour in borderline traffic conflicts with automation were
investigated for this paper. There was also an attempt to connect trust in automation to driver
behaviour with the systems, to determine if trust affected driver responses (see Rajaonah et al.,
2008). Three scenarios were examined, in which either environmental constraints or the actions
of other vehicles forced the participant to respond (Table 5.3). One participant was excluded
due to technical difficulties.

For the analysis, whether and where the driver had braked or steered was determined, as well
as if and how the driver deactivated the system. How far and for how long the driver crossed
the lane markings was also determined.

Results  Trust in automation was high for both systems amongst the participants, and no
connection between trust levels and behaviour with automation could be found. High trust in
one system was not correlated to high trust in the other. Drivers exhibited different gaze patterns
depending on the situations, but no differences with regard to the four driving conditions was
found. For the broken car scenario, drivers tended to react eatlier in the fully manual condition
by easing off the accelerator than they did in the ICF condition (one-sided X?(2) = 3.6, p < .10).

Drivers also seemed to make informed choices on how and when to use automation, and
when to switch the system off either via vehicle controls or manually. In cases where the system
was not expected to be able to handle the situation, the system was normally switched off before
it reached its limits, such as in the exit scenario for ACC+AS. If, on the other hand, the system
was expected to be able to handle the situation, manual control was generally not resumed as
illustrated by the curve scenario and the broken car scenatio: In the broken car scenatio, some
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Table 5.3: Illustrations and descriptions of the three events studied for Paper II. The ACC vehicle is in
dark gray. The left (first) part of the image depicts the start of the event, the right (second) part
depicts the middle of the event, when a response is needed.

’ Event illustration ‘ Event description ‘

Sharp curve scenario. When entering the curve
(@), ACC and ACC+AS have radar contact
|:]' with the lead vehicle, but as the car drives

O ' further into the curve (b), ACC loses con-
!

tact and accelerates the vehicle as ACC+AS

a) b)

cannot steer as hard as needed and warns the

Steering: Fallow Stcering: Warn and disconnec, i ) ) .

curve too narrow driver to reclaim steering, as the curve is too
ACC: Fallow ACC: Actlerat,

no lead vehicle Steep.

Broken car scenario. In image 1 the lead car
2 b) Izl switches lanes on a 2+1 road to avoid the bro-
Q ken car, the participant needs to follow (im-

age 2). The ACC+AS system follows the lead

car around the broken car (image 2), despite
‘ 1 the approaching vehicle in the outer lane. The

ACC system requires the driver to steer.
! Steering: Fllow D Steering: Fallow

I:I ACC: Follow ACC: Follow

Exit scenario. 'The lead vehicle exits the main

a) b) road (image 1), and the ACC+AS vehicle will
O follow the lead car off the road if allowed (im-
age 2). ACC will accelerate the ACC vehicle
' until it locks onto a new lead car.
!

Steering: Follow Steering: Follow
ACC: Follow ACC: Follow

drivers even accelerated while still allowing the ACC+AS system to follow the lead vehicle. When
driving with ACC in the curve scenario, 11 drivers reduced their speed below that of the lead
vehicle, while six did so when driving with ACC+AS. When driving without automation, only
six (manual) and four (ICF) drivers took no action, neither lifting their foot off the accelerator
nor pressing the gas pedal (see Table 5.4).

Driver gaze patterns varied according to the scenarios (F(2, 330) = 54.5, p < .05), but gen-
erally not by the different conditions. The exception is the exit scenario, where the actions of
the ACC+AS system caused drivers to look less at the road centre than in the other conditions.
In the broken car scenario, drivers looked less at the road centre and more into the mirrors than
during the curve or exit scenarios.

When taking experience with ACC into account, those previously acquainted with ACC re-
veal significantly higher levels of trust in ACC (£(27)=2.96, p<<0.05). No effect of experience was
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Table 5.4: Count of driver cases in the curve scenario of drivers did not respond with their foot, those who
eased off the accelerator, and those who pressed the brake. All depending on driving condition.

’ Condition ‘ No action with foot ‘ Off accelerator | Braking
Manunal (30) 6 24 8
ICF (29) 4 25 7
ACC (30) 19 N/A 11
ACC+AS (30) 24 N/A 6

found for trust in ACC+AS. The responses and gaze patterns of expetienced and inexperienced
users of ACC were largely similar. Still, some differences could be found. In the curve scenario,
only those previously experienced with ACC crossed the lane markings in the ACC condition,
whereas there was no such difference when driving with ACC+AS. Those experienced with ACC
also looked less into the mirrors with ACC+AS in the curve scenario than did the novice users,
t(28)=-2.14, p<0.05. In the broken car scenario, no behavioural differences were found, but
there was a tendency in the ACC condition for those experienced with ACC to look less at road
centre, t(27)=-2.01, p<0.10. Lastly, in the exit scenario, none of the drivers experienced with
ACC deactivated the system by using the button in the ACC condition but novice users did.
In the ACC+AS condition, similar rates of deactivation by using the buttons were exhibited by
both those new to ACC and previously experienced with ACC.

Brief discussion  Drivers appear to take system behaviour and limitations into account,
whether the system is ACC or ACC+AS, and plan their actions accordingly. Drivers also ap-
peared willing to drive according to the speed provided by ACC or ACC+AS in the curve sce-
nario. Few disconnected the systems in the curve, despite decreasing their speed when driving
with manual control, either by refraining from accelerating or by pressing the brake pedal. Ex-
perience with ACC appeared not only to be linked to higher trust in the ACC system, but also to
driver behaviour. Drivers with experience of ACC did not feel a need to deactivate ACC when
the current lead car left the lane, but allowed a transfer of lead car to the next in front. This is one
of the events the system was designed for, wherefore experience causing a different behaviour is
not surprising. Similar transfer effects were not found with ACC+AS, where those used to ACC
and those inexperienced with it behaved in largely similar ways with regard to deactivations. It
also seemed that ICF could affect driver strategies, so that drivers were slower to take their foot
off the accelerator when following than when driving in fully manual and independent mode.

Gaze patterns were affected by driver experience in both the curve and broken car scenar-
ios, though for different conditions. The reasons for these differences warrant further study.
However, driver experience with ACC appears to play a role in how drivers work with ACC, and
to a lesser degree also ACC+AS, and also to a certain extent how drivers allocate attention when
driving with the systems.

5.2.5 Paper III: Effects of experience with ACC when responding to a cut-in
scenario

This part of the study focused on the effect of experience with ACC on responding to system
limitations in a cut-in situation for both ACC and ACC+AS (see Table 5.5). Understanding of
system limitations has been suggested to improve driver responses in critical situations (de Waard
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et al.,, 1999). The cut-in situation consisted of slow-moving traffic where a vehicle from the left
lane in a 241 road suddenly used its indicator and cut in front of the participant’s vehicle. Such
an event caused the ACC and ACC+AS systems to accelerate, the way the system were designed
for this study, as they take a second to latch onto the new vehicle. As before, there was no
possibility of a collision, but the drivers were meant to be uncomfortable and want to respond.

For the analysis, response time was calculated as the difference between the vehicle indicating
and the participant pressing the brake.

Table 5.5: Tllustration and description of the event in Study III. The ACC vehicle is in dark gray with a
black frame. The left (first) part of the image depicts the start of the event, the right (second)
part depicts the middle of the event, when a response is needed.

’ Event illustration H Event description ‘

2) b) 4 Cut in scenario. A vehicle from the outer lane
- D suddenly indicates (image 1) and enters the

D right lane in between the ACC vehicle and the

0 | lead vehicle (image 2), becoming the new lead
: vehicle. The ACC accelerates the ACC vehi-

|I| Steering: Fllow |I| Sweering: || €le upon losing contact before again recover-

ACC: Adcelerate, ing contact.

no lead vehicle

ACC: Follow

Results  Only cases where the participants reduced their speed by braking or deactivating
the system were included in the analysis. As not all participants responded to the cut-in event
by reducing their speed in all conditions, the sample sizes in the conditions vary. For this rea-
son Kruskall-Wallis tests were employed to examine differences in response time between the
conditions, followed by post-hoc analyses with Mann-Whitney.

Both the new users of ACC (£=-3.05, p<0.05) and the experienced ACC users (Mann-
Whitney U=71.5, p<0.05) were slower to respond in the automated control conditions than in
the manual control conditions, by about two seconds. Comparing new and experienced ACC
users, the experienced ACC users were significantly faster (about 0.5 seconds) to respond in
automated control modes than the new users were, U=202, p<0.05. No such difference was
found in the manual control modes. There was no difference in response times when driving
with ACC compared to when driving with ACC+AS.

Brief discussion The quicker response by the experienced ACC users may be due to
them having learned to respond to the system’s acceleration rather than to the situation itself
(Aust et al., 2013). Both groups respond slower with automation than without, but as the system
is designed to handle less abrupt cut-in situations these results were not unexpected.

5.3 Study III
Using FOT data to determine the influence of ACC on response times

The results of this study are presented in Paper IV: The purpose of the study was to determine the
effect of ACC on driver response times in real-world situations. Previous research has indicated
that response times increase with the use of automation (e.g. Merat and Jamson, 2009). Research
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from field operational tests (FOTs) have, however, primarily indicated that there are fewer very
short following distances with ACC than without (e.g. Ervin et al., 2005; Alkim et al., 2007).
Even with a longer response time, it may therefore not be as risky to drive with ACC active. First,
however, there is a need to determine any differences in response time with and without ACC
in real traffic. The proposed method was to find comparable cut-in situations in the EuroFOT
database, and statistically determine the influence of ACC. FOTs allow for the study of user
behaviour with systems in the real world, instead of in artificial settings where users are asked
to activate the systems in situations that may be unnatural to them. For a discussion of studying
driver behaviour in FOT data compared to simulator data, see Section 6.1.3.

5.3.1 Overview of EuroFOT

The data set used in this study belonged to Volvo Car Company, comprising their part of the 18-
month EuroFOT project. The database contains 18 months of data from 100 vehicles, collected
between 2010 and 2011. A total of 284 drivers participated in the study, about 2.8 drivers per car.
The vehicles involved were the Volvo XC70 and V70; an SUV and a station wagon. The upload
of data was not complete at the time of this study, but at least three months of baseline driving
(without access to systems) and three months of treatment driving (with access to systems) were
uploaded per vehicle. The time periods did not necessarily connect. The total distance driven
in the available data was 984 000 km, by 184 drivers. For more information on the EuroFOT
trials, see the EuroFOT website: http://www.eurofot-ip.cu

The cars were equipped with ACC and FCW. During baseline driving none of these systems
were available, but conventional cruise control (CCC) was, and during treatment ACC and FCW
were available whereas CCC was disabled. Other systems available in treatment were blind spot
information and a drowsiness warning. Participants chose freely where to drive and when to
activate and use the available systems.

