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Improving OFDM:
Multistream Faster-than-Nyquist Signaling

John B. Anderson and Fredrik Rusek
Dept. of Information Technology

Lund University
Lund, Sweden

Email: {anderson,fredrikr}@it.lth.se

Abstract— Mazo’s concept of Faster Than Nyquist signaling
is extended to pulse trains that modulate adjacent subcarriers,
in a manner similar to orthogonal frequency division multiplex
(OFDM) transmission. Despite pulses that are faster than the
Nyquist limit and subcarriers that significantly overlap, the trans-
mission system achieves the isolated pulse error performance.
Systems with at least twice the spectral efficiency of OFDM can
be achieved at the same error probability. Receiver design is
challenging, and we report tests of several options.

Key Words: OFDM, Coded modulation, Mazo limit, Faster
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I. INTRODUCTION

The subject of this paper is the ultimate limits to signaling
with linear modulation. Consider baseband linear signals of
the form

s(t) =
√

Es

N∑
n=1

a[n]h(t − nT ), (1)

in which the a[n] are data values over an M -ary alphabet,
h(t) is a unit-energy baseband pulse and Es is the signal’s
average symbol energy. This simple form underlies QAM,
TCM, OFDM, and many other transmission systems. Most
often, h(t) is an orthogonal pulse, meaning that the correlation∫

h(t − nT )h∗(t − mT )dt is zero, m �= n. Many signals of
type (1) can be stacked in frequency through modulation by
a set of subcarriers {fk} to form the inphase and quadrature
(I/Q) signal

s(t) =
√

2Es/T

K∑
k=1

[
N∑

n=1

aI
k[n]h(t − nT ) cos 2π(f0 + fk)

−
N∑

n=1

aQ
k [n]h(t − nT ) sin 2π(f0 + fk)

]
(2)

This is a generalization to a superposition of 2K linear
modulations, and it carries 2NK data values. If fk = kf∆,
k = 1, 2, . . ., and f∆ is equal twice the single-sided bandwidth
B of h(t), the 2K signals are mutually orthogonal. In OFDM-
like signals both conditions hold, at least approximately: h(t)
is orthogonal to its own T -shifts and f∆ is twice the bandwidth
of h(t).

The signal design here is based on orthogonality. Accord-
ing to classical results, there exist about 2Wτ orthogonal

signals in W positive Hertz and τ seconds. By means of
filters matched to each one, data values that modulate the
amplitude of each one can be maximum-likelihood (ML)
detected independently, and therefore about 2Wτ symbols
can be transmitted. If h in (2) is set to

√
1/T sinc(t/T ) and

f∆ = 1/T , the product 2Wτ is 2(K/T )(NT ) = 2KN ;
this shows that Eq. (2) carries as many data values as any
scheme based on orthogonality can carry. For a given number
of symbols carried by (2), T may be varied, in effect trading
off N and K , that is, W and τ . Only the time–bandwidth
product matters, and (2) always carries twice Wτ symbols. In
fact there is no need for subcarriers since (1) alone achieves
2Wτ by taking T = 1/2W , K = 1 and N ≈ τ/T symbols.

If the aim is to achieve the error rate of a stacked
orthogonal-signal system (2), without necessarily using or-
thogonal signals, the story is more interesting, and that is our
subject in this paper.

Before continuing, let us be more precise about the measure-
ment of error and bandwidth. For (1), the ML error probability
depends on h: Asymptotically in the signal-to-noise ratio
Eb/N0, the probability of incorrect detection of an a[n] in
additive white Gaussian noise (AWGN) with density N0/2 is
Pe ∼ Q(

√
d2
minEb/N0), where dmin ≤ dMF. If the K signal

pairs in (2) do not overlap in frequency, the same applies there.
Here Eb is the bit energy Es/ log2 M and dMF is the matched-
filter bound. The last measures the performance of orthogonal-
pulse signaling with the same alphabet; for binary transmission
d2
MF = 2. The paper will concentrate on the binary case,

so the error rate to be achieved is Q(
√

2Eb/N0). As for
signal bandwidth, it is well known that for uncorrelated data
symbols the power spectral density Sk(f) of the kth subcarrier
is proportional to |H(f − kf∆ − f0)|2 + |H(f + kf∆ + f0)|2.
The normalized bandwidth is measured by

NBW � W

R
Hz/bit/s, (3)

where W is some measure of the positive frequency bandwidth
of the entire transmission (2) (such as 99% power bandwidth)
and R = 2K/T∆ is the data rate of the entire signal in bit/s.
For eq. (1), (3) gives a consistent measure if W is the positive
baseband bandwidth and K = 1.

