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Preface

When the subject of force fields for protein simulations was reviewed some years
ago by Ponder and Case [1], the authors noted that “without further research
into the accuracy of force-field potentials, future macromolecular modeling may
well be limited more by validity of the energy functions, particularly electrostatic
terms, than by technical ability to perform the computations. For many calcu-
lations related to ligand binding, drug design, and protein structure prediction,
accuracy of the underlying potential functions is critical.”

The current work is my contribution to this problem. The thesis describes
some basic attempts to get a grip of how accurate force fields are, how accurate
they can become, and where to put in the effort to improve them, all in the
context of using them for predicting interaction energies in biological systems.

The physical laws underlying chemistry have been known for about 80 years [2].
What prevents us from calculating e.g. protein–ligand affinities directly from
these laws, i.e. from first principles, is essentially that they lead to equations
that cannot be solved exactly. Therefore, this thesis explores an approach, in
which the intermolecular potentials are purely based on quantum chemistry,
but approximated in several ways. In principle, the accuracy of each approx-
imation can be thoroughly tested, so that the quantum-chemical value can be
approached. In contrast, most approaches to binding affinities are empirical,
using experimental data on at least some level. A drawback of such approaches
are that they are not systematically improvable.

The structure of the thesis is as follows. The first chapter introduces the
constitution of matter as it appears to a computational chemist like me. The
second chapter deals with calculating interaction energies, focusing on how to
use quantum chemistry to derive simpler methods that can be used for larger
systems. The third chapter addresses the protein–ligand binding problem, which
in addition to interaction energies encompasses several difficult problems, such
as sampling and solvation. The fourth chapter gives a summary of the papers
included in the thesis and the conclusions I have drawn from them. The papers
are attached at the end of the thesis.

The purpose of the first three chapters is to give an overview of the theory
and computational approaches that underlie my own work. My goal has been
to present a non-mathematical description, giving a personal (and far from
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vi Chapter 0: Preface

exhaustive) selection of references that can provide details to the interested
reader. There are indeed many formulas, but that does not mean you have
to understand them to read the thesis. They are there simply because I like
formulas. Knowing that there is a formula and seeing what quantities are in it
is a great comfort to me, even if I do not have a clue how to evaluate it.

Lund, December 2008

Pär Söderhjelm



Populärvetenskaplig

sammanfattning

Många biologiska processer på molekylär nivå börjar med att två molekyler
binder till varandra på ett speciellt sätt. Exempelvis måste ett enzym, d.v.s.
ett protein som är designat för att utföra en viss kemisk reaktion, binda till
just den molekylen som ska reagera. Ett annat exempel är vårt luktsinne, där
doftämnet måste binda till en receptor, som också är ett protein, för att utlösa
en nervsignal till hjärnan. Den mindre molekylen som binder till proteinet kallas
ofta ligand.

Denna bindingsprocess brukar kallas molekylär igenkänning, men har natur-
ligtvis ingenting med en intelligent process att göra. Molekylerna följer en bana
som bestäms av fysikens lagar där de flyter runt i en trög soppa av vatten-
molekyler, joner och andra små och stora molekyler. På sin väg innan de träffar
“den rätte” hinner de stöta ihop med tusentals andra tänkbara partners, men om
bindningsstyrkan är för liten fastnar de inte alls eller bara kanske en kort stund.
Om bindningsstyrkan däremot är stor sitter molekylerna ihop länge. Den här
avhandlingen handlar om att teoretiskt beräkna bindningsstyrkan mellan ett
protein och en annan molekyl.

sådana beräkningar är bl.a. av stort intresse för läkemedelsindustrin. Om
man kan hitta en molekyl som binder starkare till ett enzym än den naturliga
molekyl som enzymet egentligen ska binda till, så kommer den att blockera
enzymet så att den naurliga molekylen inte får plats och ingen reaktion kan ske,
vilket ibland kan vara ett sätt att behandla en sjukdom. Förutsättningen för
att en sådan molekyl ska fungera som läkemedel är förstås också att man lyckas
få in den i cellen och att den inte binder till andra proteiner och på så vis ställer
till oreda.

Trots att proteiner är jättestora för att vara molekyler är de små med våra
mått mätt, bara några nanometer (milliondels millimeter). Vi kan därför inte
ens med mikroskop se hur det ser ut när en ligand binder till ett protein. Med
datorns hjälp kan vi däremot göra oss en konstgjord bild av det hela (Fig. 1).
Datorn är också det redskap vi behöver för att uppskatta bindningsstyrkan.

Som en första approximation brukar man kunna anta att för att liganden
ska binda starkt, så ska den “passa in” i proteinet, som en nyckel i ett lås.

vii



viii Chapter 0: Populärvetenskaplig sammanfattning

Figure 1: En ögonblicksbild av ett protein (avidin) som bundit in en ligand (biotin),
färgad lila på bilden. Proteinets atomer har förminskats för att man ska se liganden
som egentliger ligger helt inbäddad. Varje färg motsvarar en sorts atom: vit=väte,
röd=syre, ljusblå=kol, blå=kväve och gul=svavel. Allt tomrum är i verkligheten fyllt
av vattenmolekyler.
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Ligandens yta ska alltså vara som en avgjutning av proteinets yta, så att de kan
ligga intill varandra utan att det blir några hål. Detta beror på att de flesta
sorters molekyler attraherar varandra när man kommer tillräckligt nära. Det är
t.ex. sådana krafter som gör att en ödla kan gå uppför en lodrät vägg.

För att få någorlunda bra resultat krävs mer noggranna beräkningsmodeller
som också tar hänsyn till den kemiska strukturen på både proteinet och liganden.
Det räcker alltså inte att ytorna ligger intill varandra, det måste också vara
ytor som passar ihop, t.ex. en positivt och en negativt laddad yta. Detta kan
beskrivas med hjälp av ett kraftfält.

Ett kraftfält kan ses som en topografisk karta över t.ex. ett bergslandskap.
Det talar om hur fördelaktigt det är för varje par av atomer att befinna sig
nära varandra, eller rättare sagt hur energin varierar beroende på avståndet
mellan dem. Enligt en grundläggande fysikalisk princip strävar systemet efter
att ha så låg energi som möjligt, d.v.s. komma så långt ner i dalgångarna som
möjligt. Atomerna är dock aldrig stilla utan kan snarare betraktas som ett gäng
dagisbarn som när de springer ner för backarna får sådan fart att de fortsätter
uppför nästa backe med oförtröttlig energi. Denna dynamik måste man normalt
också ta hänsyn till i sina beräkningar. Endast om man kyler ner alltihop till
absoluta nollpunkten (−273◦C) börjar atomerna lugna ner sig.

Den rätta kartan, den som motsvarar verkligheten, är tyvärr omöjlig att
finna eftersom vi inte kan se hur atomerna rör sig. Normalt nöjer man sig
med en karta som ger hyfsade resultat i genomsnitt. Detta är bekvämt, för när
resultatet blir fel kan man alltid skylla på att kartan var dålig just där.

Det finns dock en annan utgångspunkt, och det är det som denna avhan-
dling handlar om. Om vi tränger under skinnet på atomerna så ser vi att de
egentligen består av en positivt laddad kärna samt ett antal negativa elektroner
som snurrar runt kärnan. Vidare är elektronerna inte tvungna att stanna runt
“sin” kärna utan snurrar fritt runt alla kärnor i molekylen och till och med mel-
lan molekylerna. Lyckligtvis finns det en fysikalisk teori, kvantmekaniken, som
beskriver hur elektronerna fördelar sig och hur molekylerna därmed växelverkar
med varandra. Vi kan alltså räkna ut hur kartan ser ut!

Tyvärr är kvantmekanik praktiskt tillämpbar endast på små molekyler. Att
räkna ut energin noggrant i en punkt på vår protein–ligand-karta skulle ta flera
miljarder år med dagens datorer. Och en miljondels miljondels sekund senare
har alla dagisbarnen flyttat sig och man får räkna om alltihop igen.

En lösning på detta är att i huvudsak använda den förenklade bilden med
atomer, men att utnyttja den komplicerade bilden med elektroner för att för-
bättra kartan lite i taget. Olika varianter på detta tema behandlas i de olika
artiklarna i denna avhandling. Exempelvis handlar den första artikeln om hur
repulsionen mellan molekylerna kan uppskattas utifrån hur mycket elektronerna
tillhörande vardera molekylen överlappar med varandra, medan den andra hand-
lar om hur noggrant man kan uppskatta den elektriska växelverkan mellan t.ex.
positiva och negativa molekylytor med hjälp av noggranna räkningar på vardera
ytan. De sista artiklarna handlar om hur man kan använda den komplicerade
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bilden för att räkna ut växelverkan mellan liganden och små bitar av proteinet,
en i taget, medan effekter som beror på hela proteinet beräknas med den enkla
bilden.

Resultatet av dessa ansträngningar skulle kunna bli ett kraftfält för protein–
ligand-interaktionsenergier som är helt byggt på fysikaliska principer (first prin-
ciples), därav titeln på denna avhandling. Tyvärr är vi inte där ännu, men min
förhoppning är att dessa små steg kan hjälpa till att så småningom uppnå detta
mål.
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Chapter 1

Chemistry from a theoretical

perspective

From a chemist’s point of view, matter consists of atomic nuclei and electrons.
As these particles are quite small, they obey the laws of quantum mechanics.
Thus, instead of describing a system by the coordinates and velocity of each
particle (as in classical mechanics), we must use a wave function, i.e. a function
of the positions of all particles

Ψ = Ψ(r1, r2, ...rn,R1,R2, ...RN ), (1.1)

where ri and Ri are electronic and nuclear positions, respectively, and we have
assumed that we are dealing with an isolated, unperturbed system so that the
wave function is time-independent (apart from an ignored phase factor).

The connection to the classical picture is provided through the Born inter-
pretation, stating that the probability of finding each particle i in a volume
element dVi at position ri is equal to |Ψ|2dV1dV2...dVn+N .

One of the postulates of quantum mechanics states that the wave function
must satisfy the Schrödinger equation:

ĤΨ = EΨ, (1.2)

where Ĥ is the Hamiltonian operator describing the system and the eigenvalue
E is the particular energy corresponding to Ψ. For our system of nuclei and
electrons, the Hamiltonian is given by

Ĥ = −
1

2

n∑

i=1

∇2
i −

1

2

N∑

A=1

1

MA
∇2

A −

n∑

i=1

N∑

A=1

ZA

|ri − RA|

+
∑

i

∑

j>i

1

|ri − rj |
+

∑

A

∑

B>A

ZAZB

|RA − RB |
,

(1.3)

1
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where i, j count over electrons, A,B count over nuclei, and MA and ZA are
nuclear masses and charges, respectively (atomic units are used in this and the
following equations).

As the nuclei are much heavier than the electrons (MA = 1854 for hydrogen),
it is usually possible to assume that the electrons move independently of the
nuclear motion, and thus the total wave function can be separated into a product
of nuclear and electronic wave functions,

Ψ = Ψnuc(R1,R2, ...RN )Ψele(r1, r2, ...rn; {RA}), (1.4)

where the nuclear coordinates have been included as a collective argument to
Ψele as a reminder that the electronic Hamiltonian determining Ψele depends on
the nuclear positions through their electric potential. This separation, known
as the Born–Oppenheimer approximation, turns out to be extremely practical.
The nuclear and electronic problems can now be treated separately, with the
Hamiltonian for the nuclear problem reducing to

Ĥnuc = −
1

2

N∑

A=1

1

MA
∇2

A + Epot(R1,R2, ...RN ), (1.5)

where Epot is the sum of the nuclear repulsion and the eigenvalue of the elec-
tronic Hamiltonian formed with these particular nuclear coordinates. In the
following two sections, the electronic and nuclear problems are treated sepa-
rately. The nuclear problem will lead us into statistical mechanics.

1.1 The electronic problem: Quantum chemistry

The electronic Hamiltonian is given by

Ĥele = −
1

2

n∑

i=1

∇2
i −

∑

i

N∑

A

ZA

|ri − RA|
+

n∑

i=1

n∑

j>i

1

|ri − rj |
(1.6)

Unfortunately, it is impossible to find exact solutions to the Schrödinger equa-
tion with this Hamiltonian for anything more complicated than the H+

2 ion
(n = 1, N = 2), so we are left with doing approximations. A very useful
theorem in this context is the variational principle, which states that for any
approximate wave function, the expectation value of Ĥele will be larger than
that obtained with the correct wave function. This reduces the problem to de-
vising a set of trial wave functions and using the one with lowest energy as the
best approximation to the real wave function.

