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Abstract—Using antenna arrays for direction of arrival (DoA)
estimation and source localization is a well-researched topic. In
this paper, we analyze virtual antenna arrays for DoA estimation
where the antenna array geometry is acquired using data
from a low-cost inertial measurement unit (IMU). Performance
evaluation of an unaided inertial navigation system with respect
to individual IMU sensor noise parameters is provided using a
state space based extended Kalman filter. Secondly, using Monte
Carlo simulations, DoA estimation performance of random 3-D
antenna arrays is evaluated by computing Cramér-Rao lower
bound values for a single plane wave source located in the far
field of the array. Results in the paper suggest that larger antenna
arrays can provide significant gain in DoA estimation accuracy,
but, noise in the rate gyroscope measurements proves to be a
limiting factor when making virtual antenna arrays for DoA
estimation and source localization using single antenna devices.

Index Terms—Virtual Antenna Array, Localization, Inertial
Measurement Unit, Unaided Inertial Navigation System, Direc-
tion of Arrival, Angle of Arrival

I. INTRODUCTION

Direction of arrival (DoA) information at an antenna array
of a mobile station is very useful for positioning purposes.
DoA information can be directly used for triangulation to
find the position of the mobile station in a given frame of
reference. In [1], a random 3-D antenna array is used for
DoA estimation, where, a virtual antenna array is formed by
moving a single receive antenna in 3-D and estimating the
antenna position coordinates from inertial measurement unit
(IMU) measurements. Furthermore, in [2], [3], the effect of
IMU sensor noise on the allowable time-duration of the virtual
antenna trajectory, and consequently, on DoA estimation is
provided. It has been shown that the length of the virtual
antenna arrays is limited by the growing standard deviation of
the antenna position errors. For an unaided inertial navigation
system the standard deviation of the position estimation error
grows over time if there is not any periodic correction made
to the estimated position. However, the estimated position
with small to moderately large position errors can be obtained
for small integration times for which the uncertainty of the
estimated position remains within a specified limit [2], [4].

Several authors have made contributions in the literature for
DoA estimation with antenna arrays having antenna position
perturbations. In [5], the authors have provided a discussion
on the optimality of a delay-and-sum beamformer for antenna
arrays with random antenna position perturbations. If the
antenna position errors are assumed to be random at different
antenna positions, their influence can be considered as if the

signal to noise ratio (SNR) of the received radio signal is
decreased. It has been shown that, for small to moderately
large errors, conventional delay-and-sum beamforming would
be optimal to estimate DoA of a single source located in the far
field of the array. In [6], [7], [8], the authors have considered
a scenario where more than one source is present transmitting
the radio signal and the array is perturbed with small to
moderately large antenna position errors. In those references,
the authors have suggested that antenna array calibration and
DoA estimation can be performed simultaneously with some
underlying assumptions to fulfill the identifiability criterion for
the joint estimation of antenna position errors and DoA of the
incoming radio signal.

Our first main contribution in this paper is to investigate
the effect of each individual IMU noise source on the per-
formance of an unaided inertial navigation system. For this
purpose, using the extended Kalman filter (EKF) that has been
formulated in [2], we provide a detailed study of the effect
of individual IMU noise sources on the unaided navigation
system performance. Acceleration and rate gyroscope mea-
surements from the IMU are used allowing six degrees of
freedom inertial navigation system. In [9], the authors have
analyzed mean drift in the static IMU position using Monte
Carlo simulations where the IMU was considered static and
stochastic errors in the IMU data are used as measurements
from the IMU. Another approach in the literature is to derive
complex analytical expressions to determine the effect of IMU
noise sources on the navigation system performance [4]. We
provide a direct and simple approach to analyze the results
of position estimation error standard deviation vs. time of
an unaided inertial navigation system w.r.t the different IMU
sensor noise parameters using an EKF.

It is also of interest to study how the DoA estimation or
source localization problem is affected by the shape of a virtual
antenna array. In this regard, our second contribution is to
provide a detailed Cramér-Rao lower bound (CRLB)-based
study of DoA estimation from random 3-D antenna arrays
assuming perfect knowledge of the antenna elements. We
provide mean standard deviation of the DoA estimation error
for random 3-D antenna arrays using Monte Carlo simulations.
Different SNR values and different array lengths in terms of
allowed time-duration for making virtual antenna arrays are
considered for the simulations.

