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Abstract 

Multimedia has become one of the cornerstones of our 21st century society and, when 
combined with mobility, has enabled a tremendous evolution of our society. However, 
joining these two concepts introduces many technical challenges. These range from having 
sufficient performance for handling multimedia content to having the battery stamina for 
acceptable mobile usage. When taking a projection of where we are heading, we see these 
issues becoming ever more challenging by increased mobility as well as advancements in 
multimedia content, such as introduction of stereoscopic 3D and augmented reality. 

The increased performance needs for handling multimedia come not only from an ongoing 
step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase 
in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 
AVC) that adds to the computational load increase. To meet these performance challenges 
there has been processing and memory architecture advances (SIMD, out-of-order 
superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile 
domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and 
on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in 
requirements for mobility, placing higher demands on battery-powered systems despite the 
steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-
terms of battery capacity versus performance advances. 

In order to make optimal use of these architectural advances and to meet the power 
limitations in mobile systems, there is a need for taking an overall approach on how to best 
utilize these systems. The right trade-off between performance and power is crucial. On top 
of these constraints, the flexibility aspects of the system need to be addressed. All this 
makes it very important to reach the right architectural balance in the system. 

The first goal for this thesis is to examine multimedia applications and propose a flexible 
solution that can meet the architectural requirements in a mobile system. Secondly, propose 
an automated methodology of optimally mapping multimedia data and instructions to a 
heterogeneous multilevel memory subsystem. The proposed methodology uses constraint 
programming for solving a multidimensional optimization problem. 

Results from this work indicate that using today’s most advanced mobile processor 
technology together with a multi-level heterogeneous on-chip memory subsystem can meet 
the performance requirements for handling multimedia. By utilizing the automated optimal 
memory mapping method presented in this thesis lower total power consumption can be 
achieved, whilst performance for multimedia applications is improved, by employing 
enhanced memory management.  This is achieved through reduced external accesses and 
better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for 
predicting multimedia memory accesses for a given architecture. 
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Chapter 1 

1Introduction 

In this chapter, we present a brief overview of the context and motivations behind the 
work presented in this thesis. 

1.1 Background 
Processor and memory architectures are fundamental components when exploring the 
design space in embedded and other resource limited systems. This resource limitation 
is in terms of power and energy as well as performance and cost, with the consequence 
of being a never ending trade-off between these factors. The ultimate goal is to get 
good enough performance in a reasonable power envelop. Taking a historic look at the 
evolution of a category of battery operated embedded systems, mobile terminals or 
handset, one can see an interesting transformation. These devices started as voice only 
with very limited computation performance, where at best they included a 
microcontroller, such as Zilog Z80 (8-bit microprocessor). This small processor was 
combined with other hardwired ASICs to handle the GSM communication protocol. 
These systems where often build on a printed wire board (PWB) where discrete ASICs, 
and other radio components where combined into a handset. The next generation of 
devices saw an integration of the digital discrete components to baseband ASICs and 
the radio components into RF ASICs. The digital basebands often included CPU, DSP 
and accelerators.  

Around the time when second generations of mobile SoCs were introduced into 
handheld devices, the mobile CPUs were ARM7s and ARM9s, which became the 
dominant choice of processor, with their 32-bit RISC architecture and small caches. 
These processors provided enough processing power to not only handle the increased 
needs from the GSM data protocol, but also to handle the introduction of larger 
displays, multichannel audio, etc. The next big step was the introduction of many 
CPU/DSP systems with more memory, where each processor handled a predefined set 
of tasks and applications. These systems have further evolved into heterogeneous 
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multicore systems with  symmetrical multi processing (SMP) cores, multiple DSPs, 
GPUs and multilevel heterogeneous memory system (caches and dedicated memory) 
where the entire systems is connected through a high bandwidth interconnect network-
on-chip (NoC). Adding to this SoC system complexity and exponential increase in 
memory bandwidth needs the introduction of technologies, such as wide IO will create 
challenges in other areas, such as silicon technology maturity, manufacturing, 
standardization and overall costs. 

Multimedia is an ever increasing focus area for all embedded systems on handheld 
devices. This multimedia centric view will drive development of multitude of 
applications that will manipulate multiple steams of real-time data, creating high 
computational demands resulting in increased system ramifications. 

When combining the complexity of multimedia applications and resource limitations of 
embedded systems, the resulting system design provides some very interesting 
challenges, ranging from hardware and software partitioning to creating new system 
bottlenecks requiring handling of new trade-offs. Thus in order for achieving an 
optimal system design, a systematic exploration of the design space is needed.  

In this thesis, we address design space exploration and analyze system requirements for 
handling multimedia applications in handheld embedded systems, such as advance 
smart-phones or PDAs. The first notion to take into account is “handheld” that 
basically means battery driven with all the constraints and limitations it poses on the 
system. The second notion is “embedded system” which means working in a resource 
limited environment. Sustained high computational performance cannot be achieved 
due to lower available power and energy budget compared to desktop system.   

Audio and video processing are two major functionalities in multimedia applications 
today. They have many similarities, such as working on data streams with set of 
consecutive processing steps. Audio and video enhancements are the driving force 
behind many multimedia applications. Providing optimized system architecture to 
enable these processing needs will provide a well balanced multimedia embedded 
system.  

Almost all multimedia algorithms work solely on fixed integer point arithmetic. At the 
same time video and audio differ in terms of computational complexity, in terms of 
algorithms and amount data being processed. Audio applications have come further in 
their evolution and maturity compared to video standards, where the algorithms used 
are often more computationally complex. The newer an application standard is, the less 
development time has been put in, making it less optimized, thus often requiring 
heavier computation and putting more demand on the memory architecture. Another 
aspect one needs to take into account is that applications not only evolve to more 
complex applications but can also move “back” to less complex, when introducing new 
features and other enhancements, such as post processing, etc. This increases the 
demand for the being able to handle and reuse generated data even further. Audio 
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applications have come further in their evolution, making it possible for having 
significantly more post processing enhancements compared to the video applications. 
In the case of video, many of the fundamental issues for handling data has not been 
fully solved, thus focusing on post processing is not where the main research effort has 
been up now.  

As mentioned previously, in order to handle multimedia, there is a need for system 
design that is well balanced both in terms of power as well as performance. At the same 
time it gives the desired flexibility for being able to handle different algorithms and 
different multimedia applications. The two hardware components which are critical for 
achieving a well balanced embedded system are processing and memory demands. One 
needs the computational power to run the algorithms, but at same time the memory 
design needs to be able to feed the processing elements. The required processing differs 
significantly between audio and video applications. In some cases this can be a 
magnitude higher for video compared to audio, for example when comparing eAAC+ 
audio codec with H.264 video codec. The memory requirements differ both in terms of 
footprint but also in terms of bandwidth. 

The power consumption is also a key factor along with performance for battery 
operated devices. When it comes to power consumption it is not only processing but 
also memory that needs to be considered. Often design decisions are made where the 
focus is on reducing the processing power consumption. This can be a costly approach 
as this is often paid for in increased memory traffic, potentially resulting in worse 
overall power consumption. Good designers need to take into account the entire system. 

When it comes to processing and the potential speedups there are two approaches for 
multimedia applications. The first and most used for multimedia is data level 
parallelism (DLP). The other much less used in multimedia is instruction level 
parallelism (ILP). The straightforward approach would be to parallelize all potential 
available parallelism in the application by widening the data paths and increasing the 
number of processing elements.  This however is not the most efficient usage of silicon 
nor is it power efficient, as not all parallel parts of the application are heavy 
contributors to the overall computational workload. The power consumption increase 
comes from over-usage of the memory system, interconnects and external memory 
accesses. Additionally, the complexity of multimedia algorithms could result in even 
worst overall performance as it is very easy to get penalized by wrong partitioning due 
to increased memory accesses.  

There are a number of ways to get the DLP in multimedia. Single instruction multiple 
data (SIMD) is one common approach that can be utilized. This is often designed as 
instruction set extensions to vector instructions existing processor designs. Another 
approach is using digital signal processors (DSPs). Yet another approach is to increase 
the number of processor cores, such as in symmetrical multi-processors (SMPs). 
Depending on the multimedia application algorithm and data usage one approach 
maybe more suitable than another.  
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In the case of ILP, both very long instruction word (VLIW) and superscalar 
architectures are often used. The concept of superscalar design basically means by 
increasing the width of the processor and enabling multi instruction dispatch, and 
execution in every clock cycle thus increasing the overall throughput of the processor. 
In the case of VLIW architectures, multiple 32bits instructions are combined in to a 
single VLIW instruction which could be up to 128- or even 256-bits long.   

Memory design for multimedia is very much connected to application algorithms and 
their behavior, as these factors directly control the access patterns and bandwidth 
requirements. The memory designs range from homogeneous designs with fully 
dedicated memory, to fully cache based design or heterogeneous memories, utilizing 
multilevel memory hierarchy. Depending on the chosen architecture, there are different 
trade-offs to be made, involving memory sizes, types of memories, number of levels in 
the hierarchy and number of memory ports. When it comes to type of memories there 
are different caches with different associativity and policies. There are also scratch pad 
(SPM) or tightly coupled memories (TCM), called in ARM architectures, and content 
addressable memories (CAM). The SPM is memory design often used in real time and 
multimedia applications due to its low latency and predictability, as SPM are managed 
by software.  CAMs are on the other hand used when memory speeds are essential, for 
example in high-speed network switches, as CAMs can search the entire memory in a 
single operation. The CAMs work in “reverse”, basically unlike standard memory, in 
which the address is given and then the content is returned. In CAMs the data is 
supplied and the memory returns the address if the data is in the memory.  

This thesis answer the following questions: how can we in an optimal way map data 
and instructions to a particular architecture memory? This is combinatorial problem 
with discrete set of solutions, where we are looking for the best solution for a specific 
architecture given a set of memory objects. There are different techniques for solving 
this, either by using heuristics or complete methods, such as constraint based 
approaches.  

This thesis also addresses another important question, the exploration of the processing 
and memory design for any given multimedia applications. The important aspect of the 
multimedia application when looking into system architecture using design space 
exploration is the abilities of the application itself. Basically evaluate the application in 
realistic fashion with real world needs so that simulations are as close to reality as it 
can be. This can be very difficult to achieve, given the real world complexities. So it is 
very important to use real state-of-the-art world multimedia application for design 
space exploration. 

1.2 Motivation 
Multimedia has become one of the most important factors in our day to day lives. It has 
been one of the main driving forces behind the last century’s rapid evolution of human 
society. What started in the beginning of the last century as rudimentary moving 
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pictures and recorded music has evolved in to today’s high definition multimedia 
content. On top of this evolution there has been as accelerated exponential grows in the 
last decades that involves the concept of mobility. A notion that enables anyone to use 
and generate multimedia contents any where at anytime.  

The question to ask is what technical advancements have made this possible? What 
kind of technical trade-offs were made to get to this point? Also what are the hurdles 
and challenged that lie ahead?  An “always connected” society is the major reason for 
this growing multimedia appetite, major reason being the mobility and flexibility that 
the devices offered. This led to a consumer appetite for non-stop multimedia content. 
The device performance, usability and durability were also a huge contributing factor 
for this growth. This phenomenon involves a wide variety of reasons from cultural to 
technical reasons, in this thesis we focus on how multimedia content is handled, with 
emphases on processing and memory for handheld battery powered device. The target 
is to be efficient in terms of power as well as performance with as flexible architectures 
as possible. This is a classical computer architecture trade-off problem where the task is 
to find the right balance when taking in all different factors into consideration. 

In the case of processing, as stated earlier, multimedia applications have specific 
properties that exhibit various parallelisms. These are not only data level parallelism 
DLP but, depending on the specific algorithms, also instruction level parallelism ILP.  
In order to get the most out of DLP and ILP there are a number of techniques and 
architectures that can be utilized, such as SIMD, VLIW, SMP, superscalarity. The 
architecture we focus on in this work was SIMD together with superscalarity, as this 
provided both flexible architecture and gave enough performance in the right power 
envelop for handling multimedia.  

As mentioned in the previous section, there are many options for memory architectures 
for multimedia. They range from straightforward cache based to more complex 
solutions with different dedicated memory buffers and combinations of the two. 
Keeping in mind that not only performance but flexibility of being able to execute 
different kind of applications, both multimedia and others, are intended to use the same 
memory system, a balanced memory system was necessary. The architecture choices 
and the complexity of multimedia applications raise the question, what memory 
architecture suites the multimedia scenario? This can be done with many different 
approaches and methods. In this thesis we propose a systematic approach to find an 
optimal mapping of data to heterogeneous memory architecture, consisting of a level1 
SPM with multilevel cache hierarchy.  

Looking at different approaches for optimization, and specifically optimal mapping of 
data, one of the best known is integer linear programming, were the problem is 
modeled using integer valued variables and linear inequalities. Another approach is 
heuristic based algorithms. The approach chosen in this case is based on constraint 
programming (CP), where by using constraint specific reasoning methods, a problem is 
formalized and a model of the problem is created. This is then used as input to a solver 
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that can find one or many solutions for the specified problem. The constraint solver 
used in this thesis was JaCoP [1]. The problem we are solving here can be broken down 
to a combinatorial optimizations knapsack problem. The work in this thesis is one of 
the first using constraint programming for this kind of problems. The main benefit 
when using CP compared to other method is that we can state the problem in a flexible 
way and obtain the optimal data mapping solution for specific memory architecture.  

1.3  Structure of the thesis 
The thesis comprises of two parts. The first part gives an overview of the area, 
background and motivation behind the work. The second part consists of collection of 
published papers. Chapter 2 presents the challenges in embedded system with 
multimedia. Chapter 3 discusses related work and in chapter 4 the published papers are 
briefly presented. Chapter 5 and 6 gives a list of contribution, conclusions and future 
trends.   
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Chapter 2 

2Challenges with Multimedia Applications in 
Embedded Systems  

 

2.1 Embedded Architectures for Video and Audio 
There are many challenges that lay ahead when designing today’s multimedia 
embedded systems. These range from designing a system that needs to work in a 
diverse environment, where frequently many different types of tasks and applications 
need to be handled, to being at the same time designed with power limitations of 
battery operation. These challenges are often contradicting with constraints, such as 
performance and power consumption but also cost and time to market. Breaking down 
these constraints, certain design areas stand out, such as processing and memory. 

The different architectural approaches for handling the processing and memory 
requirements depend on the selected applications, such as video, graphics and audio. In 
this thesis, we have focused on video and audio applications, more specifically on 
block based video codecs, MPEG-4, H.263 and H.264. For audio we have focused on 
compression codec eAAC+, which is a sub-band codec operating in the frequency 
domain. 

An important factor when doing research on design space exploration in the embedded 
domain, especially for multimedia applications, is to use realistic applications 
representing industry state-of-the-art implementations. It cannot be emphasized enough. 
This is important both in terms of avoiding kernels for system evaluations but also 
avoiding sub-optimal code, which is often the case in reference applications provided 
by standards. In most cases design choices made, based on these applications or kernels, 
are not relevant or even erroneous. Often the focus lays in speeding up parts of 
applications or kernels, which at first glance seem too computationally intensive. 
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However in real applications these parts can been solved by more sophisticated 
algorithms with less computational intensity or even be avoided altogether. 

The main architectural solution that has been proposed in embedded domain, targets 
the inherent parallelism present in multimedia applications. In terms of architectures for 
processing, these solutions range from using standalone dedicated hardware to using 
fully software based solutions based on general purpose processors (GPP). The 
memory solutions used in embedded domain for multimedia applications address 
mainly throughput issues that are caused by bandwidth limitations. The solutions 
utilize different on chip memory designs, such as hardware controlled buffers, different 
type of caches and scratch pad memories (SPM). 

In this thesis, the aim has been to address multimedia (video and audio) applications for 
processing and memory addressing constraints that exist in embedded domain. This has 
also included a need to propose a method for optimal mapping of memory objects to a 
specific architecture.    

2.2 Multimedia Processing 
The digital workload for handheld devices, such as Smartphones, including all control, 
data and signal processing activities, is nearly 100 Giga operations per second (GOPS). 
This workload increases by an order of magnitude every 5 years [2]. Keeping in mind 
that all these functions have to run for hours on a single battery charge, and standard 
Li-ion battery has around 4.5Wh of energy (1200mAh at 3.7V), this is extremely 
challenging. This basically means we have a tight total power budget, not taking 
thermal issues into consideration. The cellular transmitter (GSM, UMTS or LTE) takes 
on average 1-2 W. The rest is what is available for the digital workloads. Comparing 
the CPU in a Smartphone with a PC, it has to run more than two orders of magnitude 
more power efficient, 0.2 W vs. 30W [2]. 

Looking at processing 100GOPS, the thought of using a single processor to handle this 
is out of a question as it implies running a processor at 100GHz! Looking at the other 
side of running 1000 cores at 100MHz is also unreasonable with all the overhead traffic 
and costs. The only way forward is using a heterogeneous architecture based on 
programmable cores and hardwired functional accelerators. 

Multimedia applications are major contributor to the 100GOPS workload. These 
applications put huge demands in terms of processing on any system, especially on 
resource constrained embedded systems. Regardless whether these systems are 
hardwired or fully flexible, the entire system (computation units, buses, memories) is 
often pushed to peak performance edges. What kind of processing solution is chosen is 
often a trade-off between required performance, flexibility, available power budget and 
available technology.  

All processing solutions address parallelism present in multimedia applications. This 
can be achieved through different approaches, such as dedicated hardware solutions, or 
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programmable solutions, where they can either be homogeneous architectures, such as 
multicore architectures, or heterogeneous systems, where programmable cores are 
combined with hardwired solutions. Further a heterogeneous system where dedicated 
hardwired solutions are present can either be loosely or tightly coupled. What is meant 
by loosely coupled is where, for example, a system is designed around a general 
purpose processor (GPP) with dedicated hardwired blocks for specific accelerations. A 
tightly couple system is a GPP enhanced with instruction set architecture (ISA) 
extensions, such as SIMD style extensions.  

Dedicated hardware solutions for multimedia are often designed to perform single or 
very few specific tasks. They can range from performing parts of computationally 
heavy algorithms, to executing entire applications, such as encoding a specific H.264 
bit stream. The key here lay in performing a predefined task with high performance but 
at expense of flexibility. 

Using either general purpose processors (GPP) or digital signal processors (DSP) is a 
common approach for achieving flexibility with limited performance requirements. 
GPPs are designed traditionally to enable efficient execution flow and DSPs are 
designed to perform well for constant-rate data flow applications. Together, GPPs and 
DSPs can also be combined to processing engines for a wide variety of multimedia 
applications and products. These processor based solutions can be used for wide variety 
of applications, but their flexibility comes at a cost of being limited in terms of 
performance. For example, in the video encoding and decoding, when the resolution is 
above a certain level, such as high definition (HD), the performance is not enough.  

An approach which can provide better performance compared to above solution is 
when GPPs are combined with dedicated hardware in a loosely coupled heterogeneous 
architecture. Here specific computationally heavy blocks are connected together with 
GPPs via buses or interconnects. This is a very simple and straightforward hardware 
approach but has limitations in terms of flexibility. This hardware simplicity comes at 
expense of software complexity, making programmability of these systems difficult 
and many times inefficient due to potential hardware software overhead costs and 
traffic. 

In order to keep high flexibility but provide multimedia capability, microprocessor 
manufacturers have introduced tightly coupled heterogeneous extensions to their 
instruction set architectures (ISA) that enhance the performance of multimedia 
applications. These ISA extensions operate in a SIMD fashion to exploit data level 
parallelism (DLP) in multimedia applications. SIMD enabled microprocessors increase 
the processing capability while offering the low power consumption required by 
handheld, battery powered devices.  

Multimedia applications typically operate on narrow words (primarily 8- and 16-bits) 
and spend a significant portion of execution time in loops that have a high degree of 
processing regularity. Packing several small data elements into a wider data-path 
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enables simultaneous processing of separate data elements. Such SIMD instructions are 
available for several arithmetic and logic operations in addition to special media 
operations, such as sum-of-absolute differences (SAD). SIMD capabilities enable more 
efficient software implementation of high-performance media applications such as 
audio and video codecs. Processors, such as ARM NEON, MIPS MDMX and Intel 
Architecture MMX and SSE, provide SIMD style instructions.  

For example, ARM as one of the major embedded processor providers, introduced 
NEON [3], a combined 64- and 128-bits wide general purpose SIMD extension to the 
ARM instruction set architecture to accelerate multimedia applications, such as video 
and audio encoding/decoding. NEON is tightly coupled with the ARM core providing 
single instruction stream with unified view of memory. NEON supports 8-, 16-, 32- 
and 64-bit integer and single-precision (32-bit) floating-point data and operates with up 
to 16 operations at the same time. NEON is capable of delivering between 60-150% 
performance improvements for specific multimedia codecs [3].  

Another closely related aspect to take into account regarding multimedia processing is 
that most research has been focusing on the data centric parts of the applications. This 
has resulted in neglecting of the potential parallelism available in the control parts. The 
importance of these parts is becoming even more critical as multimedia applications are 
evolving towards more advance control dominated applications [4]. This trend can, for 
example, be seen in the evolution of video codecs, MPEG2, MPEG4 and H.264. This 
potential parallelism can be exploited by instruction level parallelism (ILP) through the 
usage of different architectures, such as very long instruction word (VILW) and 
superscalarity.   

As mentioned in the previous section a specific solution depends very much on the 
selected applications. More specifically the processing of video and audio has 
similarities but also many differences. Audio is a data dominated application making it 
easily parallelized, which is often performance enhanced by parallel architectures, such 
as DSPs, SIMD and parallel dedicated hardware. Video on the other hand is not as 
strait forward as audio in mapping. It has parts that are data dominated and have 
significant parallelism, such as block filtering and motion estimation. But when it 
comes to compression and decompression this is control dominated [5].  It is essential 
to understand which type, data or control dominated an application is.  

Processing needs differ therefore significantly between audio and video. Audio 
applications have significant lower processing, almost a magnitude lower, less than 100 
Mega cycles, compared to video processing. There are two main reasons for this, first 
the amount of data being processed is significantly lower for audio applications. 
Second audio applications work on one dimensional data arrays making audio 
applications much easier to process and predict. Video applications can be seen as two 
dimensional arrays.  

In the subsequent sections we will discuss, in more details, video and audio processing. 
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2.2.1 Video processing 
The main multimedia video trend in handheld, battery operated devices is an increased 
complexity of the video codecs, an increased number of supported video codecs and an 
increased resolution for both cameras as well as displays. This has led to a significant 
increase in processing demands.  

Processing requirements for video applications are significantly higher than audio 
applications as the amount of data needed to be processed is higher. In addition, the 
compression efficiency of newer codecs, such as H.264/AVC, has significantly 
improved. This has come at a cost of computational complexity and memory access 
bandwidth. For example, for HD720p video (1280x720@30fps, ±128-pel search range, 
2 ref frames) encoding the required off-chip memory bandwidth with level C scheme is 
1071MByte/s [6]. Comparing the number of pixels for a standard definition (SD480p) 
to a full high definition (HD1080p) this about 6 times more pixels per frame for the HD 
(350000 vs. 20000000 pixels/frame). This equals to a processing need of over 3200 
Mega-cycles/s for HD1080p and 550 Mega-cycles for SD480p for a H.264 video 
stream. 

To understand better video codecs functionality and their processing requirements we 
will discuss H.264 codec in more details. The main blocks in H.264 encoder and 
decoder are illustrated in figure 1. As seen in figure 1 the entire H.264 decoder is a 
subset of the H.264 encoder. The major processing demanding blocks are motion 
compensation and motion estimation. Other parts in H.264 encoder include the 
selection between intra- and inter-coding for block-shaped regions of each picture. 
Intra-coding uses various spatial prediction modes to reduce spatial redundancy in the 
source signal for a single picture. Inter-coding (predictive or bi-predictive) uses motion 
vectors for block-based inter-prediction to reduce temporal redundancy among 
different pictures. Motion vectors and intra-prediction modes may be specified for a 
variety of block sizes in the picture. Finally, the motion vectors or intra-prediction 
modes are combined with the quantized transform coefficient information and encoded 
using entropy code such as context-adaptive variable length codes (CAVLC) or context 
adaptive binary arithmetic coding (CABAC).  

