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A Framework for Nonlinear Model-Predictive Control
Using Object-Oriented Modeling with a

Case Study in Power Plant Start-Up

Per-Ola Larsson, Francesco Casella, Fredrik Magnusson, Joel Andersson, Moritz Diehl, Johan Åkesson

Abstract— In this paper, nonlinear model predictive control
(NMPC) is applied to the start-up of a combined-cycle power
plant. An object-oriented first-principle model library expressed
in the high-level language Modelica has been written for the
plant and used to set up the simulation and optimization models.
The NMPC optimization problems are both encoded, using a
high-level notation, and solved in the open-source framework
JModelica.org. The results demonstrate the effectiveness of the
framework and its high-level description. It bridges the gap
between an intuitive physical modeling format and state of the
art numerical optimization algorithms. Promising closed-loop
control results are shown for plant start-up when the NMPC
model contains parametric errors and the simulation model,
corresponding to the real plant, is subject to disturbances.

I. INTRODUCTION
Increasing economic competition, as well as growing

environmental concerns, have pushed the optimization of
industrial processes during the last decades, also thanks to
the ever-increasing availability of low-cost computational
resources and high-performance optimization algorithms.
Applications of optimization techniques range from plant-
wide static set-point optimization, to the improvement of
economic performance, to on-line model predictive con-
trol (MPC) to track set-points and to reject disturbances.
Increasingly rigorous and complex models are employed
when formulating and solving optimization problems. This
trend has increased the effort required to encode models
suitable for optimization, calling for more effective and
user-friendly environments supporting this activity. Also, in
typical situations the optimization problem is often encoded
in tool-specific, proprietary description formats, which limit
the portability and re-use of models for different purposes.

The framework demonstrated in this paper is based on the
non-proprietary object-oriented modeling language Modelica
and on the open-source platform JModelica.org [1]. This
approach overcomes some of the difficulties often associated
with development of models to be used for optimization
purposes by i) relying on an high-level open language
supported by several tools for physical system modeling, ii)
using a high-level language, the Optimica extension, for the
formulation of the dynamic optimization problem, and iii)
using a computational platform allowing the same model to
be simulated, optimized and analyzed in a fully integrated
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way, possibly using different optimization strategies and
numerical solvers, with a unified, high-level front-end.

Modelica models have been used in the past to solve
optimal control problems in the field of power plant control,
see, e.g., [2], requiring extensive manual coding to interface
the simulation code generated by the Modelica compiler with
nonlinear optimization codes. More recently, the Modelica
language and the JModelica.org platform were used in a
first attempt to demonstrate the applicability of fully inte-
grated object-oriented modeling and dynamic optimization
techniques and tools to solve such problems [3]. In that
case, the plant model, albeit simple enough to be handled for
optimization purposes, was derived from first-principle laws
and built in a modular way, according to the object-oriented
modeling methodology. An open-loop dynamic optimization
problem was solved, i.e., the minimum-time start-up of a
combined-cycle plant under a turbine rotor stress constraint.

The main contribution of this paper is twofold:
• extend the framework presented in [3], which addressed

an open-loop dynamic optimization problem, to on-
line nonlinear model-predictive control (NMPC), an
emerging control technique typically based on first-
principle models [4], [5], [6], [7];

• demonstrate the capability of the proposed integrated
modelling and optimization platform to support signif-
icant applications in the energy sector, by means of an
exemplary case study.

For the sake of the present work, which is based on
simulation, the state of the plant is assumed to be accessible:
this is a first step towards the implementation of on-line
NMPC with state estimation, that is the subject of on-going
work. The results of a case study considering the same
problem previously addressed in an open-loop context in [3]
are presented in this paper; modeling errors and unmeasured
disturbances were additionally taken into account, in order to
assess the closed-loop performance in realistic use scenarios.

On-line optimal control is now widely used in the chemical
and petro-chemical industry, where optimality can be crucial
for competitiveness, and the very long time constants of the
processes ease the design and operation of such control sys-
tems; conversely, it is seldom used in the energy conversion
field, where control strategies are still mainly based on PID
control. Increased competition on electrical power markets,
increased penetration of renewable energy, with its inherent
variability, and the adoption of innovative conversion pro-
cesses is rapidly changing the scenario, making NMPC very
attractive for its inherent ability of handling multivariable
nonlinear processes with operational constraints and with



optimality requirements in terms of efficiency, availability,
low environmental impact, etc. This paper thus also aims at
promoting a framework for easier and smoother adoption of
on-line optimal control techniques in that context.