Our idea is to to make virtual antenna array where the
antenna location is tracked using IMU measurements of accel-



eration and angular speed for short integration times; and then
doing DoA estimation for positioning and source localization
purposes. The paper discusses fundamental limitations of this
technique and brief results about the achievable accuracy of
DoA estimation using such antenna arrays are provided. The
results from the first part of the study helps us to identify
the allowed time-duration for making the virtual antenna array
using the IMU measurements. While, the second part discusses
about the mean DoA estimation performance that can be
achieved using random 3-D antenna arrays if a single source
is present in the far field.

The paper is organized as follows. Section II demonstrates
how the IMU data is simulated for random trajectories in 3-D.
The effect of IMU measurement noise on the unaided inertial
navigation system performance is determined in Section III. A
brief description on the use of CRLB followed by Monte Carlo
simulation results for DoA estimation are given in Section IV.
Finally, a summary of results, and conclusion are given in
Section V.

II. IMU DATA GENERATION

Using the Singer motion model, which can be used to model
maneuvering of a moving object having time correlated accel-
eration, a random trajectory can be made in 3-D as described
in [2], [10], [11]. With the Singer model, acceleration and
rotation rate data samples are generated with a first-order
Gauss-Markov process. The discrete-time equivalent for the
acceleration data samples is given as [10], [11]

ak+1=adak + bdνak , (1)

where ak ∈ R3 is the acceleration at time index k,
ad=e

−Ts
τa , bd=

∫ Ts
0
e−

t
τa dt, νak is white Gaussian noise at

time index k, Ts is the sample time, and τa is the maneuver
time constant. The variance of the moving object’s acceleration
σ2
acc can be defined as [10]

σ2
acc =

a2max

3
(1 + 4Pmax − P0), (2)

where amax is the maximum acceleration during object’s
maneuver; Pmax and P0 model the probability of having max-
imum acceleration and zero acceleration during the maneuver.
σ2
νa , the variance of the white Gaussian noise process that

drives the Gauss-Markov process in (1) is computed as

σ2
νa =

1− a2d
b2d

σ2
acc. (3)

Similarly, rotation rate data samples are generated as well
using the Singer model.

A. Random 3-D Antenna Array Coordinates

Using the Singer model, acceleration and rotation rate data
is generated for each of the three coordinate axis. For a
typical movement by holding an IMU in hand (e.g. a smart
phone equipped with an IMU and a single antenna receiver),
values of the different parameters in the Singer model are
set as τa=2.5 s, amax=1m/s2, P0=0.99, and Pmax=0.01.

For rotation rate data, the maximum angular speed is set
as wmax=600 deg/s while the remaining parameters are the
same as are used for the acceleration data. Similar parameter
settings for each of the three coordinate axis are used for
the acceleration as well as for the angular speed. A sample
realization of the simulated acceleration during 10 seconds is
shown in Fig. 1 for each of the three coordinate axes. Simple
double integration of the acceleration along each of these three
coordinate axes provides the position displacement in each
axis as shown in Fig. 2. A 3-D plot of the same position
displacement data is shown in Fig. 3, where the origin is
defined at the center of gravity of the array.

III. IMU SENSOR NOISE AND INERTIAL NAVIGATION
SYSTEM SIMULATION

For a low cost MEMS based IMU, white Gaussian noise
and bias instability in the IMU measurements are the main
sources of errors in the position estimates in an unaided
inertial navigation system for short integration times [2]. These
stochastic errors are typically quantified using Allan variance
analysis [12], [13]. Using static IMU data as shown in [2], their
numerical values are calculated and are given in Table I. The
IMU used in the measurements is a Phidget-1044 which is a
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Fig. 1. Example plot of acceleration data in Cartesian coordinates using the
Singer model.
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Fig. 2. Position displacement calculated by double integration of the
acceleration data shown in Fig. 1.



low cost MEMS based IMU and it provides 3-axis acceleration
and rotation rate measurements [14].