Consider for example, parallel arithmetic instructions, such as sum of absolute 
difference (SAD), a multi-cycle operation that is often pipelined for accelerating 
motion estimation in video compression codecs. These instructions are used to perform 
parallel half-word or byte wise arithmetic operations. This is used in motion estimation, 
which is one of the most critical components in a video coding system, and it also 
dominates the major part of the computation complexity and memory bandwidth. 
Depending on implementation, in straightforward dedicated hardware implementation, 
motion estimation is an I/O bound problem rather than a computation bound one [7]. 
Looking at motion compensation the most computationally demanding parts are half-
pixel interpolation, which is done by using a 6-tap FIR filter, and quarter-pixel 
interpolation is done by averaging two half-pixel values. These three operations, SAD, 



 

 

 26 

half- and quarter-pixel interpolation can easily stand for up to 40% of the overall H.264 
encoding time [8].  

 
Figure 1. Block diagram of H.264 algorithm encoder and decoder. 

 

When looking at video codecs, the encoders have more flexibility to do trade-offs with 
performance. The SADs for a motion estimation search in the encoder, can assign the 
motion search within each of a range of reference frame to a unique thread, thus 
increasing the possibility of parallel execution. Looking at video data, it is represented 
in most applications as 8 bit resolution. The size of parameters and coefficients are 
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coded in 16 or fewer bits. The filters coefficients and algorithms of H.264 and many 
other popular video codecs are chosen to ensure that even intermediate values of 
calculations will not overflow 16-bit arithmetic’s operations within processors [7,9].  
The adders, shifters, ALUs, multipliers and other data processing elements within 
programmable video processors are typically 16-bits wide, which will directly impact 
the system architectures.  

Other important aspect of video processor is the pixel rate requirements of the 
application that must be met as it is directly connected to amount of data needed to be 
processed. The pixel rate is the product of height, width and rate at which full frames 
are displayed. For many video coding standards the worst case time difference is at 
least a magnitude greater than the typical sequences.  

Another factor to bear in mind is the explosion in supporting higher and higher screen 
resolutions which has come at same time as an increase in codec complexity when 
comparing H.263 with H.264. An increase from H.263 at QCIF to H.264 at SD has a 
computational complexity increase of about 65 times [4]. This has resulted in huge 
changes in video system architecture. In the mobile domain, there is also an increased 
number of video codecs that need to be supported. Here is a short list of codecs that are 
mandatory, MPEG2, MPEG4, H.263, H.264, VC-1, RV, DivX, VP6/7, Sorenson Spark 
and AVS 1.0. With this increased number of codecs has come increased computational 
complexity as well, for example, comparing H.263 with H.264 on the same resolution 
and frame-rate H.264 is 2.5x more complex [4]. At the same time, the fast pace of 
mobile handheld device development has meant that there has always been a request 
for supporting multimedia codecs that were not available when the chips were designed. 
All these requirements lead to a need for a flexible video processing architecture with 
high performance. 

The biggest trade-off in video hardware systems is flexibility/programmability versus 
dedicated hardware. This flexibility allows late adaptations and development of new 
multimedia applications, but it also gives the opportunity for increased differentiation 
by enabling new unique features and improvements to be added later. This increased 
flexibility comes often at price of increased power and area and in some cases of 
decreased performance. As mentioned in the previous section, the common 
denominator for all video processing solutions is exploiting the inherent parallelism 
that exists in multimedia applications and especially video applications. The main 
architectures range from fully dedicated hardware solutions, to the full programmable 
general purpose multicores. In between one can find more or less programmable 
solutions with specific hardwired architectures. These categories of architectures 
include heterogeneous uniprocessor solution with SIMD extensions, which we have 
focused on in the work presented in this thesis. 

Fully dedicated hardware is designed to perform a predefined function, resulting in 
inflexibility for handling new video codecs with updated requirements. Programmable 
processors on the other hand provide flexibility but at increased power and lower 
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performance. The implications of this provided flexibility, is the possibility of 
performing complex functions by combining various simple functions in the order 
specified by a software program. This leads to many more reads and writes that are 
performed in a programmable processor, than in a dedicated hardware. Each read and 
write takes time, reduces overall throughput, and consumes power, wastes energy and 
generates excess heat. For motion estimation algorithm dedicated hardware solutions 
often adopt full search block matching algorithm (FSBMA) [10] because of 
predictability and regularity of the computations. This however requires maximum 
computation load and memory bandwidth. The reason for the large computational load 
is due to a need for working with a large set of candidate blocks that needs to be 
matched. Also the huge memory bandwidth results from loading the reference pixels 
for candidate blocks. Dedicated hardware logic yields best performance per cost, but 
keeping in mind the need for supporting multiple coding standards, handling new 
proprietary functions, and future changes to application requirements a programmable 
processor is preferred solution. 

Programmable processors are preferred for applications that support many standards 
and in areas where new standards evolve in a fast pace, such as in video. A closely 
related factor that needs to be taken into account is porting an existing solution into 
new release of operating system. This is significantly easier for more flexible solutions. 

Another aspect regarding fully programmable processor solutions is the requirement of 
having sufficient internal storage to efficiently perform its most demanding video 
processing functions. This consumes large silicon area, resulting in greater 
manufacturing costs.   

A heterogeneous architecture (mix of hardwired and programmable core) achieves best 
balanced solution and is probably the most dominating solution for video processing. 
For achieving a robust and balanced architecture a carefully made partitioning between 
the hardwired and programmable cores needs to be made [4], as this is to reduce the 
hardware software interactions to minimum to achieve a good level of efficiency. 
Basically, the hardwired accelerators should be used for processing large chunks of 
data. This also relives the memory system as memory burst are optimal for external 
memory bandwidth. This results in architecture, where the only tasks left for the 
programmable part is control code. Looking at different design options for the 
programmable part, a general purpose CPU is much better choice compared to a DSP 
or a VLIW, as neither is optimal for handling control code [4]. Many newer video 
codecs, such as H.264, have different control flow in the algorithms, depending on if 
some of codec features, for example flexible macroblock ordering (FMO) etc. is used 
or not. Also post processing is another area which is very difficult to implement in 
hardwire, as algorithms for these tasks are very application specific and could often 
have complex control code thus requiring significant programmability.  

Programmable video processor architectures achieve best performance through the use 
of parallelism at the data- , instruction- , and task-level. This is usually implemented 
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using SIMD, VLIW and multicore. On top of these an optimally sized ALU, multiplier, 
and load/store data paths is essential. In programmable video processors, video 
processing functions that are commonly accelerated with specialized hardwired logic 
include, multi-pixel sum of absolute differences (SAD) for motion estimation and 
filtering such as for inter-pixel interpolation  (FIR) and deblocking filters. Where the 
video processing algorithm has data parallelism the performance of a processor is 
greater if the processor has single instruction multiple data (SIMD) instruction that, 
with the execution of a single instruction, operate on adjacent data elements in parallel. 
SIMD extensions have been added to almost all commercial general purpose processors 
table1. 
Table 1. List of SIMD extensions on different general purpose processors. 

Architecture Extension 
SIMD Width 

(Bits) 

ARM  NEON 64-128 

MIPS MDMX 64 

Scorpion  VeNum 128 

Intel SSE 128-256 

AMD 3DNow! 128-256 

PowerPC AltiVec 128 

 

SIMD extensions accelerate multimedia applications by exploiting data level 
parallelism (DLP). An important aspect with SIMD is that performance does not scale 
with increased media execution resources, as there are several bottlenecks in SIMD 
style media processing and that it is not possible to achieve significant additional 
performance improvement by making the processor wider to extract more parallelism. 
This is mainly due to overhead of supporting instructions that need to be significantly 
increased to scale with the increased SIMD width to keep the efficiency high.  

For example, looking at table 1 a SIMD processor performing 16-bit operations on 
eight ways SIMD data will yield the best performance with 128 bits wide registers. At 
same time a processor designed for a coding standard that operates on 8x8 blocks with 
8x8 transform matrices yield better performance with eight ways SIMD parallelism and 
128 bits registers. This due to, eight ways SIMD parallelisms make full use of 
datapaths without cycles of unused datapath bandwidth. Also the registers within the 
processor must be large enough to hold a range of SIMD data values. An important 
issue to keep in mind is greater SIMD parallelism improves the average case but yields 
little performance improvements when processing a worst case stream. This depends 
on whether the applications used, for example if codec is based on 4x4 blocks then best 
performance is based on 64-bit registers. But in case of 8x8 blocks then 128-bit 
registers yield best performance. The ideal design keeps the processing elements fed 
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with data to avoid stalls, but if the design is wider than necessary this has no 
performance benefits. In the case of VLIW and SIMD both are high-performance and 
power-efficient designs but are usually well suited for only very specific types of 
application codes with large numbers of independent operations that can found by 
compilers or the programmer. 

Another approach for getting better overall performance is through exploiting the 
instruction level parallelism (ILP) that exists in multimedia applications. There are 
many approaches, such as superscalarity or VLIW. Superscalarity means simultaneous 
execution of instructions on multiple parallel pipes in the processor. The main 
difference with other approaches, such as VILW, is allocating instructions to execution 
unit at run time. The added cost of superscalarity comes through utilization of hardware 
for achieving better parallel execution. There are two design approaches either an in-
order or an out-of-order execution. The later is performance wise much better but is 
also more hardware complex. The out-of-order execution is crucial in getting the 
performance benefits of superscalar design as it makes runtime execution dependencies 
irrelevant, which was shown in paper IV [8].  An in-order superscalar processor on the 
other hand doesn’t fully utilize the added hardware but still require more hardware 
complexity for a smaller performance benefits than is achieved by instruction level 
parallelism of a VLIW, which relies on the allocation of instructions to execution units 
at compile time. Superscalar out-of-order is also a direction which ARM processors 
have taken and in their Cortex-A9 architecture embraced this [11]. 

ILP can also be achieved, as stated above, through the use of VLIW. The mayor 
difference between the two designs is the hardware software trade-off. VLIW relies 
heavily on the compiler to effectively utilize the parallelism. This could be acceptable 
but it depends on the runtime execution predictability of the application. Multimedia 
applications and especially video codec’s are highly runtime dependent making it 
difficult at compile time schedule optimal instruction execution order.  

A direction that many chip vendors have taken in recent years is to offer parallel 
machines, or single chip multicore microprocessors. There are many reasons for this 
but one major reason being that in order for sustaining and keeping up with Moore’s 
law scaling. There is up to certain level you can push a single core until the power 
consumption and core complexity gets too high. As the single core is pushed higher 
and higher in clock frequency the power required to do this grows in faster rate, leading 
to design that are very complex and power hungry. There are a number of different 
ways to define multicore and multi-processors. One definition is looking at the 
processing cores. The multicore system can be homogeneous multiprocessing as in 
symmetrical multiprocessors (SMP), where there are a number of identical cores tightly 
connected together. They can also be heterogeneous multiprocessors like in 
asymmetrical multiprocessor (AMP), where there are different type of cores connected 
via interconnect on the same die. 
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The main advantage of using multicore is that the required performance can come from 
increased number of cores compared to increase in frequency. However there are many 
challenges that need to be handled in order to get the promised performance. They 
range from designing multicore system, to efficiently writing parallel applications that 
utilize the system capabilities. Programming multicore system remains very 
challenging. The problem of how to take a piece of sequential code and optimally 
partition it across multiple cores remains unsolved [12]. A key factor is how well all 
the existing serial algorithms can be redesigned to take advantage of multicore systems. 
Algorithm designers need to understand the characteristics, including both advantages 
and limitations, of multicore to create algorithms that best match the platform.  

Looking at video processing, an efficiently way for utilizing multicores is by using a 
single frame slicing that, for example, exists in H.264. By mapping the slices to a 
specific core a good distribution is achieved. If one on the other hand maps frames to 
different cores the communication and data synchronization overheads could lead to 
worst overall performance. 

2.2.2 Audio processing 
The other key applications in the multimedia domain are audio codecs and audio 
applications. Audio processing mostly focuses on different filter algorithms, such as 
Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), Finite Impulse 
Response (FIR) and other digital signal processing filters. In the case of audio content, 
the MPEG-4 High-Efficiency Advanced Audio Coding v2 profile (HE-AAC v2) has 
proven to be one of the most efficient audio compression schemes [13]. This is one of 
the main codecs chosen for mobile handsets in 3GPP [14] and used in our research 
paper V [15]. The MPEG Advance Audio Codec (AAC) was designed to be the 
successor of the MP3 format. AAC generally achieves better sound quality than MP3 at 
similar bit rates. It is widely used and supported by almost all handheld devices. 

How a decoder is designed and implemented is of significant importance especially in 
handheld devices. The computational complexity and memory requirements of the 
decoder are major factors in choosing the codecs in real-world applications. As these 
are directly related to power consumption and implementation cost. HE-AAC version 2 
is a lossy data compression scheme for digital audio, consisting of three technologies. It 
is an extension of Low Complexity AAC (AAC LC) optimized for low-bitrate 
applications such as streaming audio. This is coupled with Spectral Band Replication 
(SBR), to enhance the compression efficiency in the frequency domain, and Parametric 
Stereo (PS) to enhance the compression efficiency of stereo signals as illustrated in 
figure 2. 
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Figure 2. Block diagram of HE-AAC v2 encoder and decoder. 

The main challenge in audio processing lies in finding the right balance between 
compression efficiency, audio quality and codec’s computational complexity. By 
introducing SBR and PS the compression efficiency is significantly improved but this 
comes at expense of increased computational complexity for the HE-AAC decoder.  

In most cases running audio applications could be performed in software on a general 
purpose processor, as even the most demanding audio applications with added post 
processing require less than 100 mega processor cycles per audio channel. Most often 
the addition of a VLIW or SIMD unit to the processor core provides even better 
computation power ratio, since audio applications have high degree of data parallelism. 
By increasing the number of audio channels the amount of processing workload 
increases quite linearly. For example, a true stereo audio has two times the workload of 
a single audio channel. This means audio workload can easily start adding up when the 
number of channels goes to 6 or even 8 surround. Another important difference 
between audio and video codecs, is that audio applications and codecs work in one 
dimension, making them easier to handle these applications in terms of processing and 
predictability. 
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2.2.3 Power constraints for processing 
One of the technically fundamental constraints in embedded handheld systems is power 
or energy, since many of these systems are often battery powered [16]. This is closely 
related to the other constraint in embedded systems, performance. These two constrains, 
power and performance, often follow each other as in many cases they are closely 
correlated. They set the bases for design choices and trade-offs both in hardware and 
software. These design trade-offs range from choosing the silicon process, low power 
(LP) or high performance (G), to choosing different design libraries and hardware 
design tool settings. The design constraints bottom line is energy, how long operating 
time is directly connected to how much capacity there is in the batteries and how much 
power the system consumes for different use cases, which at the end determine end 
user experiences. The limitation in overall performance on the other hand is mainly due 
to silicon technology, die area and design choices (interconnect width, number of 
memory interfaces, etc.). On the power supply side, the slow increase in battery 
capacity in handheld portable devices has tightly constraint power consumption as 
shown in figure 3.  

 
Figure 3. Energy density curve of lithium Ion battery development [17]. 

Looking at typical embedded handheld devices, such as Smartphones the typical 
operating voltage is around 3,7V.  For different use cases the overall current 
consumptions vary significantly. For example, video playback uses 200-300mA, while 



 

 

 34 

a voice call consumes 350mA. On top of this there are major power consuming 
peripherals, such as displays, cameras and different set of sensors. For example, a 
typical current consumption for a display is above 120 mA. Thus there is clear reason 
to distinguish between active power consumption (when the device is actively being 
used by an end user) and standby power consumption (when the device is in 
operational mode but the end user not actively working with the device).  The standby 
typically have background activities running, such as keeping the cellular 
communication alive (~4mA), monitoring the subscription services, Facebook, email 
etc. (20-30mA) that the end user uses. 

These parameters are essential in achieving the battery capacity constraints for 
handheld portable devices. Also, as the silicon have shrunk passed 65nm technology 
node, the overall leakage is quite significant. These lead to having a need to control and 
manage both dynamical as well as static power consumption. These include dividing 
the design in 10-20 different power domains in a hierarchical fashion, using clock and 
power gating, forward and reveres body biasing, and above all using dynamic voltage 
and frequency scaling. In this work, the main focus has been on dynamic power 
consumption for processing multimedia applications. Comparing the power benefits of 
SIMD enabled processors with non-SIMD processors [18], the main conclusion was 
that with added hardware for SIMD unit the power benefits through faster and more 
efficient execution, outweigh the added cost of the SIMD unit. This was true in terms 
of power consumption, hardware complexity and silicon area. Another major 
contributing factor for overall power consumptions is memory and external off-ship 
accesses which will be discussed in the next section. 

Overall, looking at processing efficiency in terms of energy, depends thus on many 
factors, such as the chosen architecture and silicon technology, use cases the embedded 
device need to operate and how sophisticated power management is implemented in the 
system. For example, in many cases the peak power (up to 700-800 mW) is not the 
issue but rather for how long the sustained power consumption is the critical issue. This 
could be a major issue not only in terms of energy consumption for a battery operated 
device but also thermal limitations can become a limiting factor.  

2.3 Multimedia Memory 
One of the key factors that drives the cost and power dissipation of an embedded 
system on-chip is the memory architecture. The memory subsystem is a major 
contributor to the performance, power and area of a complex embedded system [19]. 
The memory subsystem can constitute a large part, up to 70% of the silicon area. This 
figure is expected to grow even further to over 90% by 2014 [20]. The main reason for 
this is the relative small design cost per area unit in terms of both manpower and time 
to market. Another reason is related to power consumption, since the heat dissipation 
per area unit is lower for memories than for logic. Thus, on-chip memory can be used 
to add functionality with smaller impact on system heat dissipation [21]. The key 
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challenge is to define a memory system that combines and satisfies the processor data 
requirements for executing efficiently, whilst minimizing cost and power consumption. 
In many multimedia intensive embedded systems, the overall area and power 
consumed by the memory subsystem (on-chip as well as off-chip) is up to 10 times 
greater than of processing, making memory a critical component of the design [22]. 
Thus, data placement and memory mapping is crucial for achieving good performance 
and optimal memory utilization. This can be achieved by optimally utilizing the on-
chip memory, which can be SRAM, ROM and/or embedded DRAM/SRAM that is 
similar to off-chip DRAM. 

In the field of memory architecture and memory management, there are two main 
approaches when dealing with multimedia applications. The first one uses dedicated 
zero wait state memories, often referred to as scratch pad memories (SPM). This 
approach requires often rewriting the applications to best fit these memory 
architectures. The second approach uses multilevel caches and this approach does not 
require rewriting the code but through careful optimizations based on a standard 
memory hierarchy, it is possible to get additional improvements.  

The question that arises is how does the combination of the two memories, SPM and 
cache, behave and how should we best optimize and utilize the system, software and 
hardware. This is a typical trade-off, where we have a multidimensional optimization 
problem. In our work, presented in paper V [15], we introduce a methodology for 
mapping data and instructions to heterogeneous memory architectures consisting of 
SPM and multilevel caches. In that method, we define the problem as knapsack 
problem [23]. We show significant gains in lowering off-chip memory access by 
selectively mapping data and instruction to SPM, which provide an optimal solution for 
a given architecture. Our solution could either, minimize external memory accesses, 
minimize execution cycles or maximize SPM accesses. 

Common for audio and video applications memory requirements are that they often 
work on streams of data. In the audio case the memory accesses are very regular, 
meaning one can predict the next data read quite accurately. In the video case this much 
more difficult, as the runtime dependency makes the data accesses much more irregular. 
Also, the amount of data being processed in video applications is at least an order of 
magnitudes larger compared to audio applications. A straightforward approach cannot 
be taken with video applications, as can be done with audio, especially due to memory 
bandwidth limitations in embedded systems. On top of this, in the video case, the 
encoding is execution dependent, meaning that selection of data for processing cannot 
be done at compile time. Instead the focus can be shifted to instructions of the 
algorithm and deciding what instruction sequences should be mapped to specific 
memory, such as SPM at compile time.  

The SPM is organized into multiple memory banks, preferably in smaller memory 
banks, as these consume lesser power per access than larger memories. This presents an 
opportunity to place most frequently accessed data in smaller bank sizes. To obtain 
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good performance and few memory stalls, the data buffers of the application need to be 
placed carefully in different types of memory. This is typically done manually and 
hence takes a significant amount of time, up to several man months.  

Memory management for multimedia applications especially video applications is thus 
an important area to focus on as huge amount of data is being processed. The result is 
heavy congestion of the memory subsystem, with the potential of breaking the system. 
Thus, there is a need to focus on algorithms for reducing amount of processed data as 
much possible, especially for encoding and decoding multimedia streams. This results 
in the situation where not all data is relevant for processing. Instead only a small 
portion of data is useful for processing and the rest can be disregarded. For example, 
the motion estimation algorithm is very selective in choosing the right data for 
processing, which leads to reduction in applications bandwidth needs.   

Another key area when dealing with memory and multimedia applications is the 
applications themselves. Researchers have too often used non optimized reference code, 
where the overall behavior of the application is not the same as for the optimized code. 
For example, if a critical part of an application, which was computationally complex 
with high memory utilization and took up to 50% of the overall execution time, in the 
non optimized reference code, in an optimized real application, this part has been 
reduced to less than 15%.  We showed this in paper III [18], where we compare real 
life code with standard codecs often used in research papers proposing solutions to 
speed up these applications.  

2.3.1 Memory bandwidth requirements 
As semiconductor process technology shrinks, it is feasible to design chips with greater 
data processing capability. The data rates and bandwidths for transferring data between 
chips do not increase at the same rate as data processing requirements. This result in 
performance of processors on video applications is constrained by memory bandwidth 
to off-chip DRAM memory devices in ever more applications.  Bandwidth 
requirements for video applications are typically high and will further increase as 
resolutions, bit depths, and frame rates increase. For example, a SD video stream of 
25fps consumes 15.6MB/s and for HD RGB12bit stream at frame rate of 120Hz 
consumes 1120 MB/s. 

There are three different accesses types to off-chip memory: Bit stream (encoder writes, 
decoder reads), uncompressed frames (encoder reads, decoder writes), and reads of 
stored frame buffer(s) data for motion estimation or compensation. Because the bit 
stream is compressed, it consumes a negligible amount of bandwidth in most video 
applications.  Reading and writing the uncompressed frame has significant impact on 
the memory bandwidth, resulting in a need for lowering it. This is one of the main 
reasons why the reads required for motion compensation or good motion quality 
motion estimation is essential as they account for most of the bandwidth consumed in 
typical video processor. As mentioned previously most dedicated hardware solutions 
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for video processing use full search block matching algorithm (FSBMA) leading to 
high memory bandwidth utilization. 

The storage requirements and data access patterns of video functions have huge impact 
on system design and architecture. For example, most video codecs employ temporal 
algorithms, which require access to previous frames when processing a frame. This is 
important as it directly affects the memory storage needs. Required frame memory for 
HD H.264 decoding is around 15MB (YUV4:2:0, 8bit) which is not cost effective to 
have as on-chip memory of around 7𝑚𝑚2 per MB in 65nm technology. This gives a 
total area of 105𝑚𝑚2  for 15MB. Embedded DRAM would be alternative as it has 
higher density than SRAM but requires additional mask layers for manufacturing 
which adds to cost. 

The bit stream accesses are both regular and irregular, depending what functional part 
of the codec is in use. For example, scaling and rotation have regular access patterns. 
Whereas other parts, such as decoding, encoding and interlacing use motion 
compensation, which is technique used for block prediction, has very irregular access 
pattern. This result in caches cannot alone reduce memory bandwidth to off-chip 
memory. For example, the motion compensation traffic in H.264 decoding is typically 
100-200MB/s for SD resolution and 500-900MB/s for HD resolution content. For SoCs 
handling video content the typical accumulated memory bandwidth requirements is 
around 1-6GB/s. The processors are typically latency sensitive but by using a side 
buffer, such as SPM etc. can alleviate this latency sensitivity. 

The importance of external memory bandwidth reduction cannot be over emphasized. 
For example, in video compression algorithms there are there type of frames intra 
coded frames (I), predicted frames (P) and bi-directional frames (B). For video 
encoders that perform motion estimation search for P and B frames, it greatly reduces 
off-chip memory bandwidth if an on-chip level-2 cache is implemented to store not 
only the current SAD block but also surrounding data. Motion search algorithms tend 
to have a large amount of overlap between successive or parallel SAD operations. So 
by having the adjacent data to SAD block it will often eliminate the need to access off-
chip data for the next SAD. Coding video with I frames instead of P and B frames 
requires less compression processing and fewer off-chip memory accesses both of 
which save energy, but leads to significantly larger size bit streams.  

Taking into consideration both memory constraints and media constraints, a need for a 
systematic methodology for memory management is required. In this thesis, a method 
for mapping of a heterogeneous, SPM and multilevel cache is proposed in paper V [15]. 
The applications used are both a video (H.264) and an audio (eAAC+) application. 