The idea that more can be achieved with (1) at the same
error probability was proposed by Mazo [1] in 1975. In



a technique he called faster-than-Nyquist (FTN) signaling,
binary-modulated sinc(t/T ) pulses with bandwidth 1/2T Hz
appear once each T∆, where T∆ < T ; this is faster than
1/T , the Nyquist limit to orthogonal pulse trains with that
bandwidth. A full ML sequence detection is now required,
which in principle compares all N -symbol signals to the noisy
received signal. By finding the minimum distance dmin of this
signal set (see Section II), one can estimate the asymptotic
symbol Pe as ∼ Q(

√
d2
minEb/N0). Mazo and later papers

showed the surprising result that d2
min is in fact d2

MF = 2
for T∆/T > .802; that is, nothing is lost asymptotically by
increasing the symbol rate 24.7%.

The fundamental reason for this is that as the pulse rate
grows another signal difference (or “error event”) eventually
has a distance less than the square-distance 2 antipodal event.
A similar phenomenon occurs with other orthogonal h(t) than
the sinc pulse; see [2] for the root RC pulse. Moreover, it often
appears with both linear and nonlinear coded modulations; see
[3] for the case when h(t) is a Butterworth filter response and
[5], Chapter 6, when the coded modulation is CPM. In all these
cases, the wideband error performance is unchanged under
filtering until a surprisingly narrow bandwidth, after which
it suddenly drops. We will call this threshold bandwidth the
Mazo limit. Its significance is that there is no point transmitting
in a wider bandwidth in a linear channel with AWGN, if
sufficient receiver processing is available.

Mazo signaled too fast in time, but in a subcarrier system
one can also signal too widely in frequency. Now the signal
is (2) but the subcarriers overlap in frequency and cannot be
separated by filtering. Yet one can hope, as Mazo did, that P e

remains ∼ Q(
√

2Eb/N0). We have introduced this idea in [4].
It was called two-dimensional Mazo signaling there because
the symbols can be associated with points in a lattice spaced
every f∆ and T∆. This is illustrated in Fig. 1. Ref. [4] shows

f

t︸ ︷︷ ︸
T∆

f∆

{

Fig. 1. Two dimensional Mazo signaling, in time and frequency. Dots
represent symbols separated by f∆ and T∆.

that simultaneous frequency and time squeezing can indeed
increase the symbols transmitted in a given time–bandwidth
at the same Pe, in a way that neither compression alone can
accomplish.

At first glance it may seem that two-dimensional squeezing
can add nothing to FTN time compression, since an ordinary
OFDM system easily trades symbols per subcarrier against
the number of subcarriers. But the subcarriers in that case are
acting as independent linear modulations. With f∆ less than

the bandwidth of a subcarrier, Eq. (2) is not linear modulation.
The signal interrelations that produce dmin work in new ways
when both f∆ and T∆ can be varied independently. The plan
of the rest of the paper is to justify this by measuring distance
in Section II. It will turn out that with many subcarriers the
spectral efficiency of orthogonal-pulse OFDM can be nearly
doubled. Section III explores a receiver possibility.

II. DISTANCE UNDER TIME AND FREQUENCY

COMPRESSION

In this section we will review how to calculate the parameter
dmin and thus locate the Mazo limit; then we will look at what
happens when N and K are large. First we need to normalize
the parameters f∆ and T∆ that affect dmin and show how they
set the time–bandwidth product.

Let the normalized pulse time compression be T ′
∆ �

T∆/T ≤ 1. Let the normalized frequency compression be
f ′
∆ � f∆/(1/T ) = f ′

∆T ; this can be viewed as the com-
pression relative to sinc-modulated orthogonal subcarriers. For
a system (2) with a practical pulse h(t), the signal occupies
time NT∆ + ε and bandwidth Kf∆ + δ, where ε and δ are the
extra time and bandwidth margin that a practical pulse needs
at times 1 and N and subcarriers 1 and K . There are 2NK
data symbols, and on a per-symbol basis, the time–bandwidth
consumption is

Wτ

∣∣∣∣
symbol

≈ 1
2
f∆T∆ =

1
2
(f∆/T )(T∆T ) =

1
2
f ′
∆T ′

∆ (4)

as both N and K become large. The product f ′
∆T ′

∆ (or f∆T∆)
is the fractional reduction in time–bandwidth consumption
compared to 1/2, the least possible value for strictly orthog-
onal signaling.

