
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Exploring Processor and Memory Architectures for Multimedia

Iranpour, Ali

2012

Link to publication

Citation for published version (APA):
Iranpour, A. (2012). Exploring Processor and Memory Architectures for Multimedia. [Doctoral Thesis
(compilation), Department of Computer Science].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/da93c833-90c9-40a3-9e1e-2f42a68d4a5f

Exploring Processor and Memory
Architectures for Multimedia

Ali R. Iranpour

Lund 2012

This thesis is submitted to the Board of Research: FIME --- Physics, Informatics,
Mathematics and Electrical Engineering --- at Faculty of Engineering, Lund University,
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Engineering.

ISBN 978-91-976939-6-7

ISSN 1404-1219

Dissertation 38 ,2012

LU-CS-DISS:2012-1

Department of Computer Science

Lund University

P.O. Box 118

SE-221 00 Lund

Sweden

 iii

Abstract

Multimedia has become one of the cornerstones of our 21st century society and, when
combined with mobility, has enabled a tremendous evolution of our society. However,
joining these two concepts introduces many technical challenges. These range from having
sufficient performance for handling multimedia content to having the battery stamina for
acceptable mobile usage. When taking a projection of where we are heading, we see these
issues becoming ever more challenging by increased mobility as well as advancements in
multimedia content, such as introduction of stereoscopic 3D and augmented reality.

The increased performance needs for handling multimedia come not only from an ongoing
step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase
in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264
AVC) that adds to the computational load increase. To meet these performance challenges
there has been processing and memory architecture advances (SIMD, out-of-order
superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile
domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and
on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in
requirements for mobility, placing higher demands on battery-powered systems despite the
steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-
terms of battery capacity versus performance advances.

In order to make optimal use of these architectural advances and to meet the power
limitations in mobile systems, there is a need for taking an overall approach on how to best
utilize these systems. The right trade-off between performance and power is crucial. On top
of these constraints, the flexibility aspects of the system need to be addressed. All this
makes it very important to reach the right architectural balance in the system.

The first goal for this thesis is to examine multimedia applications and propose a flexible
solution that can meet the architectural requirements in a mobile system. Secondly, propose
an automated methodology of optimally mapping multimedia data and instructions to a
heterogeneous multilevel memory subsystem. The proposed methodology uses constraint
programming for solving a multidimensional optimization problem.

Results from this work indicate that using today’s most advanced mobile processor
technology together with a multi-level heterogeneous on-chip memory subsystem can meet
the performance requirements for handling multimedia. By utilizing the automated optimal
memory mapping method presented in this thesis lower total power consumption can be
achieved, whilst performance for multimedia applications is improved, by employing
enhanced memory management. This is achieved through reduced external accesses and
better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for
predicting multimedia memory accesses for a given architecture.

 iv

Contents v

Contents

Abstract .. iii

Contents ... v

Preface .. ix

Acknowledgements .. xi

1 Introduction ... 15

1.1 Background .. 15
1.2 Motivation .. 18
1.3 Structure of the thesis ... 20

2 Challenges with Multimedia Applications in Embedded Systems 21

2.1 Embedded Architectures for Video and Audio .. 21
2.2 Multimedia Processing ... 22
2.3 Multimedia Memory ... 34

3 Related work .. 39

3.1 Processing ... 39
3.2 Memory .. 43

4 Papers Survey .. 47

5 Contributions ... 51

6 Conclusions and Future Trends ... 53

7 Bibliography ... 57

8 Included Papers ... 67

1 Evaluation of SIMD Architecture Enhancement in Embedded Processors for
MPEG-4 .. 69

1.1 Introduction .. 70
1.2 Media applications impact on embedded architectures 71
1.3 Baseline architecture .. 72

vi Contents

1.4 Methodology .. 75
1.5 Experiments and Discussion ... 77
1.6 Related work .. 83
1.7 Conclusions and future work .. 84
References .. 84

2 Analysis of Embedded Processors for Streaming Media Applications 87

2.1 Introduction .. 88
2.2 ARM Architecture .. 90
2.3 MPEG-4 Application .. 92
2.4 Methodology .. 92
2.5 Experimental Results .. 94
2.6 Discussion of the Results.. 99
2.7 Conclusion .. 100
References .. 100

3 Memory Architecture Evaluation for Video Encoding on Enhanced Embedded
Processors .. 103

3.1 Introduction .. 104
3.2 Video Application .. 105
3.3 Processor Architecture.. 106
3.4 Memory Architecture ... 107
3.5 Methodology .. 108
3.6 Experimental Results and Discussion ... 109
3.7 Related Work .. 118
3.8 Conclusions .. 119
References .. 119

4 Performance Improvement for H.264 Video Encoding using ILP Embedded
Processor.. 123

4.1 Introduction .. 124
4.2 Video Application .. 125
4.3 Processor Architecture.. 126
4.4 Methodology .. 128
4.5 Experimental Results and Discussion ... 130
4.6 Related work .. 136
4.7 Conclusions .. 136
References .. 137

5 Design Space Exploration for Optimal Memory Mapping of Data and
Instructions in Multimedia Applications to Scratch-Pad Memories 139

Contents vii

5.1 Introduction .. 140
5.2 Related Work .. 141
5.3 Our Approach ... 141
5.4 Experiments and Evaluation ... 144
5.5 Conclusions .. 154
References .. 154

 ix

Preface

This thesis summarizes the results of my academic work in the Embedded Systems
Design Laboratory (ESDlab) at the department of Computer Science, Lund University,
for the Ph.D. degree in Computer Science. The main contributions of this thesis are
derived from the following publications;

• Evaluation of SIMD Architecture Enhancement In Embedded Processors for
MPEG-4, in Proc. Symposium on Digital Systems Design (DSD-04), Rennes,
France, August 31 - September 3, 2004

• Analysis of Embedded Processors for Streaming Media Applications, in Proc.
of the 8th Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW-8), San Francisco, USA, February. 12, 2005.

• Memory Architecture Evaluation for Video Encoding on Enhanced Embedded
Processors, in Proc. Embedded Computer Systems: Architectures, MOdeling,
and Simulation (SAMOS VI), Samos, Greece, July 17-20, 2006.

• Performance Improvement for H 264 Video Encoding using ILP Embedded
Processor, in Proc. of the 9th Euromicro Conference on Digital System
Design, Cavtat/Dubrovnik, Croatia, August 30th - September 1st, 2006.

• Design Space Exploration for Optimal Memory Mapping of Data and
Instructions in Multimedia Applications to Scratch-Pad Memories, in Proc. of
7th ESTIMedia 2009, Grenoble, France, October 15-16, 2009.

 x

 xi

Acknowledgements

Thanks to contributors goes here.

Lund, xxxx 2011

Ali R. Iranpour

 12

 13

“Who Dares Wins”

Introduction

 14

 15

Chapter 1

1Introduction

In this chapter, we present a brief overview of the context and motivations behind the
work presented in this thesis.

1.1 Background
Processor and memory architectures are fundamental components when exploring the
design space in embedded and other resource limited systems. This resource limitation
is in terms of power and energy as well as performance and cost, with the consequence
of being a never ending trade-off between these factors. The ultimate goal is to get
good enough performance in a reasonable power envelop. Taking a historic look at the
evolution of a category of battery operated embedded systems, mobile terminals or
handset, one can see an interesting transformation. These devices started as voice only
with very limited computation performance, where at best they included a
microcontroller, such as Zilog Z80 (8-bit microprocessor). This small processor was
combined with other hardwired ASICs to handle the GSM communication protocol.
These systems where often build on a printed wire board (PWB) where discrete ASICs,
and other radio components where combined into a handset. The next generation of
devices saw an integration of the digital discrete components to baseband ASICs and
the radio components into RF ASICs. The digital basebands often included CPU, DSP
and accelerators.

Around the time when second generations of mobile SoCs were introduced into
handheld devices, the mobile CPUs were ARM7s and ARM9s, which became the
dominant choice of processor, with their 32-bit RISC architecture and small caches.
These processors provided enough processing power to not only handle the increased
needs from the GSM data protocol, but also to handle the introduction of larger
displays, multichannel audio, etc. The next big step was the introduction of many
CPU/DSP systems with more memory, where each processor handled a predefined set
of tasks and applications. These systems have further evolved into heterogeneous

 16

multicore systems with symmetrical multi processing (SMP) cores, multiple DSPs,
GPUs and multilevel heterogeneous memory system (caches and dedicated memory)
where the entire systems is connected through a high bandwidth interconnect network-
on-chip (NoC). Adding to this SoC system complexity and exponential increase in
memory bandwidth needs the introduction of technologies, such as wide IO will create
challenges in other areas, such as silicon technology maturity, manufacturing,
standardization and overall costs.

Multimedia is an ever increasing focus area for all embedded systems on handheld
devices. This multimedia centric view will drive development of multitude of
applications that will manipulate multiple steams of real-time data, creating high
computational demands resulting in increased system ramifications.

When combining the complexity of multimedia applications and resource limitations of
embedded systems, the resulting system design provides some very interesting
challenges, ranging from hardware and software partitioning to creating new system
bottlenecks requiring handling of new trade-offs. Thus in order for achieving an
optimal system design, a systematic exploration of the design space is needed.

In this thesis, we address design space exploration and analyze system requirements for
handling multimedia applications in handheld embedded systems, such as advance
smart-phones or PDAs. The first notion to take into account is “handheld” that
basically means battery driven with all the constraints and limitations it poses on the
system. The second notion is “embedded system” which means working in a resource
limited environment. Sustained high computational performance cannot be achieved
due to lower available power and energy budget compared to desktop system.

Audio and video processing are two major functionalities in multimedia applications
today. They have many similarities, such as working on data streams with set of
consecutive processing steps. Audio and video enhancements are the driving force
behind many multimedia applications. Providing optimized system architecture to
enable these processing needs will provide a well balanced multimedia embedded
system.

Almost all multimedia algorithms work solely on fixed integer point arithmetic. At the
same time video and audio differ in terms of computational complexity, in terms of
algorithms and amount data being processed. Audio applications have come further in
their evolution and maturity compared to video standards, where the algorithms used
are often more computationally complex. The newer an application standard is, the less
development time has been put in, making it less optimized, thus often requiring
heavier computation and putting more demand on the memory architecture. Another
aspect one needs to take into account is that applications not only evolve to more
complex applications but can also move “back” to less complex, when introducing new
features and other enhancements, such as post processing, etc. This increases the
demand for the being able to handle and reuse generated data even further. Audio

 17

applications have come further in their evolution, making it possible for having
significantly more post processing enhancements compared to the video applications.
In the case of video, many of the fundamental issues for handling data has not been
fully solved, thus focusing on post processing is not where the main research effort has
been up now.

As mentioned previously, in order to handle multimedia, there is a need for system
design that is well balanced both in terms of power as well as performance. At the same
time it gives the desired flexibility for being able to handle different algorithms and
different multimedia applications. The two hardware components which are critical for
achieving a well balanced embedded system are processing and memory demands. One
needs the computational power to run the algorithms, but at same time the memory
design needs to be able to feed the processing elements. The required processing differs
significantly between audio and video applications. In some cases this can be a
magnitude higher for video compared to audio, for example when comparing eAAC+
audio codec with H.264 video codec. The memory requirements differ both in terms of
footprint but also in terms of bandwidth.

The power consumption is also a key factor along with performance for battery
operated devices. When it comes to power consumption it is not only processing but
also memory that needs to be considered. Often design decisions are made where the
focus is on reducing the processing power consumption. This can be a costly approach
as this is often paid for in increased memory traffic, potentially resulting in worse
overall power consumption. Good designers need to take into account the entire system.

When it comes to processing and the potential speedups there are two approaches for
multimedia applications. The first and most used for multimedia is data level
parallelism (DLP). The other much less used in multimedia is instruction level
parallelism (ILP). The straightforward approach would be to parallelize all potential
available parallelism in the application by widening the data paths and increasing the
number of processing elements. This however is not the most efficient usage of silicon
nor is it power efficient, as not all parallel parts of the application are heavy
contributors to the overall computational workload. The power consumption increase
comes from over-usage of the memory system, interconnects and external memory
accesses. Additionally, the complexity of multimedia algorithms could result in even
worst overall performance as it is very easy to get penalized by wrong partitioning due
to increased memory accesses.

There are a number of ways to get the DLP in multimedia. Single instruction multiple
data (SIMD) is one common approach that can be utilized. This is often designed as
instruction set extensions to vector instructions existing processor designs. Another
approach is using digital signal processors (DSPs). Yet another approach is to increase
the number of processor cores, such as in symmetrical multi-processors (SMPs).
Depending on the multimedia application algorithm and data usage one approach
maybe more suitable than another.

 18

In the case of ILP, both very long instruction word (VLIW) and superscalar
architectures are often used. The concept of superscalar design basically means by
increasing the width of the processor and enabling multi instruction dispatch, and
execution in every clock cycle thus increasing the overall throughput of the processor.
In the case of VLIW architectures, multiple 32bits instructions are combined in to a
single VLIW instruction which could be up to 128- or even 256-bits long.

Memory design for multimedia is very much connected to application algorithms and
their behavior, as these factors directly control the access patterns and bandwidth
requirements. The memory designs range from homogeneous designs with fully
dedicated memory, to fully cache based design or heterogeneous memories, utilizing
multilevel memory hierarchy. Depending on the chosen architecture, there are different
trade-offs to be made, involving memory sizes, types of memories, number of levels in
the hierarchy and number of memory ports. When it comes to type of memories there
are different caches with different associativity and policies. There are also scratch pad
(SPM) or tightly coupled memories (TCM), called in ARM architectures, and content
addressable memories (CAM). The SPM is memory design often used in real time and
multimedia applications due to its low latency and predictability, as SPM are managed
by software. CAMs are on the other hand used when memory speeds are essential, for
example in high-speed network switches, as CAMs can search the entire memory in a
single operation. The CAMs work in “reverse”, basically unlike standard memory, in
which the address is given and then the content is returned. In CAMs the data is
supplied and the memory returns the address if the data is in the memory.

This thesis answer the following questions: how can we in an optimal way map data
and instructions to a particular architecture memory? This is combinatorial problem
with discrete set of solutions, where we are looking for the best solution for a specific
architecture given a set of memory objects. There are different techniques for solving
this, either by using heuristics or complete methods, such as constraint based
approaches.

This thesis also addresses another important question, the exploration of the processing
and memory design for any given multimedia applications. The important aspect of the
multimedia application when looking into system architecture using design space
exploration is the abilities of the application itself. Basically evaluate the application in
realistic fashion with real world needs so that simulations are as close to reality as it
can be. This can be very difficult to achieve, given the real world complexities. So it is
very important to use real state-of-the-art world multimedia application for design
space exploration.

1.2 Motivation
Multimedia has become one of the most important factors in our day to day lives. It has
been one of the main driving forces behind the last century’s rapid evolution of human
society. What started in the beginning of the last century as rudimentary moving

 19

pictures and recorded music has evolved in to today’s high definition multimedia
content. On top of this evolution there has been as accelerated exponential grows in the
last decades that involves the concept of mobility. A notion that enables anyone to use
and generate multimedia contents any where at anytime.

The question to ask is what technical advancements have made this possible? What
kind of technical trade-offs were made to get to this point? Also what are the hurdles
and challenged that lie ahead? An “always connected” society is the major reason for
this growing multimedia appetite, major reason being the mobility and flexibility that
the devices offered. This led to a consumer appetite for non-stop multimedia content.
The device performance, usability and durability were also a huge contributing factor
for this growth. This phenomenon involves a wide variety of reasons from cultural to
technical reasons, in this thesis we focus on how multimedia content is handled, with
emphases on processing and memory for handheld battery powered device. The target
is to be efficient in terms of power as well as performance with as flexible architectures
as possible. This is a classical computer architecture trade-off problem where the task is
to find the right balance when taking in all different factors into consideration.

In the case of processing, as stated earlier, multimedia applications have specific
properties that exhibit various parallelisms. These are not only data level parallelism
DLP but, depending on the specific algorithms, also instruction level parallelism ILP.
In order to get the most out of DLP and ILP there are a number of techniques and
architectures that can be utilized, such as SIMD, VLIW, SMP, superscalarity. The
architecture we focus on in this work was SIMD together with superscalarity, as this
provided both flexible architecture and gave enough performance in the right power
envelop for handling multimedia.

As mentioned in the previous section, there are many options for memory architectures
for multimedia. They range from straightforward cache based to more complex
solutions with different dedicated memory buffers and combinations of the two.
Keeping in mind that not only performance but flexibility of being able to execute
different kind of applications, both multimedia and others, are intended to use the same
memory system, a balanced memory system was necessary. The architecture choices
and the complexity of multimedia applications raise the question, what memory
architecture suites the multimedia scenario? This can be done with many different
approaches and methods. In this thesis we propose a systematic approach to find an
optimal mapping of data to heterogeneous memory architecture, consisting of a level1
SPM with multilevel cache hierarchy.

Looking at different approaches for optimization, and specifically optimal mapping of
data, one of the best known is integer linear programming, were the problem is
modeled using integer valued variables and linear inequalities. Another approach is
heuristic based algorithms. The approach chosen in this case is based on constraint
programming (CP), where by using constraint specific reasoning methods, a problem is
formalized and a model of the problem is created. This is then used as input to a solver

 20

that can find one or many solutions for the specified problem. The constraint solver
used in this thesis was JaCoP [1]. The problem we are solving here can be broken down
to a combinatorial optimizations knapsack problem. The work in this thesis is one of
the first using constraint programming for this kind of problems. The main benefit
when using CP compared to other method is that we can state the problem in a flexible
way and obtain the optimal data mapping solution for specific memory architecture.

1.3 Structure of the thesis
The thesis comprises of two parts. The first part gives an overview of the area,
background and motivation behind the work. The second part consists of collection of
published papers. Chapter 2 presents the challenges in embedded system with
multimedia. Chapter 3 discusses related work and in chapter 4 the published papers are
briefly presented. Chapter 5 and 6 gives a list of contribution, conclusions and future
trends.

 21

Chapter 2

2Challenges with Multimedia Applications in
Embedded Systems

2.1 Embedded Architectures for Video and Audio
There are many challenges that lay ahead when designing today’s multimedia
embedded systems. These range from designing a system that needs to work in a
diverse environment, where frequently many different types of tasks and applications
need to be handled, to being at the same time designed with power limitations of
battery operation. These challenges are often contradicting with constraints, such as
performance and power consumption but also cost and time to market. Breaking down
these constraints, certain design areas stand out, such as processing and memory.

The different architectural approaches for handling the processing and memory
requirements depend on the selected applications, such as video, graphics and audio. In
this thesis, we have focused on video and audio applications, more specifically on
block based video codecs, MPEG-4, H.263 and H.264. For audio we have focused on
compression codec eAAC+, which is a sub-band codec operating in the frequency
domain.

An important factor when doing research on design space exploration in the embedded
domain, especially for multimedia applications, is to use realistic applications
representing industry state-of-the-art implementations. It cannot be emphasized enough.
This is important both in terms of avoiding kernels for system evaluations but also
avoiding sub-optimal code, which is often the case in reference applications provided
by standards. In most cases design choices made, based on these applications or kernels,
are not relevant or even erroneous. Often the focus lays in speeding up parts of
applications or kernels, which at first glance seem too computationally intensive.

 22

However in real applications these parts can been solved by more sophisticated
algorithms with less computational intensity or even be avoided altogether.

The main architectural solution that has been proposed in embedded domain, targets
the inherent parallelism present in multimedia applications. In terms of architectures for
processing, these solutions range from using standalone dedicated hardware to using
fully software based solutions based on general purpose processors (GPP). The
memory solutions used in embedded domain for multimedia applications address
mainly throughput issues that are caused by bandwidth limitations. The solutions
utilize different on chip memory designs, such as hardware controlled buffers, different
type of caches and scratch pad memories (SPM).

In this thesis, the aim has been to address multimedia (video and audio) applications for
processing and memory addressing constraints that exist in embedded domain. This has
also included a need to propose a method for optimal mapping of memory objects to a
specific architecture.

2.2 Multimedia Processing
The digital workload for handheld devices, such as Smartphones, including all control,
data and signal processing activities, is nearly 100 Giga operations per second (GOPS).
This workload increases by an order of magnitude every 5 years [2]. Keeping in mind
that all these functions have to run for hours on a single battery charge, and standard
Li-ion battery has around 4.5Wh of energy (1200mAh at 3.7V), this is extremely
challenging. This basically means we have a tight total power budget, not taking
thermal issues into consideration. The cellular transmitter (GSM, UMTS or LTE) takes
on average 1-2 W. The rest is what is available for the digital workloads. Comparing
the CPU in a Smartphone with a PC, it has to run more than two orders of magnitude
more power efficient, 0.2 W vs. 30W [2].

Looking at processing 100GOPS, the thought of using a single processor to handle this
is out of a question as it implies running a processor at 100GHz! Looking at the other
side of running 1000 cores at 100MHz is also unreasonable with all the overhead traffic
and costs. The only way forward is using a heterogeneous architecture based on
programmable cores and hardwired functional accelerators.

Multimedia applications are major contributor to the 100GOPS workload. These
applications put huge demands in terms of processing on any system, especially on
resource constrained embedded systems. Regardless whether these systems are
hardwired or fully flexible, the entire system (computation units, buses, memories) is
often pushed to peak performance edges. What kind of processing solution is chosen is
often a trade-off between required performance, flexibility, available power budget and
available technology.

All processing solutions address parallelism present in multimedia applications. This
can be achieved through different approaches, such as dedicated hardware solutions, or

 23

programmable solutions, where they can either be homogeneous architectures, such as
multicore architectures, or heterogeneous systems, where programmable cores are
combined with hardwired solutions. Further a heterogeneous system where dedicated
hardwired solutions are present can either be loosely or tightly coupled. What is meant
by loosely coupled is where, for example, a system is designed around a general
purpose processor (GPP) with dedicated hardwired blocks for specific accelerations. A
tightly couple system is a GPP enhanced with instruction set architecture (ISA)
extensions, such as SIMD style extensions.

Dedicated hardware solutions for multimedia are often designed to perform single or
very few specific tasks. They can range from performing parts of computationally
heavy algorithms, to executing entire applications, such as encoding a specific H.264
bit stream. The key here lay in performing a predefined task with high performance but
at expense of flexibility.

Using either general purpose processors (GPP) or digital signal processors (DSP) is a
common approach for achieving flexibility with limited performance requirements.
GPPs are designed traditionally to enable efficient execution flow and DSPs are
designed to perform well for constant-rate data flow applications. Together, GPPs and
DSPs can also be combined to processing engines for a wide variety of multimedia
applications and products. These processor based solutions can be used for wide variety
of applications, but their flexibility comes at a cost of being limited in terms of
performance. For example, in the video encoding and decoding, when the resolution is
above a certain level, such as high definition (HD), the performance is not enough.

An approach which can provide better performance compared to above solution is
when GPPs are combined with dedicated hardware in a loosely coupled heterogeneous
architecture. Here specific computationally heavy blocks are connected together with
GPPs via buses or interconnects. This is a very simple and straightforward hardware
approach but has limitations in terms of flexibility. This hardware simplicity comes at
expense of software complexity, making programmability of these systems difficult
and many times inefficient due to potential hardware software overhead costs and
traffic.

In order to keep high flexibility but provide multimedia capability, microprocessor
manufacturers have introduced tightly coupled heterogeneous extensions to their
instruction set architectures (ISA) that enhance the performance of multimedia
applications. These ISA extensions operate in a SIMD fashion to exploit data level
parallelism (DLP) in multimedia applications. SIMD enabled microprocessors increase
the processing capability while offering the low power consumption required by
handheld, battery powered devices.

Multimedia applications typically operate on narrow words (primarily 8- and 16-bits)
and spend a significant portion of execution time in loops that have a high degree of
processing regularity. Packing several small data elements into a wider data-path

 24

enables simultaneous processing of separate data elements. Such SIMD instructions are
available for several arithmetic and logic operations in addition to special media
operations, such as sum-of-absolute differences (SAD). SIMD capabilities enable more
efficient software implementation of high-performance media applications such as
audio and video codecs. Processors, such as ARM NEON, MIPS MDMX and Intel
Architecture MMX and SSE, provide SIMD style instructions.

For example, ARM as one of the major embedded processor providers, introduced
NEON [3], a combined 64- and 128-bits wide general purpose SIMD extension to the
ARM instruction set architecture to accelerate multimedia applications, such as video
and audio encoding/decoding. NEON is tightly coupled with the ARM core providing
single instruction stream with unified view of memory. NEON supports 8-, 16-, 32-
and 64-bit integer and single-precision (32-bit) floating-point data and operates with up
to 16 operations at the same time. NEON is capable of delivering between 60-150%
performance improvements for specific multimedia codecs [3].

Another closely related aspect to take into account regarding multimedia processing is
that most research has been focusing on the data centric parts of the applications. This
has resulted in neglecting of the potential parallelism available in the control parts. The
importance of these parts is becoming even more critical as multimedia applications are
evolving towards more advance control dominated applications [4]. This trend can, for
example, be seen in the evolution of video codecs, MPEG2, MPEG4 and H.264. This
potential parallelism can be exploited by instruction level parallelism (ILP) through the
usage of different architectures, such as very long instruction word (VILW) and
superscalarity.

As mentioned in the previous section a specific solution depends very much on the
selected applications. More specifically the processing of video and audio has
similarities but also many differences. Audio is a data dominated application making it
easily parallelized, which is often performance enhanced by parallel architectures, such
as DSPs, SIMD and parallel dedicated hardware. Video on the other hand is not as
strait forward as audio in mapping. It has parts that are data dominated and have
significant parallelism, such as block filtering and motion estimation. But when it
comes to compression and decompression this is control dominated [5]. It is essential
to understand which type, data or control dominated an application is.

Processing needs differ therefore significantly between audio and video. Audio
applications have significant lower processing, almost a magnitude lower, less than 100
Mega cycles, compared to video processing. There are two main reasons for this, first
the amount of data being processed is significantly lower for audio applications.
Second audio applications work on one dimensional data arrays making audio
applications much easier to process and predict. Video applications can be seen as two
dimensional arrays.

In the subsequent sections we will discuss, in more details, video and audio processing.

 25

2.2.1 Video processing
The main multimedia video trend in handheld, battery operated devices is an increased
complexity of the video codecs, an increased number of supported video codecs and an
increased resolution for both cameras as well as displays. This has led to a significant
increase in processing demands.

Processing requirements for video applications are significantly higher than audio
applications as the amount of data needed to be processed is higher. In addition, the
compression efficiency of newer codecs, such as H.264/AVC, has significantly
improved. This has come at a cost of computational complexity and memory access
bandwidth. For example, for HD720p video (1280x720@30fps, ±128-pel search range,
2 ref frames) encoding the required off-chip memory bandwidth with level C scheme is
1071MByte/s [6]. Comparing the number of pixels for a standard definition (SD480p)
to a full high definition (HD1080p) this about 6 times more pixels per frame for the HD
(350000 vs. 20000000 pixels/frame). This equals to a processing need of over 3200
Mega-cycles/s for HD1080p and 550 Mega-cycles for SD480p for a H.264 video
stream.

To understand better video codecs functionality and their processing requirements we
will discuss H.264 codec in more details. The main blocks in H.264 encoder and
decoder are illustrated in figure 1. As seen in figure 1 the entire H.264 decoder is a
subset of the H.264 encoder. The major processing demanding blocks are motion
compensation and motion estimation. Other parts in H.264 encoder include the
selection between intra- and inter-coding for block-shaped regions of each picture.
Intra-coding uses various spatial prediction modes to reduce spatial redundancy in the
source signal for a single picture. Inter-coding (predictive or bi-predictive) uses motion
vectors for block-based inter-prediction to reduce temporal redundancy among
different pictures. Motion vectors and intra-prediction modes may be specified for a
variety of block sizes in the picture. Finally, the motion vectors or intra-prediction
modes are combined with the quantized transform coefficient information and encoded
using entropy code such as context-adaptive variable length codes (CAVLC) or context
adaptive binary arithmetic coding (CABAC).

Consider for example, parallel arithmetic instructions, such as sum of absolute
difference (SAD), a multi-cycle operation that is often pipelined for accelerating
motion estimation in video compression codecs. These instructions are used to perform
parallel half-word or byte wise arithmetic operations. This is used in motion estimation,
which is one of the most critical components in a video coding system, and it also
dominates the major part of the computation complexity and memory bandwidth.
Depending on implementation, in straightforward dedicated hardware implementation,
motion estimation is an I/O bound problem rather than a computation bound one [7].
Looking at motion compensation the most computationally demanding parts are half-
pixel interpolation, which is done by using a 6-tap FIR filter, and quarter-pixel
interpolation is done by averaging two half-pixel values. These three operations, SAD,

 26

half- and quarter-pixel interpolation can easily stand for up to 40% of the overall H.264
encoding time [8].

Figure 1. Block diagram of H.264 algorithm encoder and decoder.

When looking at video codecs, the encoders have more flexibility to do trade-offs with
performance. The SADs for a motion estimation search in the encoder, can assign the
motion search within each of a range of reference frame to a unique thread, thus
increasing the possibility of parallel execution. Looking at video data, it is represented
in most applications as 8 bit resolution. The size of parameters and coefficients are

 27

coded in 16 or fewer bits. The filters coefficients and algorithms of H.264 and many
other popular video codecs are chosen to ensure that even intermediate values of
calculations will not overflow 16-bit arithmetic’s operations within processors [7,9].
The adders, shifters, ALUs, multipliers and other data processing elements within
programmable video processors are typically 16-bits wide, which will directly impact
the system architectures.

Other important aspect of video processor is the pixel rate requirements of the
application that must be met as it is directly connected to amount of data needed to be
processed. The pixel rate is the product of height, width and rate at which full frames
are displayed. For many video coding standards the worst case time difference is at
least a magnitude greater than the typical sequences.

Another factor to bear in mind is the explosion in supporting higher and higher screen
resolutions which has come at same time as an increase in codec complexity when
comparing H.263 with H.264. An increase from H.263 at QCIF to H.264 at SD has a
computational complexity increase of about 65 times [4]. This has resulted in huge
changes in video system architecture. In the mobile domain, there is also an increased
number of video codecs that need to be supported. Here is a short list of codecs that are
mandatory, MPEG2, MPEG4, H.263, H.264, VC-1, RV, DivX, VP6/7, Sorenson Spark
and AVS 1.0. With this increased number of codecs has come increased computational
complexity as well, for example, comparing H.263 with H.264 on the same resolution
and frame-rate H.264 is 2.5x more complex [4]. At the same time, the fast pace of
mobile handheld device development has meant that there has always been a request
for supporting multimedia codecs that were not available when the chips were designed.
All these requirements lead to a need for a flexible video processing architecture with
high performance.