  



 

 

 38 

 

  



 

 

 39 

 

Chapter 3 

3Related work 

3.1 Processing 
In the broad area of multimedia processing there has been made huge contributions. It 
has meant taking on the problem of processing from many different angles, from direct 
approaches, such as focusing on processing elements, to different hardware 
parallelizations. Other indirect approaches for enhancing multimedia processing work 
on limiting bandwidth requirements, optimizing memory architecture and 
interconnect/bus design, software enhancements, algorithmic improvements, compiler 
enhancements and overall system improvements.  

Now focusing on work done on the processing unit for multimedia, these can range 
from fully programmable, to configurable and to hardwire solutions. In this work, we 
focus mainly on programmable cores but will give some remarks on other architectures 
as well. The programmable core can either be a general purpose CPU [24,25,26,27,28] 
or a digital signal processor DSP or very long instruction word VLIW, such as in 
[4,29,30,31,32,33,34,35,36,37,38] or a GPGPU general purpose graphical processing 
unit [39,40,41,42,43,44,45,46]. 

In many of studies using CPUs, these are combined with SIMD unit either as 
extensions to the main processor through ISA enhancements, much like NEON, MMX, 
Altivec [24,26,27], or use coprocessors [25,29]. The main difference is that in the later 
case the SIMD unit is not as tightly coupled with CPU as it is the case with ISA 
extensions. This is also an architecture often used when the focus is not on processing 
unit, but rather something else, such as special memory architectures [7] or software 
and complier enhancements [47]. In [26], the authors evaluated execution characteristic 
of multimedia applications on ARM architectures enhanced by SIMD. The authors of 
[24] focus on different media benchmark kernels and applications, such as DCT, 
motion estimation kernel, speech, and jpeg encoding applications. They use the results 
from their evaluations to propose architecture for the media applications they have 
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selected. They report good SIMD utilization for their applications but there is a need to 
take care of parallelism existing outside main loops and kernels. In their conclusions, 
they state that conventional ILP techniques need at least 8 or 16-way superscalar 
processor to provide improvements. The work in [25] focuses on proposing a low 
power mobile applications chip for Full-HD multi standard video codec. This design 
includes not only CPU but also DSP and streaming processor for execution of parts of 
the video codec. The target is to combine flexibility, provided by the CPU, and 
streaming processor for higher performance, in a heterogeneous multiprocessor 
architecture.  

The other main approach is using DSP or VLIW processors for multimedia processing. 
These could also be combined with SIMD unit as in [4,29,31,33,37]. In [29] a 3-way 
128bits VLIW is combined with a SIMD style VCP vector co-processing unit with 
three asymmetric parallel pipelines used for SAD, mean calculations and other kernel 
filter calculations. The VCP provides a performance boost that can handle up to HD 
video processing. The work presented in [30] proposes a new instruction set 
architectures based on variable VILW (32bit-128bit). The aim is to combine high 
performance with general purpose programmability. In [31] focus is on mapping 
motion estimation algorithm to a VLIW style DSP. The aim of [32] is to use a parallel 
Kahn process network KPN model on a VLIW DSP for H.264 encoding enhancement 
by low level algorithmic optimizations (motion compensation and estimation) with 
focus on potential instruction level parallelism ILP provided by the compiler.  A vector 
micro-SIMD VLIW architecture is proposed in [33] for H.264 kernel, where the DLP 
regions of video encoder are improved so that the ILP regions become dominant. In 
[34], a reconfigurable function unit (RFU) is added to a VLIW architecture is proposed 
and evaluated for video compression speedups using a reference code. [4] presents a 
coprocessor chip for mobile baseband chips, using among others DSP to control a set 
of hardwired functional units for H.264 video compression. The combination of DSP 
and hardwired processing units gives good flexibility and is nice trade-off between the 
two extremes, with only using fully programmable verses hardwired design. In [36], a 
system on chip SoC is proposed and implemented. It combines two multimedia DSPs 
with CPU for video compression applications. A high performance VLIW DSP 
architecture is proposed, where the main feature is a flexible data path for using general 
purpose registers and SIMD units. 

Another more resent approach has been to combine CPUs with GPUs for video 
processing and compression. In [44], they propose a approach where CPU and GPU 
work in parallel to accelerate video decoding in the PC environment.  The GPU is used 
for part of the motion compensation while the rest of video decoding is done in the 
CPU. In [43] the focus is on the motion estimation search algorithm which one of the 
most important differentiating areas between a good and a great encoder. In [45,46] 
they propose using GPU for improving video encoding performance and at same time 
deriving the algorithms to be more suitable for GPU implementations. This is an 
ongoing trend, where the more recent work [48,49] aims to focus on GPU only rather 
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than investigating the optimal partition between GPU and CPU. But one important 
limitation with GPUs is that they can only perform identical computation concurrently 
on different stream processors. This makes overlapping different computations 
(prediction and reconstruction) very difficult [50]. In [51], they instead work on inter-
frame parallelization which is much more suitable for GPUs. In [52] proposes new 
image analysis algorithms for parallel implementation on GPUs. Another approach for 
using GPUs and CUDA compute unified device architecture a multi-threaded 
programming model (hides the architecture from programmer) is used in [42,53,54] for 
video motion estimation and motion compensation is presented. This is a programming 
model proposed by nVidia [55] is gaining in popularity as it make the GPGPU much 
easier to program. Open Computing Language (OpenCL) [56] is the wide industry 
supported framework for programming for heterogeneous architectures consisting of 
GPU, CPU and other processor. There are a number of different mobile GPU 
architectures, such as ARMs Mali [57] and Imagination Technologies POWERVR 
SGX cores [58], supporting OpenCL,   
 
Hardwired solutions were one of the most commonly used approaches for video 
encoding. It still gives the best performance per mm2 silicon compared to any other 
solution. But due to lack of flexibility for updating to new standards and adding new 
feature enhancements it is no longer the preferred approach. But as stated previously 
this, when combined with CPU or other programmable cores for critical parts, is still 
competitive. In [59], the authors propose and implement a hardwired block for variable 
block size motion estimation. The chosen approach is to use full search block algorithm 
(FSBMA), which is a very common approach for hardwired solution. This basically 
means, the search algorithm goes through all possible macroblocks in a search window. 
This is however very inefficient as it means not only huge amount of processing, but 
also an even worse memory bandwidth load. This contributes to increased power 
consumption and decreased bandwidth efficiency. This is an area where authors of [10] 
try to address by proposing an approach that uses a two-dimensional systolic processor 
array to calculate absolute differences and a two-dimensional adder tree to sum up the 
absolute differences. The memory bandwidth problem is solved by scheduling data 
traffic. In [60], the proposed architecture is to combine the SIMD style hardwired units 
with CPU where a gradient descent search algorithm is implemented which reduces 
external memory accesses and lowers bandwidth requirements considerably.  

Another set of approaches closely related that have been proposed for multimedia 
processing are extensible embedded processors and reconfigurable computing. In the 
case of extensible embedded processors there are commercial processors cores, such as 
Tensilica [61], ARC [62], Synopses former CoWare/LisaTek [63], which are available 
for usage in different designs. Application specific instruction processors (ASIP) are 
discussed in [64]. The main aim is to automatically detect and generate special 
instructions (SIs) for application speedup and/or power efficiency from the application 
code. An example for such work, is presented in [65] where a framework for dynamic 
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reconfiguration of application specific custom instructions is proposed. In [66,67] a 
method for generating SIs from profiling patterns is presented. The authors in [68], 
focuses on design space exploration with tool-supported connection to reconfigurable 
hardware for ASIPs. A constraint programming based method for modeling and 
solving scheduling and instruction selection for processors extended with a functionally 
reconfigurable cell fabric is presented in [69]. 

The reconfigurable architectures work either on full computational tasks using 
reconfigurable hardware, such as in [70] or on architectures combing reconfigurable 
parts with CPUs systems mainly focused on design-time predefined reconfiguration 
decisions [71,72]. But these are not suitable for dynamic runtime dependent systems, 
where the computational requirements/constraints change during runtime and are 
unpredictable during design time. An overview for reconfigurable architectures is 
summarized in [73]. In [74] a hardware design of an adaptive self-reconfigurable video 
processing platform is presented where the proposed architecture uses FPGAs to 
increase the design’s flexibility. The authors in [75] presents an automated bus matrix 
synthesis flow for efficient transaction-level design space exploration of 
communication architecture in a reconfigurable multimedia system-on-chip platform. 
The main focus is on hardware interface selection where a method for using static 
analysis of communication behavior is proposed. [76] details a run-time task 
assignment heuristic algorithm that performs task assignment in a multiprocessor 
system-on-chip containing fine-grain reconfigurable hardware tiles. The basic idea is to 
map soft IP cores into reconfigurable hardware fabric which executes different task 
assignments. The algorithm is capable of managing a configuration hierarchy which 
improves the task assignment performance.  

The work that has been done in multiprocessing and multicore with focus on 
multimedia can be divided into homogeneous architectures and heterogeneous 
architectures. In the field of embedded system, many of the system presented over the 
years have been heterogeneous multicore as they have had a CPU, DSP, different set of 
accelerators and GPU [77,78,79,80,81]. So it very much depends on how multicore is 
defined. For example, just taking the single GPU, this in itself is a multicore, consisting 
of as many as hundreds of smaller cores [55]. Taking a broader view of multicore, a 
good overview of the subject is given in [82]. A good survey of multicore is presented 
in [83], where different approach and issues are presented. The impact of multicore for 
multimedia applications can be focused on from different angles. In [27], the aim is to 
parallelize speech recognition on mobile multicore system. They also discuss the 
importance of on-chip level2 cache, when comparing and ARM architecture including 
on-chip level2 cache with Intel architecture with external level2 cache.   

There is also significant number of studies done using homogeneous architectures, such 
as CELL [84] for multimedia [85,86,87,88,89]. Another equally important area is 
software and compiler for multicore. In [47], they present existing software 
compilation tools for both dynamic (just-in-time (JIT) compilers or dynamic optimizers) 
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and static compilation that locate and exploit different type of parallelism that can be 
utilized by multicore architectures. In [90], the authors describe different techniques for 
parallelizing video processing kernels for multicore systems.  The article gives an 
overview of different parallel programming models, such as CUDA, OpenMP, OpenCL 
and Clik. In [86], the focus is on software design flow and proposes a move to higher 
levels of abstraction during software development. For multimedia applications, design 
flows based on the Kahn process network (KPN) model of computation should be used 
to fully exploit the multicore architectures.  

3.2  Memory 
There has been significant work done in the area of memory design and data 
management for embedded systems for multimedia applications. The main focus has 
been in trying to get most out of the system from the resource constraints architectures 
we have in embedded systems. The different approaches range from using caches, both 
single level and multilevel, to dedicated memories, such as SPMs.  

Many papers have focused on improving data reuse in caches by using loop 
transformations [87,91]. In [9], a technique to organize data to best fit caches is 
presented in order to reduce external accesses. A closely related approach, for 
improving data locality for multimedia applications by introducing specific algorithms 
that data is placed in memory in such a way that the cache locking will be maximally 
respected is presented in [7]. Yet another set of approaches, for optimal cache usage is 
to modify the execution order of instructions to improve the cache performance of the 
multimedia applications, is presented in [6,92,93,94]. In [95] loop blocking is presented 
to improve cache performance but this has limited affect for multimedia applications 
due to significant amount of cache capacity misses still present.   

Modern computer systems often provide memory system with non-uniform memory 
success times. Right placement of instructions and data for such systems can 
significantly improve program performance [96]. The data layout organization 
presented in [9], aims to reduce cache misses by arranging data in main memory. They 
place data at particular address block depending on lifetime and size. Thus, controlling 
the mapping of data to caches and hence removing influence of associativity on data 
mapping. The main limitation with these techniques is they do not take into account 
sharing caches with other applications.  

Array padding is another data layout approach presented in [7,97,98] which aims to 
reduce cache misses by reducing cross conflict misses. The main limitation with array 
padding is that it does not eliminate majority of conflict misses. Modern memory 
architectures use often multilevel caches. This has become a standard in high 
performance embedded domain. In [99], usage of execution driven approach is 
presented for optimizing memory mapping to multilevel cache architecture. It uses 
hardware performance counters to decide how and when to apply loop transformations, 
and then select optimal transformation parameters using genetic algorithms. 
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The other dominant approach, for improving overall memory performance in 
embedded domain for multimedia applications, is using dedicated memories, such as 
SPM scratch pad memory. The main architectures range from SPM only to 
heterogeneous architectures where both SPM as well as caches are present.  

For approaches with dedicated usage of SPM together with multimedia applications 
there has been significant work done. The focus has been to rewrite significant portions 
of applications to fit them to proposed architectures as shown in [9,100,101]. In [100], 
the focus is on an approach for optimization of usage of instruction SPM to reduce 
energy and increase performance. The aim of [101] is to introduce a systematic 
technique which assists in locality optimizations by selecting inlining functions that 
have strong data coupling between them, resulting in lowering external accesses. Other 
studies have looked at data mapping on SPM, both statically [102,103,104] and 
dynamically [105,106]. Common approach to these prior works has been mainly based 
on code transformations, i.e. loop and trace analysis and rewriting of applications for 
optimization.  

There has also been work done on combination of compile time and runtime 
approaches, is proposed in [107]. This is done by inserting custom instructions to 
inform hardware to control data placement. Another approach focuses on managing 
memory space for different application in a SPM-only architecture and thus eliminating 
caches totally [104].  In this approach, the amount of data to be allocated to each 
application is decided based on the data reuse each application exhibits. Finally, in [108] 
a decoupled multilevel SPM-only architecture is presented. The architecture exploits 
mainly parallelism between address computation and processing the application data. 
Where an access processor calculates the addresses of data in memory hierarchy and 
the execution processor calculates the data.   

The final approach is heterogeneous memory architecture where a combined 
architecture of SPM and cache is utilized, e.g. mapping of data and instruction to SPM. 
Here the main question is how to optimally utilize this architecture. The main 
drawback with static approaches is the limitations to exploit the dynamically changing 
data access patterns of programs. Most of the previous work is based on static 
allocations [6,7,9,87,91,92,93,94,95,97,98]. The dynamic memory mapping approaches 
are mostly profile based. The main disadvantage of these techniques is the difficulty in 
acquiring reasonable profiles for other than small applications or kernels. Another 
dynamic approach is the introduction of techniques that requires hardware support 
[100,104,105,106,107,108], with the main drawback of making them less applicable 
due to added silicon costs and increased in flexibility and complexity. In [19] the layout 
problem is solved for an on-chip memory architecture that has both SPM and cache 
memory. Looking at other non CPU architectures, in [109] they address partitioning of 
simultaneously accessed data variables in DSP architectures using multiple single port 
memory banks to avoid memory conflicts. 



 

 

 45 

The different memory mapping optimization techniques are based on different 
algorithms, such as genetic algorithms, heuristic algorithms and constraint 
programming. In [99], a framework for memory mapping is presented where the 
selection of transformation parameters uses genetic algorithms. In [22], genetic 
algorithm is used for mapping objects to SPM only memory architecture for DSPs. The 
method presented for data layout problem is view as a multi-objective genetic 
algorithm with performance and power being the cost functions. In [110] and [111] a 
memory hierarchy exploration is done using genetic algorithm framework. Their target 
architecture is cache only design with focus on a single formula which combines area, 
average accesses and power.  The problem is modeled as a multi objective genetic 
algorithms problem. In [112] a multi objective frame work for memory architecture 
exploration is presented based on a combined genetic algorithm for the memory 
architecture exploration and a simple heuristic algorithm for data mapping to the 
memory architecture.  This method focuses, as in [22], on DSP architectures using 
SPM only memory architecture as target for specific multimedia applications. 
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Chapter 4 

4Papers Survey 

 
In first phase, paper I and II, we analyzed video encoder MPEG-4 together with initial 
study on processing data using SIMD. In second phase, papers III and IV, we carried 
out more in-depth analysis and more detailed study on video encoders MPEG-4 and 
H.264. From our study we saw two areas standout, heterogeneous memory 
architectures to satisfy multimedia applications different memory needs and instruction 
level parallelism (ILP) for handling the increased amount of control instructions in 
multimedia applications. In third phase, paper V we explored the memory architectures 
and focus on trade-off that are need to be made when handling video H.264 and audio 
eAAC+. In this work we proposed a methodology for mapping the optimal memory 
configuration for a certain multimedia application. The method is based on a 
combination of simulation as well as analysis using constraint programming (CP), for 
finding non-dominated solutions (Pareto points) for a given memory configuration.    

 

Evaluation of SIMD Architecture Enhancement in 
Embedded Processors for MPEG-4 
Paper I studies the effects of using SIMD processor extension, developed to enhance 
the processor performance, for streaming applications. An extensive evaluation of the 
proposed architecture extension, using Simplescalar simulator, was performed, 
showing that it is possible to achieve high performance with acceptable power 
consumption. 
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Analysis of Embedded Processors for Streaming Media 
Applications 
Paper II analyzes multimedia performance of an embedded processor family used in 
most of wireless handheld devices, using full video MPEG-4 encoding application with 
optimized algorithms for mobile devices. There are significant performance 
improvements when using new architectural solutions, such as Single Instruction 
Multiple Data (SIMD) extensions and increasing clock frequency, enabled by deeper 
instruction pipeline, in embedded processors. In order to provide enough performance 
for MPEG-4 encoding there is a need to have a more aggressive SIMD architecture 
with wider data paths. This introduces some new issues among others a memory 
bandwidth bottleneck. 

Memory Architecture Evaluation for Video Encoding on 
Enhanced Embedded Processors 
Paper III investigates the impact of different memory configurations (memories and 
multilevel cache architectures) together with SIMD extended embedded processor on 
performance and energy consumption of the video encoding applications, MPEG-4 and 
H.264. The results show that the use of the standard cache-based architecture achieves 
almost the same performance as SIMD dedicated memory architecture for full video 
encoding applications, against common belief. This makes it difficult to justify using 
dedicated memory for this kind of embedded systems, when energy consumption and 
cost of implementation are also considered. 

Performance Improvement for H.264 Video Encoding 
using ILP Embedded Processor 
Paper IV examines the impact of instruction level parallelism (ILP) and tradeoffs in 
superscalar performance for full H.264 video encoding application and gives 
quantitative performance measures of a superscalar architecture. Most research efforts 
have concentrated on data intensive parts, such as kernels but these are taking less time 
from the entire execution as encoders are using new, more efficient algorithms. This 
important fact cannot be neglected since new video encoding standards have been 
proposed and the amount of other than data intensive computations has increased 
significantly. There is significant improvement for the entire application when using 
superscalar architecture with out-of-order execution scheme.  
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Design Space Exploration for Optimal Memory Mapping 
of Data and Instructions in Multimedia Applications to 
Scratch-Pad Memories 
In paper V, we propose a new methodology for optimal memory mapping of data and 
instructions to Scratch-Pad Memories (SPM). The optimization is done by finding 
Pareto points, using multi-objective optimization that combines different cost functions. 
Our proposed methodology provides a way to combine SPMs with caches to optimally 
use this memory architecture. By using this method there is only a need to perform 
limited number of simulations, instead of performing extensive simulation of all 
possible combinations. The methodology is intended to be used in real-life situations in 
industry where there is often a need for mapping third party applications to a specific 
architecture.  
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Chapter 5 

5Contributions 

This thesis presents work on design space exploration for embedded systems with 
focus on multimedia applications, such as video and audio codecs. It addresses and 
presents solutions to problems related to system architecture trade-off, pertinent to 
memory and processing. Each of the following four points correspond to and presents 
the contributions made by the author of this thesis, through the constituent five papers, 
where each point is part of at least one of the five papers included in the thesis. The 
author of this thesis is the primary author of all the included papers. 

 

• A new methodology for optimal memory mapping of data and instructions to 
Scratch-Pad Memories (SPM). The optimization is done by finding Pareto 
points, using multi-objective optimization that combines different cost 
functions. The proposed methodology provides a way to combine SPMs with 
caches to optimally use this memory architecture. By using this method there 
is only a need to perform limited number of simulations, instead of performing 
extensive simulation of all possible combinations. The methodology is 
intended to be used in real-life situations in industry where there is often a 
need for mapping third party applications to a specific architecture. 

• Quantitative performance assessment for superscalar architecture with 
instruction level parallelism (ILP) for video encoding applications. Different 
trade-offs for full H.264 video encoding has been evaluated. Most research 
efforts so far have concentrated on the data intensive parts, such as kernels but 
these are taking less time from the entire execution as encoders are using new, 
more efficient algorithms. This important fact cannot be neglected since new 
video encoding standards have been proposed and the amount of other than 
data intensive computations has increased significantly. There is significant 
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improvement for the entire application when using superscalar architecture 
with out-of-order execution scheme. 

• A vectorized architecture with ISA extensions for multimedia applications is 
proposed and evaluated by implementing SIMD architecture solution on an 
embedded processor. The proposed architecture is tightly coupled with the 
micro-architecture of the processor and design to handle up to 128-bit wide 
arithmetic operations.  

• Performance and energy consumption evaluation for different memory 
configurations for SIMD extended embedded processor. We consider 
dedicated memories and multilevel cache architectures. The results show, 
against common belief, that the use of the standard cache based architecture 
achieves almost the same performance as SIMD dedicated memory 
architecture for full video encoding applications. This makes it difficult to 
justify using dedicated memory for this kind of embedded systems, when 
energy consumption and cost of implementation are also considered. 
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Chapter 6 

6Conclusions and Future Trends 

An embedded system for multimedia is a reality today. One of the main challenges for 
optimized use of the embedded systems for multimedia lies in memory architecture. In 
this paper, we have focused on SIMD extended single general-purpose processor 
design with heterogeneous memory architectures. The main conclusions from this work 
are that on a system level heterogeneous memory architecture works very well for 
multimedia applications. This is mainly because the heterogeneous architecture very 
effectively can combine different set of requirements concurrently. Optimal utilization 
of this architecture is the challenge.  

The constraint-based method proposed in this thesis finds an optimal data and 
instruction mapping for multimedia applications. This method systematically analyzes 
and finds optimal memory mapping for a given application and architecture. Using this 
method there will be need to only perform limited number of simulations, instead of 
performing extensive simulation of all possible combinations. Our results indicate high 
accuracy for predicting memory accesses, above 90%. This methodology can be 
adapted quite easily to real industrial situations where there is often a need for mapping 
third party application to a specific architecture. This method can be extended to other 
cases of multidimensional optimizations.  

Data level parallelism (DLP) but also instruction level parallelism (ILP) is important to 
consider during processing of multimedia applications. SIMD extended general-
purpose superscalar processor architecture provide both DLP as well as ILP. There are 
of course other approaches that can be utilized, such as multicore and VLIW 
architectures. 

Future embedded systems are evolving based on different trends, CPU architectural 
evolution and Memory optimization architecture. CPU architecture evolution is where 
ore complex core (deep pipelining, advance branch prediction and superscalar out-of-
order) as well as increase number of tightly coupled cores in multicore configuration. 
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The memory architecture on the other hand is to address challenges connected to 
memory architectures, such as reducing bandwidth bottlenecks, hiding latency, optimal 
usage of heterogeneous memory architecture etc. Most of the issues are possible to be 
solved using the architectural enhancements based on future memory integration 
technologies, such as 3D die stacking with huge bandwidth potential. It can open new 
opportunities for new system design and exploration. The techniques used are either 
micro-bumps or through-silicon-vias (TSV) also known as wide-IO. These memory 
integrations enable large number of connections, with possibility of many interfaces. 
The introduction of TSV brings a totally new dimension to embedded system 
architecture, where memory bandwidth is no longer the bottleneck it used to be. There 
are still many technical and non-technical challenges with these technologies, such as 
manufacturing, standardization and costs, before being widely used in embedded 
systems. 

Multi-core embedded systems are today leading processing technology, how best to 
utilize the processing abilities and how to leverage these high performing cores. Multi-
cores will not provide single thread peak performance but, the advantage of multicores 
lies in features such as vector units and out-of-order superscalar architectures with 
advance speculative execution. 

To make these multicores the more acceptable processors in embedded systems the 
biggest challenge is keeping the power consumption at the minimum with exponential 
increase in performance. 

The trend for muticore system is nothing new in embedded systems as this has been the 
path early on. The CPU+DSP approach was the chosen architecture as early as end off 
1990s. The new is symmetrical multi processing (SMP), a homogeneous tightly 
connected multicore system, in contrast to the older loosely coupled multicore designs. 
Combined with the rest of the system, graphical processing unit (GPU), digital signal 
processor (DSP), hardwired accelerators and other peripherals on the same die, build a 
well-tuned and balanced system on chip. Connecting it all together, a high-speed 
interconnection network on chip is often used. The challenge lies in keeping to the 
power and size constrains at same time harvesting the desired performance.  One such 
limitation is Amdahl’s law, which states that the parallel speedup is limited by the 
serial code in a program.  