The paper is organized as follows: Section II gives an
overview of the Modelica modeling language and the JMod-
elica.org optimization framework used when solving the
NMPC problem and Section III presents the model of the
combined-cycle power plant, which is the subject of this
case study. Further, Section IV gives the NMPC problem
formulation of the start-up problem and Section V gives the
optimization results when NMPC is used on the combined-
cycle power plant model. Finally, Section VI provides a
summary and future work directions.

II. MODELING AND OPTIMIZATION
FRAMEWORK

A. Modelica
In this paper, Modelica, see [8], is used as the description

language for the dynamic model of a combined-cycle power
plant. Modelica is an equation-based, object-oriented lan-
guage targeting modeling of heterogeneous physical systems.
The ability to encode declarative equations, as opposed to
assignment statements, provides a convenient environment
for the modeler. Accordingly, there is no need to manually
solve the equations for the derivatives, which is common
in block-based modeling formalisms. Rather, the underlying
mathematical formalism in Modelica is that of differential al-
gebraic equations (DAEs). Modular modeling is extensively
supported by the possibility of defining a-causal physical
ports for elementary components, of building systems by the
hierarchical aggregation of sub-systems, and of managing
model variants by replacing some parts of the model by
others sharing the same physical ports.

Modelica is a non-proprietary language supported by a
growing number of tools, featuring a companion, freely
available standard library of physical components in a wide
range of domains, including thermodynamics, mechanics,
electronics, thermal systems, and control. The concept of
developing model libraries is advantageous in terms of
knowledge re-use. For the sake of this work, a small library
for optimization-oriented modeling of power plants has been
built, starting from the work described in [3] and further
updated for this paper.

B. JModelica.org
JModelica.org [1] is an open-source platform for simu-

lation and optimization of Modelica models and has been
used previously for energy, chemical, and automotive sys-
tems, see [3], [9], [10]. Whereas standard Modelica tools,
such as Dymola [11] and OpenModelica [12], mainly focus
on the simulation of physical systems, JModelica.org also
targets large-scale dynamic optimization. JModelica.org is
developed in collaboration between industry and academia,
with the purpose of creating an industrially viable platform
using state-of-the-art numerical algorithms to optimize the
design and operation of complex physical systems.

The Modelica language is largely designed for simulation-
based analysis. To accommodate the need for conveniently

formulating dynamic optimization problems based on models
described by Modelica code, the Modelica extension Op-
timica [13] has been developed and integrated into JMod-
elica.org. Optimica enables the extension of a Modelica
model to include the formulation of a dynamic optimization
problem based on the model, such as an optimal control or
parameter estimation problem. This is done by introducing
objectives, variable bounds, path constraints and by specify-
ing the optimization variables.

The main components of JModelica.org are the Mod-
elica and Optimica compilers, which are implemented in
Java using JastAdd [14], and the three modeling interfaces
Functional Mock-up Interface (FMI), JModelica.org Model
Interface (JMI) and a new symbolic XML-based format
based on FMI, which represents the model in terms of
differential-algebraic equations.

FMI [15] is a standard defining a tool-independent format
for representation of hybrid dynamic models on ordinary
differential equation (ODE) form. The standard is supported
by most Modelica tools, among many others. In this paper,
JModelica.org is used to compile the Modelica model into a
Functional Mock-up Unit (FMU), thus transforming it from a
DAE into an ODE. JModelica.org’s interface to SUNDIALS
[16] is then used to simulate the model.

JMI is a runtime library designed solely for JModelica.org,
and has long been the main interface for dynamic optimiza-
tion in JModelica.org. The main optimization algorithm in
JMI is collocation-based and implemented in C. It relies on
CppAD [17] to compute and evaluate derivatives. However,
in this paper the new XML-based format is instead used
for optimization purposes. This format is an extension of
the XML format used in FMI and is described in [18]. The
format uses a DAE representation of the model instead of
an ODE representation, as in the previous two cases. It is
designed to use a model representation that is as general
as possible, allowing for the formulation of a wide variety
of problems based on Modelica code, in particular dynamic
optimization problems described by Optimica code.

