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Preface

This thesis is focused on geometric computer vision problems. The first part
of the thesis aims at solving one fundamental problem, namely low-rank
matrix factorization. We provide several novel insights into the problem. In
brief, we characterize, generate, parametrize and solve the minimal problems
associated with low-rank matrix factorization. Beyond that, we give several
new algorithms based on the minimal solvers when the measurement matrix
is either sparse, noisy or with outliers. The cost function and the algorithm
can easily be adapted to several robust norms, for example, the L1-norm
and the truncated L1-norm. We demonstrate our approach on several
geometric computer vision problems. Another application is in sensor
network calibration, which is also explored.

The second part of the thesis deals with the relative pose problem. We
solve the minimal problem of estimating the relative pose with unknown
focal length and radial distortion. Beyond that, we also propose a brute
force approach, which does not suffer from common algorithmic degen-
eracies. Further, the algorithm achieves a globally optimal solution up to a
discretization error and it is easily parallelizable. Finally, we look into the
problem of object detection with unknown pose.

The contents of the thesis are based on the following papers.

Main papers

• Fangyuan Jiang, Magnus Oskarsson and Kalle Åström (2015) "On the
Minimal Problems of Low-rank Matrix Factorization" Accepted by IEEE
Computer Vision and Pattern Recognition (CVPR), Boston, MA, United
States, 2015

• Fangyuan Jiang, Olof Enqvist and Fredrik Kahl (2015) "A Combina-
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torial Approach to L1-Matrix Factorization” Published in Journal of
Mathematical Imaging and Vision (JMIV), 2015

• Fangyuan Jiang, Yubin Kuang, Jan-Erik Solem and Kalle Åström (2014)
"A Minimal Solution to Relative Pose with Unknown Focal Length and
Radial Distortion" Published at Asian Conference on Computer Vision
(ACCV), Singapore, 2014

• Fangyuan Jiang, Olof Enqvist and Fredrik Kahl (2013) "Improved Object
Detection and Pose Using Part-Based Models" Published at Scandinavian
Conference on Image Analysis (SCIA), Espoo, Finland, 2013

• Fangyuan Jiang, Yubin Kuang and Kalle Åström (2013) "Time Delay
Estimation for TDOA Self-calibration using Truncated Nuclear Norm
Regularization" Published at International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Vancouver, Canada 2013

• Olof Enqvist, Fangyuan Jiang and Fredrik Kahl " A Brute-force Algo-
rithm for Reconstructing a Scene from Two Projections" Published at
IEEE Computer Vision and Pattern Recognition (CVPR), Colorado Springs,
CO, United States, 2011

Subsidiary papers

• Dennis Medved, Fangyuan Jiang, Peter Exner, Magnus Oskarsson, Pierre
Nugues and Kalle Åström "Combining Text Semantics and Image
Geometry to Improve Scene Interpretation” Published at International
Conference on Pattern Recognition Applications and Methods (ICPRAM),
Angers, France, 2014.

• Agnes Tegen, Rebecka Weegar, Linus Hammarlund, Magnus Oskars-
son, Fangyuan Jiang, Dennis Medved, Pierre Nugues and Kalle Åström
"Image Segmentation and Labeling using Free-form Semantic Annota-
tion" Published at International Conference on Pattern Recognition (ICPR),
Stockholm, Sweden, 2014.
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Chapter 1

Introduction

Bilinearility is an essential relationship for problems in geometric computer
vision. In affine structure-from-motion, this bilinear relation comes from
the interaction between the camera motion and the 3D scene points. In
photometric stereo, the bilinearility stems from the interaction between
the different light sources and the surfaces of the 3D objects. In the non-
rigid structure-from-motion, the underlying linear shape basis and cameras
give the bilinear model. In sensor network calibration, the positions of
the transmitters and receivers also form a bilinear relation in the relative
distance matrix. When one collects the observations, for example, the
image coordinates in affine structure-from-motion, the intensity values
in photometric stereo or the point tracks in the non-rigid structure-from-
motion, and stack them in a matrix, the underlying bilinear relations lead
to a low-rank property on the measurement matrix.

To recover the camera motion and the 3D scene points in affine
structure-from-motion, or to figure out the directions of the light sources
together with the surface normal of an object in photometric stereo, or
to estimate the camera motion and the 3D shape in non-rigid structure-
from-motion, it requires us to find a low-rank matrix factorization given
an observation matrix. Without missing data or outliers, the problem can
be solved optimally using Singular Value Decomposition (SVD). However,
the missing data are very common due to occlusion or loss of point tracks.
Outliers cannot be ignored in many applications, which makes the low-rank
matrix factorization a hard problem.

State-of-the-art approaches either use a bilinear formulation and alter-
natively optimize between the two factor matrices given an initial guess, or
use a nuclear-norm based convex relaxation technique. As we will show in
the thesis, the bilinear formulation suffers from the local minima problem,
and finding a good initialization is almost as hard as the original problem in
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CHAPTER 1. INTRODUCTION

presence of missing values and outliers. On the other hand, the performance
of nuclear norm-based method is affected by the amount of missing data.
When the measurement matrix is very sparse, those methods will eventually
fail.

In the second part of the thesis, another key problem in geometric
computer vision, namely, the relative pose problem is studied. Given
two images of a scene, one interesting problem is to estimate the relative
motion between the two cameras. A minimal problem seeks a solution
using a minimal set of point correspondences. In the thesis, we provide a
minimal solution to the relative pose problem when camera has unknown
radial distortion and focal length. RANSAC bundled with minimal solvers
achieves robust estimation. However, RANSAC does not guarantee the
optimality and the minimal solvers can suffer from algorithmic degeneracy.
In the thesis, a brute-force algorithm is proposed to estimate the relative
orientation problem in a globally optimal way which can handle degenerated
or restricted motions. Incorporating the 3D pose estimation in the objection
detection is also explored at the end of the thesis.

1.1 Thesis Overview

The thesis is divided into the following chapters.

Chapter 2. Some preliminary knowledge and background are provided
to understand the models and the algorithms used in the thesis.

Chapter 3. The low-rank matrix factorization problem under the L1-
norm is studied in this chapter. If each column of a matrix X is treated as
a point in Rm, then saying that the matrix X is of low rank is equivalent
to that all the data points lie in a low-dimensional linear subspace. The
problem can equivalently be treated as to find a low-dimensional linear
subspace such that when all the data points are projected onto the subspace,
the projection error is minimized.

In this chapter, we first give an optimal L1-projection algorithm assum-
ing that the subspace is given. To find the optimal subspace, the special
case of hyperplane fitting is discussed first and an optimal algorithm is
given. For the general case, we explore the zero patterns in the residual
matrix and focus on the cases with sufficient zeros in the residual matrix
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1.1. THESIS OVERVIEW

such that the problem is well constrained and directly solvable from the
entries in the observation matrix which correspond to zeros in the residual
matrix. For low-dimensional problems, we show empirically the optimal
solution is very likely (more than 90%) to be one of those cases. We propose
both an exhaustive search and a random search algorithm to search among
the cases that are linearly solvable. The algorithm is evaluated on affine
structure-from-motion and photometric stereo problems.

Author contribution: The initial idea to investigate the problem is from
Fredrik Kahl. My contributions to this chapter include co-developing the
theory, implementing most of the algorithms and performing the experi-
ments. Each author of the paper contributes roughly the same to writing
the article.

Chapter 4. In this chapter, we further look into the minimal problems
of low-rank matrix factorization. The minimal problems are characterized
using an index matrix W to indicate if a certain element is missing or
present. The inspiration comes from the Laman graph in rigid graph theory,
which describes a family of minimal rigid systems represented by vertices
and edges of a planar graph. Using analogy of the Henneberg extension in a
Laman graph, we propose several extension schemes, namely Henneberg-k
extensions to generate all minimal problems of a certain rank iteratively.
We further propose algorithmic solvers for different Henneberg extensions,
either linear or based on a simple polynomial solver. We demonstrate the
minimal solvers in both synthetic data and real applications, for example,
affine structure-from-motion and linear shape basis estimation. Our method
outperforms the state of the art in several cases when the measurement
matrix is sparse or contains outliers.

Author contribution: Kalle Åström proposed the idea and we collabo-
rated on the theory and implementation of the solvers. I implemented the
block-partition algorithm and performed all the experiments.

Chapter 5. In this chapter, we illustrate one application of rank mini-
mization in sensor network calibration. In this problem, the receivers are
calibrated, which means the actual time when the signal arrives at a certain
receiver is measured. However, the transmitters are uncalibrated, in other
words, the time of transmission is unknown. If we could estimate the
unknown time of transmission, then the time duration the signal travels
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CHAPTER 1. INTRODUCTION

between a pair of transmitter and receiver is directly obtained, which can
be expressed as a distance measure to recover the location of each sensor.
In this chapter, we focus on estimating the unknown time of transmission
by encoding it into the measurement matrix. The low-rank constraint is
derived for the measurement matrix with unknowns. The problem is for-
mulated as a truncated nuclear norm regularization (TNNR) and optimized
using the alternating direction method of multipliers (ADMM).

Author contribution: My contributions to this chapter include improv-
ing the implementation and performing some experiments. Most of the
theoretical part and implementation were done by Yubin Kuang.

Chapter 6. Another key problem in geometric computer vision, the rela-
tive pose problem is studied in this chapter. The problem is to estimate the
relative rotation and the translation between two views given the feature
correspondences. If the camera is calibrated, that is, the intrinsic parame-
ters are known, then the well-known 5-point algorithm in Nistér (2004)
would solve the problem. If the camera is partially calibrated with only an
unknown focal length, then the minimal solver in Stewénius et al. (2005)
solves the problem. However, the case when both cameras have the same
unknown radial distortion and focal length still remains unsolved. Intro-
ducing both the radial distortion and focal length as unknowns leads to a
complicated polynomial system, with higher degrees and more unknowns
to solve. However, with the recent progress in Gröbner basis methods,
solving such a complicated polynomial system becomes possible.

Author contribution: For this chapter, I implemented and performed
the experiments and wrote the article. Yubin Kuang contributed to the idea
and implementation of the solvers.

Chapter 7. Minimal solvers with RANSAC provide a robust way to
estimate the relative pose between two views. However, RANSAC does
not guarantee the global optimality. Besides, minimal solvers are known to
suffer from the algorithmic degeneracy. In this chapter, a brute force method
is proposed to estimate the relative pose between two views. With a non-
standard epipolar parametrization, the epipole of a camera is represented as a
vector on a unit sphere. By an exhaustive search on a discretized unit sphere,
it is possible to find the globally optimal solution up to a discretized error.
The algorithm does not suffer from any degeneracy and could handle several
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1.1. THESIS OVERVIEW

restricted motions, like planar motion. A parallel algorithm is proposed and
implemented using CUDA on a graphical card. It achieves state-of-the-art
result in the Hopkins 155 dataset for the motion segmentation problem.

Author contribution: My contributions in this chapter include devel-
oping and implementing the parallel algorithm on a graphical card using
CUDA. I have also contributed to the motion segmentation experiments
with spatial priors. Fredrik Kahl and Olof Enqvist developed the main
theory.

Chapter 8. In this chapter, we incorporate pose estimation in the object
detection problem. We annotate each side of a block-shaped object, instead
of a single bounding box on the whole object. Using richer annotations,
we can directly estimate the 3D pose of an object. With the estimated
poses, we could rectify the object and train an individual deformable part-
based model using Felzenszwalb et al. (2010b) for each of its distinctive
aspects. A small set of typical poses are also selected from the training set by
formulating it as a vertex-cover problem. The test images are transformed
using the typical poses, and detected with different aspect detectors. By
combining the detections, we simultaneously detect the object and recover
the object pose.

Author contribution: I did most of the work in this chapter, including
developing the algorithms, implementing the whole detection pipeline and
performing the experiments. Olof Enqvist contributed to the algorithms
and also writing.
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Chapter 2

Preliminaries

This chapter aims to provide the background and preliminary knowledge
necessary for the subsequent chapters.

2.1 Camera Model

A camera maps the 3D world to a 2D image. Such a linear mapping can
be represented by a matrix of size 3× 4, which maps a 3D point to a 2D
point on the image plane, both in homogeneous coordinates. Most camera
models considered in geometric computer vision are specialized versions of
projective cameras.

In this thesis, we mainly consider two types of cameras: one is the
pinhole camera, which has a finite camera center; the other is the affine
camera, whose camera center is at infinity.

Pinhole camera model The pinhole camera model is based on central
projection. Consider a pinhole camera with camera center C at the origin,
that is C = (0, 0, 0)T. We denote the image plane π. The principal axis
is the line from the camera center C perpendicular to the image plane π.
The principal point is the point where the principal axis intersects with the
image plane (see Figure 2.1).

To illustrate the central projection, consider a 3D pointX = (x, y, z)T,
its viewing ray X − C from the camera center C to X intersects with the
image plane π at point x. If we use f to denote the focal length, that is the
distance from the camera center to the image plane, then a simple equation
captures the essential relationship of the pinhole camera model

(x, y, z)T 7→ (fx/z, fy/z)T. (2.1)

7



CHAPTER 2. PRELIMINARIES

Xx

π

C

Figure 2.1: The central projection

Using homogeneous coordinates, we obtain the following equation



fx/z
fy/z

1


 ∼



fx
fy
z


 =



f 0

f 0
1 0







x
y
z
1


 . (2.2)

The matrix in (2.2) can be rewritten as P = diag(f, f, 1)[I|0], which
represents a simple pinhole camera that maps a world point at (x, y, z, 1)T

to an image point at (fx/z, fy/z, 1)T in homogeneous coordinates. In
general, a camera matrix P is a 3× 4 matrix that maps a world point X to
its projection x on the image plane using the following camera equation

λx = PX, (2.3)

where both X and x are in homogeneous coordinates and λ is the depth,
that is the distance between the camera center and the world point in the
direction of the principal axis. Note that the camera center C is the unique
null space of the camera matrix P since PC = 0.

Intrinsic parameters In (2.2), we assume that the origin of the image
plane is at the principal point. As this might not be the case in practice, we
should use the following general mapping that accounts for the offset of the
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2.1. CAMERA MODEL

principal point

(x, y, z)T 7→ (fx/z + px, fy/z + py)
T. (2.4)

Using homogeneous coordinates and rewriting the general mapping in a
matrix form, we have



fx/z + px
fy/z + py

1


 ∼



fx+ pxz
fy + pyz

z


 =



f px 0

f py 0
1 0







x
y
z
1


 . (2.5)

If we separate the focal length f and the principal point (px, py) from the
matrix in 2.5, this gives us the intrinsic matrix, or called the calibration
matrix of a camera as

K =



f px

f py
1


 . (2.6)

The complete calibration matrix also contains two extra parameters. One is
skew s, which is zero for most cameras with the x-axis and y-axis perpen-
dicular to each other. The other parameter is the aspect ratio α, which is
one for cameras with the same scale in both the x and y directions. This
gives the calibration matrix of a camera as

K =



f s px

αf py
1


 . (2.7)

In this thesis, we assume that camera models have zero skew and a unit
aspect ratio, that is s = 0 and α = 1.

Extrinsic parameters In the above example, we assume that the coordi-
nate framework of the camera and the world coincide, that is, the camera
center lies at the origin and the principal axis points toward the z-axis.

However, in the general case, we need to define a mapping from the
world coordinate framework to the camera coordinate framework. This
mapping contains a rotation matrix, R ∈ R3×3, and a translation vector,
t ∈ R3, and is known as the extrinsic parameters of a camera.
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CHAPTER 2. PRELIMINARIES

Assume that the camera center is C in the world coordinate framework;
to map a point from its world coordinates X̃ to its camera coordinates
X̃cam we have

X̃cam = R(X̃ − C), (2.8)

where both X̃cam and X̃ are inhomogeneous coordinates. If we denote
t as the translation vector, that is t = −RC, then we have the following
equation

X̃cam = RX̃ + t. (2.9)

Using homogeneous coordinates, we have

λx = K[R t]X. (2.10)

Radial distortion By now, we assume a linear camera model, that is, the
world point, the image point, and the camera center are collinear. However,
this collinearity does not hold for cameras with radial distortion. In that
case, the image points are distorted depending on their distance from the
center of distortion.

More specifically, radial distortion is modeled using the following equa-
tion

xd = L(ru)xu, (2.11)

where xd and xu are inhomogeneous coordinates of the distorted and
the undistorted image points, respectively, and ru is the radial distance of
xu from the center of radial distortion. L(ru) is a distortion factor that
depends only on the radial distance, ru, which could be modeled using a
polynomial as follows

L(r) = 1 + λ1r + λ2r
2 + λ3r

3 + ... (2.12)

In practice, it is unnecessary to include higher-order terms in (2.12) as
the accuracy required in the feature matching is of the order of a pixel (see
Fitzgibbon (2001)). A common practice is to expand L(r) using Taylor
expansion, keeping only the first nonlinear even term, which gives

xd = (1 + λr2
u)xu. (2.13)

10



2.2. EPIPOLAR GEOMETRY

To further render L(r) tractable for inverse transformation, a division
model is proposed by Fitzgibbon (2001) for estimating the undistorted
image points given the distorted ones, that is,

xu =
1

1 + λr2
d

xd. (2.14)

This division model is widely used in the sequel work and is also adopted
in the thesis.

Affine camera In Chapter 3, we will use an affine camera model, that is
the model of a camera whose center is at infinity. This models the limit case
when one moves the camera center away from the object along the principal
axis, while simultaneously zooming in with the lens, which increases the
focal length to keep the object of interest the same size. When both the focal
length and the distance from the object increase, the image remains the
same size but the perspective effect is reduced (see Hartley and Zisserman
(2004)).

An affine camera is defined such that the third row of the camera matrix,
P , is (0, 0, 0, 1). It is straightforward to demonstrate that points at infinity
are mapping to points at infinity for affine cameras.

2.2 Epipolar Geometry

The most interesting and fundamental problem in multi-view geometry
stems from the two-view case, in other words, epipolar geometry.

Consider two cameras with camera centers C1 and C2 as in Figure 2.2;
3D world point X is projected onto the image plane of two cameras at x1

and x2, respectively. The line going through C1 and C2 intersect with the
image planes π1 and π2 at points e1 and e2, respectively, which are called
epipoles. Point x1 in one image corresponds to an epipolar line that goes
through e2 in the other image.

Fundamental matrix Corresponding points from two views are related
using a 3× 3 matrix, called a fundamental matrix. In other words, for a pair
of feature correspondences (x1,x2) in homogeneous coordinates, we have
the following constraint

xT
2 Fx1 = 0, (2.15)

11
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c
2

x
2

e
2

X

e
1

x
1

c
1

Figure 2.2: Epipolar geometry

where F is the fundamental matrix with zero determinant, that is,

det(F) = 0. (2.16)

In Longuet-Higgins (1981), an eight-point algorithm is proposed for esti-
mating the fundamental matrix. In practice, the normalized eight-point
algorithm presented in Hartley (1997) is often a better choice as it offers
improved numerical stability.

Essential matrix If two cameras are calibrated, that is, the calibration
matrices K1 and K2 are known, an essential matrix E is used to represent the
epipolar constraint as follows

x̃T
2 Ex̃1 = 0, (2.17)

where x̃1 and x̃2 are normalized coordinates as in x̃1 = K−1
1 x1 and x̃2 =

K−1
2 x2. The essential matrix E has a determinant of zero

det(E) = 0, (2.18)

12



2.3. A POLYNOMIAL SOLVER

and has two equal non-zero singular values. This constraint is equivalently
formulated using trace as follows

EETE− 1
2

trace(EET)E = 0. (2.19)

Once the essential matrix E is estimated, one can recover the relative
rotation R, and the translation t, from the following constraint

E = [t]×R, (2.20)

where [ ]× is the cross-product form of a vector. The essential matrix, E,
has only five degrees of freedom since both R and t have three degrees of
freedom and there is an overall scale ambiguity. This means that we need at
least five point correspondences to estimate E.

However, due to the trace constraint, (2.19), solving E using a min-
imum of five points involves some nonlinear algebraic equations, which
makes it a more difficult problem than solving F. In Nistér (2004), an
efficient five-point algorithm is proposed for estimating the coefficients and
finding the roots of a tenth-degree polynomial in a closed form.

In Chapter 6, we also use an indirect way to find the essential matrix
E from the fundamental matrix F and the calibration matrices K1 and K2.
The relationship between F and E is given as

E = KT
2 FK1. (2.21)

2.3 A Polynomial Solver

Minimal problems In this thesis, we frequently deal with minimal prob-
lems in geometric computer vision. A minimal problem is formulated
using the minimum required constraints. One motivation for studying
and solving a minimal problem is that a smaller set of correspondences
is more likely to be outlier free. However, using minimal configurations
usually introduces complexity into a problem. For example, solving E using
a minimal five-point algorithm requires solving a tenth-degree polynomial,
whereas a non-minimal eight-point algorithm for estimating F only entails
solving a linear system. Fortunately, recent progress in the Gröbner basis
method (see Byröd et al. (2009)) makes it tractable and efficient to deal with
relatively large algebraic systems, meaning that some problems previously
considered unsolvable are now tractable.

13



CHAPTER 2. PRELIMINARIES

System of polynomials In the following, we only consider polynomial
systems with a finite number of solutions. Assume we have a polynomial
system H comprising the following equations

f1(x) = 0,
...

fn(x) = 0,

(2.22)

where x = {x1, x2, ..., xm} and fi(x) ∈ C[x1, · · · , xm] are polynomials
in the following form

fi(x) =
∑

α

cαx
α, (2.23)

that is, a linear combination of monomials. Each monomial xα is in the
form of a product

xα1
1 xα2

2 · · ·xαm
m , (2.24)

whereαi is a non-negative integer for i = 1, . . . ,m. We use C[x1, · · · , xm]
or simply C[x] to denote the set of polynomials in {x1, · · · , xm} with
coefficients in the complex domain C

In algebraic geometry (see Cox et al. (2005)), the above polynomial
equations together generate an ideal denoted as

I =< f1, · · · , fn >= {
n∑

i=1

pifi | pi ∈ C[x]}, (2.25)

where {f1, f2, · · · , fn} is called a generating set or generator of I . The ideal
I in (2.25) is a generalization of the polynomial equations in (2.22). One
reason we study ideals is due to the following property: A point, x, is a zero
of (2.22) if and only if it is a zero of I defined in (2.25).

An ideal is not uniquely generated. One could find another polynomial
system, H ′, that generates the same ideal I but is different from H . Since
the zero set of a polynomial system is determined by the zero set of the ideal
it generates, this implies a way to solve polynomial system H by finding
another generator, H ′, that generates the same ideal but is simpler to solve.
The Gröbner basis is such a generator.

14



2.3. A POLYNOMIAL SOLVER

Gröbner basis One basic problem in algebraic geometry is that of de-
termining whether a polynomial, f , is an element of a given ideal, I =<
f1, · · · , fn >. This requires a polynomial division algorithm to divide f
by I . If the remainder of the division is zero, then f is in the ideal I .

Polynomial division in the univariate case is trivial and well-defined.
However, in the multivariate case, several difficulties exist. One first needs
to define an ordering of monomials for division to proceed. A simple choice
is the lexicographical ordering. For example, the lexicographic ordering of
{x, y, z} is defined as x > y > z. For more choices of monomial ordering,
see Cox et al. (2005). Another difficulty is that under a fixed order of
monomials, the division of a polynomial, f , by an ideal, I , is generally not
well-defined in the sense that the remainder depends on the generator one
chooses.

As long ago as 1965, Bruno Buchberger in his PhD thesis (originally in
German; see Buchberger (2006) for a recent English version), proposed a
special generator, called the Grönber basis after his PhD advisor, Wolfgang
Gröbner, together with an algorithm, the Buchberger algorithm, to compute
it. The Gröbner basis, denoted G, is a special generator of a given ideal, I ,
with the property that the multivariate division of any polynomial f by G
is well-defined. In other words, the division of f by G has a zero remainder
if and only if f is in the ideal I generated by G. To compute using the
Gröbner basis, one also needs to specify the order of the monomials. It
turns out that using the degree reverse lexicographic order, (see Cox et al.
(2005)) gives the most efficient Gröbner basis computation.

Buchberger’s algorithm provides an approach to computing the Gröbner
basis of an ideal, I , starting from any generating set, H . Briefly stated, it
works by successively eliminating the leading terms of a pair of polynomials
in H . It provides a theoretical way to compute G in exact arithmetic terms.
However, successive elimination of leading terms could pose some serious
numerical challenges. In practice, the process quickly becomes numerically
unstable in floating-point arithmetic due to the round-off errors.