TABLE I
NOISE PARAMETERS FOR ACCELEROMETER AND GYROSCOPE [2]

VRW / ARW Bias Instability

Accelerometer 5.86×10−4 m/s/
√

s 2.85×10−4 m/s2(at 115 s)
Gyroscope 1.63×10−2 deg /

√
s 7.5×10−3 deg /s(at 115 s)

The sensor noise parameters in Table I are used as nominal
noise parameters to simulate noise in the acceleration and
rotation rate data samples in the following subsections. Using
the state space model in the EKF, antenna position coordinates
are estimated along-with other parameters in the state vector.
After each iteration of the EKF, the estimation error covariance
matrix is also obtained for the parameters in the state vector.
Position estimation error standard deviation results from the
EKF are then used to investigate the effects of stochastic errors
in the accelerometer and rate gyroscope measurements, as
given in the following sections III-A, III-B and III-C.

A. Accelerometer Noise

In order to investigate the effect of accelerometer noise on
the position estimation error, it is assumed that the device’s
initial orientation is known and that there is no noise in the
gyroscope measurements.

1) Velocity Random Walk (VRW): By using the nominal
value of the VRW noise parameter given in Table I and setting
the bias instability noise in the accelerometer measurements
to zero, the state vector is estimated from the EKF along-
with the estimation error covariance matrix. Fig. 4 shows the
standard deviation of the position estimation error vs. time
for each of the three coordinate axes. It can be noted from
the plots that all of the three coordinate axes overlap each
other. This suggests that if the accelerometer white Gaussian
noise is the only noise source in the IMU measurements, then
similar position estimation error will be observed for each of
the three coordinate axes. Furthermore, by changing the VRW
noise parameter to twice and half of the nominal value, the
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Fig. 3. Trajectory from position estimates shown in Fig. 2 plotted in 3-D.
Origin is defined at the center of gravity of the array.

position estimation error standard deviation results from the
EKF are obtained as shown in Fig. 4. These results indicate
that the standard deviation of the position estimation error is
directly proportional to the VRW noise parameter.

2) Acceleration Bias Drift: By using the nominal value
of the bias instability noise parameter for the accelerometer
measurements given in Table I and setting the VRW noise
parameter to zero, the state vector is estimated from the
EKF along-with the estimation error covariance matrix. Fig. 5
shows the standard deviation of the position estimation error
vs. time for each of the three coordinate axes. The plots
show that the position estimation error for the three coordinate
axes is different in each axis. Due to the fact that the bias
drift is a time correlated process and it is independent in
each axis, different position estimation error standard deviation
results are observed for each axis. Further, by varying the
standard deviation of the white Gaussian noise that drives
the accelerometer bias drift process, results for the standard
deviation of the position estimation error are also obtained
from the EKF as shown in Fig. 5. These results illustrate
that the standard deviation of the position estimation error is
directly proportional to the bias instability noise parameters.

3) VRW and Acceleration Bias Drift: By using the nominal
values of the VRW and bias instability noise parameters for
the accelerometer measurements given in Table I, the state
vector is estimated from the EKF along-with the estimation
error covariance matrix. Fig. 6 shows the standard deviation
of the position estimation error vs. time for each of the three
coordinate axes. From the plot it can be noted that the VRW is
the dominant error source as compared to the acceleration bias
drift in unaided inertial navigation system for short integration
times of about 4-6 s.

B. Gyroscope Noise

In order to investigate the effect of gyroscope noise on
the position estimation error, it is assumed that the device’s
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initial orientation is known and that there is no noise in the
accelerometer measurements.

1) Angle Random Walk: By using the nominal value of
the ARW noise parameter given in Table I and setting the
bias instability noise in the gyroscope measurements to zero,
the state vector is estimated from the EKF along-with the
estimation error covariance matrix. Fig. 7 shows the standard
deviation of the position estimation error vs. time for each of
the three coordinate axes. From the plot, it can be observed
that the estimation error standard deviations in the horizontal
axes are larger as compared to the vertical axis. Any tilt
error ζ in the orientation estimate of the IMU projects the
gravity acceleration incorrectly onto the horizontal axes and
vertical axis. The component of gravity acceleration onto the
horizontal axes is projected as g sin(ζ), while the component
that is projected onto the vertical axis is g(1− cos(ζ)). Using
small angle approximation, sin(ζ) ≈ ζ and cos(ζ) ≈ 1, which
means that the residual acceleration due to gravity along the
horizontal axes is larger as compared to the vertical axis. This
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Fig. 5. Plot of the standard deviation of the position estimation error for the
three coordinate axes vs. time with bias instability noise only. Bias instability
noise parameter is also changed from the nominal value given in Table I to
study its effect onto the navigation system performance.
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Fig. 6. VRW and bias instability noise in the accelerometer measurements
is considered using nominal values as given in Table I. Plot of the standard
deviation of the position estimation error for the three coordinate axes vs.
time with accelerometer noise only.