The user interacts with the various components and
provided functionalities of JModelica.org via the scripting
language Python: this gives extreme flexibility in terms of
the workflow of the final application. In the case discussed
in this paper, a few lines of Python code were sufficient
to implement the receding horizon MPC algorithm, starting
from basic functionalities such as ”set initial state of the
model”, ”solve dynamic optimization problem over a certain
time interval”, and ”set initial guess for nonlinear solver”,
based on the results obtained at the previous time step.

C. Solving the Optimal Control problem by Direct Colloca-
tion in CasADi

The algorithm used in this paper to solve the optimal
control problems arising in the NMPC was developed in
[19] and utilizes the new XML-based format. The algo-
rithm implements a direct and local collocation method,
see [20], on finite elements using Radau points and La-
grange polynomials. It is implemented in Python within the
JModelica.org framwork, using the open-source optimization
package CasADi [21]. Using CasADi’s symbolic syntax, it is



possible to transcribe the infinite dimensional optimal control
problem into a finite dimensional nonlinear programming
problem (NLP); the user has full control on the details of
the transcription process, such as the number and length of
intervals, order of the interpolation polynomials, etc. The
NLP is then solved using the primal-dual interior point
method IPOPT v.3.10.1 [22] using MA57 as a linear solver.
The first and second derivatives required by IPOPT are
automatically and efficiently generated by CasADi, using
automatic differentiation (AD) techniques [23]. It has pre-
viously been shown, see [24], that this approach is not only
more convenient, being implemented in a high-level language
such as Python, but also considerably faster than the previous
C-based implementation.

III. COMBINED-CYCLE PLANT MODEL

A. Plant Overview

The system chosen for the present case study is a
combined-cycle power plant, in which the exhaust gases
of a gas turbine drive a heat recovery steam generator,
which feeds a steam turbine to produce additional power.
The shaft of the steam turbine is often the most critical
component when starting up the plant: the difference between
the surface temperature, which is in contact with live steam,
and the average temperature, which has slow dynamics due
to the huge thermal inertia of the component, gives rise to
mechanical stresses that limit the operating life-time of the
turbine. The life-time consumption is a function of the peak
stress level achieved during the start-up cycle. On the one
hand, this means that the peak level should be controlled, in
order to avoid excessive wear and tear of the component;
on the other hand, once a certain stress level is deemed
acceptable, it might be convenient to push the load increase
rate in order keep the stress level at that level as long as
possible, because this will not cause any additional fatigue
on the turbine, and will allow for a faster start-up time.

Large size combined-cycle power plants have two or three
levels of pressure and a dozen or more heat exchangers
along the flue gas path. For the sake of the present study, a
simplified and somewhat idealized plant structure has been
assumed, with only one level of pressure and just three
heat exchangers: one economizer, one evaporator, and one
superheater. The goal is to include all the main physical
phenomena taking place in a commercial power plant, while
keeping the complexity of the model low and avoiding the
need for much proprietary data to parameterize the model.
Once solving the NMPC problem on such a proof-of-concept
simplified model is proven feasible, it might be possible to
move to more accurate and detailed plant models, referring
to specific commercial units.

B. Modeling

The plant model used is an updated version of the model
presented in [3]. Sizing and operation data were adapted from
a previous study where the combined-cycle plant start-up
problem was also considered [25].

The plant model is built in a modular way by connecting
elemental components, as shown in the object diagram of

Fig. 1. Object diagram of Modelica plant model.

Figure 1. Port connections correspond to domain-specific
equations; for example, the connections of thermal (red) ports
state that the temperature at the connected ports are equal and
that the sum of the heat flows entering the ports is zero.

At the lower left of the diagram, the gas turbine model is
found. The dynamics of the gas turbine controller is much
faster than the dynamics of the steam generator, therefore
ideal and infinitely fast control was assumed for the model.
This means that the exhaust gas mass flow and temperature
are given by piecewise-linear functions of the load set-point,
which is the control input for the NMPC algorithm. Until
a 50% load level is achieved, the exhaust flow is constant
and the temperature increases, while above 50% load, where
temperature control kicks in, constant temperature and in-
creasing exhaust flow are assumed.