Action matrix Before further describing the action matrix, we first define
an equivalent relationship in a set of polynomials. We say that two poly-
nomials, f and g, are equivalent modulo I if f − g ∈ I . This equivalent
relationship naturally groups a set of polynomials into equivalent classes,
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denoted by the coset [f ] as

[f ] = f + I = {f + h : h ∈ I}. (2.26)

All these equivalent classes together form a quotient space, denoted C[x]/I .
Using the quotient space, one can find a compact representation of any
polynomial f ∈ C[x]. More specifically, using the multivariate division,
any polynomial f divided by the Gröbner basis G = {g1, · · · , gt} could
be represented as

f = h1g1 + · · ·+ htgt + f̄G , (2.27)

where f̄G denotes the remainder of f divided by G. One can demonstrate
that the equivalent class, or the coset [f ], is in one-to-one correspondence
with the remainder f̄G . So one can use the remainder f̄G as a representative
of its coset [f ] in C[x]/I . It can easily be demonstrated that the sum of two

remainders, f̄G and ḡG , yields remainder f + g
G

and that one can multiply
a remainder by a constant. In other words, quotient space C[x]/I is a
vector space. If we only consider polynomial systems with a finite number
of solutions, then C[x]/I is of finite dimensions: it has r dimensions, where
r is the number of solutions to the ideal generated by G

Given a polynomial, p(x), consider the operation Tp : f(x) 7→
p(x)f(x), where both p(x) and f(x) ∈ C[x]. The operation defines
a mapping from C[x]/I to itself. As the quotient space C[x]/I is a finite-
dimensional vector space, this mapping can be represented as matrix Mp,
which is called the action matrix. In the following, we only consider a single
variable, xi, that acts on f(x); that is, p(x) = xi and xi is referred to as
the action variable. We know that each polynomial f(x) can be represented
as f(x) = cTb(x), where c is the coefficient vector and b(x) is the vector
of basis monomials. Because the action of p(x) on f is independent of the
coefficient c, one can rewrite this as

p(x̄)b(x̄) = MT
p b(x̄), (2.28)

where x̄ is in the zero set of f , that is f(x̄) = 0. From (2.28), one can
recognize an eigenvalue problem of MT

p , the eigenvalues and eigenvectors
of which are p(x) and b(x), respectively, both evaluated on the zero set of
f(x).
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Now the remaining problem is to find the basis monomials. Looking
back at (2.27), one can easily see that the remainder, f̄G , contains no
leading terms of the ideal, I . Actually, remainders are linear combinations of
monomials, xα, that exclude the leading terms of I . The set of monomials
is linearly independent and can be regarded as a basis of C[x]/I . This gives
a way to generate basis monomials: One first computes the Gröbner basis G,
then collects all the monomials that are not the leading terms of G, which
forms a set of basis monomials.

In practice, any set that includes those collected monomials can be
used as a basis set. A larger basis set usually gives better numerical stability.
To construct the action matrix, one needs to express those monomials not
in the basis set in terms of the basis monomials. This sometimes leads
to a numerically difficult situation if we only use a minimal set of r basis
monomials. The idea proposed in Byröd et al. (2009) is to move those
"problematic" monomials, which might cause numerical problems when
expressed using basis monomials, into the basis set to produce a redundant
basis set. In that case, we trade off an improved numerical situation against
the cost of solving a larger eigenvalue problem. The redundant set of basis
monomials is referred to as the permissible set, from which one could use a
column-pivoting strategy to select the minimal basis set. More details of
this strategy are described in the following section.

Polynomial solver in practice In practice, given a system of polyno-
mial equations, the first step is to use algebraic geometry software, such as
Macaulay2 (see Grayson and Stillman (1993-2002)), to find the number,
r, of solutions. The software defines the dimension of the quotient space,
C[x]/I . The next step is to generate a redundant system of equations by
multiplying each polynomial by various monomials. This can be done sys-
tematically to generate a polynomial system of a given degree. A redundant
system is generated in order to obtain a sufficiently large set of monomials,
from which one can select a basis set, B, such that the monomials not
in B can be represented using basis monomials; this is the premise for
constructing the action matrix.

Once we generate a redundant polynomial system, H̄ , from the original
system, H , it can be expressed in the following matrix form

CTxM = 0, (2.29)
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where C is the coefficient matrix and xM is the vector of all monomials.
The next step is to choose an action variable, denoted xa, based on which
we partition the set of monomials, M, into three disjoint sets, namely,
the excessive set, reducible set, and permissible set, denoted E , R, and P ,
respectively. The partition is based on the following rules:

• Permissible set P contains monomials that remain in setM after
multiplying them by the action variable, xa, that is, P = {x|xax ∈
M}.

• Reducible setR contains monomials not in permissible setP but that
are multiplications of the action variable by permissible monomials,
that is,R = xaP \ P .

• Excessive set E contains monomials that are in neither permissible
set P nor reducible setR, that is, E =M\ (P ∪R).

Note that a permissible set, P , is considered a redundant set that
contains the basis set, B. After reordering columns of the coefficient
matrix C and the elements of the monomial vector xM based on the
above partition, we can rewrite (2.29) in the following equation

[
CE CR CP

]


xE
xR
xP


 = 0. (2.30)

Putting everything in matrix form enables us to use theories and tools from
numerical linear algebra. For example, eliminating the leading terms now
becomes a row operation on the coefficient matrix. We use a column-
pivoting strategy as in Byröd et al. (2009) to select a better-conditioned
basis set, B, as described below.

Since excessive monomials are not in a basis set, they can be eliminated
by transforming CE into row echelon form using LU factorization, which
gives

[
UE1 CR1 CP1

0 CR2 CP2

]

xE
xR
xP


 = 0, (2.31)
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where UE1 is an upper triangular matrix. By expressing xE using xR and
xP , one can remove the top rows, which involve E , and obtain a simplified
system. Another LU factorization of the simplified system gives

[
UR2 C ′P2

0 CP3

] [
xR
xP

]
= 0. (2.32)

One now needs to select r basis monomials from P . In Byröd et al. (2009),
a column-pivoting QR is applied to CP3 to find a numerically stable basis
set. Assume that permutation matrix Π is introduced and applied to CP3;
this gives a reordering of xP and the last r monomials are selected as the
basis monomials, that is xP = [xP ′ xB]. This gives

[
UR2 C ′′P2 CB2

0 UP3 CB3

]

xR
xP ′

xB


 = 0. (2.33)

Now both monomials inR and P ′ can be linearly expressed using mono-
mials in B in the following form

[
xR
x′P

]
= −

[
UR2 C ′′P2

0 UP3

]−1 [
CB2

CB3

]
xB, (2.34)

from which the action matrixMp can be easily extracted. Eigenvalue decom-
position on Mp as in (2.28) will give us the values of the basis monomials
evaluated at the zero set, from which the solution to the polynomial system
H is estimated.
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Chapter 3

Low-Rank Matrix
Factorization: L1-Norm and
Truncated L1-Norm

Low-rank matrix factorization problems have a wide range of applications
even outside computer vision. One application is data representation and
compression, where a large low-rank matrix can be represented as two
smaller factor matrices. Another application is recommendation systems.
In Koren et al. (2009), it is demonstrated that the matrix factorization
method is superior to the classic nearest neighbor method for predicting
users’ ratings of movies in the well-known Netflix Prize competition (see
Bennett and Lanning (2007)).

The following two chapters are devoted to the low-rank matrix factor-
ization problems. We focus on applications mainly in geometric computer
vision, for example, affine structure-from-motion, photometric stereo and
linear shape basis estimation. State-of-the-art approaches are either based
on alternating optimization using a bilinear formulation that depends on an
initial solution, or based on minimizing a convex relaxation of a rank func-
tion, for example, the nuclear norm of a matrix. However, the performance
of these methods either is affected by an increasing number of missing data
or depends on initial solutions, which in many cases are non-trivial to find.
In the following two chapters, we instead provide several novel insights into
the problem, together with algorithms that (1) handle a large number of
missing data, (2) are easily adapted to robust cost functions, and (3) require
no initial solutions.
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TRUNCATED L1-NORM

3.1 Introduction

Given an observation matrix X ∈ Rm×n, we are interested in finding a
rank-r approximation X̂ of X . This can be formulated as

minimize
X̂

‖X − X̂‖

subject to rank(X̂) = r.
(3.1)

This is equivalently saying that the matrix X̂ can be factorized into two
matrices U ∈ Rm×r and V ∈ Rr×n, which gives the following equivalent
formulation

minimize
U,V

‖X − UV ‖. (3.2)

Related works The matter of missing data in low-rank matrix factoriza-
tion was originally addressed in Wiberg (1976), then under the L2-norm.
An algorithm independent of initialization was given in Jacobs (2001), but
the method is highly sensitive to noise. Still, it is suitable as an initial-
ization method if followed by an iterative, refinement technique. Similar
approaches to the structure-from-motion problem are studied in Tardif et al.
(2007); Kahl and Heyden (1999).

An early work that aims for robustness to outliers is Aanaes et al. (2002),
which uses iteratively reweighted least squares to optimize a robust error
function. A limitation is that the method requires a good initial solution,
which is often difficult to obtain. The theory of robust subspace learning is
further developed in Torre and Black (2003). In Buchanan and Fitzgibbon
(2005), a damped Newton method is proposed to solve the problem of
missing data. In Bue et al. (2012), a bilinear model is formulated under
the L2-norm with the constraint that the factor matrices should lie in
a certain manifold. The model is solved using the augmented Lagrange
multiplier method. In Ke and Kanade (2005), alternating optimization is
proposed for both the Huber norm and the L1 norm. Yet another iterative
approach proposed in Eriksson and Hengel (2012) can be seen as extending
the method of Wiberg (1976), except for the L1 norm. This approach
has been further generalized in Strelow (2012) to handle the projective
structure-from-motion problem. In Okatani et al. (2011), a damping
factor is incorporated into the Wiberg method. It is also experimentally
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demonstrated in Okatani et al. (2011) that Newton-family minimization
techniques using a damping factor lead to excellent global convergence
performance. The method presented in Zheng et al. (2012a) first solves
the affine factorization in the L2 norm by adding an extra mean vector
to the formulation. Another recent algorithm, presented in Zheng et al.
(2012b), adds orthogonal constraints to columns of U and a nuclear norm
regularizer to V ; used with the augmented Lagrangian multiplier method,
it has achieved rapid convergence. All of these algorithms are based on
local optimization, and hence risk becoming stuck in local minima. The
cost function may indeed exhibit several local optima, as exemplified in
Figure 3.3. One notable attempt to solve the problem in a globally optimal
way is proposed in Chandraker and Kriegman (2008), which uses a branch
and bound method and proves that the globally optimal solution is obtained.
However, in practice, the method is restricted to simple problems for which
the number of variables in either U or V is very small; for example, there
are only nine variables in U in one of the experiments in Chandraker and
Kriegman (2008).

Alternative approaches to tackling the low-rank factorization or low-
rank approximation problems include minimizing a convex surrogate of the
rank function, for example, the nuclear norm. In Candès and Recht (2008),
the solution turns out to be very pleasing, as only a convex optimization
problem needs to be solved. The nuclear norm formulation entails solving
an SDP, which the methods in Candès et al. (2009); Lin et al. (2009) try
to do efficiently. These approaches can handle application problems when
the rank is not known a priori, for example, segmentation in Cheng et al.
(2011), background modeling in Candès et al. (2009), and tracking in
Xiong et al. (2012). However, when applied to problems with known rank,
the performance of the methods based on the nuclear norm formulation is
typically worse than that of methods based on the bilinear formulation (see
Cabral et al. 2013). These methods assume that the missing data are sparse
and that the locations of missing data are random. However, for many
applications these assumptions are generally not fulfilled. For example, in
the structure-from-motion problem, the missing data are neither sparse
nor randomly located, but rather distributed densely in the off-diagonal
chunks. In Olsson and Oskarsson (2011), it is also noted that the convex
factorization approaches may break down due to violation of the sparsity
assumption in structure from motion.
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3.2 Problem Formulation

If we consider the problem in (3.2) under the L2-norm and assume X
is a complete matrix, then the problem is solved optimally by computing
a Singular Value Decomposition (SVD) of X . However, in practice, it
usually contains missing data and outliers in X , in which case, some robust
norms, for example, L1-norm or the truncated L1-norm are more adequate
choices.

L1-Norm The L1-norm of a matrix is defined as follows

‖X‖1 =
∑

ij

|xij |, (3.3)

Note that the norms used in the thesis, if not explicitly specified, are all
referred to the "entry-wise" norm. It is different from the "induced" p-norm
defined using the vector norm which is

‖X‖p = sup
y∈Rn

y 6=0

‖Xy‖p
‖y‖p

, (3.4)

where the norm on the right-hand side of equation (3.4) is the vector
p-norm. Under the L1-norm, the problem in (3.2) can simply be stated as

minimize
U,V

∑

i,j

|xij −
∑

k

uikvkj |, (3.5)

Note in presence of missing data, the cost function in (3.5) should only
be summed over the indices (i, j) that have measured values in X . We
make no requirement that the full observation matrix is available.

Truncated L1-Norm Using L1-norm, the penalty on the measurements
grows linearly, instead of quadratically with L2-norm. A more robust way
is to assign a bounded penalty to the measurements, which introduce the
truncated L1-norm defined as

‖X‖1∗ =
∑

ij

min(|xij |, ε), (3.6)
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where ε is a given threshold for truncation. Under the truncated L1-norm,
the formulation is slightly modified as follows

minimize
U,V

∑

i,j

min(|xij −
∑

k

uikvkj |, ε). (3.7)

The maximum cost for an outlier measurement is ε under this model.

Subspace estimation To shed further light on the factorization problem,
one can view it as estimation of a low-dimensional subspace. Given data
xi ∈ Rm, i = 1, · · · , n, the problem in (3.5) can be treated as that of
finding an optimal subspace

S = {x ∈ Rm|x = Uv,v ∈ Rr}, (3.8)

defined as a matrix U ∈ Rm×r such that when all the data is projected
onto S, the sum of projection error

∑
i ‖xi − Uvi‖ is minimized. With

this formulation, we always get a linear subspace containing the origin. In
many applications though, one is interested in finding an affine subspace

S = {x ∈ Rm|x = Uv + t,v ∈ Rr, t ∈ Rm}, (3.9)

which is defined by U ∈ Rm×r and t ∈ Rm. For observations with
no missing entries or outliers, the translational component t is optimally
estimated as the mean of the observation vector xi under the L2-norm.
This is clearly not a good estimator in the presence of missing data or
outliers or under the L1-norm. In analogy to the formulation in (3.5), the
affine subspace problem can be formulated as

minimize
U,V,t

∑

i,j

|xij − ti −
r∑

k=1

uikvkj |, (3.10)

or in matrix notation

minimize
U,V,t

∥∥∥∥X −
[
U t

] [ V
1 · · · 1

]∥∥∥∥ , (3.11)

where X ∈ Rm×n, U ∈ Rm×r, V ∈ Rr×n and t ∈ Rm.
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The residual matrix R ∈ Rm×n, which will be used later, is defined
here as

R =

∣∣∣∣X −
[
U t

] [ V
1 . . . 1

]∣∣∣∣ . (3.12)

In summary, we are considering two different cost functions for the
factorization problem, one based on the L1-norm (3.5) and one based on
the truncated L1-norm (3.7), as well as two different versions, one viewed
as a linear subspace estimation problem (3.8) and one viewed as an affine
subspace problem (3.9).

3.3 L1-Projections

In this section, we will give some general results concerning theL1-projections.

Theorem 3.1. For a given point x ∈ Rm and a given r-dimensional affine
subspace S defined by a matrix U ∈ Rm×r and t ∈ Rm, the L1-projection of
x onto S occurs only along m− r directions.

This is equivalently saying that the remaining r directions are error
free, that is, r components of the residual vector x− Uv are always zero.
To understand the theorem, we illustrate two examples in 2D and 3D
space in Figure 3.1. In the left figure, a 2D point x is projected onto a
one-dimensional subspace, that is, a line (m = 2, r = 1). We can see that
the L1-ball of x meets the line on one of its vertices xp, which means the
projection only occur along one directions, that is, y-axis in this case. The
right figure shows a 3D case (m = 3, r = 1). The L1-ball of x usually
intersects the line on one of its edges, which indicates that the projection
occurs along two directions, that is, the y and z-axis in this case.

The above result is well-known in Mangasarian (1997); Brooks and
Dulá (2013). It can be formally proved using linear programming theory.
However, it should intuitively be clear that the theorem is true. Writing the
cost function explicitly, we have

min
v

m∑

i=1

|xi − ti −
r∑

k=1

uikvk|, (3.13)
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Figure 3.1: L1-projection in 2D and 3D.

from which we see that it is a piecewise linear function of the vk’s. Fur-
thermore, as the column vectors uk for k = 1, . . . , r form a basis for an
r-dimensional subspace they are all linearly independent. Hence the cost
tends to infinity as u→∞ and the minimum must be attained at a corner
point, that is, where the derivative is not defined in any direction. So, at
least r elements are zero in the residual vector at optimum.

Assume, for a while, that we know the positions of the r zeros of
Theorem 3.1. Since each zero gives a linear constraint on v we could easily
compute the L1-projection from this information. And even if the zero
positions are unknown, this technique can be useful if an exhaustive search
over the possible positions is performed1. A natural question is whether a
similar approach can be used to solve the full problem.

3.4 Hyperplane Fitting

If the dimension of the subspace r = m − 1 then we are dealing with a
hyperplane. According to Theorem 3.1, the projection of a given point
x ∈ Rm onto a hyperplane occurs along a single direction. Moreover, this
direction depends only on the hyperplane - not on the point x. This result
is a direct consequence of Theorem 2.1 in Mangasarian (1997), but for
clarity, we state it as a theorem.

Theorem 3.2. Given a set of points xk ∈ Rm and an (m− 1)-dimensional

1This is not the most efficient way of computing an L1-projection.
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Figure 3.2: Hyperplane fitting in 2D.

affine subspace S, there exist optimal L1-projections of xk onto S such that all
occur along a single axis.

We illustrate the hyperplane fitting in 2D (m = 2) in the Figure 3.2. It
is obviously seen that the L1-projection of all points occur along a single
direction, either all along x-axis or all along the y-axis. The direction
depends on the one-dimensional subspace. More specifically, it depends on
the slope k of the line in the form of y = kx+ l in this case.

If we know this axis, then we can solve for the hyperplane using linear
programming (LP). Hence optimal hyperplane fitting can be solved as a
series of m LP problems. Another option is indicated by the following
theorem.

Theorem 3.3. For an optimal affine hyperplane, there will be m− 1 rows of
zeros and one row with m zero elements in the residual matrix R in (3.12).
Provided we know the positions of these zeros, the hyperplane can be solved for
in closed-form.

Proof. According to Theorem 3.2, all the points will be projected along a
single direction. This means that the residual matrix R will have m − 1
rows of zeros. Without loss of generality, we assume the top m− 1 rows of
R are zeros, which gives a partition of R = [0, r̂]T where r̂T is a row vector.
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Applying the same partition to X , U and t leads to the following equation
[
0
r̂

]
=

[
X̃
x̂

]
−
[
Ũ t̃

û t̂

] [
V

1 . . . 1

]
. (3.14)

Note the partition of R ∈ Rm×n yields a zero matrix 0 ∈ R(m−1)×n and
a row vector r̂ ∈ Rn.

There exists a coordinate ambiguity in the factorization as we can always

reparametrize [U, t] using a matrix Q =

[
Q̃ q̃
0 1

]
since we have

[
U t

] [ V
1 . . . 1

]
=
[
U t

]
QQ−1

[
V

1 . . . 1

]
, (3.15)

which means we can always reparametrize (3.14) such that Ũ = I and
t̃ = 0. The reparametrization gives the solution V = X̃ , that is,

[
0
r̂

]
=

[
X̃
x̂

]
−
[
I 0
ū t̄

] [
X̃

1 . . . 1

]
. (3.16)

The remaining cost ‖r̂‖1 is now a function of ū and t̄ which is piecewise
linear. If the columns of X̃ span Rm then the cost tends to infinity as
‖
[
ū t̄

]
‖1 → ∞. Hence the piecewise linear cost ‖r̂‖1 attains its mini-

mum at a corner point with m zeros in the residual vector and if we know
the zero positions, then we can estimate the unknowns in ū and t̄ by solving
linear equations.

If on the other hand the columns of X̃ do not span Rm, then the
complete data matrix X has to lie in a subspace of Rm. So, for the optimal
hyperplane, all residuals are zero. Using m of these we can compute an
optimal hyperplane.

As an example, consider the case of line fitting to a set of points {xi, i =
1, . . . , n} in R2. For an optimal line, the residual matrix R ∈ R2×n has a
full row of zeros in either x or y coordinates.

Note that the final estimation of ū and t̄ could be solved more efficiently
using LP, see Algorithm 1. However, this does not generalize to truncated
L1-norm. In that case, one needs to do an exhaustive search based on
Theorem 3.3 or a random search as will be described later.
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Algorithm 1 Optimal hyperplane fitting (HF)
Given an observation matrix X , solve for the optimal affine subspace (U∗, t∗) and
the projection matrix V ∗

1. Initialize the best error ε∗ =∞
2. For i = 1 to m
3. Set the index set P for row partition as P={1, 2, . . . ,m}\{i}
5. Let X̃ = XP and x̂ = X{i} in (3.16)
6. Solve minū,t̄ ‖r̂‖1 in (3.16) using LP
7. Calculate the L1-error ε
8. If ε < ε∗

9. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
10. return U∗, t∗, V ∗, ε∗

3.5 The General Case

A linear subspace defined by U ∈ Rm×r has d = (m − r)r degrees of
freedom (mr parameters defined up to an r× r coordinate transformation).
Similarly, an affine subspace defined by U ∈ Rm×r and t ∈ Rm has
d = (m − r)(r + 1) degrees of freedom. One can see that by fixing the

gauge with a reparametrization in U and t as U =

[
I
Ū

]
and t =

[
0
t̄

]
,

where Ū ∈ R(m−r)×r and t̄ ∈ Rm−r, see (3.15). For example, when
r = m− 1 as in the previous section, there are only m degrees of freedom
of the affine subspace, and these m unknowns can be determined in closed-
form from the m extra zeros in the residual matrix, see Theorem 3.3.

In the general case (r < m−1), there may be fewer zeros in the residual
matrix than necessary to solve directly for the subspace. Moreover, even
with sufficiently many zeros, the structure of the residual matrix might not
allow us to linearly solve for the parameters. Despite these facts, similar
ideas can be used to achieve state-of-the-art results and very often to find
an optimal L1-factorization. The basis will be the following type of points:

Definition 3.4. A point (U, t) representing an affine subspace in parameter
space is a principal stationary point if the residual matrix has d extra zeros for
the optimal V .

By extra here is meant the additional zeros to the r zeros present in
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every column of the residual matrix according to Theorem 3.1. Note that
when r = m − 1, then there are always d = m extra zeros and hence
all optimal subspaces U∗ to the L1-factorization problem are principal
stationary points (Theorem 3.3).

Empirically, we have made the following two observations concerning
L1-optimal factorizations:

- In practice, the optimal subspace for L1-factorization is often a
principal stationary point.

- Even if the optimal subspace is not a principal stationary point, there
is often a principal stationary point which is close to the optimal one.

How common are principal stationary points? To give some insight
into this question we considered a low-dimensional problem in order for
brute-force search to be applicable. More precisely, we considered fitting of
a r-dimensional subspace in Rm.

To generate the data, we first randomly generate r orthonormal basis
ui for i = 1, 2, · · · , r in Rm, which constitutes the columns of ground
truth subspace U . The random data xj in the subspace are generated using
a linear combination of the basis, xj =

∑j
i=1 aiui where the coefficients

ai are uniformly drawn from [−1, 1]. Gaussian noise from N (0, 0.02) are
added to all the points. And 10% data are regarded as outliers by a random
perturbation uniformly drawn from [−1, 1].

Grid search is performed in the parameter space of U . We fix the gauge
by setting the top r-by-r block of U to be an identity matrix I , and search
for the remaining (m − r)r variables of U . Since the ground truth of
elements of U is generated between [−1, 1]. We perform the grid search in
the slightly larger range of [−2, 2] by dividing it into equally-sized intervals,
with the length of each interval being 0.1. We estimate V by L1-projection
and refining the best solution using the method from Eriksson and Hengel
(2012). The number of zeros in the residual matrix of the solution was
counted to evaluate whether it was a principal stationary point or not.

Due to the exponentially increasing cost for the grid search with the
number of variables in U , we only consider the test on low-dimensional
problems. More specifically, we estimated the subspace with dimension
r = 1, 2, 3 in the Rm space with varied m from 3 to 5. We skipped the
hyperplane-fitting case (r = m− 1) here. We run 2000 random problems
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m=3 m=4 m=5
r=1 98.4% 96.6% 96.0%
r=2 - 92.0% 94.0%
r=3 - - 95.0%

Table 3.1: Percentage of principal stationary points being optimal.
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Figure 3.3: The L1-cost for fitting a 1D-subspace to a set of points in R3

(m = 3 and r = 1). The cost function is varied over two dimensions of U
and then the optimal solution is computed for the other variables. Note
that there are at least three local minima.

for r = 1 cases and 200 random problems for r = 2, 3 cases due to the
exponentially increasing time complexity. The percentage of the principal
stationary point being the global optimal is summarized in Table 3.1

From Table 3.1, we observe that for more than 90% of random prob-
lems we tested on estimating the different low-dimensional subspaces, the
principal stationary points are the globally optimal solutions. This ob-
servation motivates the following algorithms that consider only principal
stationary points. Note the cost function for one example of the problem
m = 3, r = 1 is plotted in Figure 3.3.

3.5.1 Searching for Principal Points

Our approach to general subspace fitting is based on searching for principal
stationary points, that is, points that have d extra zeros in the residual
matrix, allowing us to solve directly for the parameters. This suggests that
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to estimate the subspace U we only need to consider a subset of columns
with d extra zeros in the residual matrix. Once the subspace U is estimated,
the projection coefficient V for the remaining columns of X can be solved
either by a linear program or with the approach discussed in Section 3.3.