Advance embedded system on chip design, with TSV enables the possibility of 
removing the memory bottlenecks and opens up for more performance. Short term, the 
removal of memory as a bottleneck will push the performance higher with the overall 
performance of the processing elements (CPU, GPU and IP blocks) increasing 
proportionally. Long term, these improvements could have significant influence of 
system architecture as well processor design (SoC). In a 3D silicon structure, memory 
and logic units can be designed to work more integrated such that performance 
increases can be achieved. At same time many new challenges arises, such as for 
example, optimally finding the best placement of processing and memory units or even 
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mapping of different applications to these 3D architectures. Thus a systematic design 
space exploration method similar to the constraint based method proposed in this thesis 
can be applied for optimally exploiting these 3D architectures. 

Multimedia is the most prominent use case for all handheld devices, with LTE 
bandwidth increasing exponentially, lower costs per bit, and higher quality of service 
[113]. All these advancements together with more complex signaling algorithms [114] 
enables increase in multimedia workload significantly 10x [2]. This comes at the same 
time as increase in display resolution up to and beyond HD [25] leading to even higher 
workload for multimedia. Another direction that multimedia workloads (audio as well 
as video) are taking is focusing on quality instead of compression. This is a 
combination of both the increased bandwidth with newer cellular standards as well as 
more processing performance of the handheld devices.     
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Paper I 

1Evaluation of SIMD Architecture 
Enhancement in Embedded Processors for 
MPEG-4 1

 

 

Abstract. This paper presents our studies on the effects of using SIMD processor 
extension developed to enhance the processor performance for streaming applications. 
Our approach was evaluated using MPEG-4 encoding application as benchmark. 
Although MPEG-4 consists of many different operations, we concentrated on the sum 
of absolute differences (SAD), a major part of the motion estimation. The SAD was 
chosen because it is one of the most frequently used operations in MPEG-4 encoding. It 
is estimated to consume between 40%-80% of the total video encoding time when 
implemented on a general purpose processor. We have performed an extensive 
evaluation of our architecture extension. This evaluation showed that it is possible to 
achieve high performance with acceptable power consumption. We obtained about two 
times performance improvement for MPEG-4 encoding with roughly the same power 
consumption.   
  

                                                           
1 This paper is a reformatted version of Evaluation of SIMD Architecture Enhancement In Embedded 

Processors for MPEG-4, in Proc. Symposium on Digital Systems Design (DSD-04), Rennes, France, August 
31 - September 3, 2004. 
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1.1 Introduction  
The increasing usage of computationally intensive multimedia applications in mobile 
phones and personal data assistants (PDAs) puts new requirements on performance, 
power consumption and memory. Research on how to deal with such demands has 
mainly concentrated on desktop processors [1]. The research on embedded processors 
has been scarcer, with the result that processor architectural developments for low-
power devices have been lagging behind. This in turn has been reinforced even more 
by the fact that most solutions in low-power embedded designs have been hardwired to 
cover shortcomings of most existing processors. While these solutions have had great 
impact, in the longer perspective they have had two main drawbacks. First, they do not 
provide flexibility, which is essential if one solution is to be able to be programmable 
for different standards and applications. Second, the process technology development 
introduces new design problems, which makes design of hardware even more difficult 
and time consuming. Therefore it reinforces even more the need for more flexible 
solutions. Software-based solutions, on the other hand, provide necessary flexibility to 
architecture but have to be carefully designed to provide sufficient processing 
performance, and still keep power dissipation low. 

In this paper, we study the effects of using Single Instruction Multiple Data (SIMD) 
extension architecture to enhance the processor performance for streaming applications 
while providing the flexibility of a software solution. The media application we have 
decided as the benchmark is MPEG-4 encoding. This application consists of different 
operations and we concentrated mainly on the Sum of Absolute Differences (SAD), 
which is a major part of the motion estimation. The choice of SAD operation as a main 
metric for evaluation of the architecture is based on the fact that it is one of the most 
frequently used operations in MPEG-4 encoding. This computation consumes a 
significant portion of the total processing time. It is estimated to consume between 
40%-80% of the total video encoding time when implemented on a general purpose 
processor [2]. 

The main evaluation of the architecture is carried out by a complete video encoding 
package. This is a full encoding application package developed by Ericsson for 
encoding and decoding of streamed media. It is based on state-of-the-art algorithms 
used in media applications. The importance of having a real application with realistic 
workloads is one key component when carrying out our architectural studies. Lacking 
this realism results often in an architectural design that has no actual value. 

Since many multimedia applications work on streams of data, performing the same 
computation, SIMD architecture has been chosen as the main enhancement for an 
embedded processor.  Our goal is to improve performance for critical data streaming 
applications and still keep the power under control. This is achieved by extending a 
general purpose embedded processor to handle heavy real time image processing. We 
have carried out an extensive evaluation to study different impacts of our extensions on 
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the entire system. This was done on real applications.  
The interaction between memory and processor has a big impact on architecture 

performance due to a difference in processor speed and memory access time. This can 
often create a bottleneck in architecture and need to be considered during analysis. In 
our experiments, we have simulated memory and cache traffic to analyze its impact on 
performance.  

We have embedded SIMD unit into MIPS processor by adding extended instructions 
to the Instruction Set Architecture (ISA). This approach utilizes the parallelism existing 
in streamed multimedia applications. For this study, we consider a specialized SIMD 
extension but it can be later expanded with other functionalities and instructions to 
support other vector operations, such as multiplication accumulation (MAC). 

The structure of the paper is as follows. In Section 2 some background is given for 
media applications, especially MPEG-4. Section 3 describes the baseline architecture of 
the SIMD extension. Section 4 describes the method we used in our approach. Section 
5 presents the experimental results. In Section 6 we discuss related work and in Section 
7 we give some concluding remarks and future work. 

1.2 Media applications impact on embedded 
architectures  

The motion standards MPEG-1, MPEG-2 and MPEG-4 were developed in response to 
demands for higher data rates, increased efficiency in data coding and greater input-
format flexibility [3]. As a consequence the standard has become complex with high 
requirements on implementation performance. The MPEG-4 standards define four 
different profiles of which we focus on the main profile, video, and in particular the 
encoding of moving images. 

One important reason for developing MPEG-4 is that, unlike MPEG-2, it is object 
based. Video objects (VO), as they are called, are visual objects represented by the 
shape, motion and texture information. Each VO is comprised of Video object plane 
(VOP), which contains motion parameters. The VOP is encoded into a separate video 
object layer. It uses a window, where each object is divided into a grid containing a set 
of blocks, called Macroblocks (MB). The size of VOP is either 16 x 16 or 8 x 8 MB. 
Each MB consists of 16 x16 pixels. For each MB of the current frame, the block-
matching algorithm uses a search window in a previously reconstructed frame. It 
searches for the closest matching block to the current block and defines a motion vector 
(MV) pointing to it.  

There are different measures for finding the block with the best matching criteria. 
The most common one is sum of absolute differences (SAD).  This operation is 
basically comparison between two consecutive MBs. It determines the amount of 
differences between these MBs.  This operation makes the motion estimation (ME), 



Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4                                

 

 72 

one of the most data-dominated and the most frequently used part of MPEG-4 
application. The huge number of memory access put tremendous demands on the whole 
system. This is a reason why we have concentrated to propose and evaluate a specific 
SIMD extension for this operation. We address performance and power considerations 
as well as integration with the rest of the processor, especially memory system. 

Given the growing importance of different media applications for future desktop and 
embedded processors, it is not surprising that there has been a lot of research in this 
field. The research can be divided in two categories; high performance and low-power. 

In video encoding area most research focus has been on high performance 
computing, since this area includes many heavy media processing applications. The 
solutions that exist in this area are usually different kinds of ISA extensions, such as 
SIMD enhancement of general purpose processors. Video coding algorithms often 
process byte-wide data therefore a 32 or 64-bit wide arithmetic unit is underused. To 
make it more efficient a subword parallelism, in which a standard unit, is divided into 
smaller units has been proposed. These can be organized in different sizes but the most 
commonly used sizes are 8 or 16-bits [4]. 

In the low-power embedded domain the solutions that has so far been proposed and 
implemented have been ASIC centric, meaning design and development of a specific 
chip for each platform. A reason for this has been the lack of high performance 
solutions among embedded processors. One drawback with these solutions is the lack 
of flexibility. Another is the cost of developing a hardwired solution for each design 
and standard. This cost is not just a unit cost but it includes also costs for longer time to 
market.  Thus the need to use other solutions, where both the processing requirements 
and the flexibility of running diverse applications and standards are met, has risen. 

The main drawback with high performance studies have been the lack of relevance 
when it comes to drawing right conclusions with regards to low-power embedded 
systems.  Having this in mind, one can use some of the proposed ideas to investigate 
the possibility of using them for low-power embedded systems. Taking these facts 
together and bearing in mind that media applications, such as MPEG-4, used in low-
power area have different characteristics than ones used in high performance area, there 
is a room for introducing new solutions. Therefore we feel that this is an area needing 
more attention. Our investigation tries to bridge this gap by addressing high-
performance, low-power and flexible solutions for mobile MPEG-4 applications. 

1.3 Baseline architecture 
Our proposal is to implement SIMD architecture with media extensions to handle 
streamed video applications, such as MPEG-4, for embedded platforms. These video 
applications are quite suitable for SIMD based solutions, as they often apply the same 
computation on an entire stream of data [5, 6]. In addition, SIMD design is highly 
efficient in exploiting the structure and resources of the processor. By using SIMD 
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extension and exploring both subword parallelism and streaming behavior of the 
MPEG-4 application, we want to enhance the overall performance so much that a soft 
solution is possible for the embedded domain. 

 
Figure 1. New SIMD instructions are 32-bit and follow the same bit structure as the other 
processor instructions. 

The SIMD unit architecture is quite general and can be added to several embedded 
processors. In our studies, we have focused on MIPS processors and extended it with 
our SIMD unit for data streaming applications. The unit was integrated into MIPS 
processor by defining two new SIMD instructions. In figure 1 SIMDLD and 
SIMDSAD instructions are shown. These new instructions follow the same ISA as the 
other processor instructions. SIMDLD is a load instruction, which performs the loading 
of vector registers (VR1 or VR2). SIMDSAD instruction performs the SAD operation 
by taking VR1 and VR2 as input operands and writing the result, sum of the absolute 
difference, in the target register. 

Figure 2 shows SIMD extension proposal together with the overall architecture. 
SIMD unit is integrated in the normal flow of the instruction pipeline of the processor. 
At the instruction decode stage SIMD instruction is identified and redirected to SIMD 
unit. Depending on the instruction, SIMDLD or SIMDSAD, it is executed differently.  

The SIMDLD results in loading SIMD-vector registers VR1 or VR2. Each vector 
register consists of 16 8-byte registers. The bandwidth of the connection between the 
data cache and the SIMD unit is 64-bits, thus resulting in two or three accesses for 
loading each vector register. The three accesses are needed for alignment of data. 
Alignment is performed on the current frame macroblock. This is done by reading three 
8-bytes from memory. These 24 bytes are then shifted left so that they become byte 
aligned, i.e., we get two 8-byte aligned data. 
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Figure 2. The proposed SIMD architecture. The connection from memory to SIMD unit is 64-bit 
wide. 

SIMDSAD instruction operates on two vector registers, performing in parallel a sum 
of absolute differences. Basically, we have first 16 functional units, which perform 
absolute value operations in parallel for all pairs of data in vector registers. Then a tree 
of adders (together 15) makes addition of all these values. The vector processing unit is 
pipelined and has several stages. The number of stages depends on used adders and 
technology. 

The choice of the adder is an important issue and could benefit or hamper the 
performance of the processing. According to 0.13µm UMC technology process an 
overall execution time for a one-bit full adder cell is 0.19 ns [7]. An 8-bit carry-ripple 
adder has a latency of 1.52 ns. Therefore, a pipeline of five stages can be run at 600 
MHz. This would give us sufficient performance assumed in our experiments. 
Obviously, selection of more complex adder can result in lower number of stages or 
higher clock frequency. 

The SIMD unit can be compared to a multi staged floating point unit, which is 
located often in parallel with the processors own Arithmetic Logic Unit (ALU). Result 
of SAD operation is a single value, which is placed back in one of the processor 
registers for use by the video encoding application. Processing unit together with the 
two vector registers and alignment unit is the core of the SIMD extension. 

Introducing this extensive SIMD support affects many parts of the system, especially 
memory system and data path. This creates a need for investigating the architectural 
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design tradeoffs. One such tradeoff is how we can load the 32 SIMD vector registers 
with aligned data with as short as possible latency. This clearly introduces a classical 
bottleneck in the system. 

1.4 Methodology 

1.4.1 Simulation 
To evaluate our approach we made simulations using SimpleScalar toolset [8]. This 
toolset provides an infrastructure for architectural modeling. The tool is open source, 
which enables a user to modifying it for particular architectural studies. It is also one of 
the most widely used toolsets for computer architecture studies. This is an execution-
driven simulator, which in our case simulated an MIPS instruction set architecture. 
With the integration of the power estimation tool Wattch [9], the evaluation system for 
our baseline architecture was thus in place. This environment was used for our 
evaluation of the encoding application.  

The power model used for the architecture has been executed for the SIMD 
instructions. The switching information for registers, functional units and buses is 
collected and used by Wattch for power calculation.  

1.4.2 Application 
The application that was used for the main evaluation was a complete video encoding 
package. This application is a full encoding application package developed by Ericsson 
for encoding and decoding of streamed media [10]. It is based on algorithms used in 
real media applications. Ericsson Mobile Platforms provided this application within the 
framework for cooperation in study of future mobile platforms. 

For evaluation SIMD extension we chose one of the main operations in the MPEG-4 
encoding, the Sum of Absolute Differences (SAD). This operation is done in motion 
estimation part of the digital video encoding. One important aspect of the SAD 
operation is the fact that it is often used for evaluation of different architectures. It is 
used because it is the most frequently executed operation in video encoding [5, 11]. 
Many other researchers have also chosen this operation in their studies [2, 5]. This is 
also why having an efficient solution for SAD is of great importance with regards to 
performance. 

One of the most important issues when doing architectural studies is the accuracy of 
the applications used. Being able to use a real workload improves the overall 
architectural design.  This issue is even more crucial for data intensive applications, 
such as MPEG encoding.  
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Figure 3. Modeled baseline architecture with separate data and instruction level1 caches together 
with a unified level2 cache. 

1.4.3 Architecture 
We start evaluation of our approach by examining an embedded processor with SIMD 
media extensions. The evaluation results of this architecture acted as basic reference for 
power and performance. The memory model used for evaluation was Harvard 
architecture with a unified second level cache, depicted in Figure 3. As our proposal 
was an embedded SIMD design the main focus was on the processing unit, CPU, 
instruction- and data-caches, memory and data paths. From this baseline architecture 
we added new functionality, by integrating a parallel data-path in the execution stage so 
that it handled SIMD instructions. The SIMD unit is directly connected to the data-
cache, which provides the necessary bandwidth and direct access. Table 1 lists the 
cache configurations and table 2 shows the system configuration used in our 
experiments. For power consumption we assume 0.13µm UMC technology. 

Table 1. Memory configuration of the modeled architecture. 

 Size (KB) Block size (Bytes) Associativity Replacement policy 

L1 Data Cache 512 64/32 4 LRU 

L1 Instruction Cache 512 32 1 LRU 

Unified L2 Cache 1024 64 4 LRU 
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Table 2. System configuration and memory latency. 
System Clock 600 MHz 

Memory access bus width 16-bytes, 8-bytes 

Memory access latency 18 cycles 

 

1.5 Experiments and Discussion 
In this section, we present the evaluation of our proposed architecture. First, we 
consider the kernel SAD loop, which is used for initial evaluation of our architecture. 
We also comment simulation results for this case. In subsection 2 we start by 
explaining the characteristics of MPEG-4 encoding application, its configuration and 
test sequences which were used. Next section provides results from different 
executions. The following section deals with the impact of the ISA extension. Finally 
evaluation of the results and their implications are discussed in subsection 4. 

1.5.1 Kernel SAD loop 
A test of the kernel code of SAD loop was written for initial evaluation of the SIMD 
extension. The kernel code is shown in figure 4 for both non-SIMD processor and 
processor with SIMD extensions. The main characteristic of the loop is the amount of 
potential parallelism that is present. The SAD operation works on macroblocks (MB) 
as discussed in section 2. This results in a loop containing 16 absolute difference 
operations, which at the end are added to a sum. The inner loop is thus replaced by the 
SIMD instructions. This loop is run 16 times since in our case MB is 16x16. The total 
sum of all absolute differences is the result of SAD calculation. 
 

for (i=0; i<16; i++){ 
   for (j=0; j<16;j++){ 
      sad+=abs(b[i][j]-c[i][j]); 
    } 
} 
 

for (i=0; i<16; i++){ 
R2=&b[i][0]; 
R3=&c[i][0]; 

    SIMDLD VR1, 0(R2) 
    SIMDLD VR2, 0(R3) 
    SIMDSAD R4, VR1, VR2 
} 

   (a)   (b) 

Figure 4. SAD loop, (a) without SIMD extension and (b) with SIMD extension. In the case with 
SIMD extension an inline assembler code represents the SIMD instructions SIMDLD and 
SIMDSAD. R2, R3 and R4 in (b) are normal processors registers. 
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Simulations of the SAD kernel code produced performance and power consumption 
evaluation. These results verified the correctness of functionality of SIMD extension 
and provided performance and power consumption figures. Figure 5a shows the results 
obtained from running a SAD loop 1000 times. These results indicated to some degree 
a promising performance by providing a boost of over 7 times. In addition, as can be 
seen in figure 5b power usage is insignificantly higher with SIMD extended 
architecture. Since these experiments were run on SAD kernel code there are very 
limited conclusions that could be drawn from them, especially with regards to memory 
and overall performance. Therefore the need for complete application was required. 

 
   (a)    (b) 

Figure 5. (a) Execution cycles after running SAD loop. The diagram shows a performance 
increase of over 7 times for the SIMD extended architecture. (b) Shows the average power for 
SIMD and NonSIMD. 

1.5.2 Configuration of MPEG-4 application 
Table 3 shows the configuration of the application chosen for evaluation of the 
architecture. Resolution was set to QCIF 176x144. This is the size regularly used in 
handheld devises. Output bit or data rate was set at 384 kbit/s. This data rate is used by 
3GPP, which is the standard for third generation mobile phones [12]. Test sequences 
chosen as input are called news and mobile. The main difference between them is the 
amount of movement in the sequence of video images. 
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Table 3. Configuration of MPEG-4 application. 

Output Resolution QCIF 176x144 

Data rate 384 kbit/s 

Advanced Intra Coding Mode ON 

Deblocking Filter in the Loop ON 

Modified quantization Mode  ON 

Rate control NRC 

 
Figure 6. Execution cycles for running MPEG-4 application with two different test sequences 
news on the left and mobile on the right. The bars on left show the execution cycles for 
architecture with a 512 KB memory and block size 32 bytes. The right bars are with same cache 
size but with block size 64 bytes. 

1.5.3 Impact of SIMD extension 
After running a series of simulations the results show the potential for SIMD extension 
is quite significant. Figure 6 shows the reduction of the total execution cycles to almost 
half. The first major observation is the impact of input test vector where mobile 
sequence has significant lower execution cycles. The second observation is the impact 
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of different cache configurations; 64-bytes block size instead of 32-bytes and memory 
access bus width, 16 bytes instead of 8 bytes. As shown in all cases the performance of 
the SIMD architecture is almost two times better than the NonSIMD architecture. 

We also observed a significant reduction in cache accesses both for instruction cache 
as well as data cache as seen in figure 7. The decrease of cache accesses for instruction 
cache is obvious as we have SIMD architecture. The reduction of data cache accesses 
comes from the fact that for each access in SIMD architecture, our extension loads 8 
pixels (i.e., 64-bits). NonSIMD architecture, on the other hand, loads only one pixel 
(i.e., 8-bits). We can also see the difference between the two test sequences news on 
the left and mobile on the right. This clearly shows the influence of input data on the 
behavior of the architecture, as with the case for execution cycles above. 

 

 
Figure 7. Cache accesses for SIMD and NonSIMD show a significant decrease both for 
instruction- and data level 1 cache. The diagram on the left is cache accesses for news test 
sequence. The diagram on the right is cache accesses for mobile test sequence. 

The total power consumption is usually lower for SIMD even though we have 
introduced a new component in the processor architecture.  Figure 8 shows the average 
power consumption for the SIMD unit and caches. This average is basically power 
consumption per cycle. The SIMD extended architecture also shows a lowering of the 
total average power. Data cache is the most contributing factor to the total power 
consumption figure. This lower power consumption can be explained by the fact that 
SIMD architecture has lower number of cache accesses (see figure 7). However, these 
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accesses are 64-bits instead of 32-bits. As can also be seen the average power of the 
SIMD unit is insignificant compared to the total average power. The data on the left is 
news test sequence and on the right mobile. 

 

 
Figure 8. Power consumption for SIMD and NonSIMD architecture for test sequences news and 
mobile.  The cache configuration chosen here was 512-32-8 and 512-64-16 from figure 6. 

1.5.4 Main observations 
Adding SIMD extension to an embedded processor for increasing the performance is 
one way of solving the shortcomings of today’s embedded processors. One of the 
benefits with this solution is its flexibility. Instead of adding a hardwired solution 
beside the processor, tailored for a certain standard, we use flexibility and 
programmability of general purpose processors. The cost for this solution is small and 
insignificant with regards to power increase.  

The most interesting observation is the increased importance of data paths. By 
increasing the performance of the processor, new problems arise on how to provide the 
processor with enough data so the increased processor performance is not lost. The 
results in the previous section clearly illustrate this. The increased cache size and its 
right configuration, together with increased memory bus width produce a significant 
improvement in the overall performance of the system. 
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Another important issue is the complexity of MPEG-4 encoding application that is 
seen clearly in figure 6. Execution of different test sequences, such as mobile and 
news, influences the overall system load. In the case of figure 7 we have quite high 
number of data accesses for news compared to mobile. Mobile test sequence, in fact, 
requires more computations but as the target data rate is not achieved the application 
lowers the output quality to meet the target data rate, thus reducing the number of 
computations. Figure 9 shows the performance changes of the system when changing 
the configuration of the application. The most striking factor is that the amount of 
computation increases as the data rate restrictions are relaxed. This increase is much 
more significant for the NonSIMD. This indicates that more time is spent on computing 
to achieve better image quality when higher data rate is available. Thus the impact of 
our SIMD extension is more dominant. This increase in available bandwidth is 
something that future wireless systems will provide. Thus having high data rates in 
excess of 768 kbits/s is realistic. 

 
Figure 9. Execution time for mobile test sequence with different target data rates. The data rates 
chosen are from 3 GPP standard. We see an increase of execution time as we increase the target 
data rate. 

To conclude, an increase in performance can only be justified as long as the rest of 
the system can also be improved by the same amount. Otherwise the added 
performance will not be justified. Thus improved data path from memory to processor 
is a must to move forward with any new improved embedded processors. 
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1.6 Related work 
There has been some work done to address SIMD, which also takes into consideration 
the system impacts [4, 5, 13]. Lappalainen et al. give evaluation of different 
algorithmic optimizations for media applications. Their study was done using 
MultiMedia eXtensions (MMX) and Streamed SIMD Extensions (SSE) on Intel 
Pentium III [14]. This study does not discuss power consumption or silicon area and 
cost optimizations.  

Many of the studies are based on desktop processor architectures. They have some 
similarities with low-power embedded processors but there are in many ways different, 
both with regards to architecture and performance. The sensitivity for silicon area 
budget as well as power budget is one point that seldom is investigated in high-
performance research. Most studies, which consider low-power and high-performance 
have focused on hardware solutions [15] or Digital Signal Processors (DSPs) [16] as 
basic blocks in embedded systems for media applications. 

The solutions, which were presented before for desktop processors are now 
appearing in low-power embedded processors, as pointed out in [5]. This development 
is also observed with leading low-power embedded processor manufactures, such as 
ARM, MIPS and Hitachi. In their new processors a limited form of high-performance 
SIMD architectures has been added [17, 18]. This indicates that a processor 
implementation is possible, which in turn introduces some new aspects for media 
applications. Thus opening the door for more radical implementations using the 
flexibility that these solutions provide contra hardware based solution or even a DSP 
based solution. An ideal SIMD solution should have none or very minor impact on the 
whole system. But as it is commonly known, introducing new design aspects into the 
system without fully evaluating the system impacts have in reality very little value. The 
impact on memory and cache is of particular interest to study, as these system 
structures are of even more importance in embedded systems. 