5.3.2 Procedure

An attempt was made at detecting cut-in situations that caused the driver to respond by braking.
This was first accomplished by a script that extracted events from the database that corresponded
to a specific set of criteria, leading to 1450 cases being found. The criteria used was a sharp
decrease in THW, no lane change in the last three seconds, at least a momentary TTC of less
than one second, and that the FOT vehicle’s driver pressed the brake. The majority of events
detected were however mergings where it could not be said another vehicle cut in front. Only
cases where the driver had set a THW of 1.8 seconds or less were included in the analysis, for
the results to be comparable to those in Paper III.

The videos taken from the cars of these potential events were inspected, and 674 cut-in
events where the vehicle came from the lane to the right were identified. Too few events where
the vehicle cutting in came from the left were identified to warrant statistical analysis. The
distribution of ACC and CCC usage in the true cut-in events from the right can be seen in Table
5.3.

The situations were then analysed with a stepwise linear regression to determine what factors
affected driver response times to the cut-in events. Variables were included and excluded based
on p. P in was 0.05 and p out was 0.10. The dependent variable was brake response time to
the cut-in event as detected by the script. Independent variables were ACC or CC usage, traffic
density, and if the system had been deactivated by braking before the cut-in event. The control
variables trip month, driver gender, driver age, distance driven before the event, and driving
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ACC/CCC use during all cut-in events

Cruise system . Cruise system

inactive active
CCC available 109 163 272
ACC available 195 207 402

ot 304 370)

Figure 5.3: The number of events in each category, with CCC or ACC available

experience were also used in order to avoid any interference with the results. The aim of the
analysis was not to come up with a model to explain the variance in response times, but to
determine if any of the independent variables had an effect, and in that case how large.

5.3.3 Results

Data were first analysed for all cut-in events identified (n = 674), regardless of whether the
indicators were used or not before cutting in. Here, there was a tendency (p in < 0.10) that
drivers using ACC were marginally (0.09 seconds) faster to respond compared to driving without
any system active.

Events where the vehicle cutting in did not use its indicator prior to cutting in were then
excluded from the analysis, in order to compare with the simulator study. In the simulator study,
the vehicle cutting in used its indicator, thus providing an extra cue for the ACC driver. In the
current FOT study, the use of ACC in events where the vehicle cutting in used its indicators
(n=547) resulted in drivers being 0.24 seconds faster to respond, t(530)=-1.97, p<0.05.

Brief discussion  The results from the FOT data indicate that drivers can be faster to re-
spond to comparable cut-in situations with ACC active than driving in the same vehicle with CCC
inactive and ACC unavailable. These results warrant further investigation of the conditions in
which ACC is activated. Further investigations are also needed to determine any differences in
driver responses, such as braking or releasing the accelerator in manual mode, and braking or
decreasing speed by using the speed buttons for the ACC system in ACC mode. Perhaps, brak-
ing in manual mode does not fully correspond to braking when using ACC, but this needs to be
studied further.

5.4 Summary of results

A first basis of driver understanding of ACC limitations was provided by the questionnaire results
from Study I (Paper I). The questionnaire revealed that drivers are mostly aware of limitations to
following in curves, but also cut-in situations and overtaking. Drivers can also be unaware of the
system mode, and are cued to its state primarily by acceleration and deceleration. The scenatios
in Study II were partly based on the limitations reported in Study I, but other faitly frequently
occurring events where system limitations could become apparent were also included. The use
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of a simulator provided the means to study not only an ACC system, but also the addition of
active steering, The decision was also made to include intentional car following (ICF) to see
if such more abstract delegation of control may have an effect on driver attention similar to
automation. Attention was operationalized as gaze patterns and response times to the events.

In the scenarios for Paper II (Study II), strategies of when to deactivate the system varied
according to experience, as did trust in ACC. Those previously acquainted with ACC exhibited
higher trust in that system, but there was no transfer effect to their trust in ACC+AS. It was
evident that drivers appeared to have strategies of when to allow the ACC and ACC+AS systems
to deal with an event. These strategies appeared to be connected to the limitations of the system;
if the system could be conceived to be able to handle a situation is was generally allowed to do
so.In the curve scenario, few drivers disconnected the systems, despite having decreasing their
speed when driving without the systems. If, on the other hand, the situation was out of the
system’s capabilities, drivers deactivated the system before entering into the situation. In the exit
scenario, where the current lead car leaves the lane, drivers generally deactivated the ACC+AS
system. An effect of experience could also be found. Drivers with previous experience of
ACC did not feel a need to deactivate ACC, but allowed a transfer of lead car to the next in
front. Those inexperienced with ACC instead deactivated the system by pressing the button,
reactivating it only after the lead car had left the lane, the same strategy as with ACC+AS.

The results reported in Paper III (Study II) indicated that differences in response times
were not significant when comparing the different types of automation for both experienced
and inexperienced users, but distinct between the manual and automation assisted conditions.
Drivers were about 2 seconds slower to respond with automation than without. There were
also differences between the response times of experienced and inexperienced users of ACC, as
experienced users were faster to respond with automation active by about 0.5 seconds, U=202,
p<0.05. In the FOT data for Study III (Paper IV), opposing results to the simulator study were
found. The FOT data indicated that an activated ACC was connected to a faster response time
(up to 0.24 seconds) to a cut-in situation, t(530)=-1.97, p<<0.05.

When talking to and interviewing the participants for the studies, it became apparent that
they did not view working with ACC as handing over control. Instead, drivers believe themselves
to be in control at all times, and as such they are correct; the driver can always resume hands-on
physical control of the vehicle from the ACC. Drivers also divulged that they use the set speed
to manipulate the acceleration and deceleration behaviour of the car.

5.5 Answering the research questions

The results from the empirical studies are here put into the context of the research questions.
The next chapter puts the results into a wider setting for a general discussion.

5.5.1 Research question 1 - experience

o How do experienced ACC users understand and respond to the ACC system in common
traffic conflict situations, compared to novice users? (Paper I, I1I and II)

In line with other research (Dickie and Boyle, 2009), Paper I indicated that drivers learn ACC
limitations while driving, Drivers understand more over time about the system’s limitations with
regard to handling traffic conflicts and environmental constraints, and are less inclined to state
that ACC is without limitations. Drivers also mentioned that they used the system’s acceleration
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as an indicator, to whether the system was active or not, in cases where they did not remember
what state the system was in.

In Paper III, unexpected ACC acceleration also proved to be a cue affected by experience.
Drivers with previous experience of ACC responded quicker to the unexpected ACC accelera-
tion, as demonstrated by their faster response in a cut-in situation where the system accelerated
when it ”should” have been decelerating. Knowledge of system limitations has also been sug-
gested to make drivers respond faster in risky situations (de Waard et al., 1999) Paper II also
revealed some differences between experienced and inexperienced users with regard to their
gaze patterns with ACC. Those with previous experience of ACC tended to look less at the road
centre during the broken car scenario than the novice users did, and in the curve scenario those
with experience looked less into the mirrors. Thus, driver experience with ACC affects atten-
tional strategies, as demonstrated both by the difference in response time in the cut-in scenatio
in Paper I1I and the gaze patterns in the curve and broken car scenarios in Paper II. In order to
know more about these changes, interviews and further studies are needed to understand why
drivers look less to the road centre or mirrors.

The results of the empirical studies indicate that not only do drivers learn more about the
system’s functionality over time, they also adjust their behaviour to the system’s actions both by
actions relating to handling the vehicle and attentional strategies. Deciding how and when to use
the system seems, at least in the scenarios studied, to be affected by the known limitations of the
system. If the system is able to handle an event well enough, it is mostly allowed to do so until
the driver deems it necessary to reclaim control. If an event instead is immediately deemed to be
outside system capabilities, the system is often deactivated (Paper II). Differences in strategies
can be found between novice and experienced users as they have different levels of knowledge
of system behaviour. Novice users appeared to be more conservative, as several deactivated the
ACC system in the exit scenario of Paper II whereas no experienced users did so. It remains to
be seen how long it takes for a novice user to be classified as an experienced user, and if that
measure is time or distance driven.

5.5.2  Research question 2 - tactical considerations

o Which tactical driving consideration can be found in common traffic conflict situations
when delegating control to ACC? (Paper 11, IV and III)

Drivers appear to use the system differently in different circumstances according to the results
from Paper II, and seem adept at deciding when to allow the system to handle traffic conflicts.
Drivers are also seemingly able to incorporate system functionality into their decisions, some-
times reclaiming control before the system has responded, at other times waiting for a system
response before deciding to reclaim control. It also appears that drivers allow the system to keep
controlling the vehicle even in situations where the system’s behaviour might be less comfortable
than their own manual behaviour would be. So, these situations appear to make drivers reluctant
to resume control, as indicated by previous research (Paper II, Saad and Villame, 1996; Fancher
et al., 1998; Jamson et al., 2013). In the curve scenario, the system keeps a higher speed than
drivers did in manual mode (see Paper II). Here, drivers appear to resolve that reclaiming control
is more onerous than driving at a higher speed with the system active.

Even though drivers were slower to respond to traffic conflicts in the simulator with ACC
active (Paper III), such behaviour was not mirrored in the study of FOT data (Paper IV). The
results from Paper IV further suggest that drivers may, depending on the situation, even be
faster to respond to cut-in situations with ACC than without. These results contradict previous
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research in simulators (Vollrath et al., 2011; Merat and Jamson, 2009), where drivers exhibit a
slower response with active systems. The results from Paper IV indicate a difference between
responding when being asked to use ACC in a simulator study and responding when drivers
themselves had decided to activate ACC. It is likely that in real-world use, drivers’ attention or
choices of when to activate ACC is different from how they are told to use the system in the
simulator, and their braking behaviour thus affected. One possible reason for the difference in
response times is also that drivers press the brake to deactivate the system rather than to reduce
their speed, thus responding more in order to reclaim control than anything else. The actions in
the FOT data are thus proactive in a different way than in the simulator data. Such a response
is likely if the drivers recognise that the ACC might not be able to handle the situation the way
they would prefer, similar to the behaviours identified in Paper II.