The most common starting point for such procedure is to assume that each
electron has its own one-electron wave function, called an orbital. Because the
electrons are indistinguishable fermions, the antisymmetry principle must be
obeyed, and thus a direct product of such orbitals is not a valid wave function.
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Instead, the simplest allowed wave function is an anti-symmetrized product,
also called a Slater determinant:

Ψele(r1, r2, ...rn) ∝ A [ψ1(r1)ψ1(r2)...ψn(rn)] (1.7)

where the antisymmetrizer A is defined by

A =
1

n!

∑

P∈Sn

(−1)πP̂ (1.8)

where the sum goes over all n! permutations of electron labels 1...n and the oper-
ator P̂ changes the labels accordingly, with π being the number of transpositions
in the permutation. For example,

A [ψ1(r1)ψ2(r2)] =
1

2
(ψ1(r1)ψ2(r2) − ψ1(r2)ψ2(r1)) (1.9)

Inserting Eq. 1.7 into the Schrödinger equation, applying the variational
principle, and integrating over spin (assuming an even number of electrons)
gives the closed-shell Hartree–Fock equations

−
1

2
∇2ψj(r) −

N∑

A

ZAψj(r)

|r − RA|

+

n/2∑

i=1

[
2

∫
|ψi(r

′)|2ψj(r)

|r′ − r|
dr′ −

∫
ψ∗

i (r′)ψj(r
′)ψi(r)

|r′ − r|
dr′

]
= ǫjψj(r)

(1.10)

which is an eigenvalue equation that can be solved to obtain a (in principle
infinite) set of {ǫj, ψj} pairs, where the ψj corresponding to the n/2 smallest
eigenvalues are the occupied orbitals that builds up the wave function and the
rest are called virtual orbitals. Note that the occupied orbitals occur in the
equations, so the equations must be solved iteratively.

To make the physical interpretation of Hartree–Fock theory more apparent,
Eq. 1.10 can be written in terms of two one-electron operators

ĥψj + v̂HFψj = ǫjψj (1.11)

where ĥ takes care of the two first terms of Eq. 1.10, i.e. is the sum of kinetic en-
ergy operator and nuclear attraction operator, and v̂HF is an effective operator
representing the mean field of the other electrons. It consists of the remaining
two terms of Eq. 1.10: an intuitive Coulomb term, as well as an exchange term
that arises from the anti-symmetry principle. Note that the inclusion of the
electron’s interaction with itself is only apparent because it cancels between the
Coulomb and exchange terms.
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After finding self-consistent orbitals, the Hartree–Fock energy is given by

EHF = 2

n/2∑

i=1

〈
ψi|ĥ|ψi

〉
+

n/2∑

i=1

n/2∑

j=1

(2 〈ij|ij〉 − 〈ij|ji〉) , (1.12)

where we have introduced the standard Dirac notation for integrals

〈
ψa|ĥ|ψb

〉
=

∫
ψ∗

a(r)ĥψb(r)dr (1.13)

and used the physicist’s notation for two-electron repulsion integrals:

〈ab|cd〉 =

∫ ∫
ψ∗

a(r1)ψ
∗
b (r2)ψc(r1)ψd(r2)

|r1 − r2|
dr1dr2 (1.14)

The electron density is simply given by

ρ(r) = 2

n/2∑

i

|ψi(r)|2 (1.15)

The importance of the Hartree–Fock method cannot be overestimated, be-
cause it provides the very useful picture of molecular orbitals and usually gives
good qualitative results for many molecules and their interactions. Moreover, it
is the basis for more advanced treatments, post-Hartree–Fock methods.

1.1.1 The basis set problem

Exact solutions to Eq. 1.10 can only be found for atoms, so in practice one
solves Eq. 1.10 by expanding the orbitals in a set of basis functions, i.e.

ψi =
K∑

µ=1

Cµiφµ (1.16)

Insertion of this expansion into the Hartree–Fock equations gives a matrix eigen-
value problem to solve in each iteration [3]. This is very suitable for computa-
tion. As expected, in this finite basis, only K orbitals are obtained.

Clearly, the number of basis functions and their specific form determines
the quality of the obtained orbitals and thereby the results. Most calculations
utilize atomic orbital basis sets, which are inspired by the eigenfunctions of the
hydrogen atom. Although basis functions of Slater type (exp[−ar]) describe
the orbitals better, most quantum-chemical software use linear contractions of
Gaussian functions (exp[−ar2]) instead, because the integrals become signifi-
cantly easier to compute.

It is important that the basis set describes the valence orbitals well (prefer-
ably by at least three basis functions each, triple valence) and that it includes
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functions with higher angular momentum (polarization functions). For prop-
erties and interaction energies, which are the main interest in this thesis, it is
also important that the outer region (tail) of the electron density is well de-
scribed. This is normally done by including some functions with much slower
decay (diffuse functions), giving an augmented basis set.

1.1.2 The electron-correlation problem

In Hartree–Fock theory, the electron repulsion is only treated in an average man-
ner, so the instantaneous electron correlation is missing. For example, when a
hydrogen molecule is stretched out, the two electrons (which by antisymmetry
are forbidden to simply “choose” one nucleus each) cannot lower their energy
by avoiding to spend time at the same nucleus, because in the mean-field ap-
proach the repulsion is the same whichever nucleus they choose to be near.
There are several methods to include electron correlation in quantum-chemical
calculations, but only the two employed in this thesis will be described.

Perturbation theory

Perturbation theory is a general approximation method in quantum mechanics.
In its simplest form, it involves partitioning the Hamiltonian into an “easy” part
(Ĥ0) that we already know the solution to, and a “tricky” part (the perturba-
tion V̂ ) that we want to approximate by exploiting the solutions to Ĥ0. The
advantage of this approach is that if the perturbation is turned on gradually,
i.e.

Ĥ = Ĥ(0) + λV̂ , (1.17)

where λ goes from 0 to 1, the ground-state energy will vary as

E0 = E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 .... (1.18)

(i.e. a normal Taylor expansion) and if the perturbation is small enough, each
E(n) will be smaller in magnitude than the preceding one. By inserting Eq. 1.17
into the Schrödinger equation and collecting terms of the same order (i.e. with
the same λ-dependence), we can obtain expressions for the various energy cor-
rections [4]. The results for the first- and second-order corrections are

E
(1)
0 =

〈
Ψ0|V̂ |Ψ0

〉

E
(2)
0 =

∑

n6=0

〈
Ψ0|V̂ |Ψn

〉〈
Ψn|V̂ |Ψ0

〉

E0 − En
,

(1.19)

where Ψ0,Ψ1,Ψ2, ... are all eigenfunctions to Ĥ(0) and E0, E1, E2, ... are the
corresponding eigenvalues (energies).
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In the perturbational treatment of electron correlation, usually called Møller–
Plesset perturbation theory, the perturbation represents the difference between
the real electron repulsion and the mean-field electron repulsion, i.e.

V̂ =

n∑

i=1

n∑

j>i

1

|ri − rj |
−

n∑

i=1

v̂HF
i , (1.20)

where v̂HF
i acts on the ith electron. At first order, one simply removes the

double-counting of electron interactions in the second term of Eq. 1.20 and thus
recovers the Hartree–Fock energy. At second order, one obtains

E
(2)
0 =

∑

i,j

∑

a,b

2| 〈ij|ab〉 |2 − 〈ij|ab〉 〈ab|ji〉

ǫi + ǫj − ǫa − ǫb
, (1.21)

where i, j count over occupied orbitals, a, b count over virtual orbitals, and ǫi
is the orbital energy of orbital ψi. The sum of the uncorrelated (Hartree–Fock)
energy and the approximate correlation energy in Eq. 1.21 is usually called the
MP2 energy, and will be used as a reference level in most of this thesis.

Although MP2 recovers most of the correlation energy, the remaining dif-
ference is still rather large, as can be expected because the orbitals are still
optimized for the mean-field situation. However, it turns out that for relative
energies, which are the only important energies in chemistry, MP2 is usually
a good approximation. For more accurate results, the perturbation series can
be continued (MP3, MP4, etc.), but in general it is better to include a varia-
tional optimization of the correlated wave function and only use perturbation
theory as a small correction, as in the coupled cluster singles and doubles with
perturbative triples (CCSD(T)) method.

Density functional theory

A more empirical approach to quantum chemistry starts from the Hohenberg–
Kohn theorem [5], which states that the ground-state energy (and all ground-
state electronic properties) is uniquely determined by the electron density ρ(r),
so that, for practical purposes, the much more complicated many-electron wave
function Ψele(r1, r2, ...rn) is not needed. Exactly how the energy depends on
ρ(r), i.e. the density functional E[ρ(r)] is unfortunately unknown.

To exploit the good treatment of e.g. the kinetic energy in wave-function
theory, most practical implementations of density functional theory still follows
a Hartree–Fock like approach called the Kohn–Sham method [6]. It simply re-
places the one-electron operator v̂HF by an empirical operator v̂KS that depends
only on the electron density, i.e. not on the individual orbitals. As the Coulomb
part of v̂HF already fulfils this requirement, only the exchange part is usually
changed, so that

v̂KS =

∫
ρ(r′)

|r′ − r|
dr′ + v̂XC [ρ(r)], (1.22)
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where ˆvXC is usually called the exchange–correlation functional. As the name
suggests, it contains not only an approximate exchange contribution but also
an approximate correlation contribution. In the simplest case, the local den-
sity approximation, it is a simple function of the density and relates to the
exchange–correlation energy of the uniform electron gas. However, the most
commonly used functionals depend also on the gradient of the density. A large
variety of exchange–correlation functionals have been developed, and the ex-
plicit parameterization of these may build on comparisons with either high-level
wave-function methods or experimental information. In this thesis, density func-
tional theory is used only to generate an electron density that includes electron
correlation, and thus most available functionals will give similar results.

1.2 The nuclear problem: Statistical mechanics

1.2.1 Physical description

In the previous section, we saw how to (approximately) compute the potential
energy surface that determines the motion of the atomic nuclei. A curious con-
sequence of the mathematical properties of the Schrödinger equation combined
with the anti-symmetry principle for electrons is the formation of aggregates of
several nuclei, which we normally call molecules. Molecules are characterized
by covalent bonds between the nuclei. These bonds are strong, i.e. the force
constants for the energy wells are large. In contrast, the non-covalent bonds,
which form the intermolecular interactions of special interest in this thesis, are
usually weaker with more shallow and diffuse energy wells.

As seen from Eqs. 1.4 and 1.5, the nuclear motion should be described by a
wave function Ψnuc(R1,R2, ...RN ). Such treatment is necessary for e.g. deter-
mining the vibrational energy levels of a molecule. For a small molecule, solving
the nuclear Schrödinger equation gives the result that the nuclei oscillate around
an equilibrium geometry, which is the global minimum of the potential energy
surface and can be found by geometry-optimization techniques [7] normally inte-
grated in the quantum-chemical softwares. Except for this zero-point vibration,
most systems actually behave rather classically, i.e. the nuclei moves on the
potential energy surface like a couple of balls on a curved (multi-dimensional)
surface. Whenever nuclear quantum effects (e.g. tunneling) are important, they
can normally be treated as corrections to this picture.

When we consider a macroscopic system, the notion of eigenstates Ψnuc be-
comes completely meaningless, because the energy levels are so densely spaced
that the system changes state forth and back in a rather chaotic manner. The
behavior of such systems is therefore governed by the laws of statistical me-
chanics. A basic postulate is that all microscopic states with the same energy
are equally probable. For an isolated system, only states with a given energy
are allowed (by the law of energy conservation) so they all occur with same
probability. On the other hand, for a system that can transfer heat with the
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surroundings (at constant temperature), the probability depends on the energy.
This is not because states with lower energy are “better” but simply because
if the energy of the system is smaller, that implies that the energy of the sur-
roundings is larger (again by the law of energy conservation) and thus a greater
number of microstates of the surroundings are available. The probability for
the system to be in one particular state i is therefore given by the Boltzmann
distribution:

pi =
exp

(
− Ei

kBT

)

∑
j exp

(
−

Ej

kBT

) , (1.23)

where Ei is the energy of state i, kB is the Boltzmann constant, and T is the
temperature. The denominator of Eq. 1.23 is called the partition function, Q.
Thus, the average energy of the system is a competition between the number of
states that have this energy (favoring high energies) and the Boltzmann factor
(favoring low energies).

A process for which Q increases is known as a spontaneous process. For
historical reasons, it is customary to convert Q to a free energy (Helmholtz in
case of constant volume or Gibbs in case of constant pressure; for condensed
systems they are roughly the same so we will not make a distinction) by the
formula

G = −kBT lnQ (1.24)

As seen from Eq. 1.23, the value of Q can be increased in two principal ways:
Either the number of states at each energy can be increased or the energy levels
themselves can be decreased. The first option roughly corresponds to an increase
in entropy whereas the second option corresponds to a decrease in enthalpy, i.e.
the two driving forces for spontaneous transitions that we are used to from
classical thermodynamics.