The heat-recovery steam generator is described by the
connection of lumped-parameter models of the steam side
and flue-gas side of the heat exchangers. Each segment of
the flue-gas side is modeled by a dynamic energy balance
equation, while changes in mass storage and pressure losses
are neglected, since they are negligible for the purposes of
this system model. The same modeling assumptions hold for
the water-steam side of the evaporator and superheater. In
the case of the evaporator, a simplified drum boiler model is
used, accounting for lumped-parameters dynamic mass and
energy balances. The drum boiler is complete with a PI level
controller, acting on the feed water flow rate; this controller
is straightforward to design and implement and is not part
of the optimal control problem, so it is included in the plant
model along with the physical component descriptions.

The flue gas, liquid water and superheated steam are all
modeled as constant cp fluids for simplicity, while the proper-
ties of saturated liquid and vapour in the drum are described
by suitably tuned polynomials. Since the water-steam side
heat transfer coefficients are usually much larger than the
flue-gas side ones, the heat exchanger wall temperature is
assumed to be the same as the water temperature in all three
components of the steam generator – in other words, the
water-steam side components also include the thermal inertia
of the heat exchanger walls, using the fluid temperature as



state variable.
The heat transfer between the steam-side components

(i.e., their outer tube wall surfaces) and the flue-gas side
components is modeled by three convective heat transfer
components, in which the heat flow is proportional to the
difference between the average temperatures on the two
connectors, by means of total heat conductivity coefficients
which were tuned in order to get the correct outlet temper-
atures at full load conditions.

The steam turbine is modeled by the connection of a
thermo-hydraulic part, which describes the expansion of
steam to a fixed-pressure condenser with a constant isen-
tropic efficiency, and of the thermal model of the section
of the rotor shaft corresponding to the first row of blades.
The latter model is described by Fourier’s heat equation
for a hollow cylinder, having as boundary conditions zero
heat flow on the inner surface (corresponding to the hole
inside the shaft), and convective heat transfer with the live
steam entering the turbine on the other side. The partial
differential equations have been discretized by the finite
difference method, using 8 temperature nodes, 6 of which
are state variables. As mentioned above, the external rotor
surface stress is eventually proportional to the difference
between the surface temperature and the rotor temperature
averaged through its thickness.

The reader interested in further details is referred to
the Modelica package containing all the models definitions,
which will be included in the upcoming releases of JModel-
ica.org.

The above-described object-oriented model is processed
by the JModelica.org tool and eventually cast into a
differential-algebraic equations (DAE) system:

0 = F (ẋ, x, w, u,p), (1)

where x, w and u are the state variable, algebraic variable,
and control input variable vectors, respectively, and p is the
model parameter vector. In total, the model has 14 states
(three temperatures for the flue gas side, two temperatures for
the economizer and superheater steam side, pressure and void
fraction of the evaporator, six temperatures of the turbine
shaft, and the state of the PI level controller), 152 algebraic
variables, and 1 input.

C. Simulation and Optimization Models
Compared to [3], the main goal of this paper is to demon-

strate the use of object-oriented modeling tools and method-
ologies in a closed-loop optimal control framework. In order
to make the closed-loop tests more representative of real-life
operating conditions, modeling errors were introduced in the
model used in the NMPC and unmeasured disturbances were
introduced in the model used for the simulation of the plant.

One of the main uncertainties when modeling these plants
lies in the description of the whole heat transfer process. This
has been accounted for in the model used in the NMPC by
changing the thermal conductances of the heat exchangers
between 5% and 10% of their nominal values, which are
used in the process simulator closing the loop.

The main unmeasured disturbance acting on the plant is
given by the fluctuations of the gas turbine exhaust flow and

temperature. This has been modeled by adding a random
disturbance to both variables in the simulation model. The
random disturbance is obtained by generating a pseudo-
random binary sequence, which is then low-pass filtered, in
order to obtain band-limited white noise. The resulting RMS
deviation of the mass flow is 2% of the nominal value, while
the RMS deviation of the temperature is 2% of the difference
between the minimum and maximum flue gas temperatures.

