

This is an author produced version of a paper presented at
 ITCom's Conference on Performance and Control of Next-Generation

Communication Networks (ITCom 2003), 9-10 September 2003.
This paper has been peer-reviewed but may not include the final

publisher proof-corrections or pagination.

Citation for the published paper:
J. Andersson, C. Nyberg and M. Kihl, 2003,

"Performance analysis and overload control of an
open service access (OSA) architecture",

Performance and control of next-generation communication networks :
[ITCom's Conference on Performance and Control of Next-Generation
Communication Networks] ; 9 - 10 September 2003, Orlando, Florida,

USA (SPIE proceedings series ; vol. 5244).
ISBN: 0-8194-5127-4. Publisher: The International Society for Optical

Engineering (SPIE).
http://dx.doi.org/10.1117/12.509294

Copyright 2003 The International Society for Optical Engineering.

This paper was published in Proceedings of SPIE, 5244 and is made
available as an electronic reprint with permission of SPIE. One print or

electronic copy may be made for personal use only.
Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplication of any material in this paper for a

fee or for commercial purposes, or modification of the content
of the paper are prohibited.

http://dx.doi.org/10.1117/12.509294

Performance analysis and overload control of an open service access
(OSA) architecture

Jens K. Andersson*, Christian Nyberg and Maria Kihl
Department of Communication Systems, Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden

ABSTRACT

The trend of the service architectures developed in telecommunications today is that they should be open in the sense that
they can communicate over the borders of different networks. Instead of each network having their own service
architecture with their own applications, all networks should be able to use the same applications. 3GPP, the organization
developing specifications for the 3G networks has specified the standard Open Service Access (OSA), as a part of the 3G
specification. OSA offers different Application Protocol Interfaces that enable an application that resides outside a
network to use the capabilities of the network. This paper analyses the performance of an OSA gateway. It is examined
how the overload control can be dealt with in a way to best satisfy the operators and the 3’rd parties. There are some
guiding principles in the specifications, but a lot of decisions have to be made by the implementors of application servers
and OSA gateways. Proposals of different requirements for an OSA architecture exist such as, minimum amount of
accepted calls per second and time constraint for the maximal total delay for an application. Maximal and fair throughput
have to be prioritized from the 3’rd parties view, but profit is the main interest from the operators point of view. Therefore
this paper examines a priority based proposal of an overload control mechanism taking these aspects and requirements
into account.

Keywords: Open Service Access, overload control, quality of service, priorities

1. INTRODUCTION

During the last years there has been a change in the evolution of service architectures. Until recently, each network has
had its own service architecture and only the operator has been able to create and introduce new services. Today a couple
of consortia are developing specifications for service architectures which allow interactions between different networks.
Thus, an application in one network can use capabilities from other networks. Service creation will also be much easier
in the new architectures. Earlier only experts could create and deploy new services, as thorough knowledge of telecom
protocols was required to be able to create an application inside the network.

Open Service Access (OSA) is the service architecture that is proposed for the 3G networks. OSA is developed by the
3GPP7. With OSA it becomes easier to develop and test new services outside the telecom domain. Since OSA offers an
increased security and integrity, it is possible for the operators to open up their networks to independent software
developers and service providers, see Rajagopulan2.

One common problem for all service architectures is what actions to take if the control nodes become overloaded. To over
provision the nodes so that they can cope with all load peaks is too expensive. If a node is overloaded, long queues of
jobs will be formed which leads to long waiting times for service. If the waiting times get too long, customers will
abandon the request for service and perhaps make a retry. But the abandoned requests also consume valuable processing
time. In the worst case, an overloaded node will only work with processing abandoned requests for service.