If the system is treated fully classically, the sum over states Q can be re-
placed by an integral and further partitioned into one part that depends only on
the momenta of the nuclei and another that depends only on the coordinates.
Moreover, the momentum part can be integrated out to obtain the following
classical probability density:

P (R1, ...RN ) =
exp

(
−

Epot(R1,...RN )
kBT

)

∫ ∞

−∞
...

∫ ∞

−∞
exp

(
−

Epot(R′

1
,...R′

N
)

kBT

)
dR′

1...dR
′
N

=
exp

(
−

Epot

kBT

)

Z
,

(1.25)
where Z is sometimes called the configuration integral and is related to Q by
a multiplicative constant (depending on e.g. the nuclear masses) and thus gives
identical free energy differences.

By mere statistics, the probability distribution over the energy is more
peaked the more degrees of freedom there are in the system (except for quantum
effects such as electronic states). Obviously, for a macroscopic system at room



1.2 The nuclear problem: Statistical mechanics 9

temperature, the global energy minimum is of no interest, because there will be
only one or a few such microstates. All occurring microstates will have almost
the same energy, given by a sum of the kinetic energy 3NkBT/2 and a system-
dependent potential energy. On the other hand, for a microscopic system, e.g.
a single protein molecule (of the size 10–100 Å), there is a finite number of
available conformations and the energy fluctuates.

1.2.2 Computation

The microstates with highest probability contribute most to the observed prop-
erties of the system. Thus, for assessing such properties theoretically, we need a
method to generate a representative collection of microstates, usually called an
ensemble. The best statistics is obtained if the probability for a microstate to
occur in the ensemble is given by Eq. 1.23, because then a macroscopic property
can be computed as a simple average over the members of the ensemble. The
two most common methods for generating ensembles are molecular dynamics
(MD) and Metropolis Monte Carlo (MC) simulations. In the MD approach,
the system is propagated in time by stepwise integrating Newton’s equations
of motion (a small modification is needed to allow for heat exchange with the
surroundings). In the MC approach, a random change is done at each step and
the change is accepted or rejected by an energy criterion designed to guarantee
a Boltzmann-weighted ensemble. From the ergodic hypothesis follows that the
(infinite) ensembles generated by these methods are equivalent.

Statistical properties, such as free energies or entropies, are not possible to
express as such averages [8]. However, relative free energies are in principle
obtainable from a single simulation. One just counts the number of ensemble
members that can be classified as being of type A and type B, respectively, and
then compute the free energy difference as

∆G(A→ B) = −kBT ln
NB

NA
(1.26)

Unfortunately, this procedure is seldom applicable in practice because it may
require too much sampling before the ratio converges. Usually, one is interested
in two macroscopic states that are separated by an energy barrier, and if the
barrier is significantly higher than kBT , the simulation will mainly stay on the
same side of the barrier. Several solutions to this problem have been suggested,
e.g. artificially suppressing the barrier (umbrella sampling) [8] or running the
simulation at several temperatures (replica exchange) [9].

If the two states of interest have different Hamiltonians, e.g. being chemi-
cally different, the simple counting approach will not work. A possible solution
is thermodynamic integration (TI), in which the Hamiltonian is written as a
continuous function of a coupling parameter λ taking values from 0 to 1:

H(λ) = (1 − λ)mHA + λmHB, (1.27)
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where one normally uses m = 1. The exact free energy difference is then given
by

∆G(A→ B) =

∫ 1

0

〈
∂H(λ)

∂λ

〉

λ

dλ (1.28)

where 〈...〉λ denotes an average over the ensemble generated with H(λ).
A related method is free energy perturbation (FEP) [10], in which the same

difference is computed by

∆G(A→ B) = −kBT ln

〈
exp

(
EB − EA

kBT

)〉

A

. (1.29)

Although this technique does not directly solve the problem with overcoming
barriers, it is often possible to divide the perturbation into several small parts
and evaluate each part separately, making it similar to the thermodynamic
integration approach. In fact, if one takes the average over the two “perturbation
directions” and Taylor-expands the exponential function, one obtains [11]

∆G(A→ B) ≈
1

2
(〈EB − EA〉A + 〈EB − EA〉B) , (1.30)

which is in fact equivalent to using the one-interval trapezoid rule when evalu-
ating the integral in Eq. 1.28. This limiting approximation common to both TI
and FEP is sometimes called the linear response approximation (see section 3.3).



Chapter 2

Intermolecular interactions

In this chapter, we are interested in the potential energy as a function of the
intermolecular degrees of freedom, whereas we assume that the intramolecular
degrees of freedom, i.e. bond lengths, bond angles, and dihedral angles, are
fixed. For simplicity, we consider a dimer of two molecules, which we denote A
and B.

The A–B dimer can be treated as any other system of nuclei and electrons,
i.e. as a supermolecule. As a result, the two monomers are no longer distin-
guishable, as illustrated in the right part of Fig. 2.1. On the other hand, the
weak character of the intermolecular interactions sometimes allows us to focus
on the actual interaction. The latter, perturbative approach, is illustrated in
the left part of Fig. 2.1. We will see that it opens up immense possibilities for
approximations.

2.1 The supermolecular approach

In Section 1.1, we saw how to compute the energy of an arbitrary configuration
of nuclei with a number of electrons around them. Although it must be done
in an approximate way, the accuracy is systematically improvable. The most
straight-forward way to calculate the interaction energy is therefore to calculate
the energy of the AB dimer and subtract the A and B monomer energies. This
gives the supermolecular interaction energy.

2.1.1 Electron correlation

The supermolecular approach is applicable to any (size-consistent) level of the-
ory, but of course the quality of the results depends on the applied theory. For
interaction energies, electron correlation is usually important, giving rise to e.g.
the dispersion attraction (see Section 2.2.1). Thus, to obtain quantitative re-
sults, Hartree–Fock theory is inadequate: at least second-order perturbation

11
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Perturbative

Non−interacting system

Supermolecular
   calculationcalculation

Figure 2.1: Illustration of the supermolecular and perturbative approaches to interac-
tion energies

theory (MP2) must be applied. In fact, the interaction energy converges slowly
with respect to the included level of electron correlation and current benchmark
studies typically involve CCSD(T) theory. However, this limits the applicability
to clusters with 20–30 atoms, so much effort has been spent on determining the
accuracy of MP2 and other methods in relation to the CCSD(T) method.

Such studies have shown that MP2 (at the complete basis set limit) of-
ten overestimates the correlation contribution to the interaction energy [12].
The spin-component-scaled MP2 (SCS-MP2) method [13] is a partly empirical
method to improve the MP2 method with no extra cost. It is based on a separate
scaling of the correlation-energy contributions from electron pairs with parallel
and antiparallel spin, respectively. Although SCS-MP2 seems to improve the
interaction energy of complexes involving aromatic stacking, the description of
hydrogen bonding becomes worse than with standard MP2 [14].

A computationally very attractive solution would be to use density func-
tional theory (DFT). However, using exchange–correlation functionals that in-
volve only the local density and its gradient, it is impossible to model the long-
range electron correlation responsible for the dispersion. In many cases, e.g.
hydrogen bonding, this deficiency is partly cancelled by the overestimation of
charge transfer and other non-additive effects [15], so that the full interaction
potential is reasonable. However, for e.g. aromatic interactions, the result is
poor. Various solutions to this problem have been proposed [16], including
methods based on perturbation theory, new exchange–correlation functionals,
and empirical methods treating dispersion as in force fields (see Section 2.3.3).
Although promising results have been obtained, supermolecular DFT energies
will not be further discussed in this thesis.

There are in fact completely different approaches to electronic structure cal-
culation that intrinsically include electron correlation. In particular, the Diffu-
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sion Monte Carlo (DMC) method has been applied to the calculation of inter-
action energies with high accuracy [17]. This method treats the time-dependent
Schrödinger equation as a diffusion equation and propagates the wave function
by Monte Carlo integration methods towards the exact solution. Interestingly,
the only systematic error in DMC, the fixed-node approximation, effectively can-
cels out when computing interaction energies by the supermolecular approach.

2.1.2 Basis set

Unfortunately, supermolecular interaction energies computed at a post-Hartree–
Fock level also converge very slowly with basis set. A particular difficulty is the
basis set superposition error (BSSE), which originates from the fact that the
basis set of the dimer can describe the monomer charge density better than the
monomer basis set, simply because it is larger. By the variational principle, the
BSSE contribution to the interaction energy is always negative. Although the
contribution vanishes at the complete basis limit, it is substantial for all normal
basis sets [18].

The most common way to address the BSSE is the counterpoise proce-
dure [19], in which all energies are calculated in the same basis set, the dimer
basis set:

Esup
AB = EA+B − EA+(B) − EB+(A) (2.1)

where EX+(Y ) denotes the energy of monomer X when including the basis
functions of monomer Y (ghost orbitals) without the nuclear charges. There has
been significant debate whether the counterpoise procedure is the best way to
eliminate the BSSE [18]. A common argument against it is that the electrons are
“too free” in the monomer calculations, because they can occupy also the space
that, in the dimer, is occupied by the other monomer and therefore forbidden
by the antisymmetry principle. For this reason, it has been suggested to use
only the virtual orbitals of the other monomer as ghost orbitals. However, it has
been shown that the counterpoise-corrected result is indeed a pure interaction
energy [18]; the restriction of the available space is a real (repulsive) effect that
should be included.

A remaining concern is the higher-order BSSE [20], which refers to the mod-
ified properties of the monomers in the dimer calculation due to the (asym-
metrically) extended basis set. However, when computing interaction energies,
one can in fact benefit from this effect (for example, the polarizabilities become
better), provided that the static density is sufficiently well described in the
monomer basis set [20]. On the other hand, when computing the effect of inter-
actions on various molecular properties, one should correct for the higher-error
BSSE by also computing the monomer properties in the dimer basis set [21] (see
paper III).

Even when the counterpoise procedure is applied, very large basis sets are
required before interaction energies are converged. For example, with the aug-
cc-pVTZ basis set, an underestimation of the correlation energy contribution
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by 5–10% is typical [22]. A solution to this problem is complete basis set (CBS)
extrapolation, in which the complete basis set value is estimated from a series
of calculations with affordable basis sets. This has been shown to significantly
improve the results [23]. Several extrapolation schemes have been devised, but
the most common one fits the correlation energies En obtained at two or more
different basis set levels (e.g. aug-cc-pVTZ, n = 3; and aug-cc-pVQZ, n = 4) to
the simple expression [24]:

En = ECBS +An−3 (2.2)

where ECBS and A are fitting parameters, ECBS being the sought correlation
energy at the CBS limit.

The basis-set convergence can be somewhat improved by supplementing
the conventional dimer-centered basis set with functions located between the
monomers [25]. A more rigorous way, directly addressing the correlation en-
ergy, is to include terms into the wave-function that depend explicitly on the
inter-electronic distances, as in the MP2-R12 method [26]. Although such treat-
ments formally leads to a large number of 3- and 4-electron integrals, the com-
putation of these can be avoided by resolution-of-identity approaches. It has
been shown that interaction energies obtained with the MP2-R12 method with
an augmented double-zeta basis set are already closer to the CBS limit than
the conventional MP2/aug-cc-pV5Z energies [22]. Similar methods have been
devised at the CCSD(T) level [27, 28].

A more pragmatic approach, which is widely used, is to rely on error cancel-
lation between the inadequate treatment of electron correlation and the limited
basis set. For example, it has been suggested to use a smaller basis set (e.g.
cc-pVTZ) together with MP2 to compensate for the overestimated correlation
energy [29], but the situation is complicated by the fact that for hydrogen-
bonded complexes, the inclusion of diffuse functions give better results [12].
Extrapolations to both the CBS and to the CCSD(T) level (with a modest
basis set) therefore seems to be a more reliable approach [16].

In conclusion, the counterpoise-corrected supermolecular approach is well
established as a reliable method for calculating interaction energies. As long as
the system of interest is small enough to allow for a large basis set and a good
treatment of electron correlation, it is the preferred method for most types of
interactions. Moreover, for evaluating the accuracy of simpler methods, the
situation is even better. Within a given theory and basis set, the counterpoise-
corrected supermolecular result can often be regarded as exact. It will therefore
be used as a reference for several of the methods discussed in this thesis.

