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PHYSICAL REVIEW

New Method for Calculating the One-Particle Green’s Function with
Application to the Electron-Gas Problem™

Lars Hepint
Argonne National Laboratory, Argonne, Illinois
(Received 8 October 1964 ; revised manuscript received 2 April 1965)

A set of successively more accurate self-consistent equations for the one-electron Green's functionhave been
derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential.
The first equation is adequate for many purposes. Each equation follows from the demand that a corre-
sponding expression for the total energy be stationary with respect to variations in the Green’s function. The
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in
metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron
missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified
Hartree-Fock equation involving a “Coulomb hole” and a static screened potential in the exchange term. As
an example, spectra of some atoms are discussed. To investigate the convergence of successive approxima-
tions for the Green’s function, extensive calculations have been made for the electron gas at arange of metallic
densities. The results are expressed in terms of quasiparticle energies (k) and quasiparticle interactions
f(k,k’). The very first approximation gives a good value for the magnitude of 7 (k). To estimate the deriva-
tive of E(k) we need both the first- and the second-order terms. The derivative, and thus the specific heat, is
found to differ from the free-particle value by only a few percent. Our correction to the specific heat keeps
the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by
Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metal-
density region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-
Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in
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this paper. The emphasis is on the development of a numerically manageable approximation scheme.

1. INTRODUCTION

NE-PARTICLE equations are widely used to give
an approximate description of complicated inter-
acting systems of particles. The Hartree-Fock (HF)
equations are used for atoms and molecules, the shell-
model equations for nuclei, the Hiickel equations for
aromatic molecules, and the periodic potential equa-
tions for calculation of the energy-band structure of
solids. These equations were originally little more than
a fairly effective phenomenological model of the system.
In the last ten years with the development of formal
techniques to treat many-particle systems, much work
has been done to connect these equations with an exact
theory. Although we now have a wealth of beautiful
general theorems, fairly little has been done towards
manageable and reliable approximation schemes es-
pecially for interacting electrons.

The high-density electron gas is a case that has been
examined diligently. Its properties are expressed as
series expansions in 7,, where 4wrag®/3=Q/N=1/p,
with @o=Bohr radius=0.5292X10"% cm. In the me-
tallic density region r,=2-5, most of the series ex-
pansions, however, predict manifestly wrong results.

In this paper the electron-gas problem is reinvestigated,
formally and numerically, with the main purpose of esti-
mating the convergence of our expansion in the metallic
density region. The application of the method for solids

* Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

1 Now at the Department of Mathematical Physics, Chalmers
University of Technology, Gothenburg, Sweden.

and particularly for alkali metals will be discussed in
another paper.!

The results of this paper also provide a new approach
to, and qualitative conclusions regarding, the general type
of excitation spectra, which correspond lo a single excited
electron outside or a hole in a closed-shell structure. In
particular, the alkali atoms and the Born-Heisenberg
type of polarization correction are discussed. The treat-
ment is concerned only with a nonrelativistic descrip-
tion of electrons moving in a fixed configuration of
nuclei.

In Secs. 2-5 the main results of the formal analysis
are presented, detailed derivations being given in the
Appendices. In Secs. 6-10 the numerical results for an
electron gas are given and the accuracy of our approxi-
mations discussed. Section 11 contains a summary of
important results.

2. FORMAL FRAMEWORK

The conceptual tool to be used is the one-particle
Green’s function,?

G(1,2)=—(i/ (T (2))) .- (1

Here 1 and 2 each stand for the five coordinates of a

1 L. Hedin, Arkiv. Fysik (to be published).

2 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
See also T. Kato, T. Kobayashi and M. Namiki, Progr. Theor.
Phys. Suppl. 15, 3 (1960); A. Klein, Lectures on the Many-Body
Problem, edited by E. R. Caianiello (Academic Press Inc., New
York, 1962), p. 279; P. Nozieres, The Theory of Interacting Ferms
Systems (W. A. Benjamin, Inc., New York, 1964) ; A. A. Abrikosov,
L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Plysics (Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1963).

A 796



ONE-PARTICLE GREEN'’'S FUNCTION

particle: space, spin, and time, (1) = (r1,{ 1,t1) = (X3,1) = %1.
T is the Dyson time-ordering operator and y is the field
operator in the Heisenberg representation. The brackets
stand for averaging with respect to the exact ground
state, rather than the noninteracting ground state of
the system.

The Green’s function G obeys the equation

Le—h(x)—V(x)JG(x,X; €)

- / M(xx"; G(x" x5 d(x")=8(xx"), (2)

where
all nuclei

x)=—(h*2m)V>— > Z.2xR,.),

V(x)= / o(5X)a(X)d(x)

7 and R, = charge and position of the #th nucleus,
v(xx)=e"/[x—x'[,
p(x)= ' (X)¥(x))
=number density of the electrons

=—1hG(x, t; x, t4+4), (A—0,A>0),
i€
G(x,x'; €)= /G(x,t; x',t) expl:;(t—t’):ld(t—t’).

M is the self-energy operator which represents the
complicated correlation effects of a many-particle sys-
tem. A series expansion of M in v gives as first term the
HF exchange potential,

MEF(x,X'5 €)= —o(x,x") (' (X)W (x))
=ih(x,x")G(x, t; X', i+A), (3)
which obviously is independent of e.

Later we will write down a set of functionals of G giving
successively more accurate approximations of M. Since
both V and M are given in terms of G, Eq. (2) represents
a self-consistency problem which can also be formulated as
a variational problem.

From definition (1) it readily follows that

G(x,x'; e)=Zs (f(x) f*(x)/ (e—es),
where

[:(0)=(N,0[¢(x) [ N+1, 5);
&=FEni1,s—FEn,o—1A when e u,
. ) 4)
L) =(N=1,s[¢(x)|N, 0);
e.=FEnxo—Ey_1,+1A when ,<u,
and
u=Eny1,0— En,0=chemical potential
= — (electron affinity).
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| V,0) stands for the ground state of the N-particle
system and the sum s runs over all states of the N+1
and N—1 particle systems, the configuration of the
nuclei being unchanged.

The amplitudes f,(x) and the energies e are solutions
of the eigenvalue equation®

Le—a(x)—V(x)1f(x)— / M(xx"; &) f(x")d(x")=0, (5)

in case of a discrete energy value . In the continuous
part of the spectrum the solution of (5) in general gives
a complex eigenvalue, e. The real part of e represents
some average energy of a group of excited states and the
imaginary part of e the spread in energy of these states.
It is understood that we use the analytical continuation
of M into the complex e plane.

The self-consistent solution of Eq. (2) using M = MH¥F
gives a G built up from the f, and e, which are the one-
particle functions and energy eigenvalues of the HI
approximation. The N smallest values of the e, corre-
spond to occupied one-electron functions and the re-
maining to unoccupied or ‘‘virtual” functions.

Besides giving information on excitation spectra, the
one-particle Green function allows us to calculate the
expectation value of any one-particle operator by

W] % 0x)| V)= [ (V)09 ()| V)dx

de
=—i/ —d(x)e?*0(x)G(x,x;€), (6)
2T
and also that of the total-energy operator H by
de )
(N|H|N)=—i / z—d(x)d(x’)e"A
m

XA{o(x—x")(h(x)+3V(X)+3M(x,x'; €)}
XGX x5 )+%2 3 ZuZw(Ra,Rp) . (7)

In Eq. (7) the term involving % gives the expectation
value of the kinetic energy plus the electrostatic inter-
action between electrons and nuclei. The term con-
taining V' can be written

1
Efp(x)y(x,x’)p(x’)dxdx" )

3 This equation was first derived, in a very general form, by
J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). Its
application to many-electron problems has been discussed by G.
Pratt, Phys. Rev. 118, 462 (1960) ; Rev. Mod. Phys. 35, 502 (1963) ;
L. Hedin and S. Lundquist, Quantum Chemistry Group, Uppsala,
Sweden, Technical Report T III, 1960 (unpublished); L. Hedin,
Quantum Chemistry Group, Uppsala, Sweden, Technical Report
No. 84, 1962 (unpublished); Bull. Am. Phys. Soc. 8, 535 (1963).
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The MG term gives all exchange and correlation con-
tributions. It is easy to check that Eq. (7) reproduces
the HF expression for the energy when G®¥ and ME¥
are used.

3. EXPANSION OF M IN TERMS OF A
SCREENED POTENTIAL, W

We now turn to our central problem, namely, the de-
velopment of good approximations for M. The simplest
approach is to develop M in a power series of v. It is well
known, however, that such an expansion diverges for
metals. Even in cases when it is convergent, its con-
vergence rate rapidly becomes poor with increasing
polarizability of the system. One common way to handle
this problem is to make partial summations to infinite
order. The difficulty here is one of knowing what partial
summations to choose in order to obtain a systematic
theory.

In this paper a new method is developed. We use the
Schwinger technique! of functional derivatives to gener-
ate an expansion in terms of a screened potential* W
rather than the bare Coulomb potential v.

The potential W was first introduced by Hubbard?:

W<1,2>=v<1,2>—£ / o(1,3) (TG (3’ (4)))

Xv(4,2)d(3)d(4)=W(2,1), (9)
where

p'()=y¢" (MY (1)— G (yQ1));
7)(1,2) = v(xl,m)é(tl— 12) .

W (1,2) essentially gives the potential at point 1 due to
the presence of a test charge at point 2, including the
effect of the polarization of the electrons. W represents
the effective interaction between two electrons and is

2 i 2 M I
Pt e

. Y
e’
—

S

Fi1c. 1. Diagrams representing the expansion of M (1,2). The
one-particle Green’s function G (1,2) isrepresented by an arrow from
2 to 1, and the screened potential W (1,2) by a wiggly line between
1 and 2.

4 The feasibility of expanding in a screened interaction has been
emphasized by J. C. Phillips, Phys. Rev. 123, 420 (1961).
5 J. Hubbard, Proc. Roy. Soc. A240, 539 (1957).
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F1G. 2. Diagrams representing the expansion of P(1,2).

;

much weaker than the bare Coulomb interaction v if
the polarizability is large. I¥ is spin-independent.
The first two terms in the expansion of M are

M(1,2)=3hG(1,2)W (1+,2)— / G(1,3)G(3,4)
XG4,2)W(1,4)W(3,2)d(3)d(4)+---, (10)

where
1t=xy, t1-+A.

The expansion for M is represented by diagrams in Fig.
1. There is only one first-order and one second-order
term while there are six third-order terms.

The definition (9) of W is not directly useful since it is
in terms of the density-density correlation function
rather than the Green’s function. Instead we find W from
the inlegral equation

W(1,2)=v(1,2)+ /W(1,3)P(3,4)v(4,2)d(3)d(4), (11)
where the kernel P can be expanded as
P(1,2)=—ihG(l,Z)G(Z,l)—I—hz/G(1,3)G(4,1)

XWB,4)G(2,4)G(3,2)d3)d(4)+---. (12)

The expansion for P is represented by diagrams in
Fig. 2.

Equations (11) and (12) define W as a functional of G
and thus Eq. (10) gives M as a functional of G.°® G then
has to be obtained self-consistently from Eq. (2). The
practical usefulness of this scheme of course depends
on how many terms in the expansions of M and P are
needed to provide a good approximation. In the follow-
ing we will try to illuminate that question as much as
possible.

6 Special cases of such functionals have been proposed by G.
Baym and L. P. Kadanoff but no systematic expansion was de-
veloped. See G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287
(1961); G. Baym, Phys. Rev. 127, 1391 (1962); L. P. Kadanoff
and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin,
Inc., New York, 1962).
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4. REPRESENTATION OF M BY A “COULOMB HOLE” PLUS SCREENED EXCHANGE

To start with we exhibit the structure of the first-order term in M. From the spectral resolution of G and of

the density-density correlation function in W we have

Mxx'; 9= / irY exp[%e— es)]fs(X)fs*(X’)[ﬁ(r)—0(u— e)]

8

Gg)“l)(X”/,X,)dXNdX”’} , (13)

1 for >0

0(r)=

0 for 7<0.

The term inside the curly brackets is W(1+,2). Ry(x) is
an oscillator strength function,

R(x)= (Nt [y () (x) | V), (14)
the ordinary oscillator strength being
2

e /Rt(x)r-n x| , (15)

where n gives the direction of the dipole moment and
e:=Ex,:— Ex. The prime on the sum over ¢ in Eq. (13)
indicates that the term with e,=0 is excluded.

One important use of M is in Eq. (5), which gives the
excitation spectra of the (V=1)-particle systems. The
energy shift of a level £ caused by M is approximately,

/ @M (xX'; &) fr(x)dx dx’

= /dr % eXp[%(Ek_Gs)]EG(T)—o(u_E«?)]

X{ks|W ()| ks). (16)
Here,
Es| W (2) )= / O (5,5 7)
WA fulxVdx dx, (17)

is a Coulomb integral when £=s, and an exchange in-
tegral when %27s. Generally the Coulomb integral will
be much larger than the exchange integrals and the
largest exchange integrals will correspond to energies
€ close to ex. In many cases then the important energy
difference, e,—es, will be small compared to the im-
portant energy e that appears in . Assuming that to
be the case, we put the factor exp[(i7/%)(e—e;) ] in M
equal to 1 and obtain,

M(xx'5 € =53(x—x)W,(x,X’; 0)

—WEx; 0@ (x)¥(x)). (18)

Here W,=W —v and we have used the fact that
% 1.0 1) =x—x);

L [ X0 e) = (P (x)(x)). (19)
The first factor in Eq. (18) gives the contribution of a
“Coulomb hole”" since, according to general results of
linear response theory,

Wo(x,x';0)= / v(x,x")Ap(x")dx""

= —i/v(x,x”)R(x”,x”’; 0)v(x"" x")dx""dx""", (20)

where Ap(x”’) is the change in number density at the
point x”” caused by the presence of a point charge at
point x’. R(x,x’;0) is the density-density correlation
function. The factor £ arises mathematically from 6(7)
and physically because the force on the electron due to
the induced charge is proportional to

grady / v(x,x")Ap(x")dx"" =% grad W ,(x,x; 0).
J

The last term in Eq. (18) is a screened exchange
potential. If we replace W by v, the Coulomb hole dis-
appears, the screened exchange potential becomes un-
screened and we are back at the HF expression for M.
We will abbreviate the “Coulomb hole plus screened
exchange” approximation by COHSEX.

For the Rydberg-like spectra of one electron outside a
closed shell, the assumptions behind COHSEX are
readily verified. Let us take sodium as an example.
Here the smallest (N41)-type excitation energy is
e1=E(Na,1522522p%3s) — E(Nat,1522s22p%) = —0.378 Ry,

7 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934) ; E. Wigner, bid. 46, 1002 (1934) ; Trans. Faraday Soc. 34,
678 (1938).
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TasLE L. Quasiparticle energies in rydbergs. (Experimental values without reference are taken from Charlotte Moore’s tables.)

