
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Simulation of gain in quantum cascade lasers

Wacker, Andreas; Nelander, Rikard; Weber, Carsten

Published in:
Proceedings of SPIE, the International Society for Optical Engineering

DOI:
10.1117/12.808882

2009

Link to publication

Citation for published version (APA):
Wacker, A., Nelander, R., & Weber, C. (2009). Simulation of gain in quantum cascade lasers. In Proceedings of
SPIE, the International Society for Optical Engineering (Vol. 7230, pp. 72301A). SPIE.
https://doi.org/10.1117/12.808882

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1117/12.808882
https://portal.research.lu.se/en/publications/a7df29d9-9163-438e-b763-5d3be885616a
https://doi.org/10.1117/12.808882


Simulation of gain in quantum cascade lasers

Andreas Wacker, Rikard Nelander, and Carsten Weber

Mathematical Physics, Lund University, Box 118, 22100 Lund, Sweden

ABSTRACT

The gain profile of a quantum cascade laser is strongly influenced by the lifetime of the carriers in the upper and
lower laser state. The quantitative description of gain within the concept of nonequilibrium Green’s functions
allows for a detailed understanding of various features affecting the gain spectrum: Compensation effects between
scattering processes in the upper and lower laser level, reduction of gain due to coherences between nearly
degenerate upper laser states, and dispersive gain without inversion.

Keywords: Quantum Cascade Laser, linewidth, simulation

1. INTRODUCTION

Quantum cascade lasers (QCLs)1 are semiconductor heterostructure lasers based on optical transitions between
quantized intersubband levels in multiple quantum well structures. In these devices the inversion between the
upper and lower laser level is achieved by selective tunneling processes at operating bias. They are now applied
as sources both in the terahertz (THz) and mid-infrared regime.2, 3

An important issue is the strength and line-width of the optical transition which determines the gain prop-
erties inside the optical cavity. Conventionally, one determines the eigenstates ϕi(z) with energies Ei of the
heterostructure under an applied bias together with the electron densities ni.4, 5 Identifying the upper (i = up)
and lower laser level (i = lo), Fermi’s golden rule combined with level broadening provides the material gain:

Gsimple(ω) =
2e2|zlo,up|2ω(nup − nlo)

dcε0
√

εr

Γ
(Eup − Elo − �ω)2 + Γ2/4

(1)

where d is the period of the cascade structure, εr is the relative dielectric constant, and e the elementary
charge. Γ is the full width at half maximum (FWHM) of the gain spectrum. Typically, one assumes that
it is given by the sum of the scattering rates for both levels, i.e. Γ = Γup + Γlo. Here, Γi contains both the
intersubband scattering processes, which redistribute carriers between the subbands, and intrasubband processes,
which typically dominate. This provides four important issues for laser optimization by systematic design of the
heterostructure: (i) Maximize the inversion nup − nlo, which is proportional to the gain, by strong injection of
electrons from the injector into the upper laser state and efficient extraction from the lower state. (ii) Maximize
the dipole element zup,lo by employing a good wave function overlap between the upper and lower laser state.
(iii) Reduce the intrasubband scattering in the active region in order to reduce Γup and Γlo. (iv) Minimize the
laser period d. While these strategies are typically quite successful, there are some caveats which are discussed
here, focusing on the physics beyond this simple approach.

In this context it is important which information is provided from the modeling of the electrical transport
through the device. Standard rate equation models5 provide the carrier densities ni for each subband i and are
fully sufficient for the use of Eq. (1). More detailed Monte-Carlo schemes6 provide the occupation functions fi(k)
for the electronic states with wave-vector k in the direction parallel to the layers. The gain can be evaluated
in analogy to Eq. (1); however, gain without inversion is possible if the dipole matrix element is strongly k-
dependent and/or there is a strong nonparabolicity.7, 8 Correlations between the states ρij(k) can be treated by
density matrix schemes6, 9–11 which allow for a quantitative analysis of tunneling close to level crossings between
the injector ground state and the upper laser level.12, 13 In this context, gain without inversion is possible as
well.14 Finally, the energetically resolved density matrix, the Green’s function G<

ij(k, E) provides a detailed
description of broadening effects. It can be determined self-consistently within the concept of nonequilibrium
Green’s functions (NEGF)15, 16 for the QCL.
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2. DISPERSIVE GAIN

