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Model-Based Estimation of Cylinder Pressure Sensor
Offset using Least-Squares Methods

Per Tunestal, J. Karl Hedrick, Rolf Johansson'?

Abstract

Two methods for estimating the sensor offset of a cylin-
der pressure transducer are developed. Both meth-
ods fit the pressure data during pre-combustion com-
pression to a polytropic curve. The first method as-
sumes a known polytropic exponent, and the other es-
timates the polytropic exponent. The first method re-
sults in a linear least-squares problem, and the second
method results in a nonlinear least-squares problem.
The nonlinear least-squares problem is solved by sep-
arating out the nonlinear dependence and solving the
single-variable minimization problem. For this, a fi-
nite difference Newton method is applied. Using this
method, the cost of solving the nonlinear least-squares
problem is only slightly higher than solving the lin-
ear least-squares problem. Both methods show good
statistical behavior. Estimation error variances are in-
versely proportional to the number of pressure samples
used for the estimation. The method is computation-
ally inexpensive, and well suited for real-time centrol
applications.

1 Introduction

Crank angle resolved cylinder pressure measurement on
internal combustion engines can be made using varicus
kinds of transducer types, of which the piezoelectric,
and the optical transducer types are the most preva-
lent. Their bandwidths are adequate to capture the
relevant information in the cylinder pressure trace. All
suitable transducer types share one unattractive char-
acteristic, though, in that their DC offset varies in an
unpredictable way with time.

This paper develops a new method to estimate and
remove the offset from the cylinder pressure measure-
ments. The method amounts to solving the nonlinear
least-squares problem of fitting the measured pressure
data to a polytropic compression curve. By solving
the linear least-squares problem which results from as-
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suming that the parameter causing the nonlinearity is
known, the problem is reduced to minimizing a func-
tion of one variable. For this purpose, a finite differ-
ence Newton method is proposed. The method pro-
posed here is computationally quite inexpensive, and is
well suited for real-time applications e.g. where eylin-
der pressure measurements are used for feedback con-
trol. An important advantage compared to previous
methods [1] based on twe pressure samples is that the
estimation variance can be reduced by increasing the
number of samples used in the computation.

2 Cylinder Pressure Transducers

A piezoelectric sensing element has to be connected to a
charge amplifier, which converts the electrical charge to
a voltage or a current. For the piezoelectric transducer
type, the DC offset variation is produced by the charge
amplifier. The charge amplifier necessarily has some
leakage current, which causes the amplifier output to
drift over time. This drift is compensated for by a high-
pass filter. If the time constant of the high-pass filter
is high enough, the filter dominates the drift, and the
DC gain of the amplifier is zero. Thermal stress on the
sensing element can also distort the measurements.

An optical pressure transducer uses an LED, one or
several optical fibers, and a photodetector to measure
the light intensity reflected from a metal diaphragm,
as it deflects under pressure [4, 5]. The optical pres-
sure transducer has the advantage of being inexpensive
compared to the piezoelectric type, since LEDs, optical
fibers, and photodetectors are all inexpensive compo-
nents. Furthermore it does not require a charge am-
plifier to interface with a data acquisition system. For
this transducer, the variation in DC offset is a mechan-
ical phenomenon caused by e.g. thermal stress, aging,
and bending of optical fibers.

3 Identification of Compression Parameters
when x is Known

The compression stroke of an internal combustion en-
gine can be modeled as a polytropic process [3], where



pressure and volume are related according to

(%)

po and Vi are constants representing initial values of
pressure and volume respectively.

p

0 (1)

3.1 Problem Formulation
Assume that cylinder pressure measurements have an
unknown but constant offset Ap,
Pm =p+ Ap (2)
Combining (1} and (2) yields
pm=~R2p+CV™" (3)

where
C = poVy’

Further assume that « is known.

()

Posing the problem as a system identification problem

(5)

where y is known as the output, ¢ the regressor vector,
and # the parameter vector. Here,

y =l

Yy=pm p=(1 V") ,and 8= (Acp) (6)

Assume crank-angle resolved data is available for eylin-
der pressure and combustion chamber volume during
the compression stroke, and form

gt (P P1 v

Y =

@

Un (pm)n Pn 1 Vnix‘
Combining (5) and (7) yields

Y = &0 (8)

For equation (8) to hold, it is necessary to select a crank
angle interval for which (1) is valid, i.e. combustion
chamber closed, and no combustion taking place. This
means that all the data has to be collected between the
point where the intake valve closes and the point where
combustion starts.