This problem may be solved by introducing overload control mechanisms in the network. The main idea is to, during
overload situations, reject some requests as early as possible, so that the accepted requests receive a good service. To be
able to do overload control one needs a way of detecting when a node is overloaded and also a mechanism that rejects
requests when there is overload. There must also be a way of determining how the load measure should be used to
calculate the parameters of the rejection mechanism.
*jens.andersson@telecom.lth.se; phone +46462229158; fax +4646145823

Overload control of communication systems has been a research topic for some decades in telephone networks. An early
paper is Forys8 in which the protection of control processors in telephone exchanges is discussed. Some papers on
overload control in IN are Pham et al9 and Kihl et al10 in which overload control algorithms are suggested and
investigated. The general performance of a Parlay gateway, which is almost the same as an OSA gateway was analysed
in Melen et al11. Overload control mechanisms for an OSA architecture are proposed and investigated in Andersson et
al13.

In the context of overload control, most papers present methods on how to reject new calls in such way that the callers
are treated equally. This is, of course, the fairest case from the users’ point of view, but the operator’s main interest is
probably revenue. Therefore, we believe that an overload mechanism based on priorities should be interesting for the
service providers. The priority of an application should correspond to the amount of revenue the application generates for
the operator. Thus, other variables have to be included in order to maintain the user-perceived Quality of Service of the
applications.

In this paper, we give a thorough description of OSA in section 2. We propose a queuing model of an OSA architecture
in section 3. In section 4 priorities are discussed. An priority based overload control mechanism is proposed in section 5.
In section 6 the simulation parameters are given followed by results and discussions in section 7. Finally we draw some
conclusions in section 8.

2. OPEN SERVICE ACCESS (OSA)

OSA is a collection of open network Application Protocol Interfaces (APIs) that enable third party vendors to develop
and deploy, with the minimum effort, applications that access the full functionality of the underlying network while still
preserving its integrity. By abstracting service creation from telecommunication specific details, the development process
of new applications is shortened and the creation pace of new applications can be increased.

An OSA architecture consists of three main parts, the Application Servers (AS:s), the Service Capability Servers (SCS:s),
and the Framework. Fig. 1 shows one of the possible configurations of an OSA architecture. Each SCS hosts one or
several Service Capability Features (SCF:s), which are abstractions of the underlying network functionality. The part
referred to as the OSA gateway can be built on one or several physical entities. In Fig. 1 the Framework and both the
SCS:s constitute the OSA gateway.

The Application Servers (AS:s) host the applications. Each AS can host one or several different applications and provide
them with the ability to communicate with the Network via the OSA Gateway. The AS:s can be physically positioned
inside or outside the network they are communicating with. An AS positioned outside the network of an operator is

Figure 1: An example of an OSA architecture with a detailed view of the OSA Gateway

AS

AS

AS
AS

SCS
SCF

SCF
SCS

SCF

SCF

Network

OSA Gateway

OSA
Gateway

HLR

CSE

Frame-
work

HLR: Home Location Register
CSE: CAMEL Service Environment
AS: Application Server
SCS: Service Capability Server
SCF: Service Capability Feature

typically connected to the Internet. Usually an AS is triggered by the dialling of a special number or by some kind of
HTTP request. Examples of applications are conferencing, location based applications and so forth.

In an OSA architecture there can be one or several Service Capability Servers (SCS:s). More about the implementing of
SCS:s can be found in Stretch3. The SCS provides the applications with network functionality via one or several SCF:s.
An SCF consists of several narrow functions, which together makes it possible to utilize the network capability. One
example is the Call Control SCF, which provides functionality to connect and establish different kind of calls to a mobile
user. Another example is the Charging SCF, which provides functionality to charge the user for a service.

The Framework is the most important part in the OSA architecture. This part takes responsibility for all security aspects
of OSA. For example it provides the applications with functionality like authentication before accessing the network
functionality or discovery to find out which SCFs that are provided by the SCSs. All the security and integrity
functionalities necessary to open up a network are provided by the Framework. It is important to notice that there is
always exactly one Framework in an OSA architecture.

2.1 An example of a service in OSA
In the specification4, a couple of OSA applications are proposed. One example is an “application initiated call”. In this
application for example a customer accesses a Web page and selects a name on the page of a person or organisation to
talk to. The sequence diagram of this application is shown in Fig. 2. An application setup consists of a number of OSA
messages. First the application sends a createCall message to the OSA Gateway to create objects for further communica-
tion. In the Gateway the application call is translated into suitable protocols for communication with for example an
UMTS network. When the A party has answered, the application is notified and then the call is routed to the B party.

