
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Trading Accuracy and Resource Usage in Highly Dynamic Vehicular Networks

Fitzgerald, Emma; Landfeldt, Björn

Published in:
International IEEE Conference on Intelligent Transportation Systems

2013

Link to publication

Citation for published version (APA):
Fitzgerald, E., & Landfeldt, B. (2013). Trading Accuracy and Resource Usage in Highly Dynamic Vehicular
Networks. In A. Hegyi (Ed.), International IEEE Conference on Intelligent Transportation Systems IEEE -
Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://portal.research.lu.se/en/publications/5dd5dabd-4dc9-42de-bade-7adc81b67145

Trading Accuracy and Resource Usage in Highly Dynamic Vehicular
Networks

Emma Fitzgerald∗†
Email: emma@it.usyd.edu.au

∗School of Information Technologies
The University of Sydney

NSW 2006
Australia

†National ICT Australia
Australian Technology Park
Level 5, 13 Garden Street

Eveleigh NSW 2015
Australia

Bjorn Landfeldt‡
Email: bjorn.landfeldt@sydney.edu.au

‡School of Electrical and Information Technologies
Lund University
SE-221 00 Lund

Sweden

Abstract— Vehicular networks bring new ways of viewing
road traffic management and safety applications. For the first
time, it will be possible for vehicles to exchange information
and build fine-grained knowledge about the current situation,
estimating risks and adapting their driving. Central to these
applications is the need to exchange information in a highly
dynamic environment, building a view of the current situa-
tion before the conditions change. This is turn requires the
distributed algorithms used to converge on low error margins
quickly.

In this paper, we investigate the performance of such a
distributed algorithm which aims to build a common assessment
of the risk level among vehicles to trade off accident risks
with road throughput. In particular, we examine how the
convergence rate is affected by network size and node density,
and also how the error in the algorithm’s output is affected by
the rate at which nodes send out update beacons. We develop
a variable-rate beaconing scheme in order to find a trade-off
between accuracy of outputs and network resource usage. We
then formulate this as a more general optimisation problem
applicable to other applications or distributed algorithmic prob-
lems in highly dynamic distributed systems such as VANETs.

I. INTRODUCTION

As mobile systems become more widely used and more
pervasive in different areas of our lives, they are required
to operate in more uncontrolled and variable environments.
One particular example of this is in vehicular ad-hoc net-
works (VANETs), where applications must function under
the sometimes turbulent and always changing conditions of
road traffic. In this paper, we will examine the performance
of applications in such highly dynamic networks, in which
there is a large degree of node mobility and where network
topology may change frequently.

In particular, we will focus on distributed applications for
VANETs in which data is processed and used in-network

National ICT Australia (NICTA) is funded by the Australian Government
as represented by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

and where the outputs of the application are time-critical and
need to be kept accurate, even when input data may change
rapidly and unpredictably. We develop a methodology for
analysing such algorithms and adapting them to changing
network conditions whilst minimising usage of network
resources.

We take as an example an accident risk estimation al-
gorithm for a VANET and examine how the convergence
rate of this algorithm is affected by varying the network
size and node density, which may be caused by changing
traffic conditions. We will further examine how the error in
the algorithm’s output varies with the rate at which nodes
send out update beacons by taking a mobile scenario in
which there is a large and sudden change in input values. We
will then develop a variable-rate update scheme in order to
balance the concerns of low error with low usage of network
resources, and finally we will extend this idea to a general
optimisation problem for finding the best trade-off between
these two goals.

The rest of this paper is organised as follows. In Sec-
tion II, we give an overview of the characteristics of the
type of networks and applications we are dealing with and
why it is important to understand the relationships between
convergence rate, network size and node density, beaconing
rate and error. In Section III we describe in more detail the
particular algorithm we are working with and then our aims
for this work in Section IV. Sections V–VIII describe our
experimental work, first on how convergence rate is affected
by the number and spacing of nodes, then on error and
beaconing rate, and finally on our variable beaconing rate
scheme. In Section IX we discuss how this work can be
generalised to other applications and scenarios and finally
we conclude in Section X.

II. MOTIVATION

Networks which have rapidly changing topologies and
high node mobility present unique challenges in managing
error in distributed applications. Even where an algorithm
will converge to a steady state, because of the frequent
changes in the network, it may often not be possible to
actually reach this state, or, once reached, to stay there for
any length of time. In this paper, we investigate how network
conditions affect convergence rates and levels of error, and
how these can be managed effectively.

