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Preface

This thesis is focused on geometric computer vision problems. The first part
of the thesis aims at solving one fundamental problem, namely low-rank
matrix factorization. We provide several novel insights into the problem. In
brief, we characterize, generate, parametrize and solve the minimal problems
associated with low-rank matrix factorization. Beyond that, we give several
new algorithms based on the minimal solvers when the measurement matrix
is either sparse, noisy or with outliers. The cost function and the algorithm
can easily be adapted to several robust norms, for example, the L;-norm
and the truncated L;-norm. We demonstrate our approach on several
geometric computer vision problems. Another application is in sensor
network calibration, which is also explored.

The second part of the thesis deals with the relative pose problem. We
solve the minimal problem of estimating the relative pose with unknown
focal length and radial distortion. Beyond that, we also propose a brute
force approach, which does not suffer from common algorithmic degen-
eracies. Further, the algorithm achieves a globally optimal solution up to a
discretization error and it is easily parallelizable. Finally, we look into the
problem of object detection with unknown pose.

The contents of the thesis are based on the following papers.

Main papers

e Fangyuan Jiang, Magnus Oskarsson and Kalle Astrém (2015) "On the
Minimal Problems of Low-rank Matrix Factorization" Accepted by /EEE
Computer Vision and Pattern Recognition (CVPR), Boston, MA, United
States, 2015

* Fangyuan Jiang, Olof Enqvist and Fredrik Kahl (2015) "A Combina-
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torial Approach to L;-Matrix Factorization” Published in journal of
Mathematical Imaging and Vision (JMIV), 2015

Fangyuan Jiang, Yubin Kuang, Jan-Erik Solem and Kalle Astrom (2014)
"A Minimal Solution to Relative Pose with Unknown Focal Length and
Radial Distortion" Published at Asian Conference on Computer Vision
(ACCV), Singapore, 2014

Fangyuan Jiang, Olof Enqvist and Fredrik Kahl (2013) "Improved Object
Detection and Pose Using Part-Based Models" Published at Scandinavian
Conference on Image Analysis (SCIA), Espoo, Finland, 2013

Fangyuan Jiang, Yubin Kuang and Kalle Astrém (2013) "Time Delay
Estimation for TDOA Self-calibration using Truncated Nuclear Norm
Regularization" Published at International Conférence on Acoustics, Speech
and Signal Processing (ICASSP), Vancouver, Canada 2013

Olof Enqvist, Fangyuan Jiang and Fredrik Kahl " A Brute-force Algo-
rithm for Reconstructing a Scene from Two Projections” Published at
IEEE Computer Vision and Pattern Recognition (CVPR), Colorado Springs,
CO, United States, 2011

Subsidiary papers

v

Dennis Medved, Fangyuan Jiang, Peter Exner, Magnus Oskarsson, Pierre
Nugues and Kalle Astrém "Combining Text Semantics and Image
Geometry to Improve Scene Interpretation” Published at /nternational
Conference on Pattern Recognition Applications and Methods (ICPRAM),
Angers, France, 2014.

Agnes Tegen, Rebecka Weegar, Linus Hammarlund, Magnus Oskars-
son, Fangyuan Jiang, Dennis Medved, Pierre Nugues and Kalle Astrém
"Image Segmentation and Labeling using Free-form Semantic Annota-
tion" Published at International Conference on Pattern Recognition (ICPR),
Stockholm, Sweden, 2014.
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Chapter 1

Introduction

Bilinearility is an essential relationship for problems in geometric computer
vision. In affine structure-from-motion, this bilinear relation comes from
the interaction between the camera motion and the 3D scene points. In
photometric stereo, the bilinearility stems from the interaction between
the different light sources and the surfaces of the 3D objects. In the non-
rigid structure-from-motion, the underlying linear shape basis and cameras
give the bilinear model. In sensor network calibration, the positions of
the transmitters and receivers also form a bilinear relation in the relative
distance matrix. When one collects the observations, for example, the
image coordinates in affine structure-from-motion, the intensity values
in photometric stereo or the point tracks in the non-rigid structure-from-
motion, and stack them in a matrix, the underlying bilinear relations lead
to a low-rank property on the measurement matrix.

To recover the camera motion and the 3D scene points in affine
structure-from-motion, or to figure out the directions of the light sources
together with the surface normal of an object in photometric stereo, or
to estimate the camera motion and the 3D shape in non-rigid structure-
from-motion, it requires us to find a low-rank matrix factorization given
an observation matrix. Without missing data or outliers, the problem can
be solved optimally using Singular Value Decomposition (SVD). However,
the missing data are very common due to occlusion or loss of point tracks.
Outliers cannot be ignored in many applications, which makes the low-rank
matrix factorization a hard problem.

State-of-the-art approaches either use a bilinear formulation and alter-
natively optimize between the two factor matrices given an initial guess, or
use a nuclear-norm based convex relaxation technique. As we will show in
the thesis, the bilinear formulation suffers from the local minima problem,
and finding a good initialization is almost as hard as the original problem in
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presence of missing values and outliers. On the other hand, the performance
of nuclear norm-based method is affected by the amount of missing data.
When the measurement matrix is very sparse, those methods will eventually
fail.

In the second part of the thesis, another key problem in geometric
computer vision, namely, the relative pose problem is studied. Given
two images of a scene, one interesting problem is to estimate the relative
motion between the two cameras. A minimal problem seeks a solution
using a minimal set of point correspondences. In the thesis, we provide a
minimal solution to the relative pose problem when camera has unknown
radial distortion and focal length. RANSAC bundled with minimal solvers
achieves robust estimation. However, RANSAC does not guarantee the
optimality and the minimal solvers can suffer from algorithmic degeneracy.
In the thesis, a brute-force algorithm is proposed to estimate the relative
orientation problem in a globally optimal way which can handle degenerated
or restricted motions. Incorporating the 3D pose estimation in the objection
detection is also explored at the end of the thesis.

1.1 Thesis Overview

The thesis is divided into the following chapters.