The NEGF model sketched in the Appendix provides the following expression for the gain, if we restrict to the
upper and lower laser level as well as diagonal parts of the stationary Green’s functions and neglect counter
rotating terms:

Gtwo level(ω) =
e2(Eup − Elo)|zlo,up|2

2cd�ε0
√

εr

2
A

∑

k

∫
dE

2π
[
�{G<

up,up(k, E + �ω)}Alo(k, E) − Aup(k, E + �ω)�{G<
lo,lo(k, E)}

] (2)

where A is the cross section. Here Ai(k, E) is the spectral function of the level, which is frequently assumed to
have the generic Lorentzian shape

Ai(k, E) ≈ Γi

(E − Ei(k))2 + Γ2
i /4

The lesser Green’s function provides the occupation of the levels and its diagonal elements can be parameterized
as

G<
ii(k, E) = ifi(k, E)Ai(k, E) ,

where 0 ≤ fi(k, E) ≤ 1 is a generalized level occupation. If we assume (i) the Lorentzian approximation
of the spectral functions, (ii) that fi(k, E) = fi(k) does not depend on E, and (iii) parabolic bands with
Ei(k) = Ei + �

2k2/2m∗ (with effective mass m∗), we obtain Eq. (1) with Γ = Γup + Γlo. Here we also used

ni =
2(for spin)

A

∑

k

fi(k) (3)

and replaced Eup − Elo by �ω, which holds at resonance.

This situation is sketched in Fig. 1(c), where the spectral functions of the upper and lower level are depicted
for a given k. The arrows depict transitions at a given frequency ω, and gain is found in a frequency region
|�ω − (Eup − Elo)| � Γ, provided the occupation fi(k) (grey-scale) is larger for the upper laser level.

However, this only holds if fi(k, E) = fi(k) is constant on the energy scale of Γi. Otherwise, fi(k, E) is
typically decreasing in energy due to coupling to a local energy bath. This situation is depicted in Fig. 1(e),
where equal total populations

∫
dEfi(k, E)Ai(k, E) = 2πfi(k) are assumed. As shown by the transition arrows,

Eq. (2) provides a dispersive structure of the gain, see Fig. 1(f), as recently observed in QCLs.18, 19 The same
effect is common for superlattices where the total occupation fi(k) is identical for all Wannier-Stark states
belonging to the lowest miniband.20

3. REDUCED WIDTH OF GAIN PEAK BY CORRELATED SCATTERING

In the derivation of Eq. (2), we restricted to the first line in Eq. (27) which is not always appropriate. As shown
in Ref. 21, inclusion of the term δΣ< for elastic scattering provides again Eq. (1) with an effective FWHM

Γeff(k) = Γup(k) + Γlo(k) − 2
Am∗

�2

∑

k′
〈V elast

up,up(k − k′)V elast
lo,lo (k′ − k)〉 (4)

This result has been obtained earlier22 as well and shows that the choice Γ = Γup + Γlo can overestimate the
linewidth.

In Fig. 2 (left panel), the gain calculated by our full NEGF model (see appendix) is shown for the QCL of
Ref. 23 by the red solid line. For comparison, the gain is evaluated by an extension of Eq. (1) taking into account
all possible transitions. Here the same densities and scattering parameters are used as for the NEGF result.
The choice Γ = Γup + Γlo (blue dotted line) provides a far too large line-width in accordance with the discussion
above. In contrast, the use of Eq. (4) overestimates the compensation effect, see the green dashed line.
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Figure 1. Density of states combined with occupation probability in grey-scale (upper panel) and gain spectrum (lower
panel) for different levels of description for the gain in a two level system: (a,b) two pure levels, (c,d) broadened levels,
and (e,f) broadened levels with energy-dependent occupations f(k, E). See also Ref. 17.

