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Chapter 24 

Immunology of ß -Cell Destruction 

Daria La Torre and Åke Lernmark 

Abstract The pancreatic islet ß-cells are the target for an autoimmune process 
that eventually results in an inability to control blood glucose due to the lack of 
insulin. The different steps that eventually lead to the complete loss of the ß-cells 
are reviewed to include the very first step of a triggering event that initiates the 
development of ß-cell autoimmunity to the last step of appearance of islet-cell 
autoantibodies, which may mark that insulitis is about to form. The observations 
that the initial ß-cell destruction by virus or other environmental factors triggers 
islet autoimmunity not in the islets but in the draining pancreatic lymph nodes 
are reviewed along with possible basic mechanisms of loss of tolerance to islet 
autoantigens. Once islet autoimmunity is established the question is how ß-cells are 
progressively killed by autoreactive lymphocytes which eventually results in chronic 
insulitis. Many of these series of events have been dissected in spontaneously 
diabetic mice or rats, but controlled clinical trials have shown that rodent observa- 
tions are not always translated into mechanisms in humans. Attempts are therefore 
needed to clarify the step 1 triggering mechanisms and the step to chronic autoim- 
mune insulitis to develop evidence-based treatment approaches to prevent type 1 
diabetes. 

Keywords Islet autoimmunity · Autoantigens · Prediction · Prevention · Insulitis · 
Islet autoantibodies · CD4+ T cells · CD8+ T cells · T regulatory cells · 
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CTL Cytotoxic T lymphocytes 
CTLA-4 Cytolytic T lymphocyte- 

associated antigen 
cTreg Conventional regulatory T 
DC Dendritic cells 
Fas-L Fas-Ligand 
FoxP3 Forkhead–winged helix 
GABA Gamma-amino-butyric acid 
GAD Glutamic acid decarboxylase 
HLA Histocompatibility antigens 
HSP Heat-shock protein 
IA-2 Insulinoma-associated antigen-2 
IAA Insulin autoantibodies 
ICAM Intercellular adhesion molecule 
IDO Indoleamine 2,3-dioxygenase 
IFN Interferon 
ICA Islet cell antibodies 
ICSA Islet cell surface antibodies 
IL Interleukin 
iVEC Islet vascular endothelial cells 
LFA-1 Leukocyte function-associated 

antigen-1 
NF Nuclear factor 
NK Natural killer lymphocyte 
NKT Natural killer T 
NO Nitric oxide 
NOD Non obese diabetic 
nTreg Natural regulatory T 
PBMC Peripheral blood mononuclear cells 
PD-1 Programmed death-1 
pDC Plasmacytoid dendritic cell 
pLN Pancreatic lymph node 
pMHC Peptide-MHC 
PRR Pattern recognition receptors 
TCR T-cell receptor 
TEDDY study The environmental determinants 

of diabetes in the young 
TF Transcription factor 
TGF Transforming growth factor 
TLR Toll-like receptor 
TNF Tumor necrosis factor 
Treg Regulatory T cell 
TSA Tissue-specific antigen 
VNTR Variable nucleotide tandem repeat 
ZnT8t Zinc transporter isoform-8 
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24.1 Background and Historical Perspectives 

Immune-mediated selective destruction of the pancreatic islet ß-cells is the hallmark 
of type 1 diabetes mellitus (T1D), formerly known as insulin-dependent diabetes 
mellitus [1–4]. The immunogenetic feature of the disease is a polygenic inheritance 
of susceptibility, which is re ected in a highly polyclonal autoimmune response 
targeting several ß-cell antigens. The autoimmune response is associated with pro- 
gressive ß-cell destruction that eventually leads to overt clinical disease. As attested 
by prospective studies of children at genetic risk for T1D (DIPP, DAISY, and 
BabyDIAB), the appearance of specific islet autoantibodies marks the initiation of 
islet autoimmunity and may be detectable for months to years [5, 6] during which 
time ß-cell dysfunction proceeds asymptomatically. T1D may therefore be viewed 
as a two-step disease. The first step is the initiation of islet autoimmunity, the second 
step is precipitation of diabetes when islet autoimmunity has caused a major ß-cell 
loss (>80%) [6], and insulin deficiency becomes clinically manifest. 

At diagnosis, the typical histological finding of affected islets, first described 
in short-duration diabetes patients at the beginning of last century [7], and termed 
‘insulitis’ [8, 9], consists of an infiltrate of in ammatory cells associated with a loss 
of the ß-cell endocrine subpopulation. The infiltrate consists of mononuclear cells 
[10, 11] and T and B lymphocytes [12]. Little is known about insulitis during the 
first step of the disease when subjects have preclinical islet autoimmunity. Recent 
studies suggest that the mere presence of an islet autoantibody does not predict 
insulitis [13]. 

The understanding of T1D etiology and pathogenesis is complicated by the lack 
of epidemiological data on the first step of the disease. In contrast, the epidemiology 
of T1D is developing rapidly through registers in many different countries. The 
incidence is different among age groups, highest among children [14–16], but the 
disease may occur at any age [17]. 

Annual incidence shows geographical variation among different countries and 
ethnic groups, from 0.1 per 100,000 children in parts of Asia and South America 
to the highest rate in Finland (64.2 per 100,000) [16, 18]. The mode of inheri- 
tance is complex as 80–85% of T1D is occurring sporadically [19] and the risk 
of becoming diabetic is approximately 7% for a sibling and 6% for the children of 
T1D parents [20]. 

An autoimmune etiology for T1D was suspected approximately 40 years ago 
from the association between diabetes and other autoimmune diseases [21–23]. The 
first attempt to identify an autoimmune reaction toward the endocrine pancreas dates 
back to 1973, when testing for leukocyte migration inhibition to islet antigens sug- 
gested that T1D patients might be sensitized to pancreatic antigens [24]. Nearly 
concomitantly, T1D was reported to be correlated to histocompatibility antigens 
(HLA) [25] that govern antigen recognition by immune effectors. Association stud- 
ies have proved that the greatest contribution to genetic susceptibility to T1D is 
exerted by HLA class II alleles on chromosome 6, the HLA-DQ haplotypes DQ2 
and DQ8, and DQ6.2 conferring the highest risk or protection [26–28]. The detailed 
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mechanisms by which different HLA molecules provide either risk or resistance 
to T1D is not fully understood [29]. It is possible that different conformations of 
the MHC molecules pocket yield different peptide-binding properties and in uence 
antigen presentation by antigen-presenting cells (APC) to effector T cells [30–32]. 

If genetic background appears to be a prerequisite for the development of ß-cell 
autoimmune destruction, a major role in the penetrance of a susceptible geno- 
type is played by environmental factors. Virus infections have figured prominently 
in T1D epidemiological investigations [33–35]. The possible contribution of a 
virus infection to trigger islet autoimmunity (step 1 of the disease) or to the pro- 
gression to clinical onset in islet autoantibody-positive individuals needs to be 
sorted out. The contribution of dietary factors is equally controversial [36–40]. 
Maternal factors [41], vaccinations [36, 42, 43], or toxins have also been consid- 
ered [44]. Environmental factors likely account for the low concordance rate for 
T1D among monozygotic twins (30%) [45–47]. Similarly, the geographic distribu- 
tion underscores the importance of the environment [3, 48, 49]. The multifactorial 
etiopathogenesis is also evident in the spontaneous diabetes in the nonobese diabetic 
(NOD) mouse and the bio breeding (BB) rat employed over the past three decades. 
These animals have given insights in the immunogenetics of T1D [50, 51], though 
the utility of these animals in preclinical trials to guide human research has been 
limited [52]. 

Although the event that initiates the autoimmune process (step 1) is not yet 
understood, the fact that it specifically targets the ß-cells promoted the attempt to 
find which ß-cell-specific antigens could give rise to the abnormal immunologi- 
cal recognition. The interest was initially focused on autoantibodies as useful tools 
in attempts to identify autoantigenic molecules (Table 24.1) and clarify the patho- 
logical immune response. The first description of pancreatic islet autoantibodies 
was in 1974, when indirect immuno uorescence on frozen human pancreas sec- 
tions revealed circulating islet cell antibodies (ICA) in the serum of T1D patients 
with polyendocrine disease [53]. A few years later islet cell surface antibodies 
(ICSA) were demonstrated in newly diagnosed T1D patients using dispersed cell 
preparations of rodent pancreatic islets [54]. The molecular characteristics of islet 
autoantigens remained unknown until the demonstration in 1982 that sera from 
new-onset T1D patients had autoantibodies immunoprecipitating a 64 kDa pro- 
tein in isolated human islets [55]. The 64 kDa immunoprecipitate proved in 1990 

Table 24.1 
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to have gamma-amino-butyric acid (GABA)-synthesizing enzymatic activity [56]. 
Molecular cloning of human islet glutamic acid decarboxylase (GAD) showed 
that the ß-cells expressed the unique human isoenzyme GAD65 [57]. GAD65 is 
expressed in several cell types but, apart from some brain neurons, it is mainly 
localized to synaptic-like microvesicles in the ß-cells. GAD65 is in part respon- 
sible for the ß-cell-specific pattern of ICA [58]. Antigenic properties of insulin A 
and B chains and of the precursor proinsulin were postulated, as this autoantigen 
would explain ß-cell specificity and have possible physiopathological involvement. 
In 1983 autoantibodies reacting with insulin (insulin autoantibodies IAA) were 
demonstrated in T1D patients, uncorrelated to insulin administration [59]. In 1994 
trypsin digestion of the 64 kDa immunoprecipitate revealed a 37/40 kDa autoanti- 
gen pair, recognized by sera of T1D patients [60]. This observation eventually led to 
the identification of two members of the tyrosine phosphatase family, sharing 74% 
of intracellular domain, insulinoma-associated antigen-2 (IA-2) and IA-2 beta (or 
phogrin) [61], which is probably less involved in T1D autoimmunity [62]. IA-2 is 
a transmembrane molecule of islet secretory granules and may be physiologically 
implicated in insulin secretion [63]. More recently, in 2007, autoantibodies to the 
zinc transporter isoform-8 (ZnT8t) were reported [64]. The ZnT8 protein mediates 
Zn 2+ cation transport into the insulin granules, facilitating the formation of insulin 
crystals [64]. ZnT8 polymorphic variants [65] represent not only targets of islet 
autoimmunity but also a genetic marker for type 2 diabetes [65]. 