The biggest trade-off in video hardware systems is flexibility/programmability versus
dedicated hardware. This flexibility allows late adaptations and development of new
multimedia applications, but it also gives the opportunity for increased differentiation
by enabling new unique features and improvements to be added later. This increased
flexibility comes often at price of increased power and area and in some cases of
decreased performance. As mentioned in the previous section, the common
denominator for all video processing solutions is exploiting the inherent parallelism
that exists in multimedia applications and especially video applications. The main
architectures range from fully dedicated hardware solutions, to the full programmable
general purpose multicores. In between one can find more or less programmable
solutions with specific hardwired architectures. These categories of architectures
include heterogeneous uniprocessor solution with SIMD extensions, which we have
focused on in the work presented in this thesis.

Fully dedicated hardware is designed to perform a predefined function, resulting in
inflexibility for handling new video codecs with updated requirements. Programmable
processors on the other hand provide flexibility but at increased power and lower

 28

performance. The implications of this provided flexibility, is the possibility of
performing complex functions by combining various simple functions in the order
specified by a software program. This leads to many more reads and writes that are
performed in a programmable processor, than in a dedicated hardware. Each read and
write takes time, reduces overall throughput, and consumes power, wastes energy and
generates excess heat. For motion estimation algorithm dedicated hardware solutions
often adopt full search block matching algorithm (FSBMA) [10] because of
predictability and regularity of the computations. This however requires maximum
computation load and memory bandwidth. The reason for the large computational load
is due to a need for working with a large set of candidate blocks that needs to be
matched. Also the huge memory bandwidth results from loading the reference pixels
for candidate blocks. Dedicated hardware logic yields best performance per cost, but
keeping in mind the need for supporting multiple coding standards, handling new
proprietary functions, and future changes to application requirements a programmable
processor is preferred solution.

Programmable processors are preferred for applications that support many standards
and in areas where new standards evolve in a fast pace, such as in video. A closely
related factor that needs to be taken into account is porting an existing solution into
new release of operating system. This is significantly easier for more flexible solutions.

Another aspect regarding fully programmable processor solutions is the requirement of
having sufficient internal storage to efficiently perform its most demanding video
processing functions. This consumes large silicon area, resulting in greater
manufacturing costs.

A heterogeneous architecture (mix of hardwired and programmable core) achieves best
balanced solution and is probably the most dominating solution for video processing.
For achieving a robust and balanced architecture a carefully made partitioning between
the hardwired and programmable cores needs to be made [4], as this is to reduce the
hardware software interactions to minimum to achieve a good level of efficiency.
Basically, the hardwired accelerators should be used for processing large chunks of
data. This also relives the memory system as memory burst are optimal for external
memory bandwidth. This results in architecture, where the only tasks left for the
programmable part is control code. Looking at different design options for the
programmable part, a general purpose CPU is much better choice compared to a DSP
or a VLIW, as neither is optimal for handling control code [4]. Many newer video
codecs, such as H.264, have different control flow in the algorithms, depending on if
some of codec features, for example flexible macroblock ordering (FMO) etc. is used
or not. Also post processing is another area which is very difficult to implement in
hardwire, as algorithms for these tasks are very application specific and could often
have complex control code thus requiring significant programmability.

Programmable video processor architectures achieve best performance through the use
of parallelism at the data- , instruction- , and task-level. This is usually implemented

 29

using SIMD, VLIW and multicore. On top of these an optimally sized ALU, multiplier,
and load/store data paths is essential. In programmable video processors, video
processing functions that are commonly accelerated with specialized hardwired logic
include, multi-pixel sum of absolute differences (SAD) for motion estimation and
filtering such as for inter-pixel interpolation (FIR) and deblocking filters. Where the
video processing algorithm has data parallelism the performance of a processor is
greater if the processor has single instruction multiple data (SIMD) instruction that,
with the execution of a single instruction, operate on adjacent data elements in parallel.
SIMD extensions have been added to almost all commercial general purpose processors
table1.
Table 1. List of SIMD extensions on different general purpose processors.

Architecture Extension
SIMD Width

(Bits)

ARM NEON 64-128

MIPS MDMX 64

Scorpion VeNum 128

Intel SSE 128-256

AMD 3DNow! 128-256

PowerPC AltiVec 128

SIMD extensions accelerate multimedia applications by exploiting data level
parallelism (DLP). An important aspect with SIMD is that performance does not scale
with increased media execution resources, as there are several bottlenecks in SIMD
style media processing and that it is not possible to achieve significant additional
performance improvement by making the processor wider to extract more parallelism.
This is mainly due to overhead of supporting instructions that need to be significantly
increased to scale with the increased SIMD width to keep the efficiency high.

For example, looking at table 1 a SIMD processor performing 16-bit operations on
eight ways SIMD data will yield the best performance with 128 bits wide registers. At
same time a processor designed for a coding standard that operates on 8x8 blocks with
8x8 transform matrices yield better performance with eight ways SIMD parallelism and
128 bits registers. This due to, eight ways SIMD parallelisms make full use of
datapaths without cycles of unused datapath bandwidth. Also the registers within the
processor must be large enough to hold a range of SIMD data values. An important
issue to keep in mind is greater SIMD parallelism improves the average case but yields
little performance improvements when processing a worst case stream. This depends
on whether the applications used, for example if codec is based on 4x4 blocks then best
performance is based on 64-bit registers. But in case of 8x8 blocks then 128-bit
registers yield best performance. The ideal design keeps the processing elements fed

 30

with data to avoid stalls, but if the design is wider than necessary this has no
performance benefits. In the case of VLIW and SIMD both are high-performance and
power-efficient designs but are usually well suited for only very specific types of
application codes with large numbers of independent operations that can found by
compilers or the programmer.

Another approach for getting better overall performance is through exploiting the
instruction level parallelism (ILP) that exists in multimedia applications. There are
many approaches, such as superscalarity or VLIW. Superscalarity means simultaneous
execution of instructions on multiple parallel pipes in the processor. The main
difference with other approaches, such as VILW, is allocating instructions to execution
unit at run time. The added cost of superscalarity comes through utilization of hardware
for achieving better parallel execution. There are two design approaches either an in-
order or an out-of-order execution. The later is performance wise much better but is
also more hardware complex. The out-of-order execution is crucial in getting the
performance benefits of superscalar design as it makes runtime execution dependencies
irrelevant, which was shown in paper IV [8]. An in-order superscalar processor on the
other hand doesn’t fully utilize the added hardware but still require more hardware
complexity for a smaller performance benefits than is achieved by instruction level
parallelism of a VLIW, which relies on the allocation of instructions to execution units
at compile time. Superscalar out-of-order is also a direction which ARM processors
have taken and in their Cortex-A9 architecture embraced this [11].

ILP can also be achieved, as stated above, through the use of VLIW. The mayor
difference between the two designs is the hardware software trade-off. VLIW relies
heavily on the compiler to effectively utilize the parallelism. This could be acceptable
but it depends on the runtime execution predictability of the application. Multimedia
applications and especially video codec’s are highly runtime dependent making it
difficult at compile time schedule optimal instruction execution order.

A direction that many chip vendors have taken in recent years is to offer parallel
machines, or single chip multicore microprocessors. There are many reasons for this
but one major reason being that in order for sustaining and keeping up with Moore’s
law scaling. There is up to certain level you can push a single core until the power
consumption and core complexity gets too high. As the single core is pushed higher
and higher in clock frequency the power required to do this grows in faster rate, leading
to design that are very complex and power hungry. There are a number of different
ways to define multicore and multi-processors. One definition is looking at the
processing cores. The multicore system can be homogeneous multiprocessing as in
symmetrical multiprocessors (SMP), where there are a number of identical cores tightly
connected together. They can also be heterogeneous multiprocessors like in
asymmetrical multiprocessor (AMP), where there are different type of cores connected
via interconnect on the same die.

 31

The main advantage of using multicore is that the required performance can come from
increased number of cores compared to increase in frequency. However there are many
challenges that need to be handled in order to get the promised performance. They
range from designing multicore system, to efficiently writing parallel applications that
utilize the system capabilities. Programming multicore system remains very
challenging. The problem of how to take a piece of sequential code and optimally
partition it across multiple cores remains unsolved [12]. A key factor is how well all
the existing serial algorithms can be redesigned to take advantage of multicore systems.
Algorithm designers need to understand the characteristics, including both advantages
and limitations, of multicore to create algorithms that best match the platform.

Looking at video processing, an efficiently way for utilizing multicores is by using a
single frame slicing that, for example, exists in H.264. By mapping the slices to a
specific core a good distribution is achieved. If one on the other hand maps frames to
different cores the communication and data synchronization overheads could lead to
worst overall performance.

2.2.2 Audio processing
The other key applications in the multimedia domain are audio codecs and audio
applications. Audio processing mostly focuses on different filter algorithms, such as
Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), Finite Impulse
Response (FIR) and other digital signal processing filters. In the case of audio content,
the MPEG-4 High-Efficiency Advanced Audio Coding v2 profile (HE-AAC v2) has
proven to be one of the most efficient audio compression schemes [13]. This is one of
the main codecs chosen for mobile handsets in 3GPP [14] and used in our research
paper V [15]. The MPEG Advance Audio Codec (AAC) was designed to be the
successor of the MP3 format. AAC generally achieves better sound quality than MP3 at
similar bit rates. It is widely used and supported by almost all handheld devices.

How a decoder is designed and implemented is of significant importance especially in
handheld devices. The computational complexity and memory requirements of the
decoder are major factors in choosing the codecs in real-world applications. As these
are directly related to power consumption and implementation cost. HE-AAC version 2
is a lossy data compression scheme for digital audio, consisting of three technologies. It
is an extension of Low Complexity AAC (AAC LC) optimized for low-bitrate
applications such as streaming audio. This is coupled with Spectral Band Replication
(SBR), to enhance the compression efficiency in the frequency domain, and Parametric
Stereo (PS) to enhance the compression efficiency of stereo signals as illustrated in
figure 2.

 32

Figure 2. Block diagram of HE-AAC v2 encoder and decoder.

The main challenge in audio processing lies in finding the right balance between
compression efficiency, audio quality and codec’s computational complexity. By
introducing SBR and PS the compression efficiency is significantly improved but this
comes at expense of increased computational complexity for the HE-AAC decoder.

In most cases running audio applications could be performed in software on a general
purpose processor, as even the most demanding audio applications with added post
processing require less than 100 mega processor cycles per audio channel. Most often
the addition of a VLIW or SIMD unit to the processor core provides even better
computation power ratio, since audio applications have high degree of data parallelism.
By increasing the number of audio channels the amount of processing workload
increases quite linearly. For example, a true stereo audio has two times the workload of
a single audio channel. This means audio workload can easily start adding up when the
number of channels goes to 6 or even 8 surround. Another important difference
between audio and video codecs, is that audio applications and codecs work in one
dimension, making them easier to handle these applications in terms of processing and
predictability.

 33

2.2.3 Power constraints for processing
One of the technically fundamental constraints in embedded handheld systems is power
or energy, since many of these systems are often battery powered [16]. This is closely
related to the other constraint in embedded systems, performance. These two constrains,
power and performance, often follow each other as in many cases they are closely
correlated. They set the bases for design choices and trade-offs both in hardware and
software. These design trade-offs range from choosing the silicon process, low power
(LP) or high performance (G), to choosing different design libraries and hardware
design tool settings. The design constraints bottom line is energy, how long operating
time is directly connected to how much capacity there is in the batteries and how much
power the system consumes for different use cases, which at the end determine end
user experiences. The limitation in overall performance on the other hand is mainly due
to silicon technology, die area and design choices (interconnect width, number of
memory interfaces, etc.). On the power supply side, the slow increase in battery
capacity in handheld portable devices has tightly constraint power consumption as
shown in figure 3.

Figure 3. Energy density curve of lithium Ion battery development [17].

Looking at typical embedded handheld devices, such as Smartphones the typical
operating voltage is around 3,7V. For different use cases the overall current
consumptions vary significantly. For example, video playback uses 200-300mA, while

 34

a voice call consumes 350mA. On top of this there are major power consuming
peripherals, such as displays, cameras and different set of sensors. For example, a
typical current consumption for a display is above 120 mA. Thus there is clear reason
to distinguish between active power consumption (when the device is actively being
used by an end user) and standby power consumption (when the device is in
operational mode but the end user not actively working with the device). The standby
typically have background activities running, such as keeping the cellular
communication alive (~4mA), monitoring the subscription services, Facebook, email
etc. (20-30mA) that the end user uses.

These parameters are essential in achieving the battery capacity constraints for
handheld portable devices. Also, as the silicon have shrunk passed 65nm technology
node, the overall leakage is quite significant. These lead to having a need to control and
manage both dynamical as well as static power consumption. These include dividing
the design in 10-20 different power domains in a hierarchical fashion, using clock and
power gating, forward and reveres body biasing, and above all using dynamic voltage
and frequency scaling. In this work, the main focus has been on dynamic power
consumption for processing multimedia applications. Comparing the power benefits of
SIMD enabled processors with non-SIMD processors [18], the main conclusion was
that with added hardware for SIMD unit the power benefits through faster and more
efficient execution, outweigh the added cost of the SIMD unit. This was true in terms
of power consumption, hardware complexity and silicon area. Another major
contributing factor for overall power consumptions is memory and external off-ship
accesses which will be discussed in the next section.

Overall, looking at processing efficiency in terms of energy, depends thus on many
factors, such as the chosen architecture and silicon technology, use cases the embedded
device need to operate and how sophisticated power management is implemented in the
system. For example, in many cases the peak power (up to 700-800 mW) is not the
issue but rather for how long the sustained power consumption is the critical issue. This
could be a major issue not only in terms of energy consumption for a battery operated
device but also thermal limitations can become a limiting factor.

2.3 Multimedia Memory
One of the key factors that drives the cost and power dissipation of an embedded
system on-chip is the memory architecture. The memory subsystem is a major
contributor to the performance, power and area of a complex embedded system [19].
The memory subsystem can constitute a large part, up to 70% of the silicon area. This
figure is expected to grow even further to over 90% by 2014 [20]. The main reason for
this is the relative small design cost per area unit in terms of both manpower and time
to market. Another reason is related to power consumption, since the heat dissipation
per area unit is lower for memories than for logic. Thus, on-chip memory can be used
to add functionality with smaller impact on system heat dissipation [21]. The key

 35

challenge is to define a memory system that combines and satisfies the processor data
requirements for executing efficiently, whilst minimizing cost and power consumption.
In many multimedia intensive embedded systems, the overall area and power
consumed by the memory subsystem (on-chip as well as off-chip) is up to 10 times
greater than of processing, making memory a critical component of the design [22].
Thus, data placement and memory mapping is crucial for achieving good performance
and optimal memory utilization. This can be achieved by optimally utilizing the on-
chip memory, which can be SRAM, ROM and/or embedded DRAM/SRAM that is
similar to off-chip DRAM.

In the field of memory architecture and memory management, there are two main
approaches when dealing with multimedia applications. The first one uses dedicated
zero wait state memories, often referred to as scratch pad memories (SPM). This
approach requires often rewriting the applications to best fit these memory
architectures. The second approach uses multilevel caches and this approach does not
require rewriting the code but through careful optimizations based on a standard
memory hierarchy, it is possible to get additional improvements.

The question that arises is how does the combination of the two memories, SPM and
cache, behave and how should we best optimize and utilize the system, software and
hardware. This is a typical trade-off, where we have a multidimensional optimization
problem. In our work, presented in paper V [15], we introduce a methodology for
mapping data and instructions to heterogeneous memory architectures consisting of
SPM and multilevel caches. In that method, we define the problem as knapsack
problem [23]. We show significant gains in lowering off-chip memory access by
selectively mapping data and instruction to SPM, which provide an optimal solution for
a given architecture. Our solution could either, minimize external memory accesses,
minimize execution cycles or maximize SPM accesses.

Common for audio and video applications memory requirements are that they often
work on streams of data. In the audio case the memory accesses are very regular,
meaning one can predict the next data read quite accurately. In the video case this much
more difficult, as the runtime dependency makes the data accesses much more irregular.
Also, the amount of data being processed in video applications is at least an order of
magnitudes larger compared to audio applications. A straightforward approach cannot
be taken with video applications, as can be done with audio, especially due to memory
bandwidth limitations in embedded systems. On top of this, in the video case, the
encoding is execution dependent, meaning that selection of data for processing cannot
be done at compile time. Instead the focus can be shifted to instructions of the
algorithm and deciding what instruction sequences should be mapped to specific
memory, such as SPM at compile time.

The SPM is organized into multiple memory banks, preferably in smaller memory
banks, as these consume lesser power per access than larger memories. This presents an
opportunity to place most frequently accessed data in smaller bank sizes. To obtain

 36

good performance and few memory stalls, the data buffers of the application need to be
placed carefully in different types of memory. This is typically done manually and
hence takes a significant amount of time, up to several man months.

Memory management for multimedia applications especially video applications is thus
an important area to focus on as huge amount of data is being processed. The result is
heavy congestion of the memory subsystem, with the potential of breaking the system.
Thus, there is a need to focus on algorithms for reducing amount of processed data as
much possible, especially for encoding and decoding multimedia streams. This results
in the situation where not all data is relevant for processing. Instead only a small
portion of data is useful for processing and the rest can be disregarded. For example,
the motion estimation algorithm is very selective in choosing the right data for
processing, which leads to reduction in applications bandwidth needs.

Another key area when dealing with memory and multimedia applications is the
applications themselves. Researchers have too often used non optimized reference code,
where the overall behavior of the application is not the same as for the optimized code.
For example, if a critical part of an application, which was computationally complex
with high memory utilization and took up to 50% of the overall execution time, in the
non optimized reference code, in an optimized real application, this part has been
reduced to less than 15%. We showed this in paper III [18], where we compare real
life code with standard codecs often used in research papers proposing solutions to
speed up these applications.

2.3.1 Memory bandwidth requirements
As semiconductor process technology shrinks, it is feasible to design chips with greater
data processing capability. The data rates and bandwidths for transferring data between
chips do not increase at the same rate as data processing requirements. This result in
performance of processors on video applications is constrained by memory bandwidth
to off-chip DRAM memory devices in ever more applications. Bandwidth
requirements for video applications are typically high and will further increase as
resolutions, bit depths, and frame rates increase. For example, a SD video stream of
25fps consumes 15.6MB/s and for HD RGB12bit stream at frame rate of 120Hz
consumes 1120 MB/s.

There are three different accesses types to off-chip memory: Bit stream (encoder writes,
decoder reads), uncompressed frames (encoder reads, decoder writes), and reads of
stored frame buffer(s) data for motion estimation or compensation. Because the bit
stream is compressed, it consumes a negligible amount of bandwidth in most video
applications. Reading and writing the uncompressed frame has significant impact on
the memory bandwidth, resulting in a need for lowering it. This is one of the main
reasons why the reads required for motion compensation or good motion quality
motion estimation is essential as they account for most of the bandwidth consumed in
typical video processor. As mentioned previously most dedicated hardware solutions

 37

for video processing use full search block matching algorithm (FSBMA) leading to
high memory bandwidth utilization.

The storage requirements and data access patterns of video functions have huge impact
on system design and architecture. For example, most video codecs employ temporal
algorithms, which require access to previous frames when processing a frame. This is
important as it directly affects the memory storage needs. Required frame memory for
HD H.264 decoding is around 15MB (YUV4:2:0, 8bit) which is not cost effective to
have as on-chip memory of around 7𝑚𝑚2 per MB in 65nm technology. This gives a
total area of 105𝑚𝑚2 for 15MB. Embedded DRAM would be alternative as it has
higher density than SRAM but requires additional mask layers for manufacturing
which adds to cost.

The bit stream accesses are both regular and irregular, depending what functional part
of the codec is in use. For example, scaling and rotation have regular access patterns.
Whereas other parts, such as decoding, encoding and interlacing use motion
compensation, which is technique used for block prediction, has very irregular access
pattern. This result in caches cannot alone reduce memory bandwidth to off-chip
memory. For example, the motion compensation traffic in H.264 decoding is typically
100-200MB/s for SD resolution and 500-900MB/s for HD resolution content. For SoCs
handling video content the typical accumulated memory bandwidth requirements is
around 1-6GB/s. The processors are typically latency sensitive but by using a side
buffer, such as SPM etc. can alleviate this latency sensitivity.

The importance of external memory bandwidth reduction cannot be over emphasized.
For example, in video compression algorithms there are there type of frames intra
coded frames (I), predicted frames (P) and bi-directional frames (B). For video
encoders that perform motion estimation search for P and B frames, it greatly reduces
off-chip memory bandwidth if an on-chip level-2 cache is implemented to store not
only the current SAD block but also surrounding data. Motion search algorithms tend
to have a large amount of overlap between successive or parallel SAD operations. So
by having the adjacent data to SAD block it will often eliminate the need to access off-
chip data for the next SAD. Coding video with I frames instead of P and B frames
requires less compression processing and fewer off-chip memory accesses both of
which save energy, but leads to significantly larger size bit streams.

Taking into consideration both memory constraints and media constraints, a need for a
systematic methodology for memory management is required. In this thesis, a method
for mapping of a heterogeneous, SPM and multilevel cache is proposed in paper V [15].
The applications used are both a video (H.264) and an audio (eAAC+) application.

 38

 39

Chapter 3

3Related work

3.1 Processing
In the broad area of multimedia processing there has been made huge contributions. It
has meant taking on the problem of processing from many different angles, from direct
approaches, such as focusing on processing elements, to different hardware
parallelizations. Other indirect approaches for enhancing multimedia processing work
on limiting bandwidth requirements, optimizing memory architecture and
interconnect/bus design, software enhancements, algorithmic improvements, compiler
enhancements and overall system improvements.

Now focusing on work done on the processing unit for multimedia, these can range
from fully programmable, to configurable and to hardwire solutions. In this work, we
focus mainly on programmable cores but will give some remarks on other architectures
as well. The programmable core can either be a general purpose CPU [24,25,26,27,28]
or a digital signal processor DSP or very long instruction word VLIW, such as in
[4,29,30,31,32,33,34,35,36,37,38] or a GPGPU general purpose graphical processing
unit [39,40,41,42,43,44,45,46].

In many of studies using CPUs, these are combined with SIMD unit either as
extensions to the main processor through ISA enhancements, much like NEON, MMX,
Altivec [24,26,27], or use coprocessors [25,29]. The main difference is that in the later
case the SIMD unit is not as tightly coupled with CPU as it is the case with ISA
extensions. This is also an architecture often used when the focus is not on processing
unit, but rather something else, such as special memory architectures [7] or software
and complier enhancements [47]. In [26], the authors evaluated execution characteristic
of multimedia applications on ARM architectures enhanced by SIMD. The authors of
[24] focus on different media benchmark kernels and applications, such as DCT,
motion estimation kernel, speech, and jpeg encoding applications. They use the results
from their evaluations to propose architecture for the media applications they have

 40

selected. They report good SIMD utilization for their applications but there is a need to
take care of parallelism existing outside main loops and kernels. In their conclusions,
they state that conventional ILP techniques need at least 8 or 16-way superscalar
processor to provide improvements. The work in [25] focuses on proposing a low
power mobile applications chip for Full-HD multi standard video codec. This design
includes not only CPU but also DSP and streaming processor for execution of parts of
the video codec. The target is to combine flexibility, provided by the CPU, and
streaming processor for higher performance, in a heterogeneous multiprocessor
architecture.

The other main approach is using DSP or VLIW processors for multimedia processing.
These could also be combined with SIMD unit as in [4,29,31,33,37]. In [29] a 3-way
128bits VLIW is combined with a SIMD style VCP vector co-processing unit with
three asymmetric parallel pipelines used for SAD, mean calculations and other kernel
filter calculations. The VCP provides a performance boost that can handle up to HD
video processing. The work presented in [30] proposes a new instruction set
architectures based on variable VILW (32bit-128bit). The aim is to combine high
performance with general purpose programmability. In [31] focus is on mapping
motion estimation algorithm to a VLIW style DSP. The aim of [32] is to use a parallel
Kahn process network KPN model on a VLIW DSP for H.264 encoding enhancement
by low level algorithmic optimizations (motion compensation and estimation) with
focus on potential instruction level parallelism ILP provided by the compiler. A vector
micro-SIMD VLIW architecture is proposed in [33] for H.264 kernel, where the DLP
regions of video encoder are improved so that the ILP regions become dominant. In
[34], a reconfigurable function unit (RFU) is added to a VLIW architecture is proposed
and evaluated for video compression speedups using a reference code. [4] presents a
coprocessor chip for mobile baseband chips, using among others DSP to control a set
of hardwired functional units for H.264 video compression. The combination of DSP
and hardwired processing units gives good flexibility and is nice trade-off between the
two extremes, with only using fully programmable verses hardwired design. In [36], a
system on chip SoC is proposed and implemented. It combines two multimedia DSPs
with CPU for video compression applications. A high performance VLIW DSP
architecture is proposed, where the main feature is a flexible data path for using general
purpose registers and SIMD units.

Another more resent approach has been to combine CPUs with GPUs for video
processing and compression. In [44], they propose a approach where CPU and GPU
work in parallel to accelerate video decoding in the PC environment. The GPU is used
for part of the motion compensation while the rest of video decoding is done in the
CPU. In [43] the focus is on the motion estimation search algorithm which one of the
most important differentiating areas between a good and a great encoder. In [45,46]
they propose using GPU for improving video encoding performance and at same time
deriving the algorithms to be more suitable for GPU implementations. This is an
ongoing trend, where the more recent work [48,49] aims to focus on GPU only rather

 41

than investigating the optimal partition between GPU and CPU. But one important
limitation with GPUs is that they can only perform identical computation concurrently
on different stream processors. This makes overlapping different computations
(prediction and reconstruction) very difficult [50]. In [51], they instead work on inter-
frame parallelization which is much more suitable for GPUs. In [52] proposes new
image analysis algorithms for parallel implementation on GPUs. Another approach for
using GPUs and CUDA compute unified device architecture a multi-threaded
programming model (hides the architecture from programmer) is used in [42,53,54] for
video motion estimation and motion compensation is presented. This is a programming
model proposed by nVidia [55] is gaining in popularity as it make the GPGPU much
easier to program. Open Computing Language (OpenCL) [56] is the wide industry
supported framework for programming for heterogeneous architectures consisting of
GPU, CPU and other processor. There are a number of different mobile GPU
architectures, such as ARMs Mali [57] and Imagination Technologies POWERVR
SGX cores [58], supporting OpenCL,

Hardwired solutions were one of the most commonly used approaches for video
encoding. It still gives the best performance per mm2 silicon compared to any other
solution. But due to lack of flexibility for updating to new standards and adding new
feature enhancements it is no longer the preferred approach. But as stated previously
this, when combined with CPU or other programmable cores for critical parts, is still
competitive. In [59], the authors propose and implement a hardwired block for variable
block size motion estimation. The chosen approach is to use full search block algorithm
(FSBMA), which is a very common approach for hardwired solution. This basically
means, the search algorithm goes through all possible macroblocks in a search window.
This is however very inefficient as it means not only huge amount of processing, but
also an even worse memory bandwidth load. This contributes to increased power
consumption and decreased bandwidth efficiency. This is an area where authors of [10]
try to address by proposing an approach that uses a two-dimensional systolic processor
array to calculate absolute differences and a two-dimensional adder tree to sum up the
absolute differences. The memory bandwidth problem is solved by scheduling data
traffic. In [60], the proposed architecture is to combine the SIMD style hardwired units
with CPU where a gradient descent search algorithm is implemented which reduces
external memory accesses and lowers bandwidth requirements considerably.

Another set of approaches closely related that have been proposed for multimedia
processing are extensible embedded processors and reconfigurable computing. In the
case of extensible embedded processors there are commercial processors cores, such as
Tensilica [61], ARC [62], Synopses former CoWare/LisaTek [63], which are available
for usage in different designs. Application specific instruction processors (ASIP) are
discussed in [64]. The main aim is to automatically detect and generate special
instructions (SIs) for application speedup and/or power efficiency from the application
code. An example for such work, is presented in [65] where a framework for dynamic

 42

reconfiguration of application specific custom instructions is proposed. In [66,67] a
method for generating SIs from profiling patterns is presented. The authors in [68],
focuses on design space exploration with tool-supported connection to reconfigurable
hardware for ASIPs. A constraint programming based method for modeling and
solving scheduling and instruction selection for processors extended with a functionally
reconfigurable cell fabric is presented in [69].

The reconfigurable architectures work either on full computational tasks using
reconfigurable hardware, such as in [70] or on architectures combing reconfigurable
parts with CPUs systems mainly focused on design-time predefined reconfiguration
decisions [71,72]. But these are not suitable for dynamic runtime dependent systems,
where the computational requirements/constraints change during runtime and are
unpredictable during design time. An overview for reconfigurable architectures is
summarized in [73]. In [74] a hardware design of an adaptive self-reconfigurable video
processing platform is presented where the proposed architecture uses FPGAs to
increase the design’s flexibility. The authors in [75] presents an automated bus matrix
synthesis flow for efficient transaction-level design space exploration of
communication architecture in a reconfigurable multimedia system-on-chip platform.
The main focus is on hardware interface selection where a method for using static
analysis of communication behavior is proposed. [76] details a run-time task
assignment heuristic algorithm that performs task assignment in a multiprocessor
system-on-chip containing fine-grain reconfigurable hardware tiles. The basic idea is to
map soft IP cores into reconfigurable hardware fabric which executes different task
assignments. The algorithm is capable of managing a configuration hierarchy which
improves the task assignment performance.

The work that has been done in multiprocessing and multicore with focus on
multimedia can be divided into homogeneous architectures and heterogeneous
architectures. In the field of embedded system, many of the system presented over the
years have been heterogeneous multicore as they have had a CPU, DSP, different set of
accelerators and GPU [77,78,79,80,81]. So it very much depends on how multicore is
defined. For example, just taking the single GPU, this in itself is a multicore, consisting
of as many as hundreds of smaller cores [55]. Taking a broader view of multicore, a
good overview of the subject is given in [82]. A good survey of multicore is presented
in [83], where different approach and issues are presented. The impact of multicore for
multimedia applications can be focused on from different angles. In [27], the aim is to
parallelize speech recognition on mobile multicore system. They also discuss the
importance of on-chip level2 cache, when comparing and ARM architecture including
on-chip level2 cache with Intel architecture with external level2 cache.