One of the implementations that consider many of the embedded low-power design 
constrains such as silicon area and power dissipation is ARM processors. In order to 
give clear understanding of our approach compared to ARMv6 a more detailed 
description is needed. ARMv6 is the latest processor architecture that ARM has 
produced. Among the newly added features is a limited embedded SIMD capability. It 
uses a 32-bit Arithmetic Logic Unit (ALU) and a 64-bits bus which provides 
performance improvement between 2 and 4 times [18]. This clearly shows that adding 
SIMD to processor core has great potentials for improving performance, and still 
keeping embedded design constrains. But these performance gains are not close enough 
for replacing a dedicated hardware for video encoding. Instead a more extensive SIMD 
solution is needed, to be able to meet the computational requirements from the 
encoding application. 
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1.7 Conclusions and future work 
We have proposed and evaluated SIMD architecture for MPEG-4 encoding for 
enhancing the performance of embedded processors. We have shown in our study that 
by using SIMD extension we can increase the overall performance of an embedded 
processor and still keep the power at similar level as original architecture. These results 
are clearly related to the issue of memory bottleneck, one of the most important 
problems when dealing with embedded systems. As the margins for embedded systems 
are much narrower than high performance systems, the system imbalances cannot be 
neglected in the same way.  Thus we see a need for more in-depth work around 
memory and processor interaction. Our future work will concentrate on SIMD 
extensions with a focus on the memory issues, where we see a gap in solutions for 
embedded systems that can provide the necessary high data bandwidth. We plan also to 
improve the overall performance of the SIMD extension execution part. 
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Paper II 

2Analysis of Embedded Processors for 
Streaming Media Applications2

 

 

Abstract. Streaming media applications, such as MPEG-4, impose great challenges 
on embedded systems. In this paper, we present our analysis of an embedded processor 
family used in most of wireless handheld devices. For our analysis and evaluation 
purpose we use full video MPEG-4 encoding application with optimized algorithms for 
mobile devices. We observed significant performance improvements when using new 
architectural solutions in embedded processors. There are two sources of this 
improvement. The first one is due to introduction of Single Instruction Multiple Data 
(SIMD) extension in embedded processors. The second one comes from increased clock 
frequency enabled by deeper instruction pipeline. These architectural enhancements 
give an increased performance, but are not sufficient in providing enough performance 
for heavy video encoding (CIF screen size images at 30 frames per second). For 
achieving this, a more aggressive SIMD unit is required as indicated by our proposed 
architecture and its analysis. 
  

                                                           
2  This paper is a reformatted version of Analysis of Embedded Processors for Streaming Media 

Applications, in Proc. of the 8th Workshop on Computer Architecture Evaluation using Commercial 
Workloads (CAECW-8), San Francisco, USA, February. 12, 2005.  
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2.1 Introduction 
The evolution of embedded processors has been a steady progress from simple micro-
controllers, to today’s advanced multi-staged pipelined designs. This evolution has 
come mainly from the demands applications have put on embedded systems. These 
applications differ not only in complexity but also in the amount of processing load 
they require. A typical streaming media application, video encoding, involves discrete 
cosine transform as well as on-the fly interpolation of pixel values during search in 
motion estimation. These demands often require highly parallel solutions to achieve 
even mildly reasonable results.  

MPEG-4 video encoding on mobile handheld devices is a good example of a heavy 
application running on a resource limited device. Mobile handheld devices have 
narrower design constrains, such as limited energy supply and limited size. They have 
become hard tuned and designed with very confined demands. With this in mind, these 
devices have different design challenges than high-performance designs. The key issue 
has been to increase the performance just enough to solve the problem with little cost 
overhead. But there is a new issue involved here, flexibility. Flexibility is important in 
future system architectures, as the need to be able to use the same hardware for 
different applications and standards has risen. Therefore, an important issue in 
embedded processor design has been efficiency, in terms of gained performance at a 
cost of increased design complexity and resource utilization. 

The trend of embedded processors evolution has taken two paths, one going to multi-
processors and the other extending processor architecture with specific hardware to 
boost the performance [1]. In this paper, we concentrate on the second solution and 
analyze a few processor extensions needed for streaming media applications. 

The objective of our research is to investigate and propose new architectures to 
increase the performance of handheld mobile device, by introducing specific hardware 
in the processor core. The main idea is to extend the Instruction Set Architecture (ISA) 
of a processor with Single Instruction Multiple Data (SIMD) instructions. The choice 
of a SIMD design is natural, as media applications are parallel and well suited for 
vector units [2]. In our preliminary work we looked at the performance increase of the 
most critical parts of video encoding application through profiling. The operation that 
uses most of execution time is the Sum of Absolute Differences (SAD) in the motion 
estimation block. The calculation of the motion vector accounts for roughly 40-80% of 
total execution time [3]. Therefore we would like to analyze the impact on performance, 
when specific critical parts are boosted. 

In this study we want to elaborate and analyze how some of today’s embedded 
processors extensions can be used for streaming media applications. For our study we 
chose to look at the ARM processor family, as ARM is one the leading manufactures of 
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embedded processors. ARM926EJ (implements ARMv5 ISA) was chosen as our 
baseline processor that is one of the most widely used designs in mobile embedded 
devices. As ARM1136EJ (implements ARMv6 ISA) is the successor of ARM926EJ, it 
was chosen to represent the next generation of processors. Among added features 
ARM1136EJ has the new ARMv6 ISA that was introduced by ARM to provide SIMD 
capability with data width of 32 bits. The idea of adding signal-processing horsepower 
to general-purpose processors is natural and is used in most processors [4]. Embedded 
processors follow this path as well, which is also the direction ARM has taken. The 
advantage of such approach is that it does not increase the area required by the CPU 
that much [5]. It can eliminate the need of additional DSP core or specific hardwired 
logic [1]. 

The idea of SIMD instructions for multimedia applications has been widely used. In 
most cases the main evaluations of architectures have been done by using different sets 
of kernels [6]. This is certainly a good approach in the introductory phase of evaluation. 
But in order to do in-depth analysis and evaluate overall speed-up of architecture, one 
needs to use complete applications [7]. There is also the issue of the quality or 
relevance of benchmarking architecture with a reference application [8]. The reference 
application has often not been optimized and, thus, behaves differently from 
commercial applications. Another issue affecting embedded processor research is that 
most evaluations are carried out on high-performance processors such as Pentium or 
PowerPC. This led to conclusions that cannot be automatically transferred to embedded 
processors [9]. 

Our evaluation was done using ARM’s instruction set simulator ARMulator in 
Realview tool set. This is a cycle accurate simulator which is used for software as well 
as hardware development. Our analysis of the architectures was done using a full 
MPEG-4 encoding application. This application was provided to us by Ericsson Mobile 
Platforms AB and uses realistic optimized algorithms for mobile devices.  

Our results show that the road we have taken by extending an embedded processor 
with specialized SIMD extension is the right way forward [10], both with regards to 
gained performance as well as power consumption. What differs our approach from 
ARMv6 extension is the extent of how massive in terms of data width this SIMD unit 
should be. In the case of ARM, the unit is 32-bits, indicating that it can initiate 4 
parallel operations using one instruction. In our own architecture we look at data width 
of 128-bits and beyond. 

ARM is not the only embedded processor design that is moving in the direction of 
extending the ISA with SIMD capability. MIPS technologies is also starting to enhance 
their processors with SIMD units by introducing new SIMD instructions in their MIPS 
IV and MIPS V ISA [11]. 

The structure of the paper is as follows. In Section 2 basic information on ARM 
architecture is given. Section 3 describes our video encoding application and in section 
4 the method we used in our approach. Section 5 presents our experimental results. In 
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Section 6, we discuss experimental results and in Section 7 we give some concluding 
remarks. 

2.2 ARM Architecture  
The next generation of embedded processor architectures has been driven by the needs 
of emerging products, which require more processing power. The key design constrains 
in the embedded domain have been performance, power, area, and cost. These factors 
must be balanced to meet the requirements of each application.  

One of key areas the new ARMv6 architecture focuses on is multimedia application. 
Single Instruction Multiple Data (SIMD) capabilities enable more efficient software 
implementation of these applications. These new instructions provide performance 
improvements between 2x to 4x, depending on the multimedia applications [12]. 
ARMv6 is based on a 32-bit processor, the same as ARMv5, which is implemented in 
ARM926EJ, ARM10 and XScale. Combined with a 64-bit bus support, this provides 
equivalent to a 64-bit machine, but without the power and area overhead of full 64-bit 
CPU [12]. The ARM1136EJ 64-bit data paths allow two instructions to be fetched from 
the cache in a single cycle, thus achieving high performance on code sequences where 
data is required to be moved in parallel with processing. 

The ARM architecture is a load-store architecture, where the ARM core instructions 
can only operate on data in registers. Load and store instructions are used to transfer 
data to and from this register file. The L1 memory system has no wait states and runs 
synchronized to the core. The cache in our experiments is organized as a Harvard 
architecture with separate instruction and data caches. 

The ARM media extensions are implemented for the first time in the ARMv6 
designs. They include a set of SIMD instructions, as well as Sum-of-Absolute-
Differences (SAD) support. The new instructions support 8 and 16 bit SIMD arithmetic, 
including four 8-bit and two 16-bit operations, parallel add and subtract, selection, 
packing and unpacking [12]. ARMv6 provides support for SAD calculation, with the 
inclusion of USAD8 (sum of differences) and USADA8 (sum of differences 
accumulate) instructions. Table 1 shows the relative performance of SAD operation, 
comparing ARMv6 and ARMv5 [12]. 

Table 1. Implementing Sum of Absolute Differences on the ARMv5 and ARMv6 architecture 
[12]. 

Architecture Cycles/4 pixels 

ARMv5 18 

ARMv6 3 
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The target frequency range for ARMv6 is 500-700Mhz. To deliver a good 
performance power ratio the ARMv6 uses both clock frequency and supply voltage 
scaling. Enabling the system designer to control power consumption and performance. 
ARM1136EJ consumes less than 0.8 mW/MHz in a 0.13μm process technology. The 
typical ARM1136EJ synthesized core without caches takes 2.85 mm2 [13]. Compare 
with 2.2 mm2 for ARM926EJ in the same 0.13μm process technology with 0.5 
mW/MHz [13]. 

The ARM1136EJ has a single-issue pipelined microarchitecture, which differs from 
previous ARM cores. It consists of 8 stages compared to 5 stages in ARM926EJ. This 
enables to increase the throughput by as much as 40% [14]. An obvious drawback with 
deep-pipelined structures is introduction of excessive latencies into the system. These 
latencies occur because of existing dependencies between instructions. Another issue 
for long pipeline processors is how to smooth program flow during branches. 
ARM1136EJ partially avoids these delays by using dynamic and static branch 
prediction to predict the flow of instructions. These two techniques are used to 
maintain good pipeline efficiency through removal of stalls. The result is the same 
effective latency as a 5-stage ARM926EJ but with higher throughput [12]. 

The two techniques used for predicting branches are dynamic branch prediction 
using a 4-state branch target address cache. It holds historical record to see whether the 
branch has been seen before, and whether it was most frequently taken, or most 
frequently not taken. If the dynamic branch predictor cannot find a record of the branch 
instruction, a static branch prediction takes over. Depending on the target address, it is 
going backwards or forwards. If it goes backwards, then branch is taken as it assumes it 
is a loop. If it is forward branch then it is not taken. Analyzing results from benchmark 
suites show correctness of the static branch predictor to around 77% of the time. When 
using only dynamic branch predictor, the processor correctly predicts 88% of the 
branches. When the effect of both static and dynamic branch prediction is combined, 
92% of the branches are correctly predicted [14].  

Although the front-end of the pipeline architecture is single issue, the back-end 
exploits the parallelism with separate processing units for the ALU, multiply-
accumulate (MAC) and Load-Store (LS) instructions. This parallel structure enables 
the processor to proceed with other ALU and MAC operation when the LS unit has 
been stalled. This means an out-of-order completion. 

The longer pipeline of ARMv6 should give about 35% clock boost over ARMv5 
architectures. Theoretically then a hand tuned version of the core could be run at 1.6 
GHz compared to the 1.2 GHz for ARM1020 with ARMv5 architecture [15]. The 
typical clock frequency for a 0.13μm process is around 500-700 MHz for ARMv6 
architecture [12, 14, 15]. 

In our experiments, we want to evaluate this architecture and analyze the impact it 
has on performance, when heavy media streaming applications with realistic loads are 
benchmarked. We selected a special version of MPEG-4 application implemented to be 
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executed on handheld devices, which was also optimized for this purpose. 

2.3 MPEG-4 Application 
The main media application used in this study is a full video encoding MPEG-4 
application. One important reason for developing MPEG-4 is that, unlike MPEG-2, it is 
object based. Video objects (VO), as they are called, are visual objects represented by 
the shape, motion and texture information. Each VO is composed of Video object plane 
(VOP), which contains motion parameters. The VOP is encoded into a separate video 
object layer. During encoding the MPEG-4 application uses a window, where each 
object is divided into a grid containing a set of blocks, called Macroblocks (MB). The 
size of VOP is either 16 x 16 or 8 x 8 MB Each MB consists of 16 x 16 pixels. For each 
MB of the current frame, the block-matching algorithm uses a search window in a 
previously reconstructed frame. It searches for the closest matching block to the current 
block and defines a motion vector (MV) pointing to it. 

There are different measures for finding the block with the best matching criteria. 
The most common one is sum of absolute differences (SAD). This operation is 
basically a comparison between two consecutive MBs. It determines the amount of 
differences between these MBs. This operation makes the motion estimation (ME), one 
of the most data dominated and the most frequently used part of MPEG-4 application. 
This application has been provided to us by Ericsson Mobile Platforms AB. It features 
full search and optimized search modes, with the later being a more realistic algorithm 
for mobile devices. The optimized search mode has a number of features, such as early 
termination and improved search algorithm. 

The application was configured for running screen size Common Image Format (CIF) 
(352x288) at 30 frames per second. We used two sets of algorithms. One based on full 
search with standard 8-point half pixel motion estimation, with search window of 
17x17 macro blocks. The other algorithm is optimized commercial motion estimation 
with the search window of 31x31 macro blocks. The profiling of the application shows 
that the SAD at least accounts for 25-37% of the total execution time depending on the 
search algorithm used and test sequence characteristics. The case that uses full search 
with the CIF screen size at 30 frames per second is the upper bound for number of 
operations per second that are required for encoding. 

2.4 Methodology 
In our experiments we use three different test sequences, mobile, foreman and news 
[16]. The main difference between these sequences is the amount of processing they 
need to encode the sequences. Depending on the configuration of the application the 
test sequences make the application behave differently. The mobile sequence is the 
most demanding sequence in terms of processing when rate control restriction is 
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removed. This removal of the rate constraint is crucial when studying the architecture 
and not the application, as we need a stable behavior of the application. The impact of 
this restriction on the quality of the encoded video sequence is substantial. It is the rate 
control that makes the application skip frames when not being able to achieve the 
required target bit rate. In order to remove this uncertainty we relaxed the bit rate 
restriction to ensure that all frames are encoded and nothing is skipped due to rate 
control. 

Another quality limiting factor is the quantization in the Discrete Cosine Transform 
(DCT), as this is the source of quality loss in the coding. We chose here a fix 
quantization to have a stable behavior of application when performing the experiments. 
The choice of a reasonable quantizer value has an important impact on the encoded 
video sequence. Choosing a too high quantizer will reduce the total bit rate but will 
also lower the quality of the encoded video sequence. Choosing a too low value will 
result in unreasonably high bit rate. We chose a quantizer value of 15 both for P frames 
and I frames, in order to have a reasonable quality of encoded video sequences. 

First we ran the kernel code, in order to be able to determine the performance of both 
the processors as well as the impact of SIMD instructions. The kernel SAD code was 
run on ARM926EJ and ARM1136EJ. In the case of ARM1136EJ, for evaluating the 
SIMD instructions, inline ARM SIMD assembler instructions were used. We use two 
measures to evaluate the performance of the architectures. The first one is the number 
of cycles needed to execute the application (see figures 1-3). The second one measures 
the encoding performance of the architecture counting number of frames per second 
encoded (see figures 4-5).  

The ARM instruction set simulator ARMulator was used for our evaluation. This is a 
cycle accurate simulator, which is part of the Realview developer’s suite [17]. The 
memory architecture we used for our experiments was Harvard architecture with 32K 
instruction and data caches. The higher level memory was modeled as zero-wait. This 
is a too optimistic assumption, but when compared to our architecture with same 
memory hierarchy the impact of a level2 cache and memory contributes negligibly, 
around 3%, to the overall cycle counts.  

To be able to compare ARM’s SIMD extension with more aggressive SIMD unit we 
used our own SIMD extension [10]. Our proposed architecture was a 128-bits SIMD 
extension integrated in an embedded processor, thus extending the instruction set 
architecture. The memory model used for evaluation was also Harvard architecture 
with a unified second level cache. Since our proposal was an embedded SIMD design, 
the main focus was on the processing unit, CPU, instruction- and data-caches, memory, 
and data paths. To this baseline architecture we added new functionality, by integrating 
a parallel data-path in the execution stage so that it handled SIMD instructions. The 
SIMD unit is directly connected to the data-cache, which provides the necessary 
bandwidth and direct access. The ARM1136EJ was simulated to run at 600 MHz and 
the ARM926EJ at 300 MHz. 



Analysis of Embedded Processors for Streaming Media Applications                                 

 

 94 

2.5 Experimental Results 
The first aim of our experiments is to see how much improvement we have between the 
ARM processors with the same media application. The second is to compare 
performance improvement between ARM1136EJ with and without SIMD extension. In 
all cases we use the same application with the same configuration. 
 

 
Figure 1. Cycle count for running Sum-of absolute differences operation using ARM 926EJ and 
ARM1136EJ without and with SIMD SAD instructions. 

To evaluate the performance of the SIMD instructions we wrote a test kernel to 
determine the amount of maximum improvement we could get for SAD. Figure 1 
shows the performance in cycles for ARM926EJ and ARM1136EJ without and with 
SIMD instructions. We observe performance improvements of about 3 times between 
ARM1136 without and with SIMD instructions. The difference between ARM926EJ 
and ARM1136EJ with SIMD is about 4.2 times. This falls short from the 6 times 
presented by ARM in [12] (table 1 section 2). Figure 2 shows the cycle count for 
running three different sets of test data sequences: mobile, foreman and news 
presented in section 3. The cycle count drops when moving from ARM926EJ to 
ARM1136EJ even though the architecture of the ARM1136EJ has 3 pipeline stages 
more than ARM926EJ. This increase in pipeline stages is one way of improving the 
architecture to get the benefit of running the processor core on a higher clock frequency. 
When this benefit is taken into account the performance impact is even more 
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significant. The ARM926EJ core is run at 300 MHz and the ARM1136EJ core is run at 
600 MHz. 

 
Figure 2. Cycle count for running MPEG-4 application in full search mode with three different 
test sequences mobile on the left, foreman in the middle and news on the right. 

Figure 2 and 3 show also the impact in performance when using full search and 
optimized search algorithm. Comparing this factor shows a significant drop in cycles. 
One observation is the fact that the importance of using a good SAD is even more 
crucial in the case of full search, compared to the optimized search. As the number of 
times using SAD decreases when using the optimized search algorithm. The total 
improvement in execution time is not that significant but taken into account the 
ARM1136EJ has a width of only 32 bits, than this is a reasonable SIMD capability for 
embedded processors. 
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Figure 3. Cycle count for running MPEG-4 application in optimized search mode with three 
different test sequences mobile on the left, foreman in the middle and news on the right. 

Figure 4 and 5 show the number of frames that can be executed in one second. This 
determines if the required performance of 30 Frames per second (F/s) is sufficient or 
not. The only time this can be achieved is when encoding the news sequence on the 
ARM1136EJ with SIMD extension. In the case of mobile the performance is around 20 
F/s. When SIMD instructions are not used the execution time increases and none of the 
test sequences reaches the required 30 F/s. When compared with 12.5 F/s for news and 
around 8 F/s for mobile on ARM926EJ this shows a substantial improvement in the 
new of ARM1136EJ architectures. When looking at the difference between the full 
search and the optimized search, the most obvious observation is the impact of the 
search algorithm. 
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Figure 4. Frame rate for running MPEG-4 application in full search mode with three different 
test sequences mobile on the left, foreman in the middle and news on the right. It shows our 
proposed SIMD extension when run the same code as the one run on the ARM processors with 
SIMD SAD operation. 
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Figure 5. Frame rate for running MPEG-4 application in optimized mode with three different 
test sequences mobile on the left, foreman in the middle and news on the right. 

 
In the case with full search there is no chance of achieving the target frame rate of 30 

F/s. The best frame rate is 10 F/s when encoding news test sequence on the 
ARM1136EJ with SIMD extension. The impact of SIMD extension is even more 
noticeable when comparing with ARM1136EJ executions times with and without 
SIMD. The best frame rate ARM1136EJ can achieve is 4.3 F/s in full search and 25 F/s 
with optimized search. 

Taking a look at the difference between ARM926EJ and ARM1136EJ we observe 
the increased impact of operating frequencies. This shows that need to run the 
processor at higher frequencies is necessary if one wants to encode streaming data. The 
important issue that rises is whether the increase in power consumption and area is 
justified. The power consumption is 0.48 W for ARM1136EJ compared to 0.15 W for 
ARM926EJ in the same 0.13 μm process including separate data and instruction caches. 

When taking into account that the ARM1136EJ is running at 600 MHz and 
ARM926EJ is running at 300 MHz the important issue is the energy consumption. By 
increasing the power consumption but at the same time decreasing application’s 
execution time even more, we save in total energy. This is will in fact be a better trade-
off for handheld devices, as they are battery driven. We showed this in our previous 
work on SIMD extended architecture [10]. Regarding area the ARM1136EJ takes 
approximately 5.55 mm2 compared to 5.0 mm2 for ARM926EJ including instruction 
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and data caches [15]. 
We performed simulations on our own architecture running the same streaming 

video application and the same test sequences: mobile, foreman and news. The 
configuration of the encoder was the same as the ARM configuration. We performed 
the simulation both with zero-wait memory model and with specific memory 
configuration. This configuration assumes cache latencies for level1 caches 1 cycle, 
level2 cache 6 cycles and 45 cycles for memory. The results show with a more realistic 
memory model the cycle count increases by ~6%. 

2.6 Discussion of the Results 
The ARMv6 architecture shows potential to provide better performance for embedded 
processors. The architecture is evolving towards system-on-chip (SoC) design. The 
differences between the ARM926EJ and ARM1136EJ reflect the fact that the 
development of embedded processors is taking, even though cautiously, the same 
direction as high performance processors once took. They increase the number of 
pipeline stages to increase the clock frequency of the design. One important aspect to 
keep in mind is that the power and energy consumption for embedded device is going 
to be the main limiting factor. One has to keep the total energy consumption down, 
otherwise the cost of increasing the performance cannot be justified. 

Traditionally the solutions chosen in the embedded domain have been ASICs with a 
set of different hardwired solutions. The main issue behind this decision has been 
predictability i.e., the full knowledge of the system functionality that need to be 
implemented. This fact made embedded system suitable for hardwired solutions. But as 
handheld devices have evolved to becoming a more open system, some of the 
predictability of the closed embedded systems has been lost. Thus the need for more 
flexible solutions has reason. At the same time the issue of energy is still dominant for 
handheld devices making it impossible to use just any solution. As embedded 
processors still have not got the performance required for running demanding 
applications such as video encoding, the need to boost the performance in an adequate 
way is important. 

The introduction of a SIMD unit to embedded processors is a good way to both 
increase the performance and, at the same time, keep the power consumption down, as 
ARM shows [9]. We also see this in our own proposal [4], especially when one takes 
into account the total energy consumption, which is the main factor for handheld 
devices.  

The ISA extension in processor introduces two favorable factors for platform design, 
flexibility and performance increase. This also reduces the complexity of designing 
complex heterogeneous ASICs. Thus reducing the design time and time to market for a 
platform. This trend in replacing as much as possible hardwired solutions as well as 
large DSP cores is quite significant. The replacement of hardware solutions has more to 
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do with flexibility as well as the issue of manufacturing costs of ASICs [18]. 
Replacing DSP core on the other hand has more to do with energy and area costs. 