Continued study of serum samples from T1D patients identified additional can- 
didate targets of the humoral immune response. Autoantigens reported so far have 
different tissue expression patterns and subcellular localizations, as DNA topoiso- 
merase II [66], heat-shock protein 60 (HSP60) [67], HSP-70 [68], HSP-90 [69], 
vesicle-associated membrane protein-2 (VAMP2) and inhibitory neuropeptide Y 
(NPY) [70], carboxypeptidase H (CPH) [71], and others [72–80]. Further defini- 
tion of this wide array of islet antigens is needed to define autoantigens with a 
pathogenetic role in islet destruction (step 1) from those that become secondarily 
available to immune system due to ongoing tissue damage. Thus, their relevance for 
the prediction of T1D is unclear. Many assays have been used to detect islet autoan- 
tibodies, but it was only from the mid-1990s, when recombinant human GAD65 
cDNA became available, that simple and reproducible immunoprecipitation assays 
were developed with in vitro transcribed, translated, radiolabeled antigen [57, 81]. 
The novel in vitro labeling made large screenings and standardization workshops 
applicable [82–84]. Their high sensitivity and specificity and early appearance dur- 
ing the autoimmune process made autoantibodies useful clinical markers not only 
for diagnosis [85] but also for disease prediction [2, 86, 87]. Despite the attested 
association with T1D, there is no evidence that islet autoantibodies directly con- 
tribute to ß-cell damage, though the B lymphocytes producing islet autoantibodies 
may contribute as APC [88]. 

Adoptive transfer studies on the NOD mouse suggest that islet damage in T1D 
is mainly mediated by T-cell effectors [89]. The pivotal role in these mice of cyto- 
toxic CD8+ T cells in the initiation and progression of destructive insulitis [51] and 
of CD4+ T cells that act as ‘helper’ cells [90] is well recognized. Studies of the 
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cellular arm in human T1D have detected CD4+ and CD8+ T cells that recognize 
the same autoantigens as targeted by the humoral arm [91, 92], sometimes with 
epitope overlapping [68, 93]. As expected, T-cell reactivity to minor autoantigens 
has also been reported [68, 94, 95]. However, cellular immunoreactivity to islet 
autoantigens is less easily assessed than the autoantibody response and is not yet 
applicable in the clinic. Most of the studies performed in the last decade to identify 
self-reactive T cells in the peripheral blood of T1D patients are based on the indi- 
rect detection of T-cell presence, through antigen-induced proliferation assays [96] 
or cytokine release (ELISPOT) analysis [97]. The latter analysis has limitations, as 
it does not allow precise enumeration of the cytokine-producing cells and may yield 
false-negative results if T cells are producing other cytokines than detected in the 
actual assay. In the last 5 years, the MHC tetramer technique has provided a novel 
insight into specific T cells and their precursor frequencies. The tetramer resembles 
the physiological MHC peptide/TCR interaction and offers phenotyping and selec- 
tive isolation of antigen-specific T cells, upon a stimulation with the tetramer itself 
[98]. The technique is highly specific for the HLA type and the peptide lodged in the 
MHC peptide-binding groove. Attempts have been made in addition to further study 
the structural requirements in transgenic mice expressing the T1D-associated HLA- 
DR4 and DQ8 to identify peptides recognized by autoantigen-specific T cells [99]. 
As pointed out in a recent T-cell workshop, traditional in vitro proliferation assays 
suffer from methodological limitations [100] related to peculiarities of autoreactive 
T cells as low peripheral frequency [101], rapid number reduction [102, 103], ongo- 
ing modification of immunodominant specificity [103], and low TCR avidity [101]. 
As will be discussed later, these studies have produced inconsistent results [100] 
and have globally failed to detect marked differences on T cells from T1D patients 
and controls. The presence of autoreactive T cells in healthy subjects suggests that 
central tolerance is physiologically incomplete and that T-cell peripheral regulatory 
phenomena may be strongly involved in the development of the autoimmune pro- 
cess. From the early 1990s, immunoregulation of autoreactive T cells was viewed 
within the oversimplified model of Th1 and Th2 phenotypes [3]. The simplified 
notion was that progression of tissue-specific autoimmunity results from a func- 
tional imbalance between pathogenic Th1 cells and immunoregulatory Th2 cells. 
During the past several years it has become clear that a larger number of subsets 
of immunomodulating regulatory T cells (Treg) exists and contributes to the main- 
tenance of peripheral tolerance [104, 105]. Recent advances point out at a crucial 
immunomodulating role of a subset of APC called dendritic cells (DC) [106]. It has 
been hypothesized that DC may be involved in the early breakdown of tolerance, as 
well as in the maintenance of ß-cell destruction [107]. 

The understanding of T1D has improved over the years since the rediscovery of 
insulitis in 1965 [108]. The recognition that T1D is a two-step disease characterized 
by a long prodrome of islet autoimmunity prior to clinical onset has allowed new 
hypotheses to be developed, as to the initiation of the ß-cell destructive process. The 
transition from islet autoimmunity to clinical T1D will also require a redefinition 
of the role of environmental factors triggering the disease. In this chapter we will 
review possible mechanisms of induction of ß-cell autoimmunity and the role of 
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environmental factors in this process. The reader is referred to other recent reviews 
on this or similar topics [2, 109–111] 

24.2 Autoimmune ß -Cell Destruction 

24.2.1 Genetic Etiology 

The major genetic factor for T1D is HLA-DQ on chromosome 6 [112–114]. Both 
sib-pair analyses and association studies have indicated in Caucasians that the HLA- 

* * * * DQ A1-B1 haplotypes A1 0301-B1 0302 (DQ8) and A1 0501-B1 0201 (DQ2), 
alone or in combination (DQ2/8), confer the highest risk for T1D. Nearly 90% of 
newly diagnosed children carry DQ2/8 (about 30%), DQ8, or DQ2 in combination 
with other haplotypes [115]. Among the many haplotypes there are combinations, 
in particular with the DQA1 * 0201-B1 * 0602 (DQ6.2) haplotype, which is negatively 
associated (protective) with T1D. However, the effect is attenuated with increasing 
age [116]. The rising incidence of T1D is, however, puzzling as it is associated with 
a reduced overall contribution of high-risk HLA types in parallel with an increase 
in DQ8 and DQ2 combinations which did not confer risk 20 years ago [117–119]. 
The mechanisms by which DQ8, DQ2, or both increases the risk for T1D are not 
fully clarified. The function of the DQ heterodimers to present antigenic peptides 
to the immune system is well understood. It remains to be determined why the 
DQ2/8 heterozygocity is associated with a young age at onset [120]. It has been 
speculated that the DQ2 and DQ8 molecules are important to maintain central or 
peripheral tolerance to the ß-cell autoantigens GAD65, IA-2, insulin, or ZnT8. This 
possibility needs further exploration as it cannot be excluded that the primary asso- 
ciation between T1D and HLA is the ‘step 1’ part of the disease rather than the 
progression to clinical onset. This hypothesis is supported by the observation that 
the presence in healthy subjects of GAD65 autoantibodies is associated with DQ2 
and IA-2 autoantibodies with DQ8 [86, 121]. 

Several investigations suggest that HLA contributes about 60% to the genetic risk 
of T1D [122]. Major efforts have therefore been made to identify non-HLA genetic 
risk factors for type 1 diabetes [112]. These studies have been highly rewarding 
as more than 40 genetic factors (see examples in Table 24.2) have been found to 
contribute [112]. Interestingly enough, many of the genetic factors are important 
to the function of the immune system. PTPN22 is a regulator of T-cell function 
and a genetic polymorphism results in a phosphatase variant that is increasing the 
risk not only for T1D but also for rheumatoid arthritis, juvenile rheumatoid arthri- 
tis, systemic lupus erythematosus, Graves’ disease, generalized vitiligo, and other 
human autoimmune diseases [123]. The PTPN22 polymorphism seems in particular 
to affect progression from pre-diabetes to clinical disease [124] also in individuals 
with lower risk HLA genotypes [125]. The variable nucleotide tandem repeat in the 
promoter region of the insulin gene INS VNTR seems to contribute to T1D by the 
mechanisms of central tolerance [126]. In newly diagnosed T1D patients the pres- 
ence of insulin autoantibodies is associated with the INS VNTR polymorphism [120] 

 

Table 24.2 
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The many other genetic factors listed in Table 24.2 are all shown to be significantly 
associated with T1D [112]. The function of these genes is understood individually; 
however, it is not clear how these factors may interact to increase the risk for the 
development of islet autoimmunity (step 1), T1D (step two), or both. The majority 
of the genetic factors seem to be associated with the immune system (Table 24.2). 
It is therefore attractive to speculate that their contribution is related to the ability of 
the immune system to mount an autoimmune reaction specifically directed toward 
the islet ß-cells. 