We first focus on estimating a subspace U . A zero at position (i, j) in
the residual matrix gives a bilinear equation in the unknowns ti, uik and
vkj as

xij − ti −
r∑

k=1

uikvkj = 0. (3.17)

By Theorem 3.1, every column yields at least r such equations, but looking
for principal stationary points we can assume that there are d extra zeros
corresponding to the d degrees of freedom of the subspace. Hence we
consider a subset of at most d columns and assume that there are dr + d
zeros in the corresponding residual matrix. For small problems an exhaustive
search over the possible positions of these zeros might be tractable, but to
handle larger problems, a randomized algorithm is necessary.

In principle, this approach can be viewed as applying RANSAC in
Fischler and Bolles (1981) to low-rank matrix factorization, although our
motivation was quite different. Just as in RANSAC a minimal set of data
points are assumed to have zero errors and this assumption is used to find
the model parameters, and then, the obtained parameters are evaluated on
all data to measure the goodness of fit. Either we repeat this exhaustively
for every possible minimal subset or for a fixed number of random subsets.
More on this later.

3.5.2 Exhaustive Search

For small-sized problems it is tractable to search the space of all possible
positions for the d + dr zeros of a principal stationary point. For each
possible zero pattern, we need to solve a set of d+ dr degree-2 polynomial
equations, which can be expensive and might yield up to 2d+dr solutions.
Fortunately, the structure of these polynomial equations, for example, all
the quadratic terms are bilinear, yields much fewer solutions. In fact, for
low-dimensional problems, such as line fitting in R3, there is a unique and
simple closed form solution, rendering a much more efficient algorithm.
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Algorithm 2 Exhaustive Search (ES)
Given an observation matrix X , solve for the optimal affine subspace (U∗, t∗) and
the projection matrix V ∗.

1. Initialize the best error ε∗ =∞
2. Generate all the column subsets {Ii} of size d
3. Generate all the residual patterns {Rj} of size Rm×d
4. For each column subset Ii
5. For each residual pattern Rj .
6. Compute U , t and VIi in closed form using XIi , Rj
7. Compute the projection V{1,2,...,n}\Ii
8. Compute the L1-error ε
9. If ε < ε∗

10. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
11. return U∗, t∗, V ∗, ε∗

Note that when generating the residual patterns, one should first make
sure each column has at least r zeros, which follows from Theorem 3.1.
Then d extra zeros should be arranged such that each row has at least r
zeros, which followed by applying Theorem 3.1 to the transpose of the
measurement matrix X . This makes sure that each row of U can be
determined from the equation system.

3.5.3 Random Search

The exhaustive search algorithm quickly becomes infeasible with growing
problem size, both because the number of possible zero patterns grows
exponentially and because solving the system of quadratic equations gets
increasingly more expensive, as for general d and r, there is no simple
closed-form solution.

Simple patterns of zeros To work around these problems, we propose
a random search algorithm only considering especially simple residual
patterns. More precisely, we restrict the search to patterns that lead to linear
equations and can hence be solved extremely fast. Note that even these
simple patterns abound and in practice, we can always find such patterns
despite missing entries as long as the factorization problem is well-posed.
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Here we describe a family of general residual pattern that can be solved
linearly. The motivation is that this family of residual pattern enables one to
linearly solve the rows uT

i of U and the columns vj of V in an alternating
and iterative manner. Since both uT

i and vj contains r unknowns, it
generally require r zeros in the corresponding row or column of the residual
matrix to solve for uT

i or vj .
The first assumption is that (possibly after some permutations on rows

and columns) we have a (r + 1) × r zeros in the top left of the residual
matrix. Based on the degree of freedom in the subspace U , a coordinate
system can always be chosen such that the first r rows of U become an
identity matrix, for example the top r rows, that is

U =




Ir×r

uT
r+1

uT
r+2

...

uT
m



. (3.18)

Now, from the definition of the residual matrix R in (3.12), we can
immediately obtain the first r columns of V from

X̃ − I
[
v1 v2 · · · vr

]
= 0, (3.19)

where X̃ is the top left r × r sub-matrix of X . Then the last row of the
(r + 1)× r zeros in R gives us r linear constraints on uT

r+1

xT
r+1 − uT

r+1

[
v1 v2 . . . vr

]
= 0, (3.20)

where xT
r+1 are the elements of X corresponding to the last row of the

zero block in R. As v1,v2, ...,vr are already known from (3.19), we can
compute uT

r+1 linearly from (3.20). (We have r linear equations and r
unknowns in uT

r+1.)
To solve for another row of U , we need at least r zeros in that row of R.

They can be either in new columns or in columns already used to compute
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uT
r+1. Let us assume that after permutations, the zeros are in columns r+ 1

to 2r.2 This yields

xT
r+2 − uT

r+2

[
vr+1 vr+2 . . . v2r

]
= 0. (3.21)

However, since the vr+1, . . . ,v2r are unknown, we first need to compute
them. We can use the fact that the uT

1 , uT
2 , ... uT

r+1 are all known. This
means for the column vi ∈ Rr of V to be solvable, we need at least r zeros
in the top r + 1 rows of ith column of R. Take solving vr+1 for example,
assume n1, n2, ..., nr are the indices of rows, where those r zeros locate in
the (r + 1)th column of R. Taking the corresponding elements of X , that
is, the rows n1, n2, ..., nr of the column r+ 1, we form a vector x̃. Taking
the corresponding rows of U , that is, the rows n1, n2, ..., nr of U , we form
a sub-matrix Ũ of size r × r. Then vr+1 is computed from

x̃− Ũvr+1 = 0. (3.22)

Note this is similar to (3.19) except we have to solve the column of V
separately as the zero position for each column might be varied now. Other
columns, vr+2, . . . ,v2r are solved in the same way. With vr+1, . . . ,v2r

solved, we can compute uT
r+2 using (3.21).

So to solve uT
r+2, we require a block of size (r + 2)× r, inside which

the top r + 1 rows contain at least r zeros in each column, and the last row
contains only zeros. Note that apart from this the positions of the non-zero
residuals in this block are arbitrary. One example for r = 3 is

R =




0 0 0 · 0 0 ...
0 0 0 0 · 0 ...
0 0 0 0 0 0 ...
0 0 0 0 0 · ...
· · · 0 0 0 ...
. . . . . . . . . . . . . . . . . . ...



. (3.23)

The remaining rows uT of U can be solved sequentially in the same
way. It is worth noting that in general, this will not compute all columns in
V but only up to d of them. We will use J to denote the columns which

2If one or more are in the first r columns it only makes things easier as v1 to vr are
already known.
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are computed directly in this way. The remaining columns of V can be
found using L1-projections since U is already known.

This also leads to a simple strategy to handle missing data. When a
random residual pattern is generated in Algorithm 3, we simply restrict
it such that the zeros in R cannot be placed in a position corresponding
to a missing element of X. Figure 3.4 shows an example residual pattern
generated randomly for a structure from motion dataset. The zero positions
are close to the main diagonal since that is where we have observed data.

Figure 3.4: A random generated residual pattern for m = 20 and r = 3
case. Each black patch is a zero in R, also corresponds to the sampled
observation in X that used to solve for U .

Adaptive sampling To generate the residual pattern described above,
we sample d + dr elements from observation X , corresponding to the
zeros in R. As noted earlier, this is basically the RANSAC approach to
matrix factorization although motivated in a completely different way.
Consequently, we can use any of the alternative sampling strategies that
have been proposed for RANSAC. For example, in Tordoff and Murray
(2002) it proposed an algorithm called guided-MLESAC for maximum
likelihood estimation by RANSAC, which estimates the inlier probability
of each match based on the proximity of matched features. In Chum
and Matas (2005), it proposed PROSAC to measure the similarities of
correspondences, and used sequential thresholding to form a sequence of
progressively larger set of top-ranked correspondences. It is based on the
mild assumption that correspondences with high similarity are more likely
to be inliers. We chose the following PROSAC-like sampling strategy.

We initialize the probability of sampling xij of X to be pij > 0 if xij
is observable, otherwise, we set pij = 0. In each iteration when a better
solution is found, we check the residual rij = |xij − uT

i vj |, if rij is large,
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then we lower the probability pij of picking up xij in the next iteration,
otherwise we increase pij . In practice, the strategy helps us to find a better
solution using fewer sampling steps.

Algorithm 3 Random Search (RS)
Given an observation matrix X and a max iterations N , solve for the optimal affine
subspace (U∗, t∗) and the projection matrix V ∗.

1. Initialize the best error ε∗ =∞
2. Initialize the probabily pij = 1 for i = 1, . . . ,m, j = 1, . . . , n
3. While k ≤ N
4. Randomly generate a simple residual pattern s.t.

element (i, j) is included with probability ≈ pij
5. Compute U, t and VJ linearly as described in text
6. Compute V{1,2,...,n}\J using L1-projection
7. Compute the L1-error εi

8. If εk < εk−1

9. Update the probability pij based on rij = |wij − uT
i vj |.

10. If εk < ε∗

11. U∗ = U, t∗ = t, V ∗ = V and ε∗ = ε
12. return U∗, t∗, V ∗, ε∗

3.6 Truncated L1-Factorization

Perhaps somewhat surprisingly, most of the results we have presented gener-
alize easily to the truncated L1-norm in (3.7). A brief sketch of the proof is
as follows. Consider an optimal factorization with respect to the truncated
L1-norm. Now divide the measurements into inliers — having a residual
smaller than ε — and outliers — having a residual larger than ε. Now apply
Theorems 3.2 and 3.3 to the inliers only.

Algorithms 2 and 3 (but not Algorithm 1) can be used to optimize the
truncated L1-norm. The only required modification is to evaluate solutions
using the truncated L1-norm rather than the standard L1-norm.
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Figure 3.5: Line fitting in 3D. We know from Theorem 3.1 that L1-
projection of a point usually occur along m− r = 2 directions. However,
as the line u has d = (m − r)r = 2 degrees of freedom, there are two
columns in the residual matrix has an extra zero. So typically there are
two points whose L1-projection only occurs in a single direction as plotted.
(The L1-ball for other points are omitted)

3.7 Applications

3.7.1 Line-fitting

To view a line-fitting as a matrix factorization problem, let xi ∈ Rm,
i = 1, . . . , n be observed points in the plane (m = 2) or in space (m = 3).
Then, a line through the origin can be parametrized by a direction vector
u ∈ Rm. For each point there should be a parameter vi ∈ R satisfying
xi ≈ uvi. In order to estimate the line parameters, one can solve the
factorization problem

min
u,v

∥∥[x1 . . . xn
]
− u

[
v1 . . . vn

]∥∥
1
. (3.24)

For a line not necessarily going through the origin, it can be regarded as an
affine subspace problem

min
u,v,t

∥∥∥∥
[
x1 . . . xn

]
−
[
u t

] [v1 . . . vn
1 . . . 1

]∥∥∥∥
1

. (3.25)

See also Figure 3.5.
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We first test our exhaustive search method for affine line fitting in R3.
The purpose of this experiment is to investigate the local minima problem.
More quantitative results are given in the following experiments. In this
case, all the principal stationary points can be solved for in closed form. For
each experiment, 20 3D points with coordinates in [−1, 1] are generated
on a line and perturbed with Gaussian noise with standard deviation 0.1.
In addition, we perturb 80% of the points with uniform noise in [−1, 1]
to be outliers. 100 random examples are tested using both our exhaustive
search algorithm with L1-norm and L1-Wiberg from Eriksson and Hengel
(2012).

From Figure 3.6, we can see that our method performs better as a fairly
large portion of errors (brown) fall into the interval between 0 and 0.1
while most errors for L1-Wiberg (grey) lie between 0.1 and 0.2. In every
single instance, our algorithm performs better (around 50% of the cases) or
equally well compared to the L1-Wiberg algorithm. This means that the
L1-Wiberg gets stuck in local optima roughly half of the instances. We have
made similar observations for other settings by varying the inlier/outlier
ratio and the dimensions, both for affine and non-affine cases. Running
time is 2s for our methods and 0.03s for L1-Wiberg.

Figure 3.6: Results on the affine line fitting in R3.

3.7.2 Affine Structure-from-Motion

According to the affine camera model in Hartley and Zisserman (2004), a
3D point v ∈ R3 is mapped to the image point x ∈ R2 by x = Uv + t,
where U ∈ R2×3 and t ∈ R2 are the orientation and the translation of the
camera, respectively. Given image points xij by projecting 3D points vj
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Figure 3.7: Affine Structure from Motion. Three images of a toy dinosaur
and the corresponding 3D reconstruction.

onto image i, for i = 1, . . . ,m and j = 1, . . . , n, this can be written as



x11 . . . x1n

...
. . .

...
xm1 . . . xmn


 =



U1 t1
...

...
Um tm



[
v1 . . . vn
1 . . . 1

]
.

This is the basis for the famous Tomasi-Kanade factorization algorithm
in Tomasi and Kanade (1992) which first estimates the translation ti by
computing the mean of the observations in the corresponding rows, and
then applies SVD to the (reduced) observation matrix in order to recover
U and V . We will treat it as an affine subspace problem. See Figure 3.7 for
an example.

We perform experiments of N -view structure from motion (SfM) using
the Oxford dinosaur sequence. For each instance we use 300 points in N
consecutive views, where N varies from 2 to 10. This creates a data matrix
of size 2N × 300 with up to 75% missing data. Outliers with uniform
noise on [−50, 50] are added to 10% of the tracked points.

The 2-view SfM is exactly a hyperplane fitting problem, so we use Algo-
rithm 1. For problems with more than two views, we use Algorithm 3 with
106 iterations. Running times are up to 3.8mins using our parallel OpenMP
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implementation in C. As a comparison, we use the C++ implementation
of L1-Wiberg in Eriksson and Hengel (2012), General Wiberg in Strelow
(2012) and Matlab code of the Regularized L1-Augmented Lagrange Mul-
tiplier method (RegL1-ALM) in Zheng et al. (2012b). In our experiments,
L1-Wiberg converges in no more than 50 iterations, which takes up to 30
s, while General Wiberg exhibits slower convergence. We set the maximum
number of iterations to 500, which results in run-times up to 10.4mins. In
a few cases, it does not even converge. The RegL1-ALM converges in 0.3 s.
L1-Wiberg and General Wiberg are initialized using the truncated SVD,
while the RegL1-ALM is initialized with all zeros in U and V . All follows
the settings in the original papers.

For each N = 2, 3, . . . , 10, all possible instances with N consecutive
views were tested. The Mean Absolute Error (MAE) of inliers for each N is
shown in Fig. 3.8. The MAE of inliers is defined as

MAE =
1
|I|

∑

(i,j)∈I
|xij −

r∑

k=1

uikvkj |, (3.26)

where I is the set of inliers, and |I| is the cardinality of the set. We can see
that our method clearly achieves lower error in all the experiments. As the
dimension goes up, the percentage of missing data also rises, which heavily
affects the performance for General Wiberg, but also for RegL1-ALM.

To compare the methods with the same running time, we run the
L1-Wiberg and RegL1-ALM with multiple random initializations. The
General Wiberg is excluded in this comparison due to its weak performance
both in accuracy and convergence. To generate random initializations, we
first scale the data matrix X so that all the elements are around [−1, 1].
Then the elements of U and V are sampled uniformly from the interval
[−1, 1]. We run the L1-Wiberg with 10 different random initializations
(including truncated SVD) and RegL1-ALM with 1000 random initializa-
tions (including setting U and V to zeros). This leads to roughly the same
running time for three methods. The comparison is given in Figure 3.9.
It turns out that trying multiple random initializations lead to some im-
provement for both L1-Wiberg and RegL1-ALM. But the improvement
is minor, especially for the RegL1-ALM method, considering it runs with
more random starts. It also verifies, as claimed in Zheng et al. (2012b), that
it is hard to find a better solution using random initializations compared
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Figure 3.8: Results on Affine Structure from Motion with varying number
of views. The L1-Wiberg, General Wiberg and RegL1-ALM run with
truncated-SVD or all zeros initialization. Errors are given in pixels.

with the solution by setting U and V to be all zeros. One possible reason is
that the algorithm first solves U with respect to V . In vision application,
the number of elements in V is usually very large, leading to a huge search
space of V . So 1000 random initializations on V might be relatively very
few, from which it is hard to find a better solution. As seen from Figure 3.9,
the other two methods do not gain much by trying different starting point
given the same amount of running time. Our method still achieves lower
errors.

To further examine the quality of our solutions, we run the random
search algorithm 10 times, each with 10000 iterations, to check if the same
optimal is obtained. Taking an example of 3-view SfM, we plot the result
in Figure 3.10. We found that different random searches, although not
leading to exactly the same solution, give very similar low errors. In this
case, our random search has achieved lower error than our competitors in
no more than 100 iterations.

We also tested on the 3-view data with different outlier ratios. The data
setup is the same as above, but we add varied percentage of outliers to the
data from 10% up to 50%. For our method, we use the random search
with truncated L1-norm. All the methods are affected by the increasing
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Figure 3.9: Results on Affine Structure from Motion with varying number
of views. L1-Wiberg and RegL1-ALM are runned with single or multiple
random initializations. Errors are given in pixels.

outliers, see Figure 3.11. The chance of our method to sample an outlier-
free minimal set is decreased with increasing outlier ratio. Still we achieve
smaller median errors of inliers.

3.7.3 Photometric Stereo

Assuming an orthographic camera viewing a Lambertian surface illuminated
by a distant light source v ∈ R3, the image intensity x of a surface element
is given by

x = uTv,

where u ∈ R3 is the (unnormalized) surface normal. The length ‖u‖ gives
the albedo (or the reflecting power) of the surface element. By varying the
light source directions (and keeping the camera fixed), and by considering
several image intensities, we end up in the factorization problem as (3.2).
The measurement matrix X ∈ Rm×n contains the intensities of m pixels
in n images, U ∈ Rm×3 the albedos and the surface normals of the m
pixels and V ∈ R3×n the n light sources. Given the normals, it is possible
to estimate a depth map by integration, see Yuille and Snow (1997).

In Alldrin et al. (2008), a set of 102 images (size 588 × 552 pixels)
of a gourd was used to estimate the 3D shape and the surface reflectance
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Figure 3.10: Quality of our solutions. The random search is run for 10
times with each red solid curve representing the current best error vs. the
number of iterations. The grey, blue and orange dotted lines are the results
for the other three methods.

properties using a sophisticated data-driven photometric stereo model. In
contrast, we use a standard Lambertian model and a subset of eight random
images to demonstrate that it is still possible to obtain a good estimate of
3D surface shape by using the truncated L1-norm; see Fig. 3.12 for some
example images. Note that in this example the surface is highly specular and
do not concur with the Lambertian model at the specularities. Deviations
from the Lambertian model such as specularities are handled by the robust
choice of norm.

As the number of pixels is usually very large in the experiment, that
is, of order 106, the computation of the L1-projection, that is, estimate V
given U for all the points in each iteration in Algorithm 3 are quite time
consuming. Here we adopt a strategy that in each iteration, we compute
the surface normal v for only a subset of points. In our experiment, we
define this subset as the set of points on the down-sampled image with the
down-sampled factor 4. It turned out the error on this subset of points is a
good approximation of the error of all the points. And it gives a large speed
up in the algorithm. Note that when estimating U we randomly sample the
data from the original image. And the final solution is still for the image of
the original size.

As a baseline, we compare with the RegL1-ALM in Zheng et al. (2012b).
We also tried the L1-Wiberg of Eriksson and Hengel (2012) and General
Wiberg of Strelow (2012), but none of those was possible to run on such a
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Figure 3.11: Results on 3-view Affine Structure from Motion with varying
outlier ratios. Errors are given in pixels.

large problem. For our method, the truncation threshold is set to ε = 0.05.
It should be noted that each iteration of our method takes 0.3 s, and we use
15000 iterations. The running time for RegL1-ALM is just 35 s. To make
a fair comparison with respect to the running time, we also use the multiple
random initializations for RegL1-ALM and pick out the best solution. Here
we run it with 100 different random starting points, which gives roughly
the same running time.

The result of our 3D shape estimate is given in Figure 3.12 and the
detected specularities are shown in Figure 3.13. Visual inspection shows
that our solution basically captures the correct saturated points. The RegL1-
ALM has very similar visual results so we omit them here. If we calculate
the average truncation error per pixel, our method achieves a mean absolute
error of 0.0049 while the mean absolute error of RegL1-ALM is 0.0052.

3.8 Conclusions

We have presented an alternative way of solving factorization problems
under theL1-norm that also works for the truncatedL1-norm. The method
is independent of initialization, trivially parallelizable and as our empirical
investigation on low-dimensional problems show, often the optimal solution
is obtained. Compared to iterative methods based on local optimization,
the quality of our solution is significantly better in terms of lower error.
Our experimental results demonstrated that the local minima problem is
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Figure 3.12: Photometric stereo. Three of eight images of a gourd and the
corresponding 3D reconstruction viewed from the side. Images are courtesy
of Alldrin et al. (2008)

47



CHAPTER 3. LOW-RANK MATRIX FACTORIZATION: L1-NORM AND

TRUNCATED L1-NORM

Figure 3.13: Results on photometric stereo. Three of eight input images
where points with absolute residuals above ε = 0.05 are marked in green.

not satisfactorily solved by the iterative methods.
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Chapter 4

Low-Rank Matrix
Factorization: Minimal
Problems

In this chapter, we focus on the minimal problems in low-rank matrix factor-
ization. One motivation is that with increasing sparsity of the measurement
matrix, the nuclear norm based methods will eventually fail. Solving the
minimal problems would help us recover a low-rank matrix with minimal
observations. When the measurement matrix is dense, minimal solvers
provide a robust estimation in presence of outliers.

As we will see, the principal stationary points in Definition 3.4 in
the previous chapter belong to the minimal problems of low-rank matrix
factorization. In this chapter, we present a more unified and general under-
standing of the minimal problems in low-rank matrix factorization. More
specifically, we demonstrate how to characterize, generate, parameterize and
solve these problems, restricting ourselves not only to the linearly solvable
ones.

4.1 Introduction

We will begin by introducing a few definitions that will be used to charac-
terize the minimal problems in low-rank matrix factorization.

Definition 4.1. Given a matrix X ∈ Rm×n with missing data, an in-
dex matrix W ∈ {0, 1}m×nis a binary valued matrix to indicate that the
corresponding element at (i, j) is present if wij = 1 or missing if wij = 0

We also define the following partial order relationship "≤" between
two index matrices W and W ′.
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Definition 4.2. Given two index matrices W and W ′, we say that W is a
submatrix of W ′, denoted as W ≤W ′ if wij = 1 =⇒ w′ij = 1.

An index matrix W is said to be rigid if for general data, the low-rank
matrix factorization problem is locally well defined.

Definition 4.3. A low-rank matrix factorization problem with an index
matrix W is said to be locally well defined if for a generic measurement matrix
X of rank r, there are only a finite number of rank-r matrices X̃ that satisfy
W � (X − X̃) = 0 where � is the Hadamard product, that is the element
wise product.

The notion of rigidity is invariant under a permutation of rows or
columns. We define the following equivalent relationship between two
index matrices.

Definition 4.4. Given two index matrices W and W ′, we say that W is
equivalent to W ′ if wij = w′P1(i),P2(j) for all i, j where P1, P2 are permuta-
tions of rows and columns respectively.

Before defining the minimal problems in matrix factorization, we first
look at the degrees of freedom (DoF) for a low-rank matrix. For a rank-r
factorization of a matrix X ∈ Rm×n, we have that U has mr DoF and V
has nr DoF. There is a total coordinate ambiguity of size r × r as

X = UTV = UTQQ−1V, (4.1)

where Q ∈ Rr×r is a full rank matrix. Thus a matrix X ∈ Rm×n with
rank r, has mr + nr − r2 degrees of freedom, which means that we need
at least d = mr + nr − r2 measurements to recover a rank-r matrix X of
size m× n

A minimal problem for low-rank matrix factorization is characterized
by a minimal index matrix, which is defined as below.

Definition 4.5. An index matrix W for a rank-r problem is said to be
minimal if it is rigid and satisfies

∑
ij wij = mr+ nr− r2. W is said to be

overdetermined if
∑

ij wij > mr + nr − r2.

A minimal problem of low-rank matrix factorization is to find two
factor matrices U and V that exactly solve the following equation

W � (X − UTV ) = 0, (4.2)
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where W is a minimal index matrix and X is the measurement matrix. For
the minimal problem characterized by a minimal index matrix W , there
is a finite number nW > 0 of solutions, where nW only depends on the
index matrix W .

4.1.1 Characterizing the Minimal Index Set

For each minimal index matrix W of size m× n there is a corresponding
minimal index matrix W ′ of size n ×m such that wij = w′ji. Without
loss of generality we may thus in the discussion assume that n ≥ m. For
each minimal index matrix, it has mr + nr − r2 non-zero elements. Since
by assumption m ≤ n, we have at most 2nr − r2 non-zeros in W , which
are distributed among n columns. Thus there are never enough non-zeros
to fill up 2r positions of each column, in another word, there is at least
one column which has fewer than 2r non-zeros. Furthermore it is obvious
that for rank-r problems, the minimal index matrices must have at least r
non-zero elements in each column, otherwise the corresponding column
v of V has too few constraints to be solvable. So for the column with the
smallest number k of non-zero elements we must have r ≤ k < 2r.

We also notice that since one assumes r < min(m,n), that is,m−r ≥
1. It means that for a minimal index matrix, the number of non-zeros
mr + nr − r2 ≥ nr + r. If we distribute those non-zeros in n columns
each of which has at least r zeros, then there is at least one column which
has no less than r + 1 non-zeros.