Chapter 2. Some preliminary knowledge and background are provided
to understand the models and the algorithms used in the thesis.

Chapter 3. The low-rank matrix factorization problem under the L;-
norm is studied in this chapter. If each column of a matrix X is treated as
a point in R™, then saying that the matrix X is of low rank is equivalent
to that all the data points lie in a low-dimensional linear subspace. The
problem can equivalently be treated as to find a low-dimensional linear
subspace such that when all the data points are projected onto the subspace,
the projection error is minimized.

In this chapter, we first give an optimal L-projection algorithm assum-
ing that the subspace is given. To find the optimal subspace, the special
case of hyperplane fitting is discussed first and an optimal algorithm is
given. For the general case, we explore the zero patterns in the residual
matrix and focus on the cases with sufficient zeros in the residual matrix
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such that the problem is well constrained and directly solvable from the
entries in the observation matrix which correspond to zeros in the residual
matrix. For low-dimensional problems, we show empirically the optimal
solution is very likely (more than 90%) to be one of those cases. We propose
both an exhaustive search and a random search algorithm to search among
the cases that are linearly solvable. The algorithm is evaluated on affine
structure-from-motion and photometric stereo problems.

Author contribution: The initial idea to investigate the problem is from
Fredrik Kahl. My contributions to this chapter include co-developing the
theory, implementing most of the algorithms and performing the experi-
ments. Each author of the paper contributes roughly the same to writing
the article.

Chapter 4. In this chapter, we further look into the minimal problems
of low-rank matrix factorization. The minimal problems are characterized
using an index matrix W to indicate if a certain element is missing or
present. The inspiration comes from the Laman graph in rigid graph theory,
which describes a family of minimal rigid systems represented by vertices
and edges of a planar graph. Using analogy of the Henneberg extension in a
Laman graph, we propose several extension schemes, namely Henneberg-%k
extensions to generate all minimal problems of a certain rank iteratively.
We further propose algorithmic solvers for different Henneberg extensions,
either linear or based on a simple polynomial solver. We demonstrate the
minimal solvers in both synthetic data and real applications, for example,
affine structure-from-motion and linear shape basis estimation. Our method
outperforms the state of the art in several cases when the measurement
matrix is sparse or contains outliers.

Author contribution: Kalle Astrom proposed the idea and we collabo-
rated on the theory and implementation of the solvers. I implemented the
block-partition algorithm and performed all the experiments.

Chapter 5. In this chapter, we illustrate one application of rank mini-
mization in sensor network calibration. In this problem, the receivers are
calibrated, which means the actual time when the signal arrives at a certain
receiver is measured. However, the transmitters are uncalibrated, in other
words, the time of transmission is unknown. If we could estimate the
unknown time of transmission, then the time duration the signal travels
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between a pair of transmitter and receiver is directly obtained, which can
be expressed as a distance measure to recover the location of each sensor.
In this chapter, we focus on estimating the unknown time of transmission
by encoding it into the measurement matrix. The low-rank constraint is
derived for the measurement matrix with unknowns. The problem is for-
mulated as a truncated nuclear norm regularization (TNNR) and optimized
using the alternating direction method of multipliers (ADMM).

Author contribution: My contributions to this chapter include improv-
ing the implementation and performing some experiments. Most of the
theoretical part and implementation were done by Yubin Kuang.

Chapter 6. Another key problem in geometric computer vision, the rela-
tive pose problem is studied in this chapter. The problem is to estimate the
relative rotation and the translation between two views given the feature
correspondences. If the camera is calibrated, that is, the intrinsic parame-
ters are known, then the well-known 5-point algorithm in Nistér (2004)
would solve the problem. If the camera is partially calibrated with only an
unknown focal length, then the minimal solver in Stewénius et al. (2005)
solves the problem. However, the case when both cameras have the same
unknown radial distortion and focal length still remains unsolved. Intro-
ducing both the radial distortion and focal length as unknowns leads to a
complicated polynomial system, with higher degrees and more unknowns
to solve. However, with the recent progress in Grobner basis methods,
solving such a complicated polynomial system becomes possible.

Author contribution: For this chapter, I implemented and performed
the experiments and wrote the article. Yubin Kuang contributed to the idea
and implementation of the solvers.

Chapter 7. Minimal solvers with RANSAC provide a robust way to
estimate the relative pose between two views. However, RANSAC does
not guarantee the global optimality. Besides, minimal solvers are known to
suffer from the algorithmic degeneracy. In this chapter, a brute force method
is proposed to estimate the relative pose between two views. With a non-
standard epipolar parametrization, the epipole of a camera is represented as a
vector on a unit sphere. By an exhaustive search on a discretized unit sphere,
it is possible to find the globally optimal solution up to a discretized error.
The algorithm does not suffer from any degeneracy and could handle several

4
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restricted motions, like planar motion. A parallel algorithm is proposed and
implemented using CUDA on a graphical card. It achieves state-of-the-art
result in the Hopkins 155 dataset for the motion segmentation problem.

Author contribution: My contributions in this chapter include devel-
oping and implementing the parallel algorithm on a graphical card using
CUDA. I have also contributed to the motion segmentation experiments
with spatial priors. Fredrik Kahl and Olof Enqvist developed the main
theory.

Chapter 8. In this chapter, we incorporate pose estimation in the object
detection problem. We annotate each side of a block-shaped object, instead
of a single bounding box on the whole object. Using richer annotations,
we can directly estimate the 3D pose of an object. With the estimated
poses, we could rectify the object and train an individual deformable part-
based model using Felzenszwalb et al. (2010b) for each of its distinctive
aspects. A small set of typical poses are also selected from the training set by
formulating it as a vertex-cover problem. The test images are transformed
using the typical poses, and detected with different aspect detectors. By
combining the detections, we simultaneously detect the object and recover
the object pose.