The normalized distance between two signals s(1)(t) and
s(2)(t) of form (2) is

d2 =
∫
[s(1)(t) − s(2)(t)]2dt

2Eb
(5)

where Eb is the average energy per data bit. Because of the
linear form of (2), only the difference between the symbol
streams matters. We can define a matrix of I-signal differences
as

∆AI =

⎡
⎣ aI

1[1] aI
1[2] . . . aI

1[N ]
. . . . . .

aI
K [1] aI

K [2] . . . aI
K [N ]

⎤
⎦

and similarly for the Q-signal differences ∆AQ. The square
distance is then the integral of a squared signal (2) with ∆A I

and ∆AQ in place of the respective I and Q data values. For
binary signaling, the matrix components ∈ {−2, 0, +2}. An
error event is a region of nonzero components that begins at
some position (n, k). The minimum distance is the minimum
of (5) over all such events. Finding dmin is difficult but
possible. Typically, searching over regions of size 5 × 3 is
sufficient; the distance for a given event pattern depends on the
time start n, but not on the starting subcarrier k. Distance may
be computed by direct integration of the difference signal, but



a much more efficient method is based on the autocorrelations
of h(t). All of these matters, together with useful bounds on
dmin, are discussed in ref. [4].

One can compute dmin and the precise time and frequency
occupancy for N pulses and a small number of subcarriers.
This is explored in [4]. Here we concentrate on the per-
symbol time–bandwidth product (5) when N and K are large.
We search for the combination of f ′

∆ and T ′
∆ that gives

the smallest product, while attaining d2
min = 2. This gives

an ultimate time–bandwidth limit for the OFDM-like FTN
system.

Figure 2 assumes the root RC pulse with excess bandwidth
α = .3 and shows the location of the best allowed f ′

∆T ′
∆

product at the Mazo limit, as a function of the normalized
time compression T ′

∆. Explanation of the figure helps to show
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Fig. 2. Trajectories of f′
∆T ′

∆ vs. T ′
∆ over the range [.79, 1] for three families

of critical error events; root RC pulse, α = .3. The maximum of the three
curves is the least possible time–bandwidth product.

how the limit comes about. The different error events form
event families whose members, due to I/Q symmetries, lead
to identical distance behavior. There are three families that
affect the binary root RC α = .3 Mazo limit, denoted in the
figure E1, E2, E3. One of the members of E1 is for example

∆AI =

⎡
⎣ −2 0

2 −2
0 −2

⎤
⎦ ; ∆AQ =

⎡
⎣ 0 −2

2 −2
−2 0

⎤
⎦

As T ′
∆ increases, there is a least f ′

∆ that allows d2
min = 2 for

family E1; the product of this with T ′
∆ is plotted in Fig. 2. Two

other families affect the Mazo limit. The maximum of these
curves for each T ′

∆ is the minimum allowed time–bandwidth
f ′
∆T ′

∆ at the Mazo limit for this root RC case. In the figure,
the least time–bandwidth for any T ′

∆ ∈ [.79, 1] is shown by
the heavy arrow: It lies at ≈ .598 Hz-s, with time compression
T ′

∆ ≈ .875 and frequency compression f ′
∆ ≈ .683.

From the foregoing it can be seen that there is only one
free parameter, namely T ′

∆. The Mazo constraint then sets
the time–bandwidth. Almost all event families have d2 > 2
over the T ′

∆ range and do not play a role. For α = .3 it is
interesting to observe that Mazo’s original FTN limit for time
compression alone occurs at T ′

∆ = .704. For root RC pulses

with α = .1, .2, the best f ′
∆T ′

∆ product in the range [.79, 1]
is ≈ .555 and ≈ .587, respectively. RC (not root) pulses
perform similarly. Gaussian pulse behave poorly. Sinc pulses
have time–bandwidth no higher than .5, since .5 is attained
for frequency compression alone, with T ′

∆ = 1.

III. DECODING

Decoding of this type of coded modulation is complex. Full
sequence estimation grows exponentionally with the number
of subcarriers K , so MLSE decoding is ruled out. We have two
desires for the decoder. The first is to obtain close to MLSE
error performance; the second is to heavily reduce complexity.
A decoding algortihm with major complexity reduction but
only minor error loss is the so called M -algorithm, [5]. This
method was tested in [4], but it only worked well for 2–4
subcarriers, since otherwise it was not clear in what order the
symbols should be decoded.

In this paper we test an iterative method based on one di-
mensional BCJR-algorithms and soft interference cancellation
(SIC). A model is shown in Fig. 3.

β

α

r(t)
BCJR

SIC
ŝ �=k(t)

Lext(a
I/Q
k [n]

∣∣r(t))
rk(t)

Fig. 3. System model for the decoder. The block SIC produces a signal
based on estimates for all symbols except for symbols on row k. The block
BCJR is a normal BCJR algorithm.

The task of the decoder is to put out estimates of the
transmitted bits such that the a posteriori probability (APP)
of an individual bit is maximized, i.e.