4.2 Generating the Minimal Problems

4.2.1 Laman Graph and Henneberg Construction

The ideas and inspirations for generating the minimal problems of low-rank
matrix factorization are from the rigid graph theory, especially from the
Henneberg construction, see Lebrecht (1911) to generate minimally rigid
graphs, also known as Laman graphs, see L. (1970). In this section, we will
introduce some basic concepts and theories in rigid graphs, as a motivation
for generating the minimal low-rank problems.

Laman graph If we consider to place some rods (edges) and joints (ver-
tices) on a plane to form a planar graph, then for some configurations of
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these rods and joints, there is no simultaneous motion of vertices, except for
a Euclidean congruence, that can preserve the lengths of all edges. These
configurations form a family of graph, which is known as rigid graphs.

Intuitively, given n vertices, if we keep adding edges to connect pairs of
vertices, which reduces the degrees of freedom, it will eventually become a
rigid graph. So it is interesting to study the minimal case, which requires
a minimal number of edges to make a graph with n vertices rigid. Laman
graphs are introduced to characterize a family of such minimally rigid planar
graphs.

Definition 4.6. A Laman graph is a graph on n vertices such that for 2 ≤
k ≤ n− 1, every subgraph with k vertices has at most 2k − 3 edges, and the
whole graph has exactly 2n− 3 edges.

To further understand the definition, we consider the degrees of free-
dom (DoF) in the problem. Given n vertices on a plane, there are totally
2n DoF to place the vertices since each vertex has two coordinates in 2D.
However, a minimally rigid graph has only three DoF: two for coordinates
of a certain vertex and one for a 2D rotation around that vertex. When we
add an edge with fixed length to the graph, we reduce the DoF by one. So
one needs 2n− 3 edges to reduce the DoF from 2n to 3

However, we need to avoid the cases that one puts excessive edges on
a subgraph which is already rigid, otherwise some subgraphs might be
under-constrained. Thus the condition in Definition 4.6 on subgraphs
intuitively states that edges should be distributed evenly and each edge
should contribute to reduce the overall degrees of freedom.

Henneberg construction In Lebrecht (1911), it shows that starting from
a simple graph with two vertices and one edge, any minimally rigid graph
can be generated by a sequence of the following two types of constructions,

• A Type-1 Construction adds a new vertex to the graph, together with
edges connecting it to two previously existing vertices

• A Type-2 Construction subdivides an edge of the graph and add
an edge connecting the newly formed vertex to a third previously
existing vertex.

52



4.2. GENERATING THE MINIMAL PROBLEMS

4.2.2 Henneberg Extensions

We now describe how to generate the minimal problems in low-rank matrix
factorization. Inspired by Henneberg constructions in rigid graphs, the idea
is that one could start with the smallest minimal index matrix and by a
series of extensions every minimal index matrix could be generated. For
example, for r = 2, the smallest index matrix is

W =

[
1 1
1 1

]
. (4.3)

In the following we will distinguish between constructive extensions and
non-constructive extensions. For a constructive extension fromW toW ′, we
could infer the number of solutions nW ′ from nW and construct the solver,
denoted by fW ′ from fW . For a non-constructive extension, it can be
shown that W is minimal if and only if W ′ is minimal. However, we could
neither infer the number of solutions nW ′ from nW nor derive a solver fW ′

from fW . We propose the following extensions and reductions which are
denoted as Henneberg-k extensions/reductions. Among these Henneberg-1
extensions are constructive, whereas Henneberg-k extensions for k ≥ 2 are
in general non-constructive.

Henneberg-1 extension Given a minimal index matrix W for a rank-
r problem of size m × n, an extended minimal index matrix W ′ of size
m×(n+1) is formed by adding a column with exactly r indices, that is non-
zero elements. The numbers of solutions for W and W ′ are identical, that
is nW = nW ′ . Extending an algorithm from fW to fW ′ is straightforward.
A similar extension can be done by adding a row with r indices.

Henneberg-1 reduction Given a minimal index matrix W for a rank-
r problem of size m × n where there is a column wj with exactly r
non-zeros, a reduced minimal index matrix W ′ of size m × (n − 1) is
formed by removing the column wj from W . The number of solutions
is preserved under Henneberg-1 reduction. The solution to W ′ can be
obtained straightforward from the solution to W . A similar reduction can
be done by removing a row from W with r non-zeros.
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Figure 4.1: An example of generating rank-2 index matrices of increasing
size using a sequence of Henneberg-1 and Henneberg-2 extensions.

Henneberg-2 extension Given a minimal index matrix W for a rank-r
problem of size m × n, where there is a column wj with at least r + 1
non-zero elements at rows i1, . . . , ir+1 (such a column must exist from
Sec. 4.1.1) , an extended index matrix W ′ of size m × (n + 1) can be
formed by first adding a column w′ with exactly r + 1 non-zero elements
at rows i1, . . . , ir+1, then setting one of the non-zeros of wj to be zero.
The resulting index matrix W ′ is also minimal. A similar extension can be
done for a row.

Similarly one can define Henneberg-2 reduction. This can be general-
ized to Henneberg-k extension and reduction for k > 2. We illustrate an
example on how to generate an index matrix for a minimal problem of rank
2 using Henneberg-1 and Henneberg-2 extensions in Figure 4.1.

As shown in Lebrecht (1911), every minimally rigid graph can be con-
structed using a sequence of Henneberg-1 and Henneberg-2 construction
in the context of rigid graphs. In the following we will show that every min-
imal index matrix can be generated using a series of Henneberg-k extension
defined above for rank-1 and rank-2 problems. We also make a conjecture
that this is the case for the general rank-r problems where r > 2.

Theorem 4.7. Each minimal index matrix for rank-1 problems can be gener-
ated by a series of Henneberg-1 extensions from a 1 × 1 index matrix as the
base case.

Proof. The proof is by induction over size. If the matrix is of size 1 × 1
then we are done. Otherwise we assume that it is true for all matrices of size
m× n with m+ n ≤ K. Now let us take a minimal index matrix of size
m× n where m+ n = K + 1. From Section 4.1.1, we know that there
always exists a column with at least k non-zero elements where r ≤ k < 2r.
In this case, there is always a column with exactly one non-zero element.
After a Henneberg-1 reduction on that column, we obtain a minimal index
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matrix with m+ n = K, which can be constructed as our assumption. So
the original index matrix is a Henneberg-1 extension from a smaller index
matrix that is in the assumption, which proves the theorem. Similar proof
exists for a row-wise extension.

Theorem 4.8. Each minimal index matrix for rank-2 problems can be gen-
erated by a series of Henneberg-1 and Henneberg-2 extensions from a 2 × 2
minimal index matrix as the base case.

Proof. The proof is similarly by induction over size. If the matrix is of size
2× 2 then we are done. Otherwise we assume that it is true for all index
matrices of size m× n with m+ n ≤ K. Now we take a minimal index
matrix of size m × n where m + n = K + 1. From Section 4.1.1, we
know that there is always a column with exactly k non-zero elements where
r ≤ k < 2r, that is k = 2 or 3 in this case. If the column has two non-zeros
then the index matrix can be constructed using the Henneberg-1 extension
from the one that is in the assumption. If the column has three non-
zeros then it can be reduced to an index matrix of size m+ n ≤ K using
Henneberg-2 reduction. In either case, we have shown that the index matrix
can be constructed using either Henneberg-1 or Henneberg-2 extension
from a smaller index matrix that is in the assumption, which proves the
theorem. One can show a similar proof for a row-wise extension.

It is worth noting that in the above proofs we only show the if part
that every minimal index can be generated by Henneberg extensions. The
only if part that the index matrices generated by Henneberg extension are
minimal is not proved. We conjecture that it is true and leave it for future
work.

We have the following conjecture that it is possible to generate all the
minimal index matrices using a sequence of Henneberg extensions.

Conjecture 4.9. Each minimal index matrix for rank-r problems can be
formed by a series of Henneberg-1 to Henneberg-r extensions.

4.3 Minimal Solvers

In this section, we will describe the solvers to the minimal problems gener-
ated from different Henneberg extensions.
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Figure 4.2: Henneberg-1 extension

4.3.1 Solvers for Henneberg-1 Extension

Suppose we are given a rank-r minimal problem with the index matrix W
and the measurement matrix X . Assume the solution is given by U and V ,
which means

W � (X − UTV ) = 0, (4.4)

Now we apply Henneberg-1 extension to W as W ′ = [W |w] where the
column vector w has r non-zeros. Correspondingly the measurement
matrix is extended as X ′ = [X|x] where x has r observations. To find the
solution to the extended minimal problem, it is obvious that we only need
to solve for the extra column v of V such that the following equation is
satisfied

W ′ � (X ′ − UT [V |v
]
) = 0. (4.5)

Now assume the positions of r observations of x is at I = {n1, . . . , nr}.
Then we have the following equation

UT
I v = xI (4.6)

where UI ∈ Rr×r and xI ∈ Rr denotes taking the corresponding rows at I
from U and x respectively. This is a linear system with a unique solution if
U is of full rank. For the row-wise Henneberg-1 extension, we will keep V
unchanged and solve for the extra column u of U using a similar strategy.
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Figure 4.3: The other constructive extensions. (a) the overlap of size r × r
gives sufficient constraints. (b) and (c) some extra constraints are needed
when the overlap is smaller than r × r

4.3.2 Solvers for Other Constructive Extension

Henneberg-k extensions for k ≥ 2 are non-constructive, which means
that for W → W ′ one cannot construct the solution to W ′ from the
solution to W . However, we can define some other constructive extensions.
The intuitive idea is that given two index matrices W1 and W2, one can
construct a new index matrix W by "glueing" W1 and W2 together. By
"glueing", we mean that W contains both W1 and W2 with overlapping
rows and columns as illustrated in Figure 4.3.

In the following, we will first describe a general parametrization for
these types of constructive extensions, which is independent of the rank r.
We derive several constraints using the proposed parametrization to solve
the problem. A few examples for rank-2 and rank-3 cases will be illustrated.

Parametrization Consider that we have a minimal problem with index
matrix W and measurement X . W is constructed by "glueing" two index
matrices W1 and W2 as in Fig. 4.3(a). We use I1 and J1 to denote the row
and column indices of W1 in W , similarly I2, J2 for W2. Then we have
W1 = WI1,J1 and W2 = WI2,J2 where WI,J denotes the submatrix of W
by taking the rows at I and the columns at J. For measurement matrices
X1, X2 associated with W1 and W2 respectively, we have X1 = XI1,J1 and
X2 = XI2,J2 . We also use I12 and J12 to denote the indices of overlapping
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rows and columns as I12 = I1 ∩ I2 and J12 = J1 ∩ J2.
Assume the solutions to the sub-problems {W1, X1} and {W2, X2} are

given by {U1, V1} and {U2, V2} respectively. To construct the solution to
{W,X}, the idea is to find a transformation matrixH ∈ Rr×r to transform
the subspace U2 to the same coordinate framework as the subspace U1.
Using this transformation we have

UT
2 V2 = UT

2 H
TH−TV2 = (HU2)T(H−TV2), (4.7)

Now HU2 and H−TV2 are in the same coordinate framework as U1

and V1 respectively. The remaining problem is to solve for H . Apparently
we have the following constraint which states U1 and HU2 should coincide
for the overlapping columns as

(U1)I1 = (HU2)I2 = H(U2)I2 , (4.8)

where I1 and I2 denotes the indices of overlapping columns in U1 and U2

respectively and UI denotes the submatrix of U by taking the columns given
by I. Similarly we have the overlapping constraints for V1 and H−TV2 as

(V1)J1 = H−T(V2)J2 , (4.9)

where J1 and J2 denotes the indices of overlapping columns in V1 and V2

respectively. Or it can be written as

HT(V1)J1 = (V2)J2 , (4.10)

which is linear with respect to H .
If we have enough constraints from (4.8) and (4.10), H can be solved

linearly. In that case, the overlap should be of size r × r as in Figure 4.3(a).
For the cases where the overlap does not give sufficiently many constraints,
we need some extra constraints outside W1 and W2 to solve for the trans-
formation matrix H as in Figure 4.3(b)(c).

To solve the case with extra constraints, we know that each extra mea-
surement xij directly gives a constraint as

uT
ivj − xij = 0, (4.11)

where ui and vj are the i-th and the j-th column of U and V respectively.
We need to express the constraint in (4.11) using U1, U2, V1 and V2 from
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which we assume U1 and V1 are in the same coordinate framework as U
and V respectively. There are in general two cases. When xij is in the
top-right as in Fig. 4.3(b), one needs to express (4.11) using U1 and V2 as

(U1)T
i1
H−T(V2)j2 − xij = 0, (4.12)

where i1 denotes the local index of column i in U1 and j2 the local
index of column j in V2, and (U1)i1 denotes taking the column i1 from
U1, similarly for notation (V2)j2 . When xij is in the bottom-left as in
Figure 4.3(c), one needs to rewrite (4.11) using U2 and V1 instead as

(H(U2)i2)
T(V1)j1 − xij = 0, (4.13)

where i2 denotes the local index of column i in U2 and j1 the local index
of column j in V1.

All these constraints from (4.8) (4.10) (4.12) (4.13) form either a linear
system or a simple polynomial system, from which one can solve for the
transformation H and thus yield a solution to the original problem. In the
following we will illustrate a few examples for rank-2 and rank-3 problems,
all of which are parametrized and solved using the similar strategy.

Examples of rank-2 constructive extension Here we will present a few
constructive extensions for rank-2 problems, which are illustrated in Fig-
ure 4.4. The overlap for rank-2 problems is at most 2× 2, otherwise the
extension is non-minimal. For a 2 × 2 overlap, H can be solved linearly
using only the overlap constraints. For a 1× 1 overlap with an extra con-
straint as in Fig. 4.4(a), the overlap in U gives two equations in (4.8) and
the overlap in V gives two equations in (4.10). Among the four equations
one is redundant as it is automatically satisfied when the other three hold.
So one can parametrize H using a single variable z, which is solved using a
single extra constraint.

One could of course generate a minimal problem by "glueing" more
index matrices. In Fig. 4.4(b) and (c), each submatrix needs a transforma-
tion, namely H1, H2 and H3 of which one can fix the gauge by setting
H2 = I . Two extra constraint are needed to solve the problem. For the
case in Fig. 4.4(d), four transformation H1, H2, H3 and H4 are needed. By
setting H2 = I , one can parametrize H1, H3 and H−1

3 H4 using z1, z2 and
z3 respectively. Each of three extra constraints provide a quadratic equation
in z1, z2 and z3 respectively, which could be solved giving 3 solutions.
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Figure 4.4: Examples of rank-2 constructive extensions. In each of these
four examples several smaller minimal cases are glued together with a few
extra constraints. For these extensions the multiplicity of solutions grows
as follows: for (a) nW = nW1nW2 , for (b) nW = 2nW1nW2nW3 , for (c)
nW = 2nW1nW2nW3 , and for (d) nW = 3nW1nW2nW3nW4 . For each
of these extensions we have implemented the method of extending the
algorithms, i.e. {fW1 , fW2 , . . . fWn} → fW .
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Figure 4.5: Examples of rank-3 constructive extensions.

Examples of rank-3 constructive extension For rank-3 problems, the
maximum overlap is 3× 3 which can be solved linearly. For the case with
a 2× 2 overlap illustrated in Figure 4.5(a), H can be parametrized using
a single variable z, and can be solved linearly using one extra constraint.
When the overlap is 1× 1 as in Figure 4.5(b), the overlap provides three
equations in (4.8) and three equations in (4.10). However one of them is
redundant, which means it reduces the DoF of H from nine to four. Thus
extra four constraints are needed to solve for H .

4.4 Algorithms for Structured Data Patterns

For real problems, the observations in the measurement matrix might be
more dense than that for minimal problems. However, one could apply
a random sampling strategy to sample the minimal configuration from
the measurement matrix and solve one minimal problem in each iteration,
while pick out the solution that gives the lowest error. It is a similar idea as
the random search algorithm in Section 3.5.3.

Block partition for structured data patterns In applications where the
locations of missing data are highly correlated and structured, for example,
the affine structure-from-motion, we use a similar block-partition idea as in
Larsson et al. (2014) to divide the measurement matrix into overlapping
sub-blocks. The solution to each sub-block is estimated separately using the
random sampling method. Once we obtain solutions to all the sub-blocks,
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we use a null space matching method, see Olsen and Bartoli (2008) to
combine those solutions and recover the full factorization.

However, block partition in our method differs from the strategy used
in Larsson et al. (2014) in that using minimal solvers, missing data can be
handled in sub-blocks, while in Larsson et al. (2014) each sub-block must
be complete without missing data based on their convex formulation. As
we will show in the experiment, being able to cope with missing data in
sub-blocks leads to a more flexible way of partition that could cover all the
observations.

4.5 Applications

We have conducted a number of experiments on both synthetic and real
data. For synthetic data and affine structure-from-motion, we use the
solvers both for the Henneberg-1 extension and the other constructive
extensions from Section 4.3.2. The other constructive extensions are useful
when the measurement matrix is sparse, especially when it is not possible to
find a minimal configuration using only Henneberg-1 extensions. For the
shape basis estimation, we use only the minimal solvers for the Henneberg-1
extension, as the matrix is more dense.

4.5.1 Synthetic Data

For synthetic data, we generate random rank-3 matrices of size 100× 100
with entries uniformly drawn from [−1, 1]. All entries are then per-
turbed with noise drawn from a normal distribution N (0, σ) where σ
takes {0, 10−3, 10−2}. The rank constraint is enforced using a truncated
SVD.

A structured data pattern is formed by removing some measurements
in the generated matrices. We are especially interested in the band-diagonal
structure which appears in many affine structure-from-motion problems. A
sparse matrix D is said to be band-diagonal with bandwidth k if

dij = 0 for j < i− k or j > i+ k. (4.14)

Here we generate random band-diagonal matrices of size 100× 100 with
varied bandwidth k from 20 down to 4. The corresponding proportion of
missing data ranges from 64% up to 92%. For comparison, we consider two
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Figure 4.6: The synthetic data with band-diagonal structure. The band-
width of matrix vs. The log10 L2-error. Left: Noise-free case. Middle:
Noise level σ = 10−3, Right: Noise level σ = 10−2.

state-of-the-art methods, namely Truncated Nuclear Norm Regularization
(TNNR-ADMM) in Hu et al. (2013) and OptSpace in Keshavan et al.
(2009). OptSpace was initialized using truncated SVD.

We plot log10 errors versus the bandwidth of the matrix in Figure 4.6,
where the error is defined as ‖W � (X − UTV )‖F . As the bandwidth
decreases (the missing data increases), the performance of both TNNR-
ADMM and OptSpace are affected, especially when the bandwidth k < 10
which corresponds to around 80% missing data. In noise-free case, our
method achieves significant lower error. With low level noise, that is
σ = 10−3, our method remains stable with respect to the rate of missing
data. With medium level noise, that is σ = 10−2, our method is also
affected when K < 10, but still performs better compared with TNNR-
ADMM and OptSpace.

4.5.2 Affine Structure-from-Motion

We evaluate our method on the well-known dinosaur sequence for affine
structure-from-motion. The original dinosaur sequence contains 2D point
tracks from the projection of in total 3184 3D points onto 36 cameras.
Each 3D point is only visible in a few consecutive views and missing for the
rest views due to self-occlusion. We consider a rank-4 factorization which
does not use any initial estimate of the translation.

We take a subset of 3D points which are visible in at least 8 views.
This forms an observation matrix X of size 72 × 116 with 87.8% miss
data. We first compare with TNNR-ADMM and OptSpace, neither of
which handles outliers. In this case, we divide the measurement matrix
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Figure 4.7: Affine structure from motion on the dinosaur sequence. (a) The
band-diagonal structure and block partition. (b) The input 2D tracks. (c)
The recovered 2D tracks using our method. (d) The recovered 2D tracks
using TNNR-ADMM.

into 4 overlapping sub-blocks with varied size, see Figure 4.7(a). The
partition of the measurement matrix is a trade-off between complexity
and numerical accuracy. For a too large sub-block, the numerical error
within the sub-block accumulates for Henneberg-1 extension solver. If
we divide the matrix into too many sub-blocks, it unnecessarily increase
the computational complexity. We ran our method with 1000 iterations
followed by a non-linear least square optimization in the final step.

The results are shown in Figure 4.7, both TNNR-ADMM and OptSpace
fails to recover the 2D tracks. We plot the recovered tracks for our method
and TNNR-ADMM in Figure 4.7(c) and (d) respectively. When the data
matrix is sparse, the recovered 2D tracks from TNNR-ADMM are stretched
towards the origin (top right corner) of the image.

In presence of outliers, both TNNR-ADMM and OptSpace will fail.
We thus compare with two L1-based methods, namely Wiberg-L1 in Eriks-
son and Hengel (2012) and Regularized L1 augmented Lagrange multiplier
method (RegL1-ALM) in Zheng et al. (2012b). We add 10% outliers with
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Figure 4.8: The missing data and block partition on Book dataset. Left: our
method. Right: Larsson et al. (2014)

values in the range [−50, 50] to the measurement matrix. The only change
in our method is that in each iteration we compute the error in L1-norm as
‖W � (X − UTV )‖1 instead of Frobenius norm. We run 1000 iterations
using our minimal solver within each sub-block. The average L1 error
for our method is 1.314 pixels and 1.231 for Wiberg-L1 and 2.223 for
RegL1-ALM.

4.5.3 Linear Shape Basis

For non-rigid structure-from-motion, a linear shape basis model is com-
monly used to model the shape of a non-rigid object. It assumes that any
non-rigid deformation of an object can be represented as a linear combi-
nation of a set of shapes. Normally the size of the shape basis is assumed
to be much smaller than either the number of frames or the number of
tracked points, so the measurement matrix containing point tracks can be
factorized into a coefficient matrix and a shape basis matrix.

Two datasets, namely Book and Hand from Larsson et al. (2014) are
used. The image points are tracked using a standard Kanade-Lucas-Tomasi
(KLT) tracker, see Lucas and Kanade (1981). Due to occlusions, the tracker
fails after a number of frames for a subset of points, which leads to the
missing data pattern shown in Figure 4.8 for Book dataset. In our experi-
ments, we use a subset of 42 frames with 60 tracked points from Book and
38 frames with 203 points from the Hand dataset. Following the setup in
Larsson et al. (2014), we seek for a rank-3 and rank-5 factorization on two
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Algorithm 10 % missing data

Dataset Larsson et al. (2014) Our Larsson et al. (2014) Our

Book 0.3522 0.1740 8.0436 0.1772
Hand 0.8613 0.6891 1.5495 0.7297

Table 4.1: The result on linear shape basis estimation on the Book and Hand
dataset, where the second experiment contains an extra 10% missing data.
The numbers depict the Frobenius errors using our method compared to
the method of Larsson et al. (2014).

datasets respectively.
The block partition of both our method and Larsson et al. (2014) are

illustrated in Figure 4.8. Contrary to Larsson et al. (2014), missing data
within blocks is handled in our method, giving a more flexible partition
with wider coverage of measurements. We run our method with 1000
iterations for each block. To further show that our method is capable to
handle random missing data, we conduct a second experiment by randomly
adding an extra 10% of missing data in the measurement matrix and run
both methods with the same setting as before.

We summarize the error ‖W � (X − UTV )‖F in Table 4.1. Our
method achieves smaller error in both dataset with or without adding extra
missing data. When random missing data are added into the blocks, Larsson
et al. (2014) fails with large errors. In Figure 4.9, the recovered tracked
points using our method are plotted for both datasets with extra missing
data. Without extra missing data, both our method and Larsson et al.
(2014) achieve quite similar visual results, which are omitted. The running
time for our method is 12s on Book and 28s on Hand. For Larsson et al.
(2014), it is 2.5s on Book and 4.5s on Hand. However, the running time
for our method can be further reduced as it is highly parallelizable.

4.6 Conclusions

In this chapter, we have introduced theory to characterize and generate the
minimal problems of low-rank matrix factorization, inspired by Henneberg
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extensions of rigid graph theory. We have demonstrated that for rank-1
and rank-2 problems, the proposed Henneberg extensions can generate all
minimal problems. We conjecture that, by using additional Henneberg
extensions, all minimal problems can be generated for any given rank.
Several solvers are proposed for solving minimal problems using constructive
extensions. With block partition and a random sampling scheme, minimal
solvers can be used in a number of real applications when the data matrix is
sparse and contains outliers.
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Figure 4.9: The results on Book (Left column) and Hand (Right column)
dataset using our method with extra 10% missing data added in the blocks.
From left to right: The 1st, 10th, 20th, 30th frame. The blue crossings
are the measurements. The yellow dots are the recovered measurements
(normally coincide with the actual measurements). The green dots are the
recovered missing data.
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Chapter 5

Rank Minimization in Sensor
Network Calibration

In this chapter, we investigate the application of rank minimization in
sensor network calibration. A sensor network contains several transmitters
and receivers. A signal, for example, a sound, travels through the medium
from a certain transmitter to a receiver. Receivers are usually calibrated,
which means that for any receiver one could measure the time when it
receives a signal from a certain transmitter. However, transmitters are not
calibrated; in other words, the actual time of transmission is unknown.