24.2.2 Immune Cells in Tolerance 

Epitope presentation to T and B cells is the key step in the generation of tolerance, 
in its early failure, and during the maintenance of autoimmunity. The capacity to 
distinguish between self and nonself, which is the hallmark of a functional immune 
system, is lost when central and peripheral tolerization fail, leading to the devel- 
opment and expansion of autoreactive pathogenic effector cells. Central tolerance 
is induced at the site of lymphocyte development (the thymus and bone marrow, 
respectively, for T and B cells), while peripheral tolerance occurs at sites of antigen 
recognition, namely in lymphoid and non-lymphoid tissues. Central to the function 
of tolerance are APC. 

24.2.2.1 APC 

The recognition by T and B lymphocytes of antigens presented in the context 
of MHC surface of an APC is the first step of the adaptive immune response. 
Macrophages and particularly DC are the most efficient APC, as they show con- 
stitutive expression of MHC class II molecules, cytokine secretion, and migrating 
capacity [127]. APC have a dual role: uptake, processing, and presentation of anti- 
gens to T cells and regulating T-cell-driven responses through cytokine release. 
APC are involved in T-cell tolerance mechanisms at both central (clonal deletion) 
and peripheral level (clonal anergy). Negative selection of autoreactive clonotypes 
derived by random T-cell receptor (TCR) rearrangement is guided by T-cell affin- 
ity for self-peptide–MHC (pMHC) complexes presented in the thymus [128, 129]. 
An inadequate binding affinity spares self-reactive T cells from apoptosis [130]. 
The thymic expression of tissue-specific antigens (TSA) is regulated by the autoim- 
mune regulatory (AIRE) transcription factor [131]. Insufficient level of expression 
and presentation of TSA-derived peptides is observed in subjects with a mutated 
AIRE gene. In mice, ß-cell-derived proteins have been found to be expressed on 
the surface of thymic epithelial (TEC) and medullary (mTEC) cells and DC [132, 
128] . It is possible that some ß-cell autoantigens are not present in the thymus at 
sufficient concentrations to induce negative selection. This mechanism may explain 
the correlation of T1D protection with the ‘long form’ of INS VNTR [133, 134]. 
The number of ‘tandem repeats’ modulates thymic expression of this autoanti- 
gen and the ‘long variant’ results in increased insulin mRNA within the thymus 
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[133, 134]. This higher thymic insulin expression is thought to enhance the dele- 
tion of insulin-specific thymocytes and may account for the protective phenotype 
[135, 136]. 

Similarly, GAD65 expression in thymus may physiologically contribute to spe- 
cific central tolerance, but its presence first suggested by immunochemical studies 
[137] has not been further confirmed [138]. 

Transcriptional modifications due to alternative splicing have been proposed to 
explain IA-2 immunogenicity, as IA-2 is not expressed full length in thymus, but in 
an alternatively spliced transcript derived from the deletion of exon 13 [139]. This 
may account for the escape of a subset of IA-2-reactive T cells. Interestingly, sev- 
eral B- and T-cell epitopes map to IA-2 exon 13 [140]. So far, it is not clear to what 
extent central tolerance and thymic expression are important to antigen presenta- 
tion of the ZnT8 transporter protein. The efficiency of thymic negative selection can 
also be reduced in case of elevated threshold for clonal deletion, as may result from 
the single-nucleotide polymorphisms in the PTPN22 gene associated with T1D [23, 
133]. The mutation of this gene, that encodes for a negative regulator of TCR sig- 
naling [141], may increase the activation threshold needed for deletion of CD4+ and 
CD8+ T cells [133, 134, 141]. 

APC-T-cell interaction in the peripheral lymphoid organs is the key in periph- 
eral tolerization. APC provide costimulatory molecules, such as CD40 [142], and 
adhesion molecules as leukocyte function antigen 1 (LFA-1) and intercellular 
adhesion molecule 1 (ICAM-1) that are necessary to activate naïve T cells [111] 
and molecules of the B7 family [143]. Without coactivation of B7-CD28 on the 
T-cell surface, the MHC-TCR signaling induces apoptosis of naïve T cells, medi- 
ated by upregulation of ‘Activation-Induced Cell Death’ [144]. Surviving T cells 
become anergic, i.e., unresponsive to subsequent antigen stimulation, through an 
active process involving a number of anergy factors [145]. T-cell reactivity is also 
controlled by negative regulatory receptors as cytolytic T lymphocyte-associated 
antigen (CTLA)-4 which binds to CD86 on the APC [146] and attenuates T-cell 
activation by competing for B7-CD28 ligation [147], and programmed death-1 
(PD-1) [148]. The susceptibility to T1D associated to some splice variants of the 
human CTLA-4 gene may be due to reduced expression of CTLA-4 and insufficient 
costimulatory molecule blockade [149] . 

Among APC, DC are peculiar, highly specialized effectors with ontogenic, 
morphologic, and functional heterogeneity and can be mainly divided into con- 
ventional or myeloid DC (mDC) and plasmacytoid DC (pDC), upon superficial 
clusters of differentiation and secretive function [150]. pDC are potent productors 
of IFN-a and are connected to the innate immune system through the expression 
of toll-like receptors (TLR) specific for the detection of viral infections [150, 151]. 
Emerging evidence suggests a close relationship between pDC and autoimmune 
conditions [109]. In healthy subjects, autoantigen-bearing DC are physiologically 
found in blood, peripheral lymphoid organs, and thymus, where they are impor- 
tant source of TSA [137] . DC are also reported to display proinsulin epitopes 
through direct transcriptional events in a capture-independent way [152]. DC are 
thought to be the only APC effective in ‘cross-presentation’ [153], which is an 
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unconventional mechanism for processing and presenting exogenous antigens in 
the context of MHC I molecules directly to cytotoxic T lymphocytes (CTL) [153, 
154]. Cross-presentation of parenchymal antigens is thought to be involved mainly 
in the detection of viral infections [154] but has also been proposed to contribute 
to peripheral tolerance [155]. The different outcome of the interaction between T 
cells and DC is ruled by their maturative status. Under homeostatic conditions, DC 
are in an immature status, which is predominantly tolerogenic and characterized 
by low expression of costimulatory factors as CD40, CD80, and CD86 [107, 156]. 
This homeostatic status may be maintained through the downregulation of nuclear 
factor- B(NF- B), which is a critical transcription factor for many genes involved 
in APC activation in mice [157]. After the activation by an antigen, DC undergo 
maturation, express pMHC complexes, and promote antigen-specific T-cell clonal 
expansion. At this mature stage, DC are generally immunogenic and produce cos- 
timulatory molecules and several cytokines. Among them, interleukin (IL) 12p70, 
which promotes differentiation of CD4+ T helper cells (Th0) and CD8+ effectors, 
IL-1-ß, tumor necrosis factor (TNF) alfa, and interferon (IFN)-  [107]. Under spe- 
cific conditions, such as transforming growth factor (TGF) beta and IL-10-enriched 
environment, mature DC can develop tolerogenic properties [158], secrete cytokines 
as IL-10 [159], which inhibits the activation of other APC, and promote antigen- 
specific expansion of Treg subsets [158–160]. Tolerogenic DC may also inhibit 
T-cell proliferation through the enzyme indoleamine 2,3-dioxygenase (IDO) [161] 
or directly induce T cells apoptosis through PD ligand 1 (PDL-1) [162]. In the NOD 
mouse, the binding of PDL-1 to the T-cell PD-1 receptor downregulates the priming 
of diabetogenic T cells in early stages of diabetes and inhibits islet destruction at a 
later phase [163]. 

The physiology of B cells as APC indicates that these cells are able to take 
up antigen at very low concentrations through their antigen-specific membrane- 
bound immunoglobulin [164] and to present it to T cells. The antigen presentation is 
enhanced in the presence of specific autoantibodies [165]. In the NOD mouse, anti- 
gen presentation by B cells may be important for the initiation of the autoimmune 
attack [166] and for the spreading of T- and B-cell determinants during the progres- 
sion of the disease [167, 168]. A recent study on human B cells in T1D showed that 
B cells may regulate the autoimmune T-cell repertoire by enhancing the presentation 
of determinants located outside the B-cell immunodominant area [169]. Moreover, 
the minute amounts of antigen presented by B cells may be important for the main- 
tenance of autoimmune reactivity in the later phase, once most of the target tissue 
has been destroyed [169]. Of interest, HLA-restricted B- and T-cell epitopes are 
in close proximity within the GAD65 molecule [170], and recently an overlapping 
within T and B IA-2 epitopes has been described [171]. These observations suggest 
that antigen–antibody complexes may in uence antigen presentation by APC and 
thereby T-cell reactivity [170]. The T- and B-cell synapse has been discussed in a 
recent review [111]. However, there are major gaps in our understanding of the pos- 
sible importance of the T–B-cell synapse within the human islets of Langerhans. 
B cells are also the most frequent APC expressing CD1d, the restriction molecule 
responsible for antigen presentation to natural killer T (NKT) cells, a T-cell subset 
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linking the innate and adaptive immune system with a still controversial role in 
ß-cell destruction [172]. 