There is also significant number of studies done using homogeneous architectures, such
as CELL [84] for multimedia [85,86,87,88,89]. Another equally important area is
software and compiler for multicore. In [47], they present existing software
compilation tools for both dynamic (just-in-time (JIT) compilers or dynamic optimizers)

 43

and static compilation that locate and exploit different type of parallelism that can be
utilized by multicore architectures. In [90], the authors describe different techniques for
parallelizing video processing kernels for multicore systems. The article gives an
overview of different parallel programming models, such as CUDA, OpenMP, OpenCL
and Clik. In [86], the focus is on software design flow and proposes a move to higher
levels of abstraction during software development. For multimedia applications, design
flows based on the Kahn process network (KPN) model of computation should be used
to fully exploit the multicore architectures.

3.2 Memory
There has been significant work done in the area of memory design and data
management for embedded systems for multimedia applications. The main focus has
been in trying to get most out of the system from the resource constraints architectures
we have in embedded systems. The different approaches range from using caches, both
single level and multilevel, to dedicated memories, such as SPMs.

Many papers have focused on improving data reuse in caches by using loop
transformations [87,91]. In [9], a technique to organize data to best fit caches is
presented in order to reduce external accesses. A closely related approach, for
improving data locality for multimedia applications by introducing specific algorithms
that data is placed in memory in such a way that the cache locking will be maximally
respected is presented in [7]. Yet another set of approaches, for optimal cache usage is
to modify the execution order of instructions to improve the cache performance of the
multimedia applications, is presented in [6,92,93,94]. In [95] loop blocking is presented
to improve cache performance but this has limited affect for multimedia applications
due to significant amount of cache capacity misses still present.

Modern computer systems often provide memory system with non-uniform memory
success times. Right placement of instructions and data for such systems can
significantly improve program performance [96]. The data layout organization
presented in [9], aims to reduce cache misses by arranging data in main memory. They
place data at particular address block depending on lifetime and size. Thus, controlling
the mapping of data to caches and hence removing influence of associativity on data
mapping. The main limitation with these techniques is they do not take into account
sharing caches with other applications.

Array padding is another data layout approach presented in [7,97,98] which aims to
reduce cache misses by reducing cross conflict misses. The main limitation with array
padding is that it does not eliminate majority of conflict misses. Modern memory
architectures use often multilevel caches. This has become a standard in high
performance embedded domain. In [99], usage of execution driven approach is
presented for optimizing memory mapping to multilevel cache architecture. It uses
hardware performance counters to decide how and when to apply loop transformations,
and then select optimal transformation parameters using genetic algorithms.

 44

The other dominant approach, for improving overall memory performance in
embedded domain for multimedia applications, is using dedicated memories, such as
SPM scratch pad memory. The main architectures range from SPM only to
heterogeneous architectures where both SPM as well as caches are present.

For approaches with dedicated usage of SPM together with multimedia applications
there has been significant work done. The focus has been to rewrite significant portions
of applications to fit them to proposed architectures as shown in [9,100,101]. In [100],
the focus is on an approach for optimization of usage of instruction SPM to reduce
energy and increase performance. The aim of [101] is to introduce a systematic
technique which assists in locality optimizations by selecting inlining functions that
have strong data coupling between them, resulting in lowering external accesses. Other
studies have looked at data mapping on SPM, both statically [102,103,104] and
dynamically [105,106]. Common approach to these prior works has been mainly based
on code transformations, i.e. loop and trace analysis and rewriting of applications for
optimization.

There has also been work done on combination of compile time and runtime
approaches, is proposed in [107]. This is done by inserting custom instructions to
inform hardware to control data placement. Another approach focuses on managing
memory space for different application in a SPM-only architecture and thus eliminating
caches totally [104]. In this approach, the amount of data to be allocated to each
application is decided based on the data reuse each application exhibits. Finally, in [108]
a decoupled multilevel SPM-only architecture is presented. The architecture exploits
mainly parallelism between address computation and processing the application data.
Where an access processor calculates the addresses of data in memory hierarchy and
the execution processor calculates the data.

The final approach is heterogeneous memory architecture where a combined
architecture of SPM and cache is utilized, e.g. mapping of data and instruction to SPM.
Here the main question is how to optimally utilize this architecture. The main
drawback with static approaches is the limitations to exploit the dynamically changing
data access patterns of programs. Most of the previous work is based on static
allocations [6,7,9,87,91,92,93,94,95,97,98]. The dynamic memory mapping approaches
are mostly profile based. The main disadvantage of these techniques is the difficulty in
acquiring reasonable profiles for other than small applications or kernels. Another
dynamic approach is the introduction of techniques that requires hardware support
[100,104,105,106,107,108], with the main drawback of making them less applicable
due to added silicon costs and increased in flexibility and complexity. In [19] the layout
problem is solved for an on-chip memory architecture that has both SPM and cache
memory. Looking at other non CPU architectures, in [109] they address partitioning of
simultaneously accessed data variables in DSP architectures using multiple single port
memory banks to avoid memory conflicts.

 45

The different memory mapping optimization techniques are based on different
algorithms, such as genetic algorithms, heuristic algorithms and constraint
programming. In [99], a framework for memory mapping is presented where the
selection of transformation parameters uses genetic algorithms. In [22], genetic
algorithm is used for mapping objects to SPM only memory architecture for DSPs. The
method presented for data layout problem is view as a multi-objective genetic
algorithm with performance and power being the cost functions. In [110] and [111] a
memory hierarchy exploration is done using genetic algorithm framework. Their target
architecture is cache only design with focus on a single formula which combines area,
average accesses and power. The problem is modeled as a multi objective genetic
algorithms problem. In [112] a multi objective frame work for memory architecture
exploration is presented based on a combined genetic algorithm for the memory
architecture exploration and a simple heuristic algorithm for data mapping to the
memory architecture. This method focuses, as in [22], on DSP architectures using
SPM only memory architecture as target for specific multimedia applications.

 46

 47

Chapter 4

4Papers Survey

In first phase, paper I and II, we analyzed video encoder MPEG-4 together with initial
study on processing data using SIMD. In second phase, papers III and IV, we carried
out more in-depth analysis and more detailed study on video encoders MPEG-4 and
H.264. From our study we saw two areas standout, heterogeneous memory
architectures to satisfy multimedia applications different memory needs and instruction
level parallelism (ILP) for handling the increased amount of control instructions in
multimedia applications. In third phase, paper V we explored the memory architectures
and focus on trade-off that are need to be made when handling video H.264 and audio
eAAC+. In this work we proposed a methodology for mapping the optimal memory
configuration for a certain multimedia application. The method is based on a
combination of simulation as well as analysis using constraint programming (CP), for
finding non-dominated solutions (Pareto points) for a given memory configuration.

Evaluation of SIMD Architecture Enhancement in
Embedded Processors for MPEG-4
Paper I studies the effects of using SIMD processor extension, developed to enhance
the processor performance, for streaming applications. An extensive evaluation of the
proposed architecture extension, using Simplescalar simulator, was performed,
showing that it is possible to achieve high performance with acceptable power
consumption.

 48

Analysis of Embedded Processors for Streaming Media
Applications
Paper II analyzes multimedia performance of an embedded processor family used in
most of wireless handheld devices, using full video MPEG-4 encoding application with
optimized algorithms for mobile devices. There are significant performance
improvements when using new architectural solutions, such as Single Instruction
Multiple Data (SIMD) extensions and increasing clock frequency, enabled by deeper
instruction pipeline, in embedded processors. In order to provide enough performance
for MPEG-4 encoding there is a need to have a more aggressive SIMD architecture
with wider data paths. This introduces some new issues among others a memory
bandwidth bottleneck.

Memory Architecture Evaluation for Video Encoding on
Enhanced Embedded Processors
Paper III investigates the impact of different memory configurations (memories and
multilevel cache architectures) together with SIMD extended embedded processor on
performance and energy consumption of the video encoding applications, MPEG-4 and
H.264. The results show that the use of the standard cache-based architecture achieves
almost the same performance as SIMD dedicated memory architecture for full video
encoding applications, against common belief. This makes it difficult to justify using
dedicated memory for this kind of embedded systems, when energy consumption and
cost of implementation are also considered.

Performance Improvement for H.264 Video Encoding
using ILP Embedded Processor
Paper IV examines the impact of instruction level parallelism (ILP) and tradeoffs in
superscalar performance for full H.264 video encoding application and gives
quantitative performance measures of a superscalar architecture. Most research efforts
have concentrated on data intensive parts, such as kernels but these are taking less time
from the entire execution as encoders are using new, more efficient algorithms. This
important fact cannot be neglected since new video encoding standards have been
proposed and the amount of other than data intensive computations has increased
significantly. There is significant improvement for the entire application when using
superscalar architecture with out-of-order execution scheme.

 49

Design Space Exploration for Optimal Memory Mapping
of Data and Instructions in Multimedia Applications to
Scratch-Pad Memories
In paper V, we propose a new methodology for optimal memory mapping of data and
instructions to Scratch-Pad Memories (SPM). The optimization is done by finding
Pareto points, using multi-objective optimization that combines different cost functions.
Our proposed methodology provides a way to combine SPMs with caches to optimally
use this memory architecture. By using this method there is only a need to perform
limited number of simulations, instead of performing extensive simulation of all
possible combinations. The methodology is intended to be used in real-life situations in
industry where there is often a need for mapping third party applications to a specific
architecture.

 50

 51

Chapter 5

5Contributions

This thesis presents work on design space exploration for embedded systems with
focus on multimedia applications, such as video and audio codecs. It addresses and
presents solutions to problems related to system architecture trade-off, pertinent to
memory and processing. Each of the following four points correspond to and presents
the contributions made by the author of this thesis, through the constituent five papers,
where each point is part of at least one of the five papers included in the thesis. The
author of this thesis is the primary author of all the included papers.

• A new methodology for optimal memory mapping of data and instructions to
Scratch-Pad Memories (SPM). The optimization is done by finding Pareto
points, using multi-objective optimization that combines different cost
functions. The proposed methodology provides a way to combine SPMs with
caches to optimally use this memory architecture. By using this method there
is only a need to perform limited number of simulations, instead of performing
extensive simulation of all possible combinations. The methodology is
intended to be used in real-life situations in industry where there is often a
need for mapping third party applications to a specific architecture.

• Quantitative performance assessment for superscalar architecture with
instruction level parallelism (ILP) for video encoding applications. Different
trade-offs for full H.264 video encoding has been evaluated. Most research
efforts so far have concentrated on the data intensive parts, such as kernels but
these are taking less time from the entire execution as encoders are using new,
more efficient algorithms. This important fact cannot be neglected since new
video encoding standards have been proposed and the amount of other than
data intensive computations has increased significantly. There is significant

 52

improvement for the entire application when using superscalar architecture
with out-of-order execution scheme.

• A vectorized architecture with ISA extensions for multimedia applications is
proposed and evaluated by implementing SIMD architecture solution on an
embedded processor. The proposed architecture is tightly coupled with the
micro-architecture of the processor and design to handle up to 128-bit wide
arithmetic operations.

• Performance and energy consumption evaluation for different memory
configurations for SIMD extended embedded processor. We consider
dedicated memories and multilevel cache architectures. The results show,
against common belief, that the use of the standard cache based architecture
achieves almost the same performance as SIMD dedicated memory
architecture for full video encoding applications. This makes it difficult to
justify using dedicated memory for this kind of embedded systems, when
energy consumption and cost of implementation are also considered.

 53

Chapter 6

6Conclusions and Future Trends

An embedded system for multimedia is a reality today. One of the main challenges for
optimized use of the embedded systems for multimedia lies in memory architecture. In
this paper, we have focused on SIMD extended single general-purpose processor
design with heterogeneous memory architectures. The main conclusions from this work
are that on a system level heterogeneous memory architecture works very well for
multimedia applications. This is mainly because the heterogeneous architecture very
effectively can combine different set of requirements concurrently. Optimal utilization
of this architecture is the challenge.

The constraint-based method proposed in this thesis finds an optimal data and
instruction mapping for multimedia applications. This method systematically analyzes
and finds optimal memory mapping for a given application and architecture. Using this
method there will be need to only perform limited number of simulations, instead of
performing extensive simulation of all possible combinations. Our results indicate high
accuracy for predicting memory accesses, above 90%. This methodology can be
adapted quite easily to real industrial situations where there is often a need for mapping
third party application to a specific architecture. This method can be extended to other
cases of multidimensional optimizations.

Data level parallelism (DLP) but also instruction level parallelism (ILP) is important to
consider during processing of multimedia applications. SIMD extended general-
purpose superscalar processor architecture provide both DLP as well as ILP. There are
of course other approaches that can be utilized, such as multicore and VLIW
architectures.

Future embedded systems are evolving based on different trends, CPU architectural
evolution and Memory optimization architecture. CPU architecture evolution is where
ore complex core (deep pipelining, advance branch prediction and superscalar out-of-
order) as well as increase number of tightly coupled cores in multicore configuration.

 54

The memory architecture on the other hand is to address challenges connected to
memory architectures, such as reducing bandwidth bottlenecks, hiding latency, optimal
usage of heterogeneous memory architecture etc. Most of the issues are possible to be
solved using the architectural enhancements based on future memory integration
technologies, such as 3D die stacking with huge bandwidth potential. It can open new
opportunities for new system design and exploration. The techniques used are either
micro-bumps or through-silicon-vias (TSV) also known as wide-IO. These memory
integrations enable large number of connections, with possibility of many interfaces.
The introduction of TSV brings a totally new dimension to embedded system
architecture, where memory bandwidth is no longer the bottleneck it used to be. There
are still many technical and non-technical challenges with these technologies, such as
manufacturing, standardization and costs, before being widely used in embedded
systems.

Multi-core embedded systems are today leading processing technology, how best to
utilize the processing abilities and how to leverage these high performing cores. Multi-
cores will not provide single thread peak performance but, the advantage of multicores
lies in features such as vector units and out-of-order superscalar architectures with
advance speculative execution.

To make these multicores the more acceptable processors in embedded systems the
biggest challenge is keeping the power consumption at the minimum with exponential
increase in performance.

The trend for muticore system is nothing new in embedded systems as this has been the
path early on. The CPU+DSP approach was the chosen architecture as early as end off
1990s. The new is symmetrical multi processing (SMP), a homogeneous tightly
connected multicore system, in contrast to the older loosely coupled multicore designs.
Combined with the rest of the system, graphical processing unit (GPU), digital signal
processor (DSP), hardwired accelerators and other peripherals on the same die, build a
well-tuned and balanced system on chip. Connecting it all together, a high-speed
interconnection network on chip is often used. The challenge lies in keeping to the
power and size constrains at same time harvesting the desired performance. One such
limitation is Amdahl’s law, which states that the parallel speedup is limited by the
serial code in a program.

Advance embedded system on chip design, with TSV enables the possibility of
removing the memory bottlenecks and opens up for more performance. Short term, the
removal of memory as a bottleneck will push the performance higher with the overall
performance of the processing elements (CPU, GPU and IP blocks) increasing
proportionally. Long term, these improvements could have significant influence of
system architecture as well processor design (SoC). In a 3D silicon structure, memory
and logic units can be designed to work more integrated such that performance
increases can be achieved. At same time many new challenges arises, such as for
example, optimally finding the best placement of processing and memory units or even

 55

mapping of different applications to these 3D architectures. Thus a systematic design
space exploration method similar to the constraint based method proposed in this thesis
can be applied for optimally exploiting these 3D architectures.

Multimedia is the most prominent use case for all handheld devices, with LTE
bandwidth increasing exponentially, lower costs per bit, and higher quality of service
[113]. All these advancements together with more complex signaling algorithms [114]
enables increase in multimedia workload significantly 10x [2]. This comes at the same
time as increase in display resolution up to and beyond HD [25] leading to even higher
workload for multimedia. Another direction that multimedia workloads (audio as well
as video) are taking is focusing on quality instead of compression. This is a
combination of both the increased bandwidth with newer cellular standards as well as
more processing performance of the handheld devices.

 56

 57

7Bibliography

[1] K. Kuchcinski, "Constraints-driven scheduling and resource assignment," ACM Trans.
Des. Autom. Electron. Syst., vol. 8, pp. 355--383, 2003.

[2] C. H. van Berkel, "Multi-core for mobile phones," 2009 Design, Automation&Test in
Europe Conference&Exhibition, pp. 1260-1265, 2009.

[3] ARM Ltd. (2010, Aug.) NEON.
[Online]. http://www.arm.com/products/processors/technologies/neon.php

[4] J. Meehan, "Media processor architecture for video and imaging on camera phones," 2008
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5340-
5343, 2008.

[5] G. Blake, R. G. Dreslinski, and T. Mudge, "A survey of multicore processors," IEEE
Signal Processing Magazine, vol. 26, pp. 26-37, 2009.

[6] E. De Greef, Storage Size Reduction for Multimedia Application. Leuven: IMEC, 1998,
Phd thesis.

[7] P. R. Panda, N. D. Dutt, and A. Nicolau, "Memory data organization for improved cache
performance in embedded processor applications," ACM Trans. Des. Autom. Electron.
Syst., vol. 2, pp. 384--409, 1997.

[8] A. R. Iranpour and K. Kuchcinski, "Performance Improvement for H.264 Video Encoding
using ILP Embedded Processor," , 2006, pp. 515--521.

[9] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, and H. de Man, "Cache conscious data
layout organization for embedded multimedia applications," , 2001, pp. 686--693.

[10] D.-X. Li, W. Zheng, and M. Zhang, "Architecture Design for H.264/AVC Integer Motion
Estimation with Minimum Memory Bandwidth," IEEE Transactions on Consumer
Electronics, vol. 53, pp. 1053-1060, 2007.

[11] ARM Ltd. (2007, Sept.) The ARM Cortex-A9 Processors ARM Ltd. White Paper.
[Online]. http://www.arm.com/pdfs/ARMCortexA-9Processors.pdf

[12] L. J. Karam et al., "Trends in multicore DSP platforms," IEEE Signal Processing
Magazine, vol. 26, pp. 38-49, 2009.

[13] ISO/IEC, "HE AAC version 2," ISO/IEC , Standard 14496-3:2005/Amd.2, 2005.

[14] The 3rd Generation Partnership Project (3GPP) unites telecommunications standards
bodies. (2010, July) 3GPP specification releases. [Online]. http://3gpp.org/Releases

http://www.arm.com/products/processors/technologies/neon.php�
http://www.arm.com/pdfs/ARMCortexA-9Processors.pdf�
http://3gpp.org/Releases�

 58

[15] A. R. Iranpour and K. Kuchcinski, "Design space exploration for optimal memory
mapping of data and instructions in multimedia applications to Scratch-Pad Memories,"
2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia, pp.
89-95, 2009.

[16] T. Mudge, "Power: A First-Class Architectural Design Constraint," Computer, vol. 34, pp.
52--58, 2001.

[17] T. Ohzuku, "An Application of Lithium Insertion Materials to 12 V lead-free Batteries,"
Electrochemistry and Inorganic Chemistry Laboratory,Graduate School of
Engineering,Osaka City University (OCU), Osaka, Presentation 2007.

[18] A. R. Iranpour and K. Kuchcinski, "Memory Architecture Evaluation for Video Encoding
on Enhanced Embedded Processors," , 0 2006, pp. 309--320.

[19] P. R. Panda, N. D. Dutt, and A. Nicolau, "On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems," ACM Trans. Des. Autom.
Electron. Syst., vol. 5, pp. 682--704, 2000.

[20] ITRC. (2010) International Technology Roadmap for Semiconductors.
[Online]. http://public.itrs.net

[21] E. Schmidt, Power Model of Embedded Systems, PhD Dissertation., 2003.

[22] T. S. Kumar, C. P. Ravikumar, and R. Govindarajan, "MODLEX: A Multi Objective Data
Layout EXploration Framework for Embedded Systems-on-Chip," , 2007, pp. 492--497.

[23] S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations.:
John Wiley & Sons, Inc., 1990.

[24] D. Talla, L. K. John, and D. Burger, "Bottlenecks in Multimedia Processing with SIMD
Style Extensions and Architectural Enhancements," IEEE Trans. Comput., vol. 52, pp.
1015--1031, 2003.

[25] K. Iwata et al., "A 342 mW Mobile Application Processor With Full-HD Multi-Standard
Video Codec and Tile-Based Address-Translation Circuits," IEEE Journal of Solid-State
Circuits, vol. 45, pp. 59-68, 2010.

[26] V. Parthasarathy, S. A. Bharathi, and V. R. Uthariaraj, "Performance Analysis of
Embedded Media Applications in Newer ARM Architectures," Parallel Processing, 2005.
ICPP 2005 Workshops. International Conference Workshops on, pp. 210-214, 2005.

[27] S.-M. Cho, D.-W. Im, and H.-J. Song, "Parallelization and Analysis of Speech Recognition
on Mobile Multi-Core Processor," 2009 6th IEEE Consumer Communications and
Networking Conference, pp. 1-2, 2009.

[28] K. Diefendorff and P. K. Dubey, "How multimedia workloads will change processor
design," Computer, vol. 30, pp. 43-45, 1997.

[29] T. Wada et al., "A VLIW vector media coprocessor with cascaded SIMD ALUs," IEEE

http://public.itrs.net/�

 59

Trans. Very Large Scale Integr. Syst., vol. 17, pp. 1285--1296, 2009.

[30] R. B. Lee and A. M. Fiskiran, "PLX: An Instruction Set Architecture and Testbed for
Multimedia Information Processing," The Journal of VLSI Signal Processing, vol. 40, pp.
85-108, 2005.

[31] W. Lee, H. Choi, and W. Sung, "Algorithm and Software Optimization of Variable Block
Size Motion Estimation for H.264/AVC on a VLIW--SIMD DSP," Journal of Signal
Processing Systems, vol. 51, pp. 289-302, 2008.

[32] A. C. Ammari, A. Jemai, H. K. Zrida, and M. Abid, "ILP platform optimization of a YAPI
parallel H.264/AVC encoder," 2008 2nd International Conference on Signals, Circuits and
Systems, pp. 1-6, 2008.

[33] E. Salami, "A Vector-µSIMD-VLIW Architecture for Multimedia Applications," , 2005,
pp. 69--77.

[34] D. Rizzo and O. Colavin, "A video compression case study on a reconfigurable VLIW
architecture," Design, Automation and Test in Europe Conference and Exhibition, 2002.
Proceedings, pp. 540-546, 2002.

[35] I. Barbieri, M. Bariani, A. Scotto, and M. Raggio, "Multimedia terminal system-on-chip
design and simulation," EURASIP J. Appl. Signal Process., vol. 2005, pp. 2694--2700,
2005.

[36] H. Stolberg et al., "An SoC with two multimedia DSPs and a RISC core for video
compression applications," Solid-State Circuits Conference, 2004. Digest of Technical
Papers. ISSCC. 2004 IEEE International, pp. 330-531 Vol.1, 2004.

[37] L.-D. Van et al., "A high-performance area-aware DSP processor architecture for video
codecs," 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE
Cat. No.04TH8763), vol. 3, pp. 1499-1502Vol.3, 2004.

[38] Y. Kun, Z. Chun, M. Songping, and W. Zhihua, "DSP architecture for motion estimation
acceleration," Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th
International Conference on, vol. 3, pp. 1609-1612 vol.3, 2005.

[39] Y.-L. Huang, Y.-C. Shen, and J.-L. Wu, "Scalable computation for spatially scalable video
coding using NVIDIA CUDA and multi-core CPU," in Proceedings of the seventeen ACM
international conference on Multimedia, MM '09, 2009, pp. 361--370.

[40] C.-H. Sun, K.-H. Lok, Y.-M. Tsao, C.-M. Chang, and S.-Y. Chien, "CFU: multi-purpose
configurable filtering unit for mobile multimedia applications on graphics hardware," in
Proceedings of the Conference on High Performance Graphics 2009, HPG'09, 2009, pp.
29--36.

[41] M. C. Kung, O. C. Au, P. H. Wong, and C. H. Liu, "Block based parallel motion
estimation using programmable graphics hardware," 2008 International Conference on
Audio, Language and Image Processing, pp. 599-603, 2008.

 60

[42] S. Momcilovic and L. Sousa, "Development and evaluation of scalable video motion
estimators on GPU," 2009 IEEE Workshop on Signal Processing Systems, pp. 291-296,
2009.

[43] M. Schwalb, R. Ewerth, and B. Freisleben, "Fast Motion Estimation on Graphics
Hardware for H.264 Video Encoding," IEEE Transactions on Multimedia, vol. 11, pp. 1-
10, 2009.

[44] G. Shen, G.-P. Gao, S. Li, H.-Y. Shum, and Y.-Q. Zhang, "Accelerate Video Decoding
With Generic GPU," IEEE Transactions on Circuits and Systems for Video Technology,
vol. 15, pp. 685-693, 2005.

[45] Y.-C. Lin et al., "Multi-Pass Algorithm of Motion Estimation in Video Encoding for
Generic GPU," Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pp. 4451-4454, 2006.

[46] C.-W. Ho, O.-C. Au, S. Gary Chan, S.-K. Yip, and H.-M. Wong, "Motion Estimation for
H.264/AVC using Programmable Graphics Hardware," 2006 IEEE International
Conference on Multimedia and Expo, pp. 2049-2052, 2006.

[47] M. Mehrara et al., "Multicore compilation strategies and challenges," IEEE Signal
Processing Magazine, vol. 26, pp. 55-63, 2009.

[48] G. Jin and H.-J. Lee, "A Parallel and Pipelined Execution of H.264/AVC Intra
Prediction," , 2006, p. 246.

[49] W Lee, S Lee, and J Kim, "Pipelined Intra Prediction Using Shuffled Encoding Order for
H.264/AVC," TENCON 2006 - 2006 IEEE Region 10 Conference, pp. 1-4, 2006.

[50] N.-M. Cheung, O.-C. Au, M.-C. Kung, P.-H. Wong, and C.-H. Liu, "Highly Parallel Rate-
Distortion Optimized Intra-Mode Decision on Multicore Graphics Processors," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 19, pp. 1692-1703, 2009.

[51] K.-W. Yoo and H.-H. Kim, "Intra prediction method and apparatus," H04N7/34B
EP1526738, Apr. 27, 2005.

[52] Y.-K. Chen, W. Li, J. Li, and T. Wang, "Novel parallel Hough Transform on multi-core
processors," 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 1457-1460, 2008.

[53] R. Rodriguez, J. L. Martinez, G. Fernandez-Escribano, J. M. Claver, and J. L. Sanchez,
"Accelerating H.264 inter prediction in a GPU by using CUDA," 2010 Digest of Technical
Papers International Conference on Consumer Electronics (ICCE), pp. 463-464, 2010.

[54] W.-N. Chen and H.-M. Hang, "H.264/AVC motion estimation implmentation on Compute
Unified Device Architecture (CUDA)," 2008 IEEE International Conference on
Multimedia and Expo, pp. 697-700, 2008.

[55] Nvidia Corp. (2009, February) NVIDIA CUDA Compute Unified Device Architecture-

 61

Programming Guide.

[56] The Khronos Groupe. (2011, April) Khronos Groupe.
[Online]. http://www.khronos.org/opencl/

[57] ARM Ltd. (2011, June) Mali-T604.
[Online]. http://www.arm.com/products/multimedia/mali-graphics-hardware/mali-t604.php

[58] Imagnination Technologies Ltd. (2011, June) PowerVR Graphics.
[Online]. http://www.imgtec.com/powervr/powervr-graphics.asp

[59] M. N. Bojnordi, M. Semsarzadeh, M. R. Hashemi, and O. Fatemi, "Efficient Hardware
Implementation for H.264/AVC Motion Estimation," APCCAS 2006 - 2006 IEEE Asia
Pacific Conference on Circuits and Systems, pp. 1749-1752, 2006.

[60] Y. Kuroda et al., "A sub-mW MPEG-4 motion estimation processor core for mobile video
application," Design Automation Conference, 2004. Proceedings of the ASP-DAC 2004.
Asia and South Pacific, pp. 527-528, 2004.

[61] Tensilica Inc. (2010) Tensilica. [Online]. http://www.tensilica.com/

[62] ARC Inc. (2010) ARC® Configurable CPU/DSP Cores.
[Online]. http://www.arc.com/configurablecores/

[63] CoWare/LisaTek. (2010) Synopsys.
[Online]. http://www.synopsys.com/Tools/SLD/Pages/default.aspx

[64] J. Henkel, "Closing the SOC Design Gap.," Computer, vol. 36, pp. 119-122, 2003.

[65] H. Huynh, J. Sim, and T. Mitra, "An efficient framework for dynamic reconfiguration
ofÂ instruction-set customization," Design Automation for Embedded Systems, vol. 13, no.
1, pp. 91-113, 2009.

[66] K. Atasu, L. Pozzi, and P. Ienne, "Automatic Application-Specific Instruction-Set
Extensions under Microarchitectural Constraints," in DAC '03 Proceedings of the 40th
annual Design Automation Conference, Anaheim, CA, USA, 2003, pp. 256--261.

[67] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, "A scalable application-specific processor
synthesis methodology," Computer Aided Design, 2003. ICCAD-2003. International
Conference on, pp. 283-290, 2003.

[68] A. Chattopadhyay et al., "Design Space Exploration of Partially Re-configurable
Embedded Processors," 2007 Design, Automation&Test in Europe
Conference&Exhibition, pp. 1-6, 2007.

[69] C. Wolinski, K. Kuchcinski, and E. Raffin, "Combined scheduling and instruction
selection for processors with reconfigurable cell fabric," ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 15, no. 1, December 2009.

[70] M. Ullmann, M. Huebner, B. Grimm, and J. Becker, On-Demand FPGA Run-Time System

http://www.khronos.org/opencl/�
http://www.arm.com/products/multimedia/mali-graphics-hardware/mali-t604.php�
http://www.imgtec.com/powervr/powervr-graphics.asp�
http://www.tensilica.com/�
http://www.arc.com/configurablecores/�
http://www.synopsys.com/Tools/SLD/Pages/default.aspx�

 62

for Dynamical Reconfiguration with Adaptive Priorities, 0 0, 2004.

[71] R. Gao, D. Xu, and J. P. Bentley, "Reconfigurable Hardware Implementation of an
Improved Parallel Architecture for MPEG-4 Motion Estimation in Mobile Applications.,"
IEEE Transactions on Consumer Electronics, vol. 49, pp. 1383-1391, 2003.