Furthermore, there is a red shift in the gain peak comparing the NEGF result with Eq. (1). This is a sign
of the dispersive gain, see also Ref. 24, as demonstrated in the right panel of Fig. 2. The calculation of Eq. (1)
provides a gain peak at the energy difference between the maxima of the spectral functions which are taken
as effective level energies. In contrast, the lesser Green’s function G<

up,up(k, E) does not follow Aup(k, E) but
has a peak at lower energies. This corresponds to an energy dependence of the effective occupation fi(k, E) as
discussed in Sec. 2. Correspondingly, the gain is enhanced for frequencies below Eup −Elo and decreased above,
which leads to the red shift observed.

4. REDUCTION OF GAIN BY COHERENCE ACROSS THE INJECTION BARRIER

A third issue is the interference with other levels. In this context, the ground state of the injector (denoted by
in) is of relevance. Its energy Ein is close to the energy of the upper laser state Eup, ensuring a fast charge
transfer to the upper laser level. While such coherences are fully treated within our Green’s function approach,
they have been neglected during the derivation of Eq. (2) and consequently also for Eq. (1). Here we give a
simplified description within density matrix theory in order to demonstrate their relevance.

The semiconductor Bloch equations26 for this three level system read

i�ρ̇up,lo(k, t) = (Eup − Elo − iΓup,lo(k)/2) ρup,lo(k, t)
−eF (t) {zin,loρup,in(k, t) − zup,inρin,lo(k, t) + zup,lo [fup(k, t) − flo(k, t)]} , (5)

i�ρ̇in,lo(k, t) = (Ein − Elo − iΓin,lo(k)/2) ρin,lo(k, t)
−eF (t) {zup,loρin,up(k, t) − zin,upρup,lo(k, t) + zin,lo [fin(k, t) − flo(k, t)]} , (6)
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Figure 2. Left: Gain spectrum calculated by the NEGF model at a bias of 46.5 mV per period for the laser of Ref. 23 at
20 K. For calculation details, see Ref. 25. Right: Spectral function Ai(k, E) and lesser Green’s function �{G<

ii(k, E)} for
the upper and lower laser level extracted for the same operation point.

where F (t) is the optical field. Now we assume that in the stationary state all nondiagonal density matrices are
vanishing small except for ρin,up(k), which describes the stationary coherence related to the tunneling processes
across the injection barrier.12, 13, 16 Within linear response, the electrical polarization is given by

P (t) = − 2e

Ad

∑

k

[zlo,upρup,lo(k, t) + zlo,inρin,lo(k, t)] + h.c. (7)

After Fourier transformation and neglecting counter-rotating terms we obtain the gain

G(ω) = − ω√
εrε0c

�
{

P (ω)
F (ω)

}

=
ωe2

2
√

εrε0c

2
Ad

∑

k

{
Γup,lo(k)

[|zup,lo|2 (fup(k) − flo(k)) + �{zlo,upzin,loρup,in(k)}]

(Eup − Elo − �ω)2 + Γ2
up,lo(k)/4

+
Γin,lo(k)

[|zin,lo|2 (fin(k) − flo(k)) + �{zlo,inzup,loρin,up(k)}]

(Ein − Elo − �ω)2 + Γ2
in,lo(k)/4

}
(8)

If the contribution of the injector state is negligible, this reproduces Eq. (1). On the other hand, at an ideal
level crossing, Ein ≈ Eup and ϕup/in(z) = [ϕleft(z) ± ϕright(z)]/

√
2, where ϕleft/right(z) are localized on the

left/right-hand side of the injection barrier. This implies zlo,up ≈ −zlo,in and Γup,lo ≈ Γin,lo and we obtain:

G(ω) =
ωe2|zup,lo|2

2
√

εrε0c

2
Ad

∑

k

Γup,lo(k)
(Eup − Elo − �ω)2 + Γ2

lo,up(k)/4
[fup(k) + fin(k) − 2flo(k) − 2�{ρin,up(k)}] (9)

Thus, the gain is reduced by the presence of coherence between the injector and upper laser level. This becomes
pronounced for thicker injection barriers, where the strong coherence ρin,up(k) ≈ fup(k) ≈ fin(k) shows that the
delocalized eigenstates do not satisfactorily represent the carrier distribution, which is localized on the left-hand
side of the injection barrier. As an example, this effect is demonstrated within our density matrix model13 for
the QCL structure of Fig. 3(left), where we consider different widths of the injection barrier b. While the carrier
occupations do not change much with the width of the injector barrier under resonance conditions (right part of
Fig. 3), the gain is strongly suppressed for a thick injection barrier and even vanishes albeit the occupations of
the upper laser level and the injector level remain large (Fig. 4).