There is wide evidence from studies on T1D pancreas with insulitis that MHC 
class II expression is increased on islet vascular endothelial cells (iVEC) [11, 12, 
173], as a result of de novo expression induced by the in ammatory cytokine IFN- 
[174]. The possibility that human VEC can act as APC and present exogenous 
antigens on HLA class II molecules to CD4+ T cells was reported previously [175]. 
More recent data on iVEC suggest that these cells are capable to internalize, pro- 
cess, and present disease-relevant epitopes from GAD65 [174] and insulin [176]. 
The in vivo acquisition of these autoantigens by iVEC is not clearly established. 
Since iVEC are physiologically exposed to very high insulin concentration, it is 
likely that these cells take up insulin and process it into peptides through endosomal 
degradation, rather than acquire peptides or pMHC complexes produced by ß-cells 
[176]. The mechanism is even more unclear for non-secreted antigens. Although it 
is uncertain whether islet vascular endothelium has any prominent role in the prim- 
ing of autoreactive T cells, given the recognized importance of professional APC, 
it has been suggested that iVEC may be important for the trafficking of activated T 
cells providing antigen-driven homing specificity [176]. 

24.2.2.2 T Cells 

Recent progress in studying peripheral tolerance has highlighted the importance 
of immunoregulation by Treg, co-expressing CD4 and the alfa-chain of the IL- 
2 receptor complex (CD 25) [177]. Treg are potent suppressors of organ-specific 
autoimmunity [105]. Natural Treg (nTreg) originate from intrathymic recognition 
of self-pMHC complexes [177, 178] and are functionally marked by the constitu- 
tive expression of forkhead–winged helix transcription factor (FoxP3) [179], while 
conventional Treg (cTreg) differentiate from naïve CD4+ T cells in the periphery 
[104]. Although FoxP3 plays a major role in Treg development and activity, as muta- 
tions in FOXP3 gene in humans determine severe multi-organ autoimmunity (IPEX 
syndrome) [180], Treg function is complex (181) and involves other transcriptional 
signaling as TGF-ß, IL-2, and possibly others [182]. The possible dysregulation 
of IL-2 signaling in Treg suppressor activity is supported by the association of 
T1D and polymorphisms within the IL-2 receptor alfa gene region in humans [134, 
183]. Immunoregulation by Treg affects T cells, B cells, and APC antigen-specific 
cellular responses in different manners, including production of anti-in ammatory 
cytokines (TGF-ß, IL-10, and IL-35) and contact-dependent mechanisms [184], pos- 
sibly involving CTLA-4 and direct cytolysis [178]. The primary site at which nTreg 
control ß-cell autoimmunity is within the islet infiltrate on CTL and in ammatory 
cells [185]. In the secondary lymphoid tissue, nTreg regulate DC activation induc- 
ing DC secretion of IDO [161], by binding CD80/CD86 via CTLA-4, and prevent 
the priming of naïve autoreactive CD4+ and CD8+ T cells [186]. cTreg are dis- 
tinguished based on their cytokine secretion pattern [104, 187] and can produce 
IL-4 (‘Th2-like’ cells), TGF-ß (‘Th3-like’ cells), and IL-10 [187, 188]. IL-10 is 
a potent systemic immune suppressor that regulates activation, proliferation, and 



 

550 D. La Torre and Å. Lernmark 

IFN-  release by effector T cells [189] and indirectly controls DC activity [190]. 
IL-10 producing cTreg have also been reported to mediate a direct suppression by 
cell–cell contact, independently of IL-10 secretion [191]. 

24.2.2.3 B Cells 

Little is known about self-tolerance mechanisms for B cells [192]. Immature B cells 
in the bone marrow are expressing a potentially polyreactive B-cell receptor (BCR), 
which results from stochastic gene recombination. B peripheral maturation process 
is thought to involve three checkpoints [193]. Twenty to fifty percent of autoreac- 
tive immature B cells undergo rearrangement of immunoglobulin light-chain genes 
and replacement of self-reactive BCR through a process called ‘receptor editing’; 
the remaining self-reactive B cells undergo peripheral deletion or peripheral anergy 
[193]. The extent to which deletion and anergy contribute to B-cell tolerance has 
not yet been determined. Although evidences of aberrant receptor editing have been 
associated with autoimmunity in mouse and human diseases [194], to what extent 
these defects participate in the establishment of autoimmunity is still unclear. 

24.2.3 What Happens in the Islet? 

It is presently unclear whether in humans the initiation of autoimmune ß-cell 
destruction requires autoreactive T cells simultaneously recognizing multiple ß-cell 
antigens, or if T cells primarily target a single antigen. In the mouse, the chronol- 
ogy of appearance of islet T-cell reactivity suggests GAD65 as a triggering antigen 
[195]. Knock-out mice indicate a key role for insulin or proinsulin [196]. At the time 
of diagnosis in human T1D, patients exhibit autoimmune responses to a number of 
islet-cell antigens [17]. These responses representing ‘antigen spreading’ may be 
explained with the release of previously sequestered immunogenic proteins during 
the ongoing ß-cell damage, as the clinical onset is manifest when more than 80% 
of the islets have been destroyed. The variability in reactivity to individual anti- 
gens may in turn be due to ‘epitope spreading,’ which consists of intramolecular 
shifting of the recognized epitopes with the progression of the autoimmune attack, 
and subsequent activation of new T-cell clonotypes. These events may provide an 
explanation for the widely diversified anti-islet immune response in T1D. 

Priming of naïve CD4+ T cells by islets antigens presenting APC would be the 
first event in initiating islet autoimmunity (step 1) and diabetogenesis (step two) 
(Fig. 24.1). This event most likely takes place in the pancreatic lymph nodes (pLN). 
Islet antigen presentation in pLN has been demonstrated in the mouse [197, 198], 
but the detailed mechanisms in humans are unclear. What promotes the earliest 
event, namely uptake of antigen by APC in the islets, is still a matter of debate. 
Initial, still not fully characterized, insults (virus infection or other external dam- 
age, for example, environmental toxins) may elicit an innate immune response 
through the generation of exogenous or endogenous ligands for the pattern recogni- 
tion receptors (PRR) on the ß-cell surface. The activation of these receptor triggers 
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Fig. 24.1 Schematic view on possible immunopathogenesis of ß-cell destruction. Steps of events: 
( 1 ) Environmental factors are conditioning the relevant milieu by activation of dendritic cells (DC), 
macrophages (Mf), natural killer (NK) cells, and natural killer T cells (NKT); ( 2 ) Intake of antigens 
or cross-reactive peptides by dendritic cells (DC); ( 3 ) Presentation of peptides to naive T helper 
(Th0) cells and subsequent activation and proliferation of type 1 (Th1) and type 2 (Th2) helper 
cells, IL-17-producing helper cells (Th17),regulatory T(Treg) cells, cytotoxic Tcells (CTL), B and 
plasma cells (PC), and activation of different cell subsets by cytokines; ( 4 ) Migration of activated 
cells from pancreatic lymph node to the islets, cross talk with periphery; ( 5 ) ß-cells destruction 
by cytokine- and perforin/granzyme-mediated mechanisms. – environmental factor (virus etc.); 

– islet antigens; – islet antigens or cross-reactive peptides; – islet-specific T cell; Ab – 
autoantibodies 

intracellular responses including cytokine production, endoplasmic reticulum stress, 
and accumulation of misfolded proteins, which result in ß-cell apoptosis and pro- 
mote local in ammation [110]. Notably, mouse experiments suggest that ß-cell 
apoptosis is a required step for T-cell activation [199]. Dying ß-cells may release 
immunostimulatory ‘danger’ signals, physiologically aimed at eliminating the ini- 
tial harmful factor. This requires a transfer to adaptive immune response mediated 
by the enrollment of APC and the establishment of a pro-in ammatory local envi- 
ronment (IFN, IL-1-ß, and chemokines) to attract other immune cells. A defective 
resolution of the early in ammation results in a chronic destructive autoimmune 
reaction and may be dependent on the individual genetic background. For example, 
the DR3-DQ2 haplotype seems to be permissive of organ-specific autoimmunity 
[200, 201]. 

It is evident in the NOD mouse that DC are the first cells to infiltrate the islets 
[201]. Similar observations have been made in the BB rat [202] as well as in human 
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T1D [203]. The scavenging function of DC has been proven also in other mouse 
strains, in which physiological islet-cell death in pancreas remodeling [204, 205] 
is followed by DC in situ activation and migration to pLN [204]. Moreover, DC 
may cross-present peptides derived from apoptotic cells directly onto MHC class I 
molecules, without processing in the cytosol [206]. Taken together, it is likely that 
antigens derived from ß-cells dying upon external damage may be taken up by APC 
in the pancreatic islets and transported to pLN (Fig. 24.1). In humans, this has not 
been possible to fully demonstrate, though expression of the ß-cell autoantigens 
proinsulin, GAD65, and IA-2 has been detected in human peripheral DC [137]. 
Currently, our understanding on possible mechanisms of the very early events in 
islet autoimmunity relies on studies in animals. 

