
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Permutational Grammar for free word order languages

Eeg-Olofsson, Mats; Sigurd, Bengt

2001

Document Version:
Other version

Link to publication

Citation for published version (APA):
Eeg-Olofsson, M., & Sigurd, B. (2001). Permutational Grammar for free word order languages. (pp. 15-23).
(Working papers / Lund University, Department of Linguistics, General Linguistics, Phonetics; Vol. 48).
Department of Linguistics, Lund University. https://journals.lub.lu.se/LWPL/article/view/2462/2037

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3ec5c879-3f93-4843-8b05-bbc1489f8900
https://journals.lub.lu.se/LWPL/article/view/2462/2037


Lund University, Dept. of Linguistics 1
Working Papers 48 (2001), 15–23

Permutational Grammar for free
word order languages

Mats Eeg-Olofsson and Bengt Sigurd

1 Abstract and introduction
Permutational Grammar, PG, is a grammar inspired by the Free Word Order
grammar, FOG, presented in Vladimir Pericliev & Alexander Grigorov 1992.
Some languages, notably Latin, are said to have free word order, see e.g.
Siewierska 1988. The name Permutational Grammar is derived from the use
of permutations in order to generate order variation. The general problem to
be solved by FOG and PG is the generation and analysis of a great number of
word order variants with (roughly) the same meaning. PG accomplishes this
by specifying some basic phrase structure orders with their functional (and
semantic) representations, and then permuting the corresponding sequences of
constituents to obtain all the other sequences with the same meaning.

Permutational Grammar can be regarded as a generative phrase structure
grammar with transformations represented by permutations. It is developed
from SWETRA grammar (see Sigurd 1994). The constituent parsing trees are
not represented explicitly. PG is written with generative rewrite rules and
implemented in Prolog via the Definite Clause Grammar (DCG) formalism.
The Prolog implementation used here is LPAProlog. The rules state that
permutations of the constituents to the right of the rewrite symbol have the
functional representation given as an argument to the left of the rewrite
symbol. These rewrite rules can be compiled into rules that generate all
possible permutations of the basic word order ‘on the fly’.

It is possible to apply constraints to the permutations generated. One may,
for example, introduce an order constraint like imbefore(C1,C2,M),
which states that a constituent matching the description C1 must occur
immediately before another constituent matching C2 in the list of constituents
M. Another example is last(C,M), which states that a C must occur last in
the list M.



2 MATS EEG-OLOFSSON & BENGT SIGURD

Such constraints can easily be expressed in Prolog. The order constraints
may be considered as implementations of the linear precedence (LP) rules of
Generalized Phrase Structure Grammar, see Gazdar et al. 1985. One may also
associate to the Constraint Grammar presented in Karlsson 1990.

In this paper we will only demonstrate the potential of PG for Latin and
Swedish. A detailed permutational grammar of Basque is presented in Holmer
& Sigurd in this volume.

2 Word order in Latin
The Latin sentences used traditionally to demonstrate that word order is free
are typically (cf. Pericliev & Grigorov 1992), reorderings of the following
words: Puella bona amat puerum parvum. The word order of the equivalent
English sentence, (The) good girl loves (the) poor boy, can hardly be changed
without changing at the same time the grammaticality or the meaning of the
sentence. In Latin this sentence is supposed to be changeable into e.g. Parvum
puella bona amat puerum and Amat bona puella parvum puerum. In the
grammar written by Tidner 1944 it is stated (p. 256, in translation) that word
order in Latin is generally more free than in Swedish. However, certain orders
are especially frequent according to Tidner.

1. The predicate is generally placed last in the sentence (Hannibal Alpes
transgressus est ‘Hannibal has passed the Alps’). This is confirmed by other
sources, where it is also said that a focused word, often the subject, generally
occurs first. This gives Latin a basic SOV word order.
2. An adjective is generally placed after its head (Ius civile ‘Civil law’).
3. A focused word may be placed initially and separated from its head as
shown by the following sentence where the adjective magna is separated from
its head praemia placed finally: Magna proponit iss, qui illum occiderint
praemia ‘Great rewards he proposed for those who killed this (person)’.
4. The preposition is often inserted between a determiner and its head in a
prepositional phrase: Hunc in modum ‘in this way’.