5.5.3 Research question 3 - effects on future automation

o Do drivers behave and respond the same way with ACC that also includes a lateral com-
ponent as they do with ordinary ACC in common traffic conflict situations? (Paper III
and 1I)

The results from Paper II indicate that drivers’ strategies of choosing to deactivate ACC+AS is
not affected by their experience or lack thereof with ACC. Instead, ACC+AS appears to be seen
as a completely different system. In the trust measures, experience with and trust in ACC did
not lead to trust in ACC+AS. In the scenarios used, the addition of active steering mainly caused
vehicle behaviour to be affected when the lead car changes lanes or exits, causing a different
vehicle behaviour than with mere ACC. Drivers do need to learn these additional events as well,
which perhaps reflects their lower trust in ACC+AS. It is therefore still unclear to what extent
behaviour with future automation can be predicted from behaviour with current automation.
With experience of ACC, driver trust in ACC was affected positively but no such effect was
found for ACC+AS. So, it seems that experience with a system causes trust in that specific to
increase. Perhaps, the trust measured may therefore be more akin to trust in cooperation with
the system (Rajaonah et al., 2008).

The addition of assisted steering to ACC did not cause any further changes in driver re-
sponse times in the longitudinal scenarios studied, compared to driving with ACC alone. These
results are in line with previous research (Stanton et al., 2001; Young and Stanton, 2007). Thus,
ACC specific behaviour in a longitudinal scenario with lateral assistance added does transfer
for experienced drivers, who were faster both with ACC and ACC+AS (Paper III). However,
for the scenarios studied, the use of ACC+AS did not appear to cause any changes in either
driver attention or driver strategies compared to ACC except when the event targeted ACC+AS
functionality only.

The impact of lateral automation may be independent of previous experience with longitu-
dinal automation, possibly because the limitations and opportunities while using the systems are
different. In mere response time situation with a longitudinal component on the other hand,
experience with ACC leads drivers to recognise the behaviour of the system thus making them
quicker to respond.
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If you try and take a cat apart to see how it works, the first
thing you have on your hands is a non-working cat.

- Donglas Adams (The Salmon of Doubt: Hitchhiking the
Galaxy One Last Time)

6 General discussion

First, the methods chosen are described and discussed with regard to how they contribute
to the results of the thesis. Then, the results are discussed using the theories outlined at the
beginning of the thesis. Thereafter, the research questions are answered, and suggestions for
further research are made.

A suggestion for a structure to describe how drivers work with automation in traffic conflict
situations as well as the conclusions are reported in the next and final chapter.

6.1 Methodological considerations

The methods chosen were picked due to their ability to complement each other in the endeavour
of studying driver responses with longitudinal automation in common conflict situations. In
order to reach as many participants as possible at the beginning of the project, as well as collect
more information on the use of ACC, a qualitative questionnaire was used. Using some of
the information from the questionnaire data, the simulator and FOT studies were designed to
observe and measure the use of ACC. The simulator study was employed for the control provided
over the situations drivers end up in, and for repeatability. The FOT study, to determine driver
behaviour in the real-world data to complement the simulator results.
The methodology discussion is divided into three parts, one for each study.

6.1.1  Study I - questionnaire

As driver assistance systems are not registered in any way, researchers are reliant on the goodwill
of car manufacturers to get in touch with users if no large scale newspaper campaigns are used.
A questionnaire study thus provides contact with drivers that otherwise had been difficult to
reach, as Sweden is a large country with a small population. Questionnaires are generally used
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to provide a quantitative measure of the prevalence of behaviours or opinions. As the study was
conducted at the beginning of the project, qualitative background knowledge had not yet been
collected to any large extent. Free form questions were therefore used to gather new details about
driver understanding of ACC limitations. Thus, trends could be identified as well as appraised
due to the number of respondents. A structured list of previously known ACC limitations was
considered, but such a list may have guided participants away from other limitations they were
aware about, and thus not served as well to gather new knowledge.

The results of the questionnaire were in line with other research using phone interviews or
focus groups of people driving different car models (Strand et al., 2011; Llaneras, 2007), despite
targeting only XC60 owners in Sweden. Thus, it was demonstrated that a limited sample is still
useful. The high response rate of over 60% also indicate that a substantial number of opinions
have been gathered, though some measutre of bias toward those with strong opinions of the
system is to be expected.

The free form questions used provided knowledge of the types of situations where hand-
overs between system control and human control occurred, as well as what knowledge drivers
had of them. Mainly, the results pointed to it being fairly common to reclaim control from ACC.
As a questionnaire study can only capture what respondents are aware of and able to articulate,
studies of actual driver behaviour were used in the next step.

6.1.2  Study II - simulator

Simulator studies provide the control necessary to design traffic conflicts where drivers would
feel a need to get back into manual control. They also provide knowledge of the position and
behaviour of all other vehicles in the simulated world, and the opportunity to repeat scenarios.
Therefore, what is being studied is more distinct, and drivers can also be asked to use the system
in order to elicit behaviours with ACC in the specific scenarios constructed.

However, the high level of control can make it difficult to introduce the complexity necessary
to mimic real traffic. In the real world, drivers will have the end target to focus on as well as
be in charge of monitoring and physical control even if this has been delegated to automation.
In a lab setting, the implicit goal to keep monitoring the traffic situation is probably weaker as
there are no real dangers if drivers neglect to do so. Therefore, effects on gaze distribution may
be different if similar situations were possible to design in a field test. Due to the safety of the
participants, safety critical scenarios are also less suited for real-life studies.

The simulator studies focused on experience with ACC as a factor when responding to events
when the driver is required to get back into manual control. No secondary task was used, as the
focus lay more in the process of the driver delegating control and how that was done. The lack
of secondary tasks may have caused drivers to be more attentive than with a secondary task, but
results wete still comparable to those in previous research. The introduction of a secondary task
may therefore not be indispensable when studying driver responses during automated driving,
As Garrison (2011) notes, even with the addition of secondary tasks drivers tend to direct their
attention to the road again in hazardous situations.

There were differences, mainly based on age, between the two groups of experienced and
inexperienced ACC users (see Figure 5.2 on page 41). Those experienced with ACC were on
average 55 years old, whereas those inexperienced with the system were 38 years old. Owners
of ACC tend to be somewhat older (half of the respondents in Study I were 45-55 years old),
thus affecting the possible sample. Results, among others, indicated that those experienced with
ACC were faster to respond to its behaviour than those inexperienced (Paper III). As it has
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previously been known that older drivers have slower response times than younger drivers (e.g.
Broen and Chiang, 1996), this effect may be even larger than indicated. The effect is therefore
most probably due to experience with the system. Driver strategies should not have been affected
by any age differences, as it is not possible to exhibit the behaviours found in Paper II without
ACC or ACCHAS.

It is clear that the choice of scenarios in the simulator study affected what responses and
strategies can be discerned, and the broad range of scenarios used therefore were an advantage.
The use of simulators still does not necessarily provide an accurate description of how drivers
respond in actual traffic when using driving automation, as their driving strategies are seldom
observed. Therefore, the ability to compare simulator data to data from a field test would be
necessary to discern any similarities or differences.

6.1.3 Study IIT - FOT database

One event from Study I that might cause drivers to reclaim control was a cut-in situation, and
these became the focus of the FOT study. The identification of a sharp curve was also attempted,
but proved too difficult to identify in the available data. A cut-in situation was also implemented
as a scenario in the simulator study, allowing a comparison to be made. One major difference
between the FOT study and the other studies was that access to data was granted only post-data
collection. Therefore, it was neither possible to influence the selection of participants, nor to
include any other questions or controls not already present in the data.

As the same selection criteria have been used, the cut-in situations identified in the FOT
data are comparable to each other with regard to vehicle dynamics and vehicle controls. The
simulator study was also designed so that a mid-level THW of 1.6 seconds would be used, though
the simulator included a slow-moving queue and the cut-ins originating from the left. In the
FOT data, situations occurred in higher speeds, and cut-ins originated from the right. These
differences may have had an influence on driver responses as the simulator scenario could be
conceived as more critical. More research is needed into the choices of scenarios for both FOT
studies and simulator studies. Cut-in situations not identified with the same criteria will have
been missed, at least in part due to that situations entered with ACC and without can be different.
Reducing speed with ACC may also be seen as a more effortful action than allowing ACC itself
to act, and more severe events may therefore have been captured in the ACC condition than the
manual conditions.

The advantages of studying the cut-in event in FOT data is that the drivers have been free
to choose when to use ACC, whereas in simulator studies they are told when to use it making
the comparison of situations more straightforward. The difficulty therefore lies in comparing
the situations in FOT data, as there is an infinite amount of external factors that may influence
driver responses and choices. Defining what to use as baseline is also problematic, as drivers may
end up in qualitatively different situations with and without the system, depending on how they
incorporate it into their driving and how ACC influences the strategies that may lead to certain
situations or not. Such dissimilarities are difficult to know without additional understanding of
when drivers choose to activate or deactivate the system. The construction of a ”complete”
model of a cut-in event is therefore practically impossible. The resulting focus thus was to find
the contribution of ACC on driver response time, not all contributing factors.

The possibility to use video for event validation can provide more information when iden-
tifying events and driver strategies, as non-relevant events can be discarded before data analysis.
Yet, to increase comparability of baseline and treatment situations as well as comparisons with
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simulator results, a mixture between a FOT study and a field test would probably be advanta-
geous. Asking drivers to drive certain roads during specific times or days would offer a wider
perspective of system usage and effects. Changes in the tactical aspects of driving with systems
in the real world can only be found this way; by observing driving choices during a specific time,
at a specific road, on several different occasions and by looking for changes over time. Such
results would then complement research on response times, providing a broader description of
the effects of automation on driving;

6.2 Results discussion

This thesis originated in a desire to understand how the automation of parts of the longitudinal
driving task, operationalised by ACC, is incorporated into driving by those using the system. A
representative of a form of driving automation that will probably be even more prevalent in the
future, ACC relieves the driver from some cognitive effort (see Young et al., 2007). To expound
on the differences of driving with and without automation, specific effort was placed on studying
driver behaviour on the tactical level.

Driving with automation has not in this thesis been intrinsically valued as being better or
worse than driving without automation, only different. Also, the preferences of the users have
been taken into consideration to indicate how and when they deem automation to be useful or
not.

Key findings from the studies concern

o Different ways drivers choose to make use of ACC
o The effects of driver experience with ACC on their responses with the system

o The implication of studying tactical behaviour with the system

6.2.1 Delegating control to ACC

As previously discussed in Section 2.2.2, control is defined partly as performing an action, partly
as controlling that the action has the intended effect. Delegation is defined as the act of trusting
another agent to do a specific task (Falcone and Castelfranchi, 2002). With ACC, the delegation
of control can be studied in the choices drivers make of when to delegate, and when not to. The
primary focus for this thesis is bordetline traffic conflicts, i.e. studying situations where drivers
often choose to resume manual control from automation.