24.2.3.1 Virus-Induced ß -Cell Killing 

It has been amply demonstrated that CTL specific to viral antigens are able to 
kill ß-cells. Transgenic mice have been generated to express viral antigens on the 
ß-cell surface using the insulin promoter to achieve cell specificity [207, 208]. 
When the mice are infected with virus, the generated CTL effectively kill the 
ß-cells. These experiments are proof of principle of CTL-mediated ß-cell killing 
to generate useful mice for diabetes studies. However, these studies do not provide 
answers as to what possible pathways a virus may use to enter ß-cells, repli- 
cate, and express viral antigens on MHC class I molecules, thereby making the 
ß-cell a target for virus-specific CTL. Regardless of the numerous reports of TD1 
onset following viral diseases [209, 210], no conclusive pathogenic connection 
has been found between viral infection and human islet autoimmunity [33, 209, 
211]. Virus diabetogenicity has been studied in rodents [209] and may be sus- 
tained by an aberrant immune response toward the ß-cells. Interestingly, human 
pancreatic islets increase the expression of innate PRR when infected by virus 
or exposed to virus-related cytokines as IFN and IL-1-beta [212]. To be recog- 
nized by CTL virus antigen peptides need to be presented on MHC class I on the 
ß-cell surface [213]. The critical question is to what extent a virus-infected ß-cell 
is copresenting viral and ß-cell antigens on MHC class I molecules . Some viral 
antigen sequences are similar to self-peptides and may mislead T-cell responses. 
This phenomenon of ‘molecular mimicry’ has been proposed between PC-2 anti- 
gen from Coxsackie B and GAD65 [96], between Rotavirus and IA-2 [214], for 
rubella [215], and cytomegalovirus [33]. However, it is possible that these events 
are more relevant to the amplification of the autoimmune process [216] and its 
maintenance after the resolution of the viral infection, than to the initial triggering 
of autoimmunity. As previously described, virus may activate ß-cell intracellu- 
lar signaling that induces altered expression of self-antigens on the ß-cell surface 
(‘neoantigens’ or ‘cryptic antigens’) and participates to the cascade leading to ß-cell 
apoptosis and insulitis [110]. Moreover, virus replication in the ß-cell may result in 
its necrosis and in release of previously sequestered cellular constituents (‘hidden 
antigens’), lacking induced thymic tolerance [217]. The uptake and presentation 
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of these self-antigens by APC to CD4+ T cells may eventually lead to the forma- 
tion of specific autoantibodies. Coxsackie B4 has been isolated from the ß-cells of 
T1D new-onset patients [218]. Evidence for intracellular replication and induction 
of altered GAD65 islet expression [219] with production of specific autoantibod- 
ies has been reported in Coxsackie-infected mice [220]. In summary, there is wide 
evidence that virus infections may accelerate islet autoimmunity (step two) leading 
to a precipitation of clinical onset of T1D. The mechanism may be an increase in 
insulin resistance or a boost in ß-cell killing induced by the virus infection. The 
major question to be answered is whether a virus infecting and replicating in human 
ß-cells induces islet autoimmunity. The ongoing TEDDY (The Environmental 
Determinants of Diabetes in the Young) study may be able to answer this question 
[221, 222]. 

24.2.3.2 Cytotoxin-Induced ß -Cell Killing 

Alloxan [223], streptozotocin [223, 224], and the rodenticide Vacor [225] are ß-cell 
cytotoxic agents. It is important to note that both alloxan and streptozotocin are more 
toxic to rodent than human ß-cells. Other chemicals that may be potential human 
beta-cytotoxins are nitrosamine derivatives as well as dietary microbial toxins [226]. 
Epidemiological data suggest that an increase in nitrate-treated food items enhances 
the risk for children to develop T1D [227]. Experiments in both rats and mice have 
given insights into possible mechanisms by which beta-cytotoxic agents may induce 
islet autoimmunity apart from inducing diabetes by direct ß-cell killing. First, low- 
dose streptozotocin treatment is inducing insulitis in a MHC and T-cell-dependent 
fashion [224, 228]. The use of streptozotocin in mice therefore offers a way to kill 
ß-cells with a toxin that initiate ß-cell autoimmunity. In rats treated with strepto- 
zotocin to induce ß-cell destruction [229] it has been possible to detect circulating 
immunoreactive GAD65 following the ß-cell killing, prior to hyperglycemia [230]. 
In previous rat studies with streptozotocin it was shown by electron microscopy that 
ß-cell remnants including insulin granules could be detected in islet macrophages, 
possibly representing islet APC [13, 231]. Other compounds structurally related to 
streptozotocin or alloxan have been implicated as possible environmental agents, 
contributing to human T1D. Most prominently these compounds include the roden- 
ticide pyriminil (Vacor) [225] that induces islet-cell surface antibodies and confirms 
that ß-cell destruction in humans may cause islet autoimmunity [229]. 

In summary, several virus and chemical agents directly affecting islet cells 
may be causative in the initiation of an autoimmune ß-cell destructive process. 
Alternatively these factors may potentiate a process initiated by other environmen- 
tal factors, which are currently under scrutiny in the TEDDY study [221, 222]. In 
individuals prone to develop TD1, environmental chemicals may play a detrimen- 
tal role by repeat injuries to the pancreatic ß-cells over several years of life and in 
combination with a poor regenerative capacity of the ß-cell and islet autoimmunity 
eventually induce diabetes. 
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24.2.4 Antigen Presentation in Pancreatic Lymph Nodes 

Although specific mechanisms in humans remain unclear, APC loaded with ß-cell 
antigens migrate from the islets to the pLN, where the processed antigens are pre- 
sented to naïve CD4+ T cells (Th0) (Fig. 24.1). A recent study on human DC showed 
that antigen-specific DC/CD4+ T cells interaction allows DC migration through the 
dissolution of podosomes [232]. This led the authors to speculate that the same 
event may involve neighboring immature DC and induce their recruitment to the 
site of antigenic stimulation [232]. In the pLN, primed CD4+ T cells proliferate and 
differentiate into several subsets, as type 1 CD4+ T cells (Th1), IL-17-producing 
CD4+ T cells (Th17), and Treg cells, and activate naïve CD8+ T and B cells into 
CTL and plasma cells, respectively. The expansion of CD4+ T cells toward lin- 
eages of pro-in ammatory subtype (Th1 and Th17) is mainly promoted by the 
cytokine milieu, through IL-6, IL-12, and IL-23, whereas a balance toward IL-4 
[233], IL-5, IL-13, and IL-25 would decrease the in ammation [234]. Th1 cells 
release IFN- , which activates macrophages, TNF-a, IL-12, and IL-18 [235]. The 
recent discovery of Th17 cells that are potent inducers of tissue in ammation and 
autoimmunity [236] is of interest, as they may have a role in islet destruction, as is 
reported for the NOD mouse [237]. Activation and differentiation of naïve CD8+ T 
cells to antigen-specific CTL is dependent on ‘cross-priming,’ namely the cognate 
recognition of the same antigen by the CD8+ and the CD4+ T cells on the same 
APC [238]. The interaction between CD40 on APC and CD154 on CD4+ T cells 
induces upregulation of costimulatory molecules for the activation of the CD8+ T 
cells [142] and increases the local production of pro-in ammatory cytokines such 
as TNF-a and IL-12 [239]. Alternatively, IFN-  produced by CD8+ T cells could 
enhance CD4+ T-cell action [3]. The relative contribution of CD4+ and CD8+ T 
cells on diabetogenesis has been addressed by transfer experiments in mice [240, 
241]. When cognate interaction occurs between B cells and activated CD4 + T cells, 
the B cells differentiate into plasma cells and start to secrete immunoglobulins with 
the same specificity of the previous membrane-bound immunoglobulin [242], upon 
stimulation of T-cell-released ‘Th2’ cytokines IL-4 and IL-5. 