5. CONCLUSION

While an estimate of the gain peak by the Lorentzian approximation (1) is often helpful for a simple analysis,
there are several features not contained in this pictures. Dispersive gain can provide an effective red shift of
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the gain peak and yield gain when no population inversion is present. The width of the gain peak is generally
overestimated if one simply adds the scattering rates of the upper and lower laser level. Furthermore, coherent
superpositions of eigenstates can lead to strong modifications in the gain spectrum. All these features are fully
contained in a simulation by nonequilibrium Green’s functions.

APPENDIX A. FULL THEORY BY GREEN FUNCTIONS

Within our Green’s function approach, we consider a Hamiltonian

Ĥ =
∑

α,β,k

Uα,β(k)a†
α(k)aβ(k)

︸ ︷︷ ︸
Ĥ0

+Ĥscatt (10)

where the indices α, β denote a set of orthonormal basis states Ψα(z) together with plane waves ei(kxx+kyy)/
√

A.
Ĥscatt contains, in contrast to Ĥ0, elements which are nondiagonal in k, i.e. break the translational invariance.
This term will be treated perturbatively using self-energies Σ. We assume

Uαβ(k) = Uαβ + Ekδαβ

where Ek = �
2k2/2m∗ is the corresponding lateral kinetic energy, assuming a constant effective mass m∗ in

the in-plane direction (neglecting non-parabolicity and non-separability). Uα,β contains the kinetic energy, the
heterostructure potential and the electrical potential due to a constant external field F (in z-direction).

We apply the formalism of nonequilibrium Green’s functions28 and define the correlation function (or ’lesser’
Green’s function)

G<
α1,α2

(k; t1, t2) = i〈â†
α2

(k, t2)âα1(k, t1)〉 (11)

and the retarded and advanced Green’s functions

Gret
α1,α2

(k; t1, t2) = −iΘ(t1 − t2)〈
{
âα1(k, t1), â†

α2
(k, t2)

}〉 (12)

Gadv
α1,α2

(k; t1, t2) = iΘ(t2 − t1)〈
{
âα1(k, t1), â†

α2
(k, t2)

}〉 =
[
Gret

α2,α1
(k, t2, t1)

]∗ (13)

respectively, where {â, b̂} = âb̂ + b̂â denotes the anti-commutator which is appropriate for fermion operators aα

considered here.

A.1 Stationary state and transport

We consider a stationary state without any time dependence of the external potential. Then, all functions depend
only on the time difference t1 − t2, and it is convenient to work in Fourier space defined by

Fα1,α2(k, E) =
1
�

∫
dt eiEt/�Fα1,α2(k; t + t2, t2) (14)

Fα1,α2(k; t1, t2) =
1
2π

∫
dE e−iE(t1−t2)/�Fα1,α2(k, E) (15)

both for the self-energies and the Green’s functions. Then one obtains the following matrix equations for the
Green’s functions, see also chapter 4 of Ref. 29: The Dyson equation

EGret/adv
α1,α2

(k, E) −
∑

β

(
Uα1,β(k) + Σret/adv

α1,β (k, E)
)

G
ret/adv
β,α2

(k, E) = δα1,α2 (16)

and the Keldysh relation

G<
α1,α2

(k, E) =
∑

β,β′
Gret

α1,β(k, E)Σ<
β,β′(k, E)Gadv

β′,α2
(k, E) . (17)
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The lesser Green’s function is related to the density matrix via

ραβ(k, t) = 〈â†
β(k, t)âα(k, t)〉 = −i

∫
dE

2π
G<

α,β(k, E) (18)

so that it can be viewed as an energy-resolved density matrix. The electron charge density can be evaluated by