Also the issue of intellectual property (IP) cost is a factor, where processor with enough 
SIMD performance can replace the DSP altogether [1, 11]. 

Now considering all this, one realizes that ARMv6 cannot provide enough 
performance to meet the needs of heavy applications such as video encoding. Therefore 
we see the need for an even more aggressive SIMD design. The only time the 
ARM1136EJ processor was able to achieve 30 F/s was when encoding the least 
computationally heavy test sequence news when using SIMD instructions. The 
introduction of a SIMD unit in ARM1136EJ is an important step in the right direction 
but it shows clear lack in performance when it comes to really heavy media 
applications such as video encoding. The need for more aggressive solutions with 
massive parallel architecture is obvious. When introducing this kind of parallelism, 
new issues such as memory structure and bandwidth become important. In our first 
study [10], we concluded that this is one of the main limiting performance factors. 

2.7 Conclusion 
In this paper we analyze and evaluate two generations of embedded processors in the 
same family to see the directions they have taken in terms of boosting the performance. 
We have chosen streaming media application as a benchmark for our investigation. The 
application provided to us is a full encoder with realistic behavior, making it suitable 
for benchmarking. We observe the direction embedded processors have taken is the 
same as high performance architectures took. Adding specific extension to the 
processor compensates for some existing shortcoming in performance. 

The approach ARM has taken is to extend the ISA with SIMD instructions for 
specific operations such as SAD. This is a good way of increasing performance and 
still keeping the energy and area cost low. The focus is to efficiently handle highly 
parallel operations. This is a common feature of many media application. In our 
analysis we observed that the added SIMD extension in ARM1136EJ boosts the 
performance by 3 times, but the target performance is only achieved with the least 
demanding test sequence, news, with optimistic assumption of zero-wait high level 
memory.  

In order to provide enough performance for MPEG-4 encoding we see a need to 
have a more aggressive SIMD architecture with wider data paths. This introduces some 
new issues among others a memory bandwidth bottleneck. 
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Paper III 

3Memory Architecture Evaluation for Video 
Encoding on Enhanced Embedded 
Processors3

Abstract. In this paper we investigate the impact of different memory configurations 
on performance and energy consumption of the video encoding applications, MPEG-4 
and H.264. The memory architecture is integrated with SIMD extended embedded 
processor, proposed in our previous work. We explore both dedicated memories and 
multilevel cache architectures and perform exhaustive simulations. The simulations 
have been conducted using highly optimized proprietary video encoding code for 
mobile handheld devices. Our simulation results show that the performance 
improvement of dedicated memories on video encoding applications is not very 
significant. The multilevel cache-based architecture processes approximately 17 
frames/s compared to 19-22 frames/s for 512 KB dedicated on-chip zero-wait state 
memory. Thus it is difficult to justify using dedicated memory for this kind of embedded 
systems, when energy consumption and cost of implementation are also considered.   

 

  

                                                           
3 This paper is a reformatted version of Memory Architecture Evaluation for Video Encoding on Enhanced 

Embedded Processors, in Proc. Embedded Computer Systems: Architectures, MOdeling, and Simulation 
(SAMOS VI), Samos, Greece, July 17-20, 2006.  
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3.1 Introduction 
The video encoding applications implementing standards such as MPEG-4 and H.264 
are computationally and memory intensive. These applications are becoming a 
dominant portion of today’s computing workloads for handheld embedded devices. 
Since, embedded devices have limited energy supply and size they need to be designed 
carefully to fulfill these confined demands. With this in mind, these devices have other 
design challenges than high-performance designs. The key is to increase the 
performance just enough to meet the requirements with as little cost overhead as 
possible.  

An important characteristic of video processing applications is the presence of data 
localities. This provides the possibility to use a special memory architecture that reuses 
data efficiently. Choosing the right memory solution is important in order to provide 
sufficient performance and manageable energy consumption. The memory solutions 
range from dedicated memories [1-4] to standard memory hierarchies [5-7].  

The research on data reuse in media applications provides contradicting conclusions. 
Some authors argue that data reuse is ineffective for these applications [8]. They 
however concentrate on computational kernels only. Other authors draw different 
conclusions when the whole video processing application is considered [7]. Their paper 
confirms the existence of data locality for video encoding applications such as MEPG-
4 for non-SIMD architecture, and the authors state that specific memory system 
optimizations fails to improve MPEG-4 performance. In this paper we examine Single 
Instruction Multiple Data (SIMD) enhanced embedded processor and video encoding 
applications specifically developed for mobile applications. 

We use two proprietary video encoding applications provided by Ericsson AB 
specifically developed with focus on very low complexity algorithms, which influences 
both computations and memory traffic. This is important when evaluating memory 
architecture. 

In our previous work [12] we have proposed SIMD extension for embedded 
processor to address the problem of high computation requirements for video encoding. 
In this paper we examine the impact of different memory architectures on performance 
and energy consumption of our architecture. We evaluate standard multilevel cache 
hierarchy against dedicated memory because the standard code can be run without 
rewriting that provides system flexibility.  

The structure of the paper is as follows. Section 2 describes our video encoding 
applications. In Section 3 basic information of our extended processor architecture is 
given and in section 4 the memory architecture is discussed. Section 5 presents the 
method used in our approach. In section 6 we present and discuss our experimental 
results. In Section 7, we discuss related work and in Section 8 we give some 
concluding remarks.   
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3.2 Video Application  
The two video standards used in our research are MPEG-4 [9] and H.264 [13]. Both are 
block based and one could view H.264 as the next step after MPEG-4. Looking at the 
optimized implementations of H.264/AVC encoders, time complexity is about 3.4 
times higher for H.264 than MPEG-4 [14]. There are different phases involved in video 
encoding, such as Motion Estimation (ME), Motion Compensation (MC), Discrete 
Cosine Transform (DCT), quantization (Q) and variable length coding (VLC) [9]. The 
MPEG-4 and H.264 implementations selected for our research are full proprietary 
video encoding applications provided to us by Ericsson AB [11]. 

By profiling both MPEG-4 and H.264 video encoding applications we have 
identified the main computationally intensive operations. Our MPEG-4 application 
allows for full search (FS) and optimized search (OS) modes, with the last being more 
realistic for mobile devices. In MPEG-4 the most time consuming operations are in 
motion estimations Sum-of-Absolute-Differences (SAD), DCT as well as SAD_Intra. 
These operations account for 25-80% of the entire encoding time in case of MPEG-4 
[15].  

Two different H.264 implementations were evaluated. H.264 Ultra light (UL) 
comparable in quality to MPEG-4 and H.264 FAST comparable to the reference 
implementation [10]. The profiling of H.264 FAST and UL while performing encoding 
of the foreman test sequence shows the suitable operations for data parallelism 
account for approximately 40% of encoding time. These operations are Sum-of-
Absolute-Transformed-Differences (SATD) and interpolation where they are 
significant part of the overall encoding time.  

The main difference between our two implementations of H.264 encoder is the time 
complexity of the encoders and the quality of the encoded video sequence. The H.264 
UL implementation is the simpler of the two and on average performs more efficiently 
than MPEG-4. The H.264 FAST encoder is more computationally demanding. This 
encoder performs well against the H.264 reference code [10] even though the time 
complexity of our encoder is significantly lower, approximately a speedup with a factor 
of 100 with an average bit-rate increase of less than 20%, than the reference encoder. 
This corresponds to approximately 700 times fewer SAD calls and 35 times fewer 
SATD calls [11]. 

The most often executed operation of video encoding, as identified by our profiling, 
use pixel arrays that represent frames. Macroblock (MB) is the main block of data 
where in MPEG-4 it consists of 8x8 pixels or 16x16 pixels. H.264 uses variable block 
sizes where macroblocks are partitioned into smaller MB 16x8, 8x8, 8x4 and 4x4. The 
frames are allocated in consecutive memory locations represented as pixel arrays. The 
allocated size for each frame is the frame size plus a border of 16 pixels surrounding 
the frame to deal with edge macroblocks when these are moved. The allocated memory 
for each section with screen size, QCIF (176x144) is 35 KB, CIF (352x288) is 122 KB 
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and VGA (640x480) is 343 KB.  

3.3  Processor Architecture 
For the purpose of this study we have extended an embedded processor (MIPS based) 
with a specialized SIMD unit. This unit is designed in such a way that it supports 
specific operations found in video encoding algorithms such as MPEG-4 and H.264. 
Media applications and in particular video encoding is well tailored for SIMD based 
solutions, as there is abundance of data-level-parallelism [8,16,17]. In addition, SIMD 
design is highly efficient in exploiting the structure and resources of the processor. 

Our SIMD unit proposed in our previous work [12] is a pipelined unit with specific 
instructions that increase the overall performance. The baseline architecture contains a 
MIPS CPU with SIMD unit as well as the cache hierarchy and the main memory. The 
second architecture extends the baseline architecture with dedicated memory 
SIMDMeM. A more detailed schematic of the MIPS core and the SIMD unit 
microarchitecture is depicted in fig. 1. SIMD unit is integrated in the flow of the 
instruction pipeline of the processor. At the instruction decode stage, SIMD 
instructions are identified and redirected to SIMD unit. The SIMD unit executes load 
and arithmetic instructions. It has two vector registers VR1 and VR2 that can be 
configured either as 16X8-bits or 8X16-bits registers. The bandwidth of the memory 
interface is 64-bits, thus resulting in two or three load accesses for loading each vector 
register. Three accesses are needed for alignment of data.  

Five arithmetic and five memory instructions have been added to the MIPS ISA to 
support the SIMD extension. The new instructions follow the same ISA as the other 
processor instructions. The load instructions perform the loading of vector registers 
(VR1 and VR2). The arithmetic instructions work on the two vector registers. 
Instruction SIMDSAD16 performs first 16 absolute value operations in parallel and 
then a tree of adders (together 15) sums all these values. SIMDSAD8 performs two 8x8 
MB SAD operations. SIMDSATD first performs a Hadamard transform and then 
calculates SAD on the difference array. SIMDFIR performs a FIR filtering in half pixel 
interpolation. SIMDAVG performs average value for two pixel values for quarter-pixel 
calculation. The vector-processing unit is pipelined and has several stages, depending 
on used adders and technology. The speed-up for our SIMD using different SIMD 
instructions is approximately 6-7 times for SIMDSAD/SIMDSATD, three times for 
SIMDFIR and two times for SIMDAVG. 
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Figure 1. The proposed SIMD architecture. 

3.4 Memory Architecture 
The memory system and cache utilization stands out as one of the main issues, when 
introducing our SIMD support. As this affects many parts of the system, we need to 
investigate the architectural design tradeoffs. We investigated three different solutions, 
one using the standard memory hierarchy, the other introducing a zero-wait state 
separate memory for the SIMD unit, SIMDMeM, and a third using a dedicated zero-
wait state frame memory. As the impact of this memory on the overall encoding 
performance was the focus, we evaluated a memory sufficiently large to hold all data 
we need.  

We evaluated both the impact of level-1 and level-2 caches on the overall 
performance. Caches provide good performance for video encoding applications, since 
these applications have good spatial locality. Many procedures in these applications 
access data sequentially in blocks of 16 bytes.  

Our SIMD memory SIMDMeM, acts as a tightly coupled memory (TCM), holding 
all data used by the SIMD unit. This provides a zero-wait state memory for SIMD 
calculations, thus removing memory latencies from the memory hierarchy. SIMDMeM 
also use the same address space as the main memory. We do not discuss any specific 
organization of this dedicated memory but our assumptions provide an ideal model. A 
real dedicated memory cannot provide better performance than the model used in our 
studies. As we will show even with this assumption, the overall performance of the 
encoder is not improved very much comparing to the standard cache hierarchy.  

An alternative solution would be an on-chip zero-wait state frame memory. The 
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minimum size for this on-chip memory is dependent mainly on frame size and number 
of reference frames used. The memory footprint for our H.264 encoder with screen size 
of QCIF (176x144) and four reference frames is at least 512 KB. This solution reduces 
the energy costs of off-chip communication, at the same time, a 512 KB for on-chip 
fast memory might be difficult to justify in an embedded system. 

 

3.5 Methodology 
For verification of our architecture we used the two proprietary video encoding 
applications presented in section 2. Instruction Set Simulator (ISS), which is based on 
SimpleScalar toolset was used for the evaluation. This toolset provides an 
infrastructure for architectural modeling [18]. To estimate power we integrated the 
power estimation tool Wattch [19] into our system. The switching information for 
registers, functional units and buses was collected and used by Wattch for power 
calculation. The SimpleScalar cycle accurate model sim-outorder, modeling an in-order 
processor, with MIPS ISA has been chosen. We compile our video applications with 
the MIPS gcc compiler included in SimpleScalar toolset at optimization level –O3. 
Three memory configurations were used in our experiments: a separate level-1 
instruction and data cache together with a unified level-2 cache, dedicated memory 
SIMDMeM, and on-chip frame memory. Table 1 illustrates configuration of the system 
with the underlined values representing the memory architecture configuration 
proposed after our investigation presented in section 6. 

We evaluated two different architectures, baseline SIMD extended with standard 
memory hierarchy and SIMD extended with dedicated memory. The processor clock 
speed was set at 650 MHz in all the simulations with 90 nm process power model. The 
energy model for the off-chip memory includes the memory and communication 
energy consumption. The memory hierarchy latency for the system is 6 cycles for 
level-1 cache miss for the first chunk of data and 1 cycle for the consecutive chunks. A 
cache level-2 miss gives 45 cycles latency for the first chunk of data and 5 cycles for 
the consecutive data chunks when fetching data from the main off-chip memory. 

Table 2 illustrates the configuration chosen for the MPEG-4 and H.264 encoders. 
The screen resolutions chosen were QCIF (176x144) and CIF (352x288). H.264 is 
restricted with the screen resolution of QCIF as our encoder for the moment supports 
this size. Test sequences chosen in our experiments were foreman, mobile and news 
[20]. The main difference between these sequences is the amount of processing they 
need to encode the sequences. The mobile sequence is the most demanding sequence 
in terms of processing. In order to measure the overall performance of the system we 
used frames per second, which in our case is more relevant as we are performing video 
encoding. As we are dealing with handheld, battery driven embedded devises we use 
total energy consumption rather than power consumption. For evaluating cache 
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performance we use miss rate, which is a common practice. But as we will point out 
later, blindly using miss rate alone can be misleading, as cache accesses influence the 
total energy consumption. 

Table 1. Cache architecture, dedicated memory SIMDMeM and on-chip frame memory with the 
chosen size and configurations (underlined in the table). 

 Size (KB) 
Line size 
(Bytes) 

Associativity Replacement policy 

Inst. Cache 8/16 16//32/64 2 32 LRU 

Data Cache 8/16/32 8/16//64/128/256/512/1024 1/2/4/8/16 32 LRU 

Unified Cache 64/128 32//265/512/1024/2048 64 4 /128 LRU 

SIMDMeM - 128 - - 

On-chip Frame 
memory 

- 512-768 - - 

Table 2. MPEG-4 and H.264 configuration. 

 Screen size Quantization Search algorithm Comments 

MPEG-4  QCIF/CIF 15 Full Search/ 
IGRADD Half-pixel enabled 

H.264 Ultra Light (UL) QCIF 30 IGRADD Ref. frames 4 

H.264 FAST QCIF 30 IGRADD Ref. frames 4 

 

3.6 Experimental Results and Discussion 
In sub-section 6.1, we evaluate the level-1 instruction and data cache size and their 
configurations for video encoding.  In sub-section 6.2 we present our evaluation of the 
level-2 cache and its impact on performance and cache miss rate. Sub-section 6.3 deals 
with the energy consumption of the architecture. The results obtained in section 6.1-6.3 
are then used to select an appropriate cache configuration when comparing with 
dedicated memory. In sub-section 6.4, we present the performance results for encoding 
applications on the evaluated architectures for both standards cache hierarchy and 
dedicated memory. Finally, we discuss experimental results and their implications in 
sub-section 6.5. 

3.6.1 L1 cache configuration  
To find the optimal cache configuration for our two encoding applications we 
performed extensive simulations for different cache configurations. We have chosen 
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separate instruction and data cache architecture. The evaluated data cache sizes for 
level-1 cache were 8, 16, 32 and 64 KB, which are the most common sizes used. The 
increased data cache size has positive effect on encoded frames per second (frames/s) 
as shown in fig. 2a, but this comes at the expense of increased energy (fig. 5a) as 
discussed later. Based on the analyses of miss rate for level-1 data cache, fig. 2b, we 
can conclude that the level-1 data cache already at 32 KB has a miss rate between 1.2-
3.1% for all applications. This provides a performance of 30 frames/s for most 
applications except H.264 FAST. 
 

 
 

Figure 2. a) Frame rate for MEPG-4 and H.264 with different level-1 cache sizes. 
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Figure 2. b) Miss rate for MEPG-4 and H.264 with different level-1 data cache sizes. 

Fig. 3a shows performance for 4, 8 and 16 KB instruction cache sizes. Caches larger 
than 16 KB are not shown in figures, but we have observed that there is no significant 
miss rate improvement and are not realistic for embedded systems.  Looking at the 
frame rate depicted in fig. 3a, going from 8 to 16 KB instruction cache gives a 
significant improvement for our application. An important factor is the level-1 
instructions cache miss rate, which is as high as 29% for 4 KB and 20% for 8 KB going 
down to 4.3% for 16 KB instruction cache. 
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Figure 3. a) Frame rate for H.264 FAST and UL with different level-2 and level-1 instruction 
cache sizes. 

 
Figure 3. b) Frame rate for H.264 FAST and UL with different level-2 and level-1 data cache 
sizes. 
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Cache associativity is another key issue for cache performance. The number of cache 
accesses decrease when we go from direct mapped to 2-way, 4-way associativity. Our 
experiment shows that going beyond this to 8-way and above provides no significant 
improvement. As our results show, the low miss rates in level-1 cache indicates the 
high reuse of data in level-1 cache. The main bandwidth bottleneck is between level-1 
cache and processing unit. In our architecture a 64-bits bus handles this. Our 
simulations indicate 16 KB being right size for level-1 instruction and 32 KB for level-
1 data cache. 

3.6.2 L2 cache and its impact 
Fig. 3b illustrates the impact of level-2 cache for encoding foreman test sequence. This 
test sequence can be considered as good average since similar results were observed for 
both mobile and news test sequence. As in previous sub-section the presented results 
are for H.264 encoding. The results of MPEG-4 indicate a similar pattern. We observe 
the potential benefits of reducing the size of level-1 cache with small performance 
degradation on the overall encoding. If the size of level-1 is below 8 KB the size of 
level-2 cache has no impact on overall performance. Cache level-1 of 16 KB and above 
provides significant improvement with added level-2 cache. The optimal size, when 
taking into account miss rate as well as energy consumption and performance, of level-
2 cache is 128 KB. This is true for all test sequences. 

The impact of introducing a level-2 cache, which is significantly slower but larger 
than level-1 cache, is apparent on overall performance. We observe a miss rate 
improvement when going from 20-16% for 64 KB level-2 cache to 8-4% for 128 KB 
and below 1.5% for 512 KB. An important issue is the impact of level-1 cache on 
level-2 cache. The observation made for instruction cache, that a larger level-1 cache 
gives a higher miss rate in level-2 cache, is also true for level-1 data cache.  

In fig. 3b there is a break at 128 KB where the curve flattens and we observe less 
noticeable improvement with increased level-2 cache size. The same results were also 
obtained and verified for encoding MPEG-4, but due to space limitations we only 
present H.264 encoding results. 
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Figure 4. a) Frame rate and energy consumption for different level-2 cache line sizes. 

 
Figure 4. b) The impact of level-2 cache on performance while encoding foreman with H.264 
UL and FAST. 
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As shown in fig. 4a the optimal line size for level-2 cache, which in our study was 
64-bytes. The positive impact of increased level-2 line size both saves energy as well as 
lowers the miss rate. At the same time the number of accesses is almost identical. This 
has more impact on the overall system performance than level-1 line size. Going 
beyond 64-bytes does not give any significant improvement on the overall performance 
and has negative impact on the overall energy consumption. 

Fig. 4b shows the overall improvement in video encoding performance that can be 
obtained by introducing a level-2 cache. The significant performance jump can be 
observed when we use level-2 cache together with a large enough level-1 cache. In our 
case this is at 32KB for level-1 data cache and 128 KB level-2 unified cache. Going 
beyond this has no significant overall improvement. 

3.6.3 Energy consumption 
Fig. 5a depicts the total energy consumption of the system with caches and off-chip 
memory. The total energy consumption includes also our SIMD unit but it is usually 
lower for SIMD enhanced architecture even though we have introduced a new 
component in the processor architecture [11]. The energy consumption of different 
cache configurations while performing video encoding on the foreman test sequence 
shows that the optimal point is at 128 KB level-2 cache, 32 KB level-1 data cache and 
16 KB level-1 instruction cache sizes. As can be seen this is true both for H.264 FAST 
and H.264 UL, similar results were obtained for MPEG-4 as well. Fig. 5b shows the 
energy consumption when encoding MPEG-4 as well as H.264 with the final memory 
architecture. The overall energy consumption is almost identical for both SIMD and 
SIMDMeM. 
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Figure 5. a) Energy consumption for H.264 (FAST) and (UL) for encoding foreman test 
sequence with different level-2 data cache sizes. 

 
Figure 5. b) Energy consumption for MPEG-4 (FS) (OS) and H.264 (FAST) (UL) for test 
sequences foreman, mobile and news. 
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3.6.4 Dedicated memory vs. cache 
The three memory configurations were standard cache hierarchy as discussed earlier 
and dedicated memory SIMDMeM for SIMD unit, as well as dedicated frame memory. 
The optimal cache configuration we found in previous sub-sections was used for our 
evaluation (see table 1). Fig. 6 shows the performance of our two memory architectures 
for H.264 FAST and UL as well as MPEG-4 when encoding the three different test 
sequences foreman, mobile and news. 

The performance of SIMD and SIMDMeM are almost identical which shows the 
impact of adding a dedicated memory to SIMD unit has no significant impact over 
standard cache memory organization. With regards to energy consumption in fig. 5b 
we do not see any significant difference between the two memory architectures.  

We have also evaluated the most optimistic data memory hierarchy, where all frame 
data used for encoding is in dedicated zero-wait state frame memory. The encoding of 
foreman results in 22 frames/s compared to 17.5 frames/s for SIMD and 18.6 frames/s 
for the SIMDMeM solution. The increased energy consumption from using a standard 
memory hierarchy with off-chip frame memory compared to using an on-chip zero-
wait state frame memory is 0.35 J. This includes off-chip memory and communications 
for our chosen standard memory hierarchy configuration (see table 1). As stated before, 
the main arguments against an on-chip solution is the added costs in terms of size and 
practicality of having at least 512KB for on-chip zero-wait state memory. The 
justification for this solution in an embedded system is extremely hard especially when 
the gains are still relatively small. 

 
Figure 6. Frame rates for MPEG-4 (FS) (OS) and H.264 (FAST) (UL) while encoding the test 
sequences foreman, mobile and news. 
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3.6.5 Summary 
The addition of dedicated memory for the SIMD unit has no significant benefit when 
performing video encoding, both for H.264 as well as MPEG-4, and regardless of the 
test sequence used. The benefit of increasing the size of level-1 data cache beyond 32 
KB has no substantial improvements on the overall performance, as well as it may even 
reverse affect for the energy consumption. The introduction of level-2 cache, to hide 
the latencies between the level-1 cache and main memory, has more significant impact 
on the overall performance as well as energy consumption. This has also the positive 
side effect of being able to reduce level-1 cache size. In terms of using a dedicated 
SIMDMeM or dedicated on-chip frame memory the increase in performance is 
relatively small only by 4.5 frames for the dedicated frame memory.  

3.7 Related Work 
Most work on video encoding has been done using kernels [8,21], or using non-
optimized code [3,4,7,22,23]. This approach makes it difficult to draw right 
conclusions for how an entire video encoding application behaves. In our study we use 
proprietary video encoding applications, ensuring that we have correct workloads for 
evaluation of our memory architectures. 

The high bandwidth requirements of video encoding applications are important 
architectural design issues [22]. Multilevel caches, together with special instructions 
for computationally intensive application kernels, are discussed in [21] as important 
performance boosters. The authors of [6,7] propose to use bandwidth hierarchy to 
address the memory bandwidth problem. By removing the latency through usage of 
memory hierarchy the performance degradation was negligible and thus illustrated the 
potential of balanced memory architecture. We also use cache hierarchy but we test it 
with the SIMD unit that has higher bandwidth requirements. Our approach of using the 
standard memory hierarchy has the added benefit of not needing to optimize the data 
placement and having the added cost of dedicated memory. 