[72] C. Wei and M. Z. Gang, "A novel SAD computing hardware architecture for variable-size
block motion estimation and its implementation with FPGA," ASIC, 2003. Proceedings.
5th International Conference on, vol. 2, pp. 950-953, 2003.

[73] K. Compton and S. Hauck, "Reconfigurable computing: A survey of systems and
software," ACM Computing Surveys, vol. 34, pp. 171-210, 2002.

[74] K. F. Ackermann, B. Hoffmann, L. S. Indrusiak, and M. Glesner, "Enabling self-
reconfiguration on a video processing platform," 2008 International Symposium on
Industrial Embedded Systems, pp. 19-26, 2008.

[75] G. Lee et al., "Communication architecture design for reconfigurable multimedia SoC
platform," Design Automation for Embedded Systems, vol. 14, pp. 1-20, 2010.

[76] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, "Run-Time
Management of a MPSoC Containing FPGA Fabric Tiles," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, pp. 24-33, 2008.

[77] Sony Computer Entertainment America LLC. (2011, Feb.) Sony NGP.
[Online]. http://us.playstation.com/ngp/

[78] Texas Instruments Inc. (2009) OMAP 4: Mobile applications platform.
[Online]. http://focus.ti.com/lit/ml/swpt034/swpt034.pdf

[79] ST-Ericsson. (2011, Jan.) NovaThor™ U9500.
[Online]. http://www.stericsson.com/platforms/u9500-nova-thor.jsp

[80] Qualcomm Inc. (2011, Feb.) The Inside Story.
[Online]. http://www.qualcomm.com/snapdragon/specs

[81] Nvidia Corp. (2011, Jan.) What is GPU Computing?
[Online]. http://www.nvidia.com/object/GPU_Computing.html

[82] W. Wolf, A. Jerraya, and G. Martin, "Multiprocessor System-on-Chip (MPSoC)
Technology," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, pp. 1701-1713, 2008.

[83] K. F. Faxén et al., "Multicore computing—the state of the art," , 2008.

[84] IBM Inc. (2010, May) Introduction to the Cell Broadband Engine. [Online]. https://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/D21E662845B95D4F872570AB0055404D

[85] N. Parakh, A. Mittal, and R. Niyogi, "Optimization of MPEG 2 Encoder on Cell B. E.
Processor," 2009 IEEE International Advance Computing Conference, pp. 423-427, 2009.

http://us.playstation.com/ngp/�
http://focus.ti.com/lit/ml/swpt034/swpt034.pdf�
http://www.stericsson.com/platforms/u9500-nova-thor.jsp�
http://www.qualcomm.com/snapdragon/specs�
http://www.nvidia.com/object/GPU_Computing.html�
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/D21E662845B95D4F872570AB0055404D�
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/D21E662845B95D4F872570AB0055404D�

 63

[86] W. Haid, K. Huang, I. Bacivarov, and L. Thiele, "Multiprocessor SoC software design
flows," IEEE Signal Processing Magazine, vol. 26, pp. 64-71, 2009.

[87] D. F. Bacon, S. L. Graham, and O. J. Sharp, "Compiler transformations for high-
performance computing," ACM Comput. Surv., vol. 26, pp. 345--420, 1994.

[88] X. He, X. Fang, C. Wang, and S. Goto, "Parallel HD encoding on CELL," 2009 IEEE
International Symposium on Circuits and Systems, pp. 1065-1068, 2009.

[89] L.-K. Liu et al., "Digital Media Indexing on the Cell Processor," Multimedia and Expo,
2007 IEEE International Conference on, pp. 1866-1869, 2007.

[90] D. Lin et al., "The parallelization of video processing," IEEE Signal Processing Magazine,
vol. 26, pp. 103-112, 2009.

[91] K. S. McKinley, S. Carr, and C.-W. Tseng, "Improving data locality with loop
transformations," ACM Trans. Program. Lang. Syst., vol. 18, pp. 424--453, 1996.

[92] M. Kandemir, J. Ramanujam, and A. Choudhary, "Improving cache locality by a
combination of loop and data transformations," Computers, IEEE Transactions on, vol. 48,
pp. 159-167, 1999.

[93] C Kulkarni, F Catthoor, and H De Man, "Hardware cache optimization for parallel
multimedia applications," vol. 1470, pp. 923-932, 1998.

[94] D. Kulkarni and M. Stumm, "Linear Loop Transformations in Optimizing Compilers for
Parallel Machines," The Australian computer journal, pp. 41-50, may 1995.

[95] M. D. Lam, E. E. Rothberg, and M. E. Wolf, "The cache performance and optimizations of
blocked algorithms," in Proceedings of the fourth international conference on
Architectural support for programming languages and operating systems, ASPLOS-IV,
1991, pp. 63--74.

[96] M. Brorsson, "Performance Impact of Code and Data Placement on the IBM RP3," IBM,
Technical Report 1989.

[97] N. Manjikian and T. S. Abdelrahman, "Array Data Layout for the Reduction of Cache
Conflicts," in In Proceedings of 8th Int'l. Conf. on Parallel and Distributed Computing
Systems, 1995.

[98] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, "Augmenting loop tiling with data
alignment for improved cache performance," Computers, IEEE Transactions on, vol. 48,
pp. 142-149, 1999.

[99] P. Lu, Y. Che, and Z. Wang, "A Framework for Effective Memory Optimization of High
Performance Computing Applications," 2009 11th IEEE International Conference on High
Performance Computing and Communications, pp. 95-102, 2009.

[100] A. Janapsatya, A. Ignjatovic, and S. Parameswaran, "A novel instruction scratchpad
memory optimization method based on concomitance metric," in In Proceedings Asia and

 64

South Pacific Conference on Design Automation, 2006, pp. 612--617.

[101] J. Absar, P. Marchal, and F. Catthoor, "Data-access optimization of embedded systems
through selective inlining transformation," Embedded Systems for Real-Time Multimedia,
2005. 3rd Workshop on, pp. 75-80, 2005.

[102] J. Absar and F. Catthoor, "Analysis of scratch-pad and data-cache performance using
statistical methods," Design Automation, 2006. Asia and South Pacific Conference on, pp.
820-825, 2006.

[103] A. Dominguez, "Heap data allocation to scratch-pad memory in embedded systems,"
phdthesis 2007.

[104] O. Ozturk, M. Kandemir, and I. Kolcu, "Shared Scratch-Pad Memory Space
Management," in Proceedings on 7th International Symposium on Quality Electronic
Design (ISQED'06), 2006, pp. 576--584.

[105] S. Mamagkakis et al., "Custom design of multi-level dynamic memory management
subsystem for embedded systems," Signal Processing Systems, 2004. SIPS 2004. IEEE
Workshop on, pp. 170-175, 2004.

[106] D. Atienza et al., "Efficient system-level prototyping of power-aware dynamic memory
managers for embedded systems," Integr. VLSI Journal, vol. 39, pp. 113--130, 2006.

[107] A Janapsatya, S Parameswaran, and A Ignjatovic, "Hardware/software managed
scratchpad memory for embedded system," in IEEE/ACM International Conference on
Computer Aided Design, ICCAD-2004., 2004, pp. 370--377.

[108] A. Milidonis et al., "A Decoupled Architecture of Processors with Scratch-Pad Memory
Hierarchy," 2007 Design, Automation&Test in Europe Conference&Exhibition, pp. 1-6,
2007.

[109] R. Leupers and D. Kotte, "Variable partitioning for dual memory bank DSPs," in
Proceedings 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP '01)., 2001, pp. 1121--1124.

[110] M. Palesi and T. Givargis, "Multi-objective design space exploration using genetic
algorithms," in Proceedings of the Tenth International Symposium on Hardware/Software
Codesign, CODES 2002., 2002, pp. 67--72.

[111] G. Ascia, V. Catania, and M. Palesi, "Parameterised system design based on genetic
algorithms," in Proceedings of the Ninth International Symposium on Hardware/Software
Codesign, CODES 2001., 2001, pp. 177--182.

[112] T. S. Kumar, C. P. Ravikumar, and R. Govindarajan, "MAX: A Multi Objective Memory
Architecture eXploration Framework for Embedded Systems-on-Chip," 20th International
Conference on VLSI Design held jointly with 6th International Conference on Embedded
Systems (VLSID07), pp. 527-533, 2007.

 65

[113] E. Dahlman, S. Parkvall, J. Sköld, and P. Beming, 3G Evolution: HSPA and LTE for
Mobile Broadband, 2nd ed.: Academic Press, 2007.

[114] J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes, and W. Xu, "On 3G LTE Terminal
Implementation - Standard, Algorithms, Complexities and Challenges," 2008 International
Wireless Communications and Mobile Computing Conference, pp. 970-975, 2008.

 66

 67

8Included Papers

InIncluded Papers

 68

 69

Paper I

1Evaluation of SIMD Architecture
Enhancement in Embedded Processors for
MPEG-4 1

Abstract. This paper presents our studies on the effects of using SIMD processor
extension developed to enhance the processor performance for streaming applications.
Our approach was evaluated using MPEG-4 encoding application as benchmark.
Although MPEG-4 consists of many different operations, we concentrated on the sum
of absolute differences (SAD), a major part of the motion estimation. The SAD was
chosen because it is one of the most frequently used operations in MPEG-4 encoding. It
is estimated to consume between 40%-80% of the total video encoding time when
implemented on a general purpose processor. We have performed an extensive
evaluation of our architecture extension. This evaluation showed that it is possible to
achieve high performance with acceptable power consumption. We obtained about two
times performance improvement for MPEG-4 encoding with roughly the same power
consumption.

1 This paper is a reformatted version of Evaluation of SIMD Architecture Enhancement In Embedded

Processors for MPEG-4, in Proc. Symposium on Digital Systems Design (DSD-04), Rennes, France, August
31 - September 3, 2004.

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 70

1.1 Introduction
The increasing usage of computationally intensive multimedia applications in mobile
phones and personal data assistants (PDAs) puts new requirements on performance,
power consumption and memory. Research on how to deal with such demands has
mainly concentrated on desktop processors [1]. The research on embedded processors
has been scarcer, with the result that processor architectural developments for low-
power devices have been lagging behind. This in turn has been reinforced even more
by the fact that most solutions in low-power embedded designs have been hardwired to
cover shortcomings of most existing processors. While these solutions have had great
impact, in the longer perspective they have had two main drawbacks. First, they do not
provide flexibility, which is essential if one solution is to be able to be programmable
for different standards and applications. Second, the process technology development
introduces new design problems, which makes design of hardware even more difficult
and time consuming. Therefore it reinforces even more the need for more flexible
solutions. Software-based solutions, on the other hand, provide necessary flexibility to
architecture but have to be carefully designed to provide sufficient processing
performance, and still keep power dissipation low.

In this paper, we study the effects of using Single Instruction Multiple Data (SIMD)
extension architecture to enhance the processor performance for streaming applications
while providing the flexibility of a software solution. The media application we have
decided as the benchmark is MPEG-4 encoding. This application consists of different
operations and we concentrated mainly on the Sum of Absolute Differences (SAD),
which is a major part of the motion estimation. The choice of SAD operation as a main
metric for evaluation of the architecture is based on the fact that it is one of the most
frequently used operations in MPEG-4 encoding. This computation consumes a
significant portion of the total processing time. It is estimated to consume between
40%-80% of the total video encoding time when implemented on a general purpose
processor [2].

The main evaluation of the architecture is carried out by a complete video encoding
package. This is a full encoding application package developed by Ericsson for
encoding and decoding of streamed media. It is based on state-of-the-art algorithms
used in media applications. The importance of having a real application with realistic
workloads is one key component when carrying out our architectural studies. Lacking
this realism results often in an architectural design that has no actual value.

Since many multimedia applications work on streams of data, performing the same
computation, SIMD architecture has been chosen as the main enhancement for an
embedded processor. Our goal is to improve performance for critical data streaming
applications and still keep the power under control. This is achieved by extending a
general purpose embedded processor to handle heavy real time image processing. We
have carried out an extensive evaluation to study different impacts of our extensions on

 71

the entire system. This was done on real applications.
The interaction between memory and processor has a big impact on architecture

performance due to a difference in processor speed and memory access time. This can
often create a bottleneck in architecture and need to be considered during analysis. In
our experiments, we have simulated memory and cache traffic to analyze its impact on
performance.

We have embedded SIMD unit into MIPS processor by adding extended instructions
to the Instruction Set Architecture (ISA). This approach utilizes the parallelism existing
in streamed multimedia applications. For this study, we consider a specialized SIMD
extension but it can be later expanded with other functionalities and instructions to
support other vector operations, such as multiplication accumulation (MAC).

The structure of the paper is as follows. In Section 2 some background is given for
media applications, especially MPEG-4. Section 3 describes the baseline architecture of
the SIMD extension. Section 4 describes the method we used in our approach. Section
5 presents the experimental results. In Section 6 we discuss related work and in Section
7 we give some concluding remarks and future work.

1.2 Media applications impact on embedded
architectures

The motion standards MPEG-1, MPEG-2 and MPEG-4 were developed in response to
demands for higher data rates, increased efficiency in data coding and greater input-
format flexibility [3]. As a consequence the standard has become complex with high
requirements on implementation performance. The MPEG-4 standards define four
different profiles of which we focus on the main profile, video, and in particular the
encoding of moving images.

One important reason for developing MPEG-4 is that, unlike MPEG-2, it is object
based. Video objects (VO), as they are called, are visual objects represented by the
shape, motion and texture information. Each VO is comprised of Video object plane
(VOP), which contains motion parameters. The VOP is encoded into a separate video
object layer. It uses a window, where each object is divided into a grid containing a set
of blocks, called Macroblocks (MB). The size of VOP is either 16 x 16 or 8 x 8 MB.
Each MB consists of 16 x16 pixels. For each MB of the current frame, the block-
matching algorithm uses a search window in a previously reconstructed frame. It
searches for the closest matching block to the current block and defines a motion vector
(MV) pointing to it.

There are different measures for finding the block with the best matching criteria.
The most common one is sum of absolute differences (SAD). This operation is
basically comparison between two consecutive MBs. It determines the amount of
differences between these MBs. This operation makes the motion estimation (ME),

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 72

one of the most data-dominated and the most frequently used part of MPEG-4
application. The huge number of memory access put tremendous demands on the whole
system. This is a reason why we have concentrated to propose and evaluate a specific
SIMD extension for this operation. We address performance and power considerations
as well as integration with the rest of the processor, especially memory system.

Given the growing importance of different media applications for future desktop and
embedded processors, it is not surprising that there has been a lot of research in this
field. The research can be divided in two categories; high performance and low-power.

In video encoding area most research focus has been on high performance
computing, since this area includes many heavy media processing applications. The
solutions that exist in this area are usually different kinds of ISA extensions, such as
SIMD enhancement of general purpose processors. Video coding algorithms often
process byte-wide data therefore a 32 or 64-bit wide arithmetic unit is underused. To
make it more efficient a subword parallelism, in which a standard unit, is divided into
smaller units has been proposed. These can be organized in different sizes but the most
commonly used sizes are 8 or 16-bits [4].

In the low-power embedded domain the solutions that has so far been proposed and
implemented have been ASIC centric, meaning design and development of a specific
chip for each platform. A reason for this has been the lack of high performance
solutions among embedded processors. One drawback with these solutions is the lack
of flexibility. Another is the cost of developing a hardwired solution for each design
and standard. This cost is not just a unit cost but it includes also costs for longer time to
market. Thus the need to use other solutions, where both the processing requirements
and the flexibility of running diverse applications and standards are met, has risen.

The main drawback with high performance studies have been the lack of relevance
when it comes to drawing right conclusions with regards to low-power embedded
systems. Having this in mind, one can use some of the proposed ideas to investigate
the possibility of using them for low-power embedded systems. Taking these facts
together and bearing in mind that media applications, such as MPEG-4, used in low-
power area have different characteristics than ones used in high performance area, there
is a room for introducing new solutions. Therefore we feel that this is an area needing
more attention. Our investigation tries to bridge this gap by addressing high-
performance, low-power and flexible solutions for mobile MPEG-4 applications.

1.3 Baseline architecture
Our proposal is to implement SIMD architecture with media extensions to handle
streamed video applications, such as MPEG-4, for embedded platforms. These video
applications are quite suitable for SIMD based solutions, as they often apply the same
computation on an entire stream of data [5, 6]. In addition, SIMD design is highly
efficient in exploiting the structure and resources of the processor. By using SIMD

 73

extension and exploring both subword parallelism and streaming behavior of the
MPEG-4 application, we want to enhance the overall performance so much that a soft
solution is possible for the embedded domain.

Figure 1. New SIMD instructions are 32-bit and follow the same bit structure as the other
processor instructions.

The SIMD unit architecture is quite general and can be added to several embedded
processors. In our studies, we have focused on MIPS processors and extended it with
our SIMD unit for data streaming applications. The unit was integrated into MIPS
processor by defining two new SIMD instructions. In figure 1 SIMDLD and
SIMDSAD instructions are shown. These new instructions follow the same ISA as the
other processor instructions. SIMDLD is a load instruction, which performs the loading
of vector registers (VR1 or VR2). SIMDSAD instruction performs the SAD operation
by taking VR1 and VR2 as input operands and writing the result, sum of the absolute
difference, in the target register.

Figure 2 shows SIMD extension proposal together with the overall architecture.
SIMD unit is integrated in the normal flow of the instruction pipeline of the processor.
At the instruction decode stage SIMD instruction is identified and redirected to SIMD
unit. Depending on the instruction, SIMDLD or SIMDSAD, it is executed differently.

The SIMDLD results in loading SIMD-vector registers VR1 or VR2. Each vector
register consists of 16 8-byte registers. The bandwidth of the connection between the
data cache and the SIMD unit is 64-bits, thus resulting in two or three accesses for
loading each vector register. The three accesses are needed for alignment of data.
Alignment is performed on the current frame macroblock. This is done by reading three
8-bytes from memory. These 24 bytes are then shifted left so that they become byte
aligned, i.e., we get two 8-byte aligned data.

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 74

Figure 2. The proposed SIMD architecture. The connection from memory to SIMD unit is 64-bit
wide.

SIMDSAD instruction operates on two vector registers, performing in parallel a sum
of absolute differences. Basically, we have first 16 functional units, which perform
absolute value operations in parallel for all pairs of data in vector registers. Then a tree
of adders (together 15) makes addition of all these values. The vector processing unit is
pipelined and has several stages. The number of stages depends on used adders and
technology.

The choice of the adder is an important issue and could benefit or hamper the
performance of the processing. According to 0.13µm UMC technology process an
overall execution time for a one-bit full adder cell is 0.19 ns [7]. An 8-bit carry-ripple
adder has a latency of 1.52 ns. Therefore, a pipeline of five stages can be run at 600
MHz. This would give us sufficient performance assumed in our experiments.
Obviously, selection of more complex adder can result in lower number of stages or
higher clock frequency.

The SIMD unit can be compared to a multi staged floating point unit, which is
located often in parallel with the processors own Arithmetic Logic Unit (ALU). Result
of SAD operation is a single value, which is placed back in one of the processor
registers for use by the video encoding application. Processing unit together with the
two vector registers and alignment unit is the core of the SIMD extension.

Introducing this extensive SIMD support affects many parts of the system, especially
memory system and data path. This creates a need for investigating the architectural

 75

design tradeoffs. One such tradeoff is how we can load the 32 SIMD vector registers
with aligned data with as short as possible latency. This clearly introduces a classical
bottleneck in the system.

1.4 Methodology

1.4.1 Simulation
To evaluate our approach we made simulations using SimpleScalar toolset [8]. This
toolset provides an infrastructure for architectural modeling. The tool is open source,
which enables a user to modifying it for particular architectural studies. It is also one of
the most widely used toolsets for computer architecture studies. This is an execution-
driven simulator, which in our case simulated an MIPS instruction set architecture.
With the integration of the power estimation tool Wattch [9], the evaluation system for
our baseline architecture was thus in place. This environment was used for our
evaluation of the encoding application.

The power model used for the architecture has been executed for the SIMD
instructions. The switching information for registers, functional units and buses is
collected and used by Wattch for power calculation.

1.4.2 Application
The application that was used for the main evaluation was a complete video encoding
package. This application is a full encoding application package developed by Ericsson
for encoding and decoding of streamed media [10]. It is based on algorithms used in
real media applications. Ericsson Mobile Platforms provided this application within the
framework for cooperation in study of future mobile platforms.

For evaluation SIMD extension we chose one of the main operations in the MPEG-4
encoding, the Sum of Absolute Differences (SAD). This operation is done in motion
estimation part of the digital video encoding. One important aspect of the SAD
operation is the fact that it is often used for evaluation of different architectures. It is
used because it is the most frequently executed operation in video encoding [5, 11].
Many other researchers have also chosen this operation in their studies [2, 5]. This is
also why having an efficient solution for SAD is of great importance with regards to
performance.

One of the most important issues when doing architectural studies is the accuracy of
the applications used. Being able to use a real workload improves the overall
architectural design. This issue is even more crucial for data intensive applications,
such as MPEG encoding.

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 76

Figure 3. Modeled baseline architecture with separate data and instruction level1 caches together
with a unified level2 cache.

1.4.3 Architecture
We start evaluation of our approach by examining an embedded processor with SIMD
media extensions. The evaluation results of this architecture acted as basic reference for
power and performance. The memory model used for evaluation was Harvard
architecture with a unified second level cache, depicted in Figure 3. As our proposal
was an embedded SIMD design the main focus was on the processing unit, CPU,
instruction- and data-caches, memory and data paths. From this baseline architecture
we added new functionality, by integrating a parallel data-path in the execution stage so
that it handled SIMD instructions. The SIMD unit is directly connected to the data-
cache, which provides the necessary bandwidth and direct access. Table 1 lists the
cache configurations and table 2 shows the system configuration used in our
experiments. For power consumption we assume 0.13µm UMC technology.

Table 1. Memory configuration of the modeled architecture.

 Size (KB) Block size (Bytes) Associativity Replacement policy

L1 Data Cache 512 64/32 4 LRU

L1 Instruction Cache 512 32 1 LRU

Unified L2 Cache 1024 64 4 LRU

 77

Table 2. System configuration and memory latency.
System Clock 600 MHz

Memory access bus width 16-bytes, 8-bytes

Memory access latency 18 cycles

1.5 Experiments and Discussion
In this section, we present the evaluation of our proposed architecture. First, we
consider the kernel SAD loop, which is used for initial evaluation of our architecture.
We also comment simulation results for this case. In subsection 2 we start by
explaining the characteristics of MPEG-4 encoding application, its configuration and
test sequences which were used. Next section provides results from different
executions. The following section deals with the impact of the ISA extension. Finally
evaluation of the results and their implications are discussed in subsection 4.

1.5.1 Kernel SAD loop
A test of the kernel code of SAD loop was written for initial evaluation of the SIMD
extension. The kernel code is shown in figure 4 for both non-SIMD processor and
processor with SIMD extensions. The main characteristic of the loop is the amount of
potential parallelism that is present. The SAD operation works on macroblocks (MB)
as discussed in section 2. This results in a loop containing 16 absolute difference
operations, which at the end are added to a sum. The inner loop is thus replaced by the
SIMD instructions. This loop is run 16 times since in our case MB is 16x16. The total
sum of all absolute differences is the result of SAD calculation.

for (i=0; i<16; i++){
 for (j=0; j<16;j++){
 sad+=abs(b[i][j]-c[i][j]);
 }
}

for (i=0; i<16; i++){
R2=&b[i][0];
R3=&c[i][0];

 SIMDLD VR1, 0(R2)
 SIMDLD VR2, 0(R3)
 SIMDSAD R4, VR1, VR2
}

 (a) (b)

Figure 4. SAD loop, (a) without SIMD extension and (b) with SIMD extension. In the case with
SIMD extension an inline assembler code represents the SIMD instructions SIMDLD and
SIMDSAD. R2, R3 and R4 in (b) are normal processors registers.

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 78

Simulations of the SAD kernel code produced performance and power consumption
evaluation. These results verified the correctness of functionality of SIMD extension
and provided performance and power consumption figures. Figure 5a shows the results
obtained from running a SAD loop 1000 times. These results indicated to some degree
a promising performance by providing a boost of over 7 times. In addition, as can be
seen in figure 5b power usage is insignificantly higher with SIMD extended
architecture. Since these experiments were run on SAD kernel code there are very
limited conclusions that could be drawn from them, especially with regards to memory
and overall performance. Therefore the need for complete application was required.

 (a) (b)

Figure 5. (a) Execution cycles after running SAD loop. The diagram shows a performance
increase of over 7 times for the SIMD extended architecture. (b) Shows the average power for
SIMD and NonSIMD.

1.5.2 Configuration of MPEG-4 application
Table 3 shows the configuration of the application chosen for evaluation of the
architecture. Resolution was set to QCIF 176x144. This is the size regularly used in
handheld devises. Output bit or data rate was set at 384 kbit/s. This data rate is used by
3GPP, which is the standard for third generation mobile phones [12]. Test sequences
chosen as input are called news and mobile. The main difference between them is the
amount of movement in the sequence of video images.

0

1

2

3

4

5

6

7

8

Execution cycle

E
x
e
.

T
im

e
 [

M
il
li
o
n

 c
y
cl

e
s]

0

1

2

3

4

5

6

7

8

9

10

Total average power

P
o

w
e
r

[W
]

SIMD
NonSIMD

 79

Table 3. Configuration of MPEG-4 application.

Output Resolution QCIF 176x144

Data rate 384 kbit/s

Advanced Intra Coding Mode ON

Deblocking Filter in the Loop ON

Modified quantization Mode ON

Rate control NRC

Figure 6. Execution cycles for running MPEG-4 application with two different test sequences
news on the left and mobile on the right. The bars on left show the execution cycles for
architecture with a 512 KB memory and block size 32 bytes. The right bars are with same cache
size but with block size 64 bytes.

1.5.3 Impact of SIMD extension
After running a series of simulations the results show the potential for SIMD extension
is quite significant. Figure 6 shows the reduction of the total execution cycles to almost
half. The first major observation is the impact of input test vector where mobile
sequence has significant lower execution cycles. The second observation is the impact

0

500

1000

1500

2000

2500

3000

E
x
e
.

T
im

e
 [

M
il

li
o

n
 c

y
cl

e
s]

SIMD

NonSIMD

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 80

of different cache configurations; 64-bytes block size instead of 32-bytes and memory
access bus width, 16 bytes instead of 8 bytes. As shown in all cases the performance of
the SIMD architecture is almost two times better than the NonSIMD architecture.

We also observed a significant reduction in cache accesses both for instruction cache
as well as data cache as seen in figure 7. The decrease of cache accesses for instruction
cache is obvious as we have SIMD architecture. The reduction of data cache accesses
comes from the fact that for each access in SIMD architecture, our extension loads 8
pixels (i.e., 64-bits). NonSIMD architecture, on the other hand, loads only one pixel
(i.e., 8-bits). We can also see the difference between the two test sequences news on
the left and mobile on the right. This clearly shows the influence of input data on the
behavior of the architecture, as with the case for execution cycles above.

Figure 7. Cache accesses for SIMD and NonSIMD show a significant decrease both for
instruction- and data level 1 cache. The diagram on the left is cache accesses for news test
sequence. The diagram on the right is cache accesses for mobile test sequence.

The total power consumption is usually lower for SIMD even though we have
introduced a new component in the processor architecture. Figure 8 shows the average
power consumption for the SIMD unit and caches. This average is basically power
consumption per cycle. The SIMD extended architecture also shows a lowering of the
total average power. Data cache is the most contributing factor to the total power
consumption figure. This lower power consumption can be explained by the fact that
SIMD architecture has lower number of cache accesses (see figure 7). However, these

0

200

400

600

800

1000

1200

1400

1600

1800

icache l1
accesses

dcache l1
accesses

ucache l2
accesses

icache l1
accesses

dcache l1
accesses

ucache l2
accesses

N
u

m
b

e
r

o
f

a
cc

e
ss

e
s

[M
il
li
o
n

]

SIMD

NonSIMD

 81

accesses are 64-bits instead of 32-bits. As can also be seen the average power of the
SIMD unit is insignificant compared to the total average power. The data on the left is
news test sequence and on the right mobile.

Figure 8. Power consumption for SIMD and NonSIMD architecture for test sequences news and
mobile. The cache configuration chosen here was 512-32-8 and 512-64-16 from figure 6.

1.5.4 Main observations
Adding SIMD extension to an embedded processor for increasing the performance is
one way of solving the shortcomings of today’s embedded processors. One of the
benefits with this solution is its flexibility. Instead of adding a hardwired solution
beside the processor, tailored for a certain standard, we use flexibility and
programmability of general purpose processors. The cost for this solution is small and
insignificant with regards to power increase.

The most interesting observation is the increased importance of data paths. By
increasing the performance of the processor, new problems arise on how to provide the
processor with enough data so the increased processor performance is not lost. The
results in the previous section clearly illustrate this. The increased cache size and its
right configuration, together with increased memory bus width produce a significant
improvement in the overall performance of the system.

0

2

4

6

8

10

12

14

P
o

w
e
r

[W
]

SIMD

NonSIMD

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 82

Another important issue is the complexity of MPEG-4 encoding application that is
seen clearly in figure 6. Execution of different test sequences, such as mobile and
news, influences the overall system load. In the case of figure 7 we have quite high
number of data accesses for news compared to mobile. Mobile test sequence, in fact,
requires more computations but as the target data rate is not achieved the application
lowers the output quality to meet the target data rate, thus reducing the number of
computations. Figure 9 shows the performance changes of the system when changing
the configuration of the application. The most striking factor is that the amount of
computation increases as the data rate restrictions are relaxed. This increase is much
more significant for the NonSIMD. This indicates that more time is spent on computing
to achieve better image quality when higher data rate is available. Thus the impact of
our SIMD extension is more dominant. This increase in available bandwidth is
something that future wireless systems will provide. Thus having high data rates in
excess of 768 kbits/s is realistic.

Figure 9. Execution time for mobile test sequence with different target data rates. The data rates
chosen are from 3 GPP standard. We see an increase of execution time as we increase the target
data rate.

To conclude, an increase in performance can only be justified as long as the rest of
the system can also be improved by the same amount. Otherwise the added
performance will not be justified. Thus improved data path from memory to processor
is a must to move forward with any new improved embedded processors.

0

500

1000

1500

2000

2500

3000

64 kbits 128 kbits 384 kbits 768 kbits

E
x
e
.