ρel(z) =
−2(for Spin)e

A

∑

αβ

∑

k

ραβ(k)Ψ∗
β(z)Ψα(z) (19)

The mean field potential φMF(z) is obtained from the Poisson equation taking into account the doping density
and the electron density together with periodic boundary conditions φMF(z + d) = φMF(z). This mean field
potential induces a new part in the Hamiltonian with matrix elements

UMF
αβ = −e

∫
dzΨ∗

α(z)φMF(z)Ψβ(z) . (20)

The current is evaluated by considering the temporal evolution of 〈ẑ〉, providing

J = − e

V
〈ż〉 = − e

V

〈
i
�
[Ĥ0, ẑ]

〉

︸ ︷︷ ︸
=J0

− e

V

〈
i
�
[Ĥscatt, ẑ]

〉

︸ ︷︷ ︸
=Jscatt

, (21)

where the scattering current vanishes, if one takes into account the full matrix structure of the self-energies16 in
contrast to earlier work.15 For an arbitrary choice of the basis, we may write

J0(t) =
−2(for Spin)e

V

i
�

∑

k

∑

βα

Wβ,αραβ(k, t) where Wβ,α =
∑

γ

Uβγzγα − zβγUγα . (22)

The approximations occur in the evaluation of the self-energies, where we apply the self-consistent Born
approximation, which reads for elastic scattering processes

Σ</ret
αα′ (k, E) =

∑

ββ′

∑

k′
〈V elast

αβ (k − k′)V elast
β′α′ (k′ − k)〉G</ret

ββ′ (k′, E) (23)

In order to reduce the computational demand, we use a constant scattering matrix element providing self-energies
which do not depend on k in our numerical calculations. The phonon self-energies have a similar matrix structure,
but couple between different energies, see Refs. 15, 29 for details. Our program iteratively solves Eqs. (16,17)
and Eq. (23) together with the phonon self-energies until self-consistency is reached and the current is calculated
by Eq. (22).

A.2 Gain

Now we consider the additional potentials due to a time-dependent electric field

δUαβ(t) =
∫

dω

2π
eδF (ω)zαβe−iωt (24)

which describes the optical field in the dipole approximation.

Due to the time dependence of the external field, the Green’s functions δG(t1, t2) exhibit an explicit time
dependence in both arguments. This two-time structure is fully taken into account by applying the Fourier
decomposition in both times via

δG(k, t1, t2) =
∫

dω

2π
e−iωt1

∫
dE

2π
δG(k, ω, E)k, e−iE(t1−t2)/� . (25)
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The same decomposition is used for δΣ. Then we find within linear response:20

δGret/adv(k, ω, E) = G̃ret/adv(k, E + �ω)
[
δU(ω) + δΣΣΣret/adv(k, ω, E)

]
G̃ret/adv(k, E) (26)

δG<(k, ω, E) = G̃ret(k, E + �ω)δU(ω)G̃<(k, E) + G̃<(k, E + �ω)δU(ω)G̃adv(k, E)
+G̃ret(k, E + �ω)δΣΣΣret(k, ω, E)G̃<(k, E) + G̃ret(k, E + �ω)δΣΣΣ<(k, ω, E)G̃adv(k, E)
+G̃<(k, E + �ω)δΣΣΣadv(k, ω, E)G̃adv(k, E) , (27)

where G̃ denotes the stationary Green’s functions of the self-consistent calculations described above. The changes
in the self-energies δΣ(k, ω, E) = FE {δGret(k, ω, E′), δG<(k, ω, E′)} are given by the same functionals as the
self-energies Σ(k, E) = FE {Gret(k, E′), G<(k, E′)} within the Born approximation, which is linear in G. They
have to be determined self-consistently with the functions δG, which requires an additional iterative loop.

In addition to the scattering processes, the change in the mean-field δUMF can also be taken into account.
This is just the Hartree term of the self-energy

δΣret(ω, E) = δΣadv(ω, E) = δUMF(ω) and δΣ<(ω, E) = 0

The physical meaning of δUMF is the depolarization shift. δUMF(ω) is determined in analogy to the stationary
mean field potential.