Author contribution: 1 did most of the work in this chapter, including
developing the algorithms, implementing the whole detection pipeline and
performing the experiments. Olof Enqvist contributed to the algorithms
and also writing.
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Chapter 2

Preliminaries

This chapter aims to provide the background and preliminary knowledge
necessary for the subsequent chapters.

2.1 Camera Model

A camera maps the 3D world to a 2D image. Such a linear mapping can
be represented by a matrix of size 3 x 4, which maps a 3D point to a 2D
point on the image plane, both in homogeneous coordinates. Most camera
models considered in geometric computer vision are specialized versions of
projective cameras.

In this thesis, we mainly consider two types of cameras: one is the
pinhole camera, which has a finite camera center; the other is the affine
camera, whose camera center is at infinity.

Pinhole camera model The pinhole camera model is based on central
projection. Consider a pinhole camera with camera center C' at the origin,
that is C' = (0,0,0)T. We denote the image plane 7. The principal axis
is the line from the camera center C' perpendicular to the image plane .
The principal point is the point where the principal axis intersects with the
image plane (see Figure 2.1).

To illustrate the central projection, consider a 3D point X = (x,y, 2)T,
its viewing ray X — C' from the camera center C' to X intersects with the
image plane 7 at point X. If we use f to denote the focal length, that is the
distance from the camera center to the image plane, then a simple equation
captures the essential relationship of the pinhole camera model

(2,y,2)" = (fa/z fy/=)". 2.1)
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Figure 2.1: The central projection

Using homogeneous coordinates, we obtain the following equation

fe/2] [f2] [f o] |”
fylz| ~ | fy| = foo0 g 2.2)
1 z 1 0 1

The matrix in (2.2) can be rewritten as P = diag(f, f, 1)[I|0], which
represents a simple pinhole camera that maps a world point at (x, y, z, nTt
to an image point at (fz/z, fy/z,1)T in homogeneous coordinates. In
general, a camera matrix P is a 3 X 4 matrix that maps a world point X to
its projection x on the image plane using the following camera equation

Ax = PX, (2.3)

where both X and x are in homogeneous coordinates and \ is the depth,
that is the distance between the camera center and the world point in the
direction of the principal axis. Note that the camera center C' is the unique
null space of the camera matrix P since PC' = 0.

Intrinsic parameters In (2.2), we assume that the origin of the image
plane is at the principal point. As this might not be the case in practice, we
should use the following general mapping that accounts for the offset of the

8



2.1. CAMERA MODEL

principal point
(@,9,2)" = (fa/z+po, fy/z +py)" (2.4)

Using homogeneous coordinates and rewriting the general mapping in a
matrix form, we have

xXr

fx/Z—l—pz fx—i—pmz f pz O y
fylz+py| ~ | fy+pyz| = f py O . (2.5)

1 z 1 O ]

If we separate the focal length f and the principal point (pz, py) from the
matrix in 2.5, this gives us the in#rinsic matrix, or called the calibration
matrix of a camera as

f Pz
K= f oyl - (2.6)
1

The complete calibration matrix also contains two extra parameters. One is
skew s, which is zero for most cameras with the x-axis and y-axis perpen-
dicular to each other. The other parameter is the aspect ratio o, which is
one for cameras with the same scale in both the z and y directions. This
gives the calibration matrix of a camera as

fs e
K= af pyl - 2.7)
1

In this thesis, we assume that camera models have zero skew and a unit
aspect ratio, thatis s = 0 and o = 1.

Extrinsic parameters In the above example, we assume that the coordi-
nate framework of the camera and the world coincide, that is, the camera
center lies at the origin and the principal axis points toward the z-axis.

However, in the general case, we need to define a mapping from the
world coordinate framework to the camera coordinate framework. This
mapping contains a rotation matrix, R € R3%3, and a translation vector,
t € R3, and is known as the extrinsic parameters of a camera.
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Assume that the camera center is C' in the world coordinate framework;
to map a point from its world coordinates X to its camera coordinates
Xcam we have

Xeam = R(X — C), (2.8)

where both X, and X are inhomogeneous coordinates. If we denote
t as the translation vector, that is t = —RC, then we have the following
equation

Xeam =RX +t. (2.9)
Using homogeneous coordinates, we have

Ax = K[R t] X. (2.10)

Radial distortion By now, we assume a linear camera model, that is, the
world point, the image point, and the camera center are collinear. However,
this collinearity does not hold for cameras with radial distortion. In that
case, the image points are distorted depending on their distance from the
center of distortion.

More specifically, radial distortion is modeled using the following equa-
tion

Xq = L(ry)Xuy, (2.11)

where x4 and x,, are inhomogeneous coordinates of the distorted and
the undistorted image points, respectively, and 7, is the radial distance of
x,, from the center of radial distortion. L(r,) is a distortion factor that
depends only on the radial distance, 7, which could be modeled using a
polynomial as follows

L(r) = 14 X7 4 X + X372 + . (2.12)

In practice, it is unnecessary to include higher-order terms in (2.12) as
the accuracy required in the feature matching is of the order of a pixel (see
Fitzgibbon (2001)). A common practice is to expand L(r) using Taylor
expansion, keeping only the first nonlinear even term, which gives

xg = (14 Mr)x,. (2.13)

10



2.2. EPIPOLAR GEOMETRY

To further render L(r) tractable for inverse transformation, a division
model is proposed by Fitzgibbon (2001) for estimating the undistorted
image points given the distorted ones, that is,

1

= — x4 2.14
1—|—)\rflxd ( )

Xu
This division model is widely used in the sequel work and is also adopted
in the thesis.

Affine camera In Chapter 3, we will use an affine camera model, that is
the model of a camera whose center is at infinity. This models the limit case
when one moves the camera center away from the object along the principal
axis, while simultaneously zooming in with the lens, which increases the
focal length to keep the object of interest the same size. When both the focal
length and the distance from the object increase, the image remains the
same size but the perspective effect is reduced (see Hartley and Zisserman
(2004)).

An affine camera is defined such that the third row of the camera matrix,
P,is (0,0,0,1). It is straightforward to demonstrate that points at infinity
are mapping to points at infinity for affine cameras.