2.2 Perturbative approach

A completely different picture is obtained if one directly calculates the inter-
actions between molecules. In most such descriptions, one obtains the total
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Figure 2.2: Decomposed interaction energy for the hydrogen bond between water and
the oxygen atom of propionamide as a function of the intermolecular separation.

interaction energy as a sum of terms, each with a distinct physical meaning.
This can be useful for interpreting which physical effects are dominant in the
studied complex and, most importantly, it can be used to derive simplified, com-
putationally cheaper methods. Nevertheless, it should be remembered that only
the total interaction energy is an observable, so any decomposition is ambiguous.

2.2.1 Qualitative picture

There are four main contributions to the total interaction energy [30]: elec-
trostatic energy, induction energy, dispersion energy, and exchange-repulsion
energy, i.e.

Etot = Eele + Eind + Edisp + Erep (2.3)

The typical magnitude and distance-dependence of each of these terms is illus-
trated in Fig. 2.2.

The electrostatic energy is easily understandable in terms of Coulomb’s law:
a negatively charged part of one monomer attracts a positively charged part of
the other, whereas two like charges repel each other. In cases where molecules
(or interacting functional groups) are charged or polar, the electrostatic energy
tends to dominate the interaction and thus for the most probable configurations,
the electrostatic energy is attractive.

The induction energy (or polarization energy) is the energy change (always
negative) obtained by polarizing each monomer wave function in response to
the electric field from the other monomer. The induction is usually the domi-
nant attractive contributions if one molecule is polar (or charged) and the other
non-polar, but its important role in e.g. hydrogen bonding has also been demon-
strated [31]. It is the major contributor to many-body (non-additive) effects,
i.e. the fact that the interaction energy of a cluster does not equal the sum of
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pairwise interaction energies. The role of induction in this context depends on
that each monomer responds to the total electric field from the other monomers.
If, for example, the fields from two neighboring monomers cancel each other, the
total induction energy vanishes, whereas the attractive induction contribution
to each of the two pairwise interaction energies may be substantial.

The dispersion is usually the dominant attractive contribution if both mole-
cules are non-polar. It arises from the coupling of instantaneous fluctuations in
the monomer charge distributions [4]. If an instantaneous dipole arises in one
monomer, it will induce a dipole in the other monomer giving an instantaneous
“energy kick”. Clearly, this is an electron-correlation effect: if the fluctuations
on one monomer are averaged they vanish and can not give any interaction.

The exchange-repulsion term has no classical counterpart. Nevertheless,
it is extremely important for the constitution of matter, as it balances the
attractive forces and prevents the electron clouds of closed-shell molecules to
overlap, effectively causing the shape of the molecules. The reason for this
behavior of molecules is the Pauli principle, stating that two electrons cannot
occupy the same quantum state. This gives rise to an effective repulsive force
between electrons of the same spin. The Pauli principle, in turn, is a direct
consequence of the anti-symmetry principle for fermions.

2.2.2 Quantum-chemical perturbation theory

The formal description of interaction energies is most conveniently obtained by
perturbation theory. The interaction part of the total Hamiltonian is given by

V̂ = Ĥ − ĤA − ĤB (2.4)

or, explicitly

V̂ =
∑

I∈A

∑

J∈B

ZIZJ

rIJ
−

∑

I∈A

∑

j∈B

ZI

rIj
−

∑

i∈A

∑

J∈B

ZJ

riJ
−

∑

i∈A

∑

j∈B

1

rij
(2.5)

where I, J denote nuclei, i, j denote electrons, Z is the nuclear charge, and r
the interparticle distance.

Polarization approximation

If one applies regular Rayleigh–Schrödinger (RS) perturbation theory (Eq. 1.19),
using Ĥ0 = ĤA + ĤB and Ψ0 = ψA

0 ψ
B
0 , i.e. the direct product of unperturbed

monomer wave functions, one obtains at first order

E(1) =
〈
ψA

0 ψ
B
0 |V̂ |ψA

0 ψ
B
0

〉
=

∑

I∈A

∑

J∈B

ZIZJ

rIJ

−
∑

I∈A

∫
ZIρB(r)

|r − rI |
dr −

∑

J∈B

∫
ZJρA(r)

|r − rJ |
dr +

∫
ρA(r1)ρB(r2)

|r1 − r2|
dr1dr2

(2.6)
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which is easily recognized as the classical electrostatic interaction energy. At
second order, one obtains

E(2) = −
∑

a>0

|
〈
ψA

0 ψ
B
0 |V̂ |ψA

a ψ
B
0

〉
|2

EA
a − EA

0

−
∑

b>0

|
〈
ψA

0 ψ
B
0 |V̂ |ψA

0 ψ
B
b

〉
|2

EB
b − EB

0

−
∑

a>0

∑

b>0

|
〈
ψA

0 ψ
B
0 |V̂ |ψA

a ψ
B
b

〉
|2

EA
a − EA

0 + EB
b − EB

0

,

(2.7)

where ψA
a and ψB

b are the wave functions of the excited states of monomers A and
B, respectively, and EA

a and EB
b are the corresponding eigenvalues (energies).

The three terms arise from a convenient classification of the excitations of the
dimer into three classes. The first term, involving excitations of monomer A,
can be recognized as the polarization of A by the static charge distribution of
B and the second term analogously as the polarization of B by A. The third
term, involving simultaneous excitations of monomer A and B, is the dispersion
energy. At higher orders, one obtains e.g. terms corresponding to the coupling
of polarization in monomers A and B.

The RS treatment neglects exchange effects, i.e. the Pauli principle is not
imposed between the molecules. This approximation is usually called the polar-
ization approximation and its consequences for force field development will be
discussed in paper III. Obviously, the polarization approximation is only valid
in the long-range limit of intermolecular interactions.

Symmetry-adapted perturbation theory

Several perturbative treatments that include exchange effects have been de-
vised [32, 33]. Observing that the direct product Ψ0 is normally very different
from the "true" dimer wave function [33], it is clear that V̂ cannot be considered
as a small perturbation. A more reasonable choice of ground-state function is
the antisymmetrized product AΨ0, where A is the antisymmetrizer, defined in
Eq. 1.8.

However, as AΨ0 is not an eigenfunction of Ĥ0, one must either modify the
partitioning of the total Hamiltonian so that AΨ0 becomes an eigenfunction of
the new Ĥ0, or modify the actual RS perturbation scheme. The first option
is used in intermolecular perturbation theory (IMPT) [34], whereas the second
option leads to the more used symmetry-adapted perturbation theories (SAPT).

Several SAPT theories have been developed [33,35]. The simplest and most
used variant is the symmetrized Rayleigh-Schrödinger (SRS) theory. It uses
weak symmetry forcing, which means that the antisymmetrizer is only used in
the energy expressions. Thus, the perturbed wave functions obtained with SRS
will be identical to these obtained within the polarization approximation. The
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first- and second-order contributions to the energy are given by

E
(1)
SAPT = N0

〈
Ψ0|AV̂ |Ψ0

〉

E
(2)
SAPT = −

∑

m>0

N0

〈
Ψ0|AV̂ |Ψm

〉〈
Ψm|V̂ |Ψ0

〉

Em − E0
− ESAPT

1

(2.8)

where N0 = 〈Ψ0|AΨ0〉. By a decomposition of the antisymmetrizer into inter-
and intramonomer parts, the energy at each order can be divided into one
term that is identical to the energy from polarization theory and one term that
represents the exchange contribution. Moreover, a decomposition of ESAPT

2

similar to that done in Eq. 2.7 can be performed. Thus, the SAPT interaction
energy can be written as

ESAPT = E
(1)
ele +E

(1)
exch +E

(2)
ind +E

(2)
disp +E

(2)
exch−ind +E

(2)
exch−disp +Ehigher. (2.9)

This expression clearly resembles Eq. 2.3, although the terms do not need to be
equally defined, as will be discussed in Section 2.3.

In principle, the monomer wave functions inserted into perturbation theory
should be the exact monomer wave functions. In practice, however, they are
always approximate. The most common type of monomer wave functions are
Hartree–Fock wave functions. In this case, E(1)

SAPT becomes almost identical
to the Heitler–London interaction energy, which is the energy obtained in a
supermolecular HF calculation if the unperturbed monomer orbitals are used
without any subsequent iterations. In principle, the equality requires a complete
basis, but in fact it holds for any basis set if the dimer-centered basis set is used
when computing the monomer wave functions [36]. Such procedure is often used
in SAPT, although more effective basis sets have been proposed [37].

Contributions to the interaction energy from the intramonomer electron cor-
relation can be calculated by a double perturbation approach [33], with one per-
turbation being of the type in Eq. 1.20 and the other as in Eq. 2.5. SAPT can
be used as a stand-alone method to compute interaction energies, but is often
used together with a supermolecular calculation at a lower level of theory, be-
cause the latter includes all higher-order terms, some of which are cumbersome
to compute in SAPT.

Supermolecular decomposition schemes

Interaction energies can also be decomposed within the supermolecular ap-
proach. The advantage of this is that all higher-order terms are included. Nu-
merous decomposition schemes have been developed over the years, but in this
thesis only the Kitaura–Morokuma (KM) scheme [38] and the restricted virtual
space (RVS) scheme [39, 40] will be considered. Both give the Heitler–London
energy, i.e. the sum of electrostatic and exchange-repulsion terms, but they
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differ in the decomposition of the remaining term, sometimes called the defor-
mation energy. The main difference between the KM and RVS schemes [41] is
that the polarization energy in the KMD scheme is computed without account
of the Pauli effects, and thus the model breaks down as the intermolecular
distance becomes short or as the basis set becomes more complete [42]. The
RVS method includes Pauli effects by letting each monomer be polarized under
the anti-symmetry constraints imposed by the frozen molecular orbitals of the
other monomer. Thus, the polarization term is more physical and has better
convergence properties. However, the use of frozen orbitals prohibits the self-
consistent treatment of the polarization of both molecules (see paper III for a
validation). In this respect, the RVS model resembles the SAPT methods in
that higher-order polarization terms are ignored.

2.2.3 Molecular mechanics

A molecular mechanics force field is a simplified description of molecules, where
one has eliminated the electronic degrees of freedom and only consider the inter-
actions and movements of atomic nuclei. If the force field allows the molecules
to be flexible, the energy expression contains bonded terms in addition to the
non-bonded terms that are always present. A typical functional form [11] of the
bonded terms is

Ebonded =
bonds∑

i

ki

2
(li−li,0)

2+

angles∑

i

ki

2
(θi−θi,0)

2+
torsions∑

i

Vi

2
(1+cos(niωi−γi)),

(2.10)
where li and θi are bond lengths and angles, respectively, li,0 and thetai,0 are
the corresponding reference values, ki is the force constant, ωi is the torsional
angle, and Vi, ni, and γi are constants.

The non-bonded contribution normally follows the decomposition in Eq. 2.3
(a polarizable force field), or omits the induction term (a non-polarizable force
field). We will frequently refer to a standard molecular-mechanics force field,
by which we imply the following functional form for the non-bonded terms:

Enon−bonded =

atoms∑

i

atoms∑

j>i

[
qiqj
rij

−
Aij

r6ij
+
Bij

r12ij

]
, (2.11)

where rij is the distance between atoms i and j, qi is the partial charge of atom
i, and Aij and Bij are fitted parameters. The first term is the electrostatic
term, whereas the other two together constitutes a Lennard-Jones interaction,
roughly corresponding to the dispersion and repulsion terms. This is the most
common functional form used in force fields for biomolecular systems, e.g. Am-
ber, CHARMM, OPLS, and GROMOS.

When going beyond standard force fields, a multitude of variants exist. The
specific functional forms that can be used for each non-bonded term, as well as
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how to extract the needed parameters from quantum-chemical calculations, will
be discussed in the next section.

A force field can be based on quantum chemistry (see section 2.3), experi-
mental results, or (most commonly) a combination of both. In this thesis, we
will focus on methods purely based on quantum chemistry. Such approach has
an important philosophical value: If we reproduce a wide range of experimental
quantities with a purely theoretical model, we can deduce that the model is
reasonably correct and base our physical theories upon the model. The same
is not true if we have included experimental knowledge into the force field: the
model then simply becomes a predictive tool, regardless of how much physics it
contains.

On the other hand, the inclusion of experimental data when constructing the
force fields has one clear advantage: If one accepts that the underlying physics
is too complex to be studied in detail, one can hope to capture some of the
missing effects by including experimental data. This applies in particular to
the approximations done in quantum chemistry (i.e. insufficient basis set and
treatment of electron correlation), but with similar reasoning one can also try to
include other effects (e.g. from solvent or entropy) so that the potential energy
surface becomes an effective potential (potential of mean force).