The current is evaluated in linear response from Eq. (22), yielding

δJ0(ω) = −2e

V

i
�

∑

k

∑

βα

Wβ,αδραβ(k, ω) (28)

where
δραβ(k, ω) = −i

∫
dE

2π
δG<

α,β(k, ω, E) (29)

The complex conductivity reads σ(ω) = δ〈J0〉(ω)
δF (ω) and the material gain is finally given by

G(ω) = −�{σ(ω)}
cε0

√
εr

which is the main result and used for our numerical calculations.

If we consider energy eigenstates α and restrict to the upper and lower laser level in Eq. (28), we obtain

G(ω) =
2e

cAd�ε0
√

εrδF (ω)

∑

k

�{iWlo,upδρup,lo(k, ω) + iWup,loδρlo,up(k, ω)} .

Restricting to the first line in (27) and assuming diagonal stationary Green’s functions G̃, the δρup,lo term
provides

G(ω) =
e2(Elo − Eup)|zlo,up|2

cd�ε0
√

εr

2
A

∑

k

∫
dE

2π
�

{
G̃ret

up,up(k, E + �ω)G̃<
lo,lo(k, E) + G̃<

up,up(k, E + �ω)G̃adv
lo,lo(k, E)

}

The δρlo,up term has a corresponding structure, but here the peaks of G̃ret
lo,lo(k, E +�ω) and G̃<

up,up(k, E) coincide
only for negative frequencies (counter rotating terms). Neglecting this part and using �{G̃<

α,α(k, E)} = 0 and

the spectral function Aα(k, E) = ∓2�{G̃ret/adv
α,α (k, E)}, we find Eq. (2).
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matrix theory of transport and gain in quantum cascade lasers in a magnetic field,” Phys. Rev. B 76, 165310
(2007).

[12] Callebaut, H. and Hu, Q., “Importance of coherence for electron transport in terahertz quantum cascade
lasers,” J. Appl. Phys. 98, 104505 (2005).

[13] Weber, C., Wacker, A., and Knorr, A., “Density-matrix theory of the optical dynamics and transport in
quantum cascade structures: The role of coherence,” arXiv:0811.3736 (2008).

[14] Waldmueller, I., Chow, W., Gin, A., Young, E., and Wanke, M., “Gain without inversion: An approach for
THz quantum cascade laser?,” IEEE 20th International Semiconductor Laser Conference, 2006. Conference
Digest. 2006, 41 (2006).

[15] Lee, S.-C. and Wacker, A., “Nonequilibrium Green’s function theory for transport and gain properties of
quantum cascade structures,” Phys. Rev. B 66, 245314 (2002).

[16] Lee, S.-C., Banit, F., Woerner, M., and Wacker, A., “Quantum mechanical wavepacket transport in quantum
cascade laser structures,” Phys. Rev. B 73, 245320 (2006).

[17] Wacker, A., “Lasers: Coexistence of gain and absorption,” Nature Physics 3, 298 (2007).
[18] Terazzi, R., Gresch, T., Giovannini, M., Hoyler, N., Sekine, N., and Faist, J., “Bloch gain in quantum

cascade lasers,” Nature Physics 3, 329 (2007).
[19] Revin, D. G., Soulby, M. R., Cockburn, J. W., Yang, Q., Manz, C., and Wagner, J., “Dispersive gain and

loss in midinfrared quantum cascade laser,” Appl. Phys. Lett. 92, 081110 (2008).
[20] Wacker, A., “Gain in quantum cascade lasers and superlattices: A quantum transport theory,”

Phys. Rev. B 66, 085326 (2002).
[21] Banit, F., Lee, S.-C., Knorr, A., and Wacker, A., “Self-consistent theory of the gain linewidth for quantum

cascade lasers,” Appl. Phys. Lett. 86, 41108 (2005).
[22] Ando, T., “Line width of inter-subband absorption in inversion layers: Scattering from charged ions,” J.

Phys. Soc. of Japan 54, 2671 (1985).
[23] Kumar, S., Williams, B. S., Hu, Q., and Reno, J. L., “1.9 THz quantum-cascade lasers with one-well

injector,” Appl. Phys. Lett. 88, 121123 (2006).
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