T
im

e
 [

M
il
li
o
n

 c
y
cl

e
s]

SIMD

NonSIMD

 83

1.6 Related work
There has been some work done to address SIMD, which also takes into consideration
the system impacts [4, 5, 13]. Lappalainen et al. give evaluation of different
algorithmic optimizations for media applications. Their study was done using
MultiMedia eXtensions (MMX) and Streamed SIMD Extensions (SSE) on Intel
Pentium III [14]. This study does not discuss power consumption or silicon area and
cost optimizations.

Many of the studies are based on desktop processor architectures. They have some
similarities with low-power embedded processors but there are in many ways different,
both with regards to architecture and performance. The sensitivity for silicon area
budget as well as power budget is one point that seldom is investigated in high-
performance research. Most studies, which consider low-power and high-performance
have focused on hardware solutions [15] or Digital Signal Processors (DSPs) [16] as
basic blocks in embedded systems for media applications.

The solutions, which were presented before for desktop processors are now
appearing in low-power embedded processors, as pointed out in [5]. This development
is also observed with leading low-power embedded processor manufactures, such as
ARM, MIPS and Hitachi. In their new processors a limited form of high-performance
SIMD architectures has been added [17, 18]. This indicates that a processor
implementation is possible, which in turn introduces some new aspects for media
applications. Thus opening the door for more radical implementations using the
flexibility that these solutions provide contra hardware based solution or even a DSP
based solution. An ideal SIMD solution should have none or very minor impact on the
whole system. But as it is commonly known, introducing new design aspects into the
system without fully evaluating the system impacts have in reality very little value. The
impact on memory and cache is of particular interest to study, as these system
structures are of even more importance in embedded systems.

One of the implementations that consider many of the embedded low-power design
constrains such as silicon area and power dissipation is ARM processors. In order to
give clear understanding of our approach compared to ARMv6 a more detailed
description is needed. ARMv6 is the latest processor architecture that ARM has
produced. Among the newly added features is a limited embedded SIMD capability. It
uses a 32-bit Arithmetic Logic Unit (ALU) and a 64-bits bus which provides
performance improvement between 2 and 4 times [18]. This clearly shows that adding
SIMD to processor core has great potentials for improving performance, and still
keeping embedded design constrains. But these performance gains are not close enough
for replacing a dedicated hardware for video encoding. Instead a more extensive SIMD
solution is needed, to be able to meet the computational requirements from the
encoding application.

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 84

1.7 Conclusions and future work
We have proposed and evaluated SIMD architecture for MPEG-4 encoding for
enhancing the performance of embedded processors. We have shown in our study that
by using SIMD extension we can increase the overall performance of an embedded
processor and still keep the power at similar level as original architecture. These results
are clearly related to the issue of memory bottleneck, one of the most important
problems when dealing with embedded systems. As the margins for embedded systems
are much narrower than high performance systems, the system imbalances cannot be
neglected in the same way. Thus we see a need for more in-depth work around
memory and processor interaction. Our future work will concentrate on SIMD
extensions with a focus on the memory issues, where we see a gap in solutions for
embedded systems that can provide the necessary high data bandwidth. We plan also to
improve the overall performance of the SIMD extension execution part.

References
[1] S. A. McKee, Z. Fang, M. Valero, “An MPEG-4 Performance Study for non-

SIMD, General Purpose Architectures” in Pros. ISPASS. 2003 IEEE
International Symposium, 2003, pp. 49-57.

[2] D. Guevorkian, A. Launiainen, P. Liuha and V. Lappalainen, “Architecture for the
Sum of Absolute Differences Operation”, in Proc. 2002 IEEE Signal Processing
Systems, SIPS '02, pp. 57 –62.

[3] MPEG-4 Final Draft International Standard 144 496-2 ISO/IEC
JTC1SC29/WG11/N2502.

[4] M. Ferretti, “Multi-media extensions in super-pipelined microarchitectures. A new
case for SIMD processing?” in Proc. 5th IEEE Int. Workshop Computer
Architectures for Machine Perception, 2000, pp. 249-258.

[5] V. Lappalainen, T. D. Hämäläinen and Petri Liuha, “Overview of Research Efforts
on Media ISA Extensions and Their Usage in Video Coding” IEEE Trans. Circuit
and System for Video tech., vol. 12, no. 8, Aug. 2002.

[6] S. Vassiliadis, B. Juurlink and E. Hakkennes, “Complex Streamed Instructions:
Introduction and Initial Evaluation” in Proc. 26th Euromicro Conference, 2000,
vol.1, pp. 400-408.

[7] Virtual Silicon 0.13um High Density Standard Cell Library, United
Microelectronic Company, UMC process.

[8] T. Austin et al., “SimpleScalar: an infrastructure for computer system modeling”,
IEEE Computer, Vol. 35, Issue 2 , Feb 2002, pp.59-67

[9] D. Brooks, V.Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. In International Symposium on
Computer Architecture, pages 83-94, June 2000.

 85

[10] VIPS video package developed at Ericsson Compression Lab (CLAB).
[11] P. Kuhn, “Algorithms, Complexity Analysis and VLSI Architecture for MPEG-4

Motion Estimation”, Kluwer Academic Publishers, 2003, ISBN 0-7923-8516-0
[12] 3 Gpp standard, http://www.3gpp.org
[13] S. M. Akramullah, Software-based video encoding using high-performance

computing,” Ph.D. dissertation, Dept. Elect. Electron. Eng., The Hong Kong Univ.
of Sci. and technol., Hong Kong, 1999.

[14] V. Lappalainen and T. D. Hämäläinen, “Unified Method for Optimization of
Several Video Coding Algorithms on General-Purpose Processors” in Proc IEEE
Int. Conf. on Information Technology: Coding and Computing, ITCC 2002

[15] T. Kamemaru et al., “Media processor core architecture for realtime, bi-directional
MPEG4/H.26X codec with 30 fr/s for CIF-video”, in Proc. IEEE 2000 Custom
Integrated Circuits Conference,. CICC 2000, pp.473-476

[16] M. Berekovic, R. Frase and P. Pisch, “A Flexible Processor Architecture for
MPEG-4 Image Compositing” in Proc. 1998 IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, ICASSP '98, Vol.5, 12-15 May 1998, pp. 3153 -3156

[17] D. Cormie, “The ARM11 Microarchitecture”, ARM Limited, Cambridge, UK, Apr
2002, http://www.arm.com

[18] D. Brash, The ARM Architecture Version 6 (ARMv6), ARM Limited, Cambridge,
UK, Jan 2002, http://www.arm.com.

http://www.arm.com/�
http://www.arm.com/�

Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4

 86

 87

Paper II

2Analysis of Embedded Processors for
Streaming Media Applications2

Abstract. Streaming media applications, such as MPEG-4, impose great challenges
on embedded systems. In this paper, we present our analysis of an embedded processor
family used in most of wireless handheld devices. For our analysis and evaluation
purpose we use full video MPEG-4 encoding application with optimized algorithms for
mobile devices. We observed significant performance improvements when using new
architectural solutions in embedded processors. There are two sources of this
improvement. The first one is due to introduction of Single Instruction Multiple Data
(SIMD) extension in embedded processors. The second one comes from increased clock
frequency enabled by deeper instruction pipeline. These architectural enhancements
give an increased performance, but are not sufficient in providing enough performance
for heavy video encoding (CIF screen size images at 30 frames per second). For
achieving this, a more aggressive SIMD unit is required as indicated by our proposed
architecture and its analysis.

2 This paper is a reformatted version of Analysis of Embedded Processors for Streaming Media

Applications, in Proc. of the 8th Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW-8), San Francisco, USA, February. 12, 2005.

Analysis of Embedded Processors for Streaming Media Applications

 88

2.1 Introduction
The evolution of embedded processors has been a steady progress from simple micro-
controllers, to today’s advanced multi-staged pipelined designs. This evolution has
come mainly from the demands applications have put on embedded systems. These
applications differ not only in complexity but also in the amount of processing load
they require. A typical streaming media application, video encoding, involves discrete
cosine transform as well as on-the fly interpolation of pixel values during search in
motion estimation. These demands often require highly parallel solutions to achieve
even mildly reasonable results.

MPEG-4 video encoding on mobile handheld devices is a good example of a heavy
application running on a resource limited device. Mobile handheld devices have
narrower design constrains, such as limited energy supply and limited size. They have
become hard tuned and designed with very confined demands. With this in mind, these
devices have different design challenges than high-performance designs. The key issue
has been to increase the performance just enough to solve the problem with little cost
overhead. But there is a new issue involved here, flexibility. Flexibility is important in
future system architectures, as the need to be able to use the same hardware for
different applications and standards has risen. Therefore, an important issue in
embedded processor design has been efficiency, in terms of gained performance at a
cost of increased design complexity and resource utilization.

The trend of embedded processors evolution has taken two paths, one going to multi-
processors and the other extending processor architecture with specific hardware to
boost the performance [1]. In this paper, we concentrate on the second solution and
analyze a few processor extensions needed for streaming media applications.

The objective of our research is to investigate and propose new architectures to
increase the performance of handheld mobile device, by introducing specific hardware
in the processor core. The main idea is to extend the Instruction Set Architecture (ISA)
of a processor with Single Instruction Multiple Data (SIMD) instructions. The choice
of a SIMD design is natural, as media applications are parallel and well suited for
vector units [2]. In our preliminary work we looked at the performance increase of the
most critical parts of video encoding application through profiling. The operation that
uses most of execution time is the Sum of Absolute Differences (SAD) in the motion
estimation block. The calculation of the motion vector accounts for roughly 40-80% of
total execution time [3]. Therefore we would like to analyze the impact on performance,
when specific critical parts are boosted.

In this study we want to elaborate and analyze how some of today’s embedded
processors extensions can be used for streaming media applications. For our study we
chose to look at the ARM processor family, as ARM is one the leading manufactures of

 89

embedded processors. ARM926EJ (implements ARMv5 ISA) was chosen as our
baseline processor that is one of the most widely used designs in mobile embedded
devices. As ARM1136EJ (implements ARMv6 ISA) is the successor of ARM926EJ, it
was chosen to represent the next generation of processors. Among added features
ARM1136EJ has the new ARMv6 ISA that was introduced by ARM to provide SIMD
capability with data width of 32 bits. The idea of adding signal-processing horsepower
to general-purpose processors is natural and is used in most processors [4]. Embedded
processors follow this path as well, which is also the direction ARM has taken. The
advantage of such approach is that it does not increase the area required by the CPU
that much [5]. It can eliminate the need of additional DSP core or specific hardwired
logic [1].

The idea of SIMD instructions for multimedia applications has been widely used. In
most cases the main evaluations of architectures have been done by using different sets
of kernels [6]. This is certainly a good approach in the introductory phase of evaluation.
But in order to do in-depth analysis and evaluate overall speed-up of architecture, one
needs to use complete applications [7]. There is also the issue of the quality or
relevance of benchmarking architecture with a reference application [8]. The reference
application has often not been optimized and, thus, behaves differently from
commercial applications. Another issue affecting embedded processor research is that
most evaluations are carried out on high-performance processors such as Pentium or
PowerPC. This led to conclusions that cannot be automatically transferred to embedded
processors [9].

Our evaluation was done using ARM’s instruction set simulator ARMulator in
Realview tool set. This is a cycle accurate simulator which is used for software as well
as hardware development. Our analysis of the architectures was done using a full
MPEG-4 encoding application. This application was provided to us by Ericsson Mobile
Platforms AB and uses realistic optimized algorithms for mobile devices.

Our results show that the road we have taken by extending an embedded processor
with specialized SIMD extension is the right way forward [10], both with regards to
gained performance as well as power consumption. What differs our approach from
ARMv6 extension is the extent of how massive in terms of data width this SIMD unit
should be. In the case of ARM, the unit is 32-bits, indicating that it can initiate 4
parallel operations using one instruction. In our own architecture we look at data width
of 128-bits and beyond.

ARM is not the only embedded processor design that is moving in the direction of
extending the ISA with SIMD capability. MIPS technologies is also starting to enhance
their processors with SIMD units by introducing new SIMD instructions in their MIPS
IV and MIPS V ISA [11].

The structure of the paper is as follows. In Section 2 basic information on ARM
architecture is given. Section 3 describes our video encoding application and in section
4 the method we used in our approach. Section 5 presents our experimental results. In

Analysis of Embedded Processors for Streaming Media Applications

 90

Section 6, we discuss experimental results and in Section 7 we give some concluding
remarks.

2.2 ARM Architecture
The next generation of embedded processor architectures has been driven by the needs
of emerging products, which require more processing power. The key design constrains
in the embedded domain have been performance, power, area, and cost. These factors
must be balanced to meet the requirements of each application.

One of key areas the new ARMv6 architecture focuses on is multimedia application.
Single Instruction Multiple Data (SIMD) capabilities enable more efficient software
implementation of these applications. These new instructions provide performance
improvements between 2x to 4x, depending on the multimedia applications [12].
ARMv6 is based on a 32-bit processor, the same as ARMv5, which is implemented in
ARM926EJ, ARM10 and XScale. Combined with a 64-bit bus support, this provides
equivalent to a 64-bit machine, but without the power and area overhead of full 64-bit
CPU [12]. The ARM1136EJ 64-bit data paths allow two instructions to be fetched from
the cache in a single cycle, thus achieving high performance on code sequences where
data is required to be moved in parallel with processing.

The ARM architecture is a load-store architecture, where the ARM core instructions
can only operate on data in registers. Load and store instructions are used to transfer
data to and from this register file. The L1 memory system has no wait states and runs
synchronized to the core. The cache in our experiments is organized as a Harvard
architecture with separate instruction and data caches.

The ARM media extensions are implemented for the first time in the ARMv6
designs. They include a set of SIMD instructions, as well as Sum-of-Absolute-
Differences (SAD) support. The new instructions support 8 and 16 bit SIMD arithmetic,
including four 8-bit and two 16-bit operations, parallel add and subtract, selection,
packing and unpacking [12]. ARMv6 provides support for SAD calculation, with the
inclusion of USAD8 (sum of differences) and USADA8 (sum of differences
accumulate) instructions. Table 1 shows the relative performance of SAD operation,
comparing ARMv6 and ARMv5 [12].

Table 1. Implementing Sum of Absolute Differences on the ARMv5 and ARMv6 architecture
[12].

Architecture Cycles/4 pixels

ARMv5 18

ARMv6 3

 91

The target frequency range for ARMv6 is 500-700Mhz. To deliver a good
performance power ratio the ARMv6 uses both clock frequency and supply voltage
scaling. Enabling the system designer to control power consumption and performance.
ARM1136EJ consumes less than 0.8 mW/MHz in a 0.13μm process technology. The
typical ARM1136EJ synthesized core without caches takes 2.85 mm2 [13]. Compare
with 2.2 mm2 for ARM926EJ in the same 0.13μm process technology with 0.5
mW/MHz [13].

The ARM1136EJ has a single-issue pipelined microarchitecture, which differs from
previous ARM cores. It consists of 8 stages compared to 5 stages in ARM926EJ. This
enables to increase the throughput by as much as 40% [14]. An obvious drawback with
deep-pipelined structures is introduction of excessive latencies into the system. These
latencies occur because of existing dependencies between instructions. Another issue
for long pipeline processors is how to smooth program flow during branches.
ARM1136EJ partially avoids these delays by using dynamic and static branch
prediction to predict the flow of instructions. These two techniques are used to
maintain good pipeline efficiency through removal of stalls. The result is the same
effective latency as a 5-stage ARM926EJ but with higher throughput [12].

The two techniques used for predicting branches are dynamic branch prediction
using a 4-state branch target address cache. It holds historical record to see whether the
branch has been seen before, and whether it was most frequently taken, or most
frequently not taken. If the dynamic branch predictor cannot find a record of the branch
instruction, a static branch prediction takes over. Depending on the target address, it is
going backwards or forwards. If it goes backwards, then branch is taken as it assumes it
is a loop. If it is forward branch then it is not taken. Analyzing results from benchmark
suites show correctness of the static branch predictor to around 77% of the time. When
using only dynamic branch predictor, the processor correctly predicts 88% of the
branches. When the effect of both static and dynamic branch prediction is combined,
92% of the branches are correctly predicted [14].

Although the front-end of the pipeline architecture is single issue, the back-end
exploits the parallelism with separate processing units for the ALU, multiply-
accumulate (MAC) and Load-Store (LS) instructions. This parallel structure enables
the processor to proceed with other ALU and MAC operation when the LS unit has
been stalled. This means an out-of-order completion.

The longer pipeline of ARMv6 should give about 35% clock boost over ARMv5
architectures. Theoretically then a hand tuned version of the core could be run at 1.6
GHz compared to the 1.2 GHz for ARM1020 with ARMv5 architecture [15]. The
typical clock frequency for a 0.13μm process is around 500-700 MHz for ARMv6
architecture [12, 14, 15].

In our experiments, we want to evaluate this architecture and analyze the impact it
has on performance, when heavy media streaming applications with realistic loads are
benchmarked. We selected a special version of MPEG-4 application implemented to be

Analysis of Embedded Processors for Streaming Media Applications

 92

executed on handheld devices, which was also optimized for this purpose.

2.3 MPEG-4 Application
The main media application used in this study is a full video encoding MPEG-4
application. One important reason for developing MPEG-4 is that, unlike MPEG-2, it is
object based. Video objects (VO), as they are called, are visual objects represented by
the shape, motion and texture information. Each VO is composed of Video object plane
(VOP), which contains motion parameters. The VOP is encoded into a separate video
object layer. During encoding the MPEG-4 application uses a window, where each
object is divided into a grid containing a set of blocks, called Macroblocks (MB). The
size of VOP is either 16 x 16 or 8 x 8 MB Each MB consists of 16 x 16 pixels. For each
MB of the current frame, the block-matching algorithm uses a search window in a
previously reconstructed frame. It searches for the closest matching block to the current
block and defines a motion vector (MV) pointing to it.

There are different measures for finding the block with the best matching criteria.
The most common one is sum of absolute differences (SAD). This operation is
basically a comparison between two consecutive MBs. It determines the amount of
differences between these MBs. This operation makes the motion estimation (ME), one
of the most data dominated and the most frequently used part of MPEG-4 application.
This application has been provided to us by Ericsson Mobile Platforms AB. It features
full search and optimized search modes, with the later being a more realistic algorithm
for mobile devices. The optimized search mode has a number of features, such as early
termination and improved search algorithm.

The application was configured for running screen size Common Image Format (CIF)
(352x288) at 30 frames per second. We used two sets of algorithms. One based on full
search with standard 8-point half pixel motion estimation, with search window of
17x17 macro blocks. The other algorithm is optimized commercial motion estimation
with the search window of 31x31 macro blocks. The profiling of the application shows
that the SAD at least accounts for 25-37% of the total execution time depending on the
search algorithm used and test sequence characteristics. The case that uses full search
with the CIF screen size at 30 frames per second is the upper bound for number of
operations per second that are required for encoding.

2.4 Methodology
In our experiments we use three different test sequences, mobile, foreman and news
[16]. The main difference between these sequences is the amount of processing they
need to encode the sequences. Depending on the configuration of the application the
test sequences make the application behave differently. The mobile sequence is the
most demanding sequence in terms of processing when rate control restriction is

 93

removed. This removal of the rate constraint is crucial when studying the architecture
and not the application, as we need a stable behavior of the application. The impact of
this restriction on the quality of the encoded video sequence is substantial. It is the rate
control that makes the application skip frames when not being able to achieve the
required target bit rate. In order to remove this uncertainty we relaxed the bit rate
restriction to ensure that all frames are encoded and nothing is skipped due to rate
control.

Another quality limiting factor is the quantization in the Discrete Cosine Transform
(DCT), as this is the source of quality loss in the coding. We chose here a fix
quantization to have a stable behavior of application when performing the experiments.
The choice of a reasonable quantizer value has an important impact on the encoded
video sequence. Choosing a too high quantizer will reduce the total bit rate but will
also lower the quality of the encoded video sequence. Choosing a too low value will
result in unreasonably high bit rate. We chose a quantizer value of 15 both for P frames
and I frames, in order to have a reasonable quality of encoded video sequences.

First we ran the kernel code, in order to be able to determine the performance of both
the processors as well as the impact of SIMD instructions. The kernel SAD code was
run on ARM926EJ and ARM1136EJ. In the case of ARM1136EJ, for evaluating the
SIMD instructions, inline ARM SIMD assembler instructions were used. We use two
measures to evaluate the performance of the architectures. The first one is the number
of cycles needed to execute the application (see figures 1-3). The second one measures
the encoding performance of the architecture counting number of frames per second
encoded (see figures 4-5).

The ARM instruction set simulator ARMulator was used for our evaluation. This is a
cycle accurate simulator, which is part of the Realview developer’s suite [17]. The
memory architecture we used for our experiments was Harvard architecture with 32K
instruction and data caches. The higher level memory was modeled as zero-wait. This
is a too optimistic assumption, but when compared to our architecture with same
memory hierarchy the impact of a level2 cache and memory contributes negligibly,
around 3%, to the overall cycle counts.

To be able to compare ARM’s SIMD extension with more aggressive SIMD unit we
used our own SIMD extension [10]. Our proposed architecture was a 128-bits SIMD
extension integrated in an embedded processor, thus extending the instruction set
architecture. The memory model used for evaluation was also Harvard architecture
with a unified second level cache. Since our proposal was an embedded SIMD design,
the main focus was on the processing unit, CPU, instruction- and data-caches, memory,
and data paths. To this baseline architecture we added new functionality, by integrating
a parallel data-path in the execution stage so that it handled SIMD instructions. The
SIMD unit is directly connected to the data-cache, which provides the necessary
bandwidth and direct access. The ARM1136EJ was simulated to run at 600 MHz and
the ARM926EJ at 300 MHz.

Analysis of Embedded Processors for Streaming Media Applications

 94

2.5 Experimental Results
The first aim of our experiments is to see how much improvement we have between the
ARM processors with the same media application. The second is to compare
performance improvement between ARM1136EJ with and without SIMD extension. In
all cases we use the same application with the same configuration.

Figure 1. Cycle count for running Sum-of absolute differences operation using ARM 926EJ and
ARM1136EJ without and with SIMD SAD instructions.

To evaluate the performance of the SIMD instructions we wrote a test kernel to
determine the amount of maximum improvement we could get for SAD. Figure 1
shows the performance in cycles for ARM926EJ and ARM1136EJ without and with
SIMD instructions. We observe performance improvements of about 3 times between
ARM1136 without and with SIMD instructions. The difference between ARM926EJ
and ARM1136EJ with SIMD is about 4.2 times. This falls short from the 6 times
presented by ARM in [12] (table 1 section 2). Figure 2 shows the cycle count for
running three different sets of test data sequences: mobile, foreman and news
presented in section 3. The cycle count drops when moving from ARM926EJ to
ARM1136EJ even though the architecture of the ARM1136EJ has 3 pipeline stages
more than ARM926EJ. This increase in pipeline stages is one way of improving the
architecture to get the benefit of running the processor core on a higher clock frequency.
When this benefit is taken into account the performance impact is even more

 95

significant. The ARM926EJ core is run at 300 MHz and the ARM1136EJ core is run at
600 MHz.

Figure 2. Cycle count for running MPEG-4 application in full search mode with three different
test sequences mobile on the left, foreman in the middle and news on the right.

Figure 2 and 3 show also the impact in performance when using full search and
optimized search algorithm. Comparing this factor shows a significant drop in cycles.
One observation is the fact that the importance of using a good SAD is even more
crucial in the case of full search, compared to the optimized search. As the number of
times using SAD decreases when using the optimized search algorithm. The total
improvement in execution time is not that significant but taken into account the
ARM1136EJ has a width of only 32 bits, than this is a reasonable SIMD capability for
embedded processors.

0

1000

2000

3000

4000

5000

6000

Mobile Foreman News

Cy
cl

es
 C

ou
nt

 [M
ill

io
ns

]

ARM 926

ARM 1136

ARM 1136 SIMD

Analysis of Embedded Processors for Streaming Media Applications

 96

Figure 3. Cycle count for running MPEG-4 application in optimized search mode with three
different test sequences mobile on the left, foreman in the middle and news on the right.

Figure 4 and 5 show the number of frames that can be executed in one second. This
determines if the required performance of 30 Frames per second (F/s) is sufficient or
not. The only time this can be achieved is when encoding the news sequence on the
ARM1136EJ with SIMD extension. In the case of mobile the performance is around 20
F/s. When SIMD instructions are not used the execution time increases and none of the
test sequences reaches the required 30 F/s. When compared with 12.5 F/s for news and
around 8 F/s for mobile on ARM926EJ this shows a substantial improvement in the
new of ARM1136EJ architectures. When looking at the difference between the full
search and the optimized search, the most obvious observation is the impact of the
search algorithm.

0

200

400

600

800

1000

1200

Mobile Foreman News

Cy
cl

es
 C

ou
nt

 [M
ill

io
ns

]

ARM 926

ARM 1136

ARM 1136 SIMD

 97

Figure 4. Frame rate for running MPEG-4 application in full search mode with three different
test sequences mobile on the left, foreman in the middle and news on the right. It shows our
proposed SIMD extension when run the same code as the one run on the ARM processors with
SIMD SAD operation.

0

2

4

6

8

10

12

Mobile Foreman News

Fr
am

es
/s

ARM 926

ARM 1136

ARM 1136 SIMD

Analysis of Embedded Processors for Streaming Media Applications

 98

Figure 5. Frame rate for running MPEG-4 application in optimized mode with three different
test sequences mobile on the left, foreman in the middle and news on the right.

In the case with full search there is no chance of achieving the target frame rate of 30

F/s. The best frame rate is 10 F/s when encoding news test sequence on the
ARM1136EJ with SIMD extension. The impact of SIMD extension is even more
noticeable when comparing with ARM1136EJ executions times with and without
SIMD. The best frame rate ARM1136EJ can achieve is 4.3 F/s in full search and 25 F/s
with optimized search.

Taking a look at the difference between ARM926EJ and ARM1136EJ we observe
the increased impact of operating frequencies. This shows that need to run the
processor at higher frequencies is necessary if one wants to encode streaming data. The
important issue that rises is whether the increase in power consumption and area is
justified. The power consumption is 0.48 W for ARM1136EJ compared to 0.15 W for
ARM926EJ in the same 0.13 μm process including separate data and instruction caches.

When taking into account that the ARM1136EJ is running at 600 MHz and
ARM926EJ is running at 300 MHz the important issue is the energy consumption. By
increasing the power consumption but at the same time decreasing application’s
execution time even more, we save in total energy. This is will in fact be a better trade-
off for handheld devices, as they are battery driven. We showed this in our previous
work on SIMD extended architecture [10]. Regarding area the ARM1136EJ takes
approximately 5.55 mm2 compared to 5.0 mm2 for ARM926EJ including instruction

0

5

10

15

20

25

30

35

Mobile Foreman News

Fr
am

es
/s

ARM 926

ARM 1136

ARM 1136 SIMD

 99

and data caches [15].
We performed simulations on our own architecture running the same streaming

video application and the same test sequences: mobile, foreman and news. The
configuration of the encoder was the same as the ARM configuration. We performed
the simulation both with zero-wait memory model and with specific memory
configuration. This configuration assumes cache latencies for level1 caches 1 cycle,
level2 cache 6 cycles and 45 cycles for memory. The results show with a more realistic
memory model the cycle count increases by ~6%.

2.6 Discussion of the Results
The ARMv6 architecture shows potential to provide better performance for embedded
processors. The architecture is evolving towards system-on-chip (SoC) design. The
differences between the ARM926EJ and ARM1136EJ reflect the fact that the
development of embedded processors is taking, even though cautiously, the same
direction as high performance processors once took. They increase the number of
pipeline stages to increase the clock frequency of the design. One important aspect to
keep in mind is that the power and energy consumption for embedded device is going
to be the main limiting factor. One has to keep the total energy consumption down,
otherwise the cost of increasing the performance cannot be justified.

Traditionally the solutions chosen in the embedded domain have been ASICs with a
set of different hardwired solutions. The main issue behind this decision has been
predictability i.e., the full knowledge of the system functionality that need to be
implemented. This fact made embedded system suitable for hardwired solutions. But as
handheld devices have evolved to becoming a more open system, some of the
predictability of the closed embedded systems has been lost. Thus the need for more
flexible solutions has reason. At the same time the issue of energy is still dominant for
handheld devices making it impossible to use just any solution. As embedded
processors still have not got the performance required for running demanding
applications such as video encoding, the need to boost the performance in an adequate
way is important.

The introduction of a SIMD unit to embedded processors is a good way to both
increase the performance and, at the same time, keep the power consumption down, as
ARM shows [9]. We also see this in our own proposal [4], especially when one takes
into account the total energy consumption, which is the main factor for handheld
devices.

The ISA extension in processor introduces two favorable factors for platform design,
flexibility and performance increase. This also reduces the complexity of designing
complex heterogeneous ASICs. Thus reducing the design time and time to market for a
platform. This trend in replacing as much as possible hardwired solutions as well as
large DSP cores is quite significant. The replacement of hardware solutions has more to

Analysis of Embedded Processors for Streaming Media Applications

 100

do with flexibility as well as the issue of manufacturing costs of ASICs [18].
Replacing DSP core on the other hand has more to do with energy and area costs.

Also the issue of intellectual property (IP) cost is a factor, where processor with enough
SIMD performance can replace the DSP altogether [1, 11].

Now considering all this, one realizes that ARMv6 cannot provide enough
performance to meet the needs of heavy applications such as video encoding. Therefore
we see the need for an even more aggressive SIMD design. The only time the
ARM1136EJ processor was able to achieve 30 F/s was when encoding the least
computationally heavy test sequence news when using SIMD instructions. The
introduction of a SIMD unit in ARM1136EJ is an important step in the right direction
but it shows clear lack in performance when it comes to really heavy media
applications such as video encoding. The need for more aggressive solutions with
massive parallel architecture is obvious. When introducing this kind of parallelism,
new issues such as memory structure and bandwidth become important. In our first
study [10], we concluded that this is one of the main limiting performance factors.

2.7 Conclusion
In this paper we analyze and evaluate two generations of embedded processors in the
same family to see the directions they have taken in terms of boosting the performance.
We have chosen streaming media application as a benchmark for our investigation. The
application provided to us is a full encoder with realistic behavior, making it suitable
for benchmarking. We observe the direction embedded processors have taken is the
same as high performance architectures took. Adding specific extension to the
processor compensates for some existing shortcoming in performance.