Most molecular-mechanics studies are performed using non-polarizable force
fields, partly because of the reduced computational cost and partly because
of the vast experience of non-polarizable force fields collected through various
applications. The reason for the success of non-polarizable force fields is not that
the induction energy is negligible in all these applications, but that only the total
interaction energy matters. To reproduce experimental data in the condensed
phase (e.g. in water solution, where polarization is known to be important),
the charges must typically be enhanced to simulate an average polarization [43].
Clearly, this limits the transferability of the force fields to other types of systems.

A polarizable force field, on the other hand, builds more solidly on physical
principles and each term can in principle be related to the corresponding term
in a quantum-chemical perturbation treatment. Parameters of polarizable force
fields therefore have the prospect to be much more transferable [44]. However,
the molecular-mechanics picture is still extremely simplified and only a few
studies have explicitly demonstrated the greater transferability [45].

2.3 Molecular mechanics based on quantum chem-

istry

We are now ready to tackle one of the main themes of this thesis, namely
how to extract molecular mechanics parameters from quantum chemistry, both
from monomer calculations, supermolecular calculations, and perturbation the-
ory. We will frequently refer to the Sum of Interactions Between Fragments Ab
initio computed (SIBFA) method [46], the effective fragment potential (EFP)
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method [47], and the NEMO method [48, 49], three prominent examples of
molecular mechanics force fields developed along these lines. Other examples
include the PFF [50] and QMPFF [51] methods. Out of the force fields that can
be directly applied for protein simulations, Amoeba [52] is probably the most
theoretically founded, whereas the Amber [53] and CHARMM [54] polarizable
variants are more empirical. More detailed accounts of polarizable force fields
can be found in recent reviews [55, 56].

2.3.1 Electrostatic interaction energy

A natural goal of an electrostatic model is to reproduce the exact electrostatic
energy, Eq. 2.6, accurately, but with less computational effort. This can be done
by replacing the continuous monomer charge density, ρ(r), with a set of discrete
charges and possibly higher multipoles. The interaction energy between two
such multicenter–multipole expansions is given by [57]:

Eele =
A

X

i

B
X

j

»

qiqj

|rij |
+ (qiµj − qjµi) · ∇

„

1

rij

«

+ (qiΘj − µiµj + qjΘi) · ∇∇

„

1

rij

«

...

–

,

(2.12)

where rij is the distance vector from center i to center j, and qi, µi, and Θi are
the charge, dipole, and quadrupole in center i, respectively. In standard force
fields, only the first term is used.

Determining multipoles

There are two main approaches for extracting multipoles form a quantum-
chemical calculation, viz. to fit the multipoles to reproduce the electrostatic
potential (ESP) around the molecule or to directly analyze the charge density.

In the former case, one typically selects a large number of points around
the molecule and minimizes the mean squared deviation between the quantum-
chemical ESP and the ESP generated from atomic charges. Unfortunately, the
charges depend significantly on the way the points are selected [58] and especially
charges of buried atoms are ill-defined. A way to reduce these problems is
to fit the charges locally to the ESP from density-derived multipoles [59]. In
force fields for flexible molecules, the ESP charges are typically restrained [60]
or averaged over several conformations [61, 62] to reduce their conformational
dependence. The ESP method has also been used for higher multipoles [63].

Methods that analyze the charge density include the Mulliken [64] and the
Löwdin [65] population analyses, the distributed multipole analysis (DMA) [66]
and similar approaches [67, 68], and the natural atomic orbitals (NAO) anal-
ysis [69]. These methods avoid the arbitrary selection of points, but instead
they are quite sensitive to the basis set used in the quantum-chemical calcu-
lation. Several solutions to this problem have been proposed, e.g. the atoms
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in molecules (AIM) scheme [70, 71] and other topological partitioning meth-
ods [72–74], as well as improved population analysis methods [75, 76]. The
convergence of distributed multipole expansions has been studied for both elec-
trostatic energies [77] and the ESP (see paper II). It should be noted that
multipoles obtained from the density are usually significantly worse than ESP-
derived multipoles (of the same order) at reproducing electrostatic energies [78];
therefore an “extra” multipole order must typically be used.

Beyond multipoles

Regardless of how multipoles are obtained, they cannot reproduce the electro-
static energy when the overlap between the charge densities of the monomers is
significant. Unfortunately, this is the case for most interactions of interest, e.g.
hydrogen bonds in their energy minimum. The difference between the true elec-
trostatic energy and the multipolar interaction energy is usually called charge
penetration energy, and is attractive for most interactions (because the repul-
sion between the electron clouds is the first contribution to be damped when
the monomers start to overlap). In most force fields, this term is absorbed into
the repulsion energy, as it has a similar dependence on the overlap.

Electrostatic models that explicitly includes the charge penetration have ap-
peared. Noting that (for Gaussian basis sets) the exact electron density is a sum
of Gaussians distributed throughout the molecule, one solution is to reduce the
number of Gaussians by a fitting procedure [79–81]. A similar approach is the
Gaussian Electrostatic Model (GEM) [82–85], which, inspired by the density
fitting method [86], first employed an analytical minimization of the Coulomb
metric for the density deviation, but later changed to a numerical (grid-based)
fitting [85]. GEM has been combined with the SIBFA force field [46]. Other
groups have used pure numerical integration [87,88] or combinations of numer-
ical integration and multipole integration [89,90]. Within the EFP approach, a
reduction of the Coulomb integrals to orbital overlap integrals (which are much
easier to compute) has been done for s-functions [91], as well as the more prag-
matic approach to include damping functions for the multipoles [92]. A similar
method [93] has also been used in SIBFA. The drawback with all these methods,
except the last two, is the increased computational time taken for evaluating
the electrostatic energy, compared to a pure multipole approach.

2.3.2 Polarization

Polarization models [44] are a central theme in this thesis. The polarization
problem is significantly more complex than the electrostatic interaction. The
reason that so much effort has been spent on improving the electrostatic interac-
tion is not its complexity, but the fact that it is usually larger in magnitude and
more long-ranged and therefore more important to model accurately (another
reason is of course the dominance of non-polarizable force fields).
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One difficulty with polarization is the lack of unambiguous reference quan-
tities. A naive idea would be to calculate the exact electric field from each
monomer, apply that in the quantum-chemical calculation of the other monomer,
and iterate until self-consistency. This is the exact electric field polarization
(EPOL) method defined in paper III, and it is (for Hartree–Fock theory) iden-
tical to the polarization energy in the Kitaura–Morokuma decomposition [38].
The problem with this approach is the same as for the RS perturbation theory,
i.e. that the obtained wave function does not obey the anti-symmetry principle.
The consequences of this problem will be thoroughly discussed in paper III.

Another difficulty is that one normally wants to describe the polarization as
a classical physical process, whereas it is really a quantum-mechanical process
(as can be seen from Eq. 2.7) describing the response of the wave function to
an applied electric field. The classical picture arises from the linear response
approximation, stating that when a molecular system is subjected to an electric
field F , the induced dipole moment is given by

µind = α · F (e.g. µx = αxxFx + αxyFy + αxzFz) (2.13)

where α is called the polarizability tensor of the system. The advantage of this
description is that it allows us to ignore the quantum-chemical details of the
charge redistribution. Certainly, the value of α must be computed quantum-
chemically (typically by applying weak electric fields), but this is only done
once. For developing and testing polarization models, it is useful to go back to
the quantum-chemical description (see paper III). The polarizability tensor α

is often replaced by a scalar quantity (the isotropic polarizability), defined by
(αxx + αyy + αzz)/3. For an atom, this substitution is of course exact.

For two interacting molecules, linear response can usually still be assumed,
but the complication is twofold. First, the electric field is not homogeneous, i.e.
it varies in different parts of the molecule. Second, the induced dipole moment
is not a very useful quantity, because it does not specify where in the molecule
the largest response occurs. A solution to these problems is the distributed point
polarizability model, which is the most common model in polarizable force fields,
used in both SIBFA, EFP, and NEMO. In this model, each molecule contains a
set of polarizabilities. At each center i, i.e. at the position of the polarizability
αi, the induced dipole µind

i is given by:

µind
i = αi · Fi = αi ·



F stat
i −

∑

j 6=i

µind
j ∇∇

(
1

rij

)

 (2.14)

where the electric field Ei in that position has been divided into contributions
from the static charge distribution and from other induced dipoles. Writing up
Eq. 2.14 for each center i defines a linear system of equations, which can be
solved through matrix inversion or by iteration. As the static term tends to
dominate Eq. 2.14, the iterative approach usually converges in ∼10 iterations.
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The induction energy is given by

Eind = −
1

2

N∑

i=1

µi · E
stat
i (2.15)

where the factor 1/2 comes from the fact that the (positive) work of polarization
cancels half of the energy of the dipoles in the field. Note that the energy
contribution from a pair of induced dipoles is completely cancelled by the work
of polarization, so Eq. 2.15 contains only the static field (but the coupling is
anyway included through the values of µi).

The static field Estat
i may in principle come from the exact charge distribu-

tion (as in paper III), but is normally computed from the multipole expansion:

Estat
i = −

∑

j 6=i
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qj∇
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1
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)
+ Θj · ∇∇∇

(
1

rij

)
...

]
(2.16)

where, in the simplest versions of polarizable force fields, only the first term is
used.

In Eqs. 2.14 and 2.16, the contribution to the field from all surrounding cen-
ters are treated equally. In practice, one often omits or damps contributions
from certain (typically close-lying) induced or static multipoles, but the reasons
for doing so vary in the two cases. For the coupling between polarizabilities in
Eq. 2.14, the induced dipoles may become infinite at small distances (the “polar-
ization catastrophe”), and the polarization can become unphysical even before
that happens. Although it is possible to reproduce the molecular polarizability
by a set of fully coupled atomic polarizabilities, significantly smaller values must
be used than with an uncoupled set [94]. An alternative is to damp the dipole
interaction tensor for overlapping charge distributions. The most used such
damping is the one by Thole [95], sometimes reparameterized [96]. Other op-
tions include omitting contributions from atoms that are directly bonded [97] or
separated by less than three bonds [53], for example. In most methods for deriv-
ing polarizabilities that are based directly on quantum-chemical calculations (see
below), the coupling is ignored between polarizabilities in the same molecule,
because it is already implicitly included through the quantum-chemical calcula-
tions. The explicit and implicit coupling schemes have been compared [98] and
will also be discussed in Paper V. To reduce the computational cost, it has been
suggested to omit all polarizability coupling (i.e. not only the intramolecular
part) and instead slightly enhance the charges [99] or to include the coupling to
first order [100]. These approximations assume that the effect of the coupling
is a minor part of the total effect of polarization.

On the other hand, for the response to the static field, which we will refer to
as static polarization, the choice of which interactions to include in Eq. 2.16 (and
possible damping) is more a question of definition. Indeed, for a rigid molecule,
it is simple to change between on one hand a representation where the static field
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from multipoles in the same molecule are included in Eq. 2.16, and on the other
hand a representation where all such contributions are excluded and instead
modeled by permanent dipoles, i.e. a “pre-polarized” molecule. Although these
representations give equal results, the latter can be preferable for qualitative
conclusions, as will be discussed in paper V. For a flexible molecule, the static
polarization can be used as a way to model how the charge distribution (or the
multipole representation of it) varies with changes in the molecular geometry [52,
101–104].

Determining distributed point polarizabilities

The determination of distributed point polarizabilities from quantum-chemical
calculations is more cumbersome than for multipole moments [44], mainly be-
cause of two issues.

First, the response is a more complicated property. The electrostatic proper-
ties are simply determined by the charge density ρ(r); and distributed multipole
moments are simply expectation values over local partitions of ρ(r). However,
for fully describing the polarization of a system, we need to know the change
in charge density for an arbitrary external potential. Assuming linear response,
this can be expressed as

∆ρ(r) =

∫
α(r, r′)V (r′)dr′, (2.17)

where V (r′) is the external potential and α(r, r′) is the charge density sus-
ceptibility function, describing the change in density in one point caused by a
certain electric potential in another point. A direct partitioning and “multipole
expansion” of the charge density susceptibility function (using e.g. coupled per-
turbed Hartree–Fock theory) therefore leads to both local and non-local point
polarizabilities [105], the latter giving the induced dipole at one center caused
by the electric field at another center. Such description is awkward in practice,
because the number of polarizabilities varies as N2 with the number of centers
N). However, if the partitioning is done properly, the non-local polarizabilities
can be eliminated [106]. A simpler approach is to use homogeneous electric
fields for the perturbation and assume from the outset that the charge density
susceptibility function is local [76, 107].