N 1s 2s 2p 3s 3p 3d 4s 4p Sp
2 He, HF —1.8359=
He, expt —1.8073
2 Lit, HF —5.58472  —0.3934>  —0.2574® —0.11354> —0.06356> —0.04050>
Lit, expt —5.5597 —0.3963 —0.2629 —0.11448 —0.06394 —0.04075
10 Ne, HF —65.5446c  —3.8006* —1.7007=
Ne, expt —63.89 —3.5628  —1.5874
10 Nat*, HF —81.5190¢  —6.1474=  —3.5944= —0.372¢  —(.21884 —0.14064 —0.1002¢
Nat, expt —79.88¢ —5.8866 —3.4810 —0.3777 —0.2231 —0.1432 —0.1019
10 Mg*t, HF —8.944e —5.990°
Mg, expt —8.7359 —5.8970
10 Sitt, HF —16.171 —12.41¢ —3.275¢  —2.639¢ —1.839¢ —1.5381 —1.319¢ —0.793¢
Sitt) expt —15.962 —12.273 -3.3180 —2.6055 —1.8565 —1.5502 —1.3279 —-0.7977
18 Ar, HF —237.2202¢ —19.1426° —2.5545¢ —1.1818¢
Ar, expt —234.6° —18.28¢° —2.1491 —1.1627
18 Kt HF —267.5042¢ —23.5962¢ —3.9275¢ —2.3409¢
K*, expt —264.8¢ —22.63¢ —3.5288: —2.3387
18 Cat**, HF —5.557e  —3.756¢ —0.66598 —0.82958 —0.6193=
Catt, expt —5.1634  —3.7743 —0.7478 —0.8725 —0.6416
36 Kr, HF —2.303»  —1.06%
Kr, expt —2.0386 —1.0453

a P, S. Bagus, T. Gilbert, C. C. J. Roothaan, and H. D. Cohen, (to be published).

bV, Fock and M. Petrashen, Physik. Z. Sowjetunion 8, 547 (1935).
¢ P. S. Bagus, University of Chicago thesis, (to be published).

V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368 (1934).
W. J. Yost, Phys. Rev. 58, 557 (1940).

D

R
D. R. Hartree and W. Hartree, Proc. Roy. Soc. A164, 167 (1938).
B. H. Worsley, Proc. Roy. Soc. A247, 390 (1958).

while the smallest excitation energy appearing in W is

E(Nat,1522522$5(2P3/2°)3s)
— E(Nat,1522522p%) = 2.414 Ry.

The average (e1—e;) will be numerically smaller than
€1 unless the exchange integrals with the continuum and
the core states have great influence.

For higher Rydberg-like states the functions f, are
well outside the closed shell. The exchange term then
becomes negligible. We can further make a multipole
expansion of the two »’s in the Coulomb hole term. The
result is simply

M(xx'; €)= —(ae?/2|r|H)o(x,x"), (21)

where a is the ion-core polarizability. Eq. (21) was first
derived by Born and Heisenberg? in 1924. It has been
redeiived by quantum-mechanical methods,? and widely
used? to obtain polarizabilities from spectral data.

8 M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).

9 1. Waller, Z. Physik 38, 635 (1926); J. E. Mayer and M. G.
Mayer, Phys. Rev. 43, 605 (1933); J. H. Van Vleck and N. G.
Whitelaw, dbid. 44, 551 (1933); H. Bethe, Handbuch der Physik,
edited by H. Geiger and Karl Scheel (Julius Springer-Verlag,
Berlin, 1933), 24.1, 431.

1D, R. Bates, Proc. Roy. Soc. A188, 350 (1947); E. Trefitz
and L. Biermann, Z. Astrophys. 30, 275 (1952); A. S. Douglas,
Proc. Cambridge Phil. Soc. 52, 687 (1956); K. Bockasten, Arkiv
Fysik 10, 567 (1956) and others.

. Hartree, W. Hartree, and M. F. Mannig, Phys. Rev. 60, 857 (1941).

The Coulomb-hole contribution will lower the energy
while screening of the exchange will raise the energy rela-
tive to the HF value. Experimental values of e, are
generally lower than the HF values for e¢;,>p and higher
for es<u. To the extent that Eq. (18) remains valid,
this shows that the Coulomb-hole correction dominates for
the higher orbitals while the screeming of the exchange
dominales for the core orbitals. A comparison between HI
values and experimental values is given in Table I.

5. LANDAU FERMI-LIQUID THEORY. THE QUASI-
PARTICLE INTERACTION IN TERMS OF W

Many important aspects of the theory of metals de-
pend only on the excitation spectrum close to the Fermi
surface. This can advantageously be discussed in the
framework of Landau’s Fermi-liquid theory.! For
simplicity we here treat only the electron gas in a uni-
form background of positive charge.

Since the electron gas is translationally invariant,
G(1,2) and M(1,2) depend only on the difference be-
tween 1 and 2. A Fourier transform with respect to space

11, D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956);
32,59 (1959) ; 35,97 (1958) [English transls. : Soviet Phys.—JETP
3,920 (1956); 5, 101 (1957); 8, 70 (1959)7]. See also P. Nozitres,
Ref. 2.
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and time transforms Eq. (2) into
Le—e(k)JG(R)— M (k)G(k)=1;

k=(k,e); e(k)=n2k2/2m. (22)
The Fourier transforms are defined as
Gk)= / exp(i(kr+-er/h))G(x1,01; Xa,t2)drd;
r=ry—rg, 7= t1—1s. (23>
7
M (k)=
(2w

W(k)=v(k)/(1—v(k)P(k)); v(k)=4me*/|k]|?;
2

(2m)®

P(k) z [G(k VG(R' —Fk)dR'+-
D - NGB —k ’
(2m)4 )

The factor 2 in P(k) comes from the spin summation.
The eigenvalue equation, Eq. (5), for the quasiparticle
energies becomes

E(k)=e(k)+M (k,E(k)). (25)

The chemical potential u is equal to E(ko) where ko, the

Fermi momentum, is the same as for the noninter-

acting gas,'?

|ko| =(1/arsa0); a=(4/97)13=0.52106. (26)

The derivative of £(k) with respect to |k| at the Fermi
surface is

I/ (k)= € (k)M (k, p+e(k) — e(ko))

27 1=1—(0M (ko,u)/d€).
Equation (27) was obtained by expanding M (k,E(k)) as

M (k, ute(k) — e(ko))
+(EE&) —p—e(k)+e(ko)IM /9t - -,

taking the derivative with respect to k, and solving for
F'(k). The prime on M refers to a total derivative, not a
partial derivative. Equation (27) is exact on the Fermi
surface but only approximate when |k|3 |ko|. E'(k)
gives the level density at the Fermi surface and is
simply related to the specific heat C*2:

Co/C=E'(k)/€ (k).

(27)

(28)

Here C is the noninteracting or Sommerfeld value of C,
Co=16.86r2T ucal/°K? mole. z gives the discontinuity
at the Fermi surface in the momentum distribution
1e(K)=(N | ax,s'ax,«| N). Here ax,, is related to the field
operator by the relation

Y(x)=(1/Q2)3 1 s ax,0€™ *X({) .

The noninteracting many-particle states of an elec-

12 J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
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The set of coordinates % should also contain two spin
variables. We omit them since for a paramagnetic
ground state, G(k) and M (k) are diagonal in spin with
equal diagonal elements. W (k) is spin independent by
definition. The V term of Eq. (2) exactly cancels the
uniform background of positive charge in the limit of
large V.
The expansion for M now becomes

1
¥ /e““'AW(k’)G(k—k’)dk’——(z—); /W(k’)W(k”)G(k+k’)G(k+k”)G(k+k’+k”)dk’a’k”+~ 5
™

(24)

/G(k’)G(k”)G(k”—k)G(Ia’—k)W(k’—/a”)dk’dk”+- R

tron gas are uniquely specified by their momentum dis-
tribution #4(k). Thus, e.g., the paramagnetic ground
state is given by

1,0 (k) =0(| ko| — | k). (29)

The basic assumption in Landau’s theory of a Fermi
liquid is that for small excitation energies there exists a
one-to-one correspondence between the noninteracting
many-particle states and the true states. It has been
proven®® that the Landau theory is exact to the extent
that the interacting many-particle states can be ob-
tained from the noninteracting ones by infinite-order
perturbation theory.

The change in energy of the true state corresponding
to a change in the distribution function, #.(k)=7,© (k)
+6n.(k), of the noninteracting state is

dSE=Y" E(k)én,(k)

+1 Y for (e K)on,(k)onq (k) - - -.

k,k’,0,0’

(30)

Here E(k) is defined by Eq. (25) and f is the quasipar-
ticle interaction. The magnitude of k and k" is |ko| and
f depends only on the angle between them, f.+(6). We
split fin two parts,

Fao(6)= fo(8) 800 fo(6) .

The specific heat and the paramagnetic susceptibilities
are obtained from simple integrals involving f. In the
former the combination 2 f,+ f. enters and in the latter
fe't We can write f as!!

f(k,k/) = 2T 1%k’ OI‘O(k,k’) 5

(31)

(32)

where °T' is defined by the integral equation

B3P, Nozieres and J. M. Luttinger, Phys. Rev. 127, 1423,
1431 (1962).
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0T0(k k") =L (B,E')
+ / T (k,E"G2(R) TR K)dE", (33)

of(k,k")=0M(k)/5G(E").
In Eqgs. (32) and (33) we have for simplicity taken % to

0K = —Z—{W(k— K
Q

LARS HEDIN

include a spin index. Since M does not contain the
Hartree-like potential, °7 and °T° are the “proper
operators” marked with a tilde in Noziéres’ book.

Using the expansion for M given in Eq. (24) and
derived in Appendix A, we obtain the following ex-
pansion of fin powers of W

! . /EZW(k— K;00W (k")G(k+E")G(E +E)

+W(k”)W(k”—i—k—k’)G(k—I—k”)(G(k’—k”)—i—G(k-I—k”))]dk”}, (34)

oK)=

Here k= (k,u) and £’ = (k’,u). The volume of the system,
which appears in the denominator of f, is balanced since
the number of terms in the sum in Eq. (30) is of the
order of the number of particles. If we indicate the order
in W by a superscript, we have that the functional
derivative of M@ gives rise to f.® and fo® while that
of M® gives the first two terms in f,®. The third
term in f,» comes from the °IG? °T° term in Eq. (33).
The first-order term in f involves only the static
screened potential*1® and corresponds to the COHSEX
approximation (Sec. 4) for M. That approximation
for M is however not so clear-cut in the case of an elec-
tron gas since the ¢ spectrum of W starts at zero rather
than at a large finite value. The average value of e
could, on the other hand, be fairly large since the
plasmon energy carries a substantial fraction of the
oscillator strength.

From Eq. (18) we find that COHSEX for an electron
gas is

11
M (k,e)=————3 / [(W(K',0)—v(k") Jdk’

- /dk’ Wk, 0)———— /eif’AG(k—k’; e)de . (35)

The Coulomb hole term is independent of k and e and
thus a constant. The integration over ¢ in the last term
of Eq. (35) gives, closing the contour in the upper half-
plane and using the analytic properties of G,

1
— /ei"AG(k',e/)de'
27
ImM(k',¢")de

1 "
e /_w [—e(k)—ReM (K, &) P+ [ImM (K,&)
(36)

14 M. Watabe (Ref 14) has recently treated the Landau theory
using this approximation for f. He does not however have the 22
factor, which is about 0.5 for metallic densities, nor does he take
the second-order terms into account.

15 M. Watabe, Progr. Theoret. Phys. (Kyoto) 29, 519 (1963).

—(—z-; /W2(k")G(k+k”)(G(k’-—k”)—I—G(k’—i—k”))dk”.

If we treat ImM as a small energy-independent quantity,
the integrand in Eq. (36) becomes a § function and we
obtain for the screened exchange term in Eq. (35),

/ w(k',0)

|k—k’| <[kol

@

k—K, E(k—K
X<1_6ME , E(k—Kk')]

-1
) dk’. (37)
Je
The last factor in Eq. (37) equals z when |k—k'| = | ko|
and it varies fairly slowly with |k—k’|. Putting this
factor equal to z and using Eq. (27), the specific heat
comes out the same as from the linear term in f. The
magnitude of M is however about 259, too large at
metallic densities. Judging COHSEX from what it
gives for the magnitude and derivative of E(k) at the
Fermi surface, we conclude that it is a rough but reason-
able approximation at metallic densities. From our
numerical results, to be discussed later in detail, it is
clear that COHSEX becomes better the smaller the
value of 7. For small 7, the factor z poses no problem
since here'® 3=1—0.177, and thus tends to 1.
An approximation similar to that in COHSEX s
useful for estimating higher order diagrams. The expres-
sion for M can be written

ihG(1,2)W (1+,2) = L(1)¢"(2))6(7)
— @ @1))6(— ) 1(1%,2)+W(1+2)—o(14,2) ];
T= ?fl— tz . (38)
The approximation in COHSEX consists in neglecting

the time-dependence of (Yy') and (Y'y), or equivalently
by replacing
W(1+,2) —o(1+,2) — 8(2) [V (1,2)—(1,2) Jeso.

M® is exceptional in the sense that we have to use 1*
rather than 1 in W(1,2). When this is not the case we

(39)

16 . Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960).
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can make an approximation in the same spirit as that of
COHSEX simply by replacing W(7) by 6(r)W(e=0),
or if we work with energy-variables, by replacing W (e)
by W(0).

It should be noted that while the energy dependence
of the M operator is very important for an electron gas
(see Sec. 9), it is quite negligible for the alkali atoms dis-
cussed earlier. Thus if we have an error Ae in the energy
argument of M, the correction is only of the order

Ae[ M (e)— MU /(e average). (40)

This is easily seen by noting that M™¥ is energy-inde-
pendent and that the energy derivative of [ M (¢) — MEF]
effectively introduces a factor (e, average)™.

6. ELECTRON GAS: SURVEY OF
NUMERICAL RESULTS

So far the discussion has been mainly qualitative.
We will now see to what extent it is supported by
numerical results for the electron gas. Calculations have
been made for »;=1, 2, 3, 4, 5, and 6 and in a few cases
for smaller and larger 7, values. For G we have used ihe
expression

G(k,e)=1/(e—e(k)— €0);
e(k) = (7?k?/2m)+1A sgn(|ko| — |k|), (41)

where ¢ is chosen so that u=e(ko)+ €. From Eq. (24)
we see that if the M operator is M(k,e) using (41) with
€=0, it becomes M (k, e— ¢o) for €%0. P is independent
of €. The equation for u is p=e(ko)+M (ko, u— €)
which combined with the above expression for u gives,

€= M[ko,e(ko)] . (42)

It would have been desirable to have used a self-
consistent G,

G(k,e)=1/(e— e(k)— M (k,¢)). (43)

This should be possible to do but the size of the numerical
enterprise is probably considerably larger than is
justified in a first investigation. That (41) is not too
bad is shown by the fact that M(k,e(k)) is found to have
a very weak k dependence compared to e(k). On the
other hand M (k,e)/de is found to have an appreciable
magnitude compared to 1. This might very well effect
our quantitative results but can do little to change our
qualitative conclusions regarding the convergence of the
expansion in W and the smallness of the specific-heat
correction.