â
I/Q
k [n] = arg max

a∈{−1,1}
P{âI/Q

k [n] = a | r(t)}, (6)

where r(t) is the received signal. Here and throughout, super-
script I/Q means “I respectively Q”. Instead of working with
probabilities it is convenient to work with log likelihood ratios
(LLRs) :

L(aI/Q
k [n]) =

P{aI/Q
k [n] = 1}

P{aI/Q
k [n] = 1}

(7)

Since the data symbols are independent we can as usual
express the conditional LLR L(aI/Q

k [n]|r(t)) as

L(aI/Q
k [n] | r(t)) = Lext(a

I/Q
k [n] | r(t)) + L(aI/Q

k [n]) (8)

where Lext(a
I/Q
k [n]|r(t)) denotes the extrinsic information

about a
I/Q
k [n] contained in r(t).

The true APPs of the data bits can be found by a multidi-
mensional BCJR algorithm, but as with MLSE the complexity
grows exponentially with K , and the APPs have to be approxi-
mated with reduced complexity. One way to perform this is by



an iterative method. In each iteration of the decoding process
an estimate of the signal based on all symbols except subcarrier
k is formed. This estimate, denoted ŝ �=k(t), is√

2Es

T∆

K∑
l=1,l �=k

[
N∑

n=1

bI
l [n]h(t − nT∆) cos 2π(f0 + fl)

−
N∑

n=1

bQ
l [n]h(t − nT∆) sin 2π(f0 + fl)

]

where b
I/Q
l [n] are the soft estimates of a

I/Q
l [n], i.e.

b
I/Q
l [n] = P{aI/Q

l [n] = 1} − P{aI/Q
l [n] = −1}

The tentative received signal for subcarrier k is formed as

r̂k(t) = r(t) − ŝ �=k(t)

Together with with the extrinsic information about the bits on
subcarrier k, Lext(a

I/Q
k [n]|r(t)), the signal r̂k(t) is fed to a

standard BCJR algorithm.
Note that the extrinsic information fed to the SIC and to

the BCJRs are first attenuated by coefficients α and β. What
values to use for α and β is however not clear and they have to
be determined by simulation. We have used slowly increasing
functions over the iterations for both α and β. Furthermore
we have found it beneficial to set α = 0 in the last iteration,
i.e. only account for the extrinsic information via the SIC. We
beleive that this is due to suboptimal functions for α and β.

We do not assume the Forney observation model, i.e. a
whitening filter, and instead work directly on the outputs of
the pulse-matched filter. The samples can be written as

y
I/Q
k =

∞∑
m=−∞

gma
I/Q
k [m − l] + ηm + νk

where

gm =
∫ ∞

−∞
h(t)h(t − mT∆)dt

and ηk are noise samples of a filtered AWGN process having
autocorrelation Rη(n) = 2N0gn. The term νk is noise ema-
nating from the fact that ŝ �=k(t) is not a perfect estimate. It is
usually assumed to be Gaussian. Since the BCJR requires the
noise variance as input, var(νk) is estimated as

σ2
ν =

1
N − 1

N∑
n=1

(yI/Q
n )2 − E{a2

k[m]}
∞∑

n=−∞
gn − 2N0

Since σ2
ν can be below zero, one takes max(0, σ2

ν) as estimate
of var(νk).

A BCJR algorithm for the matched filter model is derived
in [6] and has the same structure as the one for the Forney
model. We set the ISI length to 5, i.e. gm = 0, m > 6, and
treat the rest as Gaussian noise included in ηk.

Such a simple receiver seems to work well for f ′
∆T ′

∆ ≥ .7,
especially if f ′

∆ is large. We tested f ′
∆ = 1 and T ′

∆ = .7, a
product of .7, with 20 subcarriers. The receiver test is shown in
figure 4. After 10 iterations, the receiver obtained BER 10−5

5 6 7 8 9 10
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10
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10
−4

10
−3

10
−2

B
E

R

Eb/N0

Fig. 4. Receiver test. ◦ = uncoded BPSK; × = performance of the iterative
decoder after 10 iterations.

at roughly 10 dB, .5 dB from Q(
√

2Eb/N0).
For smaller products than .7 the receiver fails to work well.

In the literature decoding methods have been proposed for two
dimensional ISI problems, e.g. the multistrip method from [7].
However, we are dealing with higher order modulations and
much worse ISI. Future research will study multidimensional
reduced-complexity BCJRs which hopefully will reduce σ 2

ν in
the first iteration, and thereby push down the decodable f ′

∆T ′
∆

products to the theoretical limit.

IV. CONCLUSIONS

The concept of faster than Nyquist signaling has been
generalized to subcarrier OFDM-like systems. Much lower
frequency separation between subcarriers than the subcarrier
bandwidth can be used without loss of error probability. By
also introducing time-FTN signaling in each subcarrier the
bandwidth per data symbol can be further reduced. The time
and frequency compressions where the signal set minimum
distance first falls below 2 are called the two dimensional
Mazo limit. It turns out that even for a low number of
frequency carriers this limit is lower than the time-only Mazo
limit. With many carriers, spectral savings of at least 50% are
possible in principle. A sample decoder was tested to verify
the method.
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