Second, a direct analysis of ∆ρ(r) will give monopoles as well as dipoles
(higher-order multipoles are normally discarded). This represents the “charge
flow” due to the polarization, which is a realistic process but cannot be modeled
in a pure point-polarizability model. Therefore, they are normally converted
to point polarizabilities. As this process is of course approximate, it is advan-
tageous for a partitioning scheme to give small monopole polarizabilities [108].
In another context, monopole polarizabilities have been used to characterize
chemical bonds [109].

The partitioning of the response can mainly be done by the same two ap-
proaches as the density partitioning for multipoles. In the grid-based approach,
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one typically runs a large set of calculations each having a perturbing point
charge at one grid point. The induced electric potential at that particular grid
point [110] or at all grid points simultaneously [111, 112] is used to fit a set of
polarizabilities up to an arbitrary multipole order. The main advantage of this
procedure is that the set of dipole polarizabilities can be optimized to describe
effects related to higher-order polarizabilities as well. A drawback is that it is
unable to assign polarizabilities reliably to “buried” atomic sites.

It was early recognized that basis-space partitioning of the response can
lead to large charge flow and unphysical polarizabilities, especially for basis
sets containing diffuse functions [113]. The reason is the same that causes the
basis-set dependence of distributed multipoles, i.e. that when adding together
basis sets for each atom, the resulting basis set may be “overcomplete” (ill-
conditioned). Thus, the application of even a very weak electric field can cause
significant changes in the MO coefficients without the total density being af-
fected very much. As for multipoles, one solution to this problem is to use a
real-space (topological) partitioning [114,115]. More computationally appealing
methods include a density fitting approach [108], a localized molecular orbitals
approach [107], and the LoProp approach [76] (see papers II and III), in which
a more physical partitioning reduces the numerical problems and the charge
flow terms are minimized by a Lagrange multiplier approach. A quite different
approach is to express the polarizability in terms of force operators that can be
decomposed into nuclear contributions without reference to any basis set [116].

The numerical problems can also be avoided by not performing the perturbed
calculations explicitly, as in the uncoupled Hartree–Fock approximation [117],
which is also much faster. Although the molecular polarizability is not repro-
duced exactly in such approaches, they may still be useful in practice, because
higher-order molecular polarizabilities (which crucially depend on the distribu-
tion method) may be important as well. Moreover, a simple scaling is often
possible (see paper II).

All the methods considered above are “method-consistent”, i.e. the polariz-
abilities obtained at a certain quantum-chemical level (and a certain basis set)
give interaction energies comparable to supermolecular results at the same level.
However, it may sometimes be possible to cure deficiencies in the interaction
model by employing polarizabilities computed at another level. For example,
it has been suggested to avoid diffuse functions when computing polarizabil-
ities, in order to capture some of the Pauli effects present in the condensed
state [50, 118].

Beyond point polarizabilities

As has already been mentioned, non-local (two-site) polarizabilities, monopole
(charge flow) polarizabilities, and higher-order polarizabilities can be derived by
similar methods. In fact, dipole–quadrupole polarizabilities have been found to
improve the description of the response [119]. Explicit inclusion of charge flow
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does not seem to give a significant effect for most systems, as will be demon-
strated in paper III. An illustrative example is given in Figure 2.3, which shows
the response of a formamide molecule with two different polarization models
when interacting strongly. Although the response looks quite different for the
model including charge flow, the induced electric potential around the molecule
is similar (see paper III). On the other hand, monopole polarizabilities are ex-
pected to be advantageous for describing conjugated π-systems, for example.
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Figure 2.3: Response of a monomer of the formamide dimer from paper III, using two
different polarization models: the polarizability model (left) with only dipole polar-
izabilities, and the LPOL model (right) with charge flow. Numbers denote induced
charges in thousandths of the elementary charge. Arrows denote induced dipoles (1
cm ≈ 0.084 a.u.)

An alternative to the point-polarizability model is the shell model (also called
the Drude oscillator model), in which each polarizability is modeled as a core
charge +q and a shell charge −q connected by a harmonic spring with force
constant k. These parameters can be derived by the same methods as the
polarizabilities (see above), because of the direct relation:

α =
q2

k
(2.18)

where α is the isotropic polarizability. The reason for using Shell models is often
to avoid the interaction tensor in Eq. 2.14 or to avoid the iterative procedure by
treating the shell separation as a dynamical variable in a simulation. However,
by letting the interaction site for the repulsion coincide with the shell charge, one
can also model the coupling between induction and repulsion in an approximate
but physically realistic way [44].

In contrast, pure fluctuating charge models are normally not based on polar-
izabilities. A common way to determine the charges is electronegativity equal-
ization, in which an energy expression of the type

E(q1, q2, ...qN ) =
N∑

i

(
χiqi +

1

2
Jiq

2
i

)
+

N∑

i<j

f(rij)qiqj
rij

, (2.19)

where N is the number of atoms, χi and Ji are the standard electronegativ-
ity and hardness, respectively, and f(r) is a short-range damping function, is
minimized under the constraint that the sum of the charges {qi} is conserved.
The advantage of fluctuating charge models is primarily the computational ef-
ficiency and simplicity, but they can also be coupled to the repulsion [44]. On
the other hand, they obviously have problems with describing the response of
symmetric systems (e.g. benzene), and are therefore sometimes combined with
polarizabilities. A comparison of such mixed models with point-polarizability
models [120] showed no particular advantage of including fluctuating charges.
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2.3.3 Dispersion

A multipole expansion of the interaction operator in the third term of Eq. 2.7
leads to the following asymptotic series for the dispersion energy between two
atoms A and B:

Edisp = −
C6

R6
−
C8

R8
−
C10

R10
... (2.20)

where R is the interatomic distance and Cn are known as dispersion coefficients.
In the well-known London formula, the series is truncated after the first term
and the dispersion coefficient is estimated [4] by

C6 =
3

2
αAαB

(
IAIB
IA + IB

)
(2.21)

where αX and IX are the polarizability and ionization potential of monomer
X , respectively. This approach can be directly extended to molecules by using
a sum over atom–atom pairs and either treating the dispersion coefficients as
adjustable parameters (as in standard force fields) or calculating them by a
London-like formula [49].

To account for the effects of overlapping charge distributions, each term in
Eq. 2.20 can be damped, e.g. by the much used Tang–Toennies model [121] or
by models fitted to symmetry-adapted perturbation theory [122].

Determining dispersion coefficients

A direct calculation of the distributed dispersion coefficients from quantum
chemistry usually proceeds via the frequent-dependent polarizabilities α(iν).
In EFP, the dispersion is described using a sum over LMO (local molecular
orbital) pairs involving anisotropic polarizabilities [123]:

Edisp =
∑

j∈A

∑

k∈B

∑

αβγδ

T jk
αβT

jk
γδ

∫ ∞

0

αj
αγ(iν)αk

βδ(iν)dν, (2.22)

where T jk
xx , T

jk
xy , ... are elements of the dipole interaction tensor for the distance

between LMO centers j and k, and αj
xx, α

j
xy, ... are elements of the anisotropic

frequency-dependent polarizability tensor located at center j. For practical
reasons, one normally uses isotropic polarizabilities in the EFP dispersion, so
that Eq. 2.22 reduces to a simple sum of R−6

jk terms. Similar expressions have
been used by others and augmented with R−8 and R−10 terms arising from the
corresponding treatment of higher-order polarizabilities [124]. Analogously, the
charge-flow polarizabilities give rise to lower-order terms (down to R−2) that
cancel at long range, but including such terms may give numerical errors [124]. A
non-expanded treatment of the dispersion, including higher-order terms as well
as overlap effects, can be formulated in terms of frequency-dependent density
susceptibilities [125], but to a significantly higher computational cost.
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The calculation of frequency-dependent polarizabilities (or susceptibilities)
requires at least time-dependent Hartree–Fock (TDHF) or density functional
theory (TDDFT). Distributing the polarizabilities over the molecule can be
performed by the same type of methods as for static polarizabilities (see Sec-
tion 2.3.2). A computationally simpler approach to distributed dispersion coef-
ficients exploits a connection to the dipole moment of the exchange hole [126],
which can also be localized using standard methods [127,128].

2.3.4 Repulsion

Similar to the case of polarization, there is no unambiguous definition of repul-
sion. One possible definition is the Hartree–Fock exchange–repulsion energy.
This approach is taken by the EFP and SIBFA force fields and allows for a
systematic improvement of each term based on physics. Another common ap-
proach, used in NEMO, is to use the repulsion as a rest term [49], defined e.g.
as

Erep = Etot − Eele − Eind − Edisp. (2.23)

It is then fitted to supermolecular energies for a set of interacting dimers [129].
With this definition, the repulsion will also contain overlap corrections to the
induction, dispersion, and electrostatic energies, as well as charge transfer (see
below). The advantages of this approach are that simpler expressions can be
used for all terms and that errors inherent in each term can be effectively cor-
rected for, but on the other hand the transferability is not guaranteed.

The Hartree–Fock exchange–repulsion energy can be obtained by subtracting
the electrostatic energy from the Heitler–London interaction energy (or equiva-
lently, by the Kitaura–Morokuma decomposition [38] scheme). It is often divided
into an exchange contribution and a repulsion contribution [130]. The former is
always attractive and is simply the sum of exchange contributions (second term
in the i, j-sum of Eq. 1.12) from orbitals on different monomers. The latter is
repulsive and always larger in absolute value, thus causing a net repulsion. Its
origin can be qualitatively understood in terms of a depletion of electron density
in the overlap region due to the antisymmetrization [131].

The common modeling of the repulsion by a term proportional to R−12 is
mainly due to computational convenience; an R−9 or R−10 dependence has also
been used [11]. A more realistic repulsion potential decays exponentially, as in
the Born–Mayer model:

Erep =
∑

i∈A

∑

j∈B

κij exp (−αijRij) , (2.24)

where αij and κij are atom–atom parameters and Rij is the interatomic dis-
tance. If needed, the potential can be modified to include the anisotropy of each
atom–atom term [132], e.g. by

Erep =
∑

i∈A

∑

j∈B

exp (−αij(ωij) [Rij − ρij(ωij)]) , (2.25)
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where ωij is the relative orientation of the local axes of atoms i and j, and αij

and ρij are functions of ωij . Thus, the main problem lies in determining the
parameters.

Determining repulsive parameters

Asymptotically, the exchange repulsion is proportional to S2, where S is the
overlap integral of the monomer wave functions [133]. For Hartree–Fock monomer
wave functions, S2 is given by

S2 =

A∑

i

B∑

j

〈ψi|ψj〉
2 (2.26)

where ψi and ψj are occupied molecular orbitals (MOs) of the isolated monomers
A and B.

For further analysis, it is practical to start from the perturbative defini-
tion of exchange repulsion (i.e. the E(1)

exch term of Eq. 2.9), which differs from
the Hartree–Fock exchange repulsion only at order S4 [134]. An exact expres-
sion for E(1)

exch has been given [134], but more computationally feasible formulas
are usually based on an (infinite) expansion in terms of overlap integrals. For
a dimer, only even powers of S occurs in the expansion and expressions for
the S2 and S4 orders have been given. By approximating the S2 expression
in various ways (e.g. the spherical Gaussian overlap approximation [135]), a
parameter-free exchange-repulsion model [136] has been included in the EFP
method. More approximate models are based directly on the squared orbital
overlap of Eq. 2.26 [137, 138], sometimes modified by introducing an explicit
distance dependence [139,140].

Because the exact computation of S2 requires the wave functions of the
monomers, it is rather impractical to use in a force field. Therefore, many
models are instead related to the density overlap:

Ω =

∫
ρA(r)ρB(r)dr (2.27)

where ρA and ρB are the electron densities of the isolated monomers. Approxi-
mate proportionality between the exchange repulsion and Ω was found for both
atomic [141] and molecular dimers [87,142]. The comparison of repulsion mod-
els based on orbital overlap (S2) and density overlap (Ω) is the subject of paper
I.

The gain of relating the repulsion to the density overlap instead of the or-
bital overlap might not be immediately apparent. However, the density overlap
is significantly easier to approximate. As in the charge-penetration case, the
number of Gaussians used to represent the molecular density can be signifi-
cantly reduced [80]. The density overlap model can also be used together with
density-fitting techniques [83]. Moreover, the integral in Eq. 2.27 is amenable to
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numerical integration [87]. If one divides the monomer density into atomic con-
tributions, each approximated by a spherical exponentially decaying function,
the overlap model provides a way to directly calculate the repulsion parame-
ters in simple potentials, e.g. Eq. 2.24 (see paper I). A related approach is used
in NEMO to derive atom-wise parameters from the trace of the distributed
quadrupole moments [129].