For M we use the approximation iGW, and for P, the
approximation —iGG. A quite reliable estimate of the
error in the magnitude of M is obtained from a con-
sideration of the total energy of the electron gas. The
magnitude of the second-order term in M is also esti-
mated and found to be of the same order as the error
in the first-order term.

From the relation G=Go+Go(M — &)G we see that
the correction to M W =¢GW from the use of G, instead
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of G is approximately iGo(M — e)GoW =iGoMGW
+&dM (V/de. This term is appreciably smaller than the
uncrossed second-order term appearing in an expansion
with e=0. The cancellations mentioned by DuBois®
(p. 54 in his paper) involving this term are discussed in
Sec. 9.

The first-order term in the quasiparticle interaction f
is trivial. The second-order terms have been calculated
using W(k,0). The contribution to the specific heat
coming from f, has been evaluated with W(k,e). It is
found that the W (k,0) approximation gives about 709,
of the W(k,e) approximation at metallic densities. We
assume that the error is about the same for the other
second-order term in f. The first-order term in f is
about three times larger than the second-order terms for
rs=4, the ratio being more favorable for smaller 7,.
The picture of M that emerges shows a quile large firsi-
order term with a weak k dependence and a small second-
order term with a k dependence of about the same magnitude
and opposite sign.t":18

7. ELECTRON GAS: COULOMB HOLE
AND CORRELATION HOLE

For the polarization propagator P(1,2) we have used
the approximation —%G(1,2)G(2,1) with G defined by
Eq. (41). This gives Lindhard’s expression,’ or as it is
often called, the Random Phase Approximation (RPA)
for the dielectric constant. To exhibit the properties of
this approximation we investigate the Coulomb and
correlation holes associated with P.

We define a propagating dielectric function by the
relation

W(1,2)= / o(1,3)€1(3,2)d(3) . (44)
From Egs. (9) and (11) it follows that
“1.2-502-~ [@EWsE)
X(3,2)d(3)=(1—Pv)~1(1,2). (45)

The function ¢! is closely related to the linear response
function e,

er(1,2)=4(1, —f 11
(1,2)=6(1,2) he(z 12)

x / oW, G,2)dG), @6)

17 Recent calculations by Rice (Ref. 18) indicate that the energy
dependence of W is more important for the first term in f,®,
Eq. (34), than for the other second-order terms in f. While this
makes the convergence properties of the expansion for f worse
than anticipated from our results, it does not influence the con-
clusion regarding a weak % dependence of M. Our values for the
paramagnetic susceptibility on the other hand seem quite
unreliable.

18 T, M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).

¥ J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954); D. F. DuBois,! Ann. Phys. (N. Y.) 7,
174 (1959); 8, 24 (1959).
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which gives the change in the density of the electrons,
pm(1)= / Lex™'(1,2)—6(1,2) Jo=(2)d(2), (47)

caused by the presence of an external charge density,
p=t. The Fourier transforms, /" exp[ (ie/%)(t1—t2) dl1,
of €1(1,2) and €,71(1,2) are equal for €2 0. The former
is an even function of ¢, while in the latter the real part
is even and the imaginary part odd.

From a knowledge of ¢! we can calculate the pair
correlation function:

g0 = ' (3= )o(r7)

=p[{p(1)p(0))—pd(r)], (48)
where
0= [V, o). (9
From the definition of g(r) it readily follows that
g()—1 when r—w
(50)

/ o(e(t)— 1)dr=—1.

The Fourier transform of g(r) is related to e(k,e) by
11

—_— 1—e(k,e) Jde—
27riv(k)/[ (o] ,,}

+(2m)*(k). (51)

From e(k,e) we can also calculate the linear response
value for the change in the electron density around a
fixed external point charge. From Eq. (47) we have,
taking the external charge to be —e and using the fact
that e 1(k,0)= e, 71(k,0),

g(k)=p_2[

go(r)=/[e—1(1,2)—6(1,2)]dt1d§’1; r=r—rs. (52)

The Fourier transform of go(r) is

go(l)=1(0) 1. (53)

The function go(r) gives the Coulomb hole discussed
in Secs. 4 and 5, while p(g(r)—1) gives the correlation
hole surrounding an electron. From a well-correlated
wave function for an atom, the correlation hole can be
calculated fairly simply from Eq. (48), while the
Coulomb hole requires calculations of the type needed
to obtain polarizabilities.

We note that the Coulomb holes for an electron gas and
Jor a system with an energy gap arve qualitatively different.
From Egs. (46) and (52) we have for a system with an
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energy gap
(54)

/gO(r)dr=0.

For an electron gas, on the other hand, we have from
Eq. (53)

/go(r)dr=g0(k=0) =-1.

(55)

This relation should hold also for metals.20
Thet Lindhard expression®® for the dielectric con-
stant 1s
ek,e)=1—v(k)P(k,e)=1+a(k,e),
a(gu) = (ar./8m)(1/¢*)[H(g+ (u/g))
+H(g—(u/9)]=alg, —~u),
H(z)=2z+(1—3%) In((z+1)/(z—1))=—H(—2),
q=(k/2ko), u=e(4h%2/2m)!,
a=(4/97)13=0.52106.

(56)

The logarithm is taken from the branch where |Im Inz|
<w. To obtain ¢ we have to take Imu=A sgn(Rex)
while e is obtained by taking Imu=A. For further
reference we note that

1 1 1
H(Z)=4(——+ +—+-'-); g—w
3z 1528 352°
23 25 Z7
H(z)=4(z—-———————* . )
3 15 35

—7i(1—2?) sgn(Imz); z2—0
a(g,0)= (ars/m)1/¢?,
a(¢,0)=(ar,/3m)1/¢*,
a(0,1) = — (ars/3m)1/u?;
a(g,u)= (ars/3m)1/(g*—u?).
a(g,0)>0 for all g;
(i) = ors r2 I wi+1—¢? lnw2—|— (14¢)?

el 2wt (1—g)?
— 2w<a1'ctan1——l_€+arctan}—-—g):| , w=u/q.

w w

qg—0;
g—®;

(37)

lg=(u/q) | > ;

The pair correlation function g(r) has been calculated
from the RPA expression for ¢(g,u), [1+a(gu)]",
and from the HF expression, 1—a(g,#) and plotted in
Fig. 3. The HF expression is obtained by using a HF
wave function in Eq. (45). Both the RPA and the HF

* 1t is possible that Eq. (54) will remain valid if surface ef-
fects are taken into account. The corresponding contribution to
M however tends to zero with increasing number of particles.



ONE-PARTICLE GREEN'S FUNCTION

PAIR CORRELATION FUNCTION FOR AN ELECTRON GAS

F16. 3. Pair correlation function for an electron gas.

approximations obey Eq. (50). Since g(r) is a probability
it must always be positive but from Fig. 3 we see that
the RPA approximation becomes negative?!-2 for small
7. In our calculations however we are not directly inter-
ested in g(r) but rather in 7%g(7). In Fig. 4 we see that
the influence of the misbehavior of g(r) for small r is sup-
pressed to a large extent by the factor 2.

Ueda? has calculated g(r) for r,=0.1, 0.5, and 1 using

the approximation
e=(1—Po)'=(1—Pw) '+ Pw, (58)

where P is the RPA approximation and P; is the next
term in the expansion Eq. (12) for P, evaluated with G

P
9o's

Fic. 4. 3(r/aws)
X[gn—11. g@) 1s
the pair correlation
function. The area
under each curve is
equal to —1.

2 A, J. Glick and R. A. Ferrell (Ref. 21) have calculated the
RPA approximation of g(r) for 7,=2. They find that g(0)=—0.15
while the present calculation gives —0.54. The quantity g(0) can
be written 1—cf3° B2f(k)dk. The reason that their value is in
error might be that they fitted f(k) by a Gaussian which under-
estimates the asymptotic contributions to the integral.

2 A, J. Glick and R. A. Ferrell, Ann. Physics 11, 359 (1960).

2 S, Ueda, Progr. Theoret. Phys. (Kyoto) 26, 45 (1961).
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and W from the RPA approximation. For =0 Eq. (58)
gives simply

£(0)=0.5+0.5[¢g®**4(0)—0.5], (59)
e.g. it gives one half of the RPA correction to HF.
Ueda’s approximation changes g(0) for ;=1 and 2 from
the RPA values —0.07 and —0.54 to 0.22% and —0.02
and thus Ueda’s expression also gives a negative g(0)
at metallic densities.

While Eq. (58) is a good approximation for the small
values of 7, that Ueda considered, for metallic densities
one should rather use

el=1—Pw) '+{1—Pw) Pw(1—Pw)~Lt. (60)
This expression however can be expected to give an
even smaller correction to RPA than does Ueda’s. To
improve significantly upon RPA it is thus not enough
to take P= P+ Py with a simple RPA approximation
for G and W.

Considering P(k,e) in the limit of small k, Glick,2
reached the conclusion that one has to take the infinite

Fic. 5. The ladder-bubble diagrams of Eq. (61).

sum of ladder-bubble diagrams,

P=diagrams of Fig. 5, (61)
in order to keep Ime(k,e) positive for all e. Starting
from Ward identities Engelsberg and Schrieffer?® and
Lundqvist¥ also arrived at Eq. (61) in the cases of
electron-phonon and electron-electron interactions, re-
spectively. In Appendices A and B we will argue that the
ladder-bubble sum does not give a systematic improvement
as far as M and G are concerned. While for the lower
metallic densities some infinite summation for P has to
be made, for the higher densities it seems more im-
portant to explore self-consistent solutions for G to
first or perhaps second order in W.

The Coulomb hole go(r) has been calculated by
Langer and Vosko,? with the RPA expression for e(g,%).
The function go(r) is qualitatively similar to p(g(r)—1).
It extends over a distance of order a0, obeys Eq. (55)
and is finite for r=0. The magnitude of g¢(0) is however
much larger than p, and g¢(0) ranges from —2.20p for
7s=1.5 to —6.35p for r,=6. RPA thus predicts that
more charge is pushed away, close to the external charge
—e, than was present at the beginning. This feature

24 Ueda reports a slightly different value, 0.19.
25 A, J. Glick, Phys. Rev. 129, 1399 (1963).
26 S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).
27 B. Lundqvist, (unpublished note from Chalmers’ University
of Technology, Gothenburg, Sweden).
( ”5].) S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
1959).
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THE SCREENING FACTOR Sir}, OF THE POTENTIAL W(r,0).

Wir,0) = 5],—2 S(r)
rg= 3
J — Fic. 6. The screening factor
30 35 S(r) of the potential W (r,0). S(r)
is defined by W (r,0)= (e&&/7)S(r).
The curves correspond to 7,=3.
The Thomas-Fermi (TF) approxi-
mation is S(r)=¢ %, where &,
=0.815r,12%y. The Pines’ expres-
sion (Ref. 30) is given in Eq. (63).
J aD’S
3.0 35

might be true also for the correct go(r) since it is de-
fined from a linear response expression.

The behavior of go(r) for small v has however relatively
small influence on W (r,0)=(e2/7)S(r),

S(r)= —-41r/ 7' (r'—7)go(r')dr, (62)

as can be seen in Fig. 6 where the Thomas-Fermi (TF)
and the RPA results? for S(r) are plotted for r,=3.
The TF g, tends to infinity for small » but still the TF
S threads the RPA S quite well. As a comparison we
have also plotted Pines’ expression,3!

S(r)=1—2/m)Si(x), x=ks, k.=0.353r'"%,,

= sin
—dt,
t

(63)
Si(x)=
0
which is quite different from the two others.
The HF expression for ¢, namely, e '(q,u)=1—a(q,u),
gives a reasonable result for r=0:

80(0)= —gmarsp, (64)
but predicts a completely wrong asymptotic behavior,
golr) = —3ar.(awr/r)p; 7 —>o0 (65)

which makes the integral in Eq. (55) divergent.

2 S(r) has also been calculated by March and Murray (Ref. 30)
by a rather complicated method. The results for .S(r) as obtained
from Langer and Vosko’s densities (Ref. 28) using Eq. (62) agree
within 0.19, with those of March and Murray’s for 7,=1.5. Other
7, values cannot be accurately checked since they lie far from
those used by Langer and Vosko.

30 N. H. March and A. M. Murray, Proc. Roy. Soc. A261, 119
(1961).

31 D. Pines, Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc., New York, 1955), Vol. 1, p. 387.

8. ELECTRON GAS: THE TOTAL ENERGY

Our primary interest in this paper is to calculate the
electron self energy M. By considering the total energy
we can obtain an estimate of the error in u= (%2k?/2m)
~+M (ko,u). The relations between ¢, the energy per
particle, and u are®

u=e—37:(de/dr,),
* ()
e=31’s3/ —(——dx.

st

(66)

The curve e(r;) has its minimum in the neighborhood of
7s=4 and here an error in e gives essentially the same
error in u.

To calculate €(r;) we use the virial theorem for an
electron gas®:

VA2T+r,(de/drs)=0, (67)

where V and T are the expectation values of the poten-
tial and kinetic energies divided by the number of
particles. Solving Eq. (67), we have, considering V to be
expressed in rydbergs,

1 s
e=—;[A +/ xV(x)dx:l Ry.
¥s 0

From the known behavior® of e for small 7, we infer that
the integration constant 4 is

A=3/50=2.2099.

(68)

(69)

2 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 343; J. J. Quinn and R. A. Ferrell,
Phys. Rev. 112, 812 (1958).

33 N. H. March, Phys. Rev. 110, 604 (1958).

% M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).
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Tor convenience we write V(r,) as

V(rs) = (1/7'3) ( Vcorr—' B) (70)
B=3/2ra=0.9163,

which allows us to express the correlation energy
e.=¢— ¥ as

1 rre
ec=—2/ Veorr(x)dx Ry . (71)
7s 0

Veorr can be calculated from the dielectric constant3s
14-alg,u):
(g, in)

4 6 o
ea
ma o ars Jo  14a(gin)

which, when we use the RPA expression for a(g,x),
becomes

Vcorr: —1)+B, (72)

2(q,

73
0 1+0‘(97W) ( )

00!‘!‘

From a general theorem given by Ferrell®® we can
deduce a restriction on V. Ferrell proved that

9%/93(¢*)?< 0 at constant density, (74)
where e is the electron charge. From the relation
a(h2/m)(3w2p) 3 ,= €2, we see that 7, is proportional to
e2 when the density is kept constant. The factor 1/7,2 Ry
=(1/r2)(me*/2%#*) in Eq. (68) then becomes inde-
pendent of ¢? and the Ferrell condition, Eq. (74), can be
written

d? rs d
{A—}—/— [Veore(x)—Blda t =—Veors(r5) <0.  (75)
drs? 0 d

Vs

In Fig. 7 we have plotted different expressions for
Veors- The series expansion in 7, is taken from Carr and
Maradudin®”:

e.=0.0622 Inr;,—0.096+0.0187; In7;—
Veorr=d(rs2€,)/drs=75(0.1244 Inr,
—0.130+0.0547, Inr;—

0.0367,,
(76)
0.090r,) .