Word order in Latin was probably not as free as some have suggested on
the basis of occasional orders in poetry, but we will use an extremely free
Latin here for the sake of demonstration.

3 A toy grammar of Latin
The following pedagogical grammar constructed with the labels in Pericliev &
Grigorov uses DCG rules with a standard Prolog implementation. Given the



PERMUTATIONAL GRAMMAR FOR FREE WORD ORDER LANGUAGES 3

lexicon below, it can only generate the sentence Puella (bona) puerum
(parvum) amat with (or without) adjectives, which follows Tidner’s re-
commendation in having the verb last and the adjectives after their heads.

The labels should be easy to identify. The arrow rule states that there is a
Latin sentence pattern (ls0) where a nominative adjective (A1) occurs after a
nominative noun (N1), preceding a noun in the accusative (N2) followed by an
adjective in the accusative (A2). A verb (V) occurs last. To the left of the
rewrite symbol the corresponding functional roles of the phrases are stated
within square brackets.

Note that the terms that make up the functional representation within the
brackets are subj, pred, and obj in that standardized order. The value
(meaning) of the attribute adjective is inserted before its head in the bracket
parenthesis. The order of the attribute and the head is arbitrary in the
functional representation but standardized in SWETRA grammar. When there
is not any adjective, the lexical rules will assign the value [] (the empty list) to
the corresponding adjective variable.

ls0([subj([A1,N1]),pred(V),obj([A2,N2])]) -->
noun_nom(N1),adj_nom(A1),noun_acc(N2),adj_acc(A2),verb(V).

The following rules constitute a suitable lexicon, expressed as standard
DCG lexical rewrite rules in Prolog. The word-semantic representations are
Machinese English in order to facilitate translation between Latin and Swedish
(to be presented).

verb(m(love,pres)) --> [amat].
adj_nom(m(good,_)) --> [bona].
adj_acc(m(poor,_)) --> [parvum].
adj_nom([]) --> [].
adj_acc([]) --> [].
noun_nom(m(girl,sg)) --> [puella].
noun_acc(m(boy,sg)) --> [puerum].

When called by the command ls0(F,X,[]), Grammar ls0 can only
generate the following four sentences. The functional representation for each
sentence is given before the sentence.

[subj([m(good, _60888), m(girl, sg)]), pred(m(love, pres)),
obj([m(poor, _60816), m(boy, sg)])]

[puella, bona, puerum, parvum, amat]
[subj([m(good, _60888), m(girl, sg)]), pred(m(love, pres)),

obj([[], m(boy, sg)])]
[puella, bona, puerum, amat,]
[subj([[], m(girl, sg)]), pred(m(love, pres)), obj([m(poor,

_60234), m(boy, sg)])]
[puella, puerum, parvum, amat ]



4 MATS EEG-OLOFSSON & BENGT SIGURD

[subj([[], m(girl, sg)]), pred(m(love, pres)), obj([[], m(boy,
sg)])]

[puella, puerum, amat]

4 Permutational grammars for Latin
The first step in constructing a permutational grammar which can generate
more word orders is to place the constituent phrases in a list which can be
permuted by the predicate permute. This is done in the following rule:

lsl([subj([A1,N1]),pred(V),obj([A2,N2])]) -->
{M=[noun_nom(N1),adj_nom(A1),noun_acc(N2),adj_acc(A2),verb(V)]

, permute(M,M2)}, surf(M2).

What is written after the rewrite arrow --> within braces ({,}) states the
condition that the variable M is the list of constituents. This list is then
permuted by the standard predicate permute. The predicate surf analyses the
permuted list M2 and uses it to find surface relizations of the phrases within the
list.