IV. NONLINEAR MODEL PREDICTIVE CONTROL
FORMULATION OF PLANT START-UP

The start-up problem for the combined-cycle power plant
is to transfer the plant from the initial state to full load. The
initial state of the plant considered in this paper corresponds
to the time instant directly after the electrical generator has
been connected to the power grid. The initial steam turbine
rotor temperature is assumed to be uniform and equal to the
initial steam temperature, corresponding to a warm start-up
condition. Since the plant operates in sliding pressure mode,
the full load state is reached when the evaporator pressure p
reaches at the reference target value pref.

Several constraints on the power plant operation are set
during start-up. The evaporator pressure p is increased by
increasing the load u on the plant, which is the control
variable of the plant used in the NMPC. As the temperature
is increased with the load, the thermal stress σ on the steam
turbine rotor transiently increases, slowly settling down when
the temperature increase stops. Assuming that the stress over
time follows a monotonically non-decreasing curve towards
its peak value and monotonically non-increasing curve after
the peak value been reached, then the peak value is an
indicator of rotor life-time shortage due to the overall power
plant start-up cycle. Thus, upper limits on the stress σ will
be set in the NMPC optimization problem, both as a soft
constraint and as a hard constraint.

Apart from the stress limiting the start-up operation,
constraints are also set on the rate of change of the gas
turbine load, i.e., the rate of change of the control variable
u. First of all, the load may not decrease. This will avoid
having multiple cycling of the stress level σ during the start-
up. Secondly, the load increase rate may not exceed the max-
imum value prescribed by the manufacturer. Additionally, a
maximum load on the plant is also set.

The NMPC optimization problem to be solved in each
iteration is formulated using a quadratic cost function as,

min
u̇,ε

t0+Tp∫
t0

(
qp (p− pref)

2
+ qu̇u̇

2
)
dt+ qεε

2

s.t. 0 = F (ẋ, x, w, u,p), u =

t∫
t0

u̇ dτ

σ ≤ σmax

σ − ε ≤ ασmax, ε ≥ 0

0 ≤ u̇ ≤ dumax

0 ≤ u ≤ umax

x(t0) = x0, u(t0) = u0,

(2)



where qp, qu̇ and qε are design weights, t0 the initial time
for each iteration, and Tp is the prediction horizon length.
The decision variables in the optimization problem are the
control signal derivative u̇ and the slack variable ε for the
soft constraint on the stress σ.

The first quadratic term in the objective function ensures
that the pressure p reaches the target pref as quickly as
possible. The second term penalizes fast changes and os-
cillations of the gas turbine load, which could unnecessarily
stress the gas turbine unit; its weight is chosen big enough to
ensure that no such oscillations arise during the transient. The
third term introduces a soft constraint on the stress, which
kicks in when σ is closer to the limit σmax by less than
α percent. This term was added to provide some margin
between the average value of σ and its upper bound σmax;
this helped avoiding unfeasible NLPs, caused by the effects
of the temperature disturbances injected by the gas turbine
when the stress is already at its maximum level.

Extending the model F with an integrator at the input, and
thus having u as a state and instead using u̇ as a decision
variable, yields a straight-forward way of introducing con-
straints on u̇ compared to, e.g.,high-pass filtering of u. It also
better reflects the actual requirements of the problem: there
is nothing wrong with a high value of u (on the contrary,
the goal is to get at full load as quickly as possible), while
fast changes and repeated oscillations of the gas turbine
load should be avoided, preferring smooth load changes. The
initial values x0 and u0 are set directly from measurements
and knowledge of the control signal, respectively.

V. NUMERICAL EXAMPLE OF CLOSED-LOOP
PLANT START-UP

The optimization problem in Eq. (2) can directly be formu-
lated using the Optimica extension for optimization and the
Modelica model of the power plant. The prediction horizon
is set to Tp = 500 s and the collocation scheme used has
elements of length 100 s, where the states and algebraic vari-
ables are approximated using Lagrange polynomials of order
three and two, respectively. The control signal derivative u̇
is set element-wise constant and in the three last elements in
the optimization interval, a constraint of u̇ = 0 is enforced.
Thus, any effect on p and σ due to the last change of u̇ will be
accounted for in each NMPC optimization time interval. For
each NMPC iteration, the optimized control signal derivative
is applied to the simulation model, corresponding to the real
plant, for 100 s, i.e., one element.