3.2 The Least Squares Solution

Assume that the number, n, of cylinder pressure mea-
surements in Y, is larger than the number of unknown
parameters in 8, which is two. Then, the least-squares
solution to (8) is given by

= (873) ' 3TY = &Y (9)
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where % is the Moore-Penrose pseudo inverse of &.

For the problem at hand, the least-squares solution (9)
translates to

S8 — Sy,
Ap = W—ng'w = E (10}
nSo, — 5.9,
C==g—g (11

where
n

Sp = Z(pm)i

i=1

(12)

S, = zn: T (13)
-1
Spv = Z(pm)il/i_'c (14)
i=]
S‘UU = i VVI‘_ZK (15)
i=1

3.3 Statistical Properties of the Least-Squares
Estimate

The statistics of the estimates can be analyzed by as-
suming that Y is a random variable defined by

Y=386+1V (186)
where V represents the measurement noise. If V is
assumed to be white Gaussian noise, it can be shown [3]
that the estimate is consistent, and that the variances
of the estimates are roughly inversely proportional to
the the number of measurements as predicted by the
central limit theorem.

Figure 1 shows the standard deviation of the estimate
for Ap as a function of the number of samples n. The
inverse square-root dependence on n, predicted by the
central limit theorem is also plotted for comparison. It
can be seen that this approximation is quite accurate
for large values of n, and can thus he used for a quick
approximation of how many samples are required for
the desired accuracy.

3.4 Experimental Results

Figure 2 shows the result of applying the presented off-
set estimation method to the compression stroke of an
HCCI engine, with compression ratio 18:1. Estimation
is performed based on cylinder- pressure measurements
between 135° and 40° before top dead center, and the
crank-angle resolution of the pressure sampling is 2.5
samples per degree. The standard deviation of the
residual is approximately 500 Pa which is roughly the
noise level of the measured pressure signal. Figure 3
shows the cylinder pressure during the intake stroke of
the same cycle, compared with the pressure measured
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Figure 1: Standard deviation of Ap divided by standard
deviation of pressure samples (solid line) plot-
ted versus the number of samples, n. Dotted
line plots a/+/n with a suitable constant e for
comparison. ¢ represents the standard devia-
tion of the measurement noise
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Figure 2: Cylinder pressure (solid line), fitted to adiabatic
compression curve (dashed line}. Compression
ratio 18:1. & = 1.321.
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in the intake manifold. The correspondence between
the pressure measured in the intake manifold and the
pressure meastired in the cylinder is good. The spike in
the cylinder pressure around —140° is noise from when
the intake valve closes.
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Figure 3: Cylinder pressure (solid line) during the intake
stroke of the same cycle as in Figure 2. The
dashed line shows the average pressure mea-
sured in the intake manifold.

Even though & can, with good precision, be assumed
to be constant during the compression stroke, it is not
constant from cycle to cyele. These variations can be
caused e.g. by changes in inlet conditions or operating
conditions. Since the dependence of k on operating
conditions can be fairly complex, it may be necessary
to estimate & also. This is covered in Section 4.

4 Estimation of the Polytropic Exponent

As mentioned above, it is likely that x is not known a
priori. In this case it will be necessary to estimate & as
well. One way of estimating x is to minimize the RMS
error of the pressure trace with respect to «, i.e.

& = argmin (DT D), (17)

where
D=Y-%=[I-9(¢7¢)" oT|y =PY (18)

and
P=[1-2(@72) 7] (19)

where it is noted that P is a symmetric projection ma-
trix.



Define the loss function

J=D"D=YTPTPY =YTPY (20)

The minimum of J can be characterized by

aJ
T (21)

A few steps of algebra yields a simple expression
for the derivative,

j—i = —2DT% (22)
Using (7),
4o 0 -V "lnV
a 0 —Vn*’; InV, o
So finally, using (6)
W Vi*lnW
.= 2007 ; (24)
V=rslnV,

The dependence of J on & turns out to be nearly
quadratic, so a Newton method should converge to the
minimum in just a few steps.

4.1 Newton Methods for Optimization

The base Newton optimization method (see e.g. [2])
approximates, at each iteration, the function with its
second order Taylor polynomial, for which an analytical
solution to the optimization problem exists. This, of
course, requires an analytical expression for the second
derivative.