The approach ARM has taken is to extend the ISA with SIMD instructions for
specific operations such as SAD. This is a good way of increasing performance and
still keeping the energy and area cost low. The focus is to efficiently handle highly
parallel operations. This is a common feature of many media application. In our
analysis we observed that the added SIMD extension in ARM1136EJ boosts the
performance by 3 times, but the target performance is only achieved with the least
demanding test sequence, news, with optimistic assumption of zero-wait high level
memory.

In order to provide enough performance for MPEG-4 encoding we see a need to
have a more aggressive SIMD architecture with wider data paths. This introduces some
new issues among others a memory bandwidth bottleneck.

References

[1] R. Wilson, “Embedded CPUs take on media task”, EETimes, Okt. 2004.

 101

[2] A. Gentile, D. S. Wills, “Portable Video Supercomputing”, IEEE Trans.
Computers, vol. 53, no. 8, Aug.2004.

[3] D. Guevorkian, A. Launiainen, P. Liuha and V. Lappalainen, “Architecture for the
Sum of Absolute Differences Operation”, in Proc. 2002 IEEE Signal Processing
Systems, SIPS '02, pp. 57 –62.

[4] Intel, “MMX technology architecture overview”, Intel Technology Journal, Sept.
1997.

[5] BDTi, “Selecting Application Processors for Mobile Multimedia”, Berkeley
Design Technology Inc., Jun. 2004 http://www.BDTI.com.

[6] P. Hus, K. J. R. Liu, “Software optimization of H.263 video encoder on Pentium
processors with MMX technology”, in Proc. IEEE Multimedia and Expo, New
York City, NY Aug. 2000.

[7] D. Etiemble, “Optimizing DSP and media benchmarks for Pentium 4: hardware
and software issues”, IEEE 2002.

[8] http://www.mpeg.org/MPEG/MSSG/#source.
[9] V. Lappalainen, T. D. Hämäläinen and Petri Liuha, “Overview of Research Efforts

on Media ISA Extensions and Their Usage in Video Coding” IEEE Trans. Circuit
and System for Video tech., vol. 12, no. 8, Aug. 2002.

[10] A.R.Iranpour, K. Kuchinski, “Evaluation of SIMD Architecture Enhancement In
Embedded Processors for MPEG-4”, in Proc. 30th EUROMICRO Digital System
Design Conf. 2004.

[11] M. Baron, “MIPS Takes Aim at lo-cost DSP”, Microprocessor Report, Nov. 2004.
[12] D. Brash, The ARM Architecture Version 6 (ARMv6), ARM Limited, Cambridge,

UK, Jan 2002, http://www.arm.com.
[13] ARM926EJ, ARM1136EJ technical manual, http://www.arm.com.
[14] D. Cormie, “The ARM11 Microarchitecture”, ARM Limited, Cambridge, UK, Apr

2002, http://www.arm.com.
[15] Cary D. Snyder, “ARM Family Expands At EPF”, Microprocessor Report, June

2002.
[16] http://www.standard.pictel.com/ftp/video-site/sequences/.
[17] Realview development suit version 2.1, http://www.arm.com.
[18] ITRC, International Technology Roadmap for Semiconductors,

http://public.itrs.net.

http://www.arm.com/�
http://www.arm.com/�
http://www.arm.com/�
http://public.itrs.net/�

Analysis of Embedded Processors for Streaming Media Applications

 102

 103

Paper III

3Memory Architecture Evaluation for Video
Encoding on Enhanced Embedded
Processors3

Abstract. In this paper we investigate the impact of different memory configurations
on performance and energy consumption of the video encoding applications, MPEG-4
and H.264. The memory architecture is integrated with SIMD extended embedded
processor, proposed in our previous work. We explore both dedicated memories and
multilevel cache architectures and perform exhaustive simulations. The simulations
have been conducted using highly optimized proprietary video encoding code for
mobile handheld devices. Our simulation results show that the performance
improvement of dedicated memories on video encoding applications is not very
significant. The multilevel cache-based architecture processes approximately 17
frames/s compared to 19-22 frames/s for 512 KB dedicated on-chip zero-wait state
memory. Thus it is difficult to justify using dedicated memory for this kind of embedded
systems, when energy consumption and cost of implementation are also considered.

3 This paper is a reformatted version of Memory Architecture Evaluation for Video Encoding on Enhanced

Embedded Processors, in Proc. Embedded Computer Systems: Architectures, MOdeling, and Simulation
(SAMOS VI), Samos, Greece, July 17-20, 2006.

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 104

3.1 Introduction
The video encoding applications implementing standards such as MPEG-4 and H.264
are computationally and memory intensive. These applications are becoming a
dominant portion of today’s computing workloads for handheld embedded devices.
Since, embedded devices have limited energy supply and size they need to be designed
carefully to fulfill these confined demands. With this in mind, these devices have other
design challenges than high-performance designs. The key is to increase the
performance just enough to meet the requirements with as little cost overhead as
possible.

An important characteristic of video processing applications is the presence of data
localities. This provides the possibility to use a special memory architecture that reuses
data efficiently. Choosing the right memory solution is important in order to provide
sufficient performance and manageable energy consumption. The memory solutions
range from dedicated memories [1-4] to standard memory hierarchies [5-7].

The research on data reuse in media applications provides contradicting conclusions.
Some authors argue that data reuse is ineffective for these applications [8]. They
however concentrate on computational kernels only. Other authors draw different
conclusions when the whole video processing application is considered [7]. Their paper
confirms the existence of data locality for video encoding applications such as MEPG-
4 for non-SIMD architecture, and the authors state that specific memory system
optimizations fails to improve MPEG-4 performance. In this paper we examine Single
Instruction Multiple Data (SIMD) enhanced embedded processor and video encoding
applications specifically developed for mobile applications.

We use two proprietary video encoding applications provided by Ericsson AB
specifically developed with focus on very low complexity algorithms, which influences
both computations and memory traffic. This is important when evaluating memory
architecture.

In our previous work [12] we have proposed SIMD extension for embedded
processor to address the problem of high computation requirements for video encoding.
In this paper we examine the impact of different memory architectures on performance
and energy consumption of our architecture. We evaluate standard multilevel cache
hierarchy against dedicated memory because the standard code can be run without
rewriting that provides system flexibility.

The structure of the paper is as follows. Section 2 describes our video encoding
applications. In Section 3 basic information of our extended processor architecture is
given and in section 4 the memory architecture is discussed. Section 5 presents the
method used in our approach. In section 6 we present and discuss our experimental
results. In Section 7, we discuss related work and in Section 8 we give some
concluding remarks.

 105

3.2 Video Application
The two video standards used in our research are MPEG-4 [9] and H.264 [13]. Both are
block based and one could view H.264 as the next step after MPEG-4. Looking at the
optimized implementations of H.264/AVC encoders, time complexity is about 3.4
times higher for H.264 than MPEG-4 [14]. There are different phases involved in video
encoding, such as Motion Estimation (ME), Motion Compensation (MC), Discrete
Cosine Transform (DCT), quantization (Q) and variable length coding (VLC) [9]. The
MPEG-4 and H.264 implementations selected for our research are full proprietary
video encoding applications provided to us by Ericsson AB [11].

By profiling both MPEG-4 and H.264 video encoding applications we have
identified the main computationally intensive operations. Our MPEG-4 application
allows for full search (FS) and optimized search (OS) modes, with the last being more
realistic for mobile devices. In MPEG-4 the most time consuming operations are in
motion estimations Sum-of-Absolute-Differences (SAD), DCT as well as SAD_Intra.
These operations account for 25-80% of the entire encoding time in case of MPEG-4
[15].

Two different H.264 implementations were evaluated. H.264 Ultra light (UL)
comparable in quality to MPEG-4 and H.264 FAST comparable to the reference
implementation [10]. The profiling of H.264 FAST and UL while performing encoding
of the foreman test sequence shows the suitable operations for data parallelism
account for approximately 40% of encoding time. These operations are Sum-of-
Absolute-Transformed-Differences (SATD) and interpolation where they are
significant part of the overall encoding time.

The main difference between our two implementations of H.264 encoder is the time
complexity of the encoders and the quality of the encoded video sequence. The H.264
UL implementation is the simpler of the two and on average performs more efficiently
than MPEG-4. The H.264 FAST encoder is more computationally demanding. This
encoder performs well against the H.264 reference code [10] even though the time
complexity of our encoder is significantly lower, approximately a speedup with a factor
of 100 with an average bit-rate increase of less than 20%, than the reference encoder.
This corresponds to approximately 700 times fewer SAD calls and 35 times fewer
SATD calls [11].

The most often executed operation of video encoding, as identified by our profiling,
use pixel arrays that represent frames. Macroblock (MB) is the main block of data
where in MPEG-4 it consists of 8x8 pixels or 16x16 pixels. H.264 uses variable block
sizes where macroblocks are partitioned into smaller MB 16x8, 8x8, 8x4 and 4x4. The
frames are allocated in consecutive memory locations represented as pixel arrays. The
allocated size for each frame is the frame size plus a border of 16 pixels surrounding
the frame to deal with edge macroblocks when these are moved. The allocated memory
for each section with screen size, QCIF (176x144) is 35 KB, CIF (352x288) is 122 KB

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 106

and VGA (640x480) is 343 KB.

3.3 Processor Architecture
For the purpose of this study we have extended an embedded processor (MIPS based)
with a specialized SIMD unit. This unit is designed in such a way that it supports
specific operations found in video encoding algorithms such as MPEG-4 and H.264.
Media applications and in particular video encoding is well tailored for SIMD based
solutions, as there is abundance of data-level-parallelism [8,16,17]. In addition, SIMD
design is highly efficient in exploiting the structure and resources of the processor.

Our SIMD unit proposed in our previous work [12] is a pipelined unit with specific
instructions that increase the overall performance. The baseline architecture contains a
MIPS CPU with SIMD unit as well as the cache hierarchy and the main memory. The
second architecture extends the baseline architecture with dedicated memory
SIMDMeM. A more detailed schematic of the MIPS core and the SIMD unit
microarchitecture is depicted in fig. 1. SIMD unit is integrated in the flow of the
instruction pipeline of the processor. At the instruction decode stage, SIMD
instructions are identified and redirected to SIMD unit. The SIMD unit executes load
and arithmetic instructions. It has two vector registers VR1 and VR2 that can be
configured either as 16X8-bits or 8X16-bits registers. The bandwidth of the memory
interface is 64-bits, thus resulting in two or three load accesses for loading each vector
register. Three accesses are needed for alignment of data.

Five arithmetic and five memory instructions have been added to the MIPS ISA to
support the SIMD extension. The new instructions follow the same ISA as the other
processor instructions. The load instructions perform the loading of vector registers
(VR1 and VR2). The arithmetic instructions work on the two vector registers.
Instruction SIMDSAD16 performs first 16 absolute value operations in parallel and
then a tree of adders (together 15) sums all these values. SIMDSAD8 performs two 8x8
MB SAD operations. SIMDSATD first performs a Hadamard transform and then
calculates SAD on the difference array. SIMDFIR performs a FIR filtering in half pixel
interpolation. SIMDAVG performs average value for two pixel values for quarter-pixel
calculation. The vector-processing unit is pipelined and has several stages, depending
on used adders and technology. The speed-up for our SIMD using different SIMD
instructions is approximately 6-7 times for SIMDSAD/SIMDSATD, three times for
SIMDFIR and two times for SIMDAVG.

 107

Figure 1. The proposed SIMD architecture.

3.4 Memory Architecture
The memory system and cache utilization stands out as one of the main issues, when
introducing our SIMD support. As this affects many parts of the system, we need to
investigate the architectural design tradeoffs. We investigated three different solutions,
one using the standard memory hierarchy, the other introducing a zero-wait state
separate memory for the SIMD unit, SIMDMeM, and a third using a dedicated zero-
wait state frame memory. As the impact of this memory on the overall encoding
performance was the focus, we evaluated a memory sufficiently large to hold all data
we need.

We evaluated both the impact of level-1 and level-2 caches on the overall
performance. Caches provide good performance for video encoding applications, since
these applications have good spatial locality. Many procedures in these applications
access data sequentially in blocks of 16 bytes.

Our SIMD memory SIMDMeM, acts as a tightly coupled memory (TCM), holding
all data used by the SIMD unit. This provides a zero-wait state memory for SIMD
calculations, thus removing memory latencies from the memory hierarchy. SIMDMeM
also use the same address space as the main memory. We do not discuss any specific
organization of this dedicated memory but our assumptions provide an ideal model. A
real dedicated memory cannot provide better performance than the model used in our
studies. As we will show even with this assumption, the overall performance of the
encoder is not improved very much comparing to the standard cache hierarchy.

An alternative solution would be an on-chip zero-wait state frame memory. The

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 108

minimum size for this on-chip memory is dependent mainly on frame size and number
of reference frames used. The memory footprint for our H.264 encoder with screen size
of QCIF (176x144) and four reference frames is at least 512 KB. This solution reduces
the energy costs of off-chip communication, at the same time, a 512 KB for on-chip
fast memory might be difficult to justify in an embedded system.

3.5 Methodology
For verification of our architecture we used the two proprietary video encoding
applications presented in section 2. Instruction Set Simulator (ISS), which is based on
SimpleScalar toolset was used for the evaluation. This toolset provides an
infrastructure for architectural modeling [18]. To estimate power we integrated the
power estimation tool Wattch [19] into our system. The switching information for
registers, functional units and buses was collected and used by Wattch for power
calculation. The SimpleScalar cycle accurate model sim-outorder, modeling an in-order
processor, with MIPS ISA has been chosen. We compile our video applications with
the MIPS gcc compiler included in SimpleScalar toolset at optimization level –O3.
Three memory configurations were used in our experiments: a separate level-1
instruction and data cache together with a unified level-2 cache, dedicated memory
SIMDMeM, and on-chip frame memory. Table 1 illustrates configuration of the system
with the underlined values representing the memory architecture configuration
proposed after our investigation presented in section 6.

We evaluated two different architectures, baseline SIMD extended with standard
memory hierarchy and SIMD extended with dedicated memory. The processor clock
speed was set at 650 MHz in all the simulations with 90 nm process power model. The
energy model for the off-chip memory includes the memory and communication
energy consumption. The memory hierarchy latency for the system is 6 cycles for
level-1 cache miss for the first chunk of data and 1 cycle for the consecutive chunks. A
cache level-2 miss gives 45 cycles latency for the first chunk of data and 5 cycles for
the consecutive data chunks when fetching data from the main off-chip memory.

Table 2 illustrates the configuration chosen for the MPEG-4 and H.264 encoders.
The screen resolutions chosen were QCIF (176x144) and CIF (352x288). H.264 is
restricted with the screen resolution of QCIF as our encoder for the moment supports
this size. Test sequences chosen in our experiments were foreman, mobile and news
[20]. The main difference between these sequences is the amount of processing they
need to encode the sequences. The mobile sequence is the most demanding sequence
in terms of processing. In order to measure the overall performance of the system we
used frames per second, which in our case is more relevant as we are performing video
encoding. As we are dealing with handheld, battery driven embedded devises we use
total energy consumption rather than power consumption. For evaluating cache

 109

performance we use miss rate, which is a common practice. But as we will point out
later, blindly using miss rate alone can be misleading, as cache accesses influence the
total energy consumption.

Table 1. Cache architecture, dedicated memory SIMDMeM and on-chip frame memory with the
chosen size and configurations (underlined in the table).

 Size (KB)
Line size
(Bytes)

Associativity Replacement policy

Inst. Cache 8/16 16//32/64 2 32 LRU

Data Cache 8/16/32 8/16//64/128/256/512/1024 1/2/4/8/16 32 LRU

Unified Cache 64/128 32//265/512/1024/2048 64 4 /128 LRU

SIMDMeM - 128 - -

On-chip Frame
memory

- 512-768 - -

Table 2. MPEG-4 and H.264 configuration.

 Screen size Quantization Search algorithm Comments

MPEG-4 QCIF/CIF 15 Full Search/
IGRADD Half-pixel enabled

H.264 Ultra Light (UL) QCIF 30 IGRADD Ref. frames 4

H.264 FAST QCIF 30 IGRADD Ref. frames 4

3.6 Experimental Results and Discussion
In sub-section 6.1, we evaluate the level-1 instruction and data cache size and their
configurations for video encoding. In sub-section 6.2 we present our evaluation of the
level-2 cache and its impact on performance and cache miss rate. Sub-section 6.3 deals
with the energy consumption of the architecture. The results obtained in section 6.1-6.3
are then used to select an appropriate cache configuration when comparing with
dedicated memory. In sub-section 6.4, we present the performance results for encoding
applications on the evaluated architectures for both standards cache hierarchy and
dedicated memory. Finally, we discuss experimental results and their implications in
sub-section 6.5.

3.6.1 L1 cache configuration
To find the optimal cache configuration for our two encoding applications we
performed extensive simulations for different cache configurations. We have chosen

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 110

separate instruction and data cache architecture. The evaluated data cache sizes for
level-1 cache were 8, 16, 32 and 64 KB, which are the most common sizes used. The
increased data cache size has positive effect on encoded frames per second (frames/s)
as shown in fig. 2a, but this comes at the expense of increased energy (fig. 5a) as
discussed later. Based on the analyses of miss rate for level-1 data cache, fig. 2b, we
can conclude that the level-1 data cache already at 32 KB has a miss rate between 1.2-
3.1% for all applications. This provides a performance of 30 frames/s for most
applications except H.264 FAST.

Figure 2. a) Frame rate for MEPG-4 and H.264 with different level-1 cache sizes.

0

10

20

30

40

50

60

70

80

90

Fr
am

es
/s

a) SIMD MPEG-4 FS SIMD MPEG-4 OS SIMD H.264 FAST SIMD H.264 UL

 111

Figure 2. b) Miss rate for MEPG-4 and H.264 with different level-1 data cache sizes.

Fig. 3a shows performance for 4, 8 and 16 KB instruction cache sizes. Caches larger
than 16 KB are not shown in figures, but we have observed that there is no significant
miss rate improvement and are not realistic for embedded systems. Looking at the
frame rate depicted in fig. 3a, going from 8 to 16 KB instruction cache gives a
significant improvement for our application. An important factor is the level-1
instructions cache miss rate, which is as high as 29% for 4 KB and 20% for 8 KB going
down to 4.3% for 16 KB instruction cache.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5
M

is
s-

ra
te

 L
1
$
 [

%
]

b)
MPEG-4 FS MPEG-4 OS H.264 FAST H.264 UL

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 112

Figure 3. a) Frame rate for H.264 FAST and UL with different level-2 and level-1 instruction
cache sizes.

Figure 3. b) Frame rate for H.264 FAST and UL with different level-2 and level-1 data cache
sizes.

0

5

10

15

20

25

30

35

40

45

L2_$64 L2_$128 L2_$256 L2_$512

F
ra

m
e
s/

s

a) I$4 "FAST" I$8 "FAST" I$16 "FAST"
I$4 "UL" I$8 "UL" I$16 "UL"

FAST

UL

0

5

10

15

20

25

30

35

40

45

50

L2_$0 L2_$64 L2_$128 L2_$256 L2_$512

F
ra

m
e
s/

s

D$8 "FAST" D$16 "FAST" D$32 "FAST"

D$64 "FAST" D$8 "UL" D$16 "UL"

UL

FAST

b)

 113

Cache associativity is another key issue for cache performance. The number of cache
accesses decrease when we go from direct mapped to 2-way, 4-way associativity. Our
experiment shows that going beyond this to 8-way and above provides no significant
improvement. As our results show, the low miss rates in level-1 cache indicates the
high reuse of data in level-1 cache. The main bandwidth bottleneck is between level-1
cache and processing unit. In our architecture a 64-bits bus handles this. Our
simulations indicate 16 KB being right size for level-1 instruction and 32 KB for level-
1 data cache.

3.6.2 L2 cache and its impact
Fig. 3b illustrates the impact of level-2 cache for encoding foreman test sequence. This
test sequence can be considered as good average since similar results were observed for
both mobile and news test sequence. As in previous sub-section the presented results
are for H.264 encoding. The results of MPEG-4 indicate a similar pattern. We observe
the potential benefits of reducing the size of level-1 cache with small performance
degradation on the overall encoding. If the size of level-1 is below 8 KB the size of
level-2 cache has no impact on overall performance. Cache level-1 of 16 KB and above
provides significant improvement with added level-2 cache. The optimal size, when
taking into account miss rate as well as energy consumption and performance, of level-
2 cache is 128 KB. This is true for all test sequences.

The impact of introducing a level-2 cache, which is significantly slower but larger
than level-1 cache, is apparent on overall performance. We observe a miss rate
improvement when going from 20-16% for 64 KB level-2 cache to 8-4% for 128 KB
and below 1.5% for 512 KB. An important issue is the impact of level-1 cache on
level-2 cache. The observation made for instruction cache, that a larger level-1 cache
gives a higher miss rate in level-2 cache, is also true for level-1 data cache.

In fig. 3b there is a break at 128 KB where the curve flattens and we observe less
noticeable improvement with increased level-2 cache size. The same results were also
obtained and verified for encoding MPEG-4, but due to space limitations we only
present H.264 encoding results.

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 114

Figure 4. a) Frame rate and energy consumption for different level-2 cache line sizes.

Figure 4. b) The impact of level-2 cache on performance while encoding foreman with H.264
UL and FAST.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0

5

10

15

20

25

30

35

40

line32-32 line32-64 line32-128

E
n

e
rg

y
[J

o
u

le
s]

F
ra

m
e
s/

s

Frames/s H.264 UL Frames/s H.264 FAST
Energy H.264 UL Energy H.264 FAST a)

0

5

10

15

20

25

30

35

40

45

F
ra

m
e
s/

s

b)

 115

As shown in fig. 4a the optimal line size for level-2 cache, which in our study was
64-bytes. The positive impact of increased level-2 line size both saves energy as well as
lowers the miss rate. At the same time the number of accesses is almost identical. This
has more impact on the overall system performance than level-1 line size. Going
beyond 64-bytes does not give any significant improvement on the overall performance
and has negative impact on the overall energy consumption.

Fig. 4b shows the overall improvement in video encoding performance that can be
obtained by introducing a level-2 cache. The significant performance jump can be
observed when we use level-2 cache together with a large enough level-1 cache. In our
case this is at 32KB for level-1 data cache and 128 KB level-2 unified cache. Going
beyond this has no significant overall improvement.

3.6.3 Energy consumption
Fig. 5a depicts the total energy consumption of the system with caches and off-chip
memory. The total energy consumption includes also our SIMD unit but it is usually
lower for SIMD enhanced architecture even though we have introduced a new
component in the processor architecture [11]. The energy consumption of different
cache configurations while performing video encoding on the foreman test sequence
shows that the optimal point is at 128 KB level-2 cache, 32 KB level-1 data cache and
16 KB level-1 instruction cache sizes. As can be seen this is true both for H.264 FAST
and H.264 UL, similar results were obtained for MPEG-4 as well. Fig. 5b shows the
energy consumption when encoding MPEG-4 as well as H.264 with the final memory
architecture. The overall energy consumption is almost identical for both SIMD and
SIMDMeM.

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 116

Figure 5. a) Energy consumption for H.264 (FAST) and (UL) for encoding foreman test
sequence with different level-2 data cache sizes.

Figure 5. b) Energy consumption for MPEG-4 (FS) (OS) and H.264 (FAST) (UL) for test
sequences foreman, mobile and news.

0

0,5

1

1,5

2

2,5
E
n

e
rg

y
 [

Jo
u

le
s]

H.264 "UL" H.264 "FAST" a)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

E
n

e
rg

y
 [

Jo
u

le
s]

SIMD SIMDMeM b)

 117

3.6.4 Dedicated memory vs. cache
The three memory configurations were standard cache hierarchy as discussed earlier
and dedicated memory SIMDMeM for SIMD unit, as well as dedicated frame memory.
The optimal cache configuration we found in previous sub-sections was used for our
evaluation (see table 1). Fig. 6 shows the performance of our two memory architectures
for H.264 FAST and UL as well as MPEG-4 when encoding the three different test
sequences foreman, mobile and news.

The performance of SIMD and SIMDMeM are almost identical which shows the
impact of adding a dedicated memory to SIMD unit has no significant impact over
standard cache memory organization. With regards to energy consumption in fig. 5b
we do not see any significant difference between the two memory architectures.

We have also evaluated the most optimistic data memory hierarchy, where all frame
data used for encoding is in dedicated zero-wait state frame memory. The encoding of
foreman results in 22 frames/s compared to 17.5 frames/s for SIMD and 18.6 frames/s
for the SIMDMeM solution. The increased energy consumption from using a standard
memory hierarchy with off-chip frame memory compared to using an on-chip zero-
wait state frame memory is 0.35 J. This includes off-chip memory and communications
for our chosen standard memory hierarchy configuration (see table 1). As stated before,
the main arguments against an on-chip solution is the added costs in terms of size and
practicality of having at least 512KB for on-chip zero-wait state memory. The
justification for this solution in an embedded system is extremely hard especially when
the gains are still relatively small.

Figure 6. Frame rates for MPEG-4 (FS) (OS) and H.264 (FAST) (UL) while encoding the test
sequences foreman, mobile and news.

0

10

20

30

40

50

60

70

80

90

F
ra

m
e
s/

s

SIMD SIMDMeM

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 118

3.6.5 Summary
The addition of dedicated memory for the SIMD unit has no significant benefit when
performing video encoding, both for H.264 as well as MPEG-4, and regardless of the
test sequence used. The benefit of increasing the size of level-1 data cache beyond 32
KB has no substantial improvements on the overall performance, as well as it may even
reverse affect for the energy consumption. The introduction of level-2 cache, to hide
the latencies between the level-1 cache and main memory, has more significant impact
on the overall performance as well as energy consumption. This has also the positive
side effect of being able to reduce level-1 cache size. In terms of using a dedicated
SIMDMeM or dedicated on-chip frame memory the increase in performance is
relatively small only by 4.5 frames for the dedicated frame memory.

3.7 Related Work
Most work on video encoding has been done using kernels [8,21], or using non-
optimized code [3,4,7,22,23]. This approach makes it difficult to draw right
conclusions for how an entire video encoding application behaves. In our study we use
proprietary video encoding applications, ensuring that we have correct workloads for
evaluation of our memory architectures.

The high bandwidth requirements of video encoding applications are important
architectural design issues [22]. Multilevel caches, together with special instructions
for computationally intensive application kernels, are discussed in [21] as important
performance boosters. The authors of [6,7] propose to use bandwidth hierarchy to
address the memory bandwidth problem. By removing the latency through usage of
memory hierarchy the performance degradation was negligible and thus illustrated the
potential of balanced memory architecture. We also use cache hierarchy but we test it
with the SIMD unit that has higher bandwidth requirements. Our approach of using the
standard memory hierarchy has the added benefit of not needing to optimize the data
placement and having the added cost of dedicated memory.

Utilizing a level-2 cache has been a performance improvement factor in high
performance processors. As more computationally demanding applications are
executed on embedded systems, level-2 cache has been proposed for embedded domain
as well. There are though not many studies done in this regard. In [6] the authors
briefly discuss CPU utilization and transaction traffic when introducing level-2 cache
for video decoding. Their finding is that both CPU utilization and transaction traffic
decrease with increased level-2 cache size. In [7], the authors study performance of
non-SIMD high performance processors for MPEG-4. Their architectures utilize large
1-8 MB level-2 cache, which improves the overall performance through reduction of
traffic to main memory. In none of these works the emphasis has been on evaluating
the actual impact of level-2 cache. The work has been on high performance general
purpose processors using MPEG-4 reference code. In [6] there is a study on

 119

performance improvement for embedded processors when introducing level-2 cache.
This work looks at MPEG-4 decoding which has some similarities to encoding but is
much less performance demanding. We use video encoding and an embedded processor
with an SIMD unit. This puts different requirements on memory bandwidth.

Dedicated memories have been proposed to improve performance of application
specific systems, for example in [3,4]. The authors in [24] propose a HiBRID multi-
core system on chip architecture with 4KB dedicated memory to compute macroblocks.
In our work we have evaluated dedicated memory architectures against multilevel
cache hierarchies.

3.8 Conclusions
In this paper we have performed extensive simulations on our SIMD extended
processor and show that using standard multilevel cache hierarchy achieve almost the
same performance as a dedicated memory for the SIMD processing unit for video
encoding. As video encoding is highly data centric the importance of a well-balanced
memory is crucial. An important issue for this exploration is the use of realistic
application workloads specifically implemented for handheld embedded devices when
exploring different design trade-offs. We examine two solutions, one that utilizes the
standard cache hierarchy (two levels) and the other one that uses a dedicated zero-wait-
state memory. Our results show, against common belief, that the use of the standard
cache based architecture achieves almost the same performance as SIMD dedicated
memory architecture for full video encoding applications. We have made conservative
assumptions in our energy models for dedicated memory but the overall difference in
energy consumptions was negligible.

References
[1] V.A. Chouliaras et al., “A Multi-Standard Video Accelerator based on a Vector

Architecture,” IEEE Trans. Consum. Elec., Vol.51, No.1, Feb. 2005.

[2] J.L.Nunez. and V.A. Chouliaras, “High-performance Arithmetic Coding VLSI
Macro for the H264 Video Compression Standard,” IEEE Trans. Consum. Elec.,
Vol.51, No.1, Feb. 2005.

[3] Y.-W.Huang, B.-Y.Hsieh, T.-C.Chen and L.-G.Chen, “Hardware Design for
H.264/AVC Intra Frame Coder,” in Proc. of IEEE ISCAS’04, Vol. 2, II-269-272,
2004.

[4] R.G.Wang, J.T.Li and C.Huang, “Motion Compensation Memory Access
Optimization Strategies for H.264/AVC Decoder,” in Proc. of IEEE ICASSP’05,
Vol. 5, pp.97-100, 2005.

[5] A.Stevens, “Level 2 Cache for High-performance ARM Core-based SoC System,”
White-paper ARM, Jan. 2004, http://www.arm.com/.

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 120

[6] A.Asaduzzaman et al., “Cache Optimization for Mobile Devices Running
Multimedia Applications,” in Proc. IEEE ISMSE’04, pp. 499-506, 2004.

[7] S.A.McKee, Z.Fang and M.Valero, “An MPEG-4 Performance Study for non-
SIMD, General Purpose Architectures,” in Proc. of IEEE ISPASS 2003, pp. 49-57,
2003.

[8] J.D.Owens et al., “Media Processing Applications on the Imagine Stream
Processor”, in Proc. of IEEE ICCD’02, pp. 295-302, 2002.