2.2 Overload control in OSA
In an OSA architecture there are especially two parts sensitive to overload, the AS:s and the SCS:s. The most critical
SCF seen from the aspect of overload is the Call Control SCF which connects and initiates calls. The overload related
functionality is managed by the Framework. In the specification5, there is a description of the functionality that is pre-
pared. Information about the load condition in the SCS:s and the AS:s can be exchanged which gives the opportunity to
control the load either from the application side or from the Gateway.

The load condition is described by three levels. Load level 0 corresponds to normal load, load level 1 corresponds to
overload and load level 2 corresponds to severe overload. Nothing is said about how the load levels should be set or what
actions they should cause, but corresponding threshold values to load level 1 and 2 can be set. Different SCS:s can have

Figure 2: Message sequence diagram for an application initiated call.

Application___| |_____________OSA Gateway (SCS)______________| |_______UMTS Network

createCall
routeReq

CAP RequestReportBCSM

CAP EventReport

routeRes
routeReq

CAP RequestReportBCSM

CAP Eventreport

routeRes

deassignCall

different threshold values for the load levels. The action an overload situation should cause on a specific application is
identified in the load management policy, which is created via contract writing (see below).

It is possible for the Framework to subscribe on load information both from an AS and an SCS. The subscription can be
either load information sent to the Framework at discrete times or load information sent on a load level change.

2.3 Contract writing
When a new application is introduced a contract is written with the OSA gateway through the Framework. The contract
contains rules and restrictions that should be followed. Proposals of what a contract should include can be read for
example in Rajagopulan2. A typical contract might include minimum throughput for an application and maximal delay
of an application call. Another variable that might be agreed on is the charging criteria. The contracts should not only
consist of constraints for the applications according to the gateway. Also the constraints that the application has to fulfil
is agreed.

3. MODEL

We have modelled an OSA gateway built on a single physical entity in a multi application environment. Our model
consists of R applications, a Gateway and a network, see Fig. 3. We do not have to specify how many SCS:s there are in
the gateway as they are positioned on the same physical entity anyway. Either all or no SCS:s are overloaded.

Each G-box in Fig. 3 corresponds to a generator of new application calls to a specific application. We will assume that
calls are generated according to a Poisson process or according to an MMPP, but other processes could of course be used
in the simulation model. Each application is assumed to be positioned at a non-overloaded AS which is modelled as a
delay with deterministic values, depending of which message that should executed.

An application, al, has a guaranteed rate of dl calls per second, and a total execution time in the Gateway of
seconds. Of course the system must be stable when all applications face their guaranteed rate, which implies that

(1)

Each application belongs to a priority, and has a time constraint, . Each priority
corresponds to a guaranteed rate of application calls per second, where guarantees a higher rate than . A time
constraint corresponds to the maximum delay a message should experience each time it passes the Gateway. In the
example in Fig. 2 the application call has to pass the gateway five times and if the application call, when it is completed,
has had a total residence time in the gateway larger than , the call is said to be expired. The time constraints are set
such that < <....< . The set of applications with time constraint k is denoted A(Tk). The total guaranteed rate of
applications with time constraint k, is denoted λk. λk is given by

The time constraints and priorities can be set independently of each other for each application.

The gateway is modelled as a single server queue, in which one message at a time is served. This means that the messages
are stored in the same queue when waiting for execution independent of which SCS they belongs to. The execution times
in the gateway are set to deterministic values, depending of which message that should be executed. We denote with N(t)

xtot l()

dll 1=

R
∑ xtot l()⋅ 1<

pj j 1…M=(), Tk k 1…N=(),
pj pj 1+

Tk

G

Delay

AS(s) OSA Gateway Network

Figure 3: An OSA Model.

Delay
G

5 Tk⋅
T1 T2 TN

λk dl

l A Tk()∈
∑=

the number of messages in the gateway with a remaining time less than t before their deadline expires. Another variable
that will be used in this article is xGW, which is an estimation of the execution time of a random message in the gateway.
We will use different values for this variable, see section 6.