One may achieve the same result by introducing a new rewrite operator
expressed by the keyword dominates. This operator has a function similar
to the standard --> rewrite arrow, but it also expresses that the order
between the daughter constituents to the right of it is arbitrary. Such
generalized rules, using extended Prolog syntax as host formalism, can then be
compiled into Prolog. The rule below uses the operator dominates:

ls1([subj([A1,N1]),pred(V),obj([A2,N2])]) dominates
noun_nom(N1), adj_nom(A1), noun_acc(N2), adj_acc(A2),
verb(V).

This rule can then be compiled into a corresponding DCG rule with
standard Prolog implementation and conditions added within curly brackets.

The Prolog code for the compiler, including the surf predicate, is specified
in the Appendix.

5 Constraints
Many languages have restrictions on the order between the subject, the object
and the finite verb, or between head nouns and their modifiers. The following
extended grammar rule states that the Latin noun_nom must occur
immediately before adj_nom. This restriction has the effect that a reduced
number of permutations is generated. Note that we have used a different order
in the basic list of daughter constituents. This has no effect on the sentences
permitted.



PERMUTATIONAL GRAMMAR FOR FREE WORD ORDER LANGUAGES 5

ls2([subj([A1,N1]),pred(V),obj([A2,N2])]) -->
{M=[adj_nom(A1),noun_nom(N1),verb(V),adj_acc(A2),

noun_acc(N2)], permute(M,M2),
imbefore(noun_nom(N1),adj_nom(A1),M2),

imbefore(noun_acc(N2),adj_acc(A2),M2)},surf(M2).

The sequence parvum puerum puella amat bona is rejected by this
grammar.

In the present framework, this can be accomplished by the introduction of
yet another operator represented by the keyword provided. This operator is
optional, but it must be followed by a list of restrictions. The following
notational variant of rule ls2 uses both the operators dominates and
provided.

ls2([subj([A1,N1]),pred(V),obj([A2,N2])]) dominates
adj_nom(A1),noun_nom(N1),verb(V),adj_acc(A2),noun_acc(N2)

provided imbefore(noun_nom(N1),adj_nom(A1)).

The following version of syntactic rule (ls2) is different as it requires both
the nominative and the accusative noun to occur before their respective
attributes. This is brought about by the added constraint

imbefore(noun_acc(N2),adj_acc(A2))

The above grammar can only generate 24 sentences.

ls2([subj([A1,N1]),pred(V),obj([A2,N2])]) dominates
adj_nom(A1),noun_nom(N1),verb(V),adj_acc(A2),noun_acc(N2)
provided imbefore(noun_nom(N1),adj_nom(A1),

imbefore(noun_acc(N2),adj_acc(A2).

The following permutational Latin grammar (ls3) extended with
adverbials can generate 5760 permutations using the additional word and
phrases mentioned below. No extra order is introduced in this extreme
grammar, which is written directly in DCG.

ls3([subj([A1,N1]),pred(V),obj([A2,N2]),advl(Av)]) -->
{M=[adj_nom(A1),noun_nom(N1),verb(V),adj_acc(A2),noun_acc(N2),
adv(Av)], permute(M,M2)}, surf(M2).

adv(m(willingly,_)) --> [libenter]. % Adverb
adv([P,[A,N]]) --> p(P),noun_acc(N),adj_acc(A). % Prep phrase
p(m(with,_)) --> [con]. % in order to match Swedish examples

The following are some (somewhat strange) examples generated by the call
ls3(F,X,[]).

F = [subj([[], m(girl, sg)]), pred(m(love, pres)), obj([[],
m(boy, sg)]), advl([m(with, _34764), [[],m(boy, sg)]])],



6 MATS EEG-OLOFSSON & BENGT SIGURD

X = [con, puerum, puerum, amat, puella]
X = [bona, puella, amat, parvum, puerum, libenter]
X = [bona, puella, amat, parvum, puerum, con, puerum]

6 A Swedish permutational grammar
For comparison, the following Swedish grammar has been developed. It has
been constructed with a view to translation between Latin and Swedish, and
allows 4032 permutations.