We examine the relationship between convergence rate,
error and update rate for a distributed application using
sensed data in a VANET. In particular, we consider appli-
cations where it is critical that data is accurate and up-to-
date (such as vehicular safety applications), and where inputs
may change rapidly, unexpectedly and non-continuously. We
discuss each of these characteristics further below using an
accident risk estimation algorithm for VANETs and as such,
we consider each of these characteristics in this context.
However, our work is applicable to any system that satisfies
the following criteria.

The network has high mobility and dynamic topology.
In a VANET, because each node is a vehicle, nodes are
constantly moving at high relative speeds to each other. Addi-
tionally, the node density and configuration varies greatly —
consider, for example, the difference between a busy urban
intersection in peak hour and a rural highway late at night
— and can change quickly. VANETs often also suffer from
significant problems with shadowing, particularly in urban
environments, which introduces even more topology changes
[1].

Data is used in-network. The aim here is not to collect the
data and send it elsewhere but rather to directly process it and
use it within the network itself. This scenario is common in
VANETs where sensed data is used for vehicle control, route
planning and other tasks without ever leaving the network
itself. In our studied case, we wish to use information about
accident risk in the current situation to inform vehicles’
decision making.

The application is distributed. Processing of data must
be done in an entirely distributed manner; there is no central
controller to send the data to or receive instructions from.
Each node must be able to make decisions on its own in
a timely manner using available information. Again, this
is a typical scenario in a VANET, where each vehicle is
responsible for its own operation, and is particularly true for
time-critical safety applications where there is not enough
time to consult an external controller — decisions must be
made locally and swiftly.

Inputs to the application can change rapidly and non-
continuously. Accident risk depends on factors involving the
driver, the vehicle itself and the surrounding environment
(including other vehicles) and has both long and short-term
components [2], [3], [4]. As such, risk levels are constantly
changing and sudden events can occur that dramatically
change risk levels in a short period. This problem is further

compounded by the highly dynamic topology of VANETs:
a new node may appear in the network, or an existing node
may leave, at any time, resulting in changed risk levels.
This means that we cannot make assumptions about how
the inputs to the application — and thus the desired outputs
— will change over time.

Data must be accurate and up-to-date. We consider
applications where it is important that nodes make decisions
based on data that is current and accurate. In some cases,
inaccurate data can be compensated for — if the magnitude
of the error is known — by behaving more conservatively.
However, this will often result in reduced utility, sometimes
drastically so, for instance in a case where a vehicle has a
false positive for a dangerous situation and comes to a stop
unnecessarily. In our risk-estimation application, inaccurate
or stale data can result in either a reduction in safety, road
network utility, or both.

We thus want to ensure that the outputs actually produced
by the application are sufficiently close to the correct values
at all times, in spite of the challenges presented above, or
that they become so within a short enough time of the inputs
changing. We will examine further what is meant by the
“correct values” in the following sections; briefly, however,
this can be considered as the limit of convergence of the
algorithm for processing the data — that is, the steady state
the algorithm would eventually reach, if it had enough time to
do so without the inputs or network topology changing. We
also wish to know how far from the correct values we are or
might be, that is, the absolute error at any given time, so as to
tailor nodes’ responses not only to the actual values produced
by the application, but also to the level of confidence we can
have in those values.

Given an application that fits the above characteristics,
we first need to know its convergence rate and how this
changes with network size and node density. Once we have
an understanding of the convergence rate, we are then able to
investigate the error in the algorithm’s outputs in a network
with mobile nodes and dynamic topology. This then allows
us to vary the beaconing rate in response to changing network
conditions so that the error remains acceptable for the par-
ticular application, even with rapid and discrete changes in
inputs. In the following sections, we go through this process
for our risk estimation algorithm.

III. COUPLED RISK ESTIMATION ALGORITHM

We will explore these issues using the coupled risk estima-
tion algorithm from [5]. A full description of this algorithm
can be found in [5], and in the following we will cover
a few key points relevant to this work. The aim of this
algorithm is for vehicles to calculate their current accident
risk level based on their own sensed information as well
as information received from neighbouring nodes in the
network. Nodes do not reach a consensus value but rather
each vehicle determines its own risk value based on the
particular constellation of risk factors that pertain to it. These
include factors relating to each vehicle and driver, but there
are also common risk factors relating to which other vehicles

are present and to the surrounding environment that affect all
vehicles in an area. Accordingly, each vehicle will determine
a weighting for each of the risk values it receives from its
neighbours based on how reliable and relevant that value is.
This weighting is affected by a number of factors including
the distance and direction between the nodes, the number of
neighbours each has in the network, and the time since the
last update from that neighbour was received.