Drivers appear to keep in mind that ACC is not a cognisant system with the disadvantages
mentioned by Falcone and Castelfranchi (2001) and in Figure 2.8 on page 19. Inexperienced
ACC users also appear to assume a more cautious behaviour and and do not delegate either
manual or monitoring control to ACC (Paper II). They reclaim manual control before ACC has
a chance to respond instead of expecting a response. This was apparent in the exit scenatio in
Paper II, where the novice users reclaimed control from ACC whereas none of the experienced
users did so. The success of working with ACC is thus dependent on the driver’s understanding
of the system’s role, or as Hoc et al. (2009) describe it, management at the coordination level
(see also Section 2.2.2). In the simulator study, the drivers took the system’s behaviour into
account and appeared to be aware that it was active. In real traffic, drivers may be aware that
ACC s present, but do not always realise if it is active ot not untl it does/should petform actions
(Paper I). Action or inaction on the part of the system serves as a cue to the driver of system
perception at a given time. Inference management at the action level (see Hoc, 2001; Hoc et al.,
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2009) is therefore also dependent on the coordination level for the driver to monitor the most
suitable cues (Paper I1I). To facilitate a fast response at the action level, experience with and the
possibility to know the system’s role is important.

Delegating THW control to ACC might be conceived as the delegation of two separate tasks.
One is the continuous speed keeping and small adjustments in THW needed in most traffic. The
other is the interference management of (more noticeable) borderline traffic conflicts, where
drivers may need to reclaim manual control themselves. For the speed keeping, ACC is a very
useful system. Drivers are not able to perceive THW limits to the same level of detail or as
continuously as ACC does, there the system is much superior. For the bordetline traffic conflicts
on the other hand, drivers are forced to control that the actions of ACC have an appropriate
effect, either visually or to a certain extent via the haptic feedback of acceleration. Therefore,
drivers may choose ahead of time not to delegate control to the system if they do not think
that system control will be appropriate. In designing for suitable task delegation, the actual
interference management needed must be taken into account in order to describe what kinds of
delegation are occurring and where.

6.2.2 The importance of experience with ACC

With today’s driving automation, cooperation is not possible. Drivers are instead forced to ex-
ploit action tasks by ACC (see Section 2.2.2 and Falcone and Castelfranchi, 2001), and determine
what can be delegated and when themselves. This usage of automation needs to be learned for
the driver to know when different strategies will be successful. As the experienced users have
worked with ACC and learned how the system responds and acts in vatious situations, these
system behaviours appear to be established in the driver’s understanding of the system, demon-
strated in the results from Paper III and II.

Traffic conflicts or environmental constraints that, in the mind of the driver, are beyond the
scope of ACC seem to be incorporated in the driver’s plan also at an eatlier point (see Paper
II). As Kopf and Nirschl (1997) point out, experienced ACC users intervene less often with
ACC as they incorporate system behaviour into their plans. In Study II, both expetienced and
inexperienced ACC users took ACC behaviour into account. However, having been informed
about system limits, novice ACC users appeared to overextend the knowledge that ACC would
accelerate some in the exit condition in Paper II before connecting to a new lead vehicle. Instead
of allowing the ACC system to lose contact, accelerate and reconnect with a new lead vehicle,
the novice users switched off ACC. This even though the system would be able to cope with
the situation and is, indeed, meant to do so. A similar but different conservative response,
in a different situation, was also evident in the behaviour of the more experienced users who
respond eatrlier to inappropriate acceleration of the ACC and ACC+AS than did novice users.
This mirrors the results found by Llaneras (2007), in that drivers are more cautious initially with
the system, but extend their usage over time. The eatlier response of the more experienced users
to acceleration (Paper III) may be due to their larger awareness of system limitations (Dickie and
Boyle, 2009). That experienced users are indeed faster to respond when using ACC is, however,
new knowledge.

As continuous control has been delegated both with regard to monitoring and manual han-
dling, the main choice drivers have of monitoring system performance in borderline conflicts is
to wait and see. The other is to be so proactive that the system is not allowed to respond. Waiting
for a system response can also be used to remind the driver if the system is on or off, something
drivers can become confused about (see Paper I). Previous research has shown that drivers start
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out by testing system limitations (Simon, 2005), thus experiencing system haptics and system
behaviour in bordetline situations, later settling for a more stable way of using the system in
their drive. With experience, drivers also appear to depend at least partly on system actions to
diagnose such borderline conflict situations; drivers who were used to ACC were faster to re-
spond to system action than novice users (Paper III). So, in some circumstances, drivers appear
to respond to system behaviour connected to the situation at hand. As the more experienced
users know of system behaviour and its consequences to a larger extent than novice users, they
were able to respond to system action rather than the decreasing gap to the next vehicle. This
is somewhat similar to previous research (Aust et al., 2013; Ervin et al., 2000; Dijksterhuis et al.,
2012), indicating that drivers learn to respond to system actions rather than to a situation. In the
specific case reported in Paper III, drivers had to perceive the system response and diagnose it
as being incorrect.

With regard to assisted steering, it did not appear that experience with ACC could transfer
to all aspects of using ACC+AS. Brake response times were similar (Paper III), indicating that in
a longitudinal scenario, system behaviour can be generalised to include cases of active steering as
well. When handling ACC+AS-specific behaviours it was clear that knowing of ACC limitations
did not affect driver behaviour. Instead, drivers appeared to behave similatly regardless of their
experience with ACC. These results add to previous knowledge that drivers need to experience
system behaviours in a specific situation in order to learn it (Strand et al., 2011).

When studying driver responses in bordetline traffic conflicts, the behaviours of experienced
users clearly need to be taken into account. The importance of including drivers with experience
of system behaviours mainly lies in their knowledge of what systems may or may not be able
to handle, and thus what may or may not require a response (Paper II). The question remains
how long is required for drivers to get accustomed to the system sufficiently to respond faster
to system actions, and if the learning process needs to be or could be speeded up.

6.2.3 'The effects on driver attention

Gaze was studied in order to examine the effects of experience on attentional strategies when
dealing with borderline traffic conflicts. Previous research has shown that experience modifies
driver attention (e.g. Most and Astur, 2007). Thus, experience with ACC could entail drivers
being more alert to some ACC-relevant behaviours in traffic, and therefore also having a different
gaze pattern. In the current study, an attempt was made to find effects on less obviously expected
or unexpected events. That is, to see whether gaze differs in borderline traffic conflicts that
demand more from the driver than just following a road, but still occur faitly frequently. Previous
studies have indicated that drivers are as attentive to the road in complicated scenarios with and
without automation (Garrison, 2011; Jamson et al., 2013), and so studying visual strategies may
be more appropriate than on-road glances only.

Experienced drivers did exhibit different gaze patterns than did novices to some extent (Pa-
per II), but only in certain situations. In the broken car scenario in Paper II, the experienced ACC
users looked less at the road centre than did the novice ACC users. This change in attentional
strategies by experienced ACC users can serve to indicate that their targets when driving with
ACC are somewhat different than the targets attracting novice user attention due to experienced
users having a more clear goal with automation (e.g. Most et al., 2005). The differences were
not large and the question is cleatly in need of more investigation. The results from Paper II do
not support those from Carsten et al. (2012), who expect driver gaze to the roadway to decrease
with ACC+AS. As previously mentioned, this may be due to Catsten et al. not only studying
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specific scenarios, which were the focus of this thesis. Driving with automation does in some
ways appear to affect the visual strategies involved in driving.

The intention when measuring driver trust in ACC was to replicate the results found by
Rajaonah et al. (2008); high trust in the system leading to overly reliant behaviour toward the
system and decreased monitoring. Some of the participants in Study II did indeed delegate the
scenarios to automation and did not reclaim control, but this was not a repeating tendency found
in specific drivers, and not connected to trust or experience with ACC. It might also be necessary
to pose the question if trust offers much of an explanation with regard to driver cooperation with
automation.

Experienced ACC users had higher levels of trust in ACC than did novice users. It is there-
fore likely that “trust” in this respect was related to drivers’ confidence in working with the
system, like the trust mentioned by Rajaonah et al. (2008). The experienced users are more likely
to know more about system limitations (Paper I), and the higher levels of trust exhibited by these
drivers therefore contradict the results of Dickie and Boyle (2009). Dickie and Boyle had found
that higher levels of trust in a system was associated with less knowledge of system limitations.
The results from Rajaonah et al. (2008) could not be replicated either, as high trust was associ-
ated with experience of ACC and faster driver responses rather than slower (Paper III). As the
same questionnaire for trust ratings was not used, it may well be that the trust measured was
different. “Trust” may therefore also be the wrong term to use, as it apparently depends to a
very large extent on the survey used to gauge it. Perhaps it is more important to decide why trust
is measured and why it should be influenced. If the aim is to improve driver collaboration with
the system, finding the factors that actually make drivers able to do so is needed, such as their
experience with system limitations.

0.2.4 Delegating control in borderline traffic conflicts

The use of a system such as ACC has an effect on how drivers make tactical decisions such
as the manner in which they overtake or what lane they drive in, as previously demonstrated
(e.g. Vollrath et al., 2011; Saad and Villame, 1996). In the studies undertaken for this thesis, it
is demonstrated that drivers also incorporate system actions into their plans for responding to
traffic conflicts, allowing the system to respond if possible (Papers II and III). Drivers also use
the system differently depending on their understanding of system limitations, sometimes not
allowing the system to control the situation (Paper II). With experience of using ACC, drivers
learn to collaborate with the system by understanding its actions and creating strategies for re-
sponding to it in borderline conflicts (Paper III). Drivers learn what tasks the system can and
cannot act on, and what may be used as a signal to resume control. With this knowledge, they
become more adept at handling and detecting borderline situations that may be better handled
manually, thus responding faster (Paper III).

When driving with automation, drivers in the simulator study reported in Paper III were
slower to respond to a cut-in situation than without automation (similar to previous research,
e.g. Merat and Jamson, 2009; Vollrath et al., 2011). As driving automation requires a delegation
of manual control, this could be seen as a natural tactical strategy from the driver. System action
or inaction is an important cue to drivers, and will take time to identify after having chosen to
delegate a task or sub-task to the system. As demonstrated in Paper II, drivers can also exhibit
a more proactive and conservative behaviour, disengaging the system before it acts, but such a
response may be depending on the type of event. A study of response times to borderline traffic
conflicts, whether caused by the system or surrounding traffic, are therefore not the ideal way to
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study the effects of driving automation.