Utilizing a level-2 cache has been a performance improvement factor in high 
performance processors. As more computationally demanding applications are 
executed on embedded systems, level-2 cache has been proposed for embedded domain 
as well. There are though not many studies done in this regard. In [6] the authors 
briefly discuss CPU utilization and transaction traffic when introducing level-2 cache 
for video decoding. Their finding is that both CPU utilization and transaction traffic 
decrease with increased level-2 cache size. In [7], the authors study performance of 
non-SIMD high performance processors for MPEG-4. Their architectures utilize large 
1-8 MB level-2 cache, which improves the overall performance through reduction of 
traffic to main memory. In none of these works the emphasis has been on evaluating 
the actual impact of level-2 cache. The work has been on high performance general 
purpose processors using MPEG-4 reference code. In [6] there is a study on 



 

 

 119 

performance improvement for embedded processors when introducing level-2 cache. 
This work looks at MPEG-4 decoding which has some similarities to encoding but is 
much less performance demanding. We use video encoding and an embedded processor 
with an SIMD unit. This puts different requirements on memory bandwidth. 

Dedicated memories have been proposed to improve performance of application 
specific systems, for example in [3,4]. The authors in [24] propose a HiBRID multi-
core system on chip architecture with 4KB dedicated memory to compute macroblocks. 
In our work we have evaluated dedicated memory architectures against multilevel 
cache hierarchies. 

3.8 Conclusions 
In this paper we have performed extensive simulations on our SIMD extended 
processor and show that using standard multilevel cache hierarchy achieve almost the 
same performance as a dedicated memory for the SIMD processing unit for video 
encoding. As video encoding is highly data centric the importance of a well-balanced 
memory is crucial. An important issue for this exploration is the use of realistic 
application workloads specifically implemented for handheld embedded devices when 
exploring different design trade-offs. We examine two solutions, one that utilizes the 
standard cache hierarchy (two levels) and the other one that uses a dedicated zero-wait-
state memory. Our results show, against common belief, that the use of the standard 
cache based architecture achieves almost the same performance as SIMD dedicated 
memory architecture for full video encoding applications. We have made conservative 
assumptions in our energy models for dedicated memory but the overall difference in 
energy consumptions was negligible. 
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Paper IV 

4Performance Improvement for H.264 Video 
Encoding using ILP Embedded Processor4

Abstract. In this paper, we examine the impact of instruction level parallelism (ILP) 
on the full H.264 video encoding application and give quantitative performance 
measures of a superscalar architecture. Most research efforts have concentrated on the 
data intensive parts, such as kernels but these are taking less time from the entire 
execution as encoders are using new, more efficient algorithms. This important fact 
cannot be neglected since new video encoding standards have been proposed and the 
amount of other than data intensive computations has increased significantly. We 
observed significant improvement for the entire application when using superscalar 
architecture with out-of-order execution scheme. Tradeoffs in superscalar performance 
are also evaluated with combinations of measurements from SimpleScalar simulator.  

  

     

  

                                                           
4 This paper is a reformatted version of Performance Improvement for H 264 Video Encoding using ILP 

Embedded Processor, in Proc. of the 9th Euromicro Conference on Digital System Design, Cavtat/Dubrovnik, 
Croatia, August 30th - September 1st, 2006. 
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4.1 Introduction  
The importance of handling different applications with high degree of computation 
intensity is a key issue for handheld embedded devises, such as mobile phones and 
PDAs. One such category of applications are video encoders. These applications put 
huge demands on the entire system, processor, memory, buses and other parts. Modern 
video encoding applications, such as H.264, used in handheld devices, utilize optimized 
algorithms that have very different execution profile than standard reference encoders.  

There is a common belief, that in video encoding applications the data level 
parallelism (DLP) dominates and other parallelisms, such as instruction level 
parallelism (ILP), are of less importance. There are important issues of DLP in video 
encoding applications that need to be examined deeper. First, data level parallelism 
makes execution of parallel sections of the application faster. This makes the serial 
sections become more dominant. Second, we have through profiling, in our previous 
work, identified that the amount of DLP in optimized video encoders is decreasing. 
Therefore, only concentrating on encoding kernels, as most researchers do, does not 
provide enough performance improvements since the kernels are responsible for a 
shrinking part of the execution time. In this situation, we have to find ways to seek 
more parallelism in other parts of the encoding applications to improve the overall 
performance.  

The instruction level parallelism, (ILP) which exist in video encoders, is not 
negligible, especially as the amount of control code in newer standards, such as H.264, 
is increasing because of more advance compression techniques. This fact together with 
the issues regarding DLP, makes ILP an obvious target for seeking increased amount of 
parallelism.  

There are two approaches for breaking the single-instruction-per-cycle bottleneck, 
through usage of ILP, either by using superscalar processors or very long instruction 
word (VLIW) architectures. These two categories exploit ILP, statically or dynamically. 
For VLIW processors [1] ILP is found statically during compile time by the compiler. 
Dynamic ILP, on the other hand, exploits either in-order or out-of-order (OoO) 
hardware scheduler at runtime. Here we examine dynamic ILP, as we want to combine 
ILP together with DLP provided by our single instruction multiple data (SIMD) 
extended architecture proposed in our previous work [2, 3]. Intuitionally one can 
observe that increased DLP reduces amount of existing ILP. We also observed this but 
the amount of reduction was negligible.  

In this paper we try to explore if there is enough parallelism to justify the use of out-
of-order superscalar in combination with SIMD architectures in embedded domain. The 
goal is to encode 30 frames/s at CIF screen resolution with limited increase in size and 
energy.  
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The structure of the paper is as follows. Section 2, describes our video encoding 
applications. In section 3 basic information of our superscalar SIMD extended 
processor architecture is given and in section 4 the method used in our approach is 
presented. In section 5, we present and discuss our experimental results. In section 6, 
we discuss related work and in section 7, we give some concluding remarks.   

4.2 Video Application  
The main video standard used in our research is H.264. This standard is for wide 
variety of areas, such as videoconferencing, and it is also the main video standard 
recommended by 3GPP standardization group in release 6 [4]. The H.264 standard has 
many similarities with MPEG-4 as they are both block-based. One could view H.264 as 
the next step after MPEG-4. Looking at the optimized implementations of H.264 
encoders, time complexity is about 3.4 times higher for H.264 than MPEG-4 [5]. 

H.264 was developed by Joint Video Team (JVT) and is a hybrid of the two existing 
video coding standards, the ITU-T Video Coding Experts Group (VCEG) and the 
ISO/IEC Moving Pictures Experts Group (MPEG) [6]. H.264 has dramatically reduced 
bit-rate while achieved 50% better compression, without compromising quality. The 
main added features are variable block sizes, where macroblocks (MB) can be 
partitioned into smaller blocks of size 16x8, 8x8, 8x4 and 4x4. Multiframe Prediction 
(MP) and quarter-pixel resolution are other features added to improve the quality of the 
final coded video sequence. The MP provides the usage of more than one previous 
frame as reference for motion estimation (ME). Another improvement is the use 
Hadamard transform in the SAD computation. In our architecture we use therefore 
SATD, a special instruction to compute it instead of SAD. In H.264 ME there is half-
pixel interpolation, which is performed using a 6 tap FIR. The quarter-pixel is 
evaluated by averaging two half-pixel values.  

The H.264 application we use is the proprietary software provided to us by Ericsson 
AB. The H.264 implementation evaluated, performs well against the reference 
implementation in terms of quality [7, 8], even though the time complexity of our 
encoder is significantly lower, approximately a speedup of 100 times with an average 
bit-rate increase of less than 20%, than the reference encoder. It uses optimized search 
mode and is configured for running screen size CIF (352X288) at 30 frames per second. 
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Figure 1. Profiling, the total execution time for H.264, whilst encoding test sequence foreman 
with 4 reference frames 

Figure 1 presents the profiling of H.264 while performing encoding of foreman test 
sequence [9]. As can be seen, SATD and interpolation are the main operations where 
data parallelism exists. It significantly influences overall encoding time but other 
computations stand for nearly 60% of the total time. They cannot be made faster using 
specialized DLP solutions but ILP might provide a speedup for these parts. We have 
observed a significant difference between reference H.264 encoder and encoder written 
with focus on embedded handheld devices. This means that accurate and relevant 
architectural designs need realistic applications and crucial for media applications.  

4.3 Processor Architecture 
In order to achieve the target performance requirement of 30 frames/s we combined the 
SIMD architecture, proposed in our previous work [2], with superscalar architecture. 
The SIMD unit provides the DLP capabilities and the superscalar architecture 
introduces ILP to the system. The superscalar architecture could either be run as an in-
order or out-of-order (OoO) processor. In the case of in-order the instructions are semi-
dynamically scheduled, which means that instructions are continuously issued on non-
dependent memory stalls. The OoO architecture uses a central instruction window for 
dynamic scheduling. The Design uses a Register Update Unit (RUU) and a Load/Store 
Queue (LSQ) to reschedule the instructions [10]. 

For the purpose of extracting DLP we have extended an embedded processor (MIPS 
based) with the specialized SIMD unit. This unit is designed in such a way that it 
supports specific operations found in video encoding algorithms for H.264. Our 
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profiling has identified specific parts of the application where there is large amount of 
data level parallelism. The SIMD unit proposed in our previous work [2] is a pipelined 
unit with specific instructions that increase the overall performance and provide 
instructions for H.264. 

 

 
Figure 2. The proposed SIMD architecture. The connection from memory to the extension is 64-
bit wide. The 64-bits coming from memory are in consequent addresses thus they can be read in 
one cycle. 

 A detailed schematic of the MIPS core and the SIMD unit microarchitecture is 
depicted in fig. 2. SIMD unit is integrated in the flow of the instruction pipeline of the 
processor. At the instruction decode stage, SIMD instructions are identified and 
redirected to SIMD unit. It executes load and arithmetic instructions. The SIMD unit 
has two vector registers VR1 and VR2. Each vector register can be configured either as 
16 8-bits or 8 16-bits registers, depending on the SIMD arithmetic instruction. The 
bandwidth of the memory interface is 64-bits, thus resulting in two or three load 
accesses for loading each vector register. Three accesses are needed for alignment of 
data. Alignment is performed on the current frame macroblock, which is done by 
reading three 8-bytes from memory. These 24 bytes are then shifted left so that they 
become byte aligned, i.e., we get two 8-byte aligned data. 

In this paper, we extended our previous SIMD architecture with the capability of 2D 
SAD computations. The instructions supporting these computations perform a SAD 
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operation on the entire macroblock (MB), thus reducing even more control code 
overheads.  

The SIMD instructions follow the same ISA as the other processor instructions. 
SIMDLD16, SIMDLD8, SIMDLD16T, SIMDLDFIR and SIMDLDAVG are load 
instructions, which perform the loading of vector registers (VR1 and VR2). 
SIMDSAD16, SIMDSAD8, SIMDSATD, SIMDFIR, SIMDAVG are the arithmetic 
instructions performing the computation by taking VR1 and VR2 as input operands and 
writing the results back in the target register. The new 2D SAD instruction 
SIMDSAD2D work in the same way as previous instructions while, in addition, it 
preloads the next macroblock lines. The instruction has also the stride for fetching the 
next MB line and calculates the SAD result for the whole MB and thus resulting in less 
memory accesses. 

For increasing Instruction level parallelism (ILP) we extend the processor width by 2, 
4, 8 and 16 ways. In order to achieve a balanced superscalar design we have the same 
size fetch, decode, issue and commit width. The processor uses central instruction 
window for OoO processing, which requires less storage than reservation station. This 
central window can be implemented in different ways such as, dispatch stack, register 
update unit or reorder buffer. Our processor has been implemented using a Register 
Update Unit (RUU) and a Load/Store queue (LSQ). The size of the RUU and LSQ is 
important concerning the performance of the OoO unit. The RUU is a simpler 
implementation of central window that avoids the complexity of compressing the 
instruction window, as is the case with dispatch stack. The RUU operates as FIFO 
buffer with decoded instructions being placed on top of the FIFO and results being 
written to register file at the bottom of the FIFO. An important characteristic of RUU, 
compared to dispatch stack, is that an entry is not removed when the instruction is 
issued, but rather it is removed when it reaches the bottom of the FIFO. This result in a 
simpler design but the drawback is that it makes it sensitive to small instruction 
window sizes. This could also indirectly result in stalls in the decoder, if an instruction 
entry reaches the bottom of the RUU and the instruction has not been issued. 

4.4 Methodology 
The focus of this research was to evaluate the impact of different architectural 
techniques for extracting instruction level parallelism (ILP) on the full video encoding 
application and also to combine it with our proposed SIMD extended architecture for 
data level parallelism. To verify our architecture we used a proprietary video encoding 
application presented in section II. Instruction Set Simulator (ISS), which is based on 
SimpleScalar toolset was used for our evaluation. This toolset provides an 
infrastructure for architectural modeling [11]. To evaluate power we integrated the 
power estimation tool Wattch [12] into our system. The power model used for the 
architecture was also executed for the SIMD instructions. The switching information 
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for registers, functional units and buses was collected and used by Wattch for power 
calculation. The cycle accurate model sim-outorder with MIPS ISA has been chosen.  

We compiled our video applications with the MIPS gcc compiler included in 
SimpleScalar toolset at optimization level –O2. The memory architecture we used for 
our experiments was separate level-1 instruction and data cache together with a unified 
level-2 cache and external memory. The processor clock speed was set at 650 MHz in 
all the simulations with 90 nm process power model. The energy model for the off-chip 
memory includes the memory and communication energy consumption.  

In our previous work [3] we showed that video encoding applications are less 
sensitive to memory latency and a standard multilevel cache hierarchy provides 
performance that is almost as good as using 512 KB of dedicated on-chip zero-wait-
state memory. The cache configuration used in this paper is the one we proposed in or 
study, 16 KB instruction, 32 KB data level-1 cache as well as 128 KB level-2 cache. 
The off chip memory was modeled as bursted memory, with first chunk latencies of 45 
cycles and 5 cycles for the subsequent accesses.  

The superscalar architecture is based on MIPS-IV architecture with six pipeline 
stages fetch, dispatch, issue writeback, and load/store queue refresh. The architecture 
supports out-of-order issue and execution by using Register Update Unit (RUU) [13] 
working as a reservation station for reordering and register-renaming of pending 
instructions. A Load/Store Queue (LSQ) is also used for employing a support for 
speculative execution. The results are stored in a store queue while pending resolve of 
execution. Table 1 shows the configuration of the superscalar processor.  

Table 1. Superscalar processor configuration. 

 2-way 4-way 8-way 16-way 

Fetch,Decode,Issue,Com
mit Width 2 4 8 16 

RUU size (inst.) 
8,16,32,64, 

128 

8,16,32,64, 

128 

8,16,32,64, 

128 

8,16,32,64, 

128 

LSQ size (inst.) 8,16,32,64 8,16,32,64 8,16,32,64 8,16,32,64 

Number Func. Unit 2 4 8 16 

 
The configuration chosen for the H.264 encoder has screen resolution CIF (352x288) 

and four reference frames were used. The screen resolution has a linear impact on the 
performance, which we showed in our previous work [3].    

Test sequences chosen in our experiments were foreman, mobile and news [9]. The 
main difference between these sequences is the amount of processing to encode the 
sequences. The mobile sequence is the most demanding sequence in terms of processing 
while news is least demanding. The foreman test sequence represents a good average 
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between these two sequences and therefore we have reported simulation results for this 
test sequence in this paper. In order to measure the overall performance of the system 
we used frames per second, which in our case is more relevant as we are performing 
video encoding. As we are dealing with handheld battery driven embedded devises we 
use total energy consumption rather than power consumption. For evaluating ILP we 
used instructions per cycle (IPC). 

4.5 Experimental Results and Discussion 
In this section, we present evaluation of the superscalar architecture when performing 
video encoding. In this section, due to space limitation, we only present the results 
from foreman test sequence at CIF screen resolution, since it provides a good average 
evaluation. In sub-section A, we measure the amount of ILP and the impact it has on 
DLP in terms of percentage improvement for SIMD as well NonSIMD architecture.  In 
sub-section B, we present the impact of ILP on performance. Sub-section C deals with 
the energy consumption of the architecture. Finally, we discuss experimental results 
and their implications in sub-section D. 

4.5.1 Amount of ILP in H.264 and impact on DLP  
To observe the amount of ILP in the H.264 we evaluated IPC for a set of different 
superscalar width (fig. 3), and observed first that in-order architecture does not give 
any improvement despite increased processor width. This is due to inability to better 
schedule instructions when data and resource dependencies exist. To some extent better 
compiler can solve this, but there are still some dependencies that can only be handled 
during runtime, such as conditional branches. In the case of out-of-order (OoO), we 
observe an IPC improvement up to 8-way superscalar processor. This is quite natural 
since the OoO runtime scheduler can much better utilize the added hardware.  
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Figure 3. Instructions per cycle (IPC) for in-order vs OoO with different superscalar issue width. 

Figure 4 shows the percentage improvement for SIMD and NonSIMD architecture, 
when increasing the width of the processor, using conventional ILP technique. This 
percentage improvement is measured when going, from scalar to 2-way, from 2-way to 
4-way, etc. Our results show that in the case of SIMD extended processor already when 
increasing to 2-way superscalar we have best improvement and utilization of the 
system. This occurs due to the ability of better scheduling of SIMD instruction, as these 
instructions are independent of each other. By providing a 2-way issue capability, 
SIMD unit utilization increases. Going beyond 2-way does not provides more 
utilization as we have saturated SIMD utilization. For the NonSIMD architecture, this 
occurs at 4-way superscalar. The reason is that a conventional ILP can better schedule 
instructions, solve data dependencies as well as handle resource limitations. This shows 
the distance between two independent instructions is often larger than two instructions. 
We observed highest percentage improvement at 4-way, going beyond this we observe 
the same saturation, and the improvement become much smaller. 
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Figure 4. Percentage improvement of SIMD and NonSIMD architecture when going from scalar 
to 2-way, from 2-way to 4-way, from 4-way to 8-way and from 8-way to 16-way. 

4.5.2 Encoding performance by combining ILP and DLP 
The performance target was to encode 30 Frames/s at CIF screen resolution. Looking at 
fig. 5 this was almost achieved by the 2-ways SIMD extended architecture. For 
achieving the 30 frames/s target in the NonSIMD architecture, we need to have at least 
4-way superscalar. We also observe linear improvement of performance with added 
issue width up to 8-way. Beyond this point, the improvement is nonexistent, as the 
potential ILP is exhausted. Fig. 5 depicts performance, measured in frames/s, of 
different analyzed architectures. The data presented in this figure illustrate importance 
of OoO execution.  It can be explained by the fact that most ILP can be found between 
iterations rather than within a single iteration. The in-order processor improvements are 
negligible. This happens even though the in-order processor dynamically schedules 
instructions and has non-stalling pipeline when memory stalls. 
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Figure 5. Different architectures performing H.264 encoding, In-order scalar, in-order 
superscalar, out-of-order (OoO) scalar and OoO superscalar. 

4.5.3 Hardware and energy costs 
The superscalar OoO implantation in our architecture is based on a central instruction 
window implemented as Register Updata Unit (RUU) and a Load/Store Queue (LSQ). 
Fig. 6 illustrates the performance of the encoder while increasing the RUU and LSQ 
sizes. We observe that already at 16 instructions wide, RUU and LSQ we have 
achieved a breaking point of improvement. One drawback with RUU, discussed in [10], 
is the sensitivity of the design for small instructions windows compared to using a 
more complex stack based or a reorder buffer central window. 
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Figure 6. The Central instruction window size. The RUU instruction queue size has non-linear 
performance degradation when the size of the queue is below 8 instructions. 
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Figure 7. Performance and energy consumption for an out-of-order (OoO) with increased 
processor width. 

Energy consumption depicted in fig. 7 indicates a minimum at 2-way for the SIMD 
as well as NonSIMD. The architecture operates at the optimal point of energy when 
both added hardware cost in terms of energy and performance gain are considered. 
Fig.8 illustrates the overall energy consumption of in-order and OoO superscalar 
designs. We observe higher serge in energy for the in-order architecture because the 
added hardware is underutilized. The in-order design has slightly less energy 
consumption in the scalar case as the performance of added OoO for the scalar 
processor is negligible, but the performance gains become more apparent as the 
processor width increase, showing more favorable energy consumption. 

4.5.4 Discussion 
Instruction level parallelism has a positive impact on the performance of video 
encoding application. This impact provides the necessary performance to achieve the 
target of encoding 30 frames/s at CIF screen resolution. For the SIMD extended 
architecture this is achieved already at 2-way superscalar. We have also the best 
improvement for this architecture as well as lowest energy consumption. For the 
NonSIMD architecture, this occurs at 4-ways superscalar. One important observation is 
the dynamic scheduling of instructions, which in our architecture is done by a central 
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instruction window design. The alternative to this would be using static scheduling and 
during compile time schedule instructions. The added OoO hardware is quite limited, 
both in terms of processor width as well as in terms of size of RUU and LSQ. 

4.6 Related work 
In [1], the authors propose a vector SIMD-VLIW architecture where they show that for 
MPEG-2 encoding they can achieve overall 1.5X speedup when both DLP and ILP 
regions are taken into account, even though they increase the width of their architecture 
from 2-ways to 8-ways. They also show that their vector approach improves their 
overall average performance for a set of applications. In our study, we evaluate a SIMD 
extended superscalar architecture and focus on H.264 encoder, which has more ILP 
than previous standards like MPEG-2. 

The authors of [14] focus on different media benchmark kernels and applications, 
such as DCT, motion estimation kernel, speech, and jpeg encoding applications. They 
use the results from their evaluations to propose architecture for the media applications 
they have selected. They report good SIMD utilization for their applications but there is 
a need to take care of parallelism existing outside main loops and kernels. In their 
conclusions, they state that conventional ILP techniques need at least 8 or 16-way 
superscalar processor to provide improvements. We observe that in the case of H.264 
video encoding, already at 2 and 4-way superscalar architecture, there is sufficient 
improvements combined with SIMD extension.  

In [15], the authors evaluate MediaBench II video, which includes among others 
H.264 encoder. They evaluate the different applications on 8-ways VLIW, in-order and 
out-of-order architectures. They show in their work that an 8-issue VILW and an 8-
issue in-order superscalar processor perform equally well with a modest IPC of around 
1.3 for the H.264 encoder, even though they have used different compiler optimization 
techniques. In the case of 8-issue out-of-order superscalar processor, the achieved IPC 
was around two for the H.264 encoder. Our work complements their work by combing 
the ILP together with DLP using a SIMD unit, and evaluates the overall performance 
when combining the two approaches. 

4.7 Conclusions 
This paper analyzes video encoding application H.264 in terms of ILP as well as DLP. 
The results show the SIMD extended processor already at 2-way superscalar OoO have 
sufficient gains for meeting the performance requirements of encoding 30 frames/s at 
CIF screen resolution. Out-of-order scheduling is extremely important in video 
encoding since parallelism found in modern encoders is not limited to data parallelism 
and parallelization of loops does not provide enough performance improvement. 
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Paper V 

5Design Space Exploration for Optimal 
Memory Mapping of Data and Instructions 
in Multimedia Applications to Scratch-Pad 
Memories5

Abstract. In this paper, we propose a new methodology for optimal memory mapping of 
data and instructions to Scratch-Pad Memories (SPM). In the mapping process, we 
optimize, as the first priority, the number of memory accesses to minimize power 
consumption. Minimization of external memory accesses lowers switching activity and 
therefore power consumption. The optimization is done by finding Pareto points, using 
multi-objective optimization that combines different cost functions. Our methodology is 
intended to be used in real-life situations in industry where there is often a need for 
mapping third party applications to a specific architecture. For evaluating our 
methodology, we also use commercial video H.264 and audio eAAC+ applications. 
Our experiments show that SPM is well suited for these applications for reducing 
external accesses to reduce power consumption but has limited significance on overall 
performance improvements. The proposed methodology provides a way to combine 
SPMs with caches to optimally use this memory architecture.  Our experiments indicate 
high accuracy of our methodology for predicting SPM and external memory accesses. 
We have obtained 90% accuracy between results of our methodology and results for 
executing applications on a given architecture. 