Each vehicle then takes a weighted average over the values
received from its neighbours as well as its own internal risk
value based on its own sensors and information relating only
to itself, i.e. each vehicle calculates

r =
w0r0 +

∑
v∈N wvrv

w0 +
∑

v∈N wv
(1)

where r is the vehicle’s risk estimate, r0 is the internal
risk value, w0 is the weight given to the internal risk value,
N is the set of (single-hop) neighbouring vehicles — those
vehicles from which a message has been received, rv is the
risk value received from vehicle v and wv is the weight given
to vehicle v.

In order to calculate this average, nodes take an initial
estimate (their internal risk value) and then update their
estimate each time they receive a new estimate from a
neighbouring vehicle. The entire system of nodes is thus
collectively solving a set of linear equations, in which each
row corresponds to one node, in a distributed fashion by
performing an asynchronous Jacobi with local Gauss-Seidel
method, as in [6].

IV. AIMS

We first want to determine the convergence rate, in terms
of both time and update iteration count, for the coupled risk
estimation algorithm, and investigate how this is affected by
different numbers of nodes (i.e. the size of the network) and
node densities. We will do this using a static scenario in
which nodes do not move and inputs to the algorithm do not
change, as this allows the algorithm to actually converge.

We will then look at the case where nodes are mobile. In
this case, the solution to the set of linear equations will be
constantly changing, since node weightings depend on the
distance and direction between nodes. Additionally, discrete
events such as topology changes in the network will also
affect the solution — nodes which are not neighbours will
receive a weighting of zero, so when a new neighbour is
identified or an existing neighbour leaves, the weight matrix
will change accordingly.

This means that the algorithm can never actually converge
as nodes are constantly moving (and thus their weightings
are constantly changing). However, it is still important to
know what the error is in this scenario, i.e. how far are the
values produced by the algorithm from the actual solution to
the set of linear equations at any given point in time? Our
second set of experiments determine this and also examine
how error is affected by the chosen beaconing rate, that is,
the rate at which updates are transmitted.

Finally, we will look at the trade-off between error minimi-
sation and consumption of network resources and a strategy
for achieving a balance between the two in our scenario. In
Section IX, we will look at this question in more detail and
discuss how it might be framed as an optimisation problem
in the general case.

V. CONVERGENCE RATE

The first set of experiments we conducted investigated the
relationship between the convergence rate of the coupled risk
estimation algorithm and the number and spacing of nodes
in the network. We used two measures of convergence rate:
time to convergence and iteration count. Iteration count was
the number of updates a node received from its neighbours
before it converged, and convergence time was simply the
time in seconds before this occurred.

A. Simulation Parameters

For our simulations we used ns-3 [7], a discrete-event
network simulator, with the YansWifi [8] physical layer
model, and the NqosWifi MAC layer model. While a
VANET introduces additional shadowing effects over tradi-
tional wireless networks, these models give similar results
for the inter-node distances used in our work [9]. Nodes
were laid out in a grid of four columns, representing lanes
of traffic, with a 3 m spacing between lanes. The longitudinal
spacing between nodes was varied as an independent vari-
able. The distribution of initial risk values given to nodes was
log-normal (mean = 1.0, stddev = 0.5) as this distribution fits
the definition of risk in [5]. For these experiments, beacons
containing updated risk estimates were sent out by each
node at a rate of 100 Hz. Nodes were considered to have
converged when their risk value did not change by more
than 0.05 for at least 10 iterations, and nodes were required
to wait a minimum number of iterations (10) before starting
to determine whether they had converged, in order to allow
other nodes time to transmit their values, as nodes did not
all start transmission at the same time in order to avoid
interference.

B. Results and Discussion

We tested average convergence times and iteration counts
to convergence for longitudinal node spacings of 1 m, 10 m,
20 m and 50 m. For each node spacing value, the number
of nodes was varied from 2 to 400. Figures 1 and 2 show
the convergence times and iteration counts to convergence
at a node spacing of 20m, with 95% confidence intervals.
Figures for the other node spacings are omitted for brevity
as they produced very similar results.