The network is assumed to be non-overloaded and is modelled as a deterministic delay with stochastic elements from, for
example, the phone pick up time in Fig. 2.

4. PRIORITIES

The priorities should be set in such way that the utility is largest for the priority 1 applications and decreasing by
increasing priority levels. This is a consequence of the statement that guarantees a higher rate of accepted application
calls than , and that we of course want to maximize the utility. In this section we propose a utility function that can
be used for the settings of the priorities.

4.1 The utility function
First of all utility has to be defined. The utility should somehow correspond to the use of spending processor time on an
application. We believe that revenue is the main interest for the operator or owner of the OSA gateway, which means
that revenue should have influence on the utility. However, the revenue of an application cannot directly be used as a
measure of utility. Assume that a very resource consuming application exists. Even if this application generates a good
revenue it might happen that another application exists, which generates less revenue but has a much shorter total execu-
tion time in the Gateway. Therefore, the total revenue for the latter application during a minute may be higher than the
former. So we have to weight the revenue against the total execution time in the gateway. The utility function of al is
now described by the following expression

(2)

where r(l) is the revenue. r(l) is the income the operator receives each time an application call from al is served minus the
cost of maintaining the network functionality that the application use. In Eurescom Technical Information12 the players
in a Parlay/OSA business environment are discussed. The operator is only one of many players, so the income to the
operator per application call is not equivalent to the cost of an application call for the customer as the receipts should be
distributed among several players. This means that the utility an application corresponds to is a measure of how much
revenue the operator will have through executing applications of the same kind for one second.

Equation (2) gives a good estimation of the utility seen from the aspect of revenue in the short run. But in the long run it
should be an advantage for the operator to have an extra goodwill parameter, G, that could be set individually and be
added to (2). For example a completely new application representing a new kind of service might lead to larger revenue
in the future if it is experienced well and then the development pace of similar applications might increase. So if this
goodwill parameter is based on qualified market analysis this would probably increase the revenue in the long run.

The priority of an application depends on the utility function. A discrete number of priorities will be used, and thereby
each priority level will correspond to a utility interval.

5. OVERLOAD CONTROL MECHANISMS

We have developed an overload control mechanism for the gateway, see Fig. 4. It consists of a controller, a gate and a
selector. The controller makes appropriate measurements on the gateway. Also, it analyses the measurement data and
determines what action that has to be taken by the gate, which regulates the acceptance of new application calls.

The objective of the overload control scheme is to keep all time constraints for the accepted application calls. As different
applications can have different time constraints the selector has to decide in which order the messages in the gateway
should be served. The selector uses an Earliest Deadline First (EDF) scheduling algorithm, see Lui et al1. The controller
performs measurements of the load status in the gateway to check if it is possible for the selector to pick the messages in
such order that none of the time constraints is expired. If not, the controller orders the gate to decrease the acceptance of
new application calls. If the time constraints can be kept the gate is told to increase the acceptance of new application

pj
pj 1+

U l() r l()
xtot l()
---------------=

calls if possible.

5.1 Gate
When the gateway is overloaded, the gate starts to reject application calls. Since each application is guaranteed a mini-
mum rate of accepted application calls per second, we have chosen to let the gate use a call gapping method, see
Berger6, to reject application calls. The time is divided into small intervals of a certain length, and then the first applica-
tion call in the interval is accepted. The interval lengths depend on the guaranteed rate the application has. If, for exam-
ple, an application is guaranteed at least 10 calls per second, this corresponds to a time interval of 0.1 seconds. During
an overload situation (load level 1) the gate introduces call gapping on the lowest priority applications. If this action is
not enough and the overload condition remains after X seconds, call gapping is introduced on application calls of the
next priority level, and so on every X:th second until applications from all priority levels have their calls rejected accord-
ing to the call gapping method. The parameter X should be set taking into account the capacity of the gateway. If a
severe overload condition (load level 2) appears all the priority levels are blocked at once, only letting the guaranteed
amount of application calls through.