Another way of determining parameters is to place a probe atom at many
different positions around the molecule and fit atomic parameters (possibly
anisotropic) to the resulting exchange-repulsion energy [143]. This method may
capture some system-specific effects while still only performing monomer calcu-
lations. As for the decomposed density overlap approach, accurate combination
rules are required to obtain the atom–atom properties of Eqs. 2.24 or 2.25.

Beyond additive repulsion

Perturbation theory has shown that the true exchange repulsion, in contrast to
the models above, is non-additive [144], and moreover that it couples with the
induction. This is not surprising, considering that the repulsion, like the polar-
ization, influences the charge density. As an example, the charge redistribution
in the water dimer caused by the mere antisymmetrization of the dimer wave
function is shown in the left part of Fig. 2.4, with the lighter surface represent-
ing a decreased and the darker an increased electron density. For comparison,
the fully polarized redistribution is shown in the right part of Fig. 2.4. As can
be seen, the antisymmetrization gives a significant contribution.
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Figure 2.4: Isodensity surfaces (light for negative and dark for positive) for the change
in density upon formation of the water dimer. The left part shows the antisymmetrized
but unpolarized wave function whereas the right part shows the fully polarized wave
function.

For these reasons, one would ideally like to model the repulsion on a sim-
ilar level as the polarization, that is, one would need a way to “polarize” the
molecule by repulsion. However, because the repulsion is a non-classical effect,
there is nothing corresponding to point-polarizabilities. One solution, which
was recently applied in a non-additive force field [145], is to model the density
depletion as an exchange-quadrupole. Another solution is to directly compute
the coupling from orbital overlap expressions [146].

A possible approach to develop this type of models is to start from a de-
scription in which one of the monomers is treated by quantum chemistry and
the other monomer (B) by a simpler model. This description is also directly
useful for treating the influence from the environment on a quantum-chemical
calculation [147–150], e.g. for calculating solvent effects on spectra- [151]. The
approach is analogous to conventional QM/MM methods [152], in which electro-
static (but usually not repulsive) effects are captured by embedding the system
of interest in point charges.

The repulsive effect can be modeled as a pseudopotential, which is added to
the Hamiltonian of the quantum-chemical system. Pseudopotentials were first
introduced in studies of atoms as a way to remove the explicit treatment of the
core electrons. A common choice (for monomer A) is

V̂A =
∑

i

di |ψ
B
i

〉 〈
ψB

i | (2.28)

where the sum runs over the occupied orbitals |ψB
i 〉 of monomer B and di is

a parameter which often depends on the orbital energy. For determining the
parameters di, theoretical analyses exist for the pure repulsion in simple systems,
but normally a fitting or qualitative arguments are applied. In this way, one
can also account for the attractive exchange (which is costly to add separately),
or even the effective repulsion in Eq. 2.23. A more advanced pseudopotential
has been derived from the variational derivative of the EFP repulsion [146].

Pseudopotentials based on the density overlap have also been developed [153,
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154]. The effect can also be modeled by standard density functionals [155].

2.3.5 Charge transfer

The charge-transfer term is usually described as the energy lowering due to ex-
citation of electrons from the occupied orbitals of one monomer into the virtual
orbitals of the other [156], in contrast to the induction energy, which involves
excitations to the virtual orbitals of the same molecule. Obviously, as the basis
set is enlarged and approaches completeness, the two virtual spaces will practi-
cally coincide and the charge transfer will either vanish [39,40] or double-count
the induction energy [38] depending on the exact definition employed. Thus,
the charge-transfer energy can be seen as an ill-defined part of the induction en-
ergy [157], or simply be defined as the part of the interaction energy that cannot
be described when each monomer uses its own basis set. A similar definition
has been used to compute the charge-transfer within intermolecular perturba-
tion theory [157], as the standard definitions suffer from contamination from
BSSE.

It has been shown that the charge-transfer energy has an exponential de-
cay with intermolecular distance (like the exchange repulsion) and that it is
significant for normal hydrogen bonds using typical basis sets [157]. Although
one can argue that it is a mathematical artifact and could be lumped together
with other garbage terms, such treatment may interfere with the goal of trans-
ferability. Therefore, explicit estimates of the charge-transfer energies based
on monomer properties are included in both the SIBFA and EFP methods, al-
though the expressions used are remarkably different [140, 156]. Much simpler
approaches have also been devised, e.g. using a Born–Meyer term with negative
sign [158].
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Protein–ligand affinities

Mutual molecular recognition is the starting point for almost all processes in
biological systems [159]. An enzyme must bind the correct substrate for a
reaction to take place, a receptor must bind the correct compound to trigger a
signal, etc. From a computational point of view, this is a very difficult problem,
because the protein is large, both molecules are flexible, and water (which is
in itself a difficult liquid to model) plays an important role. At the same time,
however, it is an intriguing problem, because it is one of the rare quantities that
are both well-defined at a microscopic level and at the same time possible to
measure accurately experimentally.

Not surprisingly, this problem is of great interest to the pharmaceutical in-
dustry, because many drugs are competitors with natural compounds in binding
to proteins. The prediction of the binding free energy of a ligand to a protein
has been described as the Holy Grail of rational drug design [159]. For the cal-
culation to be really useful in drug development, an accuracy of ∼4 kJ/mol is
required. This can appear as an impossible wish, considering the complexity of
the process, but in fact, several studies have reported such accuracies, although
methods that achieve this for an arbitrary protein–ligand complex are still far
away.

Depending on the development phase, one might have different starting
points for the problem. Some methods, e.g. QSAR and pharmacophore model-
ing, can be applied even if the structure of the protein has not been determined.
Predicting the binding pose of the ligand to the protein, docking, requires that
the structure is known. The subsequent prediction of the binding free energy
is called scoring. Many types of scoring functions have been developed [159],
including empirical, based on a weighted sum of simple structural properties,
knowledge-based, based on a statistical analysis of known protein–ligand struc-
tures, and physical, based on a potential-energy surface. Docking and scoring is
normally an interrelated process, but specific tests of scoring functions can e.g.
be performed by using experimentally determined binding poses.

35
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In the following, it is assumed that the binding pose is known. Moreover,
to comply with the main thread of the thesis, only physical methods will be
discussed. A comparison of the accuracy of scoring functions [160] showed that
a physical approach is not guaranteed to give the best results. Only if the
model includes all important effects in a balanced way and treated with as few
approximations as possible, such distinction can be expected.

3.1 Theory

For the dissociation of a protein–ligand (PL) complex into the unbound protein
(P) and ligand (L) in aqueous solution, the equilibrium constant Kd is given by

Kd =
[P ][L]

[PL]
(3.1)

where [...] denotes the concentration. Experimentally, Kd is the concentration
of ligand necessary to make a half of the receptor sites occupied. The standard
free energy of binding (per molecule) is then defined as

∆G◦
PL = −kBT ln(Kd/C

◦) (3.2)

where C◦ is the standard concentration (1 M). The work associated with the
volume change of the process is usually negligible, so no differentiation between
Gibbs and Helmholtz free energies is done.

Based on the classical probability distribution defined in Eq. 1.25, the free
energy is given [161] by

∆G◦
PL = −kBT ln

(
C◦

8π2

ZPL+SZS

ZP+SZL+S

)
. (3.3)

Here, each configuration integral is given by

ZX =

∫
exp [−E(rX)/kBT ]drX (3.4)

where rX are the coordinates of the system X , for example all protein and
solvent coordinates in the case X = P + S. It is possible to integrate out the
explicit solvent coordinates by using the solvation free energy W (rX) for a given
solute configuration. Thus, Eq. 3.3 is equivalent to

∆G◦
PL = −kBT ln

(
C◦

8π2

ZPL

ZPZL

)
. (3.5)

where

ZX =

∫
exp (− [E(rX) +W (rX)] /kBT )drX . (3.6)

This is the starting point for implicit-solvent approaches.
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For reasonably small complexes, it is possible to directly approximate the
configuration integral in Eq. 3.6 by a sum of integrals of the predominant
states [162] found by a conformational search. Most other methods, however,
rely on simulation techniques to find suitable ensembles from which the free
energies can be extracted [163]. Usually, one distinguishes between path-based
methods, which include sampling of various (usually unphysical) intermediate
states, and end-point methods, which only involve simulations of the free and
bound states.

3.2 Path-based methods

3.2.1 Relative affinities

The most common approach to rigorously calculate the difference in binding free
energy between two ligands is the double decoupling method [164]. It is based on
the thermodynamic cycle shown in Fig. 3.1. Instead of directly calculating the
binding affinities for the L and L′ ligands (∆GPL and ∆GPL′), one calculates
the free energy of transforming L to L′ in the complex (∆G1) and in solution
(∆G2) and uses the energy conservation to obtain

∆GPL′ − ∆GPL = ∆G1 − ∆G2 (3.7)

The connection with the partition function expressions is trivial. Using Eq. 3.3
gives

∆G◦
PL′−∆G◦

PL = −kBT ln
ZPL′+S

ZPL+S
−

(
−kBT ln(

ZL′+S

ZL+S

)
= ∆G◦

1−∆G◦
2 (3.8)

Each of the free energies ∆G1 and ∆G2 is usually calculated by free en-
ergy perturbation (Eq. 1.29) or thermodynamic integration (Eq. 1.28), where
one gradually transforms one ligand into the other by Eq. 1.27. The double
decoupling approach is a well established technique for obtaining free energy
differences between similar ligands. It has been found to give significantly bet-
ter results than simple scoring functions [165]. Most applications have used
molecular dynamics simulation [166], but Monte Carlo simulation have also
been used [167].

3.2.2 Absolute affinities

Calculating absolute binding affinities is a more challenging problem. It can
be addressed by a similar type of thermodynamic cycle, which is shown in
Figure 3.2 [168]. Here, the dashed line indicates that the ligand does not interact
with the surroundings, i.e. it is in the gas phase. The upper right state was
introduced later [161] as a convenient intermediate to account for the standard
concentration while still allowing for a straight-forward computation; in this
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Figure 3.1: Thermodynamic cycle used for calculating relative binding affinities.

state the ligand is not interacting but still constrained to occupy the binding
pocket. The method is usually called the double annihilation method, although
the reuse of the name double decoupling was suggested when the ∆G3 term was
added.

The quantities ∆G1 and ∆G2 are usually calculated by e.g. free energy
perturbation, whereas ∆G3 can be estimated analytically. The method (with or
without ∆G3) has been applied to many systems and seems to give good results
when pushed to the convergence limit [169], although this requires substantial
computational time. The importance of the particular form of the constraints
has been noted [170, 171]. Another way of avoiding the problematic end point
of the ∆G1 path is to perturb the ligand into water [172]. Although most
simulations of both relative and absolute binding affinities employ explicit water,
implicit solvent methods or hybrid methods [171] can also be used.

3.2.3 Potential of mean force

It can be difficult to perform standard decoupling methods if, for example, the
ligand is highly charged or flexible [173]. An alternative approach is to transfer
the ligand from solution to the binding site by pulling it along a predefined path
while averaging over the rest of the system trough simulation. This can be done
by umbrella sampling [174] or more sophisticated approaches, in which one se-
quentially introduces and removes translational, rotational, and conformational
restraints [173]. Several other techniques for improving the convergence and
efficiency of free energy calculations have also been proposed [175].
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Figure 3.2: Thermodynamic cycle used for calculating absolute binding affinities.

3.3 End-point methods

3.3.1 Perturbations from single simulations

The procedure of performing several simulations for each ligand using various λ
values can be quite time-consuming in the double decoupling method. On the
other hand, if the perturbations could be done in one step (λ = 0 → λ = 1),
the relative free energies between all ligands could be computed from only one
simulation (with λ = 0). Typically, the largest problem with using one-step
perturbations is that the space needed for the addition of a new group of atoms
is already occupied by the solvent or the protein. Therefore, attempts have been
made to use an artificial reference compound containing “soft” atoms, so that the
ensemble generated with the reference compound is wide enough to have suffi-
cient overlap with all the corresponding ensembles for the real ligands [176]. This
approach has been quite successful, even for structurally diverse ligands [177].
Similar simplifications have also been reported [178].