In the case that an analytic expression for the second
derivative is not available or, as in this case, it is ex-
pensive to compute on line, a modified version of the
Newton method can be applied. The method used here
is called a finite difference Newton method, and esti-
mates the second derivative by a finite difference of
first derivatives. Thus, the second derivative, G(zx), is
approximated by

Glzy) = H(zy) = % (25)

where ¢ is the first derivative

Since g(xr) and g(xk—1) are computed anyway, the ad-
ditional computational effort required for estimating
the second derivative is very small.

In [3] it is shown that this method converges superlin-
early if the second derivative is Lipschitz in a neighbor-
hood of a local minimizer.

Figure 4: Lin-log plot of ¢ for 10 consecutive cycles,
clearly indicating the superlinear convergence.

4.2 Evaluation of the Finite Difference Newton
Method Applied to the sk-Estimation Problem
Figure 4 shows the error convergence for the estima-
tion of £ on 10 consecutive cycles. The initial guess is
intentionally selected far away from the true value in
order to better show the superlinear convergence of the
method.

Figure 5 shows the estimated pressure sensor offset for
250 consecutive cycles. The initial 50 cycles in Figure
5 indicate that there can indeed be a significant change
in the pressure offset over time.

x10°

0 50 100 150 200 250
Cycie #

Figure 5: Estimated pressure sensor offset for 250 consec-
utive cycles.

The statistical properties of the estimates are investi-
gated using Monte Carlo simulation. It is assumed that



each cylinder-pressure measurement pr,{c) is a sum of
the pressure obtained from polytropic compression, the
sensor offset, Ap, and a zero-mean Gaussian Random
variable, V(e), with variance o?.

pmia) = C(V(a))™" + Ap + V{a) (26)
The parameter estimation method is applied to ficti-
tious measurements obhtained from this model, and then
the sample statistics are investigated. The values used
in the simulation are

Ap = —100 kPa
po = 150 kPa (27)
k=132

Figures 6-9 show the results of the simulations in terms
of mean values and standard deviations of the estimates
of Ap and k. The standard deviations are somewhat
higher than for the linear least-squares estimator. This
is to be expected, since one more parameter is esti-
mated from the same data. The standard deviations
do, however, drop with the number of measurements
in a similar manner as for the linear least-squares esti-
mator.

Ap [Pa)

200 300 400

Figure 6: 250-cycle mean value of pressure sensor offset as
function of the number of measurements. Dot-
ted line shows nominal value.

5 Conclusions

Both methods presented in this paper allow estimation
of the pressure sensor offset.

The linear least-squares estimates of pressure sensor
offset , Ap, and initial combustion chamber pressure,
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Figure 7: 250-cycle mean value of polytropic exponent
estimate as function of the number of measure-
ments. Dotted line shows nominal value.
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Figure 8: Estimated standard deviation of pressure off-
set estimate as function of the number of mea-
surements. Standard deviation obtained from
Monte Carlo simulations.



0.08

0.07

0.06

0.05¢

o(K)

0.047

0.03+

0.02

0.01
¢

Figure 9: Estimated standard deviation of polytropic ex-
ponent estimate as function of the number of
measurements. Standard deviation obtained
from Monte Carlo simulations.

po, described in Section 3, have good statistical prop-
erties for the case that the polytropic exponent, &
is known. The standard deviations of the estimates
roughly drop as 1/+/n with the number of samples, n.
This means that with as few as 50 samples, the stan-
dard deviations of the estimates are reduced to one
fifth of the standard deviation obtained with present
methods based on only two samples.

With unknown polytropic exponent, the nonlinear
least-squares method proposed in Section 4 can be
applied. Each iteration of the finite difference New-
ton method to find the least-squares estimate of & in-
volves applying the linear least-squares method once,
and computing the derivative of the loss function once.
The cost of computing the actual Newton step is negli-
gible. The cost for computing the derivative is the same
as for applying the linear least-squares method. Both
problems involve solving a linear system of equations
with the same left-hand side though, so information
from one can be used for the other. Thus, the cost for
solving both these problems is essentially the same as
for just applying the linear least-squares method once.
Furthermore, the Newton method converges in a few
steps, so the total cost is only a few times the cost of ap-
plying the linear least-squares method. This makes the
method suitable for real-time applications e.g. where
cylinder pressure measurements are used for feedback
control.

The standard deviations of the estimates are somewhat
higher for the nonlinear least-squares estimates. This is
to be expected since one more parameter is estimated,
If x is known to be constant or if it varies little from
cycle to cycle, the estimate for & can be low-pass fil-
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tered, and the filtered estimate can be used for linear
least-squares estimation of the other two parameters.
Sufficient filtering should result in similar standard de-
viaticns as for the “known K" case.
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