5.2 Controller
For each arriving or departing message the controller checks if the time constraints for the messages waiting in the
queue may fail if the message is admitted. The following condition should of course always be fulfilled:

(3)

If not fulfilled, application calls with time constraint will most probably fail even if the gate starts to reject arriving
application calls at this stage.

Fig. 5 can be used to easier explain the calculations that is performed by the controller to decide the current load condition
in the Gateway. Each time constraint can be seen as an insertion point in the waiting queue for an application of a certain
time constraint. When a message is inserted into the queue, this can be seen as some kind of time axis where the messages
proceeds along this time axis as the distance to their deadline. When the execution of one message is completed the next
message at the front of the queue is executed.

While a message with time constraint T3 is waiting to get first in the queue it is possible for new messages with time
constraint T1 and T2 to arrive at the queue with a closer deadline and thereby get a closer position to service. This means
that during the interval of length after the arrival of a time constraint 3 message, all applications with time
constraint T1 or T2 will have a closer deadline. Then during another interval of , arriving messages with time
constraint T1 will have a closer deadline. Therefore, condition (3) can be improved to also include the guaranteed rate of
new application calls. This condition can be expressed as

(4)

Controller

Gate
new application

Figure 4: Model of the overload control mechanism

se
le

ct
or

OSA gateway

calls

messages from
accepted app.
calls

N Tk() xGW⋅ Tk 1 k N≤ ≤(),≤

Tk

T3 T2–
T2 T1–

N Tk() λ j

j 1=

k 1–

∑ Tk Tj–()⋅

+

xGW⋅ Tk< 1 k N≤ ≤

If this condition is fulfilled and if the gate only let the guaranteed application calls through, the messages currently in the
queue will most probably be served within their time constraints.

However, the controller should also check that the condition in (4) not is violated in the future by admitting too many
calls from applications with less tough time constraints. Assume for example that an application call with time constraint

arrives at time . Let A be the set of all calls with a deadline in the interval at this arrival. After
seconds all the calls in A will have a deadline that is less than seconds in the future. But in the time interval

messages with time constraint and may have arrived to A and these messages will also have a
deadline that is less than seconds in the future.

If a burst of application calls with time constraint arrives and we start to reject calls from all priority levels, then the
maximal number of messages that might be additional to an interval of length can be expressed as

(5)

and the execution time of these should be added to the execution time of all initial messages in the interval of length .
Just as before we also have to include that new application calls might arrive during the execution of the messages in the
interval. This new condition can be described as

(6)

where is the same as in equation (5). This constraint has to be fulfilled for all possible combinations of and ,
where i > k.

If conditions (4) and (6) are fulfilled, the controller decides that the system has a high probability to succeed without too
many expired deadlines. If any of the two conditions fail, the controller signals overload to the gate. Too further decrease
the number of expired deadlines and to get a more calmly behaviour, the controller uses a marginal when signalling for
overload. This marginal is created by multiplying the right hand of the conditions with a marginal factor, f<1. If any of
the conditions are violated when the right hand side is multiplied with f, the controller signals overload (load level 1). If
any of the conditions are violated without the marginal factor, the controller signals severe overload (load level 2) to the
gate.

6. SIMULATION PARAMETERS

In the simulations we have used 10 applications with different behaviour. In our implementation we support two different
time constraints and three priorities for the applications. The different applications also differ in execution times in the
OSA Gateway, delays in the AS, delays in the network and the number of times an application needs to pass the gateway.
Table 1 shows the configuration of the applications used in our simulations. The sequence diagram of application 1, 2 and