2.2 Epipolar Geometry

The most interesting and fundamental problem in multi-view geometry
stems from the two-view case, in other words, epipolar geometry.

Consider two cameras with camera centers C'} and C as in Figure 2.2;
3D world point X is projected onto the image plane of two cameras at x;
and x3, respectively. The line going through C and C; intersect with the
image planes 7} and 7, at points €; and e;, respectively, which are called
epipoles. Point X; in one image corresponds to an epipolar line that goes
through e, in the other image.

Fundamental matrix Corresponding points from two views are related
using a 3 X 3 matrix, called a fundamental matrix. In other words, for a pair
of feature correspondences (X, X;) in homogeneous coordinates, we have
the following constraint

x1Fx; = 0, (2.15)

11
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Figure 2.2: Epipolar geometry

where F is the fundamental matrix with zero determinant, that is,
det(F) = 0. (2.16)

In Longuet-Higgins (1981), an eight-point algorithm is proposed for esti-
mating the fundamental matrix. In practice, the normalized eight-point
algorithm presented in Hartley (1997) is often a better choice as it offers
improved numerical stability.

Essential matrix If two cameras are calibrated, that is, the calibration
matrices K; and K; are known, an essential matrix E is used to represent the
epipolar constraint as follows

X1EX; =0, (2.17)

where X; and X, are normalized coordinates as in X; = Kflxl and X; =
K, 'x,. The essential matrix E has a determinant of zero

det(E) = 0, (2.18)

12



2.3. A POLYNOMIAL SOLVER

and has two equal non-zero singular values. This constraint is equivalently
formulated using trace as follows

1
EE'E — Etmce(EET)E =0. (2.19)

Once the essential matrix E is estimated, one can recover the relative
rotation R, and the translation t, from the following constraint

E = [t]«R, (2.20)

where []x is the cross-product form of a vector. The essential matrix, E,
has only five degrees of freedom since both R and t have three degrees of
freedom and there is an overall scale ambiguity. This means that we need at
least five point correspondences to estimate E.

However, due to the trace constraint, (2.19), solving E using a min-
imum of five points involves some nonlinear algebraic equations, which
makes it a more difficult problem than solving F. In Nistér (2004), an
efficient five-point algorithm is proposed for estimating the coefficients and
finding the roots of a tenth-degree polynomial in a closed form.

In Chapter 6, we also use an indirect way to find the essential matrix
E from the fundamental matrix F and the calibration matrices K; and X;.
The relationship between F and E is given as

E = KIFK;. (2.21)

2.3 A Polynomial Solver

Minimal problems In this thesis, we frequently deal with minimal prob-
lems in geometric computer vision. A minimal problem is formulated
using the minimum required constraints. One motivation for studying
and solving a minimal problem is that a smaller set of correspondences
is more likely to be outlier free. However, using minimal configurations
usually introduces complexity into a problem. For example, solving E using
a minimal five-point algorithm requires solving a tenth-degree polynomial,
whereas a non-minimal eight-point algorithm for estimating F only entails
solving a linear system. Fortunately, recent progress in the Grobner basis
method (see Byrdd et al. (2009)) makes it tractable and efficient to deal with
relatively large algebraic systems, meaning that some problems previously
considered unsolvable are now tractable.

13
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System of polynomials In the following, we only consider polynomial
systems with a finite number of solutions. Assume we have a polynomial
system H comprising the following equations

(2.22)

where x = {21, 22, ..., } and fi(x) € C[zy,- -+ , 2] are polynomials
in the following form

filx) = Z CaX?, (2.23)

that is, a linear combination of monomials. Each monomial x¢ is in the
form of a product

My g, (2.24)
where «v; is a non-negative integer fori = 1,...,m. Weuse C[z1, -+ , ]
or simply C[x] to denote the set of polynomials in {xy,- -,z } with

coefficients in the complex domain C
In algebraic geometry (see Cox et al. (2005)), the above polynomial
equations together generate an ideal/ denoted as

I=<fi, - fo>={D_mifi| pi € C[x]}, (2.25)
i=1

where { f1, f2, -+, fu} is called a generating set or generator of I. The ideal
I in (2.25) is a generalization of the polynomial equations in (2.22). One
reason we study ideals is due to the following property: A point, X, is a zero
of (2.22) if and only if it is a zero of I defined in (2.25).

An ideal is not uniquely generated. One could find another polynomial
system, H’, that generates the same ideal I but is different from H. Since
the zero set of a polynomial system is determined by the zero set of the ideal
it generates, this implies a way to solve polynomial system H by finding
another generator, H', that generates the same ideal but is simpler to solve.
The Grobner basis is such a generator.

14



2.3. A POLYNOMIAL SOLVER

Grobner basis  One basic problem in algebraic geometry is that of de-
termining whether a polynomial, f, is an element of a given ideal, I =<
fi,-++, fn >. This requires a polynomial division algorithm to divide f
by I. If the remainder of the division is zero, then f is in the ideal I.

Polynomial division in the univariate case is trivial and well-defined.
However, in the multivariate case, several difficulties exist. One first needs
to define an ordering of monomials for division to proceed. A simple choice
is the lexicographical ordering. For example, the lexicographic ordering of
{z,y, 2} is defined as > y > z. For more choices of monomial ordering,
see Cox et al. (2005). Another difficulty is that under a fixed order of
monomials, the division of a polynomial, f, by an ideal, I, is generally not
well-defined in the sense that the remainder depends on the generator one
chooses.

As long ago as 1965, Bruno Buchberger in his PhD thesis (originally in
German; see Buchberger (2000) for a recent English version), proposed a
special generator, called the Grinber basis after his PhD advisor, Wolfgang
Grébner, together with an algorithm, the Buchberger algorithm, to compute
it. The Grobner basis, denoted G, is a special generator of a given ideal, 7,
with the property that the multivariate division of any polynomial f by G
is well-defined. In other words, the division of f by G has a zero remainder
if and only if f is in the ideal I generated by G. To compute using the
Grobner basis, one also needs to specify the order of the monomials. It
turns out that using the degree reverse lexicographic order, (see Cox et al.
(2005)) gives the most efficient Grobner basis computation.