Simulator studies do not provide a comprehensive understanding of how ACC is used in
borderline traffic situations. When comparing driver responses to cut-ins in the simulator data
(Paper III) to cut-in events identified in the FOT data (Paper 1V), it appears that there is no
detrimental effect of ACC usage in the FOT data. Rather, there was even a tendency towards
a faster response in the FOT data, contradicting the results of Paper III as well as other stud-
ies where the use of automation leads to a slower response by drivers (e.g. Merat and Jamson,
2009; Vollrath et al., 2011; Stanton et al., 1997). The results of the EuroFOT study similarly
indicate that when responding to FCW warnings, drivers responded as fast with ACC active as
they did without (Malta et al., 2012). Though the situations with and without ACC active are
similar in the FOT study, drivers may have developed a strategy to work with ACC and therefore
responded faster. The reasons behind may, for example, be that they wish to avoid a potentially
uncomfortable decrease in speed if the system is allowed to respond alone.

In simulator studies, drivers are typically told to use a system the entire drive, and cannot
exhibit the same behaviours in activating or deactivating the system as they would in the real
world. Conversely, in FOT studies drivers choose when to activate the systems, based on their
previous experience and preferences. Therefore drivers may in simulator studies end up in sit-
uations with ACC active where they themselves would not have kept the system on. Drivers
might choose to deactivate the system in certain situations due to not knowing how the system
responds, not be keen on the system’s response in that specific situation, or just out of habit.
It may also be the case that the frequent activations and deactivations in real traffic serve as a
reminder on a subconscious level for the driver to attend to longitudinal events, and this affects
general response times. More research is clearly needed on when and how drivers choose to use
ACC, and how this differs from the constructed scenarios in simulator studies.

The results the simulator studies provide answers from one perspective on how ACC can
affect driving in the real world. This perspective is, however, limited to cases where the system
is used the way it was in the simulator study. If instead driver strategies in real traffic are affected
to the point that drivers do not end up in the situations tested in the simulator, the potential
problem (such as an increase in response time) decreases. It is therefore important to study both
sides of the issue; how drivers may respond in situations that can be studied in simulators, as
well as where and how the system is used in traffic. Of course, it may also be that drivers are
more watchful and aware of the system in real traffic, so that they are faster to respond even to
perhaps less risky situations. This faster response may also be due to them pressing the brake
more to reclaim control than to reduce speed as such, thus the situation being different from
driving without ACC. Further studies are needed.

For the active steering, it was clear that drivers incorporate this system functionality as well
into their driving decisions. Drivers utilise system actions even when the system is new to them,
and were also to a large degree able to predict what the active steering may do and exploited this
behaviour; some drivers worked with the ACC+AS system without disengaging it, allowing the
system to continue steering while accelerating themselves (Paper II). Problems have previously
been found with automation that allows the operator to focus on planning and longer-term
tactical decisions rather than manual responses and short-term tactical decisions (Endsley and
Kaber, 1999). With ACC, such removal from manual responses does not occur, as the driver is
still responsible for steering. Most tactical planning is still the responsibility of the driver in both
the short term and the long term. With the addition of active steering, additional short-term
decisions of how to position the vehicle in the lane are delegated to automation. Since drivers
appear to be reluctant to reclaim control when automation handles things well enough (Saad
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and Villame, 1996; Fancher et al., 1998), supported by Paper 11, there may be consequences
also affecting other tactical behaviour such as overtaking. As there was no effect of automated
steering in the longitudinal scenarios compared to ACC only, perhaps the monitoring of the
system’s actions by itself acted as a buffer in the scenarios studied. The results on response times
were also in line with previous research (Stanton et al., 2001; Young and Stanton, 2007), as driving
with ACC+AS did not differ from driving with ACC. Perhaps the response to a longitudinal
scenatio is equally quick both with and without lateral control, and delegation of the lateral
aspects will be apparent in tactical and strategic behaviours only. Another explanation might be
that there were enough conflicts and traffic to attend to for the driver to stay “connected” to
driving, thus not delegating more monitoring control.

0.2.5 A tactical or operational perspective on automation

Driving is a time-critical, somewhat risky, and highly visual undertaking. As long as the driver
drives instead of being allowed to act as a passenger, fear that the driver does not respond to
events may be largely unsubstantiated. If the current trend of delegating continuous control
to automation continues, demanding that the driver drives actively they way she would without
automation, the whole time, is somewhat unreasonable. As demonstrated in Paper II, drivers
make use of automation functionality and incorporate it into their driving decisions. Even if the
driver is provided with information about bordetline traffic conflicts and is helped in diagnosing
them, reliable systems will (and have, see Paper II) change drivers’ attentional strategies. These
changed strategies should not be seen as being intrinsically ”bad”, but rather as an adaptation to
working efficiently with for example ACC.

Behavioural adaptation has previously been defined by an OECD expert group (OECD,
1990) as ”’those behaviours which may occur following the introduction of changes to the road-
vehicle-user system and which were not intended by the initiators of the change”. This definition
is quite broad and requires further delimitations if operationalised in scientific studies. Previous
research (e.g. de Waard et al., 1999; Seppelt and Lee, 2007; Fancher et al., 1998) have often
focused upon faitly isolated effects on driver behaviours, like improving increased response times
with automation and pointing out risks with the driver engaging in more secondary tasks with
automation than without. Studies have also measured but not gone into the reasons behind spill-
over effects into sub-tasks like using ditection indicators; a task that has not yet been automated
(Hjdlmdahl and Virhelyi, 2004). These obsetrvations of phenomena do not by themselves hold
any explanatory value. In order to make sense of the measures made, a connection to theory
is needed. So far, the explanations offered (such as changes in workload suggested by Young
and Stanton, 2002b) do not provide insight into how (or why) drivers work differently with
automation than without. Neither have they been able to explain why certain behaviours and
factors, but not others, change with the use of automation (Saad and Elslande, 2012).

Continuing with a normative view of how cars and drivers ”should” behave with regard to
lane positioning or response times without knowledge of the surrounding circumstances does
not move theory or practice forward. We need to ask if it is practical to rely on the driver to
control system actions in all borderline traffic conflicts, or if this is beyond what is sensible
to do with a competent system. If a system is designed to allow the driver to attend to other
things, perhaps the driver should not also be required to attend to all possible traffic conflicts?
Using manual driving as something to strive for could almost be compared to counting errors
- only revealing differences that are “wrong”, not just different (for further discussions on the
pointlessness of counting errors, see e.g. Dekker, 2003, 2007).
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Focusing on performance through operational measures such as response times (Merat and
Jamson, 2009), time headway (Dragutinovic and Brookhuis, 2005), gaze (Victor et al., 2009), or
any number of things, means not approaching driving with automation as the situated task it
is (see Chapter 2). A strategy focused on operational tasks has lead to a focus on improving
quite a limited range of behaviours instead of gaining an understanding of how drivers work
with new systems, what changes are brought by automation, and what support might be needed
to improve that. Of course, everything cannot be studied, and a start must be made somewhere.
However, if an attempt is made to understand why behavioural changes transpire, the underlying
processes are not necessarily possible to obtain by taking an operational level standpoint. Indeed,
measures like response time have not been used for comparing car driving to horse riding (to
this author’s knowledge), despite suggestions of modelling system cooperation on interaction
with horses (Norman, 2007; Kienle et al., 2009). That driver response times with ACC in FOT
data (Paper IV) are different than in simulator studies (Paper I1I) for the same type of event, also
demonstrate that a wider perspective is needed.

By first taking a more qualitative approach and describing changes in tactical behaviour (as
demonstrated in Paper II) before deciding on operational (or tactical) measures, a more accurate
description of the changes brought on by automation can be formulated. It will not be clear what
situations drivers end up with while using driving automation until an analysis of tactical driving
behaviour is employed. Changes in the driver’s tactical behaviours may thereby also provide
insight into why operational level actions are changed, as indicated by the disparity in the results
between Paper IV and Paper IIL

Few studies before the current simulator study (Study II) have focused on changes in tactical
driver behaviour (Vollrath et al., 2011; Hjilmdahl and Varhelyi, 2004; Saad and Villame, 1996,
have, but only to a small extent). Yet, characterising the qualitative differences for the driver be-
tween manual and automation-supported drives is of importance to understand more about the
effects of automation on driving. There is a lack of knowledge of how systems are actually being
used and experienced, and what thereby may be the most interesting operational behaviours to
measure in simulator studies. As research has, to a large extent, focused upon driver responses
to system failure or acute hazards that occur very rarely (e.g. Stanton and Young, 2005; Flemisch
et al., 2008), driver responses and behaviours in more common situations have also been largely
unknown. It could even be the case that automation has an adverse effect on the driver’s ability
to respond to highly unusual and very serious traffic conflicts, but a positive effect on more
common traffic conflicts. This is, largely, undetermined. Making an effort to study the changes

in tactical behaviours, a more informed conclusion can be made about the safety of systems such
as ACC.
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6 GENERAL DISCUSSION

6.3 Further research

Adaptive cruise control is one of the more advanced systems available on the market today, but
here are of course also autonomous and driverless cars, where there driver is intended to be
redundant. Despite this, drivers can still resume control over driverless cars, possibly to comply
with the Vienna convention (1968) which states that drivers should always be in control. Thus,
the questions raised in this thesis of transferring control is important also in “autonomous”
vehicles. As the driving automation available today operates in a human’s world, it needs to
allow its user to identify and manage situations it cannot handle. Some suggestions for further
research have already been mentioned in the discussion, but two main research tracks are here
explored further; driver attention and responses with automation, and learning processes.

Studying the the differences found between novice and experienced users of ACC from
the angle of driver attention with automation would be interesting. Farrell and Lewandowsky
(2000) proposed that operators learn not to respond when using automation, which does not
match the quicker response by experienced ACC users found in Paper III. However, Farrell
and Lewandowsky also describe that, in a short trial, intermittently reclaiming control improves
recovery speed. Drivers with more experience of ACC have reclaimed control more often from
the system, but over a long time period. If a shorter trial of frequently reclaiming control from
automation would elicit the same improvement in response time for new users, not completely
letting go of control by practicing to return to control may be an appropriate way of describing
how drivers learn to use ACC and other systems. It could, however, also be conceived that drivers
are being overly cautious, thus responding more quickly, but this difference may be possible
to discern by interviews. Another potential explanation requiring further study would be that
drivers only learn to avoid responding in situations they know the system should be able to
handle. Therefore, if something truly unexpected happens, such as system failure in a situation
the system normally always handles, drivers are slower as they are waiting for a response that
should come. If instead the situation is a borderline traffic conflict or clearly out of bounds,
drivers may be faster to respond as they are aware that they may need to reclaim control. It
would therefore also be useful to determine how drivers judge events to be within or outside
ACC capabilities, if they do, so that these aspects are not missed in simulator studies.