T3 t0 t0 T1– t0[,] T3 T1–
T1

t0 t0 T3 T1–+[,] T2 T1
T1

time for
service

T1T2T3 (T3-T1)

ti
m

e
ax

is

Figure 5: Abstraction of controller mechanism

Ti
Tk

λ j

j k=

i 1–

∑ T⋅ λ j

j 1=

k 1–

∑+ Tj⋅
2 i N≤ ≤

i k>

T
Tk Tk Ti Tj–()<

Ti Tj–() Tk Ti Tj–()≥

=

Tk

N Ti() N Ti Tk–()– λ j

j 1=

k 1–

∑ Tk Tj–()⋅

λ j

j k=

i 1–

∑ T⋅ λ j

j 1=

k 1–

∑+ Tj⋅+ +

xGW⋅ Tk<
2 i N≤ ≤

i k>

T Tk Ti

3 is the same as the example shown in Fig. 2. The sequence diagrams of the other applications are not shown, but their
most important properties can be seen in the table. The reason for that we have one exponentially distributed and one
deterministic service time in the network for application 1, 2 and 3 is that these correspond to some kind of call
establishing look alike applications. Such applications have to execute twice in the network. The first time is when the
call is connected to the callers phone. In this case a deterministic delay is used, since there is probably some kind of auto
phone pick up function for the caller. The second execution correspond to the B party pick up time. This pick up time is
modelled to be exponentially distributed.

Priorities 1, 2, and 3 correspond to guaranteed rates, dl, of 10, 5, and 0.5 accepted calls per second, respectively.

The marginal factor f, used in the controller, is set to 0.9. To prevent the system from oscillating, the load level is only
changed if the controller detects overload for five consecutive arrivals or departures. The parameter X introduced in
section 5.1 is in our simulations set to 50ms.

During the simulations we have used different values of depending of which features that are prioritized. We think
that two different values can be motivated. Either we use the upper quartile of the execution times in the Gateway for all
messages from all applications or we use the largest execution time in the Gateway. The choices are referred to as
configuration 1 and configuration 2. The choice of to the upper quartile is motivated as it seems not realistic that
only applications using messages with the largest execution times in the Gateway are used. Thereby this will give a good
estimation of the maximum mean of the execution time for the messages in the queue, but with this choice we cannot
guarantee the rate of expired application calls. The choice of to be the largest execution time among all applications
is motivated as this will result in a very limited amount of expired application calls. This reasoning counts for all
conditions where takes part in this article

7. RESULTS AND DISCUSSION

In this section the overload control mechanism will be evaluated. Simulation results are presented and the gain of the
proposed overload control mechanism is discussed.

Table 1: The configuration of the different applications.

Application
Execution times in the

OSA Gateway
Execution times in

the AS
Execution times in

the network
Priority

Time
constraint

1 0.001, 0.002, 0.002,
0.002, 0.002, 0.001

0.001, 0.001, 0.001 0.008, exp(2,0) 1 0.1

2 0.002, 0.003, 0.003,
0.003, 0.003, 0.002

0.002, 0.002, 0.002 0.01, exp(0.01) 2 1.0

3 0.0001, 0.0002, 0.0002,
0.0002, 0.0002, 0.0001

0.001, 0.001, 0.001 0.01, exp(2.0) 3 0.1

4 0.0015, 0.0025, 0.0025,
0.0015

0.0015, 0.0015 0.0125 1 1.0

5 0.0001, 0.0002, 0.0002,
0.0001

0.0001, 0.0001 0.0008 2 0.1

6 0.001, 0.002, 0.002, 0.001 0.001, 0.001 0.008 3 1.0

7 0.002, 0.002 0.001, 0.001 0.018 1 0.1

8 0.003, 0.003 0.005, 0.005 0.008 2 1.0

9 0.0002, 0.0002 0.0001, 0.0001 0.0008 3 0.1

10 0.0015, 0.0015 0.0001, 0.0001 0.0035 3 1.0

xGW

xGW

xGW

xGW

We first consider arrivals according to a poisson process where the rate, , is changed every 25:th second. At first is
10 calls/s, and is then increased to 20, 25 and 50 calls/s. In Fig. 6 the resulting rates of completed application calls per
second for each of the three priorities are shown when configuration 1 is used. During the first 25 seconds no calls are
rejected, since the total number of arriving application calls is below the capacity of the Gateway. However, after 25
seconds is almost equal to the capacity of the Gateway and the priority 3 application calls are slightly affected. After
50 seconds, the total arrival rate exceeds the capacity of the Gateway and, therefore, application calls with the lowest
priority are rejected. After 75 seconds, calls from all priority levels are rejected, but none of the priority levels have all
their application calls rejected. This is because of the guaranteed amount of application calls. In the realization in Fig. 6
about 5% of the served application calls were so-called expired calls. However, most of the expired application calls break
their time constraints only with a few percent of their constraints.