[9] MPEG-4: ISO/IEC JTCI/SC29/WG11, “ISO/IEC 14469:2000-2: Information on
technology-coding of audio-video objects–Part 2:Visual,” ISO/IEC, Genf,
Switzerland, Dec. 2000.

[10] H.264/AVCSoftwareCoordination,JM,http://iphome.hhi.de/suehring/tml/
[11] C.Priddle, “H.264 video encoder optimization with focus on very low complexity

algorithms,” M.S. thesis, Uppsala University, April 2005.
[12] A.R..Iranpour and K.Kuchcinski, “Evaluation of SIMD Architecture Enhancement

in Embedded Processors for MPEG-4,” in Proc. IEEE DSD’04, Sep. 2004.
[13] Joint Video Team (JVT) of ISO/IEC MPEG, ITU-T VCEG “Text of ISO/IEC

14496 10:2004 Advance Video Coding Standard (second edition)”, ISO/IEC
JTC1/SC29/WGII/N6359, Munich, Germany, March 2004.

[14] V.Lappalainen, et al., “Performance of H.26L Video Encoder on General-Purpose
Processor,” Kluwer Journal of VLSI Sig. Proc., Vol. 34, No. 3, pp. 239-249, 2003.

[15] A.R.Iranpour and K.Kuchcinski, “Analyses of Embedded Processors for Streaming
Media Applications,” in CAECW-8, Feb. 2005.

[16] V.Lappalainen, T.D.Hämäläinen and P.Liuha, “Overview of Research Efforts on
Media ISA Extentions and Their Usage in Video Coding” IEEE Trans. Circuit and
System for Video tech., Vol. 12, No. 8, Aug. 2002.

[17] S.Vassiliadis, B.Juurlink and E.Hakkennes, “Complex Streamed Instructions:
Introduction and Initial Evaluation” in Proc. 26th Euromicro Conference, Vol.1,
pp. 400-408, 2000.

[18] T.Austin et al., “SimpleScalar: An infrastructure for computer system modeling,”
IEEE Computer, Vol. 35, Issue 2, pp. 59-67, Feb. 2002.

[19] D.Brooks, V.Tiwari and M.Martonosi, “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,” in Proc. ISCA’00, pp. 83-94, June
2000.

[20] Test sequences, http://www.chiariglione.org/mpeg/
[21] F.Franchetti, S.Kral, J.Lorenz and C.W.Uberhuber, “Efficient Utilization of SIMD

Extensions,” in IEEE Proceedings, Vol. 93, No. 2, Feb. 2005.
[22] J.-C.Tuau, T.-S.Chang and C.-W.Jen, “On the Data Reuse and Memory Bandwidth

Analysis for Full-Search Block-Matching VLSI Architecture,” in IEEE Trans.
Circuit and Syst. For Video tech., Vol. 12, No.1, Jan. 2002.

 121

[23] C.-Y.Cho, S.-Y.Huang and J.-S.Wang, “An Embedded Merging Scheme for
H.264/AVC Motion Estimation,” in Proc. of ICIP 2003, Vol. 1, I-909, 2003.

[24] H.J.Stolberg et al., “HiBRID-SoC:A Multi-Core SoC Architecture for Multimedia
Signal Processing” Journal VLSI Signal Processing System, Vol. 41, pp. 9-20,
2005.

Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors

 122

 123

Paper IV

4Performance Improvement for H.264 Video
Encoding using ILP Embedded Processor4

Abstract. In this paper, we examine the impact of instruction level parallelism (ILP)
on the full H.264 video encoding application and give quantitative performance
measures of a superscalar architecture. Most research efforts have concentrated on the
data intensive parts, such as kernels but these are taking less time from the entire
execution as encoders are using new, more efficient algorithms. This important fact
cannot be neglected since new video encoding standards have been proposed and the
amount of other than data intensive computations has increased significantly. We
observed significant improvement for the entire application when using superscalar
architecture with out-of-order execution scheme. Tradeoffs in superscalar performance
are also evaluated with combinations of measurements from SimpleScalar simulator.

4 This paper is a reformatted version of Performance Improvement for H 264 Video Encoding using ILP

Embedded Processor, in Proc. of the 9th Euromicro Conference on Digital System Design, Cavtat/Dubrovnik,
Croatia, August 30th - September 1st, 2006.

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 124

4.1 Introduction
The importance of handling different applications with high degree of computation
intensity is a key issue for handheld embedded devises, such as mobile phones and
PDAs. One such category of applications are video encoders. These applications put
huge demands on the entire system, processor, memory, buses and other parts. Modern
video encoding applications, such as H.264, used in handheld devices, utilize optimized
algorithms that have very different execution profile than standard reference encoders.

There is a common belief, that in video encoding applications the data level
parallelism (DLP) dominates and other parallelisms, such as instruction level
parallelism (ILP), are of less importance. There are important issues of DLP in video
encoding applications that need to be examined deeper. First, data level parallelism
makes execution of parallel sections of the application faster. This makes the serial
sections become more dominant. Second, we have through profiling, in our previous
work, identified that the amount of DLP in optimized video encoders is decreasing.
Therefore, only concentrating on encoding kernels, as most researchers do, does not
provide enough performance improvements since the kernels are responsible for a
shrinking part of the execution time. In this situation, we have to find ways to seek
more parallelism in other parts of the encoding applications to improve the overall
performance.

The instruction level parallelism, (ILP) which exist in video encoders, is not
negligible, especially as the amount of control code in newer standards, such as H.264,
is increasing because of more advance compression techniques. This fact together with
the issues regarding DLP, makes ILP an obvious target for seeking increased amount of
parallelism.

There are two approaches for breaking the single-instruction-per-cycle bottleneck,
through usage of ILP, either by using superscalar processors or very long instruction
word (VLIW) architectures. These two categories exploit ILP, statically or dynamically.
For VLIW processors [1] ILP is found statically during compile time by the compiler.
Dynamic ILP, on the other hand, exploits either in-order or out-of-order (OoO)
hardware scheduler at runtime. Here we examine dynamic ILP, as we want to combine
ILP together with DLP provided by our single instruction multiple data (SIMD)
extended architecture proposed in our previous work [2, 3]. Intuitionally one can
observe that increased DLP reduces amount of existing ILP. We also observed this but
the amount of reduction was negligible.

In this paper we try to explore if there is enough parallelism to justify the use of out-
of-order superscalar in combination with SIMD architectures in embedded domain. The
goal is to encode 30 frames/s at CIF screen resolution with limited increase in size and
energy.

 125

The structure of the paper is as follows. Section 2, describes our video encoding
applications. In section 3 basic information of our superscalar SIMD extended
processor architecture is given and in section 4 the method used in our approach is
presented. In section 5, we present and discuss our experimental results. In section 6,
we discuss related work and in section 7, we give some concluding remarks.

4.2 Video Application
The main video standard used in our research is H.264. This standard is for wide
variety of areas, such as videoconferencing, and it is also the main video standard
recommended by 3GPP standardization group in release 6 [4]. The H.264 standard has
many similarities with MPEG-4 as they are both block-based. One could view H.264 as
the next step after MPEG-4. Looking at the optimized implementations of H.264
encoders, time complexity is about 3.4 times higher for H.264 than MPEG-4 [5].

H.264 was developed by Joint Video Team (JVT) and is a hybrid of the two existing
video coding standards, the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Pictures Experts Group (MPEG) [6]. H.264 has dramatically reduced
bit-rate while achieved 50% better compression, without compromising quality. The
main added features are variable block sizes, where macroblocks (MB) can be
partitioned into smaller blocks of size 16x8, 8x8, 8x4 and 4x4. Multiframe Prediction
(MP) and quarter-pixel resolution are other features added to improve the quality of the
final coded video sequence. The MP provides the usage of more than one previous
frame as reference for motion estimation (ME). Another improvement is the use
Hadamard transform in the SAD computation. In our architecture we use therefore
SATD, a special instruction to compute it instead of SAD. In H.264 ME there is half-
pixel interpolation, which is performed using a 6 tap FIR. The quarter-pixel is
evaluated by averaging two half-pixel values.

The H.264 application we use is the proprietary software provided to us by Ericsson
AB. The H.264 implementation evaluated, performs well against the reference
implementation in terms of quality [7, 8], even though the time complexity of our
encoder is significantly lower, approximately a speedup of 100 times with an average
bit-rate increase of less than 20%, than the reference encoder. It uses optimized search
mode and is configured for running screen size CIF (352X288) at 30 frames per second.

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 126

Figure 1. Profiling, the total execution time for H.264, whilst encoding test sequence foreman
with 4 reference frames

Figure 1 presents the profiling of H.264 while performing encoding of foreman test
sequence [9]. As can be seen, SATD and interpolation are the main operations where
data parallelism exists. It significantly influences overall encoding time but other
computations stand for nearly 60% of the total time. They cannot be made faster using
specialized DLP solutions but ILP might provide a speedup for these parts. We have
observed a significant difference between reference H.264 encoder and encoder written
with focus on embedded handheld devices. This means that accurate and relevant
architectural designs need realistic applications and crucial for media applications.

4.3 Processor Architecture
In order to achieve the target performance requirement of 30 frames/s we combined the
SIMD architecture, proposed in our previous work [2], with superscalar architecture.
The SIMD unit provides the DLP capabilities and the superscalar architecture
introduces ILP to the system. The superscalar architecture could either be run as an in-
order or out-of-order (OoO) processor. In the case of in-order the instructions are semi-
dynamically scheduled, which means that instructions are continuously issued on non-
dependent memory stalls. The OoO architecture uses a central instruction window for
dynamic scheduling. The Design uses a Register Update Unit (RUU) and a Load/Store
Queue (LSQ) to reschedule the instructions [10].

For the purpose of extracting DLP we have extended an embedded processor (MIPS
based) with the specialized SIMD unit. This unit is designed in such a way that it
supports specific operations found in video encoding algorithms for H.264. Our

H.264

SATD

Half-pixel
Interpolation

Quater-pixel
Interpolation

Other

 127

profiling has identified specific parts of the application where there is large amount of
data level parallelism. The SIMD unit proposed in our previous work [2] is a pipelined
unit with specific instructions that increase the overall performance and provide
instructions for H.264.

Figure 2. The proposed SIMD architecture. The connection from memory to the extension is 64-
bit wide. The 64-bits coming from memory are in consequent addresses thus they can be read in
one cycle.

 A detailed schematic of the MIPS core and the SIMD unit microarchitecture is
depicted in fig. 2. SIMD unit is integrated in the flow of the instruction pipeline of the
processor. At the instruction decode stage, SIMD instructions are identified and
redirected to SIMD unit. It executes load and arithmetic instructions. The SIMD unit
has two vector registers VR1 and VR2. Each vector register can be configured either as
16 8-bits or 8 16-bits registers, depending on the SIMD arithmetic instruction. The
bandwidth of the memory interface is 64-bits, thus resulting in two or three load
accesses for loading each vector register. Three accesses are needed for alignment of
data. Alignment is performed on the current frame macroblock, which is done by
reading three 8-bytes from memory. These 24 bytes are then shifted left so that they
become byte aligned, i.e., we get two 8-byte aligned data.

In this paper, we extended our previous SIMD architecture with the capability of 2D
SAD computations. The instructions supporting these computations perform a SAD

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 128

operation on the entire macroblock (MB), thus reducing even more control code
overheads.

The SIMD instructions follow the same ISA as the other processor instructions.
SIMDLD16, SIMDLD8, SIMDLD16T, SIMDLDFIR and SIMDLDAVG are load
instructions, which perform the loading of vector registers (VR1 and VR2).
SIMDSAD16, SIMDSAD8, SIMDSATD, SIMDFIR, SIMDAVG are the arithmetic
instructions performing the computation by taking VR1 and VR2 as input operands and
writing the results back in the target register. The new 2D SAD instruction
SIMDSAD2D work in the same way as previous instructions while, in addition, it
preloads the next macroblock lines. The instruction has also the stride for fetching the
next MB line and calculates the SAD result for the whole MB and thus resulting in less
memory accesses.

For increasing Instruction level parallelism (ILP) we extend the processor width by 2,
4, 8 and 16 ways. In order to achieve a balanced superscalar design we have the same
size fetch, decode, issue and commit width. The processor uses central instruction
window for OoO processing, which requires less storage than reservation station. This
central window can be implemented in different ways such as, dispatch stack, register
update unit or reorder buffer. Our processor has been implemented using a Register
Update Unit (RUU) and a Load/Store queue (LSQ). The size of the RUU and LSQ is
important concerning the performance of the OoO unit. The RUU is a simpler
implementation of central window that avoids the complexity of compressing the
instruction window, as is the case with dispatch stack. The RUU operates as FIFO
buffer with decoded instructions being placed on top of the FIFO and results being
written to register file at the bottom of the FIFO. An important characteristic of RUU,
compared to dispatch stack, is that an entry is not removed when the instruction is
issued, but rather it is removed when it reaches the bottom of the FIFO. This result in a
simpler design but the drawback is that it makes it sensitive to small instruction
window sizes. This could also indirectly result in stalls in the decoder, if an instruction
entry reaches the bottom of the RUU and the instruction has not been issued.

4.4 Methodology
The focus of this research was to evaluate the impact of different architectural
techniques for extracting instruction level parallelism (ILP) on the full video encoding
application and also to combine it with our proposed SIMD extended architecture for
data level parallelism. To verify our architecture we used a proprietary video encoding
application presented in section II. Instruction Set Simulator (ISS), which is based on
SimpleScalar toolset was used for our evaluation. This toolset provides an
infrastructure for architectural modeling [11]. To evaluate power we integrated the
power estimation tool Wattch [12] into our system. The power model used for the
architecture was also executed for the SIMD instructions. The switching information

 129

for registers, functional units and buses was collected and used by Wattch for power
calculation. The cycle accurate model sim-outorder with MIPS ISA has been chosen.

We compiled our video applications with the MIPS gcc compiler included in
SimpleScalar toolset at optimization level –O2. The memory architecture we used for
our experiments was separate level-1 instruction and data cache together with a unified
level-2 cache and external memory. The processor clock speed was set at 650 MHz in
all the simulations with 90 nm process power model. The energy model for the off-chip
memory includes the memory and communication energy consumption.

In our previous work [3] we showed that video encoding applications are less
sensitive to memory latency and a standard multilevel cache hierarchy provides
performance that is almost as good as using 512 KB of dedicated on-chip zero-wait-
state memory. The cache configuration used in this paper is the one we proposed in or
study, 16 KB instruction, 32 KB data level-1 cache as well as 128 KB level-2 cache.
The off chip memory was modeled as bursted memory, with first chunk latencies of 45
cycles and 5 cycles for the subsequent accesses.

The superscalar architecture is based on MIPS-IV architecture with six pipeline
stages fetch, dispatch, issue writeback, and load/store queue refresh. The architecture
supports out-of-order issue and execution by using Register Update Unit (RUU) [13]
working as a reservation station for reordering and register-renaming of pending
instructions. A Load/Store Queue (LSQ) is also used for employing a support for
speculative execution. The results are stored in a store queue while pending resolve of
execution. Table 1 shows the configuration of the superscalar processor.

Table 1. Superscalar processor configuration.

 2-way 4-way 8-way 16-way

Fetch,Decode,Issue,Com
mit Width 2 4 8 16

RUU size (inst.)
8,16,32,64,

128

8,16,32,64,

128

8,16,32,64,

128

8,16,32,64,

128

LSQ size (inst.) 8,16,32,64 8,16,32,64 8,16,32,64 8,16,32,64

Number Func. Unit 2 4 8 16

The configuration chosen for the H.264 encoder has screen resolution CIF (352x288)

and four reference frames were used. The screen resolution has a linear impact on the
performance, which we showed in our previous work [3].

Test sequences chosen in our experiments were foreman, mobile and news [9]. The
main difference between these sequences is the amount of processing to encode the
sequences. The mobile sequence is the most demanding sequence in terms of processing
while news is least demanding. The foreman test sequence represents a good average

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 130

between these two sequences and therefore we have reported simulation results for this
test sequence in this paper. In order to measure the overall performance of the system
we used frames per second, which in our case is more relevant as we are performing
video encoding. As we are dealing with handheld battery driven embedded devises we
use total energy consumption rather than power consumption. For evaluating ILP we
used instructions per cycle (IPC).

4.5 Experimental Results and Discussion
In this section, we present evaluation of the superscalar architecture when performing
video encoding. In this section, due to space limitation, we only present the results
from foreman test sequence at CIF screen resolution, since it provides a good average
evaluation. In sub-section A, we measure the amount of ILP and the impact it has on
DLP in terms of percentage improvement for SIMD as well NonSIMD architecture. In
sub-section B, we present the impact of ILP on performance. Sub-section C deals with
the energy consumption of the architecture. Finally, we discuss experimental results
and their implications in sub-section D.

4.5.1 Amount of ILP in H.264 and impact on DLP
To observe the amount of ILP in the H.264 we evaluated IPC for a set of different
superscalar width (fig. 3), and observed first that in-order architecture does not give
any improvement despite increased processor width. This is due to inability to better
schedule instructions when data and resource dependencies exist. To some extent better
compiler can solve this, but there are still some dependencies that can only be handled
during runtime, such as conditional branches. In the case of out-of-order (OoO), we
observe an IPC improvement up to 8-way superscalar processor. This is quite natural
since the OoO runtime scheduler can much better utilize the added hardware.

 131

Figure 3. Instructions per cycle (IPC) for in-order vs OoO with different superscalar issue width.

Figure 4 shows the percentage improvement for SIMD and NonSIMD architecture,
when increasing the width of the processor, using conventional ILP technique. This
percentage improvement is measured when going, from scalar to 2-way, from 2-way to
4-way, etc. Our results show that in the case of SIMD extended processor already when
increasing to 2-way superscalar we have best improvement and utilization of the
system. This occurs due to the ability of better scheduling of SIMD instruction, as these
instructions are independent of each other. By providing a 2-way issue capability,
SIMD unit utilization increases. Going beyond 2-way does not provides more
utilization as we have saturated SIMD utilization. For the NonSIMD architecture, this
occurs at 4-way superscalar. The reason is that a conventional ILP can better schedule
instructions, solve data dependencies as well as handle resource limitations. This shows
the distance between two independent instructions is often larger than two instructions.
We observed highest percentage improvement at 4-way, going beyond this we observe
the same saturation, and the improvement become much smaller.

0

0,5

1

1,5

2

2,5

3

Scalar (1-way) 2-way 4-way 8-way 16-way

In
st

ru
ct

io
n
s

Pe
r

C
yc

le
 (

IP
C
)

OoO
InOrder

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 132

Figure 4. Percentage improvement of SIMD and NonSIMD architecture when going from scalar
to 2-way, from 2-way to 4-way, from 4-way to 8-way and from 8-way to 16-way.

4.5.2 Encoding performance by combining ILP and DLP
The performance target was to encode 30 Frames/s at CIF screen resolution. Looking at
fig. 5 this was almost achieved by the 2-ways SIMD extended architecture. For
achieving the 30 frames/s target in the NonSIMD architecture, we need to have at least
4-way superscalar. We also observe linear improvement of performance with added
issue width up to 8-way. Beyond this point, the improvement is nonexistent, as the
potential ILP is exhausted. Fig. 5 depicts performance, measured in frames/s, of
different analyzed architectures. The data presented in this figure illustrate importance
of OoO execution. It can be explained by the fact that most ILP can be found between
iterations rather than within a single iteration. The in-order processor improvements are
negligible. This happens even though the in-order processor dynamically schedules
instructions and has non-stalling pipeline when memory stalls.

0

10

20

30

40

50

60

2-way OoO 4-way OoO 8-way OoO 16-way OoO

%

NonSIMD
SIMD

 133

Figure 5. Different architectures performing H.264 encoding, In-order scalar, in-order
superscalar, out-of-order (OoO) scalar and OoO superscalar.

4.5.3 Hardware and energy costs
The superscalar OoO implantation in our architecture is based on a central instruction
window implemented as Register Updata Unit (RUU) and a Load/Store Queue (LSQ).
Fig. 6 illustrates the performance of the encoder while increasing the RUU and LSQ
sizes. We observe that already at 16 instructions wide, RUU and LSQ we have
achieved a breaking point of improvement. One drawback with RUU, discussed in [10],
is the sensitivity of the design for small instructions windows compared to using a
more complex stack based or a reorder buffer central window.

0

10

20

30

40

50

60

Scalar
InOrder

2-way
InOrder

4-way
InOrder

8-way
InOrder

16-way
InOrder

Scalar
OoO

2-way
OoO

4-way
OoO

8-way
OoO

16-way
OoO

Fr
am

es
/s

NonSIMD
SIMD

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 134

Figure 6. The Central instruction window size. The RUU instruction queue size has non-linear
performance degradation when the size of the queue is below 8 instructions.

0

5

10

15

20

25

30

35

2-way OoO
ruu4_lsq4

2-way OoO
ruu8_lsq8

2-way OoO
ruu16_lsq16

2-way OoO
ruu32_lsq32

2-way OoO
ruu64_lsq64

2-way OoO
ruu128_lsq128

Fr
am

es
/s

NonSIMD SIMD

 135

Figure 7. Performance and energy consumption for an out-of-order (OoO) with increased
processor width.

Energy consumption depicted in fig. 7 indicates a minimum at 2-way for the SIMD
as well as NonSIMD. The architecture operates at the optimal point of energy when
both added hardware cost in terms of energy and performance gain are considered.
Fig.8 illustrates the overall energy consumption of in-order and OoO superscalar
designs. We observe higher serge in energy for the in-order architecture because the
added hardware is underutilized. The in-order design has slightly less energy
consumption in the scalar case as the performance of added OoO for the scalar
processor is negligible, but the performance gains become more apparent as the
processor width increase, showing more favorable energy consumption.

4.5.4 Discussion
Instruction level parallelism has a positive impact on the performance of video
encoding application. This impact provides the necessary performance to achieve the
target of encoding 30 frames/s at CIF screen resolution. For the SIMD extended
architecture this is achieved already at 2-way superscalar. We have also the best
improvement for this architecture as well as lowest energy consumption. For the
NonSIMD architecture, this occurs at 4-ways superscalar. One important observation is
the dynamic scheduling of instructions, which in our architecture is done by a central

0

2

4

6

8

10

12

14

16

18

Scalar (1-way) 2-way OoO 4-way OoO 8-way OoO 16-way OoO

E
n
er

g
y

Energy NonSIMD
Energy SIMD

Performance Improvement for H.264 Video Encoding using ILP Embedded Processor

 136

instruction window design. The alternative to this would be using static scheduling and
during compile time schedule instructions. The added OoO hardware is quite limited,
both in terms of processor width as well as in terms of size of RUU and LSQ.

4.6 Related work
In [1], the authors propose a vector SIMD-VLIW architecture where they show that for
MPEG-2 encoding they can achieve overall 1.5X speedup when both DLP and ILP
regions are taken into account, even though they increase the width of their architecture
from 2-ways to 8-ways. They also show that their vector approach improves their
overall average performance for a set of applications. In our study, we evaluate a SIMD
extended superscalar architecture and focus on H.264 encoder, which has more ILP
than previous standards like MPEG-2.

The authors of [14] focus on different media benchmark kernels and applications,
such as DCT, motion estimation kernel, speech, and jpeg encoding applications. They
use the results from their evaluations to propose architecture for the media applications
they have selected. They report good SIMD utilization for their applications but there is
a need to take care of parallelism existing outside main loops and kernels. In their
conclusions, they state that conventional ILP techniques need at least 8 or 16-way
superscalar processor to provide improvements. We observe that in the case of H.264
video encoding, already at 2 and 4-way superscalar architecture, there is sufficient
improvements combined with SIMD extension.

In [15], the authors evaluate MediaBench II video, which includes among others
H.264 encoder. They evaluate the different applications on 8-ways VLIW, in-order and
out-of-order architectures. They show in their work that an 8-issue VILW and an 8-
issue in-order superscalar processor perform equally well with a modest IPC of around
1.3 for the H.264 encoder, even though they have used different compiler optimization
techniques. In the case of 8-issue out-of-order superscalar processor, the achieved IPC
was around two for the H.264 encoder. Our work complements their work by combing
the ILP together with DLP using a SIMD unit, and evaluates the overall performance
when combining the two approaches.

4.7 Conclusions
This paper analyzes video encoding application H.264 in terms of ILP as well as DLP.
The results show the SIMD extended processor already at 2-way superscalar OoO have
sufficient gains for meeting the performance requirements of encoding 30 frames/s at
CIF screen resolution. Out-of-order scheduling is extremely important in video
encoding since parallelism found in modern encoders is not limited to data parallelism
and parallelization of loops does not provide enough performance improvement.

 137

References
[1] E.Salami and M.Valero, “A Vector-μSIMD-VLIW Architecture for Multimedia

Applications,” in Proceedings IEEE ICPP’05, 2005.

[2] A.R..Iranpour and K.Kuchcinski, “Memory Architecture Evaluation for Video
Encoding on Enhanced Embedded Processors,” in Proceedings SAMOS VI
workshop: Embedded Computer Systems: Architectures, MOdeling, and
Simulation Samos, Greece, July 17-20, 2006.

[3] A.R..Iranpour and K.Kuchcinski, “Evaluation of SIMD Architecture Enhancement
in Embedded Processors for MPEG-4,” in Proceedings IEEE DSD’04, Sep. 2004.

[4] 3GPP specification release 6, www.3gpp.org
[5] V.Lappalainen, A.Hallapuro and T.D.Hamalainen, “Performance of H.26L Video

Encoder on General-Purpose Processor,” Kluwer Journal of VLSI Sig. Proc., Vol.
34, No. 3, pp. 239-249, 2003.

[6] Joint Video Team (JVT) of ISO/IEC MPEG, ITU-T VCEG “Text of ISO/IEC
14496 10:2004 Advance Video Coding Standard (second edition),” ISO/IEC
JTC1/SC29/WGII/N6359, Munich, Germany, March 2004.

[7] H.264/AVCSoftwareCoordination,JM,http://iphome.hhi.de/suehring/tml
[8] C.Priddle, “H.264 video encoder optimization with focus on very low complexity

algorithms,” M.S. thesis, Uppsala University, April 2005.
[9] Test sequences, http://www.chiariglione.org/mpeg/
[10] M.Johnson, “SuperScalar Microprocessor Design”, Prentice Hall Series in

Innovative tech., ISBN 0-13875634-1, 1991.
[11] T.Austin, E.Larsen and D.Ernst, “SimpleScalar: An infrastructure for computer

system modeling,” IEEE Computer, Vol. 35, Issue 2, pp. 59-67, Feb. 2002.
[12] D.Brooks, V.Tiwari and M.Martonosi, “Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations,” in Proceedings ISCA’00, pp. 83-94,
June 2000.

[13] J.E.Smith and G.S.Sohi, “The Microarchitecture of Superscalar Processors”, in
Proceedings IEEE, Vol. 83, No. 12, Dec. 1995.

[14] D.Talla, L.K.John and D.Burger, “Bottlenecks in Multimedia Processing with
SIMD Style Extension and Architectural Enhancements,” IEEE Trans. Computers,
Vol. 52, No. 8, pp. 1015-1031, Aug. 2003.

[15] J.E.Fritts, F.W.Steiling and J.A.Tucek, “MediaBench II: Expediting the next
generation of video systems research,” in Embedded Processors for Multimedia
and Communications II, Vol.5683, No.5683 pp.79.93, editors, S.Sudharsanan,
V.M.BoveJr. and S.Panchanathan ISBN/ISSN:0-8194-5656-X,Mar.2005.

http://www.3gpp.org/�
http://www.chiariglione.org/mpeg/�

Paper V

5Design Space Exploration for Optimal
Memory Mapping of Data and Instructions
in Multimedia Applications to Scratch-Pad
Memories5

Abstract. In this paper, we propose a new methodology for optimal memory mapping of
data and instructions to Scratch-Pad Memories (SPM). In the mapping process, we
optimize, as the first priority, the number of memory accesses to minimize power
consumption. Minimization of external memory accesses lowers switching activity and
therefore power consumption. The optimization is done by finding Pareto points, using
multi-objective optimization that combines different cost functions. Our methodology is
intended to be used in real-life situations in industry where there is often a need for
mapping third party applications to a specific architecture. For evaluating our
methodology, we also use commercial video H.264 and audio eAAC+ applications.
Our experiments show that SPM is well suited for these applications for reducing
external accesses to reduce power consumption but has limited significance on overall
performance improvements. The proposed methodology provides a way to combine
SPMs with caches to optimally use this memory architecture. Our experiments indicate
high accuracy of our methodology for predicting SPM and external memory accesses.
We have obtained 90% accuracy between results of our methodology and results for
executing applications on a given architecture.

5 This paper is a reformatted version of Design Space Exploration for Optimal Memory Mapping of Data

and Instructions in Multimedia Applications to Scratch-Pad Memories, in Proc. of 7th ESTIMedia 2009,
Grenoble, France, October 15-16, 2009.

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 140

5.1 Introduction
There has always been a drive to find the most optimal solutions in embedded
resource-constrained systems in the past. But as time has passed the complexity of such
systems has increased, both in terms of overall architecture, but also in terms of
application sets run on these systems. The embedded systems share now in many ways
the same complexity as other systems, such as high performance systems. This is
especially true for processing elements as well as memory hierarchy. How these
subsystems are utilized is becoming very important and a key area is memory
utilization. The memory architecture is now a mix of different memories, such as cache
memory hierarchy and software controlled Scratch-Pad Memories (SPM).

At the same time the importance of being able to handle different applications with
high computational intensity and complexity has become a key issue for handheld
embedded devices, such as mobile phones and PDAs. One such category of
applications is multimedia, such as video and audio applications. These applications
have often very different execution profiles. They also put huge demands on the entire
system, processor, memory, buses and other parts. Moreover, modern video and audio
applications, such as H.264 and enhanced Advanced Audio Codec plus (eAAC+),
utilize optimized algorithms that have totally different execution profile than standard
reference codecs used previously in many studies.

Looking at the state-of-the-art memory architectures in embedded systems, the most
typical architectures consist of a cache based memory, which is often combined with
software controlled zero-wait-state memory, such as Scratch-Pad Memories (SPM).
This is a good combination, since SPM and caches have very different behavior. SPMs
are optimal for regular access patterns, but not for runtime dependent behavior. Caches
on the other hand are well suited for this. There is a need for both, but main issue is,
how to optimally use this combined memory architecture.