From these figures, we see that convergence occurs
rapidly. The iteration count required for the algorithm to
converge is consistent across differing numbers of nodes,
however, this means that for small networks, convergence
time is slower as nodes must wait longer before receiving
the number of updates required to converge. Nonetheless,
the convergence time is an order of magnitude faster than the
time required for a driver to react to a hazardous situation in

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 50 100 150 200 250 300 350 400

N
od

e
co

nv
er

ge
nc

e
tim

e
(s

)

Number of nodes

Average convergence time
Confidence intervals (95%)

Fig. 1. Convergence time vs. number of nodes at 20 m spacing

 20.7
 20.8
 20.9

 21
 21.1
 21.2
 21.3
 21.4
 21.5
 21.6
 21.7

 0 50 100 150 200 250 300 350 400

N
od

e
co

nv
er

ge
nc

e
tim

e
(s

)

Number of nodes

Average iteration count
Confidence intervals (95%)

Fig. 2. Iteration count before convergence vs. number of nodes at 20 m
spacing

all cases. Driver perception-brake reaction times — the total
time for a driver to perceive a hazard and begin to apply
the brakes — vary from about 0.7s to 1.5s depending on
various factors including driver expectation, characteristics
of the driver, cognitive load and the urgency of the situation
[10].

Node spacing does not appear to have a significant ef-
fect on the iteration count required for convergence but
convergence time is slower for larger node spacings as
each node has fewer neighbours, resulting in fewer updates
received per unit time and thus longer times to receive
a requisite number of updates for convergence. However,
again, convergence times remain at acceptable levels for all
node spacing conditions tested.

VI. ERROR AND BEACONING RATE

Next, we looked at how the error in the system was
affected by the beaconing rate. Here, we consider error to
be the distance (in N -space, where N is the number of
nodes) of the vector of current risk values as produced by the
coupled risk estimation algorithm from the actual solution to
the system of linear equations it is solving, i.e. the limit to
which the algorithm converges.

In order to examine how error changes with beaconing
rate, we chose a scenario in which error can be expected to be
high but in which the source of error is clear and consistent.
We take a group of nodes which has already converged — in
fact, we give all these nodes the same risk value — and which
are all travelling in the same direction at the same speed, so
that their weightings for each other will remain consistent
over time. We then introduce a node with a very different
risk value in front of and at a close distance to the group of
nodes. This ensures that the new node will be given a high
weighting by the others. Additionally, we have the nodes
moving at high relative speeds: the new node is travelling
in the opposite direction to the initial group of nodes. Thus
we have a situation in which the error will increase suddenly
when the new node is introduced and we can then observe
the change in error over time as the algorithm attempts to
correct for it, whilst the nodes are moving.

This scenario is somewhat contrived in order for us to be
able to investigate how error is affected by the beaconing
rate, however, it is conceivable that such a situation might
occur in a real traffic scenario. For instance, shadowing
caused by large buildings or heavy vehicles may prevent a
node from having line of sight to others until it is quite close,
and if this node has a very different risk estimate, this will
cause a sudden spike in error for the oncoming nodes. It
would always be possible to create a new, worse scenario in
which errors are higher, however here we are not so much
concerned with the size of the error but rather how it changes
over time, that is, how quickly the algorithm recognises the
discrepancy in values and corrects for it.

A. Simulation Parameters

Our scenario consists of a group of 10 nodes travelling
in the one direction in a single lane, all with risk values of
1.0. A new node is then introduced travelling in the opposite
direction and 20 m ahead of the lead vehicle in the group,
with a much higher risk value (4.0). Vehicle speeds are 70
km/hr for all vehicles and the beaconing rate was varied from
100 Hz to 1 Hz. The simulation time was 10 s in total.

To determine the error, weights were determined and
the solution to the system of linear equations was found
each millisecond of simulation time. This was done us-
ing the Eigen library [11], with a Householder rank-
revealing QR decomposition with column pivoting (Col-
PivHouseholderQR). The vector of risk values produced
was then compared with the risk values the nodes had actu-
ally calculated from the coupled risk estimation algorithm.
We then took the pointwise absolute difference to obtain an
error vector, and used the norm of this vector as our measure
of error. Note that here we only used the error from the
group of ten nodes, not from the oncoming node, as this
node’s purpose in the simulation was to act as a source of
error. In reality, sudden changes in risk values may occur not
only from new nodes appearing, but also from environmental
changes, thus we exclude this node in order to make the
results more general to either situation.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or