This Veorr violates Eq. (75) from 7,~2. The RPA ex-
pression for Vo, satisfies Eq. (75) at least up to r,=100.
The contribution to e, from exchange of second order in
v has been calculated by Gell-Mann and Brueckner.®*
They obtain the value 0.046 Ry which gives a contribu-
tion of 0.0927, to Veorr. When this is added to RPA, the
Ferrell condition becomes violated from 7r,=3 (see
Fig. 7). The unscreened second-order exchange terms

3 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958).

38 R. A. Ferrell, Phys. Rev. Letters 1, 443 (195 8)

37 W. J. Carr, ]r and A. A. Maradudm Phys. Rev. A133, 371
(1964).
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POTENTIAL ENERGY OF AN ELECTRON GAS
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Fic. 7. Potential energy of an electron gas. The quantity 7«(V)
+0.9163 Ry plotted as a function of #,. The derivative of this
quantity is always negative according to a theorem by R. A.
Ferrell (Ref. 35). The correlation energy is obtained by an
integration,

]
e,=—r}; ﬁ (r+(V)4-0.9163)dr, Ry.
$

See also Ref. 37,

actually represent a substantial overcorrection to RPA
already at rs=1, as can be seen by comparing with the
75 expansion.

Veorr can also be calculated from the pair correlation
function g(7),

1 0
Ve f 2[gRPA(x)— BT (2)]dx; x=2kor. (77)
3ra /g

As a check on the numerical accuracy of g&FA, Eq. (77)
was evaluated and found to give the same result as Eq.
(73) within a few percent. Since the g®PA(r) curves vio-
late the condition gR*A>0, for small 7, they were
smoothly extrapolated to zero (dashed curves in Fig. 3).
These extrapolated curves were then used in Eq. (77) and
the result plotted in Fig. 7 with the label RPA ;. Since the
correct g lies above g®FA for small 7 it has to lie below
gBFA for some regions of 7 in order to satisfy the nor-
malization condition. If the correct g were zero for =0
the RPA o7V eorr would give a rough upper bound to the
correct Veorr. At metallic densities the dashed curves in
Fig. 3 lie so much above the g®FA curves that a further
small shift will make relatively little change in Vo
We conclude that, at metallic densities, the RPA p.;Veorr
is a rough upper bound to the correct Veor.

In Fig. 8 the total energy is plotted as calculated from
Eq. (71) using the values for Ve, given in Fig. 7. For
comparison the HF energy and the energy of the
Wigner-type electron lattices® are also plotted. We note
that while the extrapolation of the g curves looks drastic,
the difference between the RPA and the RPA,,; curves
for the total energy is fairly small even though the
energy calculation involves rg(r) and not #%g(r), cf. Fig.
4 and the discussion of the correlation hole in Sec. 7.

The phase transition where the electrons cease to be

#¥W. J. Carr, Jr,

R. A. Coldwell-Horsfall, and A. E. Fein,
Phys. Rev. 124, T4y (1961)
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TOTAL ENERGY OF AN ELECTRON GAS

or S

RPA +2:nd ORDER
EXCHANGE

/HF

o LATTICE

Fic. 8. Total energy of an electron gas. The energy of the
electron lattice is taken from Ref. 38.

itinerant and form a lattice has been estimated by de
Wette®® to occur between 7,~47 and 7,~100. From a
calculation to finite order in W we expect to find a
smooth energy curve, which, if carried to high enough
order in W, will cross the energy curve corresponding to
electrons on a Wigner lattice. The RPA curve for the
total energy lies below the lattice curve at least up to
7s=100. This gives additional evidence, besides the fact
that the second-order term in e is positive, that RPA
gives a lower bound to the energy. It is indeed hard to
imagine that any reasonable curve for Vee which starts
out as the series expansion, has a negative slope, and
never goes below —0.876 Ry, could lie lower than the
RPA curve. The limit —0.876 Ry is set by the fact that
the lattice energy goes asymptotically as —1.792/r,
and the HF cnergy as —0.916/7..

If we extrapolate the RPA s curve for Voo, Fig. 7,
with a horizontal line starting at the minimum, the cor-
responding curve for the total energy will cross the
lattice curve at 7,=~11. This gives further evidence that
the RPA,.; curve is an upper bound to the energy. The
RPA,.; total energy actually comes quite close to the
results of a calculation by Gaskell.* His curve lies
0.003 Ry above and 0.007 Ry below the RPA,.; curve
at r,=3 and 7,=>5, respectively. Gaskell made a varia-
tional calculation with an antisymmetrized product of
pair functions, but due to an additional approximation
his results do not quite give a rigorous upper bound for
the energy. From all evidence taken together we esti-
mate that the error in the RPA approximation for the
energy € is posilive and at most 0.02 Ry.

We now return to the question of estimating the
error in the chemical potential u. Equation (66) relates
the exact e to the exact u and within the numerical
accuracy of our calculations, =0.0005 Ry, it holds
also for e calculated from Eq. (71) and u calculated
from M =iGW[P=—iGG, G according to Eq. (41)]. If
for the error in the energy Ae, we use the difference be-
tween RPA,;; and RPA, we find that the term
1y.dAe/dr, is small compared to Ae at metallic densities.

® F. W. de Wette, Phys. Rev. 135, A287 (1964).
9 T, Gaskell, Proc. Phys. Soc. 77, 1182 (1961); 80, 1091 (1962).
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We estimate that tke error in the RPA approximation for
the chemical potential p is positive and at most 0.02 Ry.

To further investigate the convergence properties of
the expansion for M, Eq. (24), we consider the second-
order term. While the first-order term is given by a
four-dimensional integral, which easily can be reduced
to a two-dimensional integral, the second-order term
is given by an eight-dimensional integral which is
difficult to reduce to less than a seven-dimensional one.
As we discussed in Sec. 5, a rough value can however be
obtained by using the static potential W (k,0) instead of
the full potential W (k,e). The second-order term then
becomes

M (k,u)
1 / dkldkz
T k12k226(k1,0)6(k2,0)(kz_u‘—2k1'k2)

Ry, (78)

where the integral is taken over the regions
[k+ki| <0.5 |k-+ki] 20.5
|k+ko| <0.5 | k+ks] 0.5
|k+ki+ke| 20.5 |k+kit+ke| <0.5,
and the k’s are expressed in units of twice the Fermi
momentum and # in units of (4%%%/2m). One angular
integration is trivial but there still remains a five-
dimensional integral. For the particular case of k=0,

u=0, Eq. (78) can howcver be reduced to a double
integral,

and

8 [ dlerdks sgn(k1—0.5)
*M(g)((),()):—/
72 €(k1,0) e(fe2,0) b1k
I 2kiks K
n|————————| Ry, 9
0.25—Fk1%—ko? Y )

over the regions

0<k1—k2<05, and k1+k2>05

This integral was evaluated using a TF dielectric
constant:

5(k70) =1+ (0(7’3/71')(1/132) ) (80)

which is good enough for the present discussion.
M®(0,0) was found to vary slowly with v, at metallic
densities, reaching a maximum of 0.014Ry at r.=~3.
From values of (d/dk)M @ (k,(h%?/2m))—r,, Sec. 10,
we estimate that p® =MD (k,,(#%*%/2m)) is about
0.02-0.04 Ry i.e. of about the same size as the error in
the first-order contribution u®. It should be realized
that while the preceding discussion suggests a very good
convergence of the expansion of u in terms of W, an
accurate value of u cannot be obtained by just adding
w® to uBPA since the u™ which corresponds to a self
consistent solution for G might well differ from u®PA by
an amount comparable to u‘®.

In the calculation of the energy we have assumed that
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TasLE II. Energies of an electron gas in rydbergs.
Ty=XKinetic Energy in the HF approx.= (3/5a%?) Ry = (2.2099/72) Ry.
eexch = Potential Energy in the HF approx.= — (3/27ar;) Ry =— (0.9163/7,) Ry.
€corsBPA = Correlation energy in the RPA =Total energy —HF energy.
€cors® = 0.0622 In7;—0.09640.0187 Inz;— 0.03675.
T =Expectation value of the kinetic energy in the RPA.
V =Expectation value of the potential energy in the RPA.
e=Total energy in the RPA =74V =T+ €exch+ €corrRFA.
ererr = Total energy of the Ferro-magnetic state according to RPA.
eratt” = Energy of the Wigner type lattice of electrons
1.792 1265 073 (21 48 116\ , .., (2.06 0.66\ _ .. i,
T TR T\ A A ) TG )
The energies are accurate to £0.0005 Ry.
¥s To €exch Gcm-rnl:'A €corr™ T 14 € €Ferr €Latt®
1 2.2099 —0.9163 —0.1578 —0.132 2.3161 —1.1803 1.1358 2.2502 1.49
2 0.5525 —0.4582 —0.1238 —0.100 0.6299 —0.6594 —0.0295 0.2150 0.173
3 0.2455 —0.3054 —0.1058 —0.076 0.3083 —0.4740 —0.1657 —0.0695 —0.067
4 0.1381 —0.2291 —0.0938 —0.054 0.1920 —0.3767 —0.1847 —0.1367 —0.122
5 0.0884 —0.1833 —0.0851 —0.031 0.1359 —0.3158 —0.1799 —0.1526 —0.131
6 0.0614 —0.1527 —0.0784 —0.007 0.1040 —0.2737 —0.1697 —0.1534 —0.130
7 0.0451 —0.1309 —0.0730 +0.018 0.0839 —0.2427 —0.1588 —0.1482 —0.128
8 0.0345 —0.1145 —0.0685 0.0703 —0.2188 —0.1485 —0.1413 —0.118
9 0.0273 —0.1018 —0.0647 0.0606 —0.1998 —0.1392 —0.1344 —0.110
10 0.0221 —0.0916 —0.0615 0.0532 —0.1842 —0.1310 —0.1274 —0.103

a W, J. Carr, Jr., and A. A, Maradudin, Phys. Rev, 133, A371 (1964).

bW, J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein, Phys. Rev. 124, 747 (1961).

the ground state is paramagnetic. To obtain the energy
of the ferromagnetic state we have to use a Green’s func-
tion which is zero for, say, spin down and for spin up
has a Fermi momentum?*

k" =Bho; B=211% (81)

ko = (Ola()?’s)_l .

Asis well known the HF expression for the energy of the
ferromagnetic state is, in Rydbergs,

e =32(3/5a%r %) —B(3/ 2wars) , (82)

which lies below the energy of the paramagnetic state
for 7,2 5.45. In RPA we have the simple relation for
the correlation energy

ch(rs) = % ecP(rs,B—.‘i) .

To see that we introduce dimensionless variables as in
Eq. (56) but with %, replaced by k¢f. From Eq. (24) we
then find for the dielectric constant

(83)

' (qu;rs)=€eP(qu; 787, (84)
and from Eq. (73)
VcorrF(rs) :BVcorrP (786_4) . (85)

Substituting Eq. (85) into Eq. (71) finally gives Eq.
(83). We note that Eq. (84) is not valid if we include
higher terms in P(k,e), Eq. (24), or if we use a self-
consistent G.

Table IT gives the values of the energy for the ferro-

4 Superscript (P) here refers to the ferromagnetic (para-
magnetic) state.

magnetic state in the RPA as obtained from Eqs. (82)
and (83). We see that €” lies above €? (given under the
heading ¢ in Table IT) and approaches it asymptotically.
At 7,=10 the difference between the energies is only 39,
of their magnitude. This is a reasonable result since the
influence of spin orientation has to vanish when the
density tends to zero. The present results do not quite
rule out the possibility that the electron gas should be-
come ferromagnetic at some density since we know that
the RPA value for e?'(r,) lies too low. On the other hand,
€’ (r,) is also too low but perhaps less so since according
to Eq. (83) the error in € is only half the error in e.?.
It seems safe to predict that the electron gas does not be-
come ferromagnetic for v, <.

The numbers in Table IT not discussed so far are self
explanatory. We only note that the series expansion for
€corr rapidly becomes bad for 7,>3 and that our values
for ecor"F4 do not quite coincide with Hubbard’s, his
values*? being between 0.002 and 0.004 Ry higher than
ours.

9. ELECTRON GAS: THE M OPERATOR

The M operator was calculated from the equation
o(k)dk’  eiAddé

/ (',¢) e~ —e(k—k')’

cf. Egs. (24), (41), and (56). The contour for € runs

just below the real axis for ¢ <0 and just above for ¢ > 0.

i

M(k,e)=
(2m)*

(86)

2 J. Hubbard, Proc. Roy. Soc. A243, 336 (1957).
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We first separate out the HF term:

k
W (k,e)eied= "
e(k,e)

=v(k)e—i‘A+fu(k)<

e~ieA

- 1) . (87)

e(K,e

Since, according to Eq. (57), (1/€(g,%#))—1 tends to zero
as |u|~2 for large |#|, the convergence factor ¢~ has
been omitted in the last term of Eq. (87). We then
separate out the static approximation of the last term
in Eq. (87), cf. Sec. 5,

W(k,e)etet=y(k)eiea
: 1>+ (k)( S > (88)
e(k,0) ’ ko) e(k0)/

The contributions to M (¢,%) from the first two terms of
Eq. (88) are easily evaluated by closing the contour for
¢ in Eq. (86) in the lower half-plane, giving the Coulomb
hole plus screened exchange terms,

4 i 1
[ o)
mars Jo \e(q’,0)

4 1 ©  6(0.25—¢*—q'*—2¢q¢'§)
/ dé/ dq’ - Ry. (89)
¥s J —1 0 e(g :0)

To evaluate the contribution from the last term of Eq.
(88) we follow Quinn and Ferrell*® and turn the contour
of ¢ in Eq. (86) to run along the imaginary axis. We
pick up a contribution from the poles of the Green’s
function,

4 1 o 1 1
-t o |
Tars J 1 0 G(q’, M—G(‘l_ql)) f(ql:o)
X[0(u—e(q—q'))—0(0.25—e(q—q")) ] Ry;
t=q-q'/(q9),

+v(k)(

Me=

o

(90)

as well as the contribution from integrating ¢ along the
imaginary axis,

1 © © 1 1
/ du’ / dq’ ( —— )
w2ars J 0 e(g’yi')  e(q',0)

1 (u—(g+¢)")+u"
X—In— - — Ry,
97  (u—(g—q)y+u"

Mr=

(91)

We thus have

4 7. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
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TasLE IIT. The Fermi energy for an electron gas,
T+M, in rydbergs.

rs T MHEF JMRPA M= Mb Me
1 3.6832 —1.2218 —1.3965 —1.8327 —0.4541 —1.6267
2 0.9208 —0.6109 —0.7491 —0.9164 —0.1639 —0.9137
3 04092 —0.4073 —0.5259 —0.6110 —0.0870 —0.6577
4 0.2302 —0.3054 —0.4112 —0.4581 —0.0546 —0.5224
5 0.1473 —0.2444 —0.3406 —0.3666 —0.0377 —0.4375
6 0.1023 —0.2036 —0.2926 —0.3054 —0.0277 —0.3787
7 00752 —0.1745 —0.2575 —0.2618 —0.0212 —0.3354
8 0.0576 —0.1527 —0.2308 —0.2291 —0.0168 —0.3019
9 0.0455 —0.1358 —0.2097 —0.2037 —0.0136 —0.2753

10 0.0368 —0.1222 —0.1925 —0.1833 —0.0113 —0.2535

2 The Slater approximation =1.5 MHF,
b Screened exchange potential.
¢ Screened exchange potential plus Coulomb hole contribution.