There exists a need for a method that systematically finds the optimal memory
mapping for different application. As this is not a trivial problem, we need to perform
design space exploration. There could be different criteria for optimization, for
example, improving performance by lowering the execution time or lowering power
consumption by lowering access to an external memory. The latter is what we have
chosen to focus our attention on, as external accesses are one of the main contributing
factors on the overall power consumption for application execution.

In this paper, we propose a powerful methodology based on finding Pareto points for
different memory configurations. The solution points provide optimal memory
mappings for data and instructions in multimedia applications. In our approach, we
optimize number of memory accesses, which can be viewed as optimizing switching
activity α in the P ≅αCfV2 power equation. The optimization is done by finding Pareto
points using up to four-dimensional cost functions.

 141

We evaluate our method using proprietary video H.264 and audio eAAC+
applications not relying on kernels and standard benchmarks. This is important as the
execution profile and resource requirements are very different for optimized
commercial applications compared to standard benchmarks and test applications. This
is essential in order to get correct and accurate behavior, when evaluating a design or a
method, as it depends very much on the quality of the applications used. This is
especially true for multimedia applications, such as video and audio codecs.

The remainder of this paper is organized as follows. In section 2 we discuss related
work. The proposed method, which is used in our approach, is presented in section 3
and in section 4 we describe our experimental setup, the applications used and also we
present and discuss our experimental results. In section 5 we give concluding remarks.

5.2 Related Work
There has been significant work done in the area of evaluating and proposing usage of
SPM for various applications including audio and video codecs. Much work has
focused on proposing architectures, which utilize SPM, by rewriting significant
portions of applications to fit them to proposed architectures [15,12,1]. Other studies
have looked at data mapping on SPM, both statically [2,4,13] and dynamically [16,3].
Common approach to these prior works has been mainly based on code transformations,
i.e. loop and trace analysis and rewriting of applications for optimization. In our work
we have worked with black box code model, as this is very often the case in industry
when working with third party applications.

There has also been work done, where a combination of using compile time and
runtime approaches, is proposed [11]. This is done by inserting custom instructions to
inform hardware to control data placement. Another closely related architectural
approach uses locked caches and controls placement of memory objects [7]. Yet
another approach focuses on managing memory space for different application in a
SPM only architecture and thus eliminating caches totally [17]. A common approach
for most of these papers has been the usage of kernels and benchmarks. In our study,
we use state-of-the-art audio and video commercial applications tailored for handheld
devices in order to achieve realistic and accurate overall behavior. The methodology
we are proposing is based on analysis of runtime behavior of a specific application. The
gathered data is then used together with a set of constrains to perform design space
exploration by finding the optimal mapping of memory objects based on different cost
functions.

5.3 Our Approach
In this section, we present a method for optimally mapping data and instructions to
Scratch-Pad Memories (SPM).

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 142

5.3.1 Overall method
Figure 1 depicts the overall design flow of our methodology. The target application is
analyzed, either automatically or manually, to identify the important and critical
candidate data, such as arrays, constants and code blocks, for example inner loops in
functions, sequences of instructions or specific functions. Next, a mapping of the
selected objects to Scratch-Pad Memory (SPM) is made.

Each object is individually placed in SPM and is simulated. Thus we perform
multiple simulations depending on the number of candidate objects. For upper and
lower bound we also perform simulations for architectures without SPM and a case
where all objects are allocated to the SPM. SPM is used for data that is generated
during execution, intermediate results, and is compile-time allocated. The reason for
this is that commercial code, for mainly performance reasons, seldom uses run-time
allocated data. SPM is also used for selected parts of program code, based on execution
profile that lowers external accesses.

Application

Optimized mapping
solution

Analysis
of memory

objects

Mapping of
Memory
Objects

Finding
Optimal
solution

Memory
remapping

Design
parameters

JaCoP

Simulation

Figure 1. Design flow.

The remapped application is evaluated, using a cycle accurate simulator [19], on the
target architecture. The simulation data for each individual memory object together
with design parameters, such as SPM and cache sizes are used by cost functions to find
optimal solutions. The optimization is performed by the constraint solver, JaCoP [14],
and a set of solutions for different memory mappings and different SPM sizes is
obtained. The optimal mapping is based on the Pareto points found by JaCoP for a
specific cost function and SPM size. In our proposed method, we can optimize four
different cost functions: maximizing SPM accesses, minimizing external memory
accesses, cache accesses and minimizing execution cycles. To further enhance the

 143

methodology, we perform two, three and four dimensional design space exploration
using multi-objective optimization. This, by combining the cost functions mentioned
above.

To validate our method we run simulations on selected memory mappings and our
experiments indicate that the accuracy of predicting SPM accesses is 98%. The
accuracy for predicting external accesses is around 90-95% and for predicting cache
accesses is 80-85%. A reason for this drop in accuracy for caches and external memory
accesses is due to the nature of caches. We make the assumption that accesses are not
correlated if data is put in SPM, but this assumption is not valid for caches. The figures
presented in the experimental section can be used for selecting the right configuration
of memory. Basically, the figures show the results of design space exploration for
obtaining optimal mapping of selected objects to SPM depending on different cost
functions.

Our method is generic and can systematically be used to analyze and find an optimal
memory mapping for a given application and architecture. The method performs multi-
objective optimization in the design space without being limited to only single
application. It can be used for multiple applications and other memory architectures.

5.3.2 Pareto point generation
JaCoP constrain solver [14] has been used in our approach to find optimal memory
mappings for our applications. We want to explore different memory mappings
alternatives and select the one that best suits given requirements. Design space
exploration can therefore be defined as a process of finding different solutions that
provide trade-offs between design parameters. It is usually achieved by doing a multi-
objective optimization, meaning the optimization that simultaneously optimizes more
than one cost function. In such cases there is not a single optimal solution but instead
we have Pareto points.

To define multi-objective optimization more formally we assume that there exist
several optimization criteria or cost functions. For minimization, we define Pareto
optimal solution as vector x, if all other solution vectors y have a higher value for at
least one of the cost functions, or have the same value for all cost functions. Each
vector x that is Pareto optimal is also called Pareto point or non-dominated or non-
inferior point since it does not exist any other point that is better in respect to at least
one criterion.

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 144

The generation of Pareto points can be formalized using constraint programming.
The idea is to define all constraints for a problem and then start searching with most
relaxed constraints. When a solution is found additional constraints are imposed and
possible dominated solutions are removed. The additional constraints cut the part of the
search space that can only have dominated points. The pseudo-code for this algorithm
is presented in Figure 2. The algorithm uses depth-first-search (DFS) to search for a
solution. When a solution is found the algorithm imposes new constraints to cut
possibility of finding dominant solutions and removes already found dominated
solutions. Finally the algorithm returns the set of Pareto points.

Figure 2. The Pareto points generation algorithm.

5.4 Experiments and Evaluation
In this section we present our experimental setup, applications used and results from
evaluation of our method. Our method generates all non dominated solutions (optimal
Pareto points). We conclude the section with discussion on applications behavior and
power consumption when using Scratch-Pad Memory (SPM).

In our study we used SoC Designer with cycle accurate ARM prime cell models [5]
provided by ARM. The compiler used was, the ARM compiler in RealView
Development Suite (RVDS 3.0). The target hardware architecture comprises an ARM
processor core with separate 16 KB instruction and data L1 caches. It also contains
either unified or separate Scratch-Pad Memory (SPM) for both instructions and data,
referred to as tightly coupled memory (TCM) in ARM processors.

The applications used in our study are two proprietary multimedia applications,
audio eAAC+ and video H.264 full codecs. Table 1 and 2 shows the selected memory
objects, their names, object number and sizes, that are identified in the analysis stage,
for potential placement in SPM.

vector pareto (ν, criteria)
paretoPoints ← nil

while DFS (ν) ≠ nil
paretoPoints ← paretoPoints ∪ (val0, …, valn)
impose criteria0 < val0 ⋁···· ⋁criterian < valn
remove points dominated by (val0, …, valn) from paretoPoints

return paretoPoints

 145

Table 1&2. Table 1 shows H.264 codec memory objects and their sizes. Table 2 shows eAAC+
codec memory objects and their sizes.

Table1 Table2

5.4.1 Enhanced Advanced Audio Codec plus (eAAC+)
The eAAC+, used in our research, consisted of Advanced Audio Codec (AAC),
Spectral Band Replication (SBR) and Parametric Stereo (PS). The eAAC+, also
referred to as aacPlus v2, is part of MPEG-4 standardization [8]. The underlying core
codec is the well known MPEG AAC codec with a typical bit rate of 128 kbps.

Table 2 shows the list of memory objects that were selected during the analysis
phase. These objects are individually simulated and the simulation data is gathered for
optimization. In the case of eAAC+, the memory objects are all data objects using Data
Scratch-Pad Memory (DSPM). Using our methodology we have performed two, three
and four dimensional optimization. We first present solutions for 2 cost functions, SPM
size vs. SPM accesses and SPM size vs. MeM accesses.

Figure 3 shows two dimensional Pareto points for SPM and memory accesses for
different SPM sizes. For eAAC+ we observe significant SPM accesses increase when
going from 4KB to 16KB SPM. A reason is the impact of object number2
(SyntQMFfilter), which has significant higher access/size ratio, compared to the other
objects. Looking at the memory accesses we observe an almost linear reduction in
accesses. We do not observe a direct impact on the memory accesses due to the
increased SPM accesses. This indicates that the increased SPM accesses are mostly
moving cache accesses to SPM. However, the gains in reduction of memory accesses
are still significant and start to flatten at 64KB SPM.

Object
Number H.264

Total
SPM size

Object
Number eAAC+

Total
SPM size

No Objects in SPM 0 No Objects in SPM 0
All Objects in SPM 64201 All Objects in SPM 49224

V1 c64enc 6027 A1 SBRbuffer 32768
V2 CodeIntra 16084 A2 SyntQMFfilter 5120
V3 CodeMacroblock 3632 A3 AnaQMFfilter 2560
V4 Init 3140 A4 QMFbuffer 304
V5 Loopfilter 6340 A5 EnvCal 864
V6 MotionEstimation 7190 A6 Trans 1024
V7 Putbits 9304 A7 Overlappbuffer 6144
V8 Ratedistortion 4248 A8 Prevframe 440
V9 Transform 5048
V10 Speed3 3188

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 146

Figure 3. Two-dimensional Pareto point with the chosen memory objects, for external memory
accesses with different SPM sizes when running eAAC+ codec.

As it can be observed the system finds different solutions for the same size of SPM
optimizing memory accesses or SPM accesses. For example, at 2 KB SPM size, when
external memory accesses are minimized the objects (8,5,4) are mapped to SPM. But
for maximum SPM usage then objects (8,6,4) should be mapped. Our goal is to reduce
the overall power consumption. This can be achieved by lowering number of external
accesses. Moreover, we can reduce energy by decrease application execution time. For
this reason we performed multi-objective optimization with SPM size, MeM accesses
and Execution cycles.

Figure 4 shows a three dimensional Pareto points when optimizing execution cycles
and memory accesses for different SPM sizes while running eAAC+ audio codec. In
this case, we notice that for 1KB SPM, objects (8,4) should be mapped to the SPM.
The figure can be used for selecting the right configuration of memory. We observe
similar SPM and memory access behavior to that we saw for the two dimensional
optimization. Due to presentation limitations we do not show a diagram for the four
dimensional optimization, where we run a combined optimization between SPM size,
execution cycles, memory and SPM accesses. In the eAAC+ we only utilize the DSPM.
The reason for not utilizing the Instruction Scratch-Pad Memory (ISPM) is that the
entire code fits into the cache. For an application, which is larger than the cache, we
would allocate instruction code to ISPM in similar way as we have done for H.264.

 147

Figure 4. Three-dimensional Pareto point with the chosen memory objects, for external memory
accesses and execution cycles with different sizes when running eAAC+ audio codec.

5.4.2 Advanced Video Codec H.264
The video standard used in our research is H.264. This standard is used in a variety of
areas, such as videoconferencing, and it is also the main video standard recommended
by 3GPP standardization group in release 6 [5]. The test sequence chosen in our
experiments was foreman [20].

Our H.264 application implementation is proprietary software optimized for
handheld devices. The H.264 implementation evaluated performs well against the
reference implementation in terms of quality [6, 18]. The time complexity of our
encoder is significantly lower and has a speedup of approximately 100 times with an
average bit-rate increase of less than 20%, than the reference encoder. It uses optimized
search mode and is configured for running different screen sizes.

For the H.264 encoder, we have observed, that the usage of DSPM has a very limited
impact on external accesses as the usage of data is content dependent and thus we focus
on ISPM. By using ISPM the external accesses are reduced up to 57%. Table 1 shows
the list of objects that was selected during the analysis phase. Therefore in H.264 the
focus is on instruction and not data for reducing external accesses (see Table 4). We
use the same approach as we did in the case of eAAC+, two, three and four
dimensional combined access optimization. Figure 5 shows the two dimensional Pareto
points of SPM and memory accesses for different SPM sizes, when encoding the

01000020000
30000

40000
50000

60000
70000

2700000

2800000

2900000

3000000

3100000

0
100000

200000
300000

400000
500000

600000
700000

Ex
e

Cy
cl

es

SPMsize

 Pareto points

MeM
 ac

ce
ss

es

No SPM

512, [4]

1024, [8,4]

2048, [8,5,4]
4096, [8,6,5,4]

8192, [8,6,5,4,3]

16384, [8,7,6,5,4,3]

32768, [8,7,6,5,4,3,1]

65536, [8,7,6,5,4,3,2,1]

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 148

foreman test sequence. We observe that there is not one-to-one correlation between
SPM utilization and reduction of external accesses. An optimal usage of SPM does not
automatically give us least external memory accesses. For example for 16KB SPM, the
optimal mapping should be objects (9,5,3) if we maximize the SPM usage. But as we
are more interested in lowering power consumption the mapping of objects (10,8,4,3)
should be preferred.

Figure 5. Two-dimensional Pareto point with the chosen memory objects, for SPM and external
memory accesses with different sizes when running H.264 codec. As there are no memory
objects smaller than 3140 bytes (see table1), we do not have any points for SPM sizes 512, 1024
and 2048 bytes.

Figure 6 shows a three dimensional Pareto points when combining execution cycles
and memory accesses for different SPM sizes while running H.264 video codec. As can
be seen in Figure 6, for 8, 16 and 32 KB there are more than one optimal Pareto point.
These points are not dominated by each other, as we are optimizing in three dimensions
and memory accesses and execution cycles do not dominates simultaneously.
Depending on the desired optimization, execution cycles or memory accesses, we can
either choose one or the other. In the case of H.264 the access pattern is not as in
eAAC+ where certain selected objects stand out, making the Pareto points 2D curves
and 3D surfaces much more linear when increasing the SPM size.

 149

Figure 6. Three-dimensional Pareto point with the chosen memory objects, for external memory
accesses and execution cycles with different sizes when running H.264 video codec.

5.4.3 Combined mapping of eACC+ and H.264 to a single unified SPM
When analyzing multimedia applications, audio and video, the combination of different
applications on the overall system characteristics is an important issue. In this study,
the focus has been on the impact of SPM on overall power due to external memory
accesses. The question is when looking at both eAAC+ and H.264 in the same memory
space, which of the memory objects, table 1 and 2, should be mapped to SPM. Our
method not only can be used for partitioning of SPM for a single physical address
space but can be used for mapping between different applications.

Figure 7, illustrates the overall impact on external memory accesses and SPM
accesses for the combined optimized memory mapping. For example, for 64 KB SPM
and the optimization of external memory accesses for our two applications, both of the
largest objects A1 and V2 are not selected. This indicates that it is better to map smaller
objects than to include the largest ones. But when SPM accesses are optimized, object
V2 is selected instead of smaller objects. Conclusion from this is that object V2 moves
cache accesses to SPM but has not significant impact on lowering external accesses.

0
10000

20000
30000

40000
50000

60000
70000

32000000

33000000

34000000

35000000

0
100000

200000
300000

400000
500000600000700000800000

Ex
e

Cy
cl

es

MeM accessesSPM size

 Pareto points
No SPM

4096, [4]
8192, [8,4]8192, [4,3]

16384, [10,8,4,3]

16384, [10,5,4,3]
32768, [10,8,6,4,3,1]

32768, [10,9,8,7,5,4,3,1]

65536, [10,9,8,7,6,5,4,3,2,1]

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 150

Figure 7. Two-dimensional Pareto point with the chosen memory objects, for external memory
accesses with different SPM sizes when running eAAC+ and H.264 codecs mapped to a unified
SPM.

Table 3. Shows Pareto points 1-16 for the combined eAAC+ and H.264 codecs in figure 8. For
each optimization point the chosen objects, audio ‘A’ and video ‘V’, are shown.

 P
oi

nt
s

SPM size, [video 'V' and audio 'A' objects]

No SPM
1 512,[A4]
2 1024,[A8,A4]
3 2048,[A8,A5,A4]
4 4096,[V4,A8,A4]
5 4096,[A8,A6,A5,A4]
6 8192,[V10,V4,A8,A5,A4]
7 8192,[V4,A8,A5,A4,A3]
8 16384,[V10,V8,V4,V3,A8,A5,A4]
9 16384,[V8,V4,V3,A8,A6,A5,A4,A3]

10 16384,[V10,V8,V4,A8,A6,A5,A4,A3]
11 32768,[V10,V9,V8,V5,V4,V3,V1,A8,A4]
12 32768,[V10,V9,V8,V6,V4,V3,A8,A6,A5,A4,A3]
13 32768,[V10,V8,V6,V4,V3,V1,A8,A6,A5,A4,A3]
14 32768,[V10,V8,V5,V4,V3,V1,A8,A6,,A5,A4,A3]
15 65536,[V10,V9,V8,V7,V6,V5,V4,V3,V2,V1,A8]
16 65536,[V10,V9,V8,V7,V6,V5,V4,V3,V1,A8,A7,A6,A6,A5,A4,A3,A2]

 151

Figure 8 shows the three dimensional Pareto point optimization for the cost functions
SPM size, Memory accesses and execution cycles, when mapping the combined, audio
and video codecs, to the unified SPM. The Pareto points and their mapping
configuration are presented in Table 3. For example for 16KB SPM there are three
points 8, 9 and 10 with different configurations. None of these points dominated the
others fully as we are optimizing with three cost functions. In this case the point with
lowest external memory accesses is 10, as illustrated in Figure 8.

Figure 8. Three-dimensional Pareto point with the chosen memory objects, for external memory
accesses and execution cycles with different sizes when combining eAAC+ audio and H.264
video codec.

5.4.4 SPM Impact on Power and Execution Time
There is significant power saving due to reduction in external accesses, but limited
reduction in execution time. SPM are not and should not be used with the focus on
reducing execution time for multimedia application, but rather used for increasing
memory predictability as well as lowering total power consumption. Figure 9 and 10
show the impact of using SPM for reducing power consumption as we lower the
external memory accesses. When looking at switching power consumption P ≅αCfV2
the capacitance C and the voltage V are the main factors. There are two factors one
needs to consider, when analyzing power consumption due to remapping of memory

0
10000

20000
30000

40000
50000

60000
70000

35000000

36000000

37000000

38000000

39000000

0
200000

400000
600000

800000
1000000

1200000
1400000

 Pareto points

Ex
e

Cy
cl

es

MeM
 ac

ce
ss

es

SPM size

NoSPM12
3 4

5
67 89

10
11

12
1314

15
16

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 152

objects. The first is internal capacitance of the chip, which is significantly lower than
external capacitance. The second is the chip internal voltage, typically 0.9V and the
external IO voltage of around 1,8V. Putting it together one concludes that the main
power consumption contributors are external accesses.

Figure 9. Impact of SPM usage on eAAC+ for power consumption and execution cycles.

At the same time we observe the very limited impact of SPM on the overall
execution cycles. The impact of SPM for speeding up applications is limited as the
SPM and caches are both zero-wait-state memories, thus giving negligible speed up. In
the case of audio the intermediate results are best suited to be mapped to SPM. The
instruction code gives no improvements as the entire code can fit in the cache. In the
case of video the code is larger and there certain often accessed code is well suited to
be mapped to SPM. When it comes to data in video applications there are a couple of
factors which are involved and making SPM not suitable. Firstly, content dependent
behavior of video applications limits the possibility of mapping the right data to SPM,
since not all data in video applications is used. Secondly, there is difference in video
and audio algorithms, where the video algorithms use less advance techniques and
filters, making less re-usage of data. Thirdly, the amount of data that is allocated to
memory is huge in video codecs compared to audio codecs, and the small size of
DSPM, have very limited overall impact.

 153

Figure 10. Impact of SPM usage on H.264 for power consumption and execution cycles. As
there are no memory objects smaller than 3140 bytes (see table1), we do not have any points for
SPM sizes 512, 1024 and 2048 bytes.

5.4.5 Instruction vs. Data in Audio and Video
There are significant differences between audio and video not only in terms of the
amount of data, but also the way it is processed. Video applications, such as codecs, are
content dependent and the result is that one does not know which data to put in a
dedicated memory at compile time. Also as the amount of overall data is huge and at
the same time very limited portions are used, putting all data in a dedicated memory
neither realistic nor efficient. As we have shown in our previous work [9] the amount
of gains are very limited.

Audio applications on the other hand are more algorithm dependent and all input
data is processed in a predictable way, making it ideal for using dedicated memory,
such as SPM. All input data is processed in a predefined algorithm regardless of the
content. This enables us to identify and remapping the data types that has beneficial
impact on lowering external accesses.

This difference is illustrated in table 4, where we see that the introduction of DSPM
for data has no impact on the number of external accesses in the case of video codec
H.264. The contrary could be said about the impact of ISPM for code and instructions,
where we observe significant impact on the video applications. One reason being that
compared to previous video codecs, such as MPEG-4, H.264 has much control code.

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 154

We have also shown this in our previous work [10], where impact of instruction
handling is essential in gaining the performance through the usage of instruction level
parallelism (ILP). The similar beneficial impact of handling instruction code, we
observe when using ISPM for instructions resulting in lowering external memory
accesses.

The opposite can be said about audio codec eAAC+. There the introduction of
DSPM has significant positive impact on the external accesses, as shown in our
experiments. But for instruction code ISPM has negligible impact, as our audio
application fits into the cache. As pointed out earlier, if our audio application would not
have fit entirely in the cache then we would have allocated selected part to the ISPM.

5.5 Conclusions
In this paper, we propose a generic methodology that explores the design space by
determining Pareto point for different combined cost functions. The method
systematically analyzes and finds optimal memory mapping for a given application and
architecture. By using this method there is only a need to perform limited number of
simulations, number instead of performing extensive simulation of all possible
combinations. The applications we have used in our study are two proprietary state-of-
the-art multimedia applications eAAC+ audio codec and H.264 video codec. In this
study, we have focused on reducing external memory accesses and at the same time
increasing the utilization of Scratch-Pad Memory (SPM). For this purpose we have
looked both at data as well as instructions. Among the findings we have made are that
SPM is good for reducing external accesses to reduce power consumption, but has
limited significance on overall performance improvements. Our experiments indicate
high accuracy for predicting SPM and memory accesses, above 90%. The methodology
presented here can be adapted quite easily to real industrial situations where there is
often a need for mapping third party application to a specific architecture.

References

[1] M. J. Absar, P. Marchal and F. Catthoor, “Data-Access Optimization of Embedded
Systems Through Selective Inlining Transformation”, in Proceedings ESTMED,
Sept. 22-23, 2005.

[2] M.J.Absar and F. Catthoor, “Analysis of Scratch-Pad and Data Cache performance
Using Statistical Methods”, in Proceedings ASPDAC’06, Jan 24-27, 2006.

 155

[3] D. Atienze, et al., “Efficient system-level prototyping of power-aware dynamic
memory managers for embedded systems”, INTEGRATION the VLSI Journal 39,
pp. 113-130, 2004.

[4] A. Dominguez, S. Udayakumaran and R. Barua, “Heap Data Allocation to Scratch-
Pad Memory in Embedded Systems”, in Journal of Embedded Computing, Vol.
1, Issue 4, Dec, 2005.

[5] 3GPP specification release 6, www.3gpp.org
[6] H.264/AVCSoftwareCoordination,JM,http://iphome.hhi.de/suehring/tml
[7] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed cache

design”, in Proceedings ISCA’00, pp. 107-118, May, 2000.
[8] HE AAC version 2, “MPEG-4 in document ISO/IEC 14496-3:2005 (with 14496-

3:2005/Amd.2. for HE-AAC v2”, 2005.
[9] A.R..Iranpour and K.Kuchcinski, “Memory Architecture Evaluation for Video

Encoding on Enhanced Embedded Processors,” in Proceedings SAMOS VI
workshop: Embedded Computer Systems: Architectures, MOdeling, and
Simulation Samos, Greece, July 17-20, 2006.

[10] A.R..Iranpour and K.Kuchcinski, “Performance Improvement for H 264 Video
Encoding using ILP Embedded Processor”, in Proceedings 9th Euromicro
Conference on Digital SystemDesign, Cavtat/Dubrovnik, Croatia, August 30th -
September 1st, 2006.

[11] A. Janapsatya, A. Ignjatovic and S. Parameswaran, “Hardware/Software Managed
Scratchpad Memory for Embedded Systems”, in Proceedings ICCAD, pp. 370-
377, 2004.

[12] A.Janapsatya, A. Ignjatovic and S. Parameswaran, “A Novel Instruction
Scratchpad Memory Optimization Method based on Concomitance Metric”, in
Proceedings ASPDAC’06, Jan 24-27, 2006.

[13] M. Kandemir, et al., “A Compiler-Based Approach for Dynamically Managing
Scratch-Pad Memories in Embedded Systems”, IEEE Trans. Computer aided
design of Integrated Circuits and Systems, Vol. 23, NO.2, Feb. 2004.

[14] Krzysztof Kuchcinski, “Constraints-Driven Scheduling and Resource
Assignment”, in ACM Transactions on Design Automation of Electronic Systems
(TODAES), 8(3), pp. 355-383, 2003.

[15] C. Kulkarni, et al., “Cache Conscious Data Layout Organization for Embedded
Multimedia Applications”, in Proceedings DATE, pp. 686-693, 2001.

[16] S. Mamagakakis, et al., “Custom Design of Multi-level Dynamic Memory
Management Subsystem for Embedded Systems”, in Proceedings Signal
Processing Systems, pp. 170-175, Oct, 2004.

[17] O. Ozturk, M. Kandemir and I. Koleu, “Shared Scratch-Pad Memory Space
Management”, in Proceedings 7th ISQED’06, 2006.

http://www.3gpp.org/�
http://doi.acm.org/10.1145/785411.785416�
http://doi.acm.org/10.1145/785411.785416�

Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia
Applications to Scratch-Pad Memories

 156

[18] C.Priddle, “H.264 video encoder optimization with focus on very low complexity
algorithms”, M.S. thesis, Uppsala University, April 2005.

[19] SoC Designer & RealView Development Suite (RVDS 3.0) , ARM,
http://www.arm.com/ and Carbon Design Systems,
http://carbondesignsystems.com/

[20] Test sequences, http://www.chiariglione.org/mpeg/
[21] F. Rossi, P. Van Beek and T. Walsh (EDS.), “Handbook of Constraint

Programming”, Elsevier, 2006.

http://www.arm.com/�
http://carbondesignsystems.com/�
http://www.chiariglione.org/mpeg/�

	Abstract
	Contents
	Preface
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Structure of the thesis

	2 Challenges with Multimedia Applications in Embedded Systems
	2.1 Embedded Architectures for Video and Audio
	2.2 Multimedia Processing
	2.2.1 Video processing
	2.2.2 Audio processing
	2.2.3 Power constraints for processing

	2.3 Multimedia Memory
	2.3.1 Memory bandwidth requirements

	3 Related work
	3.1 Processing
	3.2 Memory

	4 Papers Survey
	Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4
	Analysis of Embedded Processors for Streaming Media Applications
	Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors
	Performance Improvement for H.264 Video Encoding using ILP Embedded Processor
	Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia Applications to Scratch-Pad Memories

	5 Contributions
	6 Conclusions and Future Trends
	7 Bibliography
	8 Included Papers
	1 Evaluation of SIMD Architecture Enhancement in Embedded Processors for MPEG-4 0F
	1.1 Introduction
	1.2 Media applications impact on embedded architectures
	1.3 Baseline architecture
	1.4 Methodology
	1.4.1 Simulation
	1.4.2 Application
	1.4.3 Architecture

	1.5 Experiments and Discussion
	1.5.1 Kernel SAD loop
	1.5.2 Configuration of MPEG-4 application
	/
	1.5.3 Impact of SIMD extension
	1.5.4 Main observations

	1.6 Related work
	1.7 Conclusions and future work
	References

	2 Analysis of Embedded Processors for Streaming Media Applications1F
	2.1 Introduction
	2.2 ARM Architecture
	2.3 MPEG-4 Application
	2.4 Methodology
	2.5 Experimental Results
	2.6 Discussion of the Results
	2.7 Conclusion
	References

	3 Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors2F
	3.1 Introduction
	3.2 Video Application
	3.3 Processor Architecture
	3.4 Memory Architecture
	3.5 Methodology
	3.6 Experimental Results and Discussion
	3.6.1 L1 cache configuration
	3.6.2 L2 cache and its impact
	3.6.3 Energy consumption
	3.6.4 Dedicated memory vs. cache
	3.6.5 Summary

	3.7 Related Work
	3.8 Conclusions
	References

	4 Performance Improvement for H.264 Video Encoding using ILP Embedded Processor3F
	4.1 Introduction
	4.2 Video Application
	4.3 Processor Architecture
	4.4 Methodology
	4.5 Experimental Results and Discussion
	4.5.1 Amount of ILP in H.264 and impact on DLP
	4.5.2 Encoding performance by combining ILP and DLP
	4.5.3 Hardware and energy costs
	4.5.4 Discussion

	4.6 Related work
	4.7 Conclusions
	References

	5 Design Space Exploration for Optimal Memory Mapping of Data and Instructions in Multimedia Applications to Scratch-Pad Memories4F
	5.1 Introduction
	5.2 Related Work
	5.3 Our Approach
	5.3.1 Overall method
	5.3.2 Pareto point generation

	5.4 Experiments and Evaluation
	5.4.1 Enhanced Advanced Audio Codec plus (eAAC+)
	5.4.2 Advanced Video Codec H.264
	5.4.3 Combined mapping of eACC+ and H.264 to a single unified SPM
	5.4.4 SPM Impact on Power and Execution Time
	5.4.5 Instruction vs. Data in Audio and Video

	5.5 Conclusions
	References