leads to larger position estimation errors along the horizontal
axes as compared to the vertical axis. Similar results can
be found in [9]. Furthermore, by changing the ARW noise
parameter to twice and half of the nominal value, the position
estimation error standard deviation results from the EKF are
obtained as shown in Fig. 7. These results indicate that the
standard deviation of the position estimation error is directly
proportional to the ARW noise parameter.

2) Rotation Rate Bias Drift: By using the nominal value
of the bias instability noise parameter for the gyroscope
measurements given in Table I and setting the ARW noise
parameter to zero, the state vector is estimated from the
EKF along-with the estimation error covariance matrix. Fig. 8
shows the standard deviation of the position estimation error
vs. time for each of the three coordinate axes. Due to the
bias drift, tilt errors result in the orientation estimate and
consequently residual accelerations due to gravity in each of
the coordinate axes. Fig. 8 shows that the position estimation
error standard deviations in the horizontal axes are also larger
as compared to the vertical axis due to the bias drift in the
gyroscope measurements. The explanation is similar as given
in Section III-B1. Further, by varying the standard deviation
of the white Gaussian noise that drives the gyroscope bias
drift process, results for the standard deviation of the position
estimation error are also obtained from the EKF as shown
in Fig. 8. These results indicate that the standard deviation
of the position estimation error is directly proportional to the
bias instability noise parameters.

3) ARW and Rotation Rate Bias Drift: By using the nom-
inal values of the ARW and bias instability noise parameters
for the gyroscope measurements given in Table I, the state
vector is estimated from the EKF along-with the estimation
error covariance matrix. Fig. 9 shows the standard deviation
of the position estimation error vs. time for each of the three
coordinate axes. From the plot it can be noted that the ARW is
the dominant error source as compared to the gyroscope bias
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drift in unaided inertial navigation system for short integration
times of about 4-6 s.

C. Both Accelerometer and Gyroscope Noises

By using the nominal values of the accelerometer and the
gyroscope noise parameters given in Table I, the state vector
is estimated from the EKF along-with the estimation error
covariance matrix. Fig. 10 shows the standard deviation of
the position estimation error vs. time for each of the three
coordinate axes. The plot shows how the standard deviation of
the position estimation error grows over time for an unaided
inertial navigation system. It can be noted that the noise in
the gyroscope measurements or more specifically the white
Gaussian noise or ARW in the rate gyroscope measurements
is the dominant error source in unaided inertial navigation
systems for short integration times of about 4-6 s.

IV. DOA ESTIMATION USING MONTE CARLO
SIMULATIONS

Using a minimum variance unbiased estimator, the direction
of arrival estimate of an incoming radio signal received at an
antenna array will be an optimal estimate in the maximum
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Fig. 8. Plot of the standard deviation of the position estimation error for the
three coordinate axes vs. time with bias instability noise. The bias instability
noise parameter is also changed from the nominal value given in Table I to
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Fig. 9. Plot of the standard deviation of the position estimation error for
the three coordinate axes vs. time with gyroscope noise only when ARW and
bias instability noise in the gyroscope measurements is considered.

likelihood sense. The CRLB provides us such lower bound on
the minimum variance that can be achieved with a maximum
likelihood estimator. We will use the same formulation as in
[2] to calculate the CRLB for a random antenna array of N
isotropic antenna elements whose locations are known and are
placed randomly in 3-D. In the calculations, the radio signal
carrier frequency is set to 2.4 GHz.