Time

50 Hz beaconing rate

Fig. 3. Error over time for a beaconing rate of 50 Hz: beaconing rates of
100 Hz, 20 Hz and 10 Hz produced similar results

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or

Time

5 Hz beaconing rate

Fig. 4. Error over time for a beaconing rate of 5 Hz

B. Results and Discussion

Figures 3–6 show the error vector norm over time for
beaconing rates of 50 Hz and 5–1 Hz. The results for faster
beaconing rates (100 Hz to 20 Hz) were similar to the 10
Hz case and are thus omitted in the figures. Figures 7–10
show an expanded view of just the first two seconds of the
simulation for each rate tested (50 Hz and 5–1 Hz). We
can see that the error is initially high, as expected, and then
drops as the nodes adjust their risk estimates. The error rises
somewhat again later as the high-risk node starts to move
behind the group of nodes, causing its weightings from the
other nodes to decrease as its distance to them increases, and
changes in the network topology as it gets out of range.

Higher beaconing rates meant that the high initial error
caused by the sudden appearance of the new node dropped
off more quickly. Thus, we see that a higher beaconing rate
allows us to adjust sooner to a sudden change in risk values,
keeping us closer to an accurate representation of risk for
more of the time. We therefore conclude that a variable
beaconing technique should be considered for this class of
applications.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or

Time

2 Hz beaconing rate

Fig. 5. Error over time for a beaconing rate of 2 Hz

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or

Time

1 Hz beaconing rate

Fig. 6. Error over time for a beaconing rate of 1 Hz

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

E
rr

or

Time

50 Hz beaconing rate

Fig. 7. Error over time for a beaconing rate of 50 Hz: first 2s of simulation:
beaconing rates of 100 Hz, 20 Hz and 10 Hz produced similar results

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

E
rr

or

Time

5 Hz beaconing rate

Fig. 8. Error over time for a beaconing rate of 5 Hz: first 2s of simulation

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

E
rr

or

Time

2 Hz beaconing rate

Fig. 9. Error over time for a beaconing rate of 2 Hz: first 2s of simulation

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

E
rr

or

Time

1 Hz beaconing rate

Fig. 10. Error over time for a beaconing rate of 1 Hz: first 2s of simulation

TABLE I
PACKETS SENT FOR DIFFERENT BEACONING RATES

Beaconing rate (Hz) Packets sent
100 19990
50 9990
20 3990
10 1990
5 990
2 390
1 190

Variable 50/5 1046

VII. VARIABLE BEACONING RATE

While reducing error is an important goal, we cannot
simply use a very high beaconing rate all the time. In
situations where there is high node density, this will cause
contention in the network, potentially leading to interference
and packet loss. Even in cases where contention is not an
issue, there may be other applications needing to use the
network and we should thus try to minimise the bandwidth
taken up by sending out our updates. Additionally, in some
networks energy usage may be a consideration (though this
does not typically apply to VANETs).

We thus have a trade-off between keeping error low — and
adapting quickly to changes in input values — and usage of
network resources such as bandwidth. To deal with this, we
investigated using a variable beaconing rate scheme. We used
a simple threshold scheme in which the beaconing rate could
be one of two values: one fast and one slow. When a beacon
was received by a node that caused a change in its risk
estimate greater than the threshold, the faster beaconing rate
would be used. However, once a received beacon only caused
a small change in the risk estimate — below the threshold
— the node would drop back to the slower beaconing rate.

A. Simulation parameters

For these experiments, we used the same scenario as in
Section VI. The two beaconing rates used were 5 Hz for the
slow rate and 50 Hz for the fast rate. 50 Hz was chosen for
the fast rate as our results in Section VI-B indicate that error
does not improve significantly at faster rates than this. Driver
perception-brake reaction times — the total time for a driver
to perceive a hazard and begin to apply the brakes — vary
from about 0.7s to 1.5s [10]. This means that a slow rate of
5 Hz will still provide time to respond to a large change
in risk in time for this information to be relevant to the
driver in control of the vehicle. While these two beaconing
rates provide good results, they may be optimised further,
as discussed in Section IX. The threshold for change in
risk value to switch rates was the same as the convergence
threshold in our previous experiments: 0.05.