If configuration 2 is used the outcome of a typical realization when steady state is used is seen in Fig. 7. In this realization
0% of the served application calls are expired calls.

It is interesting to see what can be gained with a priority based rejection mechanism as proposed. An estimation of how
good the outcome is can be performed by using the utility measure. Assume that the applications of priority 1, priority 2
and priority 3 corresponds to utility 3, 2 and 1 respectively. Then we can get a measure of the gain by calculating how
much time the processor has spent on the different applications and take into account the utility of each application. The
utility of a realization can then be defined as

(7)

where s(l) is the number of served application calls from application l during one simulation.

In the realization shown in Fig. 6 we get a total utility of 213. The same calculation for the gain of the realization shown
in Fig. 7 results in a total utility of 214. To be able to do a comparison of this result we have done the same simulation
where we have used an ordinary random rejection method where 50% of the application calls are rejected during an

λ λ

λ

Figure 6: The outcome of a realization when configuration 1 is used. The top graph shows the mean of each application. There are
three priority 1 applications, three priority 2 applications, and four priority 3 applications

λ

0 10 20 30 40 50 60 70 80 90 100
0

50

λ

0 10 20 30 40 50 60 70 80 90 100
0

100

200

se
rv

ed
pr

io
rit

y

1
ap

p.
ca

lls
/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

se
rv

ed
pr

io
rit

y

2
ap

p.
ca

lls
/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

t im e

se
rv

ed
pr

io
rit

y

3
ap

p.
ca

lls
/s

s l() xtot l()⋅ U⋅ l()
l 1=

R

∑

overload (load level 1) situation, and where all application calls except the guaranteed amount is rejected during an severe
overload (load level 2) situation. When this overload control mechanism is used we get a total utility of 199 if the
parameters are set so that 3,5% of the served application calls are expired. Observe that when this mechanism is used we
cannot guarantee that the requirement of the guaranteed rates of accepted application calls per second is fulfilled during
an overload (load level 1) situation.

In the plots it is seen how configuration 2 rejects more application calls than configuration 1 during an overload situation.
It can also be discerned that there are larger differences between the number of accepted calls from different priorities
when configuration 2 is used. When the random rejection mechanism is used all applications have about the same amount
of application calls served per second. As a consequence of this we get less utility.

However, arrivals according to a Poisson Process is probably not so realistic. Therefore we have also used an MMPP with
six states to generate arrivals. The states correspond to arrival rates 0, 10, 20, 30, 40 and 50 calls per second. The mean
time in a state is two seconds and when we leave a state, we enter one of the others with equal probability. Under these
circumstances and when configuration 1 is used the rate of expired calls is about 0.15%. And when configuration 2 is
used the rate of expired calls is 0%. As we assume that the mean execution time is higher in configuration 2 than in
configuration 1 we cannot allow the same queue length. Thereby the queue will become empty more often as a
consequence if it is filled by messages with short execution time, and thereby the utilization is lower if configuration 2 is
used.

If we do the same calculations of the gain as before, but with an process of the arrivals according to MMPP we get a total
utility of about 2350 when configuration 1 is used during a simulation of 1000 seconds. The same calculation for a
configuration 2 simulation during 1000 seconds results in a total utility of 2280. If we use the earlier described random
rejection mechanism, with the parameters set such that the rate of expired calls is 0.1%, we get a total utility of 2180.

Clearly we get a better gain when the priority based overload control is used. The values of have different
advantages. The choice of this value should be made depending of how the contract is written and what the arrival process
look like. During an MMPP arrival process, which we think is the most realistic, the use of the upper quartile results in a
better utilization and a higher gain than if we use the largest execution time, which is an argument for configuration 1.
But we also get a higher fraction of broken deadlines, which is an argument for configuration 2.