Buchberger’s algorithm provides an approach to computing the Grobner
basis of an ideal, I, starting from any generating set, H. Briefly stated, it
works by successively eliminating the leading terms of a pair of polynomials
in H. It provides a theoretical way to compute G in exact arithmetic terms.
However, successive elimination of leading terms could pose some serious
numerical challenges. In practice, the process quickly becomes numerically
unstable in floating-point arithmetic due to the round-off errors.

Action matrix Before further describing the action matrix, we first define
an equivalent relationship in a set of polynomials. We say that two poly-
nomials, f and g, are equivalent modulo I if f — g € I. This equivalent
relationship naturally groups a set of polynomials into equivalent classes,
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denoted by the coset [f] as
(fl=f+I={f+h:hel}. (2.26)

All these equivalent classes together form a quotient space, denoted C[x]/1.
Using the quotient space, one can find a compact representation of any
polynomial f € C[x]. More specifically, using the multivariate division,
any polynomial f divided by the Grobner basis G = {g1,--- , g:} could
be represented as

f=higi + -+ hege + f9, (2.27)

where fY9 denotes the remainder of f divided by G. One can demonstrate
that the equivalent class, or the coset [f], is in one-to-one correspondence
with the remainder f9. So one can use the remainder fY as a representative
of its coset [ f] in C[x]/I. It can easily be demonstrated that the sum of two

remainders, f9 and g9, yields remainder mg and that one can multiply
a remainder by a constant. In other words, quotient space C[x]/I is a
vector space. If we only consider polynomial systems with a finite number
of solutions, then C[x]/I is of finite dimensions: it has r dimensions, where
7 is the number of solutions to the ideal generated by G

Given a polynomial, p(x), consider the operation T, : f(x) —
p(x)f(x), where both p(x) and f(x) € C[x]|. The operation defines
a mapping from C[x]/ to itself. As the quotient space C[x]/I is a finite-
dimensional vector space, this mapping can be represented as matrix M,
which is called the action matrix. In the following, we only consider a single
variable, x;, that acts on f(x); that is, p(x) = x; and z; is referred to as
the action variable. We know that each polynomial f(x) can be represented
as f(x) = cTb(x), where c is the coefficient vector and b(x) is the vector
of basis monomials. Because the action of p(x) on f is independent of the
coefficient ¢, one can rewrite this as

p(X)b(X) = M, b(x), (2.28)

where X is in the zero set of f, thatis f(X) = 0. From (2.28), one can
recognize an eigenvalue problem of M, T the eigenvalues and eigenvectors
of which are p(x) and b(x), respectively, both evaluated on the zero set of

f(x).
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Now the remaining problem is to find the basis monomials. Looking
back at (2.27), one can easily see that the remainder, fg, contains no
leading terms of the ideal, I. Actually, remainders are linear combinations of
monomials, X%, that exclude the leading terms of I. The set of monomials
is linearly independent and can be regarded as a basis of C[x]/I. This gives
a way to generate basis monomials: One first computes the Grobner basis G,
then collects all the monomials that are not the leading terms of G, which
forms a set of basis monomials.

In practice, any set that includes those collected monomials can be
used as a basis set. A larger basis set usually gives better numerical stability.
To construct the action matrix, one needs to express those monomials not
in the basis set in terms of the basis monomials. This sometimes leads
to a numerically difficult situation if we only use a minimal set of 7 basis
monomials. The idea proposed in Byréd et al. (2009) is to move those
"problematic” monomials, which might cause numerical problems when
expressed using basis monomials, into the basis set to produce a redundant
basis set. In that case, we trade off an improved numerical situation against
the cost of solving a larger eigenvalue problem. The redundant set of basis
monomials is referred to as the permissible set, from which one could use a
column-pivoting strategy to select the minimal basis set. More details of
this strategy are described in the following section.

Polynomial solver in practice In practice, given a system of polyno-
mial equations, the first step is to use algebraic geometry software, such as
Macaulay?2 (see Grayson and Stillman (1993-2002)), to find the number,
r, of solutions. The software defines the dimension of the quotient space,
C[x]/I. The next step is to generate a redundant system of equations by
multiplying each polynomial by various monomials. This can be done sys-
tematically to generate a polynomial system of a given degree. A redundant
system is generated in order to obtain a sufficiently large set of monomials,
from which one can select a basis set, BB, such that the monomials not
in B can be represented using basis monomials; this is the premise for
constructing the action matrix.

Once we generate a redundant polynomial system, H, from the original
system, H, it can be expressed in the following matrix form

CTxp =0, (2.29)
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where C is the coefficient matrix and X is the vector of all monomials.
The next step is to choose an action variable, denoted z,, based on which
we partition the set of monomials, M, into three disjoint sets, namely,
the excessive set, reducible set, and permissible set, denoted £, R, and P,
respectively. The partition is based on the following rules:

¢ Permissible set P contains monomials that remain in set M after
multiplying them by the action variable, x,, that is, P = {x|z,x €

M.

* Reducible set R contains monomials not in permissible set P but that
are multiplications of the action variable by permissible monomials,

thatis, R = z,P \ P.

* Excessive set £ contains monomials that are in neither permissible

set P nor reducible set R, thatis, £ = M\ (PUR).

Note that a permissible set, P, is considered a redundant set that
contains the basis set, B. After reordering columns of the coefficient
matrix C and the elements of the monomial vector x based on the
above partition, we can rewrite (2.29) in the following equation

Xe
[Cg Cr Cp] xr | =0. (2.30)
Xp

Putting everything in matrix form enables us to use theories and tools from
numerical linear algebra. For example, eliminating the leading terms now
becomes a row operation on the coefficient matrix. We use a column-
pivoting strategy as in Byrdd et al. (2009) to select a better-conditioned
basis set, BB, as described below.