 

  

                                                           
5 This paper is a reformatted version of Design Space Exploration for Optimal Memory Mapping of Data 

and Instructions in Multimedia Applications to Scratch-Pad Memories, in Proc. of 7th ESTIMedia 2009, 
Grenoble, France, October 15-16, 2009. 
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5.1 Introduction  
There has always been a drive to find the most optimal solutions in embedded 
resource-constrained systems in the past. But as time has passed the complexity of such 
systems has increased, both in terms of overall architecture, but also in terms of 
application sets run on these systems. The embedded systems share now in many ways 
the same complexity as other systems, such as high performance systems. This is 
especially true for processing elements as well as memory hierarchy. How these 
subsystems are utilized is becoming very important and a key area is memory 
utilization. The memory architecture is now a mix of different memories, such as cache 
memory hierarchy and software controlled Scratch-Pad Memories (SPM). 

At the same time the importance of being able to handle different applications with 
high computational intensity and complexity has become a key issue for handheld 
embedded devices, such as mobile phones and PDAs. One such category of 
applications is multimedia, such as video and audio applications. These applications 
have often very different execution profiles. They also put huge demands on the entire 
system, processor, memory, buses and other parts. Moreover, modern video and audio 
applications, such as H.264 and enhanced Advanced Audio Codec plus (eAAC+), 
utilize optimized algorithms that have totally different execution profile than standard 
reference codecs used previously in many studies.  

Looking at the state-of-the-art memory architectures in embedded systems, the most 
typical architectures consist of a cache based memory, which is often combined with 
software controlled zero-wait-state memory, such as Scratch-Pad Memories (SPM). 
This is a good combination, since SPM and caches have very different behavior. SPMs 
are optimal for regular access patterns, but not for runtime dependent behavior. Caches 
on the other hand are well suited for this. There is a need for both, but main issue is, 
how to optimally use this combined memory architecture.  

There exists a need for a method that systematically finds the optimal memory 
mapping for different application. As this is not a trivial problem, we need to perform 
design space exploration. There could be different criteria for optimization, for 
example, improving performance by lowering the execution time or lowering power 
consumption by lowering access to an external memory. The latter is what we have 
chosen to focus our attention on, as external accesses are one of the main contributing 
factors on the overall power consumption for application execution. 

In this paper, we propose a powerful methodology based on finding Pareto points for 
different memory configurations. The solution points provide optimal memory 
mappings for data and instructions in multimedia applications. In our approach, we 
optimize number of memory accesses, which can be viewed as optimizing switching 
activity α in the P ≅αCfV2 power equation. The optimization is done by finding Pareto 
points using up to four-dimensional cost functions. 
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We evaluate our method using proprietary video H.264 and audio eAAC+ 
applications not relying on kernels and standard benchmarks. This is important as the 
execution profile and resource requirements are very different for optimized 
commercial applications compared to standard benchmarks and test applications. This 
is essential in order to get correct and accurate behavior, when evaluating a design or a 
method, as it depends very much on the quality of the applications used. This is 
especially true for multimedia applications, such as video and audio codecs. 

The remainder of this paper is organized as follows. In section 2 we discuss related 
work. The proposed method, which is used in our approach, is presented in section 3 
and in section 4 we describe our experimental setup, the applications used and also we 
present and discuss our experimental results. In section 5 we give concluding remarks. 

5.2 Related Work 
There has been significant work done in the area of evaluating and proposing usage of 
SPM for various applications including audio and video codecs. Much work has 
focused on proposing architectures, which utilize SPM, by rewriting significant 
portions of applications to fit them to proposed architectures [15,12,1]. Other studies 
have looked at data mapping on SPM, both statically [2,4,13] and dynamically [16,3]. 
Common approach to these prior works has been mainly based on code transformations, 
i.e. loop and trace analysis and rewriting of applications for optimization.  In our work 
we have worked with black box code model, as this is very often the case in industry 
when working with third party applications. 

There has also been work done, where a combination of using compile time and 
runtime approaches, is proposed [11]. This is done by inserting custom instructions to 
inform hardware to control data placement. Another closely related architectural 
approach uses locked caches and controls placement of memory objects [7]. Yet 
another approach focuses on managing memory space for different application in a 
SPM only architecture and thus eliminating caches totally [17]. A common approach 
for most of these papers has been the usage of kernels and benchmarks. In our study, 
we use state-of-the-art audio and video commercial applications tailored for handheld 
devices in order to achieve realistic and accurate overall behavior. The methodology 
we are proposing is based on analysis of runtime behavior of a specific application. The 
gathered data is then used together with a set of constrains to perform design space 
exploration by finding the optimal mapping of memory objects based on different cost 
functions. 

5.3 Our Approach 
In this section, we present a method for optimally mapping data and instructions to 
Scratch-Pad Memories (SPM). 
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5.3.1 Overall method 
Figure 1 depicts the overall design flow of our methodology. The target application is 
analyzed, either automatically or manually, to identify the important and critical 
candidate data, such as arrays, constants and code blocks, for example inner loops in 
functions, sequences of instructions or specific functions. Next, a mapping of the 
selected objects to Scratch-Pad Memory (SPM) is made. 

Each object is individually placed in SPM and is simulated. Thus we perform 
multiple simulations depending on the number of candidate objects. For upper and 
lower bound we also perform simulations for architectures without SPM and a case 
where all objects are allocated to the SPM. SPM is used for data that is generated 
during execution, intermediate results, and is compile-time allocated. The reason for 
this is that commercial code, for mainly performance reasons, seldom uses run-time 
allocated data. SPM is also used for selected parts of program code, based on execution 
profile that lowers external accesses.  
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Objects
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Figure 1. Design flow. 

The remapped application is evaluated, using a cycle accurate simulator [19], on the 
target architecture. The simulation data for each individual memory object together 
with design parameters, such as SPM and cache sizes are used by cost functions to find 
optimal solutions. The optimization is performed by the constraint solver, JaCoP [14], 
and a set of solutions for different memory mappings and different SPM sizes is 
obtained. The optimal mapping is based on the Pareto points found by JaCoP for a 
specific cost function and SPM size. In our proposed method, we can optimize four 
different cost functions: maximizing SPM accesses, minimizing external memory 
accesses, cache accesses and minimizing execution cycles.  To further enhance the 
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methodology, we perform two, three and four dimensional design space exploration 
using multi-objective optimization. This, by combining the cost functions mentioned 
above. 

To validate our method we run simulations on selected memory mappings and our 
experiments indicate that the accuracy of predicting SPM accesses is 98%. The 
accuracy for predicting external accesses is around 90-95% and for predicting cache 
accesses is 80-85%. A reason for this drop in accuracy for caches and external memory 
accesses is due to the nature of caches. We make the assumption that accesses are not 
correlated if data is put in SPM, but this assumption is not valid for caches. The figures 
presented in the experimental section can be used for selecting the right configuration 
of memory. Basically, the figures show the results of design space exploration for 
obtaining optimal mapping of selected objects to SPM depending on different cost 
functions. 

Our method is generic and can systematically be used to analyze and find an optimal 
memory mapping for a given application and architecture. The method performs multi-
objective optimization in the design space without being limited to only single 
application. It can be used for multiple applications and other memory architectures. 

5.3.2 Pareto point generation 
JaCoP constrain solver [14] has been used in our approach to find optimal memory 
mappings for our applications. We want to explore different memory mappings 
alternatives and select the one that best suits given requirements. Design space 
exploration can therefore be defined as a process of finding different solutions that 
provide trade-offs between design parameters. It is usually achieved by doing a multi-
objective optimization, meaning the optimization that simultaneously optimizes more 
than one cost function. In such cases there is not a single optimal solution but instead 
we have Pareto points.   

To define multi-objective optimization more formally we assume that there exist 
several optimization criteria or cost functions. For minimization, we define Pareto 
optimal solution as vector x, if all other solution vectors y have a higher value for at 
least one of the cost functions, or have the same value for all cost functions.  Each 
vector x that is Pareto optimal is also called Pareto point or non-dominated or non-
inferior point since it does not exist any other point that is better in respect to at least 
one criterion.  
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The generation of Pareto points can be formalized using constraint programming. 
The idea is to define all constraints for a problem and then start searching with most 
relaxed constraints. When a solution is found additional constraints are imposed and 
possible dominated solutions are removed. The additional constraints cut the part of the 
search space that can only have dominated points. The pseudo-code for this algorithm 
is presented in Figure 2. The algorithm uses depth-first-search (DFS) to search for a 
solution. When a solution is found the algorithm imposes new constraints to cut 
possibility of finding dominant solutions and removes already found dominated 
solutions. Finally the algorithm returns the set of Pareto points. 
 

 

Figure 2. The Pareto points generation algorithm. 

5.4 Experiments and Evaluation 
In this section we present our experimental setup, applications used and results from 
evaluation of our method. Our method generates all non dominated solutions (optimal 
Pareto points). We conclude the section with discussion on applications behavior and 
power consumption when using Scratch-Pad Memory (SPM). 

In our study we used SoC Designer with cycle accurate ARM prime cell models [5] 
provided by ARM. The compiler used was, the ARM compiler in RealView 
Development Suite (RVDS 3.0).  The target hardware architecture comprises an ARM 
processor core with separate 16 KB instruction and data L1 caches. It also contains 
either unified or separate Scratch-Pad Memory (SPM) for both instructions and data, 
referred to as tightly coupled memory (TCM) in ARM processors. 

The applications used in our study are two proprietary multimedia applications, 
audio eAAC+ and video H.264 full codecs. Table 1 and 2 shows the selected memory 
objects, their names, object number and sizes, that are identified in the analysis stage, 
for potential placement in SPM. 

vector pareto (ν, criteria) 
paretoPoints ← nil 

while DFS (ν) ≠ nil 
paretoPoints ←  paretoPoints ∪ (val0, …, valn) 
impose criteria0 < val0 ⋁···· ⋁criterian < valn 
remove points dominated by (val0, …, valn) from paretoPoints 

return paretoPoints 
 

 



 

  

 145 

Table 1&2. Table 1 shows H.264 codec memory objects and their sizes. Table 2 shows eAAC+ 
codec memory objects and their sizes. 

 
Table1                    Table2 

 

5.4.1 Enhanced Advanced Audio Codec plus (eAAC+) 
The eAAC+, used in our research, consisted of Advanced Audio Codec (AAC), 
Spectral Band Replication (SBR) and Parametric Stereo (PS). The eAAC+, also 
referred to as aacPlus v2, is part of MPEG-4 standardization [8]. The underlying core 
codec is the well known MPEG AAC codec with a typical bit rate of 128 kbps.  

Table 2 shows the list of memory objects that were selected during the analysis 
phase. These objects are individually simulated and the simulation data is gathered for 
optimization. In the case of eAAC+, the memory objects are all data objects using Data 
Scratch-Pad Memory (DSPM). Using our methodology we have performed two, three 
and four dimensional optimization. We first present solutions for 2 cost functions, SPM 
size vs. SPM accesses and SPM size vs. MeM accesses. 

Figure 3 shows two dimensional Pareto points for SPM and memory accesses for 
different SPM sizes. For eAAC+ we observe significant SPM accesses increase when 
going from 4KB to 16KB SPM. A reason is the impact of object number2 
(SyntQMFfilter), which has significant higher access/size ratio, compared to the other 
objects. Looking at the memory accesses we observe an almost linear reduction in 
accesses. We do not observe a direct impact on the memory accesses due to the 
increased SPM accesses. This indicates that the increased SPM accesses are mostly 
moving cache accesses to SPM. However, the gains in reduction of memory accesses 
are still significant and start to flatten at 64KB SPM. 

Object 
Number H.264

Total 
SPM size

Object 
Number eAAC+

Total 
SPM size

No Objects in SPM 0 No Objects in SPM 0
All Objects in SPM 64201 All Objects in SPM 49224

V1 c64enc 6027 A1 SBRbuffer 32768
V2 CodeIntra 16084 A2 SyntQMFfilter 5120
V3 CodeMacroblock 3632 A3 AnaQMFfilter 2560
V4 Init 3140 A4 QMFbuffer 304
V5 Loopfilter 6340 A5 EnvCal 864
V6 MotionEstimation 7190 A6 Trans 1024
V7 Putbits 9304 A7 Overlappbuffer 6144
V8 Ratedistortion 4248 A8 Prevframe 440
V9 Transform 5048
V10 Speed3 3188
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Figure 3. Two-dimensional Pareto point with the chosen memory objects, for external memory 
accesses with different SPM sizes when running eAAC+ codec. 

As it can be observed the system finds different solutions for the same size of SPM 
optimizing memory accesses or SPM accesses. For example, at 2 KB SPM size, when 
external memory accesses are minimized the objects (8,5,4) are mapped to SPM. But 
for maximum SPM usage then objects (8,6,4) should be mapped. Our goal is to reduce 
the overall power consumption. This can be achieved by lowering number of external 
accesses. Moreover, we can reduce energy by decrease application execution time. For 
this reason we performed multi-objective optimization with SPM size, MeM accesses 
and Execution cycles. 

Figure 4 shows a three dimensional Pareto points when optimizing execution cycles 
and memory accesses for different SPM sizes while running eAAC+ audio codec. In 
this case, we notice that for 1KB SPM, objects (8,4) should be mapped to the SPM. 
The figure can be used for selecting the right configuration of memory. We observe 
similar SPM and memory access behavior to that we saw for the two dimensional 
optimization. Due to presentation limitations we do not show a diagram for the four 
dimensional optimization, where we run a combined optimization between SPM size, 
execution cycles, memory and SPM accesses. In the eAAC+ we only utilize the DSPM. 
The reason for not utilizing the Instruction Scratch-Pad Memory (ISPM) is that the 
entire code fits into the cache. For an application, which is larger than the cache, we 
would allocate instruction code to ISPM in similar way as we have done for H.264. 
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Figure 4. Three-dimensional Pareto point with the chosen memory objects, for external memory 
accesses and execution cycles with different sizes when running eAAC+ audio codec. 

5.4.2 Advanced Video Codec H.264 
The video standard used in our research is H.264. This standard is used in a variety of 
areas, such as videoconferencing, and it is also the main video standard recommended 
by 3GPP standardization group in release 6 [5]. The test sequence chosen in our 
experiments was foreman [20]. 

Our H.264 application implementation is proprietary software optimized for 
handheld devices. The H.264 implementation evaluated performs well against the 
reference implementation in terms of quality [6, 18]. The time complexity of our 
encoder is significantly lower and has a speedup of approximately 100 times with an 
average bit-rate increase of less than 20%, than the reference encoder. It uses optimized 
search mode and is configured for running different screen sizes.  

For the H.264 encoder, we have observed, that the usage of DSPM has a very limited 
impact on external accesses as the usage of data is content dependent and thus we focus 
on ISPM. By using ISPM the external accesses are reduced up to 57%.  Table 1 shows 
the list of objects that was selected during the analysis phase. Therefore in H.264 the 
focus is on instruction and not data for reducing external accesses (see Table 4). We 
use the same approach as we did in the case of eAAC+, two, three and four 
dimensional combined access optimization. Figure 5 shows the two dimensional Pareto 
points of SPM and memory accesses for different SPM sizes, when encoding the 
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foreman test sequence. We observe that there is not one-to-one correlation between 
SPM utilization and reduction of external accesses. An optimal usage of SPM does not 
automatically give us least external memory accesses. For example for 16KB SPM, the 
optimal mapping should be objects (9,5,3) if we maximize the SPM usage. But as we 
are more interested in lowering power consumption the mapping of objects (10,8,4,3) 
should be preferred. 

 
Figure 5. Two-dimensional Pareto point with the chosen memory objects, for SPM and external 
memory accesses with different sizes when running H.264 codec. As there are no memory 
objects smaller than 3140 bytes (see table1), we do not have any points for SPM sizes 512, 1024 
and 2048 bytes. 

Figure 6 shows a three dimensional Pareto points when combining execution cycles 
and memory accesses for different SPM sizes while running H.264 video codec. As can 
be seen in Figure 6, for 8, 16 and 32 KB there are more than one optimal Pareto point. 
These points are not dominated by each other, as we are optimizing in three dimensions 
and memory accesses and execution cycles do not dominates simultaneously. 
Depending on the desired optimization, execution cycles or memory accesses, we can 
either choose one or the other.  In the case of H.264 the access pattern is not as in 
eAAC+ where certain selected objects stand out, making the Pareto points 2D curves 
and 3D surfaces much more linear when increasing the SPM size. 
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Figure 6. Three-dimensional Pareto point with the chosen memory objects, for external memory 
accesses and execution cycles with different sizes when running H.264 video codec. 

5.4.3 Combined mapping of eACC+ and H.264 to a single unified SPM 
When analyzing multimedia applications, audio and video, the combination of different 
applications on the overall system characteristics is an important issue. In this study, 
the focus has been on the impact of SPM on overall power due to external memory 
accesses. The question is when looking at both eAAC+ and H.264 in the same memory 
space, which of the memory objects, table 1 and 2, should be mapped to SPM. Our 
method not only can be used for partitioning of SPM for a single physical address 
space but can be used for mapping between different applications. 

Figure 7, illustrates the overall impact on external memory accesses and SPM 
accesses for the combined optimized memory mapping. For example, for 64 KB SPM 
and the optimization of external memory accesses for our two applications, both of the 
largest objects A1 and V2 are not selected. This indicates that it is better to map smaller 
objects than to include the largest ones. But when SPM accesses are optimized, object 
V2 is selected instead of smaller objects. Conclusion from this is that object V2 moves 
cache accesses to SPM but has not significant impact on lowering external accesses. 
  

0
10000

20000
30000

40000
50000

60000
70000

32000000

33000000

34000000

35000000

0
100000

200000
300000

400000
500000600000700000800000

Ex
e 

Cy
cl

es

MeM accessesSPM size

 Pareto points
No SPM

4096, [4]
8192, [8,4]8192, [4,3]

16384, [10,8,4,3]

16384, [10,5,4,3]
32768, [10,8,6,4,3,1]

32768, [10,9,8,7,5,4,3,1]

65536, [10,9,8,7,6,5,4,3,2,1]



Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia 
Applications to Scratch-Pad Memories                                

 

 150 

 
Figure 7. Two-dimensional Pareto point with the chosen memory objects, for external memory 
accesses with different SPM sizes when running eAAC+ and H.264 codecs mapped to a unified 
SPM. 

Table 3. Shows Pareto points 1-16 for the combined eAAC+ and H.264 codecs in figure 8. For 
each optimization point the chosen objects, audio ‘A’ and video ‘V’, are shown. 

 

 P
oi

nt
s

SPM size, [video 'V' and audio 'A' objects]

No SPM
1 512,[A4]
2 1024,[A8,A4]
3 2048,[A8,A5,A4]
4 4096,[V4,A8,A4]
5 4096,[A8,A6,A5,A4]
6 8192,[V10,V4,A8,A5,A4]
7 8192,[V4,A8,A5,A4,A3]
8 16384,[V10,V8,V4,V3,A8,A5,A4]
9 16384,[V8,V4,V3,A8,A6,A5,A4,A3]

10 16384,[V10,V8,V4,A8,A6,A5,A4,A3]
11 32768,[V10,V9,V8,V5,V4,V3,V1,A8,A4]
12 32768,[V10,V9,V8,V6,V4,V3,A8,A6,A5,A4,A3]
13 32768,[V10,V8,V6,V4,V3,V1,A8,A6,A5,A4,A3]
14 32768,[V10,V8,V5,V4,V3,V1,A8,A6,,A5,A4,A3]
15 65536,[V10,V9,V8,V7,V6,V5,V4,V3,V2,V1,A8]
16 65536,[V10,V9,V8,V7,V6,V5,V4,V3,V1,A8,A7,A6,A6,A5,A4,A3,A2]
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Figure 8 shows the three dimensional Pareto point optimization for the cost functions 
SPM size, Memory accesses and execution cycles, when mapping the combined, audio 
and video codecs, to the unified SPM. The Pareto points and their mapping 
configuration are presented in Table 3. For example for 16KB SPM there are three 
points 8, 9 and 10 with different configurations. None of these points dominated the 
others fully as we are optimizing with three cost functions. In this case the point with 
lowest external memory accesses is 10, as illustrated in Figure 8. 
 

 
Figure 8. Three-dimensional Pareto point with the chosen memory objects, for external memory 
accesses and execution cycles with different sizes when combining eAAC+ audio and H.264 
video codec. 

5.4.4 SPM Impact on Power and Execution Time 
There is significant power saving due to reduction in external accesses, but limited 
reduction in execution time. SPM are not and should not be used with the focus on 
reducing execution time for multimedia application, but rather used for increasing 
memory predictability as well as lowering total power consumption. Figure 9 and 10 
show the impact of using SPM for reducing power consumption as we lower the 
external memory accesses. When looking at switching power consumption P ≅αCfV2 
the capacitance C and the voltage V are the main factors. There are two factors one 
needs to consider, when analyzing power consumption due to remapping of memory 
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objects. The first is internal capacitance of the chip, which is significantly lower than 
external capacitance. The second is the chip internal voltage, typically 0.9V and the 
external IO voltage of around 1,8V. Putting it together one concludes that the main 
power consumption contributors are external accesses.  

 
Figure 9. Impact of SPM usage on eAAC+ for power consumption and execution cycles. 

At the same time we observe the very limited impact of SPM on the overall 
execution cycles. The impact of SPM for speeding up applications is limited as the 
SPM and caches are both zero-wait-state memories, thus giving negligible speed up. In 
the case of audio the intermediate results are best suited to be mapped to SPM. The 
instruction code gives no improvements as the entire code can fit in the cache. In the 
case of video the code is larger and there certain often accessed code is well suited to 
be mapped to SPM. When it comes to data in video applications there are a couple of 
factors which are involved and making SPM not suitable. Firstly, content dependent 
behavior of video applications limits the possibility of mapping the right data to SPM, 
since not all data in video applications is used. Secondly, there is difference in video 
and audio algorithms, where the video algorithms use less advance techniques and 
filters, making less re-usage of data. Thirdly, the amount of data that is allocated to 
memory is huge in video codecs compared to audio codecs, and the small size of 
DSPM, have very limited overall impact. 
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Figure 10. Impact of SPM usage on H.264 for power consumption and execution cycles. As 
there are no memory objects smaller than 3140 bytes (see table1), we do not have any points for 
SPM sizes 512, 1024 and 2048 bytes. 

5.4.5 Instruction vs. Data in Audio and Video 
There are significant differences between audio and video not only in terms of the 
amount of data, but also the way it is processed. Video applications, such as codecs, are 
content dependent and the result is that one does not know which data to put in a 
dedicated memory at compile time. Also as the amount of overall data is huge and at 
the same time very limited portions are used, putting all data in a dedicated memory 
neither realistic nor efficient. As we have shown in our previous work [9] the amount 
of gains are very limited.  

Audio applications on the other hand are more algorithm dependent and all input 
data is processed in a predictable way, making it ideal for using dedicated memory, 
such as SPM. All input data is processed in a predefined algorithm regardless of the 
content. This enables us to identify and remapping the data types that has beneficial 
impact on lowering external accesses.  

This difference is illustrated in table 4, where we see that the introduction of DSPM 
for data has no impact on the number of external accesses in the case of video codec 
H.264. The contrary could be said about the impact of ISPM for code and instructions, 
where we observe significant impact on the video applications. One reason being that 
compared to previous video codecs, such as MPEG-4, H.264 has much control code. 
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We have also shown this in our previous work [10], where impact of instruction 
handling is essential in gaining the performance through the usage of instruction level 
parallelism (ILP). The similar beneficial impact of handling instruction code, we 
observe when using ISPM for instructions resulting in lowering external memory 
accesses. 

The opposite can be said about audio codec eAAC+. There the introduction of 
DSPM has significant positive impact on the external accesses, as shown in our 
experiments. But for instruction code ISPM has negligible impact, as our audio 
application fits into the cache. As pointed out earlier, if our audio application would not 
have fit entirely in the cache then we would have allocated selected part to the ISPM. 

5.5 Conclusions 
In this paper, we propose a generic methodology that explores the design space by 
determining Pareto point for different combined cost functions. The method 
systematically analyzes and finds optimal memory mapping for a given application and 
architecture. By using this method there is only a need to perform limited number of 
simulations, number instead of performing extensive simulation of all possible 
combinations. The applications we have used in our study are two proprietary state-of-
the-art multimedia applications eAAC+ audio codec and H.264 video codec. In this 
study, we have focused on reducing external memory accesses and at the same time 
increasing the utilization of Scratch-Pad Memory (SPM). For this purpose we have 
looked both at data as well as instructions.  Among the findings we have made are that 
SPM is good for reducing external accesses to reduce power consumption, but has 
limited significance on overall performance improvements. Our experiments indicate 
high accuracy for predicting SPM and memory accesses, above 90%. The methodology 
presented here can be adapted quite easily to real industrial situations where there is 
often a need for mapping third party application to a specific architecture. 
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