M¢ and M~ are real and the imaginary part of M
comes solely from M?. For u=0.25 (e=#2ke2/2m), MP
is zero as well as its first derivatives with respect to ¢
and #. The real part of M?(q,q?) is small. It decreases
monotonically from about 0.01 Ry at g=0to 0 at ¢=0.5,
except for 7,=1 when it has a maximum of 0.02 Ry at
¢=0.2. The imaginary part of M?(q,¢?) is larger as can
be seen from Table IV under the heading M,. It de-
creases monotonically from values of the order 0.1 Ry
at ¢=0 to zero at ¢=0.5. The derivatives of ReM?(g,x)
with respect to # are 109, or less of the derivative of
M(qu) for 0.52¢>0.2, but increase rapidly for
smaller ¢.

The first term in M<(¢g), the Coulomb hole contribu-
tion, is independent of ¢. The second term in M*(q),
the screened exchange contribution, is substantially
smaller than the HF exchange term as can be seen from
Table III. Comparing M¢ with MRPA in Table III, we
can see that M has too large a magnitude and that the
Slater approximation,** which consists of an average of
MHUF over the Fermi sphere, actually is better.

M7 can conveniently be split into three parts. The
first part consists of contributions from integrating #’
between 0 and 0.25 in Eq. (91). The second and third
parts come from the integration over #'>0.25 and the

following division:

1 1 1 1

—— =< - 1)—!—(1— ) (93)
e(g'yin')  e(q,0) \e(q,in') «(¢',0)
In the third part, i.e., the second term of Eq. (93), the
integration over #’ can be made analytically,

1 * 1
J ()
2riars J o e(¢’,0)
1

1-+4-a?
X —(a arctan(e)—b arctan(d)—% In ) Ry;
q9¢’ 1457

e=4((¢+¢)—n), b=4((g—¢)*—u).  (94)

MTm(Q;”) =

7. C. Slater, Phys. Rev. 81, 385 (1951).
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M gives the main part of M7, being about three times
as large as each of the first two parts with respect both
to magnitude and derivatives. The essential contribu-
tion to the first part of M" comes from ¢'<0.8, and to
the second part from ¢’ <2.4, #’'< 3, the remaining con-
tributions being small and practically independent of
g, %, and 7.

M is easily evaluated since the integration over £ in
Eq. (89) can be made analytically. In evaluating M* we
have the advantage that e(g,i%) is much more well be-
haved than e(q,u). From Eq. (57) we see that a(g,in)
only has three singular points, #=0, ¢=0, &1, while
alq,u) is singular along the lines (¢=2=(#%/q))==1. The
evaluation of M? involves a(g,%) but fortunately M? is
small and the relative accuracy does not have to be
pushed so far.

The integrals were evaluated for

q=0, u==40.01;
¢=0.1,0.2,0.3,0.4, u=g¢%(¢-+0.1)%
¢=0.5,0.6,0.7, u=¢%(g—0.1)2.

The results are given in Table IV. The values of M for
uqg?* are not given directly but in the form

7(g)=1—AM/Ae. (95)

For ¢=0 we have given the average of the results for
u==0.01. To estimate how well z approximates the
limit when Ae— 0, we compare the values of Rez™?
for ¢=0.4, 0.5, and 0.6. They agree to about two decimal
places which, in conjunction with the fact that M(g,¢%
is almost linear for these ¢ values, shows that M(g,u)
can be represented fairly well by a linear expression in g
and u for |¢—0.5] <0.1 and |u—0.25] <0.1, unless the
M(g,n) surface has an anomalous behavior for #<g?
¢<0.5 and #>¢?, ¢2>0.5. To check Imz~* we note that
for u close to 0.25 we have from general arguments!?

Mo(gu)=C(u—0.25)% sgn(0.25—u) . (96)

The values of Cfor ¢=0.4 and 0.6 deviate by about 209,
from those for ¢=0.5. We can also check Z at ¢g=0 where
the calculations were made for three values of #. The
values of Imz! agree within a few percent while the
values for Re(z71—1) deviate from their mean value by
20%, 299, and 659, at r,=1, 4, and 6, respectively. We
conclude that M1(0,%) varies very rapidly with u and
that our value for Rez™! is not very reliable when ¢ is
small.

To solve Dyson’s equation for the quasiparticle
energies we expand

e=e(k)+ M (k, e— ) = e(k)+ M (k,e(k))
+(e— eo— e(k))[0M (k, e(k))/0¢],
giving the solution for e

e= epte(k)+[ M (k,e(k) — 01/

[1—0M(k,e(k))/de], (97)
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where from Eq. (42)
o= M (ko e(ko)) = u— e(ko) -

We note that Eq. (97), owing to the ¢ in the denomina-
tor of our Gy, is different from the corresponding equa-
tion used by DuBois®

e=e(k)+M(k,e(k))(14-0M/ de) .

In particular the cancellations mentioned by him be-
tween M DOM D /Je and the noncrossed second order
term of M® are taken into account in Eq. (97), cf.
Sec. 6. The real and imaginary parts of the last term in
Eq. (97) are given in Table IV under the headings £
and E.. In Table IV we have also given the screened
exchange approximation MS and Pines’ approximation
MP. We see that the difference between E; and MS is
substantial; they even have opposite signs for 7:>1.
Both E;and MS have a weak k dependence compared to
MP. This is also illustrated in Fig. 9.5 The almost hori-
zontal curves give Ei1+¢ and the dashed curves give
Pines’ approximation. For comparison the kinetic
energy (k) and the Hartree-Fock approximation for M
are also drawn. The infinite slope of the HF curve at
k=Lk, is barely noticeable, owing to the weakness of a
logarithmic singularity.

We note that the HF energies deviate from the true

QUASIPARTICLE ENERGY AS A
FUNCTION OF MOMENTUM

2
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——3"" 2
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A

Fi16. 9. Quasiparticle energy as a function of momentum. Above
the axis: Free-particle part = (42k2/2m). Below the axis: Exchange
and correlation part. Dashed curve: Pines’ approximation (Ref.
45). Curves with infinite slope at k=ko: HF. Almost flat curves:
E; in Table IV. The 7, value is indicated for each curve.

4 D, Pines, Ref. 31, p. 407. The value of g in his Eq. (8.1) is
taken as 8=0.375r,2, This is the value used by V. Heine, Proc.
Roy. Soc. (London) A240, 340 (1957) in his calculation on Al.
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TasLE 1V. Quasiparticle energy in the momentum representation.

The full quasiparticle energy = e(k)+M (ko, e (ko))+tabulated quantity, where e (k) is the kinetic energy, (42k?/2m). The energies in
the table are expressed in rydbergs. The Fermi momentum is |k:ﬂ .
M =M (k,e(k))— M (ko,e (ko)) ; M in the RPA
Z1=1—9M (k,e(k))/de; M in the RPA

E=MZ

MS =M (k)—M (ko) ; M from a screened exchange potential
MP =M (k)—M (ko) ; M from Pines’ approximation® with
B=0.375r,1/2 This is essentially the same 8 value as used by V. Heine? in his paper on the band structure of Al.

7s k/ko=0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1 My —0.1286 —0.1232 —0.1014 —0.0735 —0.0428 0 +0.0407 0.0459
Mo 0.2323 0.2130 0.1608 0.0910 0.0284 0 —0.0279 —0.0948
Re Z7! 1.270 1.241 1.216 1.193 1.168 1.164 1.142 1.151
Im Z71 0.186 0.150 0.108 0.064 0.021 0 0.017 0.040
Iy —0.0729 —0.0774 —0.0711 —0.0574 —0.0362 0 0.0353 0.0370
Ly 0.1936 0.1809 0.1386 0.0794 0.0250 0 —0.0250 —0.0837
MS —0.2401 —0.2283 —0.1940 —0.1403 —-0.0731 0 0.0709 0.1339
MP —0.7208 —0.6879 —0.5860 —0.4023 —0.1824 0
2 My 0.0123 0.0112 0.0086 0.0039 —0.0004 0 0.0009 —0.0075
M2 0.0976 0.0882 0.0642 0.0349 0.0105 0 —0.0105 —0.0367
Re Z71 1.426 1.413 1.387 1.354 1.318 1.302 1.275 1.284
Im Z1 0.273 0.224 0.161 0.095 0.032 0 0.026 0.061
Fy 0.0210 0.0174 0.0114 0.0047 —0.0001 0 0.0005 —0.0072
By 0.0644 0.0597 0.0450 0.0255 0.0080 0 —0.0082 —0.0282
MS —0.0590 —0.0561 —0.0477 —0.0346 —0.0182 0 0.0184 0.0359
MP —0.2440 —0.2276 —0.1766 —0.1034 —0.0489 0
3 My 0.0268 0.0253 0.0205 0.0132 0.0056 0 —0.0052 —0.0147
Mo 0.0534 0.0482 0.0350 0.0190 0.0057 0 —0.0059 —0.0208
Re Z71 1.521 1.537 1.525 1.492 1.455 1.429 1.400 1.407
Im Z71 0.313 0.261 0.192 0.116 0.039 0 0.033 0.078
I 0.0238 0.0212 0.0161 0.0098 0.0040 0 —0.0038 —0.0112
Eqy 0.0302 0.0278 0.0209 0.0120 0.0038 0 —0.0041 —0.0142
MS —0.0230 —0.0219 —0.0187 —0.0137 —0.0072 0 0.0075 0.0149
MP —0.0998 —0.0889 —0.0569 —0.0344 —0.0176 0
4 M, 0.0262 0.0250 0.0206 0.0139 0.0065 0 —0.0064 —0.0153
M, 0.0336 0.0304 0.0222 0.0121 0.0037 0 —0.0038 —0.0137
Re Z71 1.576 1.629 1.639 1.614 1.580 1.547 1.518 1.525
Im Z71 0.334 0.282 0.211 0.130 0.044 0 0.038 0.091
Iy 0.0202 0.0180 0.0141 0.0092 0.0042 0 —0.0043 —0.0105
Iy 0.0170 0.0155 0.0117 0.0068 0.0022 0 —0.0024 —0.0084
MS —0.0110 —0.0105 —0.0090 —0.0066 —0.0035 0 0.0037 0.0074
MP —0.0334 —0.0252 —0.0126 —0.0095 —0.0060 0
5 My 0.0231 0.0223 0.0186 0.0129 0.0063 0 —0.0064 —0.0144
Mo 0.0230 0.0209 0.0154 0.0085 0.0026 0 —0.0027 —0.0099
Re Z! 1.602 1.699 1.738 1.725 1.697 1.660 1.630 1.637
Im Z71 0.347 0.296 0.225 0.141 0.049 0 0.042 0.102
Ey 0.0167 0.0148 0.0117 0.0078 0.0038 0 —0.0040 —0.0091
Ey 0.0170 0.0097 0.0074 0.0043 0.0014 0 —0.0016 —0.0055
MS —0.0059 —0.0057 —0.0049 —0.0036 —0.0019 0 0.0020 0.0040
MP -+0.0035 0.0090 0.0057 0.0012 —0.0008 0
6 My 0.0201 0.0195 0.0164 0.0116 0.0058 0 —0.0060 —0.0132
M2 0.0168 0.0152 0.0113 0.0063 0.0019 0 —0.0021 —0.0075
Re Z1 1.609 1.753 1.825 1.827 1.807 1.766 1.738 1.745
Im Z71 0.354 0.305 0.236 0.150 0.052 0 0.046 0.112
E;y 0.0141 0.0123 0.0096 0.0066 0.0032 0 —0.0035 —0.0078
Iy 0.0073 0.0065 0.0049 0.0029 0.0010 0 —0.0011 —0.0038
MS —0.0034 —0.0033 —0.0028 —0.0021 —0.0011 0 0.0012 0.0023
MP 0.0264 0.0234 0.0135 0.0061 0.0017 0

a D. Pines, Ref. 31, p. 407.
b V. Heine, Proc. Roy. Soc. A240, 340 (1957).

quasiparticle energies in qualitatively the same way for an
electron gas as for alkali atoms, though on a largely magni-
fied scale, cf. Sec. 4.

By comparing M with E in Table IV we find that the
factor Z has a large influence. For ;=1 we note an
anomaly. E; drops sharply in going from ¢=0 to ¢=0.1
before it starts rising again. This may be due to either
inaccuracies in the Z values or to a discontinuity in the

derivative 9E(k)/dk,. There are however no indications
of such a discontinuity in M(k,e(k)).

The accuracy of £(g) is not good enough to permit a
more detailed statement about its second derivative
than the general observation that on the average it is
small compared to €’(¢)=2(2/ar;)? Ry. This follows
from the fact that £’(0.5) is small compared to € (0.5)
=(2/ar,)? Ry [see Table VI which gives £(0.5)/€(0.5)
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under the heading .V, f,, RPA®7], combined with
the formula,

1 0.5
— / E"(q)/¢"(0.5)dg=E'(0.5)/€(0.5). (98)
0.5/,

We have also calculated M (r,u) from the formula,

kG [ 8ethkot1 [
) =(=) [ewsttquin-——" [
0

™ m o x
° 1 singx
X/ du( -——1) ¢—(a—0.125)1/2g
0 f(qﬂu) qx
Xcos(a+0.125)12x;  a=L(u240.0625)/2; x=2ke .
(99)

The result is given in Fig. 10. Judging from the values of
M(q,n) at ¢g=0.4, 0.5, and 0.6 it varies considerably
faster with ¢ than M(g,e(¢)) and E(q). M’(0.5,u)/€(0.5)
equals 0.18, 0.39, and 0.62 for r,=1, 3, and 6, respec-
tively. The variation is however still mild compared to
the logarithmic singularity of M¥¥(q), which can be
seen by the suppression of long range oscillations in
M(r,u). Since rM(r,u) extends out to about r=ay,,
then |k|M(k,u) is essentially different from zero only
for %k smaller than 27/r=(2n/aors)=3k,. Since E(k)
varies more slowly with k than does M (k,u) it is probable
that |k|E(k) extends further out than 3k,. In that case
the nonlocal potential corresponding to E(k) will have
a still smaller range than M (r,u) which speaks in favor
of using electron-gas results in a local density approxima-
tion for a metal.