24.2.5 Homing of T Cells to Islets 

Primed ß-cell-specific effector T cells gain access to peripheral non-lymphoid tis- 
sues, migrate to the pancreas, and reach the ß-cells [243] (Fig. 24.1). The molecular 
basis for this directed migration (homing) of autoreactive T cells to the islets and 
for endothelial transmigration is not completely clarified. The antigen specificity of 
infiltrating T cells has been amply demonstrated in mice [244, 245] and is reason- 
ably postulated in humans, but the processes guiding islet autoantigen-specific T 
cells into islets are not known. In pancreas transplantations between monozygotic 
twins without immunosuppression, islets in the donor pancreas were infiltrated by 
CD8+ T cells in association with the loss of ß-cell function [246]. These experiments 
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demonstrate the immunologic memory of the recipient, as well as ß-cell killing by 
CTL, indicating that autoreactive CTL are reactivated. The mechanism of reactiva- 
tion is unclear. It has been proposed that T cells can be programmed to a specific 
tissue tropism through a distinct ‘homing receptor pattern’ acquired at the site of 
priming [247]. In contrast to naïve cells, primed or memory T cells are significantly 
less dependent on a costimulatory signal and can proliferate with TCR engagement 
alone [248]. Upon second contact with cognate antigen in the islet, CTL are retained 
inside the islet tissue and initiate insulitis [197, 249] (Fig. 24.1). In the islets, ß-cell- 
specific CTL may recognize antigens expressed on ß-cells in association with MHC 
class I molecules. MHC class I overexpression on islet cells, previously described 
in pancreas with insulitis [12, 250, 251], is not likely to be involved in these early 
phases. It is noted in mouse studies that abrogation of MHC class I on ß-cell does 
not blunt T-cell activation in pLN [249], but it may contribute to the local reten- 
tion of self-reactive clonotypes. In the NOD mouse, the early infiltrate consists of 
activated macrophages and CTL that lead the initial accumulation at the vascular 
entrance (peri-insulitis), probably under the effect of chemotactic mediators as IL-1 
[252] and chemokines as CXCl10 and CCl2 [253] that direct leukocyte migration 
and activation during the transition to adaptive immunity [110]. Of notice increased 
islet levels of CXCl10, CCl2, CCl20, and IL-15 are detectable in the NOD mice dur- 
ing the pre-diabetic stage [254, 255]. Although the routine investigation of the early 
phase (step 1) is not feasible in humans, immunocytochemistry on pancreas biopsy 
specimens from new-onset T1D patients in Japan indicates the presence of CD8+ T 
cells and activated macrophages secreting in ammatory cytokines [256]. The ongo- 
ing in ammatory islet milieu expands the recruitment of autoreactive CTL through 
the expression of chemokines and homing ligands from the ß-cells. These may in 
turn secrete the chemokines as CXCL10, which specifically attracts autoreactive 
CD8+ T cells. Mouse ß-cells may also express the CXC chemokine receptor 3 [257] 
to further promote the recruitment of T cells and macrophages to the islets [258]. A 
study on the homing of human diabetogenic T cells reported that IFN-  is crucial for 
diapedesis and penetration into islets [176]. As physiological response to the in am- 
mation, islet endothelium upregulates the expression of surface adhesion molecules 
that increase vascular permeability and facilitate the recruitment of effector cells. 
Adhesion and diapedesis of T cells are feasible through the interactions of T-cell sur- 
face molecules (integrins) such as leukocyte function-associated antigen-1 (LFA-1) 
and very late activation antigen-4 (VLA-4) with their counter ligands on VEC, 
such as intercellular adhesion molecules (ICAM) and junctional adhesion molecules 
(JAM-1) [259] that play a major role in the homing of diabetogenic T cells to the 
pancreas in the NOD mouse [260, 261]. This hyperexpression of adhesion molecules 
is documented in new-onset diabetes pancreas [11, 262] but may not fully account 
for the observed enrichment of infiltrating autoantigen-specific T cells. It is now 
proposed that after migration from pLN, activated T cells require an additional 
upregulation of LFA-1 functional activity for the successful adhesion to VEC [263]. 
Data support that the triggering of TCR, achieved through peptide antigen presen- 
tation by iVEC, is an important component of integrin functional activation [264] 
and may provide an additional grade of antigen specificity in T-cell recruitment. The 
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hypothesis that iVEC may participate in T-cell selective recruitment and adhesion 
in an antigen-specific fashion is intriguing. A recent study reported that GAD65 
presentation by iVEC markedly promotes the in vitro transmigration of GAD65- 
autoreactive T cells across iVEC monolayers in an LFA-1-dependent fashion [174]. 
In this process, CD4+ T cells may also intervene by secreting various lymphokines 
that attract and activate other cell types such as monocytes, eosinophils, and natu- 
ral killer lymphocytes (NK) [173]. Whether islet-specific autoantibodies secreted 
by plasma cells take part in the islets destruction, or are merely recruited upon 
the ongoing discharge of autoantigens, it is still a matter of debate, since a defined 
pathogenetic effect has not been proven. A pathogenetic involvement of the autoan- 
tibodies may be suggested from NOD mouse experiments in which B-cell-deficient 
animals are protected from diabetes [265], but clinical evidences in humans do not 
support this hypothesis [266]. Nonetheless, the observation of a cytotoxic effect of 
autoantibodies on human ß-cell in vitro [267] may indicate possible harmful effects. 
Autoantibodies might exert either complement-mediated or antibody-dependent cel- 
lular cytotoxicity, but there is no clear evidence of these effects in vivo. Moreover, 
immunoglobulin deposits may [12] or may not be found in islets [3]. From previous 
experimental observations in mouse, the presence of islet autoantibodies does not 
seem to be sufficient [3] nor necessary [253] to ß-cell destruction, and do not clearly 
correlate with the T-cell responses [268]. However, recent insights acquired from 
NOD mice [88] suggested that B cells may be more important players than formerly 
considered, and their relevance in physiopathology of human ß-cell destruction is 
currently under investigation [269]. It is still matter of debate whether antibodies 
reacting to antigen-binding areas of autoantibodies (anti-idiotype) may be of rel- 
evance within the autoimmune process [270], through the blockade of circulating 
self-autoantibodies. 

24.2.6 Insulitis and ß -Cell Destruction 

The progression from the initiating phase to an adaptive immune response is thought 
to take place very early during the insulitis and determine the final outcome toward 
the generation of a prolonged devastating autoimmune reaction, or the resolu- 
tion of in ammation and preservation of islet integrity. Target-cell death further 
activates PRR that in turn promote the progression of insulitis [271] through IFN- 
a-mediated upregulation of MHC class I molecules on pancreatic islet cells [110, 
272]. Among TLR ligands, HSPs are reported to promote antigen presentation [273, 
274] and shift DC toward immunogenic phenotype in vivo [273]. IFN and other 
macrophage-derived cytokines prompt NK activation. These cells exert nonantigen- 
specific cytotoxicity through the release of perforin, after the activation of surface 
receptors, as NKG2D that recognizes viral products and other specific ligands [275]. 
NKT cells on the other hand may be considered as innate-like lymphocytes, as they 
may co-express NK cell surface markers including NK1.1 (human CD161) and TCR 
[276]. Most NKT cells recognize glycolipid antigens presented on the MHC class 



 

24 Immunology of ß-Cell Destruction 557 

I-like molecule CD1d [276]. The majority of human NKT cells display an invari- 
ant TCR-a chain (Va24-Ja18) and limited number of beta chains [277], and it is 
often referred to as invariant NKT cells (iNKT) or ‘classical’ or ‘type 1’ NKT [276]. 
iNKT cells are potent producers of Th2-like reactivity in vivo [277] and are involved 
in autoimmune diseases in humans and mice [278]. The possible role of NK in 
ß-cell damage has not yet been clarified, since neither a protective nor a detrimental 
effect of these cells has been consistently reported in humans or in mice [279–282]. 
Similarly, an unequivocal role in islet autoimmunity for iNKT has not been estab- 
lished, though a predominant immunomodulatory function has been proposed in the 
NOD mouse [283]. The effect may be exerted by inducing DC tolerogenic differ- 
entiation [284, 285] and conditioning the cytokine environment of pLN or islets 
[286]. Conversely, the exacerbation of insulitis for an iNKT-mediated enhance of 
IFN- -producing CTL has also been reported [287]. 

As the islet invasion progresses, chemokines-attracted macrophages contribute 
to the recruitment of other immune cells that also release multiple chemokines and 
pro-in ammatory cytokines. These in ammatory signals create an overall immuno- 
activatory environment that modifies DC phenotype [107], shifts CD4+ T cells 
toward ‘Th1-like’ responses which promote the expansion of CTL, and shelters 
them from peripheral tolerance [154, 288]. If this vicious circle is not interrupted, 
the maintenance and amplification of insulitis evolve in accumulation of immune 
cells and their cytotoxic mediators that may act synergistically to destroy the islets 
[289] (Fig. 24.1). In the later stages, the destructive process may be worsened in the 
course of ß-cell failure as hyperglycemic environment may locally enhance insulin 
epitope presentation [290]. 

Apoptosis is probably the main form of ß-cell death in T1D and is regulated in 
parallel to the in ammation, through the activation of similar intracellular signaling 
pathways [110]. ß-cell injury in the course of insulitis is caused by both exposure 
to soluble mediators as cytokines and reactive oxygen species, secreted by infiltrat- 
ing cells, and direct cell–cell contact with activated macrophages and CTL [252]. 
The role of cytokines in diabetes development was confirmed by the demonstration 
that suppression of cytokine signaling within ß-cells completely prevents mice from 
diabetes, despite the presence of insulitis [291]. Cytotoxic in ammatory cytokines 
IL-1-ß,TNF-a, and IFN-  released by CTL and macrophages affect ß-cell gene reg- 
ulatory networks, in uencing primarily transcription factors NFk-B, STAT-1, and 
AP-1, and activate apoptosis [292]. IL-1 exerts in vitro cytotoxic effects on islets 
[293] that express specific surface receptors [294]. Cytokine-induced ß-cell death 
seems to be preceded by a functional impairment, as IL-1 [295, 296] and TNF- 
a [297] inhibit insulin secretion from isolated cells. This effect may be mediated 
by the action of nitric oxide (NO) [297, 298]. TNF-a, IL-1, and IFN-  activate 
ß-cell inducible NO synthase activity and enhance the production of endogenous 
NO [299]. For the lack of radical scavenging activity, ß-cells are highly suscepti- 
ble to reactive oxygen species [300] that directly participate to cell death through 
DNA injury, activation of the DNA repair enzyme poly-ADP-ribose polymerase, 
and depletion of nicotinamide adenosine dinucleotide (NAD) (87). A central role 
in cytokine-mediated ß-cell death is ascribed to IFN-  as observed in mouse 
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studies on anti-IFN-  antibodies and IFN-  transgenic expression [252]. In the islets 
INF-  enhances T-cell cytotoxicity and participate to direct ß-cell damage, probably 
through the upregulation of receptor Fas on ß-cells [291]. Fas is a 45-kDa surface 
receptor which directly transduces the signal for apoptosis through translocation of 
phosphatidylserine, upon binding of its specific ligand (Fas-L) [301]. Although the 
precise mechanism is not defined in vivo, the Fas/Fas-L complex may act through 
caspase, which is thought to be a major effector enzyme in the apoptotic pathway 
[199, 204]. Effector T cells can trigger ß-cell death through direct contact between 
their surface Fas-L and membrane-bound TNF-a and apoptosis-inducing receptors 
on ß-cells or through the secretion of perforin [252]. Perforin acts facilitating the 
passage of protease (granzymes) and may be involved in more advanced stages of 
the destruction [87]. 