B. Results and Discussion

Figure 11 shows the error for the variable beaconing rate,
and Figure 12 shows a larger view of the first two seconds
of the simulation. Table I gives the total number of packets
sent during the simulation for all beaconing rates.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

E
rr

or

Time

Variable beaconing rate

Fig. 11. Error over time using variable beaconing rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

E
rr

or

Time

Variable beaconing rate

Fig. 12. Error over time using variable beaconing rate: first 2 s of simulation

If we compare Figures 11 and 12 with the corresponding
figures for beaconing rates of 5 Hz and 50 Hz from the
previous section (Figures 3, 4, 7 and 8), we can see that the
variable rate gives error levels in between the two other rates.
At the beginning of the simulation, when the error is highest
and risk values are changing the most rapidly, the variable
rate reduces the error to a low level in a similar amount of
time as the fast rate of 50 Hz. However, when error is low
and the risk values are changing slowly, the variable rate
behaves more like the slow rate of 5 Hz.

In terms of packets sent, the variable rate gives a value
only slightly higher than the slow rate, thus consuming much
less bandwidth than the fast rate. Hence even a simple vari-
able scheme such as used here immediately yields significant
benefits, with error levels and response to changing inputs
similar to a fast beaconing rate but bandwidth usage similar
to a slow rate.

VIII. DISCUSSION

With the variable rate beaconing scheme, we have a
reasonable trade-off between error and network resource
usage for the coupled risk estimation algorithm. The values
used here are particular to this algorithm — the error level

that is acceptable is relative to the accuracy and time scale for
decision making required for this application. However, this
process can be applied to other VANET applications, taking
into account the needed characteristics of their outputs. In
order to do so, the distributed algorithm’s convergence rate
must be determined, as we have done in Section V, and the
effect on this of the wide range of traffic conditions likely to
occur in a VANET needs to be ascertained. In our case, node
density and network size did not have a large effect relative
to the convergence rate needed for determining accident risk
levels.

In a VANET, it is not only the changing traffic condi-
tions that can affect the performance and accuracy of such
an application, however. The dynamic topology, shadowing
problems and high node mobility mean that an application
must also respond to both discrete and continuous changes
in input values. The speed with which an application can
respond to these depends not only on its convergence rate,
but also on the beaconing rate used as this will determine
how often nodes receive updates. Thus the next step in
analysing an application’s performance is to investigate how
the beaconing rate affects error under these conditions, as in
Section VI.

Lastly, the data gathered during this process can be used to
inform a strategy for managing both network resource usage
and error. We have employed a simple threshold scheme and
in some applications this may be sufficient. However, in other
cases. where applications have more stringent requirements,
a more complex strategy may be called for. Additionally,
even with a simple scheme, it is likely not enough to look at
the performance under one scenario as it is very difficult to
envisage any “worst-case” scenario — one can always create
a more problematic set of traffic conditions that would affect
the algorithm performance more severely. Because of this,
in the following section we will formulate the problem of
finding the right variable-rate beaconing scheme as a more
general optimisation problem that can then be applied to any
given application and situation.

IX. FUTURE WORK

We now have an optimisation problem in determining the
best beaconing rate(s) to use and how to change the bea-
coning rate to adapt to different circumstances. Essentially,
we have a point in N -dimensional space which represents
the desired values for the nodes and which moves constantly
as the nodes move, the network topology changes, and the
input values themselves change. Moreover, this target point
does not move in a predictable or even continuous way and
the rate of change of its position is highly variable, and in
fact, because of discontinuities caused by sudden events or
network topology changes, unbounded. The times when the
target point moves the fastest, or jumps discontinuously, are
also when it is most important that the actual output remains
close to it, as these typically represent critical situations such
as a new vehicle arriving or a hazard appearing suddenly.

We then want the vector of the actual node values to be
as close as possible to the target point at all times, while

also not wasting network resources unnecessarily. We can
consider this problem in two ways: we can either optimise
for minimal error given a constraint of available or desired
network resource usage, or we can optimise for minimal
resource usage given a constraint of allowable error. The
best approach to take here will depend on the particular
application. For a safety-critical application, it is likely to
be necessary to put a hard limit on the error and then try
to reduce resource usage as much as possible. However, for
other applications, such as navigation, entertainment, traffic
information services, etc. it may make more sense to limit
resource usage as occasional breakdowns in the functioning
of the application due to high errors are likely to have less
severe consequences than using too much bandwidth and
thus causing contention or preventing other applications from
functioning.