Swedish belongs to the V2 languages, and this characteristic has been
implemented as a condition that the second element of the permuted syntactic
sequence should be the finite verb. The code M2=[_, svfin(_) |_] states
that the second element of the list M2 must be the finite verb. We will not
explain the Prolog details any more here. Three different basic syntactic
patterns are implemented, the second pattern includes an adverbial.

A characteristic of Swedish is the so called stranded preposition, i.e. the
prepositional head of a prepositional phrase which is left alone when its object
noun phrase is moved to the front position. An example is: Flickan leker
pojken med [the girl plays the boy with] ‘The boy plays with the girl’. The
third syntactic pattern below shows how such sentences are handled, namely
by requiring that the missing (fronted) noun phrase is the same as the first
(focused) noun phrase.

ss([subj(N1),pred(V),obj(N2)]) -->
{M=[snp(N1),svfin(V),snp(N2)],

permute(M,M2), M2=[_,svfin(_)|_]}, surf(M2).
% verb second no adverbial

ss([subj(N1),pred(V),obj(N2),advl(A)]) -->
% verb second with adverbial
{M=[snp(N1),svfin(V),snp(N2),sadv(N3,A)], permute(M,M2),

M2=[_,svfin(_)|_]}, surf(M2), {A≠[P,[]]}.
% no defect pp

ss([subj(N1),pred(V),obj(N2),advl(Av)]) -->
% defective pp, prep stranded
snp(N3),svfin(V),snp(N1),snp(N2),sadv(N3,A),{A=[P,[]],Av=[P,N3

]}.
% no permutations

% noun phrase rule
snp([A,N]) --> sadj(A),snoun(N).
snp([[],N]) --> snoun(N).

% lexicon
sadj(m(good,_)) --> [god].
snoun(m(girl,sg)) --> [flicka].
sadj(m(poor,_)) --> [fattig].
snoun(m(boy,sg)) --> [pojke].
sadv(_,m(willingly,_)) --> [gärna].



PERMUTATIONAL GRAMMAR FOR FREE WORD ORDER LANGUAGES 7

sadv(N,[P,N1]) --> sp(P),snp(N1). % prep phrase
sadv(N,[P,[]]) --> sp(P). % defective pp
sp(m(with,_)) --> [med].
svfin(m(love,pres)) --> [älskar].

Using the functional representations as an interlingua, the grammars
presented allow automatic translation between Latin and Swedish.

Swedish into Latin:
ss(F,[god, flicka, älskar, gärna,fattig, pojke],

[]),ls3(F,X,[])
No.1 : F = [subj([m(good, _4962), m(girl, sg)]), pred(m(love,

pres)), obj([m(poor, _4707), m(boy, sg)]),
advl(m(willingly, _4821))], X = [bona, puella, amat,
parvum, puerum, libenter]

Latin into Swedish:
ls3(F, [puella,libenter,bona,parvum,puerum,amat], []), ss(F,

Y, [])
F = [subj([m(good, _85344), m(girl, sg)]), pred(m(love,

pres)), obj([m(poor, _85284), m(boy, sg)]),
advl(m(willingly, _85404))],

Y = [god, flicka, älskar, gärna, fattig, pojke]
Y = [gärna, älskar, god, flicka, fattig, pojke]
Y = [gärna, älskar, fattig, pojke, god, flicka]

The last sentence is incorrect if god flicka is to be the subject. This can be
remedied by requiring that the subject is either the np before the finite verb
(SV order) or the first np after the verb (VS order).

Translation of Swedish sentence with stranded preposition into Latin:

ss(F, [pojke, älskar, god, flicka, fattig, pojke, med], []),
ls3(F, X, [])

No.1 : F = [subj([m(good, _31446), m(girl, sg)]), pred(m(love,
pres)), obj([m(poor, _31350), m(boy, sg)]), advl([m(with,
_31215), [[],m(boy, sg)]])],

X = [bona, puella, amat, parvum, puerum, con, puerum] % 720
solutions

7 Conclusion
The order between the phrases representing Subject, Predicate and Object
(SVO) and between a modifier (A) and its head (N) are typological
characteristics of languages. Many languages require additional conditions, e.g.
on the place of the focused constituent. It has to be first in the sentence initially
before the finite verb in Swedish, immediately before the finite verb in Basque.
Such conditions can easily be handled by Permutational Grammar. Per-
mutational Grammar may help in discovering grammatical constraints and
typological universals.