The goal of this chapter is to estimate the unknown time of transmis-
sion in a sensor network. We derive a rank constraint on a measurement
matrix with unknown time of transmission. The problem is formulated
as a rank-minimization problem using truncated nuclear-norm regulariza-
tion (TNNR) and is optimized using the alternating-direction method of
multipliers (ADMM). We will demonstrate in synthetic experiments that
our method recovers the time of transmission with good accuracy in the
presence of noise and missing data. It is worth noting that in the case that
the transmitters are calibrated instead of receivers, one can use a similar
formulation and optimization to recover the unknown time of receiving.

5.1 Introduction

For a sensor network with m receivers and n transmitters, we denote the
spatial coordinates of the receivers and transmitters {ri} for i = 1, · · · ,m
and {sj} for j = 1, · · · , n, respectively. The measured time when a signal
arrives at the i-th receiver from the j-th transmitter is denoted tij . The
unknown time of transmission for the j-th transmitter is denoted tj . If we
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know the speed of the signal in the medium, denoted v, then we have

v(tij − tj) = ‖ri − sj‖2 . (5.1)

In the following we will use the distance measurements, instead of the time
measurements. We have, namely the relative distance fij = vtij and the
delay distance oj = vtj . So (5.1) can be written as

fij − oj = ‖ri − sj‖2 . (5.2)

where fij are measurements and oj are unknowns. For a sensor network
with m calibrated receivers and n uncalibrated transmitters, we define two
network calibration problems as following.

Problem 5.1. (Delay distance estimation for a time-difference-of-arrival net-
work) Given relative distance measurements fij , determine the delay distance,
oj , for unknown receiver positions ri and unknown transmitter positions sj ,
such that fij = ‖ri − sj‖2 + oj for i = 1, · · · ,m and j = 1, · · · , n.

Problem 5.2. (Time-of-arrival network calibration) Given absolute distance
measurements dij between the i-th receiver and j-th transmitter, determine
the positions, ri, of receivers and the positions, sj , of transmitters such that
dij = ‖ri − sj‖2 for i = 1, · · · ,m and j = 1, · · · , n.

In this chapter, we focus on Problem 5.1 to estimate the delay distance
oj and treat it as a separate problem from reconstructing sensor locations
{ri} and {sj}. Once the delay distances oj are estimated, Problem 5.1 can
be recast as Problem 5.2 by setting dij = fij − oj .

5.2 Problem Formulation

5.2.1 Rank Constraint

We assume that all the transmitters and receivers are located in a k-dimensional
space, that is ri, sj ∈ Rk. To solve the delay distance estimation problem
for the time-difference-of-arrival (TDOA) network, we first introduce the
rank constraint on the measurement matrix. From (5.2), we have

(fij − oj)2 = (ri − sj)
T(ri − sj) = rT

i ri − 2rT
i sj + sT

j sj . (5.3)
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By constructing the vectors r̂i and ŝj as

r̂i =




1
ri

rT
i ri


 and ŝj =



sT
j sj − o2

j

−2sj
1


 , (5.4)

where r̂i, ŝj ∈ Rk+2, we can rewrite (5.3) as

f2
ij − 2fijoj = r̂T

i ŝj . (5.5)

By stacking the column vectors r̂i and ŝj into two matrices R̂ and Ŝ
respectively, we have

F̂ = R̂TŜ, (5.6)

where R̂ ∈ R(k+2)×m, Ŝ ∈ R(k+2)×n, and F̂ ∈ Rm×n contain the
elements f2

ij − 2fijoj . This suggests that F̂ is at most of rank k+ 2. Using

this rank constraint and the structure of R̂, a linear factorization technique
is proposed in Pollefeys and Nister (2008) to solve for the unknown delay
distances. This technique requires m = 2(k + 2) receivers and n = k + 2
transmitters; for example, in 3D space where k = 3, one needs 10 receivers
and five transmitters to solve the problem.

Here we present a slight modification of the linear scheme presented in
Pollefeys and Nister (2008). The idea is that, by exploring the structure of
Ŝ and R̂, one can further reduce the rank constraint. To see this, we first
right multiply Ŝ by matrix Cn of the following form

Cn =




−1 −1 · · · −1
1

1
. . .

1



, (5.7)

where Cn ∈ Rn×(n−1). Right multiplying by Cn is equivalent to subtract-
ing the first column, ŝ1, from the remaining columns, ŝj (j ≥ 2), of Ŝ,
which yields matrix S̄ with all zeros in the last row. We could therefore
remove the last row of zeros from the result matrix S̄ = ŜCn. Then the
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last row of R̂ can also be removed without changing the multiplication,
R̂TŜ. Equivalently, this gives

F̄ = F̂Cn = R̄TS̄, (5.8)

where R̄ ∈ R(k+1)×m, S̄ ∈ R(k+1)×(n−1) and the columns s̄j of S̄ are of
the form

s̄j = ŝj+1 − ŝ1 =

(
sT
j+1sj+1 − sT

1 s1 − o2
j+1 + o2

1
−2(sj+1 − s1)

)
, (5.9)

the columns r̄i of R̄ are of the form

r̄i =

(
1
ri

)
, (5.10)

and the entries f̄ij of F̄ are obtained similarly by subtracting the first
column from each of the remaining columns as

f̄ij = f̂i,j+1 − f̂i1 = f2
i,j+1 − f2

i1 − 2fi,j+1oj+1 + 2fi1o1. (5.11)

Since Cn removes one row from both Ŝ and R̂, we call it a compaction
matrix. This effectively reduces the rank constraint from k + 2 to k + 1.

We can further explore the structure of matrix R̄ in a similar way. If
one right multiplies R̄ by the compaction matrix Cm ∈ Rm×(m−1), the
first column, r̄1, of R̄ is subtracted from the remaining columns, r̄i for
i ≥ 2, which yields a matrix with all zeros in the first row. This suggests that
the first row of zeros can be removed from the result matrix, R̃ = R̄Cm.
Correspondingly, the first row of S̄ can also be removed. This is equivalent
to left multiplying F̄ by CT

m, which subtracts the first row of F̄ from the
remaining rows. This gives

F̃ = CT
mF̄ = (R̄Cm)TS̄ = R̃TS̃, (5.12)

where R̃ ∈ Rk×(m−1), S̃ ∈ Rk×(n−1) and the columns r̃i of R̃ are of the
form

r̃i = ri+1 − r1, (5.13)
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and the columns s̃j of S̃ are of the form

s̃j = −2 (sj+1 − s1) . (5.14)

The entries f̃ij of F̃ take the following form

f̃ij = gij − g0j − gi0 + g00, (5.15)

where gij is defined as

gij = f2
i+1,j+1 − 2fi+1,j+1oj+1. (5.16)

By using two compaction matrices Cm and Cn, the constraint that F̂ is of
rank k + 2 is reduced to that F̃ is of rank k.

5.2.2 Problem Formulation

To enforce the rank constraint on F̃ , we first rewrite F̃ as a linear combina-
tion of some constant matrices using the unknown variables oj as

F̃ = B0 +

n∑

j=1

ojBj , (5.17)

where B0, B1, · · · , Bn ∈ R(m−1)×(n−1) are constant matrices derived
from (5.15). More specifically, we have

B0 = CT
mFCn,

B1 = (b1, · · · ,b1) ,

Bj = (0, · · · ,bj , · · · , 0) for j ≥ 2,

(5.18)

where elements of F are equal to the squares of relative distance measure-
ments, that is, f2

ij . B1 contains the same column, b1, with elements of the
form {2(fi1 − f11)}i≥2, that is,

b1 = 2




f21 − f11

f31 − f11
...

fm1 − f11


 , (5.19)
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and Bj is all zeros except for the jth column, bj , with elements of the form
{−2(fij − f1j)}i≥2, that is,

bj = −2




f2j − f1j

f3j − f1j
...

fmj − f1j


 . (5.20)

Now, we can formulate our problem as the following rank minimization
problem

minimize
o,X

rank(X)

subject to B0 +

n∑

j=1

ojBj = X.
(5.21)

As the rank function is generally difficult to cope with, a more feasible
approach is instead to minimize the nuclear norm of the matrix, which
gives the following formulation

minimize
o,X

‖X‖∗

subject to B0 +

n∑

j=1

ojBj = X,
(5.22)

where ‖ · ‖∗ denotes the nuclear norm, which is the sum of the singular
values of a matrix.

In the presence of noise in the measurement matrix, the constraint in
(5.22) might not be strictly satisfied. We relax the equality constraint by
adding a penalty in the cost function as

minimize
o,X

‖X‖∗ +
µ

2

∥∥∥∥∥∥
B0 +

n∑

j=1

ojBj −X

∥∥∥∥∥∥

2

F

, (5.23)

where µ > 0 is a scalar parameter and ‖·‖F is the Frobenius norm.
When minimizing the nuclear norm of X , in some cases the singular

values are minimized evenly. It is undesirable to obtain a matrix with
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small, widely distributed singular values. To avoid this, we apply the
truncated nuclear norm regularization (TNNR) approach proposed in Hu
et al. (2013). Instead of minimizing the nuclear norm, we could minimize
the truncated nuclear norm, which is the sum of the smallest n− k singular
values, assuming that the rank of the matrix is k and the matrix is of size
n× n. In Hu et al. (2013), it is demonstrated that minimizing the nuclear
norm plus an extra trace term is equivalent to minimizing the truncated
nuclear norm. Using the TNNR formulation, we have

minimize
o,X,U,V

‖X‖∗ − trace(UXV T) +
µ

2

∥∥∥∥∥∥
B0 +

n∑

j=1

ojBj −X

∥∥∥∥∥∥

2

F

,

(5.24)

where U ∈ Rk×(m−1), V ∈ Rk×(n−1), and UUT = I , V V T = I .
Adding the extra trace term makes the formulation non-convex. However,
we will illustrate in the next section how to find a local minimum for this
problem.

5.3 Optimization using ADMM

5.3.1 Augmented Lagrangian and ADMM

We first introduce the augmented Lagrangian into a constrained optimiza-
tion problem. Consider the following optimization problem with linear
constraints

minimize
x

f(x)

subject to Ax + b = 0.
(5.25)

The augmented Lagrangian of the constrained problem in (5.25) is defined
as

Lρ(x,λ) = f(x) + λT(Ax− b) +
ρ

2
‖Ax− b‖2

2 . (5.26)

When an objective function, f(x), is naturally split into two functions,
that is, f(x) = f1(x) + f2(x), the alternating direction method of mul-
tipliers (ADMM) can be used to break the problem of optimizing f(x)
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into two subproblems using Lagrangian duality. Consider the following
optimization problem with linear constraints

minimize
x,y

f1(x) + f2(y)

subject to Ax +By = c,
(5.27)

the augmented Lagrangian of the constrained problem in (5.27) is

Lρ(x,y,λ) =f1(x) + f2(y) + λT(Ax +By − c)

+
ρ

2
‖Ax +By − c‖2

2 .
(5.28)

The ADMM algorithm performs the following updates iteratively

x(k+1) = arg min
x

Lρ(x,y
(k),λ(k)),

y(k+1) = arg min
y

Lρ(x
(k+1),y,λ(k)),

λ(k+1) = λ(k) + ρ(Ax(k+1) +By(k+1) − c).

(5.29)

In each iteration, one of x, y and λ is updated while the other two are
fixed.

5.3.2 An Iterative Scheme

Now consider the problem formulated as (5.24), in which an alternating
optimization strategy is iteratively applied to two sets of variables, {U, V }
and {o, X}, following Hu et al. (2013). More specifically, the variables
are first initialized using the measurements. In each iteration, for a given
X , we estimate U and V using singular value decomposition (SVD) of X .
Then U and V are fixed and the unknown delay distances, o and X , are
optimized using ADMM. The framework of the algorithm is summarized
in Algorithm 4. We will describe each step of the algorithm in detail below.

Update U , V using SVD In the l-th iteration, we first estimateU (l), V (l)

for a given X(l). Applying SVD on X(l) gives us

X(l) = UΣV T, (5.30)
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Algorithm 4 Delay Distance Estimation with TNNR

Given TDOA measurements {fij} of m receivers and n transmitters, a threshold ε, a
maximum iterations nmax, estimate the delay distance o and the distance matrix X

Construct the constant matrices Bj based on (5.18)
Initialize o(1) = 0, X(1) = B0 and l = 1
Repeat

Step 1. Solve for U (l) and V (l) given X(l)

Using SVD gives X(l) = UΣV T

where U = (u1, · · · ,um−1), V = (v1, · · · ,vn−1),
Let U (l) = (u1, · · · ,uk)T and V (l) = (v1, · · · ,vk)T

Step 2. Fix U (l), V (l), solve the following problem using ADMM
{X l+1,ol+1} = arg min ‖X‖∗ − trace(UXV T)+

µ
2

∥∥∥B0 +
∑n
j=1 ojBj −X

∥∥∥
2

F
.

l = l + 1

Until
√∥∥X(l+1) −X(l)

∥∥2

F
+
∥∥o(l+1) − o(l)

∥∥2

F
< ε or l ≥ nmax

whereU = (u1, · · · ,um−1) ∈ R(m−1)×(m−1) and V = (v1, · · · ,vn−1) ∈
R(n−1)×(n−1). Then U (l) and V (l) can be formed by collecting the first k
column vectors of U and V respectively, that is,

U (l) = (u1, · · · ,uk)T,

V (l) = (v1, · · · ,vk)T.
(5.31)

Update o, X using ADMM For fixed U (l) and V (l), We use ADMM
to estimate o(l+1) and X(l+1). We first introduce a new variable X̂ to split
the objective function in (5.24) into two parts, one associated with X and
the other with X̂ . This gives

minimize
o,X,X̂

‖X‖∗ − trace(UX̂V T) +
µ

2

∥∥∥∥∥∥
B0 +

n∑

j=1

ojBj − X̂

∥∥∥∥∥∥

2

F

subject to X = X̂.

(5.32)
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Note that U and V are fixed as U (l) and V (l) respectively. The augmented
Lagrangian of (5.32) is written as

Lρ(o, X, X̂, Y ) = ‖X‖∗ − trace(UX̂V T) +
µ

2

∥∥∥∥∥∥
B0 +

n∑

j=1

ojBj − X̂

∥∥∥∥∥∥

2

F

+ trace(Y T(X − X̂)) +
ρ

2

∥∥∥X − X̂
∥∥∥

2

F
.

(5.33)

Using ADMM, we alternate the optimization of three sets of variables,
namely X , {o, X̂}, and Y . In each step, we optimize over one set of
variables while fixing the others. To distinguish between the inner iterations
within ADMM and the outer iterations that involve U and V , we use a
subscript, for example, Xk, to denote variables in the k-th inner iteration
using ADMM, while a superscript within parentheses, for example, X(l), is
used to denote variables in the l-th outer iteration.

Starting from the initial solution, that is,

o1 = 0,

X1 = X̂1 = Y1 = B0,
(5.34)

where B0 is defined in (5.18), we perform the following steps to update
three sets of variables for (k + 1)-th iteration.

- Update Xk+1 Given ok, X̂k and Yk, we minimize the augmented
Lagrangian L(ok, X, X̂, Y ) over X . By ignoring constants, we have

Xk+1 =arg min
X

‖X‖∗ + trace(Y T
k (X − X̂k)) +

ρ

2

∥∥∥X − X̂k

∥∥∥
2

F
,

(5.35)

which is equivalent to

Xk+1 = arg min
X

‖X‖∗ +
ρ

2

∥∥∥∥X − (X̂k −
1
ρ
Yk)

∥∥∥∥
2

F

. (5.36)

It is demonstrated in Cai et al. (2010) that the problem in the form of
(5.36) can be solved by applying the singular value thresholding theorem.
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- Update ok+1, X̂k+1 Fix Xk+1 and Yk, we can optimize ok+1 and
X̂k+1 as follows

{ok+1, X̂k+1} =arg min
o,X̂

µ

2

∥∥∥∥∥∥
B0 +

n∑

j=1

ojBj − X̂

∥∥∥∥∥∥

2

F

+
ρ

2

∥∥∥∥Xk+1 − (X̂ − 1
ρ
Yk)

∥∥∥∥
2

F

,

(5.37)

where the objective function is the sum of two quadratic functions and can
be solved by finding o, X̂ such that ∂Lρ(o, Xk+1, X̂, Yk) = 0.

- Update Yk+1 Y can be updated as

Yk+1 = Yk + ρ(Xk+1 − X̂k+1). (5.38)

The above three steps of ADMM are performed iteratively until Xk

converges. Then we leave the inner loops of ADMM and let X(l+1) = Xk

to update U (l+1), V (l+1) in the outer loops and keep iterating. The
algorithm stops when either {X(l),o(l)} converges, that is,

√∥∥X(l+1) −X(l)
∥∥2
F

+
∥∥o(l+1) − o(l)

∥∥2
F
< ε, (5.39)

or a maximum number of iterations is reached.
The above algorithm can easily be modified to handle the missing

data in the TDOA measurements. We only need to replace the term∥∥∥B0 +
∑n

j=1 ojBj − X̂
∥∥∥

2

F
with

∥∥∥(B0)Ω +
∑n

j=1 oj(Bj)Ω − X̂Ω

∥∥∥
2

F
, where

Ω is the set of available measurements. This modification will only slightly
change the update step for o, X̂ , while the other steps remain the same.

5.4 Experiments

In this section, we present the experimental results of applying the method
to synthetic data. We simulate a sensor network with m = 50 receivers
and n = 50 transmitters, the coordinates of which are drawn indepen-
dently from a standard normal distribution, that is, N (0, 1). The delay
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Figure 5.1: Synthetic TDOA measurements with no noise ( m = n = 50).
Left: Singular values of the matrix X after optimization; Right : Speed
of convergence (‖o− ogt‖F ) for the ADMM algorithm (µ = 10, λ =
1, ε = 10−12).

distance for each transmitter is also sampled from a standard normal distri-
bution, that is, oj ∼ N (0, 1). All the experiments were conducted using a
MacBook Air with a 1.8 GHz Intel Core i5 CPU and 8 GB of memory.

We first examine the convergence of the algorithm in the noise-free case.
Figure 5.1 (left) shows the distribution of the singular values in log10 scale
(after sorting) for the recovered measurement matrix, F̃ , defined in (5.12).
All the singular values except the largest three are around the order of 10−15,
which means that a rank-3 solution is achieved. From Figure 5.1 (right), we
can see that the algorithm converges within fewer than 20 iterations. The
running time in this case is 2 s.

To better understand the performance of the method, we run the
algorithm on noise-free data with varying numbers of m transmitters and
n receivers. For this experiment, we run our method using 100 randomly
generated synthetic data as described above and plot the results in Figure 5.2.
For parameters, we set ε = 10−12 and the maximum number of iterations
Nmax = 5000. From Figure 5.2 (left), one can see that for a small number
of receivers, for example,m = 5, the method does not converge to a reliable
solution. For a larger value of m, that is, m ≥ 6, the relative error of the
delay distance, that is, ‖o− ogt‖F /‖ogt‖F , decreases as the number of
transmitters increases, suggesting the benefit of using more measurements.

We also test the method at different noise levels for varying numbers of
transmitters and receivers. From Figure 5.2 (right), we can see that the algo-
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Figure 5.2: Synthetic experiments - relative errors ‖o− ogt‖F /‖ogt‖F in
average on 100 random synthetic TDOA measurements. Left: (Noise-free
data) varied n for different m. Right: (Noisy data) - varied m and n for
different levels of noise

rithm generally achieves better results with more transmitters and receivers.
However, the performance improves little when the sensor network exceeds
a certain size, for example, m ≥ 30 and n ≥ 30. The figure also shows that
at a high noise level, for example, σ = 10−1, the method performs poorly
no matter how many transmitters and receivers are used in the network.

While the above experiments assume that measurements are complete,
it is interesting to see how the algorithm behaves in the case of missing
data. In this experiment, we run the algorithm on synthetic TDOA data
from which a certain number of observations are removed as missing data.
The noise-free case is illustrated in Figure 5.3 (left). One can see that for
relatively large values ofm and n, for example, m = n = 30, the algorithm
only breaks down when more than 50% of the measurements are missing.
For smaller values of m and n, for example, m = n = 10, the algorithm
displays rather low tolerance of missing data, that is, no more than 20%
of the data can be missing. For noisy measurements where σ = 10−2 (see
Figure 5.3, right), the algorithm works well until more than 20% of the
data are missing in the case m = n = 20. With more transmitters and
receivers, for example, m = n = 30, the algorithm performs much better
up to 50% missing data.
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Figure 5.3: Synthetic TDOA measurements with varying percentage of
missing data. Left : noisy-free data for different m and n; Right : noisy
data with Gaussian noise of standard deviation 10−2.

5.5 Conclusions

In this chapter, we have studied the problem of estimating the unknown
delay distances in TDOA self-calibration. We derived a new rank constraint
on the measurement matrix that is linear with respect to the delay distances
and showed how to find such a low-rank matrix using ADMM optimiza-
tion of the truncated nuclear norm. Synthetic experiments show that the
proposed method gives good estimate of the time delays when noise or
missing data are present. The experiments are for R3 but the algorithm can
be generalized to any Rk.
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Chapter 6

Relative Pose with Radial
Distortion

Relative pose is one of the fundamental problems in geometric computer
vision. Although it has been widely studied, there are still some minimal
problems that have not yet been solved. In this chapter, we will inves-
tigate the unsolved minimal problem when two cameras have the same
but unknown radial distortion and focal length. Incorporating both radial
distortion and focal length in the formulation will yield a complicated
polynomial system in terms of degrees and number of variables. However,
with recent progress in Gröbner basis and the action matrix methods, it is
possible to derive an efficient minimal solver, as we will illustrate later.

6.1 Introduction

Given two images, we are aiming to estimate the relative motion between
two cameras from feature matching. Solving the relative pose problem
is one essential step in building a large-scale 3D reconstruction system,
for example Snavely et al. (2006). Radial distortion, if present, is a non-
negligible factor when estimating the relative pose. If radial distortion is
not modeled appropriately, the epipolar constraints have to be set loosely
enough to find a sufficiently number of inlier feature matches, which will
possibly include outliers and cause significant skewness in a Structure-from-
Motion (SfM) pipeline, see Fitzgibbon (2001).

In this chapter, we study the minimal problem of estimating the essen-
tial matrix between two cameras with the same but unknown focal length
and radial distortion. This is a general and useful setting when images are
captured by a single camera with distortion.
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6.1.1 Related Works

Minimal problems arise when computing geometric models from image
data. One aims to use a minimal set of feature matches to estimate epipolar
geometry. Both the five-point algorithm proposed in Nistér (2004) for
estimating the essential matrix E and the seven-point algorithm for solv-
ing the fundamental matrix F are minimal solvers. However, solving a
minimal problem usually involves some higher-order algebraic equations,
for example, the determinant constraint on F or the trace constraint on E.
Instead of incorporating the algebraic equations, the eight-point algorithm
proposed in Longuet-Higgins (1981) solves a simpler linear system from
a non-minimal set of measurements in order to estimate the fundamental
matrix. Due to its sensitivity to noise, the normalized eight-point algorithm
presented in Hartley (1997) is usually a better choice.

When radial distortion is considered, early methods also ignore the
higher-order constraints and instead solve a simpler non-minimal problem.
For example, in Fitzgibbon (2001), a non-minimal algorithm is proposed
to simultaneously estimate F and the single radial distortion parameter.
The division model proposed in Fitzgibbon (2001) for radial distortion is
extensively used in later works. In Li and Hartley (2005), a hidden-variable
method is used to solve the same problem as in Fitzgibbon (2001). A
15-point non-minimal solver is proposed in Barreto and Daniilidis (2005).
It estimates the so-called 4× 4 radial fundamental matrix, which models
the bilinear relationship between the lifted image point in one view and the
corresponding epipolar curve in the other view.

More recent works focus on solving minimal problems. In Kukelova
and Pajdla (2007a), an eight-point minimal solver is given to estimate F and
the parameter λ of radial distortion in the uncalibrated case. In Kukelova
and Pajdla (2007b), two minimal problems are proposed; one is estimating
E and λ assuming that two cameras are partially calibrated with known
focal length f , the other is estimating the fundamental matrix and radial
distortion assuming that two cameras have different distortion parameters
λ1 and λ2 in the uncalibrated case. The exact rational arithmetic solvers
are given for both problems in Maple, which is slow and hardly practical.
In K. Et al. (2010), based on an efficient implementation of the Gröbner
basis method in floating point arithmetic, two solvers are proposed for the
same two problems as in Kukelova and Pajdla (2007b). In Kuang et al.
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(2014), the one-sided minimal problems are studied, assuming that one
of the radial distortion parameters, λ1 and λ2, is known. Three minimal
problems are proposed and solved: the uncalibrated case using eight points,
the calibrated case with unknown focal length f using seven points and the
calibrated case with known focal length f using six points.

6.2 Problem Formulation

6.2.1 Camera Model and Radial Distortion

In our formulation, we use the pin-hole camera model, see Section 2.1. For
the calibration matrix K defined in (2.7), we assume that the skew s is zero
and that the aspect ratio γ is unity. In addition, the principal point given
by (px, py) is assumed to lie in the centre of the image, that is (0, 0). Based
on these assumptions, we could parameterize K using a single parameter w
as

K =




1 0 0
0 1 0
0 0 w


 (6.1)

where w = 1/f . Note this can be done since K is only defined up to an
unknown scale.

For radial distortion, we use the one-parameter division model proposed
in Fitzgibbon (2001). If we denote an undistorted image point as xu =
(xu, yu)T and the corresponding radially distorted image point as xd =
(xd, yd)

T, both using inhomogeneous coordinates, then the relationship
between xd and xu is given by the division model as

xu =
1

1 + λ‖xd‖2xd (6.2)

where λ is the distortion coefficient and ‖xd‖ is the distance from xd to
the centre of distortion, which is assumed to be at the image center, that is
(0, 0).