Monte Carlo simulation results are used to analyze the
performance of random antenna arrays in 3-D for DoA estima-
tion. Firstly, this section provides a brief illustration of DoA
estimation performance using random 3-D antenna arrays.
Using 10 Monte Carlo simulations, random 3-D antenna array
coordinates are obtained for 10 different antenna arrays. As
described in Section II-A, acceleration data is generated for 4
seconds using the Singer model and direct double integration
of the acceleration data is performed to obtain the true antenna
locations of the virtual array. Using the generated antenna
arrays, CRLB results for DoA estimation are then computed
for different source locations and the results are shown in Fig.
11. In Fig. 11, different colors are used for 10 different antenna
arrays. Without any loss of generality, the source Elevation
angle is fixed at θ = 30 ◦ while the Azimuth angle φ is varied
from 10 ◦ - 360 ◦ with a step of 10 ◦. The plots in Fig. 11 show
lower bound on the achievable DoA estimation accuracy for a
single plane wave source located in the far field of the array
at different source locations, for 10 different antenna arrays.
It can be noted that the effect of antenna array aperture w.r.t
the source location plays a significant role in DoA estimation
accuracy. It is also worth mentioning that the model used to
make random array shapes puts no constraint on the volume
spanned by the antenna array coordinates. Furthermore, using
500 Monte Carlo simulations, the mean standard deviation
σavg of the DoA estimation error is calculated for random
3-D antenna arrays as

σavg =
1

500

500∑
i=1

σi, (4)
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Fig. 10. Plot of the standard deviation of the position estimation error for
the three coordinate axes vs. time. Accelerometer and gyroscope noise in the
IMU measurements is considered using nominal values given in able I. The
plot shows the effect of all the noise sources in the accelerometer and rate
gyroscope measurements.



where σi describes the mean DoA estimation performance for
the ith antenna array in the Monte Carlo simulations. σi is
found by computing the CRLB values for different source
locations, where the Elevation angle is fixed at 30 ◦ and the
Azimuth angle is varied from 10 ◦ - 360 ◦ with a step of 10 ◦.
By averaging the CRLB values corresponding to different
source locations, the mean CRLB value σi is then determined.
Table II shows the results of σavg for different array lengths in
terms of time-duration for making virtual antenna arrays and
for different SNR values.

TABLE II
MEAN STANDARD DEVIATION σavg OF THE DOA ESTIMATION ERROR

USING RANDOM 3-D ANTENNA ARRAYS.

SNR [dB] 0 10
Array Length [s] 4 6 4 6
σavg [deg] 8.8 3.1 2.8 1.0

The results in Table II illustrate the mean or the average per-
formance of random 3-D antenna arrays for DoA estimation.
One antenna array could have better DoA estimation accuracy
in certain source location directions and worse DoA estimation
accuracy in some other source directions. An array shape in
3-D might be devised for optimum DoA estimation for all
azimuth-elevation source directions. The results in Table II
further show that the array performance for DoA estimation
improves significantly with increased array size as compared
to the increase in SNR. Similarly, for other values of the
Elevation angle, the mean standard deviation of the DoA
estimation error results can be obtained using the Monte Carlo
simulations.

V. SUMMARY AND CONCLUSION

In this paper, we have shown the application of a state
space based extended Kalman filter to study the effect of
individual IMU sensor noise parameters on the performance
of an unaided inertial navigation system. We have observed
that, for a typical low cost MEMS based IMU, noise in the
rate gyroscope measurements is the dominant error source for
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Fig. 11. Plot of CRLB values w.r.t the source location angles for 10 different
3-D antenna arrays. Different colors correspond to different antenna arrays.

the position estimation error for short integration times of
about 4-6 s. Whereas, the accelerometer noise is observed to
be less significant as compared to the rate gyroscope noise. We
have also used Monte Carlo simulations to analyze the mean
standard deviation of the DoA estimation error for random
3-D antenna arrays. Simulation results show that the array
performance for DoA estimation improves significantly with
increased array size as compared to the increase in signal
to noise ratio. The results in the paper suggest that larger
antenna arrays can provide significant gain in DoA estimation
accuracy, but, noise in the rate gyroscope measurements proves
to be the limiting factor when making virtual antenna arrays
for DoA estimation or source localization using single antenna
devices.
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