From the results found in this thesis, understanding the system’s behaviours and responses
appear to be of high importance. Therefore, a follow-up study investigating drivers’ learning pro-
cesses and their effects on tactical driving decisions when collaborating with the system would
be of use. Such a follow-up would best be conducted as a combination of interviews, diaries
and observation of complete novices with the system. If participants are grouped by how much
they drive per month, it could be revealed whether the distance driven is more important than
other factors, such as range of events encountered, when learning to use the system. It would
be of great interest to know how much of the strategies are dependent on learning to respond
to system actions (reactive), and how much depend on learning what situations the system can
and cannot handle (proactive). The combination of methods would also allow for an under-
standing of the learning process and decisions made by both what is deemed important enough
for drivers to write down and how drivers believe they learn system behaviour. How much ex-
perience is necessary to learn useful strategies to benefit maximally from the systems and avoid
situations exceeding system limitations is also important issue, as well as what may cause drivers
to become overly conservative. An observation of driver strategies to validate driver statements
would require some method development, but fitting their vehicles with sensors and cameras like
in a FOT would be preferable. Such an instrumented car study would require a larger element
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of control, to ascertain for example where and when drivers decide to activate or not activate
ACC. Drivers could be requested to drive a specific stretch of road with some regularity, and a
combination of infrastructure and in-vehicle sensors and cameras could be used to study driver
behaviour. The propensity for drivers to behave in potentially risky ways with or without au-
tomation could also be studied this way, as actual involvement in more serious traffic conflicts
are rare.

0.3.1 Improving ACC and other driving automation

As previously mentioned (see Section 2.2.2 on page 13), one limitation of ACC and similar
systems is that they cannot learn about the driver’s preferences. Communication is not only
needed to understand what the system is doing, but it is the natural way for humans to know
what is being delegated and if it might need adjustment (Falcone and Castelfranchi, 2001). In
the case of driver assistance systems, such communication is only made from system to driver,
never the other way around. The effects of this lack of reciprocity should be taken into account
when designing new ADAS. If the driver would prefer the system to avoid doing something, this
attitude cannot be learned by the system. Instead, the driver is always forced to deactivate and
reclaim manual control. Drivers, however, become reluctant to do so when using automation,
often preferring to keep automation in control until the situation develops so that this strategy
is proven to be unsuccessful (Paper II).

Some drivers avoid using ACC as they claim it does not suit their driving style (Paper I).
Acceleration behaviour (as well as deceleration behaviour) is a comfort factor with ACC, and
may be possible for the system to learn at least concerning environmental factors such as road
pitch (going up or down hills). Learning how to respond to the driver’s preferences in situations
more dependent on the behaviour of others may be more difficult, but perhaps some general
trends can be identified and imitated.

The driver may also use the system less than to its full potential by acting more conservatively
than necessary (Paper 1I). Improving the driver’s ability to understand what the system is doing
would be one way to provide a more accurate understanding of system capabilities (Norman,
1990), for example by communicating if the system may be approaching its maximum braking
force. More understanding of the situations where not only novice users but also experienced
users may act overly cautious is therefore necessary.
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Abnd then the world is your mollusc!
- Terry Pratchett (Men at Arms)

7 Conclusions

The aim of this thesis was to study the effects of longitudinal automation when handling
commonly occurring situations that may require the driver to reclaim manual control. During
the course of the project, it became apparent that drivers consider system behaviour in a number
of different ways when driving (see Paper T and Paper IT)!. However, in the majority of studies
where the focus has been on the driver reclaiming control, system failures have provided the
context. Yet, system failures constitute but one reason for transfer of manual control to the
driver (Paper I, Section 6.2.4). In this thesis, there have been several mentions of borderline
traffic conflicts (studied for Paper II and Paper III, mainly), situations where it is not quite
clear if the driver needs to reclaim control or not. Some of the reasons behind these situations
are listed in the “Reaction” module of Figure 7.1. Reactions are not the only ways in which
drivers work with ACC, though. As could be seen in the results from Paper II, the driver can
also proactively decide use the system for their benefit, or reclaim control before the system
acts. Drivers not only respond to system behaviour in a limited time frame, but also exploit
the system and may fall into a habit of using it a certain way (again, see Figure 7.1). Focusing
on system breakdowns therefore misses much more common situations where system behaviour
influenced driving, situations whete the driver’s response and also proactive behaviour is perhaps
of higher importance. These other situations being just that, commonly occurring, suggests that
they potentially have a larger impact on driver behaviour than the rare system breakdowns.

The proactive factors probably contribute to driver behaviour in ways that in turn can affect
factors such as THW or lane positioning, thus explaining the behavioural modifications found
in previous studies (Saad, 2006). Therefore, proactive behaviour also needs to be studied so that
a generalisation is not made from a sample of variables that do not fully reflect system usage.

! This does not include situations where the driver might struggle to reclaim control due to conflicting actions between
the automation and the operator, as the operator so far always has a veto over driving automation.
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Scheme of working with ACC

n common traffic conflict situations
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- System action is system - Plan driving to - Adjust driving
inappropriate avoid situations style
- System action is - Habits of system
uncomfortable usage
- System breaks
down
Operational | Tactical Strategic | Tactical

Figure 7.1: A categorisation of driver actions with automation
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7 CONCLUSIONS

To improve the driver’s prospects of managing the limitations of driving automation, studies
need to be performed on a wider range of hand-over situations than merely system breakdowns
or highly critical traffic conflicts. Not only do drivers resume control from the ACC, but they
also delegate control to the system. From the simulator study (Paper II), it is apparent how the
choice of scenarios affects what responses and strategies can be discerned. I therefore encourage
using a broad spectrum of scenarios, so that a wider range of driver behaviours can be studied.
What constitutes a broader spectrum is not yet clear, but as a beginning, the scenarios should
presumably not all fall into the same category in Figure 7.1.

7.1 Final remarks

The petspective taken in this thesis, that automation is to some degree used as an independent
actor to delegate tasks to, has hopefully inspired a new way of thinking about driving with au-
tomation.

Studying the effects of change in a complex system such as the advent of partly automated
vehicles in traffic is by no means an easy feat. It can be done from a variety of different perspec-
tives, at different levels, all describing part of the change. Automation is designed to facilitate
driving, and driver exploitation of system actions should not be unduly complicated or criti-
cised. Rather, automation needs to be studied with an open mind to learn how drivers make
use of these systems, and where problems in doing so may arise. What is seen as the nature of
driving needs to be reconceptualised when studying the safety of continuous driving assistance
systems such as ACC, along with what is used as baseline. The priority given to measures of
operational driver behaviour, without sufficient knowledge of how driving with automation is
qualitatively different from driving without it, means the measures taken might be interpreted
incorrectly. A change in TTC or THW may be less significant than a change in more composite
behaviours, as drivers use the car differently on a tactical level with the system than without.

Driving with automation can be something new, something allowing drivers to achieve and
attend to other things than today - much as driving a car allows the driver to achieve and attend
to other things than a horse and cart does. Purely quantitative measures of behaviours such
as lane positioning or response time do not illuminate how or how well a driver and a system
(or horse) work together. Therefore, they do not provide examples of how the collaboration
between driver and automation could improve either. Once having established the importance
of studying tactical behaviours, new research questions can be posed, and the future of driving
can evolve in more human-friendly ways.

To summarise, the main results and conclusions of this thesis are as follows:

o In FOT data, ACC leads to a faster driver response times to cut-in situations compared to
driving without ACC availability, opposing previous research in simulators. Possibly, this
is due to drivers using ACC differently when allowed to choose for themselves. (Paper IV,
Section 6.2.4)

o Expetienced ACC users are 0.5 seconds faster to respond to inapproptiate ACC/ACC+AS
actions in a cut-in situation in simulated driving than are inexperienced ACC users. Both
experienced and inexperienced users were slower to respond with ACC active than with-
out. It is therefore important to not only study novice responses to systems. (Section

6.2.2, Paper 111, Paper II)
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o Response times studied in simulators only answer the question of whether driver be-
haviour in that specific scenatio is affected with an activated system. Drivers may change
their driving with the system so that the scenario does not occur in real traffic, but others
may occur instead. (Section 6.2.4)

o Studies need to be made on a wider range of hand-over situations between system and
driver than system breakdowns, as this is only one aspect of many involving drivers work-
ing with automation. (Paper I, Paper II and Figure 7.1 on page 64 )

66



REFERENCES

References

Alkim, T. P, Bootsma, G., and Hoogendoorn, S. P. (2007). Field operational test ”The assisted
driver”. In 2007 IEEE Intelligent Vebicles Symposium, pages 1198—1203. IEEE.

Aust, M. L., Engstrém, J., and Vistrém, M. (2013). Effects of forward collision warning and
repeated event exposure on emergency braking. Transportation Research Part F: Traffic Psychology
and Behaviour, 18:34—46.

Bagheri, N. and Jamieson, G. (2004). The impact of context-related reliability on automation
failure detection and scanning behaviour. In Proceedings of the 2004 IEEE International Conference
on Systems, Man and Cybernetics, volume 1, pages 212-217.

Bailey, N. R. and Scerbo, M. W. (2007). Automation-induced complacency for monitoring highly
reliable systems: the role of task complexity, system experience, and operator trust. Theoretical
Issues in Ergonomics Science, 8(4):321-348.

Bainbridge, L. (1983). Ironies of automation. Awutomatica, 19(6):775=779.

Beggiato, M. and Krems, J. F. (2013). The evolution of mental model, trust and acceptance of
adaptive cruise control in relation to initial information. Transportation Research Part F: Traffic
Psychology and Bebhaviour, 18:47-57.

Broen, N. L. and Chiang, D. P. (1996). Braking response times for 100 drivers in the avoidance
of an unexpected obstacle as measured in a driving simulator. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 40(18):900-904.

Brookhuis, K. A., van Driel, C. J. G,, Hof, T., van Arem, B., and Hoedemaeker, M. (2009). Driving
with a congestion assistant; mental workload and acceptance. Applied ergonomics, 40(6):1019—
25.

Carsten, O., Lai, F. C. H., Barnard, Y., Jamson, a. H., and Merat, N. (2012). Control task substi-
tution in semiautomated driving: does it matter what aspects are automated? Human Factors:
The Journal of the Human Factors and Ergonomics Society, 54(5):747-761.