Figure 7: The outcome of a realization when configuration 2 is used. The top graph shows the mean of each application. There are
three priority 1 applications, three priority 2 applications and four priority 3 applications

λ

0 1 0 2 0 30 4 0 5 0 6 0 7 0 8 0 90 1 0 0
0

5 0

λ

0 1 0 2 0 30 4 0 5 0 6 0 7 0 8 0 90 1 0 0
0

5 0

1 0 0

se
rv

ed
pr

io
rit

y

1
ap

p.
ca

lls
/s

0 1 0 2 0 30 4 0 5 0 6 0 7 0 8 0 90 1 0 0
0

5 0

1 0 0

se
rv

ed
pr

io
rit

y

2
ap

p.
ca

lls
/s

0 1 0 2 0 30 4 0 5 0 6 0 7 0 8 0 90 1 0 0
0

5 0

1 0 0

t im e

se
rv

ed
pr

io
rit

y

3
ap

p.
ca

lls
/s

xGW

8. CONCLUSIONS

We have modelled an overload control mechanism for an OSA gateway. The Overload control mechanism that is
proposed is designed to support two probable requirements in an OSA architecture. It is able to guarantee a minimum rate
of accepted application calls per second dependent of which priority an application correspond to. It is also designed to
make sure that application calls that are accepted will meet their time constraint with a high probability. Further,
discussions are held and a proposal is presented of how the priorities can be set in order to maximize the revenue for the
owner of the Gateway.

The different parts in the overload control mechanism are build independent of each other such that either the gate, the
selector or the controller can be exchanged without any affect on the other parts. Also the utility function can be
exchanged.

By simulations the overload control is evaluated and the appearance of the wanted behaviour is verified. Also, we have
shown that the total gain of the served application calls is higher when using the priority based rejection mechanism
compared with a random rejection mechanism.

ACKNOWLEDGEMENT

This work has partially been financed by the Swedish Research Council, contract no 621-2001-3053.

REFERENCES

1 C. Liu, J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”, Journal
of the Association for Computing Machinery, Vol. 20 No. 1, 46-61, 1973.

2 R. Rajagopulan, “The impact of Open Service Access on Network Services”, http://www.wmrc.com/businessbrief-
ing/pdf/wireless_2003/Technology/lucent.pdf, 2002.

3 R. M. Stretch, “The OSA API and other related issues”, B T Technol J., Vol. 19 No 1, 80-87, 2001
4 ETSI standard 201 915-4 v1.3.1, “Open Service Access (OSA); Application Programming Interface (API); Part 4:

Call Control SCF”, 2002
5 ETSI standard 201 915-3 v1.3.1, “Open Service Access (OSA); Application Programming Interface (API); Part 3:

Framework”, 2002
6 A. Berger, “Comparison of Call gapping and Percent blocking for overload control in distributed switching systems

and telecommunications networks”, IEEE Transactions on Communications, vol. 39, 407-414, 1991
7 The 3GPP home page, "www.3gpp.org"
8 L. J. Forys, “Performance Analysis of a New Overload Strategy”, ITC 10, 1983
9 X. H. Pham, R. Betts, “Congestion Control for Intelligent Networks”, 1992 International Zurich Seminar on Digital

Communications, 1992
10 M. Kihl, C. Nyberg, “Investigation of overload control algorithms for SCPs in the intelligent network”, Communica-

tions IEE Proceedings, vol. 144, 419-423, 1997
11 R. Melen, C. Moiso, S. Tognon, “Performance evaluation of an Parlay gateway”, http://exp. telecomitalialab.com/

pdf/06-MOISO4.pdf, 2001
12 Eurescom Technical Information, ”Parlay/OSA Business Models: An Operator’s Perspective”, December 2002
13 J. Andersson, M. Kihl, C. Nyberg, “Performance analysis and modelling of an OSA gateway”, Accepted to

PWC2003, 2003