8 MATS EEG-OLOFSSON & BENGT SIGURD

References
Gazdar G., E. Klein, G. K. Pullum & I. A. Sag. 1985. Generalized phrase

structure grammar. Oxford: Basil Blackwell.
Karlsson, F. 1990. ‘Constraint Grammar as a framework for parsing

unrestricted text’. In H. Karlgren (ed.), Proceedings of the 13th
International Conference of Computational Linguistics 3, 168-73.
Helsinki.

Pericliev, V. and A Grigorov. 1992. ‘Extending Definite Clause Grammar to
handle flexible word order’. In B. du Boulay & V. Sgurev (eds), Artificial
Intelligence V: Methodology, Systems, Applications, 161-70. Amsterdam:
North-Holland.

Siewierska, A. 1988. Word order rules. London: Croom Helm.
Sigurd, B. 1994. Computerized grammars for analysis and translation. Lund:

Lund University Press.
Tidner, E. 1944. Latinsk språklära. Uppsala: Almqvist & Wiksell.

Appendix: Prolog compilation of PG rules into Prolog via
DCG rules
% Operator declarations
:- op(1200, xfx, dominates).
:- op(1100, xfx, provided).

% Compile PG rules
translate_pg((LHS dominates RHS), Prolog_rule) :- !, % True PG

rule
translate_rhs(RHS, RHS_trans),
DCG_rule = (LHS --> RHS_trans),
translate_dcg(DCG_rule, Prolog_rule).

translate_pg(Rule, Trans) :- translate_dcg(Rule, Trans). %
Ordinary DCG rule

% Translate right hand side of true PG rule
translate_rhs((Daughters provided Restriction), % Constraints

included
( { M = Daut_list, permute(M,M2), Exprestrict }, surf(M2) ))

:- !,
commalist(Daughters, Daut_list),
translate_restriction(Restriction, Exprestrict, M2).

translate_rhs(Daughters_only, ({ M = Daut_list, permute(M,M2)
}, surf(M2))) :-
commalist(Daughters_only, Daut_list).

% Add list argument to constraint predicates
translate_restriction((R1,R2), (Expr1,Expr2), M2) :- !,

R1 =.. R1l, append(R1l, [M2], R1expl),
Expr1 =.. R1expl,
translate_restriction(R2, Expr2, M2).

translate_restriction(R, Expr, M2) :-
R =.. Rl, append(Rl, [M2], Rexpl),
Expr =.. Rexpl.



PERMUTATIONAL GRAMMAR FOR FREE WORD ORDER LANGUAGES 9

% Parsing a constituent list using difference lists
surf([], L, L).
surf([H|T], Li, Lo) :-

Goal1 =.. H, append(Goal1, [Li, L1], H1),
Goal2 =.. H1, call(Goal2),
surf(T, L1, Lo).

/* The predicate translate_dcg/2 translates DCG rules
into standard Prolog code. In many Prolog implementations
this predicate can be defined simply as a built-in predicate

called
expand_dcg/2 or the like */
% translate_dcg(Rule, Trans) :- expand_dcg(Rule, Trans).

commalist((E1,E2,Rest), [E1 | Rest1]) :- !,
commalist((E2,Rest), Rest1).

commalist((E1,E2), [E1,E2]) :- !.
commalist(E1,[E1]).

% Sample constraint predicate
% An element matching X occurs immediately before an element Y

in the list L
imbefore(X,Y,[X,Y | _]).
imbefore(X,Y,[_ | T]) :- imbefore(X,Y,T).

% Standard list permutation predicate
permute([],[]).
permute([F|R],P) :- permute(R,M), insert(F,M,P).

% Standard list insertion predicate
insert(E,L,[E|L]).
insert(E,[F|L],[F|L1]) :- insert(E,L,L1).