Since excessive monomials are not in a basis set, they can be eliminated
by transforming C into row echelon form using LU factorization, which
gives

Xg

XR| = 0, (2.31)

[Ua Cri1 Cp
0 Cry COpy
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where Ug; is an upper triangular matrix. By expressing X¢ using X and
Xp, one can remove the top rows, which involve &, and obtain a simplified
system. Another LU factorization of the simplified system gives

XR

!
[URZ Cpy —0. (2.32)
Xp

0 Cps

One now needs to select 7 basis monomials from P. In Byrod et al. (2009),
a column-pivoting QR is applied to Cp3 to find a numerically stable basis
set. Assume that permutation matrix II is introduced and applied to C'p3;
this gives a reordering of xp and the last 7 monomials are selected as the
basis monomials, that is xp = [xpr xp]. This gives

XR
Ura C, Cp B
|: 0 U7D3 033 Xp/ =0. (233)

XB

Now both monomials in R and P’ can be linearly expressed using mono-
mials in B in the following form

xr| _  |Ura Cp, ' [Cpa
ol ] e

from which the action matrix M), can be easily extracted. Eigenvalue decom-
position on M), as in (2.28) will give us the values of the basis monomials
evaluated at the zero set, from which the solution to the polynomial system
H is estimated.

19



CHAPTER 2. PRELIMINARIES

20



Chapter 3

Low-Rank Matrix

Factorization: L {-Norm and
Truncated L{-Norm

Low-rank matrix factorization problems have a wide range of applications
even outside computer vision. One application is data representation and
compression, where a large low-rank matrix can be represented as two
smaller factor matrices. Another application is recommendation systems.
In Koren et al. (2009), it is demonstrated that the matrix factorization
method is superior to the classic nearest neighbor method for predicting
users’ ratings of movies in the well-known Netflix Prize competition (see
Bennett and Lanning (2007)).

The following two chapters are devoted to the low-rank matrix factor-
ization problems. We focus on applications mainly in geometric computer
vision, for example, affine structure-from-motion, photometric stereo and
linear shape basis estimation. State-of-the-art approaches are either based
on alternating optimization using a bilinear formulation that depends on an
initial solution, or based on minimizing a convex relaxation of a rank func-
tion, for example, the nuclear norm of a matrix. However, the performance
of these methods either is affected by an increasing number of missing data
or depends on initial solutions, which in many cases are non-trivial to find.
In the following two chapters, we instead provide several novel insights into
the problem, together with algorithms that (1) handle a large number of
missing data, (2) are easily adapted to robust cost functions, and (3) require
no initial solutions.
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CHAPTER 3. LOW-RANK MATRIX FACTORIZATION: L{-NORM AND
TRUNCATED L1-NORM

3.1 Introduction

Given an observation matrix X € R™*", we are interested in finding a
rank-r approximation X of X. This can be formulated as

minimize || X — X]|
X A (3.1
subject to  rank(X) = r.

This is equivalently saying that the matrix X can be factorized into two
matrices U € R™*" and V' € R"*", which gives the following equivalent
formulation

CL ¥ _ .
minimize I uv] (3.2)

)

Related works The matter of missing data in low-rank matrix factoriza-
tion was originally addressed in Wiberg (1976), then under the L;-norm.
An algorithm independent of initialization was given in Jacobs (2001), but
the method is highly sensitive to noise. Still, it is suitable as an initial-
ization method if followed by an iterative, refinement technique. Similar
approaches to the structure-from-motion problem are studied in Tardif et al.
(2007); Kahl and Heyden (1999).

An early work that aims for robustness to outliers is Aanaes et al. (2002),
which uses iteratively reweighted least squares to optimize a robust error
function. A limitation is that the method requires a good initial solution,
which is often difficult to obtain. The theory of robust subspace learning is
further developed in Torre and Black (2003). In Buchanan and Fitzgibbon
(2005), a damped Newton method is proposed to solve the problem of
missing data. In Bue et al. (2012), a bilinear model is formulated under
the L,-norm with the constraint that the factor matrices should lie in
a certain manifold. The model is solved using the augmented Lagrange
multiplier method. In Ke and Kanade (2005), alternating optimization is
proposed for both the Huber norm and the L; norm. Yet another iterative
approach proposed in Eriksson and Hengel (2012) can be seen as extending
the method of Wiberg (1976), except for the L; norm. This approach
has been further generalized in Strelow (2012) to handle the projective
structure-from-motion problem. In Okatani et al. (2011), a damping
factor is incorporated into the Wiberg method. It is also experimentally
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demonstrated in Okatani et al. (2011) that Newton-family minimization
techniques using a damping factor lead to excellent global convergence
performance. The method presented in Zheng et al. (2012a) first solves
the affine factorization in the L; norm by adding an extra mean vector
to the formulation. Another recent algorithm, presented in Zheng et al.
(2012b), adds orthogonal constraints to columns of U and a nuclear norm
regularizer to V'; used with the augmented Lagrangian multiplier method,
it has achieved rapid convergence. All of these algorithms are based on
local optimization, and hence risk becoming stuck in local minima. The
cost function may indeed exhibit several local optima, as exemplified in
Figure 3.3. One notable attempt to solve the problem in a globally optimal
way is proposed in Chandraker and Kriegman (2008), which uses a branch
and bound method and proves that the globally optimal solution is obtained.
However, in practice, the method is restricted to simple problems for which
the number of variables in either U or V is very small; for example, there
are only nine variables in U in one of the experiments in Chandraker and
Kriegman (2008).