We conclude this section with a comment on the
Coulomb hole plus screened exchange approximation.
Returning to Eq. (13) we see that the integral has a
factor exp[i(e— €s)(7/%) [6(7) — 6(u— ¢;) ]. The Coulomb

SELF-ENERGY OPERATOR AS A NONLOCAL POTENTIAL

===

4mr2agr@ Mir, i)

Qofs

F16. 10. Self-energy operator as a nonlocal potential. We have
multiplied M (r,u) by a factor 4r2ass from the volume element
4wr’dr =4wr’aerdx, and by an extra r; to make the HF curve 7,
independent.
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hole comes from 6(r) and the screened exchange from
6(u—e;) when we put the exponential equal to 1. If we
evaluate the contribution to M involving 6(u—e;)
without approximation, we obtain an energy-dependent
screened exchange,

4 1
Mex(%u) = ds

TaYs J -1
" 000.25—¢*—¢""—29q'%)
X/dq 7 —_ 2_ /2_2 7
(¢, u—q*—q'*—29q'%)

Ry, (100)

which can be compared with the energy-independent
screened exchange of Eq. (89). It has been suggested!
that the energy dependence should have only a small
influence and to check that the integral in Eq. (100)
was evaluated for u=g¢? Compared to the energy-
independent screened exchange the magnitude of
Mx(0.5,0.25) agreed quite well, being 3%, and 8%
smaller for .= 1 and 6, respectively. The slope at ¢=0.5
on the other hand was larger by 49, 299, and 919, for
rs=1, 3, and 6, respectively. The total variation be-
tween ¢=0 and ¢=0.5 was larger by 3% and smaller
by 27%, and 889, for r,=1, 3, and 6, respectively. The
two expressions thus agree poorly except for high
densities.

10. ELECTRON GAS: THE QUASIPARTICLE
INTERACTION

The expansion of the quasiparticle interaction f of the
Landau theory of a Fermi liquid is given in Egs. (31)
and (34) up to second order in the screened interaction
W. It is convenient to use dimensionless quantities and
we redefine f by

4re?

L5 [ Sl K )ono(W)ak, (101)

0E (k)=
ko* 2m)2ars o

where Fq.(k) and on.(k) are defined as in Eq. (30).
Writing f as

fva':f0+fe50a’; fe:fe(l)+fe(2) )

we have the following simple expressions*® for the specific
heat C and the paramagnetic susceptibility x,

(102)

Co/C= 1—/7 [2£6(8)+ f.(68)] cosf sinbde ,
’ (103)
Xo/X=Co/C+ / fe(6) sinfdd ,

where Co and X, are the values for a noninteracting or
Sommerfeld electron gas and 6 is the angle between k
and k’. Both k and k’ have the magnitude |ko|.

46 See e.g., P. Nozieres in Ref. 2.
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With our present definition of f, Eq. (101), using
Green’s functions according to Eq. (41) and dimension-
less integration variables according to Eq. (56) we have

fc(l)z - V<K)O) )

fe(2) = —i / V(QI’ul)dqldull_
2 M1—412—2‘1“11'—-%1—912—2(1"(11

V(qitx, 1) jl

2q-q:]” (104)

2V (x,0)

V(quitx, u1)
w+giP—

T
2q’-q: M1—912—
i/V2(gl,u1)dq1du1
0= -
—q¢’—2q-qu

1
al
U1— qlg_

where we have omitted the z? factors and used the
notation
V(gu)=0/4g’(qu)); N=ar,/m=r,/6.03;
x=q—q'=(k—k')/(2ko);
=1(1—cosf)= sin2(9/2).

o
2 q wtgt—2qqud’

(105)

As discussed in Sec. 5, we can obtain rough approxima-
tions by replacing W (k,e) by W(k,0) or, in the present
notation, replacing V(g,%#) by V(g,0). The expressions
for f.® and f, then become,

1 ZV(K;O)nl
fe®== [ V(g1,0)dq:
i

Vigitx, O)nz]

®eqq (x+q1)-q
1 m N2
f0=——/V2(q1,O)dq1< ————), (1006)
T xeqp (x+qu)-q

11=0(0.25—(q+q1)*)—0(0.25— (¢'+4q1)*),
72=0(0.25— (q+4q1)*)—0((q'+¢1)*—0.25) .
Using the G defined in Eq. (41) we have from Egs.
(27) and (28)
d d
CO/C=1+z[d—kM(k,e(k)) / (d—ke(k)>]. (107)

Neglecting the z factors, the contributions to Co/C in
Eq. (107) are identical with those in Eq. (103) according
to the following correspondences:
f¥, Eq. (104) - M<, Eq. (89),
fO; Eq (104) - Mr, EC[ (91) ’
f.®, Eq. (106) > M@ | Eq. (78).

(108)

The first and third correspondences are easily checked
by straightforward differentiation of M¢ and M ®. To
prove the second correspondence we write the expres-
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sions for M7 in the form

M ’(k,e(k))

(2n) / /o

We then perform a partial integration with respect to w,
(@W /dw=W?dP/dw),

/ dk”’ / dw
e(k+k")— e(k)
w

dkl(e(k’+k”)~ e(k)wb(ko— |K'[)
{{e(k'+K")— (k') P+w?}?

e(k+k")—e(k)
(el k")~ e(l)y w7
X (W (K" iw)— W (k",0)).

(109)

M (k,e(k))=

Xarctan

WA (k" iw)

(110)

The last integral in Eq. (110) can be written?’
m  w / k-k'6(|k'| —ko)dk’
202k koK ) [e(W+K")—e(k) ]+

When we form d/dk=(k/ko)-d/dk of M7(k,e(k)), the
factor (k-k”)~! drops out and it is relatively easy to
check that we arrive at the same expression for Cy/C as
when fo of Eq. (104) is used in Eq. (103). It is easily
realized that we have the correspondence f,, Eq.
(106) — M, Eq. (110) with W (k,0) instead of W (k,iw).

Thus the RPA result for the specific heat is reproduced
by [ and fo apart from a factor z. It seems probable,
although we have not been able to prove it, that if we
use Eq. (43) instead of Eq. (41) for G, the iGW expres-
sion for M will give exactly the same result for C,/C
as .V and fy [cf. the discussion in connection with
Egs. (35) to (37)].

The numerical results for f,; Eq. (104) and f.®,
fo, Eq. (106) are given in Table V and Fig. 11. The f’s
are multiplied by sinf to make it easier to estimate their
contributions in Eq. (103). The z2-factor is not included
in Table V and Fig. 11. Since we have numerical results
for M Tk,e(k)] we can evaluate the contribution to
Co/C—1 from fo, Eq. (104) and compare with the con-
tribution from the static approximation for fo, Eq. (106).
These contributions are given in Table VI under the
headings (fo,RPA) and (fo,static). We expect similar
differences between the contributions from f,® accord-
ing to Eqgs. (104) and (106). The static approximation for
the second-order terms in f is thus fairly rough and
seems to somewhat underestimate them.

(111)

4 We use the identity
/Vf(k)e(lkol— Ikl)dk=/(k/lkl)f(k)a(lkol— |Kk|)dk.



ONE-PARTICLE GREEN’'S FUNCTION A 815
TaBLE V. Quasiparticle interactions multiplied by sing.
rs= re=2 rs=3
0 fo Jo f® fo fo fo® o fo fo®
m™
-X0 0 0 0 0 0 0 0 0 0
8
1 —0.0788 —0.0009 —0.0187 —0.0869 —0.0032 —0.0264 —0.0900 —0.0069 —0.0285
2 —0.0969 —0.0018 —0.0188 —0.1274 —0.0067 —0.0322 —0.1424 —0.0141 —0.0367
3 —0.0842 —0.0030 —0.0112 —0.1271  —0.0106 —0.0217 —0.1531  —0.0220 —0.0250
4 —0.0656 —0.0043 —0.0038 —0.1081 —0.0152 —0.0066 —0.1379  —0.0304 —0.0044
5 —0.0473  —0.0062 0.0019 —0.0824 —0.0201 0.0070 —0.1095 —0.0383 0.0156
6 —0.0307  —0.0084 0.0055 —0.0553  —0.0241 0.0159 —0.0755  —0.0429 0.0286
7 —0.0151  —0.0095 0.0063 —0.0278 —0.0231 0.0171 —0.0386  —0.0374 0.0289
7+% —0.0091 0.0057 —0.0202 0.0148 —0.0318 0.0246
743 —0.0066 0.0041 —0.0139 0.0105 —0.0211 0.0171
743 —0.0042 0.0025 —0.0085 0.0065 —0.0127 0.0104
8 0 0 0 0 0 0 0 0 0
rs=4 rs=35 7s=06
9 1. fo f.@ fo® fo fo® f. fo fo®
™
-X0 0 0 0 0 0 0 0 0 0
8
1 —0.0917 —0.0116 —0.0273 —0.0927 —0.0173 —0.0241 —0.0933 —0.0238 —0.0192
2 —0.1512 —0.0237 —0.0354 —0.1571  —0.0350  —0.0299 —0.1613 —0.0480 —0.0214
3 —0.1706  —0.0363 —0.0220 —0.1832 —0.0530 —0.0141 —0.1926 —0.0718 —0.0024
4 —0.1510  —0.0488 0.0027 —0.1770  —0.0699 0.0141 —0.1905  —0.0932 0.0290
S —0.1311  —0.0594 0.0276 —0.1486  —0.0827 0.0425 —0.1632  —0.1078 0.0510
6 —0.0924 —0.0634 0.0432 —0.1067 —0.0852 0.0593 —0.1190  —0.1080 0.0767
7 —0.0480 —0.0522 0.0412 —0.0561  —0.0673 0.0538 —0.0633  —0.0826 0.0667
7+3% —0.0430 0.0347 —0.0544 0.0445 —0.0647 0.0549
T+3% —0.0281 0.0236 —0.0349 0.0299 —0.0417 0.0360
7+3 —0.0167 0.0143 —0.0206 0.0179 —0.0244 0.0215
8 0 0 0 0 0 0 0 0 0

From Table V and Fig. 11 we see that the first-order
term in f is appreciably larger than the second-order terms
for the higher metallic densities. The convergence of the
expansion for f, however, does not seem to be as good
as that for u.

From the results for f,® and for M ®(0,0) we can
estimate the magnitude of M @[k, e(k)] at k=k,. The
derivative of M @[k,e(k)] relative to that of e(k) at
k=Xk, is roughly given by the value of (f.¥, static) in
Table VI. Taking into account that M ®[k,e(k) ] should
flatten out at small k by introducing an extra factor of
0.5, we arrive at the estimate of M ®[ky,e(ko)] which
was given in Sec. 8, namely 0.04-0.02 Ry for 7, varying
from 3 to 6. For smaller r,,M ® becomes larger and the
ratio M@ /M@ smaller.

The influence of the errors in the second order terms
of fis suppressed since they should cancel each other to
a large extent. This can be seen in Table VI by com-
paring the columns (fo, f.¥, static) with (f.©, RPA)
or (fe, fo, static).

In Fig. 124850 the results for the specific heat are
plotted. The series expansion in 7,, given by DuBois,?!
starts to deviate from our result already at »,=0.5 and

8 D. Pines, Ref. 31, p. 408, Eq. (8.4). (8=0.353r.72).
9 D. F. DuBois, Ann. Phys. 8, 24 (1959).

% S, D. Silverstein, Phys. Rev. 128, 631 (1962).

5 D. F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959).

for »,>1 it is obviously wrong. Pines’ result, which is
given by [, with W(r,e)=(¢*/r)S(r) and S(r) accord-
ing to Eq. (63), is qualitatively similar to ours but
exaggerates the difference between C and Cy. Silverstein®?
has recently tried to include the second-order term in
M by an interpolation procedure similar to that used by
Nozieres and Pines® for the correlation energy. Silver-
tein expressed Co/C—1 as an integral over the momen-
tum transfer ¢, using RPA for small ¢ and unscreened
perturbation theory up to second order for large g.
His results are however more negative than the RPA
results (compare the last two columns in Table VI) even
though the second-order terms give a positive contribu-
tion to Co/C—1. This probably is due to his use of a
series expansion in ¢ for the RPA part of his integrand
rather than the complete RPA expression. Silverstein’s
result® for Xo/X minus his result for Co/C are given in
the last column of Table VII. They agree roughly with
our results from f,* without the z? factor.

Since f, gives the largest contribution to the
specific heat as well as to the paramagnetic suscepti-
bility, it is of interest to examine how sensitive the
results are to the precise form of f,V. The series
expansion of the RPA expression for e(x,0) is easily

% S. D. Silverstein, Phys. Rev. 128, 631 (1962).
5 P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958).
8 S. D. Silverstein, Phys. Rev. 130, 1703 (1963).
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TasrLe VI. Different contributions to (Co/C)— 1.

fe® fo 0 fe® fo, fe® fer fo fe® fer Jo Le®, fo
7s RPA RPA static static static static TF statics RPAP Silverstein
1 0.0489 —0.0157 —0.0127 0.0184 0.0058 0.0547 0.0495 0.0404 0.0285 0.029
2 0.0498 —0.0419 —0.0304 0.0351 0.0047 0.0545 0.0518 0.0322 0.0061 —0.039
3 0.0451 —0.0712 —0.0482 0.0477 —0.0005 0.0446 0.0493 0.0218 —0.0183 —0.080
4 0.0392 —0.1017 —0.0649 0.0576 —0.0073 0.0319 0.0460 0.0133 —0.0404 —0.125
5 0.0332 —0.1326 —0.0808 0.0657 —0.0151 0.0181 0.0429 0.0066 —0.0599 —0.179
6 0.0275 —0.1635 —0.0954 0.0726 —0.0228 0.0047 0.0396 0.0015 —0.0770 —0.232
a Including the renormalization factor 22 B
b Including the renormalization factor z.
obtained from Eq. (57), and is tion between specific heat and polarization propagator
e(k,0) =14 (/i) (1— (k2/3)— (x3/15) Wthh. was derived from Eq. (A1) in h'1s paper. Equation
535 ] 1 (1w (A1) is however not quite correct since the u factors
—(/35) =5 k[ <1 (112) should not be there.

€(1,0)=1-43.
The first two terms in €(x,0) give the TF approximation,
fe P =—N/4(>+N)); «2= sin2(6/2), (113)

while the first three terms give the same expressions as
Eq. (113) but with \ replaced by N/(1—3\). Using Eq.
(113) for f gives

Co/C=1—A=NA+3) n(\/(14+N)),
Xo/X=1—A—\2 In(\/(14-N)).

By comparing (f,,TF) and (f,"”,RPA) in Table VI
and (f,V,TF) and f.V in Table VII, we see that the
TT expression Eq. (114) gives a quile reasonable result.

Eq. (114) can also be compared with the high-
density results®s56

Co/C=1—N\—=N\/21n)\,
Xo/X=1—N—2N?/2(In\—1.534).