If we use homogeneous coordinates notated as pu = (xu, yu, 1)T,
pd = (xd, yd, 1)T and rd = ‖xd‖, then (6.2) can be written as

85



CHAPTER 6. RELATIVE POSE WITH RADIAL DISTORTION



xu
yu
1


 ∼




xd
yd

1 + λr2
d


 =



xd
yd
1


+ λ




0
0
r2
d


 , (6.3)

that is

pu ∼ pd + λz, (6.4)

where z = (0, 0, r2
d)

T is known since xd is given. We also need the
normalized image point pn, which can be represented as

pn ∼ K−1pu. (6.5)

It is well known that for two calibrated cameras, the essential matrix E has
five degrees of freedom, see Hartley and Zisserman (2004). For two cameras
with the same but unknown focal length f and radial distortion λ, the
problem has a total of seven degrees of freedom. For the minimal problem,
we therefore need seven feature correspondences to solve for E, f and λ.

6.2.2 Parameterization and Formulation

Given undistorted feature correspondences {(pui ,p′ui)} for i = 1, · · · , n,
the epipolar constraints on the fundamental matrix F are given as

pT
ui(λ) F p′ui(λ) = 0, (6.6)

where pu(λ) and p′u(λ) are parametrized using (6.4). Using the normalized
image points pni ∼ K−1pui , the epipolar constraint can be equivalently
expressed using the essential matrix E as

pT
ni

(λ,w) E p′ni
(λ,w) = 0. (6.7)

Instead of directly parameterizing the essential matrix E, we parameterize F
and solve for E implicitly. The motivation is to eliminate parameter w of
the focal length using the constraint (6.6) instead of (6.7). This leads to a
polynomial system that can be simplified using a linear elimination strategy.
To parameterize F, we have

F =



f1 f4 f7

f2 f5 f8

f3 f6 1


 , (6.8)
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where the last element is set to one to fix the scale. From the relationship
E = KTFK′ where K′ = K in our case, the essential matrix E is parameterized
using F and K defined in (6.1) as

E = KTFK′ =



f1 f4 wf7

f2 f5 wf8

wf3 wf6 w2


 . (6.9)

The essential matrix E has zero determinant, which gives

det(E) = 0. (6.10)

We also hold that two non-zero singular values of E are equal, which is
equivalent to the following trace constraint,

2(EET )E− trace(EET )E = 0. (6.11)

Inserting (6.9) into (6.10) and (6.11), together with the epipolar constraints
in (6.6), we formulate the problem as solving a polynomial equation system
that contains 17 equations (seven from (6.6), that is, one from (6.10) and
nine from (6.11)) in ten unknowns, namely, {f1, f2, ..., f8, λ, w}.

6.2.3 Eliminating Variables

Let us look at the equations given by the epipolar constraints in (6.6), or
equivalently




xd
yd

1 + λr2
d



T 

f1 f4 f7

f2 f5 f8

f3 f6 1






x′d
y′d

1 + λr′2d


 = 0. (6.12)

By expanding the above multiplication and stacking all seven equations,
one can rewrite it as the following form

Ax = 0, (6.13)

where x = (λ2, λf3, λf6, λf7, λf8, f1, . . . , f8, λ, 1) is a vector of mono-
mials and A is the coefficient matrix. After applying Gaussian elimination
to (6.13), one can linearly eliminate seven monomials by expressing them in
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terms of the remaining eight monomials (including the constant 1). Since
f1, f2, f4, f5 appear only as linear terms in (6.12), it is natural to eliminate
them. In addition, we choose to eliminate f3, λf3 and λ2. This choice will
simplify the system as we will demonstrate. The eliminating monomials
{f1, f2, f3, f4, f5, λf3, λ

2} can now be represented as a linear combination
of the remaining monomials, namely, {λf6, λf7, λf8, f6, f7, f8, λ}, or the
equivalent, each of which can be expressed as a quadratic function of the
unknown variables {f6, f7, f8, λ}. For f1, f2, . . . , f5, we have

fi = hi(f6, f7, f8, λ), i = 1, 2, 3, 4, 5 (6.14)

For λf3 and λ2, we have

λf3 = h6(f6, f7, f8, λ), (6.15)

and

λ2 = h7(f6, f7, f8, λ), (6.16)

One can further eliminate f3 from (6.15) by replacing it with h3(f6, f7, f8, λ),
that is,

λh3(f6, f7, f8, λ)− h6(f6, f7, f8, λ) = 0. (6.17)

Therefore, one can now substitute fi into (6.9) with hi(f6, f7, f8, λ) for
i = 1, 2, . . . , 5 and insert (6.9) into (6.10) and (6.11). Together with
(6.16) and (6.17), we obtain a well-defined system of 12 polynomial equa-
tions with five unknowns, that is {f6, f7, f8, λ, w}. The equations are at
most of the ninth degree.

Solving such a polynomial system is certainly a non-trivial task. It is
a more complicated system than those presented in previous works. The
formulation in Kukelova and Pajdla (2007a) for the uncalibrated case gives
three equations with three unknowns, the degree of which is five. The
polynomial system in Kuang et al. (2014) for the calibrated case, assuming
that the radial distortion and focal length of one view are already known,
contains 11 equations of degree six with four unknowns if the other focal
length is unknown. With recent progress in the Gröbner basis method, we
will demonstrate in the next section that it is possible to find an efficient
and stable solver for our minimal problem.
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6.3 A Polynomial Solver

We first study and explore the structure of the polynomial system generated
from (6.10), (6.11), (6.16) and (6.17). One observation is that of the
system’s twelve equations, four have w as a common multiplier; to avoid the
trivial and false solution w = 0, we divide all four equations by w. After
that, we find that the equations that still contain w now only contain the
even-degree terms of w, for example, w2, w4 or w6. Therefore, we could
simply replace w2 with a new variable z, that is z = w2. This would reduce
the degrees of the polynomial system from nine to seven.

We then verify the number of solutions using Macaulay2, software (see
Grayson and Stillman (1993-2002)). By generating a polynomial system
with coefficients in Zp, we find that there are in general 68 solutions for
this problem. Although the number of solutions is relatively large, we will
later demonstrate in the experiments that most solutions to the polynomial
system are complex and thus can be ignored without any further validation.

To solve the system, we follow the method based on Gröbner basis, see
Byröd et al. (2009). A redundant set of higher order polynomials, called the
eliminating template, is systematically generated from our initial polynomial
equations by multiplying them by a set of monomials. By doing this, one
generates a sufficiently large set of monomials, denotedM, from which one
can find the set of basis monomials, denoted B. All the monomials that are
not in B can be represented as a linear combination of basis monomials. The
permissible set, denoted P comprises the monomials that remain inM after
multiplying by a certain variable, xk, called the action variable. Empirically,
we find that using the following rules to generate the elimination template
yields a numerically stable solver.

• The highest degrees of the multiplication monomials are {4, 4, 4, 2, 4}
for {f6, f7, f8, w, λ} respectively.

• The highest degree of the equations is nine after multiplication.

After this multiplication step, the resulting elimination template contains
886 equations with 1011 monomials. Further attempting to reduce the size
of the elimination template, for example, by decreasing the highest degrees
of the multiplication monomials (as we have tried), will affect the numerical
stability.
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We use a column-pivoting scheme, see Byröd et al. (2009) for basis
selection to improve numerical stability. The permissible set contains 120
monomials from which 68 are selected as a basis. An action matrix of
size 68 × 68 is constructed. By performing eigen-decomposition on the
action matrix, we can extract the solutions to our system from the resulting
eigenvectors. Once we obtain the values of {f6, f7, f8, w, λ}, the other
unknowns of the fundamental matrix F can be found using (6.14). The
essential matrix E is then solved also using (6.9).

6.4 Experiments

All the experiments are performed on a Macbook Air with 8GB of memory
and a 1.8 GHz Intel Core i5 CPU. The average running time of our minimal
solver is around 400ms. We implement the minimal solvers in MATLAB.
However, one could further reduce the running time by implementing the
solver in C or C++. Using a different optimization strategy, for example
Kuang and Åström (2012); Naroditsky and Daniilidis (2011) is also a
possibility.

6.4.1 Synthetic Data

We generate random 3D points within a cube of width 1000 units centered
at the origin. Two cameras are placed around 1000 units away from the
origin and 300 units away from each other. The viewing directions of two
cameras point toward the origin. Both cameras have the same focal length,
which is randomly generated to be around 1000 units. The 3D points are
projected onto the image planes of two cameras, both 1000× 1000 units
in size. Radial distortion with a coefficient of λ uniformly sampled from
[−0.5, 0] is applied to the normalized image points, which are roughly in
the range of [−1, 1].

The first experiment is to test the numerical stability and validate the
number of real solutions. For this experiment, we use noise-free image
points, and 1000 synthetic scenes are randomly generated as described
above. For each scene, we run our seven-point minimal solver and evaluate
the relative errors of the distortion coefficient λ and the focal length f . The
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Figure 6.1: Experiments on synthetic data without noise. Left: The distri-
bution of log10 relative error of radial distortion λ and the focal length f .
Right: The distribution of number of real-valued solutions

relative error of λ is defined as

e(λest) =
|λest − λgt|
|λgt|

, (6.18)

where λest and λgt are the estimate and ground truth of λ respectively. The
relative error of f is defined in a similar way.

We plot the distribution of the log10 relative error of λ and f in Figure
6.1(left). One can see that the solver is generally very stable and accurately
estimates both λ and f . The medians of the log10 relative errors are -7.49
for λ and -7.16 for f . The statistic of the number of valid solutions is also
plotted in Figure 6.1(right). By valid solutions, we mean the real roots of the
polynomial system. Although the system has a total of 68 solutions, most
of them are complex and can be simply ignored without further validation.
In most cases, there are two to twelve valid solutions.

The performance of the solver in the presence of noise is also tested.
The image points are perturbed by Gaussian noise of various standard
deviations, that is σ ∈ {0, 0.01, 0.1, 0.5, 1, 2} respectively. We tried
different radial distortion parameters of λ ∈ {−0.01,−0.1,−0.2,−0.5}
as well. In Figure 6.2, we illustrate the log10 relative error of λ in a box plot.
With noise-free data, the solver in general gives accurate estimates of the
radial distortion of λ. We also note that the solver achieves more accurate
results when λ has a large absolute value, that is the image has significant
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Figure 6.2: Experiments on synthetic data with different noise levels. The
log10 of relative error of λ for different radial distortion, where the ground
truth are λ = −0.01 (Top left), λ = −0.1 (Top right), λ = −0.2 (Bottom
left) and λ = −0.5 (Bottom right). See the text for detailed description.
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radial distortion. When the noise level increases, the log10 relative errors
also increase greatly, to around 10−1 or 100. This suggests that one should
use the solver on repeatedly drawn minimal samples and combine it with
either the kernel voting scheme or RANSAC when the data contain noise
or outliers. We also test the noise sensitivity of estimating the focal length
f and obtain similar results.

6.4.2 Real Data

We further evaluate the proposed solver on real images. A GoPro Hero3
camera is used to capture images with significant radial distortion. The
camera is calibrated with a fixed focal length, which serves as ground truth
for evaluation. A set of 36 paired images is used to test the solver. SIFT
features are extracted from all the images and matched between each pair as
in Lowe (2004). This produces a set of tentative matches that also contains
outliers.

We first use RANSAC with our minimal solver to estimate the essential
matrix E, the focal length f and the radial distortion λ. In each iteration
of RANSAC, we estimate E, f and λ and obtain an inlier set by including
the correspondences the algebraic distances of which are below a threshold.
The solution with the largest inlier set gives the final estimates of E, f and λ.
For comparison, we use RANSAC with the standard seven-point algorithm,
which does not consider radial distortion. For both methods, the number
of RANSAC iterations is set to 1000 and the inlier threshold is set to three
pixels. The detected inliers for both methods are illustrated in Figure 6.3.
One can see that our minimal solver obtains a substantially larger inlier
set due to the explicit modeling of radial distortion. Quantitatively, our
minimal solver gains a 49.37% increase in the number of inliers, on average,
compared with the standard seven-point solver, when applied to the image
set.

We also use a kernel voting scheme to estimate E, λ and f . To avoid
computing the inlier set in each iteration of RANSAC, the kernel voting
scheme fits a Gaussian kernel to the distribution of all the roots obtained
from different random samples. The motivation is that all the solved real
roots are around the genuine solution regardless of noise. In other words, it
reveals a peak in the distribution of all the real roots obtained from different
measurements.
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Figure 6.3: Experiments on read data using RANSAC. The inlier set using
different methods are marked. The green marks are inliers found by both
methods. The red marks are the inliers only found using our solver, The
yellow starts are the inliers only found by standard 7 point solver. Note that
the images are paired for the top two rows and bottom two rows.
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Figure 6.4: Experiments on read data using kernel voting. The distribution
of real roots (red curve) for radial distortion coefficient λ and focal length
f are shown in the left and right figure respectively. The estimate of λ and
f (blue line) as well as the ground truth of f (green line in the right figure)
is also marked.

In this experiment, we randomly draw 1000 minimal sets, solve them
and keep all the real roots. Gaussian kernels with a bandwidth of w = 0.02
for the parameter of radial distortion λ and w = 200 for the focal length
f are fitted to the distribution of all the estimates of λ and f respectively.
The peaks of the Gaussian kernels are picked out as the final estimate of
λ and f , respectively. From the distribution of real roots of λ and f , see
Figure 6.4, one could easily see the peak shape. The kernel voting gives
an estimates of -0.28 for λ and of 1793.4 for f , which is very close to the
group truth value of 1765.6. Note that we only plot the results for one of
the image pairs, as we have tested, all the other image pairs give consistent
estimates of λ and f .

6.5 Conclusions

This chapter described an efficient and numerically stable solver for the
minimal problem of relative pose with unknown focal length and radial
distortion. More specifically, we derived a parametrization and formulated
the problem as solving a polynomial system. The system was simplified
using linear elimination. The solver was constructed based on a Gröbner
basis method and evaluated both on synthetic data and real images. This
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proved the solver to be numerically stable and, when used in RANSAC,
it finds more inlier feature correspondences than a standard seven-point
minimal solver, while giving an accurate estimate of radial distortion and
focal length.
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Chapter 7

A Brute-Force Algorithm for
Relative Pose Estimation

In this chapter, we continue with the relative pose problem, but from a
different perspective. Unlike RANSAC, we are aiming to find a globally
optimal solution to the relative pose problem. Based on a non-standard
epipolar parameterization, we propose a brute-force algorithm that conducts
an exhaustive search in a discretized low-dimensional parameter space. The
algorithm is robust and can handle several cost functions, for example,
maximizing the consensus set or some robust norm such as the truncated
L2-norm. The computations are easily parallelizable, leading to an efficient
algorithm. It can also be adapted to certain restricted motions, such as
planar motion and does not suffer from algorithmic degeneracy, unlike
minimal solvers.

7.1 Introduction

Already in 1981, Longuet-Higgins suggested a simple and yet elegant
solution to the problem of finding the relative pose of two viewpoints
in Longuet-Higgins (1981). The algorithm, known as the eight point
algorithm, still plays a major role in computer vision, see Hartley and
Zisserman (2004). However, the algorithm suffers from many degeneracies,
for example, if the scene is planar then the algorithm fails. Perhaps even
more serious is that the algorithm assumes that the correspondence problem
is already solved. Therefore, more robust approaches have been developed
to cope with outliers. Here RANSAC methods using minimal solvers
are considered to be state-of-the-art, see Nistér (2004); Chum and Matas
(2000). Still, the problem of algorithmic degeneracies remains for minimal
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solvers.
Another problem that has been recognized by several researchers is

the importance of optimizing a suitable cost function, where costs based
on reprojection errors are preferable to algebraic errors, see Hartley and
Zisserman (2004). Bundle adjustment does optimize the statistically correct
criterion (given that measurement errors are independent and normally
distributed), but the method is sensitive to initialization. Therefore global
optimization algorithms have been developed in Kahl and Hartley (2008);
Hartley and Kahl (2009); Enqvist and Kahl (2009); Chiuso et al. (2000)
which are not susceptible to local minima.

Looking back over more than 30 years of algorithmic development
since the eight point algorithm proposed in Longuet-Higgins (1981), a set
of criteria has emerged that we believe a good relative pose algorithm should
possess

(i) Robustness to outliers,

(ii) No algorithmic degeneracies,

(iii) Cost function based on reprojection errors,

(iv) Not dependent on a good initialization,

(v) Practical.

For example, RANSAC is designed to fulfill (i), requires no initializa-
tion (iv) and has been successfully applied in many real systems (v), but
the method does not meet objectives (ii) and (iii). Similarly, recent global
relative pose methods in Hartley and Kahl (2009); Enqvist and Kahl (2009)
do meet criteria (ii)-(iv), but cannot be considered practical (v) since the
running times are in some cases extreme (in the order of minutes). In
practice, a heuristic combination of different algorithms is often used to
overcome the difficulties in fulfilling these objectives. For example, homo-
graphies are often used to detect if the scene is planar or if the motion is
a pure rotation. Another example of this phenomenon is that particular
motions have been examined separately in Vedaldi et al. (2007).

In this chapter, an algorithm using exhaustive search is developed that
fulfills criteria (i)-(iv) by design. For example, provided that the discretiza-
tion of the parameter space is fine enough, the method is guaranteed to find
the globally optimal solution. The key idea in order to make it practical is
that the expensive computations are done in lower dimensions, and only
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very simple calculations are required in the high-dimensional search. The
ultimate proof is of course by showing that the algorithm works in real
experiments - this is done in the experimental section. In particular, when
applied to 3D motion segmentation, our approach significantly outper-
forms state-of-the-art methods on 104 video sequences in the Hopkins 155
database, see Tron and Vidal (2007). Note that the database contains a
variety of relative motions and scenes that are considered degenerate for
several of the above standard algorithms.

7.2 Preliminaries

Consider two views of a scene. Let x denote and image point - represented
by a unit vector - in the first view and x′ the corresponding image point
in the second view. The assumption is that these are both the projection
of some 3D point X . We can always choose a global coordinate system
such that the first camera lies at the origin and the second camera at
t = (0, 0, 1)T, which gives

λRx = X, λ′R′x′ = X − t, (7.1)

where R and R′ are 3× 3 rotation matrices and λ and λ′ are positive real
numbers. To simplify the derivation, we will assume that there are no points
at infinity, although the method works as well with points at infinity. We
illustrate an example in Figure 7.1(a) where the first camera is located at
the origin and the second camera is located at (0, 0, t)T. A 3D point X is
projected onto the spherical image plane at x and x′ respectively.

Note that the standard parametrization on relative pose uses a rotation
matrix and a unit translation vector, whereas we use two rotation matrices
as in (7.1). This is obviously an over-parametrization, but we will cover
that later. We first look at the constraint on the relative pose induced by a
pair of corresponding image points.

Theorem 7.1. Let R and R′ be rotation matrices with row vectors rT
1 , rT

2 , rT
3

and r′T1 , r′T2 , r′T3 respectively and x and x′ corresponding points. Then

(rT
1x, r

T
2x) = k(r′T1x

′, r′T2x
′) with k > 0, (7.2a)

rT
3x > r′T3x

′, (7.2b)

if and only if there exists a 3D point X satisfying (7.1)
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Figure 7.1: (a) A 3D point X projects to two camera at (0, 0, 0)T and
(0, 0, t)T. (b) spherical coordinate.

Proof. We first proof the only if part that (7.2)⇒ (7.1). Clearly

k =
‖(rT

1x, r
T
2x)‖

‖(r′T1x′, r′T2x′)‖
=

√
1− (rT

3x)2

1− (r′T3x′)2
< 1. (7.3)

Let λ be the solution to

λrT
3x− 1 = λkr′T3x

′, (7.4)

and put λ′ = λk. From k < 1 and rT
3x > r′T3x

′ it is straightforward to
show that λ > 0 and hence λ′ > 0. Now let X = λRx. To see that (7.1)
is satisfied, consider

X − t = λRx− t =




λrT
1x

λrT
2x

λrT
3x− 1


 , (7.5)
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but by (7.2a) and (7.4), this is equal to


λkr′T1x

′

λkr′T2x
′

λkr′T3x
′


 = λ′R′x′. (7.6)

This proves that only if part. The if part that (7.2)⇐ (7.1) can be easily
seen by rewriting (7.1) as

λ



rT

1x

rT
2x

rT
3x


− λ′



r′T1x

′

r′T2x
′

r′T3x
′


 = t =




0
0
1


 . (7.7)

The description gets even simpler if we switch to spherical coordinates,

Rx =




sin θ cosφ
sin θ sinφ

cos θ


 , R′x′ =




sin θ′ cosφ′

sin θ′ sinφ′

cos θ′


 . (7.8)

where θ, θ′ denote the polar angles and φ, φ′ denote the azimuthal angles,
see Figure 7.1(b).

Now the necessary and sufficient constraints are

φ = φ′ and θ < θ′. (7.9)

To help intuitively understand these constraint, we illustrate an example in
Figure 7.2.

Remark 7.2. In this work angles are considered equal if they are equal modulo
2π but to simplify the presentation this is not always written explicitly. For
example ξ ∈ [α, β] if ξ + 2πk does for some k ∈ Z.

The next step is to allow measurement errors. Given an error tolerance ε,
we say that corresponding points x and x′ are consistent with a relative pose
defined by R and R′ if there exists a 3D point X such that the reprojection
errors are less than ε, that is

∠(Rx, X) < ε ∠(R′x′, X) < ε. (7.10)

The following theorem gives the necessary and sufficient constraints
that incorporate measurement errors.
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Figure 7.2: The illustration of Theorem 7.1 in spherical coordinates. (a)
The front view of Figure 7.1(b), which shows that θ < θ′. (b) The top view
of Figure 7.1(b), which shows that φ = φ′

Theorem 7.3. Consider rotation matrices R and R′ and spherical coordinates
defined in (7.8). Further define w in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arccos(sin ε/ sin θ′), (7.11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos(
cos 2ε− cos θ cos θ′

sin θ sin θ′
), (7.12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε, (7.13)

φ ∈ [φ′ − w, φ′ + w], (7.14)

if and only if the angular reprojection errors are less than ε.

Proof. Since it is always possible to change coordinates, we can assume that
R = R′ = I . Furthermore, we note that if we can find points x̄ and x̄′ that
satisfy the constraints in Theorem 7.3 as well as

∠(x̄,x) < ε and ∠(x̄′,x′) < ε (7.15)
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8.1. Outliers

8.2. Planar Motion

8.3. Motion Segmentation

In this subsection, we apply our 3D motion seg-
mentation algorithm for rigid scenes on the Hopkins
155 database [?]. Current state-of-the-art results are
reported in [?] and all the top performers are included
in our comparison. In each sequence, there are typi-
cally 20-30 frames and a few hundred 2D feature tracks
given. The number of motions in each sequence is also
given.

Some of the sequences contain articulated motions
and hence our framework does not apply. Therefore
we focus on the subset of checkerboard sequences: 26
sequences with 3 motions and 78 sequences with 2 mo-
tions, hence 104 out of the 155 sequences are consid-
ered. Based on [?], one can conclude that the checker-
board sequences are the most difficult ones as the classi-
fication errors are significantly lower for the remaining
ones.

All of the top performing algorithms are based on
the affine camera model. Hence they are not dependent
on the internal calibration of the cameras, where as we
assume calibrated cameras. To resolve this, we just set
the principal point to the middle of the image and use
a focal length of 700 pixels for images of size 480× 640.
This is the size for all sequences, but the last one, which
has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that we do not know
the true focal length, we have just found this choice to
work well empirically1.

The thresholds σ1 = 0.0003 and σ2 = 0.0015 are the
same for all sequences. Parameters for spatial regu-
larization: XXXX and XXXX. These have been found
empirically and fixed for all sequences.

We compare with the following algorithms: General-
ized Principal Component Analysis (GPCA) [?], Local
Subspace Affinity (LSA) [?], RANSAC [?], Multi-Stage
Learning (MSL) [?], Agglomerative Lossy Compression
(ALC) [?] and two variants of Sparse Subspace Cluster-
ing (SSC) [?]. There are two versions of our Brute-Force
algorithm. The first one (BF) is implemented according
to the description in Section 6 and the second one is
with the addition of a spatial prior (BF-S) as described
in Section 6.1.

In Tables 1 and 2, the misclassification rates are pre-
sented. Our brute-force algorithm achieves very low
error rates, both in terms of mean and median error
rates. Note that even though we are only using three

1In the dataset, a 3 × 3 calibration matrix is provided, but this
calibration is clearly incorrect since it has an aspect ratio of 0.75.

frames (the first, the middle and the last) in each se-
quence, we are able to obtain state-of-the-art results.
Since we are actually recovering the 3D motion, it is
very simple to add spatial regularization to the results.
Still, even without such regularization, our approach
outperforms the competitors, and with regularization,
the error rates are significantly lower.

9. Conclusions

Using a brute-force algorithm for computing the
relative orientation of two projections may seem like
a step back considering the many sophisticated algo-
rithms that have been developed over the years. But
why is it that none of the best performing algorithms
for 3D motion segmentation does not use a pinhole
camera model? This paper shows that a pinhole model
is the correct choice and the lack of perspective meth-
ods that perform well on the Hopkins 155 benchmark
is likely due to algorithmic failure modes, for example,
the incapability of handling planar scenes.