Castelfranchi, C. (1998). Modelling social action for Al agents. Artificial Intelligence, 103(c).

Castelfranchi, C. and Falcone, R. (1998). Towards a theory of delegation for agent-based systems.
Robotics and Autonomons Systems, 24(3-4):141-157.

Crundall, D., Shenton, C., and Underwood, G. (2004). Eye movements during intentional car
following. Perception, 33(8):975-986.

de Waatd, D., van der Hulst, M., Hoedemaceker, M., and Brookhuis, K. (1999). Driver behavior
in an emergency situation in the automated highway system. Transportation Human Factors,
1(1):67-82.

Dekker, S. W. A. (2003). Illusions of explanation: a critical essay on error classification. The
International Journal of Aviation Psychology, 13(2):95-106.

67



Larsson - Automation and the nature of driving

Dekker, S. W. A. (2007). Doctors are more dangerous than gun owners: a rejoinder to error
counting, Human factors, 49(2):177-84.

Dickie, D. A. and Boyle, L. N. (2009). Drivers’ understanding of adaptive cruise control limita-
tions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53(23):1806—1810.

Dijksterhuis, C., Stuiver, A., Mulder, B., Brookhuis, K. A., and de Waard, D. (2012). An adaptive
driver support system: user experiences and driving performance in a simulator. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 54(5):772—785.

Dragutinovic, N. and Brookhuis, K. (2005). Behavioural effects of advanced cruise control use —
a meta-analytic approach. Eurgpean Journal of Transport and Infrastructure Research, 5(4):267-280.

Endsley, M. R. and Kaber, D. B. (1999). Level of automation effects on performance, situation
awareness and workload in a dynamic control task. Ergonomics, 42(3):462—492.

Ervin, R., Bogard, S., and Fancher, P. (2000). Exploring implications of the deceleration authority
of adaptive cruise control for driver vigilance. Proceedings of the 7th World Congress on Intelligent
Transport Systems, (Paper 1087).

Ervin, R, Sayer, J. R., LeBlanc, D. ], Bogard, S. E., and Mefford, M. (2005). Automotive collision
avoidance system field operational test report: Methodology and results. Technical report,
UMTRI, General Motors, Report No. DOT HS 809 900.

Falcone, R. and Castelfranchi, C. (2001). The human in the loop of a delegated agent: the
theory of adjustable social autonomy. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 31(5):406—418.

Falcone, R. and Castelfranchi, C. (2002). Issues of trust and control on agent autonomy. Cozn-
nection Science, 14(4):249-263.

Fancher, P, Ervin, R., Sayer, ]. R., Hagan, M., and Bogard, S. E. (1998). Intelligent cruise control
field operational test (final report). Technical Report May, UMTRI, NHTSA, Report No.
DOT HS 808 849.

Farrell, S. and Lewandowsky, S. (2000). A connectionist model of complacency and adaptive
recovery under automation. Journal of experimental psychology. 1earning, memory, and cognition,
26(2):395-410.

FESTA (2008). FESTA Handbook Version 2. Technical Report August, De-
liverable D6.4 of Field opErational teSt supporT Action (FESTA). Available at
http://www.itsleeds.ac.uk/festa/.

Flemisch, F. O., Kelsch, J., Léper, C., Schieben, A., Schindler, J., and Heesen, M. (2008). Coop-
erative control and active interfaces for vehicle assistance and automation. In FISITA World
Automotive Congress, number 2, Munich.

Garrison, T. (2011). Allocating visual attention: how relevance to driving impacts attention when
drivers are distracted. In Proceedings of the Sixth International Driving Symposium on Human Factors
in Driver Assessment, Training and Vebicle Design, pages 73—79.

68



REFERENCES

Gibson, J. and Crooks, L. (1938). A theoretical field-analysis of automobile-driving. The Awmerican
Journal of psychology, 51(3):453—-471.

Hjidlmdahl, M. and Virhelyi, A. (2004). Speed regulation by in-car active accelerator pedal.
Transportation Research Part F: Traffic Psychology and Bebavionr, 7(2):77-94.

Hoc, J.-M. (2001). Towards a cognitive approach to human—machine cooperation in dynamic
situations. International Journal of Human-Computer Studies, 54(4):509-540.

Hoc, J.-M., Young, M. S., and Blosseville, J.-M. (2009). Cooperation between drivers and au-
tomation: implications for safety. Theoretical Issues in Ergonomics Science, 10(2):135-160.

Hoedemaceker, M. and Brookhuis, K. A. (1998). Behavioural adaptation to driving with an adap-
tive cruise control (ACC). Transportation Research Part F: Traffic Psychology and Behavionr, 1(2):95—
106.

Hollnagel, E. (2001). Cognition as control: a pragmatic approach to the modelling of joint
cognitive systems. Special issue of IEEE Transactions on Systems, Man, and Cybernetics A: Systems
and Humans.

Hollnagel, E., Na bo, A., and Lau, I. (2003). A systemic model for driver-in-control. Proceedings of
the Second International Driving Symposium on Human Factors in Driver asessment, Training and Vebicle
Design, pages 86-91.

Hydén, C., editor (2008). Trafiken i den hallbara staden. Studentlitteratur.
Inland Transport Committee, U. N. E. C. f. E. (1968). Convention on road traffic.

Jamson, A. H., Lai, F. C., and Carsten, O. M. (2008). Potential benefits of an adaptive forward
collision warning system. Transportation Research Part C: Emerging Technologies, 16(4):471-484.

Jamson, A. H., Merat, N., Carsten, O. M., and Lai, F. C. (2013). Behavioural changes in drivers
experiencing highly-automated vehicle control in varying traffic conditions. Transportation Re-
search Part C: Emerging Technologies, 30:116-125.

Jenssen, G. (2010). Bebavioural adaptation to advanced driver assistance systems. Steps to explore safety
implications. Doctoral Thesis at NTNU 124.

Kienle, M., Dambéck, D., and Kelsch, J. (2009). Towards an H-Mode for highly automated
vehicles: driving with side sticks. In Proceedings of the 15t International Conference on Automotive
User Interfaces and Interactive Vebicular Applications, pages 19-23, Sep 21-22, Essen, Germany.

Kircher, K., Ahlstrom, C., and Kircher, A. (2009). Comparison of two eye-gaze based real-time
driver distraction detection algorithms in a small-scale field operational test. In Proceedings of
the Fifth International Driving Symposinm on Human Factors in Driver Assessment, Training and 1 ebicle
Design, pages 16-23, Big Sky, MT.

Kopf, M. and Nirschl, G. (1997). Driver-vehicle interaction while driving with ACC in borderline
situations.  Proceedings of the 4th World Congress on Intelligent Transportation Systems, page Paper
number 205.

Lee, J. D. and See, K. A. (2004). Trust in automation: designing for appropriate reliance. Human
Factors: The Journal of the Human Factors and Ergononzics Society, 46(1):50—80.

69



Larsson - Automation and the nature of driving

Llaneras, R. (2007). Misconceptions and self-reported behavioral adaptations associated with
advanced in-vehicle systems: lessons learned from early technology adopters. In Driving As-
sessment 2007: 4th International Driving Symposium on Human Factors in Driver Assessment, Training
and Vebicle Design, pages 299-305.

Malta, L., Ljung Aust, M., Faber, F, Metz, B, Saint Pierre, G., Benmimoun, M., and Schifer, R.
(2012). EuroFOT final results: impacts on traffic safety. Technical report.

Mas, A., Merienne, F, and Kemeny, A. (2011). Lateral control assistance and driver behavior in
emergency situations. Advances in Transportation Studies, (Special issue):1-12.

Merat, N. and Jamson, A. H. (2009). How do drivers behave in a highly automated car? In
Proceedings of the Fifth International Driving Symposiunt on Human Factors in Driver Assessment, Training
and Vebicle Design, pages 514-521, Big Sky, MT.

Merat, N., Jamson, A. H., Lai, E. C. H., and Carsten, O. (2012). Highly automated driving,
secondary task performance, and driver state. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 54(5):762-771.

Michon, J. (1979). Dealing with danger. Technical report, Technical Report nr VK 79-01, Traffic
Research Centre, University of Groningen.

Michon, J. (1985). A critical view of driver behavior models: What do we know, what should we
do. In Evans, L. and Schwing, R. C., editors, Human Bebavior and Traffic Safety, pages 485-520.
Plenum Press, New York.

Molloy, R. and Parasuraman, R. (1996). Monitoring an automated system for a single failure: vig-
ilance and task complexity effects. Human Factors: The Journal of the Human Factors and Ergonomics
Society, 38(2):311-322.

Moray, N. (2003). Monitoring, complacency, scepticism and eutactic behaviour. International
Journal of Industrial Ergonomics, 31:175-178.

Moray, N. and Inagaki, T. (2000). Attention and complacency. Theoretical Issues in Ergonomics
Science, 1(4):354-3065.

Moray, N., Inagaki, T., and Itoh, M. (2000). Adaptive automation, trust, and self-confidence in
fault management of time-critical tasks. Jowrnal of Experimental Psychology Applied, 6(1):44-58.

Most, S. B. and Astur, R. S. (2007). Feature-based attentional set as a cause of traffic accidents.
Visual Cognition, 15(2):125-132.

Most, S. B., Scholl, B. ], Clifford, E. R., and Simons, D. J. (2005). What you see is what you set:
sustained inattentional blindness and the capture of awareness. Psychological Review, 112(1):217—
42.

Mouloua, M., Parasuraman, R., and Molloy, R. (1993). Monitoring automation failures: effects
of single and multi-adaptive function allocation. Human Factors and Ergonomics Society Annual
Meeting, 37(1):1-5.

Muir, B. and Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and
human intervention in a process control simulation. Ergononzics, 39(3):429—460.

70



REFERENCES

Muir, B. M. (1994). Trust in automation: Part I. Theoretical issues in the study of trust and
human intervention in automated systems. Ergonomics, 37(11):1905-1922.

Nass, C., Fogg, B., and Moon, Y. (1996). Can computers be teammates? International Journal of
Human-Computer Studies, 45:669—-678.

Neisser, U. (1976). Cognition and reality: principles and implications for cognitive psychology. W.H. Freeman
and Company.

Nilsson, L. (1995). Safety effects of adaptive cruise controls in critical traffic situations. Szgps
Forward. Intelligent Transport Systems World Congress, 3:1257.

Norman, D. (2007). The design of future things. The Perseus Books Group.

Norman, D. A. (1990). The ’problem’ with automation: inappropriate feedback and interaction,
not ’over-automation’. Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 327(1241):585-93.

Norman, D. A. (1993). Things that matke us smart: defending human attributes in the age of the machine.
Addison-Wesley.