Alternative approaches to tackling the low-rank factorization or low-
rank approximation problems include minimizing a convex surrogate of the
rank function, for example, the nuclear norm. In Candés and Recht (2008),
the solution turns out to be very pleasing, as only a convex optimization
problem needs to be solved. The nuclear norm formulation entails solving
an SDP, which the methods in Candgés et al. (2009); Lin et al. (2009) try
to do efficiently. These approaches can handle application problems when
the rank is not known a priori, for example, segmentation in Cheng et al.
(2011), background modeling in Candes et al. (2009), and tracking in
Xiong et al. (2012). However, when applied to problems with known rank,
the performance of the methods based on the nuclear norm formulation is
typically worse than that of methods based on the bilinear formulation (see
Cabral et al. 2013). These methods assume that the missing data are sparse
and that the locations of missing data are random. However, for many
applications these assumptions are generally not fulfilled. For example, in
the structure-from-motion problem, the missing data are neither sparse
nor randomly located, but rather distributed densely in the off-diagonal
chunks. In Olsson and Oskarsson (2011), it is also noted that the convex
factorization approaches may break down due to violation of the sparsity
assumption in structure from motion.
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3.2 Problem Formulation

If we consider the problem in (3.2) under the L,-norm and assume X
is a complete matrix, then the problem is solved optimally by computing
a Singular Value Decomposition (SVD) of X. However, in practice, it
usually contains missing data and outliers in X, in which case, some robust
norms, for example, L;-norm or the truncated L;-norm are more adequate
choices.

Li-Norm The L;-norm of a matrix is defined as follows

1X1 = gl (3.3)
i

Note that the norms used in the thesis, if not explicitly specified, are all
referred to the "entry-wise" norm. It is different from the "induced" p-norm
defined using the vector norm which is

1 Xyl
[X1l, = sup P (3.4)
yer [lyll,
y#0

where the norm on the right-hand side of equation (3.4) is the vector
p-norm. Under the L;-norm, the problem in (3.2) can simply be stated as

minimize Z Tij —Zu- Vi
UV - | i - ik kj‘7 (35)
l’-]

Note in presence of missing data, the cost function in (3.5) should only
be summed over the indices (4, 7) that have measured values in X. We
make no requirement that the full observation matrix is available.

Truncated L;-Norm Using L;-norm, the penalty on the measurements
grows linearly, instead of quadratically with L,-norm. A more robust way
is to assign a bounded penalty to the measurements, which introduce the
truncated L;-norm defined as

Xy, = min(|z;;], ), (3.6)
i
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where € is a given threshold for truncation. Under the truncated L-norm,
the formulation is slightly modified as follows

minimize E min(|x;; — E Uik V|, €).

UV - (| ij ik k]|7 ) (3.7)
2,J k

The maximum cost for an outlier measurement is € under this model.

Subspace estimation To shed further light on the factorization problem,
one can view it as estimation of a low-dimensional subspace. Given data
x; € R™, i =1,---,n, the problem in (3.5) can be treated as that of
finding an optimal subspace

S={xeR"|x=Uv,veR"} (3.8)

defined as a matrix U € R"*" such that when all the data is projected
onto S, the sum of projection error ) _, ||x; — Uv;|| is minimized. With
this formulation, we always get a linear subspace containing the origin. In
many applications though, one is interested in finding an affine subspace

S={xeR"|x=Uv+t,veR teR"} (3.9

which is defined by U € R™*" and t € R™. For observations with
no missing entries or outliers, the translational component t is optimally
estimated as the mean of the observation vector x; under the L;-norm.
This is clearly not a good estimator in the presence of missing data or
outliers or under the L;-norm. In analogy to the formulation in (3.5), the
affine subspace problem can be formulated as

T
minimize E Tii —t; — Wik Vkq (3.10)
UVt .4’7 D ikt
%,] k=1
or in matrix notation

; (3.11)

minimize

77t

x-w gl

where X € R™*" U e R™*", V € R"™*™ and t € R™.
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The residual matrix R € R"™*", which will be used later, is defined
here as

R= ‘X— U t] [1 v 1” (3.12)

In summary, we are considering two different cost functions for the
factorization problem, one based on the Li-norm (3.5) and one based on
the truncated L;-norm (3.7), as well as two different versions, one viewed
as a linear subspace estimation problem (3.8) and one viewed as an affine

subspace problem (3.9).

3.3 L;-Projections
In this section, we will give some general results concerning the L1 -projections.

Theorem 3.1. For a given point x € R™ and a given r-dimensional affine
subspace S defined by a matrix U € R™*" and t € R™, the L,-projection of
x onto S occurs only along m — r directions.

This is equivalently saying that the remaining 7 directions are error
free, that is, 7 components of the residual vector x — Uv are always zero.
To understand the theorem, we illustrate two examples in 2D and 3D
space in Figure 3.1. In the left figure, a 2D point x is projected onto a
one-dimensional subspace, that is, a line (m = 2,r = 1). We can see that
the L;-ball of x meets the line on one of its vertices X,,, which means the
projection only occur along one directions, that is, y-axis in this case. The
right figure shows a 3D case (m = 3,7 = 1). The L;-ball of x usually
intersects the line on one of its edges, which indicates that the projection
occurs along two directions, that is, the y and z-axis in this case.

The above result is well-known in Mangasarian (1997); Brooks and
Dul4 (2013). It can be formally proved using linear programming theory.
However, it should intuitively be clear that the theorem is true. Writing the
cost function explicitly, we have

m T
mvinz |x; —t; — Zuikvk|, (3.13)
i=1 k=1
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Figure 3.1: L;-projection in 2D and 3D.

from which we see that it is a piecewise linear function of the v’s. Fur-
thermore, as the column vectors u, for k = 1,...,r form a basis for an
r-dimensional subspace they are all linearly independent. Hence the cost
tends to infinity as & — 00 and the minimum must be attained at a corner
point, that is, where the derivative is not defined in any direction. So, at
least r elements are zero in the residual vector at optimum.

Assume, for a while, that we know the positions of the 7 zeros of
Theorem 3.1. Since each zero gives a linear constraint on v we could easily
compute the L;-projection from this information. And even if the zero
positions are unknown, this technique can be useful if an exhaustive search
over the possible positions is performed®. A natural question is whether a
similar approach can be used to solve the full problem.