The reported running times of the algorithm are well
within the limits of being a suitable choice for many
vision applications. Of course, the full search space
cannot be used for a real-time system, but restricting
the parameter space to small motions, the brute force
approach becomes a viable and robust alternative for
real-time visual odometry. Such an investigation is left
as an avenue of further research.

A. Proof of Theorem 2

Since it is always possible to change coordinates,
we can assume that R = R′ = I . Furthermore, we
note that if we can find points x̄ and x̄′ that satisfy the
constraints in Theorem 1 as well as

∠(x̄, x) < ε and ∠(x̄′, x′) < ε, (20)

then (by Theorem 1) we have also found our point X .
This will prove useful. Let θ̄, θ̄′, etc denote the spher-
ical coordinates of these points as defined in (8). We
assume that x̄′ is fixed and examine what constraints
we get on x̄. Recall the constraints from Theorem 1.

θ̄ < θ̄′ (21)

ϕ̄ = ϕ̄′ (22)

From (20) we have that x̄′ must lie in a small circle
aroundx′. Consequently, (22) means that x̄ must lie in
the spherical wedge shown on the left in Figure 5 and
(21) constrains it to the upper part of that wedge, as
shown on the right in Figure 5.
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8.1. Outliers

8.2. Planar Motion

8.3. Motion Segmentation

In this subsection, we apply our 3D motion seg-
mentation algorithm for rigid scenes on the Hopkins
155 database [?]. Current state-of-the-art results are
reported in [?] and all the top performers are included
in our comparison. In each sequence, there are typi-
cally 20-30 frames and a few hundred 2D feature tracks
given. The number of motions in each sequence is also
given.

Some of the sequences contain articulated motions
and hence our framework does not apply. Therefore
we focus on the subset of checkerboard sequences: 26
sequences with 3 motions and 78 sequences with 2 mo-
tions, hence 104 out of the 155 sequences are consid-
ered. Based on [?], one can conclude that the checker-
board sequences are the most difficult ones as the classi-
fication errors are significantly lower for the remaining
ones.

All of the top performing algorithms are based on
the affine camera model. Hence they are not dependent
on the internal calibration of the cameras, where as we
assume calibrated cameras. To resolve this, we just set
the principal point to the middle of the image and use
a focal length of 700 pixels for images of size 480× 640.
This is the size for all sequences, but the last one, which
has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that we do not know
the true focal length, we have just found this choice to
work well empirically1.

The thresholds σ1 = 0.0003 and σ2 = 0.0015 are the
same for all sequences. Parameters for spatial regu-
larization: XXXX and XXXX. These have been found
empirically and fixed for all sequences.

We compare with the following algorithms: General-
ized Principal Component Analysis (GPCA) [?], Local
Subspace Affinity (LSA) [?], RANSAC [?], Multi-Stage
Learning (MSL) [?], Agglomerative Lossy Compression
(ALC) [?] and two variants of Sparse Subspace Cluster-
ing (SSC) [?]. There are two versions of our Brute-Force
algorithm. The first one (BF) is implemented according
to the description in Section 6 and the second one is
with the addition of a spatial prior (BF-S) as described
in Section 6.1.

In Tables 1 and 2, the misclassification rates are pre-
sented. Our brute-force algorithm achieves very low
error rates, both in terms of mean and median error
rates. Note that even though we are only using three

1In the dataset, a 3 × 3 calibration matrix is provided, but this
calibration is clearly incorrect since it has an aspect ratio of 0.75.

frames (the first, the middle and the last) in each se-
quence, we are able to obtain state-of-the-art results.
Since we are actually recovering the 3D motion, it is
very simple to add spatial regularization to the results.
Still, even without such regularization, our approach
outperforms the competitors, and with regularization,
the error rates are significantly lower.

9. Conclusions

Using a brute-force algorithm for computing the
relative orientation of two projections may seem like
a step back considering the many sophisticated algo-
rithms that have been developed over the years. But
why is it that none of the best performing algorithms
for 3D motion segmentation does not use a pinhole
camera model? This paper shows that a pinhole model
is the correct choice and the lack of perspective meth-
ods that perform well on the Hopkins 155 benchmark
is likely due to algorithmic failure modes, for example,
the incapability of handling planar scenes.

The reported running times of the algorithm are well
within the limits of being a suitable choice for many
vision applications. Of course, the full search space
cannot be used for a real-time system, but restricting
the parameter space to small motions, the brute force
approach becomes a viable and robust alternative for
real-time visual odometry. Such an investigation is left
as an avenue of further research.

A. Proof of Theorem 2

Since it is always possible to change coordinates,
we can assume that R = R′ = I . Furthermore, we
note that if we can find points x̄ and x̄′ that satisfy the
constraints in Theorem 1 as well as

∠(x̄, x) < ε and ∠(x̄′, x′) < ε, (20)

then (by Theorem 1) we have also found our point X .
This will prove useful. Let θ̄, θ̄′, etc denote the spher-
ical coordinates of these points as defined in (8). We
assume that x̄′ is fixed and examine what constraints
we get on x̄. Recall the constraints from Theorem 1.

θ̄ < θ̄′ (21)

ϕ̄ = ϕ̄′ (22)

From (20) we have that x̄′ must lie in a small circle
aroundx′. Consequently, (22) means that x̄ must lie in
the spherical wedge shown on the left in Figure 5 and
(21) constrains it to the upper part of that wedge, as
shown on the right in Figure 5.
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Figure 7.3: The constraints imposed on x̄ being the reprojection of the 3D
point in first camera. Equation (7.17) constrains x̄ to the spherical wedge
(left) and (7.16) to the upper part of that wedge (right).

then (by Theorem 7.1) we have also found our point X . This will prove
useful. Let (θ̄, φ̄) and (θ̄′, φ̄′) denote the spherical coordinates of these
points as defined in (7.8). We assume that x̄′ is fixed and examine what
constraints we get on x̄. Recall the constraints from Theorem 7.1,

θ̄ < θ̄′ (7.16)

φ̄ = φ̄′ (7.17)

From (7.15) we have that x̄′ must lie in a small circle around x′. Conse-
quently, (7.17) means that x̄ must lie in the spherical wedge shown on the
left in Figure 7.3 and (7.16) constrains it to the upper part of that wedge,
as shown on the right in Figure 7.3.

But we also want ∠(x̄,x) < ε, which constraint x̄ to a small circle
around x. This means that we must require the wedge from above to
intersect this small circle. To complete the proof we need to translate this
constraint to a constraint in the spherical coordinates. We get three cases.

Case 1, θ < θ′: Figure 7.4 shows the critical case. If the difference be-
tween φ and φ′ is larger than this, then the two sets have empty intersection.
The limit can be computed by considering two right-angled triangles, see
Figure 7.4. Let v denote the blue angle in that figure and v′ the yellow one.
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Figure 7.4: Case 1. Here the sphere from Figure 7.3 are viewed from
above, i.e. the z-axis is pointing out of the paper. The green areas show
the constraints on x̄. For the two constraints to intersect they must not be
further apart than this. The left image shows the setup for computing this
limit angle.

The spherical law of sines yield,
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
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than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.
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in the following way. For θ < θ′,
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if this is defined and otherwise π. Then,
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T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 1: Classification errors (%) for the 26 checkerboard sequences with 3 motions.

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 2: Classification errors (%) for the 78 checkerboard sequences with 2 motions.
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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ex peri mental section. In particu lar, w hen ap p lied to
3D motion segmentation, our ap proach signi ficantl y
outperfor ms state-of-the-art methods on 104 v i deo se-
quences in the H op k ins 155 d atabase [?]. N ote that
the d atabase contains a v ariet y of relati v e motions an d
scenes that are consi dered to be degenerate for sev eral
of the abo v e stan d ard algorith ms.

2. Preliminaries

C onsi der t w o v ie w s of a scene. Let x denote an
i mage point - represented by a u nit v ector - in the
fi rst v ie w an d x′ the correspon d ing i mage point in the
secon d v ie w. T he assu m ption is that these are both the
projection of some 3D point X . If w e choose a global
coord inate system such that the fi rst camera lies at the
origin an d the secon d camera at ez = (0, 0, 1)T , w e get

λRx = X, λ′R′x′ = X  ez. (1)

w here R an d R′ are 3 ð 3 rotation matrices an d λ an d λ′

positi v e reals. N ote that λ an d λ′ are d istances rather
than depths. To si m p lif y the deri v ations, w e w ill as-
su me that there are no points at in fi nit y, although the
method w or ks just as w el l w ith points at in fi nit y.

Theorem 1. Let R and R′ be rotation matrices with row
vectors r1, r2, r3 and r′1, r

′
2, r

′
3, respectively and x and x′

corresponding points. Then,

(r1x, r2x) = k(r′1x
′, r2x

′) with k > 0, (2)

r3x > r′3x
′, (3)

if and only if there exists a 3D point X satisfying (1).

Proof. C learl y

k =
jj(r1x, r2x)jj

jj(r′1x′, r′2x
′)jj

=

√
1  (r3x)2

1  (r′3x
′)2

< 1. (4)

Let λ be the sol ution to

λr3x  1 = λkr′3x
′, (5)

an d p ut λ′ = λk. F rom k < 1 an d r3x > r′3x
′ it is

straightfor w ard to sho w that λ > 0 an d hence λ′ > 0.
N o w let X = λRx. To see that (1) is satisfied, consi der

X  ez = λRx  ez =




λr1x
λr2x

λr3x  1


 (6)

but by (2) an d (5) this is equal to



λkr′1x
′

λkr′2x
′

λkr′3x
′


 = λ′R′x′. (7)

T his pro v es the if part. For the only if, it shou l d be clear
from (1) that (2) hol ds an d from F igure ?? that (3) does
as w el l.

T he descri ption gets ev en si m p ler if w e s w itch to
sp herical coord inates,

Rx =




sin θ cosϕ
sin θ sinϕ

cos θ


 , R′x′ =




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′


 .

(8)
N o w the necessar y an d sufficient constraints are

ϕ = ϕ′ mod 2π

θ < θ′. (9)

T he next step is to allo w measurement errors. We sa y
that correspon d ing points x, x′ are consistent w ith a
relati v e orientation if the reprojection errors are less
than some prescribed threshol d. In this article w e w ill
constrain the angu lar reprojection errors, i.e.

∠(Rx,X) < ε an d ∠(R′x′, X  ez) < ε. (10)

Theorem 2. Consider rotation matrices R and R′ and
spherical coordinates as defined in (8). Further define w
in the following way. For θ < θ′,

w = arcsin(sin ε/ sin θ) + arcsin(sin ε/ sin θ′), (11)

if this is defined and otherwise w = π. For θ′ < θ < θ′ + 2ε

w = arccos

(
cos 2ε  cos θ cos θ′

sin θ sin θ′

)
, (12)

if this is defined and otherwise π. Then,

θ < θ′ + 2ε

ϕ 2 [ϕ′  w,ϕ′ + w], (13)

if and only if the angular reprojection errors are less than ε.

Proof. See A p pen d ix A .

3. A Search Algorithm

T he proposed method for esti mating relati v e pose,
is to search for rotation matrices R an d R′ satisf y ing
T heorem 2 for as man y point correspon dences as possi-
ble. It shou l d be clear ho w ev er, that using t w o rotation
matrices is an o v erparameteri z ation. In fact if R an d
R′ is one sol ution an d

T =

(
Rβ 0
0 1

)
(14)

w here Rα is a 2 ð 2 rotation matrix. T hen TR an d TR′

represent the same relati v e pose. T his lea ds us to the
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theorem.
Case 1. If θ < θ′ then we have the case in Figure ??.

The spherical law of sines yields

sin (ϕX − ϕ) =
sin ε

sin θ
. (21)

unless sin tha < sin ε in which case the constraint is
empty.

We get a similar constraint on ϕY − ϕ′ and if we
combine them with the triangular inequality we get,

|ϕ− ϕ′| < arcsin

(
sin ε

sin θ

)
+ arcsin

(
sin ε

sin θ′

)
. (22)

again if sin thb

Figure 8: Case 1.

Case 2. Figure ?? illustrates the case ε <θ ′ < θ <
θ′ + 2ε. Both X and Y have to lie in the intersection
of the circles. Using the spherical law of cosines, we
get an angular constraint for this intersection to be
non-empty,

cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) = cos 2ε. (23)

Figure 9: Case 2.

Case 3.
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Figure 7.5: Case 2, see caption of Figure 7.4.

Case 3, θ ≥ θ′ + 2ε: In this case the intersection is empty, regardless of
φ and φ′.
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7.3. A SEARCH ALGORITHM

Theorem 7.3 provides a way to handle the constraints induced by one
point correspondences. When we have many hypothetical point corre-
spondences, we could formulate the relative pose problem as searching the
maximum consensus set which is described below.

Problem 7.4. Given two sets of image points {xi} and {x′j} with hypotheti-
cal correspondences (xk,x

′
k), k = 1, . . . , N and a prescribed error threshold

ε, compute the relative pose of the cameras which is consistent with as many
correspondences as possible.

7.3 A Search Algorithm

Before proposing our algorithm to Problem 7.4, we first simplify the
parametrization of relative pose. Naturally using two rotation matrices
to represent a relative pose is an overparametrization. In fact if S is a rota-
tion about the z-axis, then (R, R′) and (SR, SR′) describe the same relative
pose. To see this we assume that

λRx = X, λ′R′x′ = X − t (7.20)

where t = (0, 0, 1) as prescribed. Now

λSRx = SX, λ′SR′x′ = SX − St = SX − t, (7.21)

shows that a rotation around z-axis does not change the relative pose but
only the global coordinate system.

To simplify the notation, let Γ be a function that maps a given unit
vector r to a rotation matrix Γr, having r as its third row. Then any relative
pose can be written as

R = SαΓr and R′ = Γr′ (7.22)

where Sα is a rotation by α about the z-axis. Hence the set of parameters
consists of two unit vectors r and r′ and an angle α. It is worth to note
that r and −r′ are the epipoles of the two cameras.

Now consider the spherical coordinates in (7.8), only φ depends on α.
Let φ(r) denote the value if α = 0. This changes the last constraint (7.14)
of Theorem 7.3 to

φ(r) + α ∈ [φ′(r′)− w, φ′(r′) + w], (7.23)
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which is easily translated to a constraint α ∈ [αlo, αup], where

αlo = φ′(r′)− φ(r)− w
αup = φ′(r′)− φ(r) + w (7.24)

Each pair of corresponding points yields such an interval and by sorting
these lower and upper bounds for all correspondences, one can find the
interval having the maximal number of inliers; see Algorithm 6.

Algorithm 5 Brute-Force Search

For a given level of discretization and error threshold ε, a relative pose having the
maximal number of inliers nmax is computed.

Compute a discretization, D of S2.
For each r ∈ D

For each x
Compute φ(r), θ(r) and v(r).

For each x′

Compute φ′(r), θ′(r) and v′(r).
Put nmax = 0
For each pair (r, r′) ∈ D ×D

For each correspondence (x,x′)
If θ′(r′) + ε > θ(r)− ε

Compute w = v(r) + v′(r′).
A lower bound αlo = φ′(r′)− φ(r)− w.
An upper bound αup = φ′(r′)− φ(r) + w.

Find the max intersection n, using Algorithm 6.
If n > nmax

Store the current parameters.
Set nmax = n.

Now we are ready to look at the complete algorithm; see Algorithm 5.
The idea is to perform a search for vectors r and r′. Since both vectors
have unit length they lie in S2, being the unit sphere in R3, and the search
space is a discretized version of S2 × S2. For each pair (r, r′) we compute
the lower and upper bounds on α which are given in (7.24). We sort these
bounds and compute the maximal number of inliers. Hence the complexity
of the algorithm is O(k2m log(m)) where k is the number of points in the
discretization of S2 and m is the number of correspondences.
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7.4. OTHER COST FUNCTIONS

Remark 7.5. As it matters only rarely and complicates the description, we
ignore case 2 of Theorem 7.3 in the computation of w. Thus w can always be
divided into

w = v + v′ (7.25)

where v does not depend on x and v′ does not depend on x′.

Algorithm 6 Maximal Intersection
Given lower bounds L and upper bounds U , a point is found that lies in as many
intervals as possible. Outputs the number of intersecting intervals, n and the point.

Sort L and U .
Initialize j = 1 and n = 0.
For i ∈ {1, . . . , |L|}

While Uj < Li
Increase j = j + 1.

If i− j > n
Store Li.
Set n = i− j.

7.4 Other Cost Functions

So far we have simply counted the number of inliers to assess the quality
of a relative pose. Inliers are correspondences with the reprojection errors
less than some prescribed threshold, ε. This approach is simple and gen-
erally yields good results, but it does have its limitations; see Hartley and
Zisserman (2004). One problem is that the method might be sensitive to
the choice of ε, but also that the distribution of the inlier errors are not
considered. In Blake and Zisserman (1987) a more refined cost function is
proposed. The assumption is that correct matchings have a clock-shaped
error distribution similar to the Gaussian distribution, whereas incorrect
matchings have approximately uniformly distributed errors. These assump-
tions lead to the cost function

C(d) = − log
(
c+ exp (−d2)

)
(7.26)
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where d is the reprojection error; see Figure 7.6. In the same book it is
noted that a good approximation of this cost function can be obtained by
truncating the ordinary squared error. A cost function of this kind cannot

0
0

Reprojection error

C
o

s
t

Figure 7.6: The robust cost function (red) suggested in Blake and Zisserman
(1987), and a piecewise constant approximation of it (blue) which can be
optimized using the proposed framework.

be handled directly by the proposed method, but one can approximate the
function to arbitrary precision. An example of such an approximation is
shown Figure 7.6. As the reprojection error increases it changes value three
times. This means that when computing w in Algorithm 5, we should do
so for three thresholds ε1, ε2, ε3. Consequently each correspondence will
yield three intervals I1 ⊂ I2 ⊂ I3 - one for each time the value of the
cost function changes. The different types of intervals also get a weight
indicating how much the cost function changes when entering this interval.

In Algorithm 6 we get three lists of lower bounds L1, L2 and L3 and
similarly for the upper bounds. The different lists are sorted separately and
then gone through like before. Passing a lower bound from Li, weight wi
is subtracted from the current cost, and passing an upper bound from Ui
the same weight is added. The computational cost will be approximately
linear in the number of steps of the cost function.

7.5 Restricted Motions

One advantage of the suggested approach to relative pose estimation, is that
restricted motions can be handled easily. In this section we present a few
standard restrictions and discuss how they can be enforced.
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7.6. MOTION SEGMENTATION

Planar motion If the rotation axis is known and perpendicular to the
translation, this can be used in the following way. Let f be the rotation axis.
We get the following constraints,

rT
3 f = 0, r′T3 f = 0 and α = 0 (7.27)

The first two constraints can easily be enforced in the discretization step.
Only epipoles in these planes are generated. The third constraint reduces
the set of angles that has to be considered in Algorithm 6.

Small motion In tracking applications, the motion between consecutive
frames is generally small. This can easily be enforced by adding constraints

∠(r3, r
′
3) < γmax and α < αmax. (7.28)

These constraints reduce the number of pairs that have to be considered in
Algorithm 5.

7.6 Motion Segmentation

To examine how well the brute-force algorithm works in practice, it was
tried in a simple system for motion segmentation. Given a sequence of
images of multiple moving objects, the aim of motion segmentation is to
estimate all these motions as well as the motion of the camera. Moreover,
each detected feature point should be classified as belonging to one motion.

Like much of the work in this field, we assume that the number of
motions is known. For the discussion let us assume that this number is
three. A seemingly straightforward approach to segmentation would be to
keep track of the top three motions in our brute-force search, but this turns
out be difficult in practice. The peaks in the relative pose space are rather
flat and it is hard to distinguish different motions.

Therefore, we proceed in a sequential manner using Algorithm 7. The
first step is to estimate N hypothetical motions. This is done in a sequential
manner, using Algorithm 5. Typically, N is chosen significantly larger than
the true number of motions not to miss any motion. The next step is to
choose three of these N motions to perform the motion segmentation. We
do this by going through all possible choices of three motions and choosing
the ones that yield the lowest number of outliers. Just as in Algorithm 7
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Algorithm 7 Multiple Motions
Given two views A and B with multiple moving objects and point tracks T ,
N hypothetical motions are estimated. An extra view C is used to validate
motions.

Repeat N times
SetH = T .
For the view pairs (A,B), (A,C), (B,C)

Estimate relative pose usingH and threshold ε1.
Remove tracks with error larger than ε2 fromH.

Reestimate a relative pose between A and B usingH and ε1.
Store this solution.
Set T = T \ H.

outliers are tracks having an error larger than ε2. Having decided on three
motions we match each point track to that motion which yields the smallest
errors.

The classification obtained in this manner can be refined by standard
bundle adjustment. Details are given in the experimental section.

7.6.1 Adding a Spatial Prior

To further improve the motion segmentation results, we tried using a spatial
prior assuming that close points probably belong to the same motion. We
formulate the spatial prior in an energy minimization framework with a
data term and a smoothness term,

C(x) =
∑

p∈V
Cp(xp) + λ

∑

(p,q)∈E
Cpq(xp, xq). (7.29)

Here G = (V, E) is an undirected graph. The set of nodes V corre-
sponds to the point tracks and xp denotes the label of node p. The set of
edges E describes the neighborhood relationship. We use the reprojection
error of point p as data term Cp(xp) and define the smoothness term as,

Cpq(xp, xq) =

{
0 if xp = xq
dmax−d(p,q)

dmax
if xp 6= xq

(7.30)
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where d(p, q) denotes the Euclidean distance of point p, q and dmax is a
threshold to define the size of the neighborhood. If d(p, q) < dmax, then
(p, q) ∈ E. This smoothness term will penalize the case when two points
lie close to each other but belong to different motions. The constant λ
determines the balance between the data and smoothness term. Energy
minimization was performed using α-expansions; see Boykov et al. (2001).

7.7 Parallel Implementation

Normally, the weakness of a brute-force algorithm is its computational per-
formance. However, studying Algorithm 5 we note that the computations
for different pairs (r, r′) are independent, so we can easily parallelize the
algorithm using a MapReduce model. In the Map step, the lower and upper
bounds are sorted simultaneously and then intersections are computed
simultaneously for all pairs (r, r′). In the Reduce step, the pair (r, r′) that
yields most inliers is picked by reduction operations.

Nvidia’s parallel computing architecture, CUDA, was used for parallel
implementation. Algorithm 6, was implemented in a 2-dimensional grid of
k by k blocks, where k is again the number of points in the discretization.
Each block executes the computation for one pair of epipoles, (r, r′).
Inside each block, a parallel bitonic sorting algorithm with O(n log(n)2)
complexity in serial and O(log(n)2) complexity in parallel is implemented
since it is well-suited for sorting within a block using shared memory. To
find the maximal intersection, each thread goes through the upper bound
list to find the maximal intersection for the current lower bound. This is
done using binary search.

In the end, the parallel implementation is up to 30 times faster than
the serial implementation, making the performance of our algorithm quite
practical. To make sure global memory access coalescing, we pad the lower
and upper bounds with dummy values. Constant memory is used to store
the epipoles during the computation of spherical coordinates. This works
to reduce global memory latency.

7.8 Experiments

For testing we primarily used the GPU implementation. Timings are for
3GHz Core2 Duo with 8GB Memory with an NVidia Tesla 2050 with
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3GB global memory.

To get some data on the execution times, synthetic data was generated.
First 100 random 3D points were generated in a cube centered at the origin,
having side 300 units. The cameras were placed randomly at distance
of approximately 1000 units. Gaussian noise with standard deviation
0.0002 was added to the image points. Figure 7.7 shows angular errors in
rotation and translation when compared to the ground truth. The threshold
ε = 0.005 was used with different degrees of discretization.
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Figure 7.7: The plot shows errors for different discretizations. The error in
rotation is shown in red and the error in translation is shown in blue.
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Figure 7.8: Execution times for different discretizations. Starting from
below the curves were generated using 700, 1258, 1976 and 2862 points in
the discretization of the unit sphere, S2.
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7.8.1 Other Cost Functions

To verify the possibility of using other cost functions we tried it on some
random data generated as described above. Using the approximated trun-
cated L2 norm in the way described in Section 7.4 the rotational error
decreased from the average 0.17 radians to an average of 0.11 radians. This
was using 1100 points in the discretization. The threshold for the standard
method was ε = 0.005 and the thresholds for the approximate truncated
L2 was set to ε/2, ε, 3ε/2 and 2ε.

7.8.2 Outliers

To test the proposed algorithm on data with a lot of outliers, synthetic
data was generated in the following way. First 50 random 3D point were
generated in a cube centered at the origin, having side 100 units. The
cameras were placed randomly at distance of approximately 1000 units.
Then 450 outliers were added to each image. They were generated in the
same way as the inliers but separately for the two images. Gaussian noise
with standard deviation 0.0002 was added to the image points. Figure 7.9
shows how many of the 50 inliers were found by the proposed algorithm.
The threshold ε = 0.0005 was used in the algorithm and the average
computation time for the parallel implementation was 6s.
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Figure 7.9: The number of inliers for the 50 outlier experiments. The list
was sorted for better visualization. In each example there were 50 inliers
and 450 outliers. The error threshold was ε = 0.0005 and 1976 points
were used in the discretization of the sphere.