OECD (1990). Behavioural adaptations to changes in the road transport system. Technical
report, Organization for economic cooperation and development, Paris.

Parasuraman, R. (1997). Humans and automation: use, misuse, disuse, abuse. Huwman Factors:
The Journal of the Human Factors and Ergonomics Society, 39(2):230-253.

Parasuraman, R. and Manzey, D. H. (2010). Complacency and bias in human use of automation:
an attentional integration. Human Factors: The Journal of the Human Factors and Ergonomics Society,
52(3):381-410.

Parasuraman, R. and Wickens, C. D. (2008). Humans: still vital after all these years of automation.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3):511-520.

Pauwelussen, J. and Feenstra, P. J. (2010). Driver behavior analysis during ACC activation and
deactivation in a real traffic environment. IEEE Transactions on Intelligent Transportation Systems,

11(2):329-338.

Rajaonah, B, Tricot, N., Anceaux, F,, and Millot, P. (2008). The role of intervening variables in
driver—ACC cooperation. International Journal of Human-Computer Studies, 66(3):185-197.

Rudin-Brown, C. M. and Parker, H. A. (2004). Behavioural adaptation to adaptive cruise control
(ACC): implications for preventive strategies. Transportation Research Part F: Traffic Psychology and
Bebaviour, 7(2):59-76.

Saad, F. (2004). Behavioural adaptations to new driver support systems: some critical issues. In
2004 IEEE International Conference on Systems, Man and Cybernetics IEEE Cat. No.O4CH37583),
volume 1, pages 288-293. IEEE.

Saad, I (2000). Some critical issues when studying behavioural adaptations to new driver support
systems. Cognition, Technology & Work, 8(3):175-181.

71



Larsson - Automation and the nature of driving

Saad, F and Elslande, P. V. (2012). Drivers’ safety needs, behavioural adaptations and acceptance
of new driving support systems. Work: A Journal of Prevention, Assessment and Rehabilitation,
41:5282-5287.

Saad, F, Hjidlmdahl, M., Cafias, J., Alonso, M., Garayo, P., Macchi, L., Nathan, F, Ojeda, L.,
Papakostopoulos, V., Panou, M., and Bekiaris, E. (2004). Literature review of behavioural
effects. Technical Report March, AIDE, deliverable 1.2.1.

Saad, F. and Villame, T. (1996). Assessing new driving support systems: contribution of an
analysis of drivers’ activity in real situations. In Intelligent Transportation: Realizing the Future.
Proceedings from the Third World Congress on Intelligent Transport Systems, Paper no. 370.

Sarter, N., Woods, D., and Billings, C. (1997). Automation surprises. In Salvendy, G., editor,
Handbook of Human Factors & Ergonomics, pages 1-25. Wiley, 2nd edition.

Seppelt, B. D. and Lee, J. D. (2007). Making adaptive cruise control (ACC) limits visible. Inzer-
national Journal of Human-Computer Studies, 65(3):192—205.

SIKA (2010). SIKA Kérstrickor - FORDON 2009.

Simon, J. (2005). Advanced Driver Assistance Systems. Empirical studies of an online tutor and a personalised
warning display on the effects of learnability and the acquisition of skill. PhD thesis, Cheimniz university.

Stanton, N. (2006). Hierarchical Task Analysis: Developments, Applications and Extensions.
Applied ergonomics, 37(1):55-79.

Stanton, N. A. and Marsden, P. (1996). From fly-by-wite to drive-by-wire: safety implications of
automation in vehicles. Safety Science, 24(1):35—49.

Stanton, N. A., Young, M., and McCaulder, B. (1997). Drive-by-wire: the case of dtiver workload
and reclaiming control with adaptive cruise control. Safety Science, 27(2-3):149-159.

Stanton, N. A. and Young, M. S. (1998). Vehicle automation and driving performance. Ergononrics,
41(7):1014-1028.

Stanton, N. A. and Young, M. S. (2005). Driver behaviour with adaptive cruise control. Er-
gonomies, 48(10):1294-1313.

Stanton, N. A., Young, M. S., Walker, G. H., Turner, H., and Randle, S. (2001). Automating the
driver’s control tasks. International Journal of Cognitive Ergonomics, 5(3):221-236.

Strand, N., Nilsson, J., Karlsson, M. 1., and Nilsson, L. (2011). Exploring end-user experiences:
Self-perceived notions on use of adaptive cruise control systems. In Transport Systems, IET,
number 2003, pages 134—140, Selected papers from the 2nd European Conference on Human
Centered Design in I'TS.

Trick, L. M., Enns, ]. T., Mills, J., and Vavrik, J. (2004). Paying attention behind the wheel: a
framework for studying the role of attention in driving, Theoretical Issues in Ergonomics Science,

5(5):385—424.

Victor, T., Ahlstrém, C., Steinmetz, E., Cano, J. L., Bla berg, C., Rydstrém, A., and Sandberg, D.
(2009). SeMiFOT task report WP5.2.3 Visual behavior analysis of ACC. Technical Report 12.

72



REFERENCES

Viti, E,, Hoogendoorn, S. P., Alkim, T. P, and Bootsma, G. (2008). Driving behavior interaction
with ACC: results from a field operational test in the Netherlands. In 2008 IEEE Intelligent
Vebicles Symposinm, pages 745-750.

Vollrath, M., Schleicher, S., and Gelau, C. (2011). The influence of cruise control and adaptive
cruise control on driving behaviour - a driving simulator study. Accident Analysis & Prevention,

43(3):1134-9.

Weinberger, M., Winner, H., and Bubb, H. (2001). Adaptive cruise control field operational test
- the learning phase. JSAE review, 22:487-494.

Wiese, E. E. and Lee, J. D. (2007). Attention grounding: a new approach to in-vehicle informa-
tion system implementation. Theoretical Lssues in Ergononsics Science, 8(3):255-276.

Winner, H. (2012). Adaptive cruise control. In Eskandarian, A., editor, Handbook of Intelligent
Vebicles, pages 613—6506. Springer London, London.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: theory and practice. The Knowledge
engineering Review, 10(2):115-152.

Xiong, H. and Boyle, L. (2012). Drivers’ adaptation to adaptive cruise control: examination of au-
tomatic and manual braking, IEEE Transactions on Intelligent Transportation Systems, 13(3):1468—
1473.

Xiong, H., Boyle, L. N., Moeckli, J., Dow, B. R., and Brown, T. L. (2012). Use patterns among
early adopters of adaptive cruise control. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 54(5):722—733.

Young, M. and Stanton, N. (2002a). Attention and automation: new perspectives on mental
underload and performance. Theoretical Issues in Ergonomics Science, 3(2):178-194.

Young, M., Stanton, N., and Harris, D. (2007). Driving automation: learning from aviation about
design philosophies. International Journal of Vebicle Design, 45(3):323—338.

Young, M. S. and Stanton, N. A. (2002b). Malleable attentional resources theory: a new expla-
nation for the effects of mental underload on performance. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 44(3):365-375.

Young, M. S. and Stanton, N. A. (2007). Back to the future: brake reaction times for manual and
automated vehicles. Ergonomics, 50(1):46-58.

73






“There is an art, [the Guide] says, or rather, a knack to
Shing. The knack lies in learning how to throw yourself at
the ground and miss. ... Clearly, it is this second part, the
missing, which presents the difficulties.”

- Douglas Adams (The Hitchhikers Guide to the Galaxy)
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TRANSLATION TO ENGLISH FROM THE SWEDISH ORIGINAL

Questionnaire for car owners with adaptive cruise control

Our research group at Lund University is conducting a research project on driver support systems
in cars. The reason you have received this letter is that many people who have the same car model
as you have chosen adaptive cruise control, ACC for your vehicle. Adaptive cruise control keeps
both the set speed and the distance to the vehicle in front. The study is about adaptive cruise
control, so only car owners with this system need to answer the questions. If you do not have this
system in your car, we would like to thank you for your time!

The aim of the study is to determine how adaptive cruise control (ACC) is being used today, and
in what ways the system can be improved to create a safer traffic environment for all. We would
be grateful if you could spare a few minutes of your time to answer this questionnaire. Active
driver support systems are still quite rare, making your views especially important. All the data
collected will be treated anonymously, and will not be possible to connect to you personally.

The questionnaire is only intended for car owners with adaptive cruise control in their vehicles.
If you do not have this system in your car, we thank you for having read this; you do not need to
send us the questionnaire.

If you have any questions or anything to add, please call or email:

XXXXX XXXXXXXX(WXXX.XXX. XX



TRANSLATION TO ENGLISH FROM THE SWEDISH ORIGINAL
Questionnaire for car owners with ACC, adaptive cruise control

Our research group at Lund University is conducting a research project on active support systems in cars. These
systems are still rare, making your opinions especially important.

The aim is to determine how adaptive cruise control (ACC) is being used today, and in what ways the system
could be improved to create a safer traffic environment for all.

1. Do you have adaptive cruise contro, ACC, in your car? The system keeps both the set speed and distance to the
vehicle in front.
O Yes [> Ifyes, go to the next question!

O No

O Don't know} [> If no/don’t know, thank you for your time; you do not need to send us the questionnaire!

2. How often do you use ACC, adaptive cruise control?

U4 Every week
U At least once a month )

[> Proceed to question 4!
O Less often

O Never [> Proceed to the next question!

If you never use ACC:

3. Why do you not use ACC, adaptive cruise control?

[>  Please proceed to question 11.

If you use ACC:

4. What do you feel is the most positive and most negative part of using adaptive cruise control?

6. In what situations do you activate and deactivate the system?
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TRANSLATION TO ENGLISH FROM THE SWEDISH ORIGINAL

7. Have you ever been unaware that the system is on or off? If yes, what happened?

8. Have situations occurred where you have thought that the system does not live up to your expectations?
Please describe.

10. Do you believe that the ACC system, in general...

Is useful...
O Practically always 0 Most of the time Q In certain situations O Not very

Demands attention ...
QO Complete attention U Regular attention O In certain situations O Seldom

Any comments:

11. For how long have you had your current vehicle?

Q 1-3 months O 4-6 months Q 6-9 months 0 10-12 months QO over 12 months
12. Are you...
QO Female Q Male

13. Your age group
a-25 Q26-35 036-45 Q46-55 Q56-65 4 66-

14. How many Swedish miles [tens of kilometres] do you drive per year (approximately)?

15. How much of that drive (in percent) do you drive in the following traffic environments

Motorway ............ % Rural roads ... % City traffic .o %

16. Do you have any further comments? (please use the back to write on as well)