Thus in the high-density limit the lowest order term in
f correctly reproduces the A In\ and X terms. It may be
noted that while the HF expression for Co/C diverges,
the HF expression for Xo/X, namely, 1—X\, gives a
reasonable high-density description. Numerically the
expressions for Xo/X according to Egs. (114) and (115)
are not too different at high densities. At 7,=1 they are,
respectively, 0.888 and 0.879.

Osaka®” has recently calculated Co/C in what is stated
to be the RPA. His result is identical!® with that of Eq.
(114) when X is replaced by A/(1—\/3). He used a rela-

(114)

(115)

TasrE VII. Different contributions to Xo/X— Co/C.

7s Se) fe@ fe Ser fe), TF  Silverstein
1 —0.1686 —0.0149 —0.1835 —0.1355 —0.1617 —0.157
2 —0.2459 —0.0177 —0.2636 —0.1566 —0.2305 —0.228
3 —0.2980 —0.0070 —0.3050 —0.1494 —0.2741 —0.301
4 —0.3367 0.0141 —0.3226 —0.1347 —0.3049 —0.350
5 —0.3670 0.0431 —0.3240 —0.1176 —0.3280 —0.384
6 —0.3915 0.0784 —0.3131 —0.1004 —0.3460 —0.360

a Including the renormalization factor z2.

% M. Gell-Mann, Phys. Rev. 106, 369 (1957).
% K. Sawada, Phys. Rev. 112, 328 (1958).
57Y. Osaka, J. Phys. Soc. Japan 17, 547 (1962).

Watabe's has recently made an analysis of the in-
fluence of Coulomb correlations on metallic properties
using the Landau Fermi-liquid Theory. He approxi-
mates f by f., [cf. Egs. (104) and (105)7] neglecting
higher order terms and the 22 factor. For €(x,0), he takes
the limiting expression® for small «

e(k,0) =14+ (\y/x?) (116a)

=X/ X2 / fo(6) sinéd6.  (116b)
0

QUASIPARTICLE INTERACTION

0.05(—
8 2n/8 3n/g -
o L | I
Sn/g en/g Tn/g
rs=2,fo
-0.05—
rs=5,fo
~0.10f—
rg=2fd"
~0.15}—
rs=5,"

Fre. 11. Quasi-particle interaction. The quasi-particle inter-
action fis here defined by

dre® 1
i T @ny’ ws) z/ Joor (kK) 101 ('),

f,,., = fo—f- (feD 4 fe@) 8400 f depends only on the angle 6 between
k and Kk'. In this figure, f times sind is plotted against 6. feWisa
first-order term in W, and Joand f.® are of second order in W.

8B, (k)=

The 22 factor is not included in f

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) [English
transl.: Soviet Phys—JETP 6, 387 (1958)] S. Misawa, Progr.
Theoret. Phys. (Kyoto) 27, 240 (1962).



ONE-PARTICLE GREEN'S FUNCTION

SPECIFIC_HEAT OF AN ELECTRON GAS
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F1G. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas ([1+ (third column from the right in
Table VI)1) is plotted against 7..

Since f. depends on €(x,0) and €(x,0) depends on f,
Watabe can write down an equation for v from a self-
consistency requirement:

Y i=1—=N=2A2y In(\y/(14-Ny)) . (117)

Watabe’s expressions for Co/C—1 and X,/X—1 are the
same as those in Eq. (114) multiplied by v~ and with A
replaced by Ay. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xo=+vy. Watabe’s result
for v ranges from 1.12 to 1.32 when 7, goes from 1 to 5.
Our values for v as given by Eq. (116b) using fo, f.®
and f,® with the 32 factor agree with Watabe’s within
19,. Also Glick’s result?s for y at r,=2 agrees accurately
with Watabe’s and ours. This is a quite remarkable
coincidence, which we cannot explain.

We now make a few remarks on the analytical be-
havior of the different contributions to fso(6). f.(6)
varies between —0.25 and —0.25(\/(1+X/2)). The slope
of f.W(6) is zero at 6 and §=m. f,(f) and f.»(6) start
out with finite values at 6=0 and go to infinity at ==
as In(14cosf). The coefficients of the In term have
opposite signs and roughly the same magnitude. We
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does not
come from the logarithmic singularity in e(k,0). The
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same effect has been noted earlier in case of a dilute
TFermi gas,® and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

148> k/ke>1, 0<n:

16> k/ko>1, 0>7—n:

1>k/ko>1—39%:
oni(k,0)=0on_(k,0)=—1,

61’l+(k,0) =1
on_(k,0)=1

6—0, n—0.

The lowering in energy from f relative to the increase in
energy from E then becomes an?lny where a, the co-
efficient of the singular term in f, ranges between 0.015
and 0.038 when 7, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.

Tt should be pointed out that it is not clear if there
should be a 22 factor in f when we use an approximation
G instead of the self-consistent G. To see this we use the
results from Appendix B and write

oce

E=Zk Ce(k)+ Verr(k) ]+ AL,

Al=——Q / [6(k'; G) 4t (118)
(27[')4 o

XTr(VeffG"{“G()_IG"‘ 1— IHGQ_IG)]dk, (s) s
Go(k,e)=(e—e(k)— Ver(k))™;  e(k)=(A%2/2m).
Suppose now that we approximate G by G, in AE, which
since A is stationary might not be too serious. We then

have
7

(2m)

E=Y «k)+ Q/qb(k’;G)dk’(s). (119)

Since
8Go(k)/dnp = 2mid(k—Kk')6(e— e(k)— Vese(k))  (120)

we have that

E(k)=38E/énx=e(k)+ Mk, e(k)+ Vest(k)),

Sk K)=8E(K)/dmw =2m1 I (k,E'); (121)
e=€ = e(kp)+ Vers(kr) .
Suppose on the other hand that we start from
E(k) = e(k)+M(k,E(Kk)), (122)

where M is a functional of Go. We then have for f
FkK)=2miz I(kE'); e=€=e(kp)+Veu(kr). (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on

© See A. A. Abrikosov et al., (Ref. 2), p. 36.




A 818

which of several exact formulas we put the approxima-
tion G, in. It seems hard to resolve this ambiguity with-
out a numerical comparison with a calculation involving
some energy-dependent M in the denominator of G.

11. SUMMARY

The main results from the formal analysis are
(1) A set of self-consistent equations for the one-
electron Green’s function involving a screened potential
W (Sec. 3 and Appendix A). (2) A variational formula-
tion for each self-consistent equation (Appendix B).
(3) A specific approximation for the first-order equation.
This approximation has been named COHSEX and it
involves a “Coulomb hole” and a screened exchange
term (Sec. 4). (4) An expansion of the quasiparticle in-
teraction f(kk’) of the Landau Fermi-liquid theory in
terms of the screened potential W (Sec. 5). (5) An ex-
plicit verification that for the first- and second-order
terms in W, the quasiparticle energy E(k) and the
quasiparticle interaction f(k,k’) give the same result for
the specific heat of an electron gas (Sec. 10).

The numerical results are primarily intended to
illustrate the convergence properties of the self-
consistent equations for the Green function. Without
actually solving the self-consistency problem, we have
been able to draw some important conclusions. These
derive mainly from calculations for the electron gas but
also partly from analysis of spectral data for atoms.
Qualitative conclusions regarding the electron gas are
expected to hold also for metals. The main conclusions
are: (1) For an electron outside a closed-shell structure,
COHSEX is expected to work well (Sec. 4). (2) The
magnitude of the quasiparticle energy E(k) for an elec-
tron gas is given quite well by the first-order equation
(Sec. 8). To obtain a good representation of the k de-
pendence of E(k), we have to go to the second-order
equation (Sec. 10). (3) The expansion for the quasi-
particle interaction has much poorer convergence than
that for E(k). In particular it seems unreliable at the
alkali-metal densities (Sec. 10). (4) The k dependence of
E(k) is very small at the Fermi surface (Secs. 9 and 10).
(5) The quantitative results for f(k,k’) and k dependence
of E(k) will probably be appreciably changed by carry-
ing through a self-consistent solution. This might best
be done by parametrizing the spectral function for the
Green function and using the variational formulation.
(6) The energy-dependence of the self-energy M (k,e) is
appreciable and cannot be neglected (Sec. 9). (7) The re-
sults largely confirm the values of the correlation energy
for an electron gas obtained by Noziéres and Pines®
and by Gaskell.#* In addition we give a discussion of the
possible errors involved (Sec. 8). (8) The electron gas
does not seem to become ferromagnetic for »,<7. For
higher 7, the difference between the ferromagnetic and
paramagnetic energies is very small and no prediction
could be made (Sec. 8).
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APPENDIX A. EXPANSION OF THE SELF-ENERGY
M AND THE POLARIZATION PROPAGATOR
P IN TERMS OF THE SCREENED
INTERACTION W

The results in this Appendix up to Eq. (A25) are well
known to the “Green’s-function people”. The present
derivation, however, utilizes only the Schrodinger equa-
tion. It constitutes a “low-brow”” version of those parts
of the “high-brow”” Green’s-function theory that we need
here.

We write the Schrodinger representation of the
Hamiltonian for the system to be considered as

H=Ho+H,,

Hy= / M)
1
+5 / Y)Y (x)o(x,x ) (X)) (x)dxdx’

Ham f sw(x)dx, p)=pINX),

where % and v are defined as in Eq. (2). We use the nota-
tion (1) =2x1=(xX1,t1) = (r1,{ ,t1). The potential w(x,?) is to
be put equal to zero in the final formulas. Let the
time-evolution operator for the state vectors in the
Schrodinger representation be V (¢,') when w0, and
U (t,/') when w=0. The Schrodinger equation then gives

t

Vi) =U@Y)—1i/h / UYHYHL(HV (' F)de’ . (A2)

"
The functional derivative of V' with respect to w is

@V (1)) dw(xal)) = — (i/ %)

Xsgn(t—1)V({tt2)o(xa) V(teit'), (A3)

if ¢, is inside the time interval determined by ¢ and 7,
otherwise 8V /6w is zero. We define the Heisenberg rep-
resentation of the field operator by

¢(xyt): V(_ TO; l)l//(X)V(t, - TU) )

where T is large and positive. Schrodinger’s equation
then gives

Xyx), Ht+H, V(¢ — 1)

(A4)

(AS)
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By evaluating the commutator in Eq. (A5), we obtain

[ihf——h(x>—w<x,t>]¢<x,t>— / o W (XU, X (1) =0,
it
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(A6)

Using the facts that d6(¢)/di=6(¢) and ¢y(X)¢(x")+¢f(x)¢(x) =8(x,x’), we obtain from Eq. (A6)

[ih%—h(X)*W(X,t)]T(w(x,t)\“(X’,t’))— / o(x, X )T (" D", D9 (5,091 (x,1))dx" = ind(x,x)8(4) , (A7)

where T is the Dyson time-ordering operator. The product of four field operators in Eq. (A7) can be generated by a

functional derivative. Using Eq. (A3) we have

(6/0w@NV(To, —To) T (1Y'(2))= _%V(To; —T)TW GWE¥ (1Y (2),

(A8)

assuming 73 to be in the interval 7', —T'. We define the one-particle Green’s function by

i (N|U(=To, T)V(To, = To) TG(LY(2)) | V)

G(1,2)=——

, (A9)

h (N|U(=To, T)V(To, —To)|N)

where |N) is some state of the N-particle system with w=0. The definition Eq. (A9) coincides with Eq. (1) when
w=0, and | V) is the ground state. From Egs. (A7), (A8), and (A9) we have

t1
where

(ih—?——h(l) — V(l))G(l,Z) —ih/v(1+,3)———5—-G(1,2)d(3) =5(1,2),
d dw(3)

(A10)

(N|U(=To, T)V(To, —=To' W 3)| V)

V(1) =w(1)+ / o(1%,3)

(N|U(—=To, To)V(To, —To)| N)

d(3
COF (ALD)

1+‘—'“ (X1, tl-}—A) and ‘ZJ(1,2) =7)(X1,X2)5(t1-—t2) .

The second term in Eq. (A11) comes from the functional
derivative of the denominator in Eq. (A9). If we had
defined the Green’s function without that denominator,
we would have had (N |U(—T, To)V(To, —T)|N)
X 8(1,2) instead of 6(1,2) in Eq. (A10). That, however,
would have spoiled a simple definition of the inverse of
the Green’s function, [cf. Egs. (A14) and (A15) below ].
We note that it is important to use »(1+,3) rather than
2(1,3) in Eq. (A10) in order to correctly reproduce the
four operators in Eq. (A7). In Eq. (A11), on the other
hand, we can replace »(1%,3) by v(1,3). From Egs. (A9)
and (A11) we have

V() =w(1)—ik / 2(1,3)G(3,31d(3).  (A12)

T, is to be taken large enough so that all times of inter-
estin G(1,2) lie in the interval (—7T,, T,). Equation
(A10) can be derived from Schwinger’s dynamical prin-
ciple, cf., e.g. the first or the second paper in Ref. 2. T/e
present derivation of the basic Eq. (A10) has however the
virtue of being very elementary and fairly short.

We define the self-energy operator or mass opera-

tor M by

(ihai—h(l)— V(l))G(l,Z)

— /M(l,S)G(3,2)d(3)= 8(1,2). (A13)

From the definition of the inverse Green’s function

[easeenae=s0, @
follows the identity
G(1,2 ~1(4,5
6a__ / G 1,4)w6(5,2)d(4)d(5). (A15)
dw(3) dw(3)

Using Egs. (A10), (A13), and (A15) we can write
M as

8G1(4,2)

M@1,2)=—ih / o(1+,3)G(1,4) e

d(3)d(4). (A16)
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We define the screened interaction IV by

w(1,2)= /v(l 3)————d(3) (A17)

From Egs. (A3) and (Al1) it is easily seen that this
definition gives the same result as Eq. (9), remembering
that w has to be put equal to zero when the functional
derivative has been taken. Using Egs. (A12), (A15),
and (A17) we can write W as

W(1,2)=2v(1,2)+ik / 0(1,3)2(2,4)G(4,5)

8G1(3
XﬂG(é,él‘“)d(S)d(él)d(S)d(@. (A18)
dw(3)
Using the identity
5 V() 6
= d(2 A19
P / 2, (A19)

dw(1) 6V (2)

W can be written

W(1,2)=2(1,2)+ / W(1,3)P(3,4)0(4,2)d(3)d(4), (A20)

where
g 8G71(5,6)
]’(3,4)=ih/ G(4,5)G(6,4+)—————d(5)d(6). (A21)
V(3
Introducing the vertex function T,
I(1,2;3)= —(3G71(1,2)/6V(3))
= 8(1,2)5(1,3)+(M(1,2)/6V(3)), (A22)
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we finally obtain the following expressions for M and P:

M(1,2)=ih/W(1+,3)G(1,4)I‘(4,2;3)d(3)d(4) ,  (A23)

P(1,2)=—ik / G(2,3)G(4,2D)T(3,4; 1)d(3)d(4). (A24)

The functional derivatives of G and W can be written

5G(1,2)
=J&mmwmwmmww<ma
sV(3)
oW (1,2) 45)
/ WA WS 2) dA)d(5). (A26)
8V (3) V(3)

Equation (A25) follows immediately from Egs. (A13)
and (A22). To prove Eq. (A26) we write W in the form
W=9(1—Pv)"! and use an identity similar to that of
Eq. (A15). From Egs. (A22) io (A26) we can now gener-
ale series expansions in W.