The outlier rate in these experiments was 90%. This means that using
standard RANSAC and a five-point solver, the expected number of itera-
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tions before picking just one single set with 5 inliers is 100 000 and using
reprojection errors that also means performing 50 million triangulations.

7.8.3 Planar Motion

The performance on planar scenes was tested on 64 image pairs from
eniro.se. These are street-view images taken from a car so the motion is
approximately planar. Since the images are given with direction information
we could compute the deviation between the estimated rotation matrix and
the ground truth. This deviation in radians is given in Figure 7.10. The
results were produced using 100 points to discretize the unit circle and a
threshold of 0.0005. The average execution time was 0.47 s for a sequential
java implementation.
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Figure 7.10: Angular error when comparing with the ground truth rotation.

7.8.4 Motion Segmentation

We will now look at the performance of this 3D motion segmentation
algorithm for rigid scenes from the Hopkins 155 database, see Tron and
Vidal (2007). The state-of-the-art results are reported in Elhamifar and
Vidal. (2009) and all the top performers are included in the comparison
below. In each sequence, there are typically 20-30 frames and a few hundred
2D feature tracks given. The number of motions in each sequence is also
specified.

Some of the sequences contain articulated motions to which the pre-
sented framework does not apply. Therefore we focus on the subset of
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checkerboard sequences, 26 sequences with 3 motions and 78 sequences
with 2 motions, hence 104 out of the 155 sequences are considered. Based
on Elhamifar and Vidal. (2009), one can conclude that the checkerboard se-
quences are the most difficult ones as the classification errors are significantly
lower for the remaining ones.

All of the top performing algorithms are based on the affine camera
model. Hence they are not dependent on the internal calibration of the
cameras, whereas we assume calibrated cameras. To resolve this, the prin-
cipal point is set to the middle of the image and the focal length to 700
pixels for images of size 480× 640. This is the size for all sequences, but
the last one, which has frame size 240 × 320 and consequently we halve
the focal length for this case. Note that the true focal length is unknown,
so the chosen is only empirically motivated1.

The thresholds ε1 = 0.0003 and ε2 = 0.0015 are the same for all
sequences. Parameters for spatial regularization: λ = 1.66 × 10−4 and
dmax = 0.04. These have been found empirically and fixed for all se-
quences.

We compare with the following algorithms: Generalized Principal
Component Analysis (GPCA) in Vidal and Hartley (2004), Local Subspace
Affinity (LSA) in Yan and Pollefeys (2006), RANSAC in Fischler and Bolles
(1981), Multi-Stage Learning (MSL) in Sugaya and Kanatani (2004), Ag-
glomerative Lossy Compression (ALC) in Ma et al. (2007) and two variants
of Sparse Subspace Clustering (SSC) in Elhamifar and Vidal. (2009). There
are two versions of our brute-force algorithm. The first one (BF) is imple-
mented according to the description in Section 7.6 and the second one is
with the addition of a spatial prior (BF-S) as described in Section 7.6.1.

In Tables 7.1 and 7.2, the misclassification rates are presented. Our
brute-force algorithm achieves very low error rates, both in terms of mean
and median error rates. Note that even though we are only using three
frames (the first, the middle and the last) in each sequence, we are able to
obtain state-of-the-art results. Since we are actually recovering the 3D mo-
tion, it is very simple to add spatial regularization to the results. Still, even
without such regularization, our approach outperforms the competitors,
and with regularization, the error rates are significantly lower.

1In the dataset, a 3 × 3 calibration matrix is provided, but this calibration is clearly
incorrect since it has an aspect ratio of 0.75.
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Ground truth Brute force Spatial prior

Figure 7.11: Example frame from one sequence with ground truth (left),
brute-force (middle) and brute-force with spatial prior (right). The colors
of the feature points indicate which motion class (blue, yellow, red). Feature
points that are misclassified have been colored cyan (see middle figure).
Note that the spatial prior is able to correct for all the errors.

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97 2.11 0.99

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27 0.81 0.00

Table 7.1: Classification errors (%) for the 26 checkerboard sequences with
3 motions.

7.9 Conclusions

Using a brute-force algorithm for computing the relative pose of two pro-
jections may seem like a step back considering the many sophisticated
algorithms that have been developed over the years. But why is it that none
of the best performing algorithms for 3D motion segmentation does not
use a pinhole camera model? This paper shows that a pinhole model is the
correct choice and the lack of perspective methods that perform well on
the Hopkins 155 benchmark is likely due to algorithmic failure modes, for
example, the incapability of handling planar scenes.

The reported running times of the algorithm are well within the limits
of being a suitable choice for many vision applications. Of course, the
full search space cannot be used for a real-time system, but restricting the
parameter space to small motions, the brute force approach becomes a viable
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Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N BF BF-S
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.85 0.43

Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00 0.00

Table 7.2: Classification errors (%) for the 78 checkerboard sequences with
2 motions.

and robust alternative for real-time visual odometry. Such an investigation
is left as an avenue of further research.
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Chapter 8

Joint Object Detection and
Pose

This last chapter contributes to object detection and pose estimation. Object
recognition and detection leads machine vision one step toward the human-
level cognition. For humans 3D geometry is an important cue to recognizes
a object. This chapter aims to improve automated object detection by
incorporating 3D geometry. More specifically, we extend the previous work
on deformable part-based models, see Felzenszwalb et al. (2010c), by using
accurate geometric models both in the training phase and at detection.
Richer annotations with 3D geometry are manually generated to reduce
perspective distortion before training the part-based models. Training is
performed on rectified images, which leads to more specific models and
reduces the risk of false positives. A set of representative object poses
are learned from the training set and used to rectify test images without
annotations. The method is evaluated on the bus category of the Pascal
VOC dataset with promising results.

8.1 Introduction

An early work that is frequently cited in object detection is that of Viola and
Jones (2001). They introduced integral images to object detection, allowing
for very efficient feature computations. They also propose a method for
combining successively more complex classifiers in a cascade structure which
dramatically reduces the running time of detection by focusing attention on
promising regions of the image. Another influential work is Dalal and Triggs
(2005), focused on pedestrian detection. Linear SVM is adopted together
with the proposed Histogram of Oriented Gradients (HOG) descriptors,
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which are shown to outperform the existing features in this specific task.
Apparently using one single model to capture the global appearance

of an object is not enough. The idea of using several parts to represent an
object is first proposed in Fischler and Elschlager (1973), where the model
is referred to as pictorial structures. The appearance of each part is modeled
separately while the connections between pairs of parts are represented
using spring-like structures. The idea was revived by Felzenszwalb and
Huttenlocher (2005) who proposed an efficient algorithm for classical
pictorial structure energy minimization of a cycle-free structure. A learning
algorithm is also proposed to extend the original method.

The idea of part-based models is taken even further in Felzenszwalb
et al. (2010c) where the global appearance is modeled by a root filter,
together with several part filters to describe the local appearance. Each part
is associated with an anchor position, and deviations from this are penalized
with a deformation cost in the energy function. The anchor positions are
treated as latent variables and a latent SVM is used to discriminatively train
the model with partially labeled data. This deformable part-based model
(DPM) achieves state-of-the-art results in Pascal VOC Challenge.

To address the change of appearance due to perspective distortion,
the training examples are first clustered based on the aspect ratio of the
bounding boxes. One model is trained for each cluster and at detection
the parameter vectors of component models are concatenated from which
high scoring hypothesis is generated independently for each component.
However, limited training data prevent one from training a faithful model
effectively with more mixture components. A workaround proposed in
Ott and Everingham (2011) is to allow part sharing between the mixture
components and the object classes. Several works explicitly treat multi-view
detection. In Thomas et al. (2006), the proposed approach can detect
objects from arbitrary viewpoints. It is achieved by combining the implicit
shape model with the multi-view specific object recognition system by
Ferrari et al. (2004). In Savarese and Li (2007), a compact model is built by
linking together parts of the object from different viewing points. The parts
- defined as large and discriminative regions comprising many local invariant
features - are connected through their mutual homographic transformation.
In Liebelt and Schmid (2010), a few synthetic 3D models are used to learn
a geometrical representation of an object category, which are incorporated
in the discriminatively trained part-based model. In Xiang and Savarese
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(2012), an object is modeled by several planar aspects, using some 3D CAD
model as prior knowledge. A conditional random field (CRF) model is
constructed with maximal margin parameter estimation. In Branson et al.
(2011) the possibility is explored of reducing manual annotations, where
an interactive labeling tool is used to refine the automatic annotation with
human intervention.

Our method also uses rich annotations of the training dataset. Similarly
to Xiang and Savarese (2012), we model an object using a number of planar
aspects. By annotating each aspect (side) of an object, one can estimate
its pose. With the estimated pose, each aspect of the object is rectified
such that one can train a viewpoint-independent model of each aspect of
the object category. For detection, we hypothesize different object poses
from a learned set of typical poses, transforming the image according to the
hypothetical pose and running the detector. By doing this, we obtain not
only an accurate bounding box but also a rough pose of the object. This is
appealing, as it extracts more information from a 2D image and enables a
richer understanding of the object in its context. In the experiments, we
evaluate our method on the bus category of Pascal VOC Challenge.

8.2 Modeling Appearance and Geometry

Our object model is defined as a number of planar aspect models together
with a set of typical poses. We will assume that we have annotated training
images and have a method to estimate the object pose from annotations.
Hence we train each aspect model from rectified image patches using a
deformable part-based model.

The fact that aspect models are learned from rectified image patches,
introduces a problem at detection, when the ground-truth object pose is
unknown. To resolve this we learn a small set of typical object poses from the
annotated training set. At detection we transform the image according to
each of the learned typical poses. If the training set is large enough it will
contain the common object poses.

Detection scores for aspects are generated by running each aspect de-
tector on each of the transformed images. Detections from different aspect
models are combined and thresholded to produce the final full detection.
More specifically, once we run the aspect models on the transformed images,
multi-scale score pyramids are generated, one for each aspect of the object.
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Any location in a score pyramid defines a bounding box and a score indicat-
ing the confidence of the aspect occurring at that location. We merge the
score pyramids by combining, for example, the frontal detection and the
side detection which have consistent size and proper relative locations.

8.2.1 Pose Estimation

Pose estimation is a crucial building block in training aspect models and
learning representative poses. It is not possible to infer the object pose
from training images labeled only with rectangular bounding boxes. Extra
information is necessary either from some pre-built CAD models or from
manual annotations. Here we manually annotate each visible aspect of
objects in training images, as shown in Figure 8.1.

Figure 8.1: Annotation of each visible aspect of the object in training images
.

Each annotation gives us a set of known points on the object. The next
task is to estimate the camera pose relative to the object. We will assume
that all intrinsic camera parameters have standard values, except the focal
length which we estimate. More precisely, we assume that the principal
point lies at the center of the image, that the aspect ratio is 1 and that skew
is 0.

If the 3D model of an object is known, it is sufficient to estimate camera
pose and focal length using four points, see Triggs (1999). However, for
block-shaped objects, for example buses we use a more specialized approach,
which does not require an explicit 3D model. The goal is to estimate the
camera matrix P = [R | t] and the focal length f .
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We assume that the upper and lower edges of a block-shaped object
are parallel. Hence the corresponding lines in the image intersect at a
vanishing point, being the projection of a point at infinity, see Figure 8.2.
Let x be a vanishing point in the image and (XT, 0)T be the homogeneous
coordinates of the corresponding point at infinity. Then we have

λ

(
x
f

)
= [R | t]

(
X
0

)
= RX. (8.1)

The same computation for the other side of the object yields

λ

(
y
f

)
= RY. (8.2)

We note that X and Y represent the front and sideways directions of the
object. This means that they must be perpendicular, that is

xTy + f2 ∝ XTRTRY = XTY = 0, (8.3)

from which one can estimate the focal length. Knowing the focal length,
(8.1) and (8.2) allow us to estimate the camera rotation relative to the
orientation of the object. Finally, we place the origin in the front left corner
of the object and compute the camera translation from its corresponding
image projection.

8.2.2 Training Aspect Models

Rectifying the training images Detectors trained on the objects under
varying viewpoints will tend to be less specific and can lead to high false
positive rates. As described in Section 8.2.1, we can estimate the pose of an
object and use this to transform the training images such that each visible
aspect is rectified. However, at detection we cannot estimate the object
pose very accurately, so a model trained on perfectly rectified image patches
might not be flexible enough. Hence we add a small perturbation to the
exact pose when rectifying the training images.

Assume the pose we estimated for an object is P , where P = [R | t].
We generate a small perturbation by picking a random rotation angle θ from
a uniform distribution on [0, 5◦]. Now let Rx(θ) be a rotation about the
x-axis, with rotation angle θ and let Rr be a random rotation picked from
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Figure 8.2: Estimate the pose from annotations of a block-shaped object

the uniform distribution over all rotations. Then the desired perturbed
rotation is Rp = RTr Rx(θ) RrR. We also add a small perturbation to the
ground truth translation, tp = t + n, where n is sampled from N (0, σ2)
for σ = 0.005.

The next step is to transform the image such that each planar aspect is
rectified. Let us say that we want to transform a bus image such that the
side is rectified. Let v1 and v2 be an orthonormal basis for the subspace
parallel to the plane and let q be a point in the plane. Any point X in the
plane can be written as x1v1 + x2v2 + q and its projection

λ




x′1
x′2
1


 = P

(
v1 v2 q
0 0 1

)


x1

x2

1


 = H




x1

x2

1


 , (8.4)

where (x′1, x
′
2, 1)T is a point on the image plane, (x1, x2, 1)T is the cor-

responding point on the actual plane of the object’s side. For exam-
ple, if the coordinate system is used as in Figure 8.2 and consider a
point X on the side of the object, that is the Y Z-plane, then we have
q = (0, 0, 0)T, v1 = (0, 1, 0)T and v2 = (0, 0, 1)T, the homograph
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H = (p2,p3,p4) where pi is the i-th column of P . Similarly one can
show that the homographs to rectify the front, that is XZ-plane in Fig-
ure 8.2 is H = (p1,p3,p4).

Thus we have found the homography H , relating points in the aspect
plane with points in the image. By transforming the image according to
H−1, we get a rectified image of the aspect, having axis-parallel edges.

Building the models We use latent-SVM (LSVM) to train deformable
part-based models. Here we give only a brief review of training. More
details are referred to Felzenszwalb et al. (2010c). Since the part locations
are unknown, they are treated as latent variables in training. For a given
example x, One seeks for the best configuration of parts which minimize
the following cost function with respect to the latent variable z as

fβ(x) = max
z∈Z(x)

β · φ(x, z) (8.5)

where β is a vector of model parameters describing the root filter, part
filters, anchor positions of parts and deformation coefficients, z is the latent
variable specifying the location of root filter and part filters and φ(x, z)
yields the feature vector for a specific configuration.

The goal is to learn the model parameters β from the labeled examples
〈x1, y1〉 , · · · , 〈xn, yn〉, where yi = 1 for positive examples and yi = −1
for negative ones. This is achieved by minimizing

L(β) = µ||β||2 +

n∑

i=1

max{0, 1− yifβ(xi)}, (8.6)

where max{0, 1− yifβ(xi)} is the standard hinge loss and µ determines
the relative weight of the regularization term. In Figure 8.3 we illustrate the
aspect models trained on the bus category of Pascal VOC 2011 training set.
One can clearly make out some parts of the bus, for example, the wheels.

8.2.3 Finding the Representative Poses

In the last section we have shown how to estimate highly specific models by
compensating for varying viewpoint. This introduces a problem since at
detection the viewpoint is unknown and cannot be compensated for. To
handle this we learn a small set of typical object poses. At detection an
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Figure 8.3: Two aspect models trained from the bus category of Pascal VOC
2011. The top row shows the frontal model and the bottom row shows the
side model. From left to right are illustrations of a root filter, part filters
and deformation cost.

image is transformed according to each of these poses and the detector is
run on each of the generated views.

To find this set of representative object poses we look again to the
annotated training set. Each annotated object yields an object pose that
we can use in the learning. Let Pi be the pose of a certain object i and
let Si be the set of annotated objects which have similar poses to Pi. We
will define in the following if two poses are similar or not. To find k poses
which are representative for the training we seek k sets Si1 , . . ., Sik such
that

∣∣⋃
j Sij

∣∣ is maximized. This is a maximum k-cover problem and for
unbounded k it is NP-hard, but in our case, we could pre-determine k and
solve with software such as CPLEX.

It remains to define the notion of similar poses. To determine if the
pose of an annotated object is similar to a given pose P , we transform the
annotated points according to P . Ideally, both the front and the side of the
object will be transformed to rectangles. Hence as measure of similarity, we
measure how much the upper/lower edge of the transformed aspect deviates
from being horizontal, as illustrated in Figure 8.4. A certain training
example is similar to a pose P if the average angular deviations for the front
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Figure 8.4: Measure of angular deviation for pose similarity.

and side are both below a predefined threshold ε as

1
2

(θ11 + θ12) < ε and
1
2

(θ21 + θ22) < ε. (8.7)

8.3 Detection

Training the aspect models and learning a set of representative poses gives
us a more specific model as well as increased flexibility at detection. For
a given test image, we use the set of typical poses to transform it. The
aspect detectors are run on each of these images individually. Given that
the model consists of M aspects and N typical poses, each pose will define
M homographies to rectify the corresponding aspects. Thus a test image is
transformed into M ·N candidate images. Still, with small M and using a
fast cascade implementation of the detector, see Felzenszwalb et al. (2010a),
the computational load is no big issue.

8.3.1 Generating the Score Pyramids

With the deformable part-based model in Felzenszwalb et al. (2010c), the
given image is first resized to multiple scales. The trained detector runs
on each scaled image, creating a pyramid of score maps of different scales.
Any location (xi, yi, li) in the score pyramid defines a score to indicate the
confidence that an object with a fixed size occurs at (xi, yi) in the scaled
image. The scale is defined by the level li of the score pyramid.

In our model, each typical pose Pi defines two homographies Hf
i , Hs

i

for frontal and side respectively. We transform the image using {Hf
i } and

{Hs
i } for i = 1, · · · , N and run the frontal and side detector respectively.

This will yield the score pyramids, denoted by Pfi and Psi respectively for
i = 1, · · · , N . Now each location (xk, yk, lk) in the score pyramid Pfi or
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Figure 8.5: Overview of the detection pipeline. In the first step the in-
put image is transformed according to each of representative poses. This
produces a multiple images that are individually run through the aspect
detectors creating a set of score pyramids containing the detector scores
at different scales. These are merged into one pyramid per aspect, in the
original image coordinate system. Finally, the front and side scores are
combined and non-maximum suppression is performed.

Psi defines a frontal or side detection with a rectangular bounding box for
the scaled image with scale defined by lk.

However, a location (xk, yk, lk) in the score pyramid of the trans-
formed image does not directly map to the location in the original image
due to transformation. To merge score pyramids, we need to transform
score maps back to the original image coordinate system using {(Hf

i )−1}
and {(Hs

i )−1}. This yields new score pyramids P̂fi , P̂si where each loca-
tion defines a skewed bounding box and directly maps to the original image
coordinate system. See Figure 8.6.

8.3.2 Combining the Score Pyramids

To combine the score pyramids P̂fi and P̂si from different poses Pi for
i = 1, · · · , N , we need to match a front detection at (xj , yj , lj) in P̂fi
with the corresponding side detection at (xk, yk, lk) in P̂si .

In the original DPM, bounding boxes defined at any locations (xj , yj)
in the same level of a score pyramid correspond to hypothetical detections of
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Figure 8.6: Transform the score map and combine the detection. From
left to right: The original image. The transformed image using Hf

i and
Hs
i . The score map and bounding box. The transformed score map using

(Hf
i )−1 and (Hs

i )−1 and skewed bounding box. The final combined
detection.

the same size in the original image. However, in our model, as we transform
score maps using (Hf

i )−1 and (Hs
i )−1, the skewed bounding boxes in the

same level of the transformed score pyramids can have varied size depends
on (xi, yi). For a front detection at (xj , yj , lj) in the new score pyramid
P̂fi , this means we need to search not only in the corresponding level
but possibly other levels of score pyramid P̂si where a side detection with
compatible size might exist.

To make the search more efficient, score pyramids P̄f and P̄s are
created with different levels defined by the length of shared edges. More
specifically, we divide the height range of all bounding boxes into L inter-
vals l1, ..., lL and create L levels in the score pyramid P̄f and P̄s, each
corresponding to a height interval. For each skewed bounding box in the
transformed score pyramids P̂fi and P̂si , we use the length of the shared
edge to determine which level to put it in the new score pyramid. To
further simplify the search, we use either the top-left or the top-right corner
to represent a front bounding box, depending on if a left side or a right
side is to be paired. It avoids the extra search since the matched front
and side detection should coincide at the same point (xi, yi). By doing
this, we merge the score pyramids P̂fi and P̂si from different poses Pi for
i = 1, · · · , N into P̄f and P̄s respectively. Note for each location in P̄f
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and P̄s, we only keep the detection with maximum score from P̂fi and P̂si .
Now we only need to merge these two score pyramids into one, denoted

by P to yield final detections. Due to the way we create P̄f and P̄s, the
merge can be done in a very efficient way as we only need to sum the score
at the same location in P̄f and P̄s. To handle the case when only the front
or side is visible, we introduce a threshold sthr. If the matched front or side
detection has a score lower than sthr we assume that it is not visible. In
that case the total score is computed as the sum of sthr and the score of the
visible aspect. Hence, the score of a combined detection is

P(x, y, l) =





P̄f (x, y, l) + P̄s(x, y, l) if P̄f (x, y, l) ≥ sthr
and P̄s(x, y, l) ≥ sthr

P̄f (x, y, l) + sthr if P̄s(x, y, l) < sthr

P̄s(x, y, l) + sthr if P̄f (x, y, l) < sthr

(8.8)

where P̄f (x, y, l) and P̄s(x, y, l) denote the score at location (x, y, l) in
the score pyramids P̄f and P̄s respectively.

For each location in the final score pyramid P , two skewed bounding
boxes are implicitly defined respectively for front and side, from which
one can estimate the object pose. Finally, non-maximum suppression is
applied to greedily remove detections which have significant overlap; see
Felzenszwalb et al. (2010c) for details.

8.4 Experiments

We evaluate our method on the bus category of Pascal VOC 2011 training
and validation dataset. The training set has 5717 images of 20 categories
among which there are 213 images containing buses. The validation set has
5823 images with 208 containing buses. Since the ground truth annotation
is not provided for Pascal VOC 2011 test set, we train the model on the
training set and tested on the validation set.

For training, we manually annotate every visible aspect for each positive
training example. Pose estimation on annotated training images gives the
pose and the actual dimensions of the object up to a scale factor, from which
we rectify each aspect of the object. We use both the left and right side to
train a side detector. Considering the rear and frontal of a bus are quite
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Figure 8.7: Precision-recall curves for bus category of Pascal VOC 2011
validation set. The left plot shows the result for the entire set and the right
plot shows the result when examples with a lot of occlusion are removed.
The green curves are the result using the original part-based model with the
average precision AP = 0.450 and 0.587 respectively. The red curves are
obtained with our method with AP = 0.468 and 0.644 respectively.

similar, we train a frontal detector using both frontal and rear patches. We
use the max-cover algorithm to select 10 typical poses. When determining
the similarity of two poses, we set the threshold ε in (8.7) to be 5 degrees.

For detection, we use 10 different poses to transform the input image.
The frontal and side detectors are run on these transformed images but
also on the original image. To combine the front and side score pyramids,
we set the threshold in (8.8) to sthr = −1.0. The experiments are done
on a 3.6 GHz Intel Core i7 PC with 64 GB memory, the training takes
around 4 hours to train a single aspect model. Detection takes on average
50 seconds per image, but one could speed up significantly by using the
cascade detector from Felzenszwalb et al. (2010a).

The precision-recall curve for the bus category is obtained by thresh-
olding all the detection scores at different values, as shown in Figure 8.7.
Average precision is calculated by measuring the area under the precision-
recall curve using numerical integration. In terms of average precision
the improvement over the original part-based model from Felzenszwalb
et al. (2010c) is limited - from 0.450 to 0.468, but at high precision rates
the difference is more significant. We note that Pascal VOC dataset is
regarded as a very difficult dataset for detection, occluded and truncated
objects usually exist in the dataset, which we do not really expect to handle.
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Figure 8.8: Example results. Detected bounding boxes are shown in green
and their layout in red. The first three rows shows correctly detected objects
with roughly correct pose. The method was able to automatically handle
cases when only one side is visible. The last row shows the buses of which
the pose estimation is less accurate.

To examine this more closely, we remove a third of the bus images that
contained largely occluded buses or very distant ones with small size. On
the remaining examples we got an average precision of 0.644 compared to
0.587 for Felzenszwalb et al. (2010c). We illustrate some detection results
as well as the layout estimation in Figure 8.8.

8.5 Conclusions

We described an approach to joint object detection and pose estimation for
objects that can be represented by a number of roughly planar aspects. By
training several aspect models and learning a small set of representative poses,
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we obtained a model with high specificity and flexible choices for detecting
objects from various viewpoints. The cost is some extra annotation work as
well as increased detection complexity. We should also mention a limitation
of our method, it requires that the object be rigid with discriminative
aspects. The pose estimation in our method is especially well-suited to
block-structured objects such as buses.

For the bus category of the Pascal VOC 2011 dataset, our method
achieved better detection results than did the original deformable part-
based model while retaining a specific and compact model representation.
Beyond that, the proposed method also produces geometric information
pertaining to the detected object, for example, pose/layout estimation.
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