As all trajectories over the optimization horizon are solved
for simultaneously when using a collocation method, good
initial guesses of all variables at the collocation points are
crucial in this nonlinear optimization problem. For the first
NMPC iteration, the result of a simulation of the initial sta-
tionary point is used, while the next-coming NMPC iterations
use the previous NMPC iteration as initial guess.

With the extension of u as a state, the optimization model
has 15 state variables and 152 algebraic variables, which
gives a total of 2976 variables in the NLP after discretization
using the collocation scheme in JModelica.org. Each NLP
optimization is solved by IPOPT in 0.4-0.8 s when using an
Intel R© CoreTM i7-2600 CPU@3.40GHz.
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Fig. 2. Closed loop control with NMPC. Top: Evaporator pressure p and
reference value pref (dashed). Middle: Rotor stress σ, soft constraint (dashed)
and hard constraint (solid). Bottom: Turbine load u and upper limit (dashed).

The resulting closed-loop control of the start-up can be
found in Figure 2, showing the evaporator pressure p, stress
σ and load u. Figure 3 shows the corresponding variables
in each NMPC iteration result. During the first 200 s, the
load on the gas turbine is increased as fast as possible such
that the stress on the steam turbine rotor tends towards the
soft constraint. After that, and up to 5000 s, the load is
increased such that the stress is as high as possible according
to the NMPC model. However, due to modeling errors and
disturbances, the stress on the rotor in the simulation model
is varying considerably. As the load reaches 50%, additional
increase will not increase the exhaust gas temperature, only
the flow rate, which yields only small increases in the steam
temperature. Thus, after this point in time it is feasible to
increase the load at the maximum allowed rate while at the
same time the stress level decreases. The plant is considered
to reach full load at 5500 s.

The result is comparable to the optimal open loop start-
up trajectories found in [3]. However, due to the imperfect
model in the NMPC, disturbances in the simulation model
and a soft constraint on σ that is lower than the constraint
used in [3], the plant start-up is approximately 1300 s slower.

VI. SUMMARY AND FUTURE WORK
Modelica models for a combined-cycle power plant have

been developed, to build simulation and optimization models
for an NMPC problem. Within the open-source framework
JModelica.org, the NMPC optimization problem has been
formulated using the Optimica extension of Modelica, then
transcribed by means of direct collocation methods into
NLPs that have been solved by IPOPT. The obtained perfor-
mance would also be adequate for real-time NMPC control,
though a more detailed model would probably be required for
an actual industrial application. One might also consider this
framework as a rapid prototyping environment, to quickly
test different model variants and control strategies, until a
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Fig. 3. NMPC iteration results at closed loop control. Top: Evaporator
pressure p and reference value pref (dashed). Middle: Rotor stress σ, soft
constraint (dashed) and hard constraint (solid). Bottom: Turbine load u and
upper limit (dashed).

good one is found; then, the actual real-time implementation
could also be carried out by other means.

The results obtained with this case study suggest that
the presented framework could be successfully employed
for applications of NMPC in the field of power plants and
energy conversion systems. The full source code will be
made available in future releases of JModelica.org, so it
could be used a source of inspiration for similar projects.

Within this framework, the user may concentrate on the
high-level description of the model and optimization prob-
lem, while the tool takes care of interfacing to state-of-the
art numerical optimization routines. The use of high-level
declarative modelling formalisms considerably shortens the
design cycle; this is advantageous, as the controller design is
an iterative process, in which the level of detail of the model
and the optimal control law are repeatedly adapted until a
satisfactory design is found.

An important future development of this work is the
design of a state estimator. Using the tools available in
JModelica.org, an extended Kalman filter (EKF) may be
implemented. It is important to stress that the same high-
level description and end-user convenience of the EKF, as for
the modeling and optimization framework, would be used.

Several drastic simplifications were made in the plant
model presented in this paper. Another interesting extension
would be to give the model a higher level of detail, e.g.,
by using distributed parameter heat exchanger models, by
including more accurate fluid property models, and possibly
by considering two or three levels of pressure in the plant.
More elaborate control strategies, e.g. taking advantage of
desuperheating flows, could also be studied.
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