Further studies of early insulitis in humans will be needed to fully appreciate 
the initiating mechanisms of infiltration of immune cells. Effective prevention of 
T1D may require a better understanding of the early events of building chronic 
insulitis. We speculate that a chronic insulitis which includes APC presenting islet 
autoantigens within the islets as opposed to the pLN represents a refractory state 
to immunosuppression. This may explain why immunosuppression at the time of 
clinical diagnosis of T1D is ineffective. It cannot be excluded that immunosuppres- 
sion therapy may be efficacious, provided that the treatment is used prior to chronic 
insulitis. 

24.2.7 Is ß -Cell Destruction Re ected in the Blood? 

Assaying the cells involved in ß-cell damage may give insights about the induction 
and maintenance of islet autoimmune destruction. Several possible immunological 
alterations have been searched in the peripheral blood of T1D patients and at-risk 
subjects to differentiate them from healthy subjects. 

24.2.7.1 APC 

Most alterations described in mice are consistent with the hypothesis of an increased 
DC capacity to activate CD4+ and CD8+ T cells [302], such as upregulation of cos- 
timulatory molecules, enhanced secretion of cytokines IL-12p70 and TNF-a [303], 
and downregulation of IDO [304]. An abnormal cytokine response by DC from 
T1D patients upon antigenic [305] or nonantigenic stimulation was proposed [306] 
but has not been confirmed by other studies [307]. More robustly, phenotypic char- 
acterization suggests that DC from recent-onset T1D patients exhibit an immature 
phenotype and may have a decreased T-cell stimulatory capacity, compared to con- 
trols [308]. DC may therefore indirectly participate to T1D autoimmunity through 
a reduced efficacy in stimulating Treg, as is also reported in mice [309] and BB 
rats [310]. This immature phenotype of T1D human DC may result from abnormal 
activation of the NF-kB pathway [311], consistently with the strong involvement 
of this transcription factor in the induction of self-tolerance in mice [157, 303]. 
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Studies investigating the peripheral DC count reported a reduction in absolute num- 
ber of blood DC in T1D children [307] and, more recently, a modest but significant 
increase in the relative frequency of pDC subset, strictly time-related with disease 
onset [312]. Individual, genetically determined antigen processing (internalization 
and proteasomic cleavage) has been demonstrated in different APC [313] and may 
account for disease-relevant epitope presentation in genetic susceptible individuals 
[314]. However, the present observations about DC in human diabetes rely upon 
studies on in vitro monocyte-generated DC that may not re ect the true in vivo 
situation (315). 

24.2.7.2 T Cells 

Plenty of studies on peripheral blood mononuclear cells (PBMC) of T1D patients 
aimed at detecting the presence of islet-specific CD4+ and CD8+ T cells, upon 
stimulation with synthetic peptides from islet antigens. The immunogenic epi- 
topes are selected among putative immunodominant regions within the multiple 
diabetes-related islet autoantigens. Many of these studies report a higher frequency 
of islet-specific self-reactive T cells in T1D patients than in control subjects, 
when T cells are detected by either functional tests of antigen-induced prolifera- 
tive [96] and cytokine-secretive response [91, 102, 316, 317] or tetramer staining 
[101, 318, 319]. 

CD8+ and CD4+ T cells from T1D patients target a wide array of epitopes within 
GAD65 molecule [92, 316, 318–322], insulin and proinsulin [91, 323–325], IA-2 
[316, 317, 326], IGRP [323, 327, 328], I-A2b [327, 328], islet amyloid polypeptide 
(IAPP) [327–329], and glial fibrillary acidic protein (GFAP) [328] as comprehen- 
sively summarized in a review updated to the end of 2006 [330]. More recently, a 
few more epitopes have been described, as GAD536-545 [316], other IGRP frag- 
ments, among which IGRP 211–219 and 222–230 [331], and several novel insulin- 
and proinsulin-derived peptides targeted by CD8+ [323, 332, 333] and CD4+ T 
cells [334]. In conclusion, these investigations, mostly oriented toward epitope iden- 
tification, provide evidence of multiple immunodominant ß-cell regions targeted 
by CTL in human T1D, but do not fully clarify the development of the T-cell- 
specific responses during the progression of the disease. In fact, no single epitope 
has proven to be highly discriminatory, though a hierarchy of T-cell responsiveness 
has been proposed among proinsulin peptides [102]. In some ways, the choice of the 
epitope may also be misleading. Candidate sequences are usually selected on the 
basis of predicted TCR–pMHC-binding motifs [335] or affinity algorithms [336], 
whereas the strength of the TCR–pMHC complex interaction may inversely cor- 
relate with immunogenicity [327, 337], in accordance with an insufficient negative 
thymic selection; this bias can be avoided through the analysis of multiepitope, mul- 
tiantigen panels [317, 337]. Moreover, epitopes that have been proved of relevance 
in mice may guide the searching efforts in humans, as is recently happening with 
IGRP peptides [331]. As already mentioned, a precise, reproducible, and standard- 
ized method for detection and identification of ß-cell-specific autoreactive T cells to 
reliably identify the pathologic response of T1D patients is not available. However, 
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some authors reported that the use of multiple epitopes achieved more diagnos- 
tic sensitivity and discriminates T1D from controls [102, 324]. It is therefore still 
unclear to what extent all the data provided can be translated into evaluation of dia- 
betes risk or disease condition. Moreover, autoreactive T-cells-specific responses for 
T1D self-antigens have been widely described in healthy individuals in stimulation 
assays with peptides from GAD65 [338, 339] and insulin [100, 102, 327]. Several 
differences have been proposed between self-reactive T CD4+ T cells from T1D 
and controls. Only GAD65-reactive T cells from T1D subjects seem to be fully 
autoantigen-experienced in vivo and express the memory T-cell marker CD45RA 
[338, 339] and are capable of activation in the absence of CD28/B7 costimulatory 
signals [248]. It was also recently proposed that CD4+ T cells from T1D subjects 
may have a lower threshold of activation, as compared to healthy controls [340]. 

Interestingly GAD65-specific T-cell TCR repertoire does not differ between T1D 
and controls [338], implying that central tolerance to GAD65 is the same among 
healthy and T1D subjects. Probably, in healthy individuals, self-reactive T cells are 
present but quiescent for the immunosuppressive action of Treg, as confirmed by 
the experimental observation that Treg in vitro depletion is followed by amplifica- 
tion of autoreactive T cells only in samples from healthy individuals [338]. Treg 
pool in human T1D has also been extensively investigated, and a deficiency in Treg 
peripheral frequency has been reported in patients compared to controls [341], but 
subsequent investigations have failed to uniformly replicate these findings [342] and 
have suggested that T1D nTreg may rather display an impaired immune suppressor 
function [342, 343]. Globally, it seems that a simple deficiency in the peripheral 
Treg repertoire is not confirmed [341], but a local impairment of Treg activity 
at the site of in ammation cannot be excluded. Notably, most defects in number 
and function of Treg observed in NOD mice [186, 344, 345] may be ascribable to 
the  ogistic environment [346] that may actively inhibit Treg suppressive function 
through both the reduction in IL-2 [347, 348], mTGF-ß [349], and TNF-a [350] 
and the increase in IL-21 [351, 352]. Interestingly, the peripheral blood from T1D 
patients may be evidence for a misbalance toward in ammation. Autoantigen-driven 
cytokine secretion by CD4+ T cells from T1D patients may be polarized toward 
INF- , while HLA-matched healthy controls display IL-10+ cTreg-like responses 
[102]. This ‘regulatory phenotype’ skewed toward IL-10 has also been reported in 
association with T1D later onset [102] and better glycemic control [353]. Increased 
levels of ‘Th1 cell’-derived chemokines CCl3, CCl4, and CXCl10 [354, 355] and 
of adhesion molecules ICAM and L-selectin (CD62L) [356] have been found in 
serum of T1D patients. Several reports have addressed NK population in the periph- 
eral blood of T1D patients [357] and have described a decrease in the peripheral 
frequency, in most cases temporally related to disease onset [4, 281], or a func- 
tional deficit [358], but these findings have not been universally replicated [357]. 
More recently, a larger study confirmed a functional impairment of NK cells in T1D 
patients, i.e., reduced surface expression of activating receptors and low levels of 
IFN-  and perforin, and suggested that these alterations may be a consequence of 
T1D, since they are evident exclusively in long-standing disease [359]. It has also 
been reported that activated NK cells in T1D patients display a reduced expression 
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of NKG2D receptor [357]. It is possible that a downregulation of NKG2D recep- 
tor mediates the increased risk for T1D associated with polymorphisms of MHC 
class I chain-related (MIC) proteins [360] that are NKG2D natural ligands. Studies 
addressing a correlation between NKT cell levels in peripheral blood and T1D in 
humans have yielded variable results, since the reports of altered frequency [361] or 
cytokine secretion [224, 362, 363] have not been confirmed [364]. 

It must be noticed that the reported assays on cell repertoire and  ogistic 
mediators in humans have been performed on peripheral blood samples. More 
disease-relevant alterations may be detected assessing the islets or the pLN, which 
would give a more realistic picture of locally generated signals. Some recent reports 
have tried to overwhelm this limit. Two studies in the mouse have suggested that, 
regardless the provenience of the T cells (periphery, islets, or lymph nodes), ß-cell 
antigen-specific CD8+ T-cell pool shares TCR chain usage [365] and show con- 
served patterns of epitope immunodominance [366]. Another study has performed 
micro array analysis of the cytokine pattern of PBMC from healthy subjects after 
the exposure to sera from new-onset T1D patients and has reported an enhanced 
secretion of pro-in ammatory factors as IL-1, CCl2, and CCl7 [367]. 