The contribution to I' of zero order in W is

O(1,2; 3)=5(1,2)8(1,3). (A27)

The lowest order contributions to M and P are thus
M®(1,2)=ihG(1,2)W(11,2),
PO(1,2)=—ihG(1,2)G(2,1).

To obtain the first-order contribution to I' from Eq.
(A22) it is sufficient to take the functional derivative
only of the explicit G in M,

TW(1,2; 3)=14G(1,3)G(3,2)W (1+,2) .
This gives for M and P

(A28)

(A29)

M®(1,2)=(ih)? [ W(1+,3)G(1,4)G(4,3)G(3,2) W (4+,2)d(3)d(4) ,

(A30)

PW(1,2) = — (ih)? / lG(2,3)G(4,2+)W(3+,4)G(3,1)G(1,4)d(3)d(4) .

The second-order contribution to I' arises both from M@ and M ®. From M ™ we have

re’,2;3)= th(1+,2)/G(1,4)G(5,2) T'™(4,5; 3)d(4)d(5)

+ihG(1,2) / WQAHHW (5,2)(—ih)(G(5,4)G(4,3)G(3,5)"+G(5,3)G(3,4)G(4,57))d(4)d(5) ,  (A31)

and from M@

r®7(1,2; 3)=(ih)* / W)W (5+,2)(G(1,3)G(3,5)G(5,4)G(4,2)

+G(1,5)G(5,3)G(3,4)G(4,2)+G(1,5)G(5,4)G(4,3)G(3,2))d(4)d(5) -

(A32)
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The third-order contribution to I' contains 49 terms, 6
from G and 6 from W in M V| 3 from the G’s and 4 from
the W’s in M@ and 30 from the G’s in M ®.

We can obviously continue in this way and generate
as many terms as we wish. We can also generate infinite
partial summations in W. Thus if we, e.g., decide to
approximate M by M@ in Eq. (A22) and to consider
only the functional derivative of the explicit G, we ob-
tain the following integral equation for T,

I'(1,2; 3)=58(1,2)86(1,3)+ i / W(1+2)

XG(1,4)G(5,2)T'(4,5; 3)d(4)d(5). (A33)

I:q. (433) generates for P the ladder-bubble sum given in
Fq. (61). When we insert this I' into Eq. (A23) we ob-
tain for M only one diagram in each order. Thus we in-
clude the first but not the second and the third of the
third-order diagrams of Fig. 1. This does not seem to be a
systematic improvement on M. 1f at all an infinite sum-
mation should be made, a wider class of diagrams should
be included. This conclusion is supported also by our
results in Appendix B.

APPENDIX B. VARIATIONAL PRINCIPLES

We start by treating the case of an electron gas. The
results are then generalized to the case of an arbitrary
system. Klein®® has proved that when we express the
energy difference between the interacting and noninter-
acting ground states as a certain functional AE(G) of the
one-particle Green’s function G, this functional is sta-
tionary with respect to small changes of G relative to
the true G. We write AE as®!

AE(G)=i ¢ / (3(*;6)
(2m)*
+

e A Tr[ G YW(k)G(E)—1

—InG (&G (R) Yk ), (B1)

where the functional ® has the property
/6<I>(k’; G)/6G(k)dk sy=—M(k; G)eA. (B2)

Here Q is the volume of the system. The variable % in-
cludes spin, momentum and energy, while in & spin
is left out. Tr stands for spin summation. The func-
tional M (k; G) becomes the true M (k) when G equals
the true G. From Egs. (B1) and (B2) we see that the de-
mand that 6AE(G)/dG(k) be zero for all k gives

~M(k; G)+Gi (k) — G (k) =0,
or (B3)
(e—e(R)—M(k; G)G(R)=1.

% A. Klein, Phys. Rev. 121, 950 (1961).
o See P. Nozieres, (Ref. 1), pp. 221-229.
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Since Eq. (B3) is satisfied for the true G, AE is sta-
tionary. Klein expressed ® as an infinite sum of “‘skele-
ton” diagrams ordered after increasing powers of the
bare interaction v. If we replace this ® by some truncated
expression &', we obtain truncated functionals AE’ and
M’ from Egs. (B1) and (B2). The functional AE’ is
stationary if and only if G is a self-consistent solution
of Eq. (B3), M replaced by M’.

We will now develop expressions for ®, that give an
M (k; G) expanded in the screened potential W. Equation
(B3) then gives the self-consistent equations for G that
we derived in Appendix A and discussed in Sec. 3. We
start by writing down the expectation value of the poten-
tial energy, Eq. (7):

1
(Vy=—-

/ .e“AM(k)G(k)dk .
2 (24

(B4)

The Fourier transforms of M and P, Eqs. (A23) and
(A24), are

M(k)=(—i)—4 / N (R)G(E—E)T(R,E)dE, (BS)

2
P(k/):-(-zi)71 / G AGR)G—E)T(k )k, (B6)

where the vertex function I'(1,2; 3) has been regarded
as a function of x;—x; and x3—«; in taking the Fourier
transform. We note that the P(k) of Eq. (B6) has to be
integrated over spin to give the P(k) of Eq. (24). Com-
paring Egs. (B4), (B5), and (B6) we see that

i Q
(V== —

= PROW (k)R
2 (27)*

(B7)

where for P(k’) we have used a slightly modified
expression,

Py=———
(2m)*

XG(k)G(k—E)T (k%' )dE,

eisAe—ie’A'

A>A'. (BS)
We have to choose A’ smaller than A since the limit
A’ — 0is taken before A — 0in Eq. (B4). This modifica-
tion of P(k) only influences its asymptotic behavior at
large e. It corresponds to redefining the explicit G’s in
P as G*v(k)=¢e**G(k) or G"(1,2)=G(1,2%). We can
consider the G’s appearing in T' and W as so modified
without changing Eq. (B7). The expression for (V') can
be written

Q v(k) TrP(k)
Vy=— dk sy .
¥ 2(2#)4/1—~v(k)TrP(k) ko

(B9)

Equation (B9) gives a modification of the usual rela-
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tion®* between (V) and the inverse dielectric function,
the infinite constant being taken care of by the redefini-
tion of the Green function.

The energy shift AE is obtained from (V) by the well-
known expression

Lan
AE= / —(V),
0 A
where all v’s in (V) are replaced \v. If we neglect the
dependence of P we have, from Egs. (B9) and (B10),

(B10)

AE= L ——Q— In(1—v(k) TrP(k))dk .
2 (2m)t

Since the imaginary part of the dielectric function al-
ways has the same sign we have no trouble with the
branches of the logarithm. The modification of P, Eq.
(B8), occurs only when Pv is small compared to 1 and
thus has no influence in this question. By taking the
functional derivative of the ® corresponding to Eq.
(B11) we can find out what more terms are needed in &
to make it satisfy Eq. (B2). The expression for ® which
gives M up to (n+1)st order in W is

(B11)

1 n
PM(k; G)= —E{In[l—v(k) > TrP™ (k)]

m=0

FW(E) S

m=0 m+1

where W is defined from P=3_¢* P, To verify this we
form the functional derivative of Eq. (B12),

BB G) 1[0 1
/_—“dk'(s>=—/ > —
3G (k) 2J mom+1

8P (k) SW(E")
X [W(k')——mP(’")(k')
8G(k) 8G(k)

TrP(m)(k)} . (B12)

:ldle’. (B13)
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The functional derivatives of the mIW’s in Pt cancel
the last term in Eq. (B13), while the functional deriva-
tives of the 2(m-+1) explicit G’s in P give — M (m+D),
A look at the details shows that WéP©®/6G would not
have given M@ if we had had normal G’s instead of
modified G’s in P©®. We have actually checked Eq.
(B12) only for =0, 1, and 2, but from the structure of
the theory we conjecture that Eq. (B12) is valid for
arbitrary #.

There are a few comments that can be made in con-
nection with the important Eq. (B12). We note that
there is a definite coupling between P™ and M ™1, We
can thus not expand P to say first order and obtain an
equation with M also of first order. It is further not
possible to sum just the ladder bubbles of Eq. (61). This is
clear if we look at P®, Fig. 2, where there is a mutual
cancellation between the W derivatives of the first three
diagrams. Each of these gives one third the sum of the
first three diagrams in M ® Fig. 1. The last three dia-
grams in P® on the other hand cancel their W deriva-
tives individually and are in one-to-one correspondence
with the last three diagrams of M ®,

So far we only know that the ® of Eq. (B12) obeys Eq.
(B2). We have also to check that Eq. (B1) is satisfied.
It is enough to prove that AN(dAE/d\)=(V) since
AE=0 for A=0. Comparing Egs. (B12), (B9), and (B1)
we see that N(d/d\) applied on the explicit \v of the
logarithm in Eq. (B12) gives (V). The remaining \’s
appear in connection with W and G. It is easy to see by
comparing with Eq. (B13) and the discussion follow-
ing that equation that these terms vanish.

The generalization of the electron-gas results to a non-
uniform system is fairly simple. In the general case we
have to take account also of the V(x) term of Eq. (7),
which vanishes identically for an electron gas in a uni-
form positive background. Glancing at Egs. (7), (B1),
and (B12) we write

1 de de’
AE(G)=—5 [ dxdx'— —-e*Le™ AG(x,X; €)G(X',X'; € )v(x,x’)

T 2T
i

2

Here the quantities inside the trace are considered as
matrices labelled by (x,x”) where x includes position and
spin. The unperturbed state is taken with full inter-
action between electrons and nuclei. On account of the
cyclical property of a trace we can take derivatives of
the matrices as if they were scalars. The proof that Eq.
(B14) gives the correct energy shift and the correct
equation for G follows similar lines as that for the elec-
tron gas.

Equation (B14) is however rather inconvenient since
Gy is very different from G as soon as the nuclear charge
Z is larger than, say, 2. It is easy to realize that all

de de
——/—[Tr(ln(l—P(e)v)—i—W(@Z ——n—P(">(e)>:|—|—i/ —e*A Tr(Gi(e)G(e) —1—InGi1(e)G(e)). (B14)
2 n+1 2

occupied functions in G, will then be closely the same as
those of an ion with charge Z. Thus, e.g., in case of a
metal, what must become conduction electrons in G will
in Gy look like tightly bound core electrons. To improve
the situation we split the Hamiltonian into an unper-
turbed part

Ho- / P OR(Y(X)dx

+ / PIX) Vers(x,X ) (x)dxdx’, (B15)
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and a perturbation
Hx=k{-;- / PP (o (x,x W (x ) (x)dxdx’
- / Y Vs (x,X ) (x")dxdx’
+32 Zanv(Rn,Rm)} . (B16)

Vs can be chosen quite arbitrary but we may think of a
Hartree potential plus Coulomb-hole and screened-ex-
change potentials. The AE(G) corresponding to Hy of
Eq. (16) is given by Eq. (B14) plus two additional terms,
de
AE(G)= Eq. (B 14)+’L/ ‘2‘—6i€A Tr(V(ffG(E))
™

+13 ZuZw(RoR,) . (B17)
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The Gy of Eq. (B14) now of course corresponds to Eq.
(B15). It is easily checked that Eq. (B17) gives the
correct energy shift and equation for G.

The unperturbed energy corresponding to Eq. (B15)
is simply the sum of the V smallest eigenvalues of the
one-electron operator s+ Ves. While this generally is
not a good approximation of the true energy, it is on the
other hand not very far off. T%e importance of the split
into Ho+H;y lies however in the fact that Go has now be-
come quile realistic. Specifically, if we approximate G by
Gy in Eq. (B17) we find that the Ve G term cancels
against the same term in E, and that the last integral
in Eq. (B14) vanishes. The GGv term is the Coulomb
energy and the In(1—Pv) term gives in the lowest ap-
proximation the HF exchange energy. If we want, we
can gradually improve Ve to make Go more closely
like G. This is, however, only possible up to a certain
point since Vs is energy-independent.
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Cyclotron Resonance in Cadmium
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Extensive observations at 1.5°K and both 23.8 Gc/sec and 74.2 Ge/sec of cyclotron-resonance phenomena
in cadmium are reported. One group of experiments is done with the steady applied field parallel to the
sample plane (Azbel’-Kaner geometry). A large number of signals are observed, only some of which are
sufficiently reliable to identify with cyclotron masses. All the masses are plotted versus the crystallographic
orientation of the steady applied field in three of the principal planes. The reliable, well resolved signals are
identified and associated tentatively with orbits. Most of these orbits are consistent with the current model
of the Fermi surface of cadmium, but some of them require small modifications of it. These orbits are either
on the “pillow” or on the large surface associated with holes in the second band. The masses observed with
the magnetic field parallel to the sample plane are all too large to identify plausibly with the smaller pieces of
the Fermi surface such as the “butterflies” and “cigars’. It is suggested that the resonances associated
with the charge carriers of smaller mass are lost in the signals from harmonics of those of larger mass. In
another group of experiments, data have been obtained with the steady applied field normal to the sample
surface. Here signals are obtained at classical cyclotron-resonance fields equal to those observed in the
other geometry although the signals are in the anomalous-skin-effect regime and the much larger effects
associated with Doppler-shifted cyclotron resonance are at magnetic fields too high to be observed. A theoreti-
cal treatment and a discussion of the physics of these effects is given. In this geometry, a cyclotron mass of
approximately 0.22 m, is also observed. The related orbit is only tentatively identified, but it is definitely
thought to involve one of the smaller pieces of the Fermi surface.

I. INTRODUCTION

XTENSIVE observations of cyclotron resonance

in cadmium obtained by plotting the variation of
surface absorption coefficient as a function of steady
applied magnetic field are presented in this paper and
interpreted in terms of current theoretical under-
standing of the Fermi surface. The experimental results
given here extend previously reported preliminary
studies on this metal.! Data were obtained at 1.5°K

1]. K. Galt, F. R. Merritt, and P. H. Schmidt, Phys. Rev.
Letters 6, 458 (1961).

at frequencies near both 23.8 Gc¢/sec and 74.2 Ge/sec.
Most of the data were obtained at various crystallo-
graphic orientations with the steady applied magnetic
field parallel to the plane sample surface, i.e., in the
Azbel’-Kaner geometry.? From these data, plots of
cyclotron masses as a function of crystallographic
orientation were made. In addition, data have been
obtained for selected crystallographic orientations with
the steady applied field normal to the plane sample
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811 (1956) [English transl.: Soviet Phys.—JETP 3, 772 (1956)7;
J. Phys. Chem. Solids 6, 113 (1958).