3.4 Hyperplane Fitting

If the dimension of the subspace 7 = m — 1 then we are dealing with a
hyperplane. According to Theorem 3.1, the projection of a given point
x € R™ onto a hyperplane occurs along a single direction. Moreover, this
direction depends only on the hyperplane - not on the point x. This result
is a direct consequence of Theorem 2.1 in Mangasarian (1997), but for
clarity, we state it as a theorem.

Theorem 3.2. Given a set of points X, € R™ and an (m — 1)-dimensional

"This is not the most efficient way of computing an L;-projection.
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Figure 3.2: Hyperplane fitting in 2D.

affine subspace S, there exist optimal Ly -projections of Xy, onto S such that all
occur along a single axis.

We illustrate the hyperplane fitting in 2D (m = 2) in the Figure 3.2. It
is obviously seen that the L;-projection of all points occur along a single
direction, either all along z-axis or all along the y-axis. The direction
depends on the one-dimensional subspace. More specifically, it depends on
the slope k of the line in the form of y = kxz + [ in this case.

If we know this axis, then we can solve for the hyperplane using linear
programming (LP). Hence optimal hyperplane fitting can be solved as a
series of m LP problems. Another option is indicated by the following
theorem.

Theorem 3.3. For an optimal affine hyperplane, there will be m — 1 rows of
zeros and one row with m zero elements in the residual matrix R in (3.12).
Provided we know the positions of these zeros, the hyperplane can be solved for
in closed-form.

Proof- According to Theorem 3.2, all the points will be projected along a
single direction. This means that the residual matrix R will have m — 1
rows of zeros. Without loss of generality, we assume the top m — 1 rows of

T

R are zeros, which gives a partition of R = [0, #]T where £1 is a row vector.
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Applying the same partition to X, U and t leads to the following equation

o] _[X] _[U ][ V
H = [x} B L& f] [1...1]' G149
Note the partition of R € R"*™ yields a zero matrix 0 € R("™~1*" and
a row vector I € R".
There exists a coordinate ambiguity in the factorization as we can always
Q@ q

reparametrize [U, t] using a matrix Q) = [O )

] since we have

v

vl

which means we can always reparametrize (3.14) such that U =T and

1] =[U t]Qo™! L .V 1] . 615

t = 0. The reparametrization gives the solution V' = X, that is,

A-G-G A0 e

The remaining cost ||| is now a function of @ and ¢ which is piecewise
linear. If the columns of X span R™ then the cost tends to infinity as
| [t €] |y = oo. Hence the piecewise linear cost ||F||; attains its mini-
mum at a corner point with 1 zeros in the residual vector and if we know
the zero positions, then we can estimate the unknowns in @ and ¢ by solving
linear equations.

If on the other hand the columns of X do not span R, then the
complete data matrix X has to lie in a subspace of R"™. So, for the optimal
hyperplane, all residuals are zero. Using m of these we can compute an
optimal hyperplane.

O

As an example, consider the case of line fitting to a set of points {x;, 7 =
1,...,n} in R%. For an optimal line, the residual matrix R € R**"™ has a
full row of zeros in either x or y coordinates.

Note that the final estimation of @ and  could be solved more efficiently
using LP, see Algorithm 1. However, this does not generalize to truncated
Li-norm. In that case, one needs to do an exhaustive search based on
Theorem 3.3 or a random search as will be described later.
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Algorithm 1 Optimal hyperplane fitting (HF)

Given an observation matrix X, solve for the optimal affine subspace (U*,t*) and
the projection matrix V'*

1. Initialize the best error €* = oo

2.Fori=1tom

3. Set the index set P for row partition as P={1,2,...,m}\{i}
5. Let X = Xp and x = Xy, in (3.16)

6. Solve ming 7 |||, in (3.16) using LP

7. Calculate the L-error €

8 Ife < €*

9. Us=Ut*=t,V*=Vande* = ¢

10. return U*, t*, V* €*

3.5 The General Case

A linear subspace defined by U € R™*" has d = (m — 7)r degrees of
freedom (mr parameters defined up to an r X 7 coordinate transformation).
Similarly, an affine subspace defined by U € R"™*" and t € R™ has
d = (m —r)(r + 1) degrees of freedom. One can see that by fixing the
gauge with a reparametrization in U and t as U = [é] and t = [ﬂ,
where U € R™7)*" and § € R™", see (3.15). For example, when
r = m — 1 as in the previous section, there are only m degrees of freedom
of the affine subspace, and these m unknowns can be determined in closed-
form from the m extra zeros in the residual matrix, see Theorem 3.3.

In the general case (r < m — 1), there may be fewer zeros in the residual
matrix than necessary to solve directly for the subspace. Moreover, even
with sufficiently many zeros, the structure of the residual matrix might not
allow us to linearly solve for the parameters. Despite these facts, similar
ideas can be used to achieve state-of-the-art results and very often to find
an optimal L;-factorization. The basis will be the following type of points:

Definition 3.4. A point (U, t) representing an affine subspace in parameter
space is a principal stationary point if the residual matrix has d extra zeros for

the optimal V.

By extra here is meant the additional zeros to the r zeros present in
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every column of the residual matrix according to Theorem 3.1. Note that
when 7 = m — 1, then there are always d = m extra zeros and hence
all optimal subspaces U* to the L;-factorization problem are principal
stationary points (Theorem 3.3).

Empirically, we have made the following two observations concerning
L;-optimal factorizations:

- In practice, the optimal subspace for L-factorization is often a
principal stationary point.

- Even if the optimal subspace is not a principal stationary point, there
is often a principal stationary point which is close to the optimal one.

How common are principal stationary points? To give some insight
into this question we considered a low-dimensional problem in order for
brute-force search to be applicable. More precisely, we considered fitting of
a r-dimensional subspace in R™.

To generate the data, we first randomly generate 7 orthonormal basis
u; fori = 1,2,--- ,r in R, which constitutes the columns of ground
truth subspace U. The random data