In both these cases, we also have a question as to how
to define the minimum error or resource usage that we are
optimising for. In the previous sections, we have taken the
norm of the error vector as our measure of error, however,
in some cases it may be better to instead minimise the
maximum error across the nodes to ensure all are treated
fairly and have reasonably accurate values. Similar argu-
ments apply to resource usage, but here we are instead
considering fairness in resource allocation to prevent high
bandwidth usage in some parts of the network, even if the
overall usage is minimised. The parameters used may be
either the two beaconing rates as used above, i.e. a fast
rate and a slow rate, along with the threshold for switching
rates, or else a more complex scheme with more levels of
beaconing rates could be used.

Given a method to solve this optimisation problem for a
given set of constraints and utility function, it would then
be possible to apply it to different traffic scenarios and
applications as needed, or, for example, to use vehicle traces
or traffic simulations to determine the best balance for a
particular region, network architecture, etc.

X. CONCLUSION

We have examined the convergence rate for the coupled
risk estimation algorithm and measured how it is affected
by node density and spacing. The update iteration count to
convergence was stable under different conditions, resulting
in longer convergence times for small and widely-spaced
networks, given a constant beaconing rate. However, in all
conditions tested, the convergence rate was sufficiently fast,
relative to the reaction time of a human driver, for an accident
risk estimation algorithm in a VANET.

We also investigated how the beaconing rate affects the er-
ror in the algorithm’s output in a scenario with mobile nodes
and a large change in input in the form of a new node with
a high risk value. Our results show that higher beaconing
rates reduce error, particularly when the risk values change

rapidly. However, higher beaconing rates also consume more
network resources. To counteract this problem, we developed
a variable beaconing rate scheme in which nodes test their
change in risk value against a threshold to determine which
of two different beaconing rates to use. We found that using
this scheme we achieved good performance both in terms of
error and resource usage. In future, this work can be extended
to a more general optimisation problem to determine how
best to adapt the beaconing rate given a particular rate of
change of the risk value.

This methodology can be applied to any distributed algo-
rithm matching the same network and data model charac-
teristics. These are a highly mobile network with dynamic
topology, and a distributed application in which data is used
in-network, accuracy of results is critical and must be assured
within a certain amount of time, and the solution to the
data processing task changes unpredictably and at a highly
variable rate. Vehicular networks fit these characteristics and
these kinds of applications are appearing more and more for
them. Many applications in VANETs are safety-critical and
thus require rapid and accurate responses to changing data,
and data is often processed and used directly by vehicles
in a distributed fashion without leaving the network. The
process we have described can thus be followed to inform
the parameters used for such applications in order to balance
error levels with network resource usage.

REFERENCES

[1] J. Otto, F. Bustamante, and R. Berry, “Down the block and around
the corner the impact of radio propagation on inter-vehicle wireless
communication,” in Distributed Computing Systems, 2009. ICDCS’09.
29th IEEE International Conference on. IEEE, 2009, pp. 605–614.

[2] M. Peden et al., “World report on road traffic injury prevention,” 2004.
[3] J. Treat and Indiana University, Tri-level study of the causes of

traffic accidents: Final report. Dept. of Transportation, National
Highway Traffic Safety Administration; Available through the National
Technical Information Service, 1979.

[4] L. Vogel and C. Bester, “A relationship between accident types and
causes,” in 24th Annual Southern African Transport Conference, South
Africa. SATC, 2005, pp. 11–13.

[5] E. Fitzgerald and B. Landfeldt, “A system for coupled road traffic
utility maximisation and risk management using vanet,” in Intelligent
Transportation Systems (ITSC), 2012 15th International IEEE Confer-
ence on, 2012, pp. 1880–1887.

[6] J. Bull and T. Freeman, “Numerical performance of an asynchronous
Jacobi iteration,” Parallel Processing: CONPAR 92VAPP V, pp. 361–
366, 1992.

[7] “ns-3,” http://www.nsnam.org/.
[8] M. Lacage and T. Henderson, “Yet another network simulator,” in

Proceeding from the 2006 workshop on ns-2: the IP network simulator.
ACM, 2006, p. 12.

[9] T. Abbas, F. Tufvesson, and J. Karedal, “Measurement based shadow
fading model for vehicle-to-vehicle network simulations,” arXiv
preprint arXiv:1203.3370, 2012.

[10] M. Green, ““How long does it take to stop?” Methodological analysis
of driver perception-brake times,” Transportation Human Factors,
vol. 2, no. 3, pp. 195–216, 2000.

[11] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