24.2.7.3 B Cells and Autoantibodies 

The assessment of eventual disorders of humoral immunity in T1D relies on the 
monitoring of circulating islet-reactive autoantibodies (Table 24.2). Autoantibodies 
against at least one of islet-cell antigens GAD65, IA-2, insulin, and ZnT8t are 
present in more than 95% of T1D patients [34] and in only 1–2% of general pop- 
ulation [368]. Radio-binding assay of these autoantibodies has replaced the ICA 
assay. GAD65 antibodies are found in 70–75% of T1D patients [369] and show a 
diagnostic sensitivity of 70–80% and a diagnostic specificity of 98–99% [40]. Of 
interest, the titer of GAD is usually low at time of diagnosis. The major antigenic 
epitopes of GAD65 are the middle- [370] and C-terminal region [371, 372] and 
are in close proximity to T-cell disease-relevant determinants [170]. Differential 
epitope specificities, as identified by monoclonal antibodies to GAD65 epitopes 
within the C-terminal region, align with distinct autoimmune disease phenotypes 
[170, 373], and the binding of N-terminal epitope is associated with slowly pro- 
gressive ß-cell failure [374]. Finally, it was recently suggested that the presence 
of GAD65 antibodies in T1D patients may be the result of an ‘unmasking’ due to 
the lack of anti-GAD65-anti-idiotypic antibodies [375]. These anti-idiotypic anti- 
bodies are reported to highly discriminate T1D from healthy subjects and may be 
of some relevance in the pathogenesis of islet autoimmunity. IAA are found in 
approximately 50–70% of T1D patients [40, 140] and are first islet autoantibody 
to appear [376], suggesting an involvement of insulin as primary autoimmune trig- 
gering antigen, also in humans [377]. Epitopes targeted by IAA are placed within 
A and B chains and are shared between insulin and proinsulin [378]. IA-2 anti- 
bodies are detected in 60–70% of patients with new-onset T1D and tend to appear 
closer to the clinical onset [2, 40]. Epitopes for IA-2 antibodies are found exclu- 
sively within the cytoplasmic region of the molecule and predominantly within the 
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tyrosine phosphatase-like domain [379, 380]. Antibodies to ZnT8t are detected in 
60–80% of newly diagnosed T1D [2, 65]. Finally, antibodies anti-alfa-2-amylase 
have been recently described in a subgroup of patients affected by autoimmune 
pancreatitis presenting with fulminant diabetes [381], a form that is commonly con- 
sidered ‘non-autoimmune.’ In these patients, the lymphocyte infiltrate affecting the 
exocrine component in autoimmune pancreatitis is extended to the islets [381] and 
may reveal shared immune-mediated mechanisms, as seem to be suggested in the 
NOD mouse [382]. 

24.3 Prediction of ß -Cell Destruction 

Standardized methods [83] have made islet autoantibodies the most useful marker 
for T1D prediction [2, 40] and for enrollment of subjects into clinical prevention 
trails. The most accurate single predictor is GAD autoantibodies [383] with a posi- 
tive predictive value for T1D of about 60% [40, 384], followed by IAA (30%) that 
is a better predictor among children [59, 385]. To enhance the predictive power, 
more markers in combination are actually used [386, 387], and the prediction power 
for T1D reaches 100% in case of multiple positivity (Fig. 24.2). Similarly, in case 
of single autoantibody, the correlation between islet autoimmunity and histological 
evidence of insulitis is weak [251, 388]. Longitudinal studies investigating DC and 
T cells in at-risk subjects are lacking. Some reports have found poor in vitro matu- 
ration and pro-in ammatory cytokine response in DC from children at genetic risk 
for TID [389, 390] and a number of attested T-cell responses from PBMC of at-risk 
subjects toward islet-specific autoantigens GAD65 [318, 319] and insulin/proinsulin 
[318, 328]. Finally, increased chemokines, such as CXCl10 [354] and adhesion 
molecules [356], have been detected in the plasma of at-risk individuals; more 
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recently, in three at-risk subjects followed until diagnosis these alterations were 
present years before the clinical onset [367]. However, this data cannot to date be 
translated into risk stratification. 

24.4 Concluding Remarks 

In conclusion, the ß-cell in T1D is the major target for an autoimmune process that 
takes place in two steps. The first step is the development of an autoimmune reac- 
tion directed toward specific ß-cell antigens. This step is re ected by circulating 
autoantibodies to ß-cell autoantigens including GAD65, IA-2, ZnT8, and insulin. 
The number of autoantibodies predicts T1D risk. The second step is progression 
from islet autoimmunity to the clinical onset of T1D, which in humans is associated 
with a major loss of ß-cells and insulitis. Insulitis appears late in the autoimmune 
process and can be recapitulated in pancreas and islets transplantation. The immuno- 
logical memory of ß-cell autoantigen is chronic. Efforts are needed both to detect 
intra-islet events that precede the development of autoantibodies and to disclose 
when islet autoantibody positivity is marking that the ß-cell destructive process of 
insulitis is about to be established. A better understanding of step 1 and two events 
will be necessary for the ultimate prevention of ß-cell destruction and of T1D. 
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Table 24.1. Beta-cell autoantigens 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 24.2 Non-HLA genetic factors in type 1 diabetes 
 

Gene (Syno.) Name Chromosome Function Association with 
other autoimmune 
diseases 

PTPN22 
(PEP, Lyp1, Lyp2, 
LYP, PTPN8) 

Protein tyrosine 
phosphatase, non-
receptor type 22 
(lymphoid) 

1p13 Encodes tyrosine phosphatase May be 
involved in regulating CBL function 
in the T-cell receptor-signaling 
pathway. 

T1D & 22 other 
diseases 

CTLA-4 
(DDM12, CELIAC3) 

Cytotoxic T-lymphocyte-
associated protein 4 

2q33 Possible involvement in regulating T-
cell activation. 

T1DM & 99 other 
diseases 

IFH1 
(MDA5) 

Interferon induced with 
helicase C domain 1 

Chr.2q24 Proposed involvement in innate 
immune defense against viruses 
through interferon response. 

T1DM association 

IL2 
(lymphokine, TCGF) 

Interleukin 2 Chr.4q27 Encodes a cytokine important for T & 
B cells proliferation. Stimulate B-
cells, Monocytes, killer & NK cells. 

T1DM & 39 other 
diseases 

ITPR3 
(IP3R3) 

Inositol 1,4,5-
triphosphate receptor3 

Chr.6p21.3 A second messenger that mediates the 
release of intracellular calcium 

Strong T1DM 
association  

BACH2 (BTB & 
CNC homology 1) 

Basic leucine zipper 
transcription factor 2 

Chr.6q15 Important roles in coordinating 
transcription activation and repression 
by MAFK (By similarity) 

T1DM association 

IL2RA 
(IDDM10, CD25) 

Interleukin 2 receptor, 
alpha (chain) 

Chr.10p15 Receptor for interleukin-2 Strong association 
with T1DM 

INS-VNTR 
(proinsulin, 
ILPR,MODY) 

Insulin II; insulin 2; 
insulin 

Chr.11p15 Regulating glucose metabolism 
through adjusting central tolerance to 
insulin. 

T1DM & 38 other 
diseases 

TH 
(TYH, The) 

Tyrosine hydroxylase Chr.11p15 Encodes a protein that converts 
tyrosine to dopamine. Plays a key role 
in adrenergic neurons physiology.  

T1DM & 35 other 
diseases 

ERBB3 
(c-erbB3, HER3, 
LCCS2) 

v-erb-b2 erythroblastic 
leukemia viral oncogene 
homolog 3 

Chr.12p13 Encodes a member of the epidermal 
growth factor receptor (EGFR) family 
of receptor tyrosine kinases. 
Binds and is activated by neuregulins 
and NTAK. 

T1DM & Multiple 
Sclerosis 

C12orf30 
(C12orf51, 
KIAA0614) 

Similar to KIAA0614 
protein 

Chr.12q24 Not yet determined T1DM association 

CLEC16A/ 
KIAA0350 
(Gop-1) 

C-type lectin domain 
family 16, member A 

Chr.16p13 Unknown. Proposed to be related to 
immune modulation mechanisms 

Strong association 
with T1DM 

PTPN2 Protein tyrosine 
phosphatase, non-
receptor type 2 

Chr.18p11 Encode a PTP family protein & may 
be related to growth factor mediated 
cell signaling. 

T1DM association 

BASH3A 
(TULA, CLIP4) 

Ubiquitin-Associated and 
SH3 domain-containing 
protein A 

Chr.21q22 Promotes accumulation of activated 
target receptors, such as T-cell 
receptors, EGFR and PDGFRB 

T1DM association 

 
 
 
 
 

Antigen       Mol weight Da    Autoantibody Abbreviation Ref 

Glutamic Acid Decarboxylase 65000 GAD65Ab 83 

Insulin 5800 IAA 387 

IA-2 4000 IA-2Ab 61 

IA-2beta (Phogrin) 3700 IA-2βAb 62 

Zinc Transporter ZnT8  
     R/W/Q variants  

4100 ZnT8Ab 
 

64 



 
 
 
FIGURE 24.1 Schematic view on possible immunopathogenesis of beta-cell destruction 
 
 
FIGURE 24.2  Diagramatic presentation of the effect of multiple islet autoantibodies on the risk of 
developing T1DM in the Diabetes Prevention Trial-Type1 (DTP-1)  

(Courtesy of Jay Skyler)  
 

 
 

 