Warshel et al. have also applied free-energy perturbation methods [179], but
have also found that the linear response approximation (LRA; Eq. 1.30) is a
good approximation for the electrostatic contribution to the free energy [180].
The neglect of the higher-order terms in Eq. 1.30 corresponds to the assumption
that the free energy potentials with respect to an electric field are harmonic and
have equal curvature [181].
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3.3.2 Linear interaction energy (LIE)

A more empirical approach to binding affinities based on LRA is the linear
interaction energy method [181]:

∆GPL = α
(〈
Evdw

int

〉
PLS

−
〈
Evdw

int

〉
LS

)
+ β

(〈
Eele

int

〉
PLS

−
〈
Eele

int

〉
LS

)
, (3.9)

where Evdw
int and Eele

int are the Van der Waals and electrostatic parts of the
interaction energy between the ligand and the surroundings, the latter being
only solvent in the LS ensembles but protein and solvent in the PLS ensemble.
Based on the linear response approximation, the constant β was originally set
to 1/2, but a direct FEP computation of the response for a wide range of
molecules showed that β is system-dependent and deviates from 1/2 for non-
ionic systems [182]. Thus a standard LIE model was devised that uses β = 0.43,
0.37, and 0.33 for neutral ligands with zero, one, and two or more hydroxyl
groups, respectively, and α = 0.18. This model has provided good results [183]
for relative (and in some cases even absolute) binding affinities and has been
found rather independent of the force field [184]. Nevertheless, many studies
treat both α and β as adjustable parameters. The LIE method has also been
used with implicit solvent models [185, 186].

3.3.3 MM/PBSA

In the MM/PBSA approach [187], the binding affinity is estimated by starting
from the thermodynamic cycle in Figure 3.3 [188] and then approximating the
gas-phase binding free energy by the sum of the average interaction energy and
the change in configurational entropy upon binding, i.e.

∆GPL =∆Ggas
PL +

(
∆Gsolv

PL − ∆Gsolv
P − ∆Gsolv

L

)

≈
〈
EMM

int

〉
PLS

− T 〈∆Sconfig〉PLS + 〈∆∆Gsolv〉PLS

(3.10)

where 〈...〉PLS indicates that the averaging is done using snapshots (typically
20–100) from a simulation of the complex in solvent, usually explicit solvent.
The interaction energy (EMM

int ) is computed with the water molecules removed,
whereas the change in solvation energy upon binding (∆∆Gsolv) is calculated
using an implicit solvation model. ∆S denotes the change in configurational
entropy upon binding and T is the temperature.

For the interaction energy, a standard MM force field is normally used. A
polarizable force field has also been tried [189], although without fully self-
consistent treatment of the solvation. QM/MM interaction energies based on
semiempirical or density functional theory have also been used [190, 191]. In
paper VII, an attempt to use a higher-level QM method is presented.

For the solvation energy, the most common choice is the PBSA method,
i.e. the Poisson–Boltzmann (PB) method for the electrostatic part combined
with an estimate based on the surface area for the non-polar part. Several
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Figure 3.3: Thermodynamic cycle used in MM/PBSA.

studies have been performed with the Generalized Born method replacing PB,
although these methods can sometimes give quite different results [189,192]. In
paper VII, the polarizable continuum method (PCM) will be used, because it
has advantages in combination with a polarizable force field.

Estimating the change in configurational entropy is a very difficult problem.
In fact, for computing relative affinities for similar ligands, it is probably better
to neglect this term [187], but for absolute affinities it is an essential term.
It is normally computed by normal mode analysis or quasi-harmonic analysis.
In the former case, one typically truncates and minimizes a small part of the
complex and computes the vibrational, rotational, and translational entropy
changes using this truncated model. For more stable results, a fixed buffer
region can be included [193]. The quasi-harmonic analysis, on the other hand,
is done for the trajectories from the simulation. A problem with this approach
is limited sampling and that degrees of freedom with several local minima are
treated as a single wide potential well. By using methods that treat the local
minima separately, it has been found that the most important contribution to
the entropy loss comes from the energy wells becoming narrower, whereas the
reduced number of conformations available is less important [194]. This is in
contrast to the assumption in many simple scoring functions that the entropy
can be estimated by counting the number of rotatable bonds.

The statistical-mechanical basis of the MM-PBSA method departing from
the exact Eq. 3.5 has been described [161,195]. The most approximate assump-
tion is probably that the energetic landscape of each species has an energy and



42 Chapter 3: Protein–ligand affinities

configurational volume that can be determined from a simulation, i.e.

ZX =

∫
exp (− [E(rX) +W (rX)] /kBT ) drX . ≈ zint

X exp (−〈E +W 〉X/kBT ) ,

(3.11)
where zX is the internal configuration integral (causing the T∆S term), and
〈...〉X denotes that the average is computed for the particular species. This
means that the most rigorous way of computing the averages in Eq. 3.10 is
by performing separate simulations of the complex, the protein and the ligand.
However, as this approach usually gives severe convergence problems due to the
intramolecular contributions from the protein [195], most applications have used
only one simulation and thus have taken the protein and ligand configurations
from the simulation of the complex. On the other hand, separate simulations
were found to give significantly better results in at least one application [196].
It has also been found that the choice of force field and solvent treatment in
the simulations have a significant effect on the results [189]. Interestingly, sim-
ilar or even better results can sometimes be obtained using a single minimized
structure [197].

3.4 Solvation

Water plays many important roles in the protein–ligand binding process. First,
it acts as a dielectric continuum and screens the electrostatic interaction signifi-
cantly. This is especially evident in the MM/PBSA method, where the vacuum
electrostatic energy can be over a thousand kJ/mol, but is almost completely
cancelled by the solvation contribution (see paper VII). Water can also play a
more direct role by forming specific hydrogen bonds with the ligand or protein
that must be broken when the complex is formed. This is a much more diffi-
cult problem to address. Unfortunately, the importance of solvation means that
the treatment of solvation can introduce huge errors in calculations of binding
affinities, regardless of whether an explicit or implicit solvent model is used.

There are mainly three problems with explicit water treatments. First, they
rely completely on molecular mechanics solute–water and water–water poten-
tials, which can be quite different depending on the force field [198]. Second,
due to the strong hydrogen-bond network in water, the sampling time (and thus
the computational load) required for adequately sampling the solvent degrees of
freedom is substantial. Third, the treatment of long-range electrostatic effects
is non-trivial. Most studies employ a periodic boundary condition, for which
Ewald summation seems to give rather accurate results, but this model has been
questioned [180]. The last problem can in principle be solved by combining the
explicit model with a continuum treatment [199]. In spite of these problems,
explicit models have been able to reproduce solvation energies of e.g. amino-
acid models with remarkable accuracy (although differences of up to 6 kJ/mol
depending on the force field were obtained) [200].
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Implicit water models, on the other hand, suffer from the lack of specific
interactions, e.g. hydrogen bonds. Moreover, they are usually not directly con-
nected to a specific potential and are therefore dependent on other types of
parameters, typically charges and cavity radii. The advantages are the fast
evaluation and the possibility of easily fitting the models directly to experi-
mental solvation energies. A quantitative comparison of explicit and implicit
solvation reported good agreement in the context of binding affinities [201]. A
different approach to solvation is methods based on integral equation theory,
e.g. the 3D-RISM method [202]. In contrast to standard implicit models, they
are based on a specific potential and can therefore incorporate some specific
effects.

Most implicit solvent models are based on the decomposition

∆Gsolv = ∆Gpolar
solv + ∆Gnon−polar

solv (3.12)

where ∆Gpolar
solv is based on roughly the same physics in the various models,

whereas ∆Gnon−polar
solv can involve quite different physical effects.

The physical motivation for Eq. 3.12 is that the solute–solvent potential en-
ergy is usually based on separate electrostatic and non-electrostatic terms [203].
Thus, the solvation can be described as a two-step process: first, the non-
electrostatic terms of the potential are gradually turned on, creating a cavity
in the solvent, and then the electrostatic term is gradually turned on. The first
step gives ∆Gnon−polar

solv and the second step gives ∆Gpolar
solv . These quantities can

be directly calculated by e.g. thermodynamic integration (Eq. 1.28), but the de-
composition is ambiguous – for example, different (usually divergent) results are
obtained if the steps are reversed [203]

3.4.1 Polar solvation

The polar part of the solvation is typically based on modeling the solvent as a
dielectric continuum, characterized by the macroscopic dielectric constant (i.e.
ǫr = 80 for water). The simplest case is the solvation energy of a point charge
q in a spherical cavity with radius R. This is usually called the Born energy:

∆Gsolv =
q2

2R

(
1

ǫr
− 1

)
(3.13)

Any useful model must typically reproduce this energy. There are analogous
models for higher multipoles, but they are typically not sufficiently accurate for
modeling molecules, as these have both a complicated charge distribution and
a non-spherical shape.

The basis for the continuum models is the Poisson equation:

∇ · [ǫ(r)∇φ(r)] = −4πρ(r) (3.14)

where φ(r) is the electrostatic potential at a point r, ρ(r) is the charge density
of the solute, and ǫ(r) is the position-dependent dielectric constant.
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For point-charge models of solutes, Eq. 3.14 is usually solved numerically on
a grid using a finite-difference algorithm. The effect of a non-zero ionic strength
can easily be included in such model, and it is therefore often referred to as the
Poisson–Boltzmann (PB) method. The Generalized Born (GB) methods [204]
can be seen as an approximation to the PB method, or alternatively as a direct
extension of Coulomb’s law in solution.

For more complicated charge densities, such as quantum-chemical models,
it is more common to use apparent-surface-charge methods, such as the po-
larizable continuum model (PCM) [205]. The PCM model has recently been
extended to larger systems treated by fragmentation approaches or molecular
mechanics [206].

A different model, the Langevin-dipoles model, has been applied extensively
in protein simulations [207]. It is built on a discrete (semi-explicit) representa-
tion of the solvent as a grid of rotatable point dipoles, but with the interactions
modeled effectively by using the Langevin equation for a rotationally averaged
dipole in an electric field. It has been used to demonstrate the connection
between explicit and continuum models [208]. A continuum model based on
the Langevin equation has also been developed [209], effectively capturing the
non-linearity of the response without introducing the numerically cumbersome
discreteness.

3.4.2 Non-polar solvation

Widely different expressions for the non-polar solvation energy are used [210].
For example, the non-polar part of the PCM model is a sum of cavitation,
dispersion, and repulsion terms, whereas a common approximation is to assume
a linear relationship between the non-polar solvation energy and the solvent-
accessible surface area. In paper VII, it is demonstrated that such models give
significantly different results for binding affinities.

3.5 Potential energy

Having examined various methods for treating the statistical-mechanical prob-
lem, it is clear that the choice of potential energy surface is an essential part.
In chapter 2 we saw how the intermolecular potential energy surface can be
computed by various degrees of approximation. In the final part of this thesis,
some examples of how these methods can be applied to the specific problem of
protein–ligand interaction energies are given.

It is still an open question to what extent the potential energies (i.e. the
force field) limits the accuracy of binding affinity predictions. Several rigorous
binding affinity studies have mentioned inaccuracies in the force field as the
major source of error [165, 167]. On the other hand, the necessity of including
polarization has been questioned [55] for the reason that the sampling problem
will anyway limit the accuracy. However, it is rather obvious that with the fast
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advance in computational power, the potential-energy problem will sooner or
later be dominant [1].

Most studies of protein–ligand interactions with a physical approach employ
standard non-polarizable MM force fields [163, 211]. Among the polarizable
force fields with a careful treatment of each physical term, several have been
applied to protein–ligand interactions, including the SIBFA [46, 140, 212, 213],
AMOEBA [52,214], and PFF [50,215] models. Although several of these stud-
ies reported a large effect of polarization on the binding affinities, it should be
noted that this effect is not always attractive when the solvent is taken into
account [214]. Because the quantum-chemical calculations used to derive the
parameters cannot be run for the full protein, the assembly of properties from
smaller calculations (typically amino acids) is an important part of such calcu-
lations [216–218] (see paper V).

A different approach to determine the potential energy is to directly exploit
quantum-chemical calculations, as these are intrinsically transferable, and also
systematically improvable [219]. Protein–ligand systems are in general too large
for a full quantum-chemical treatment. Attempts have been made to use stan-
dard QM/MM methods [152] that treat only the ligand [190,220] or preferably
also the closest residues [221] by quantum chemistry and the rest of the pro-
tein by MM. However, the size of a quantum-chemical region containing the
closest residues is typically 300–800 atoms, whereas most methods that treats
dispersion interactions reasonably well (at least MP2 with a sufficiently large
basis set) are limited to ∼100 atoms. A more fruitful strategy is to decompose
the complex into smaller subsystems, which are treated more or less indepen-
dently. Several such fragmentation methods have been applied to protein–ligand
interactions, including the divide-and-conquer method [222, 223], the fragment
molecular orbital (FMO) method [224–227], the molecular fractionation with
conjugate caps (MFCC) method [228–230] and related approaches [231, 232].
However, only Ref. [232] has employed a reasonably accurate quantum-chemical
method.

A combination of the polarizable molecular mechanics and fragmentation ap-
proaches will be presented in paper V, used to calculate a protein–ligand inter-
action energy in paper VI, and combined with the MM/PBSA method in paper
VII, providing the first protein–ligand free-energy calculations using quantum-
chemical interaction energies at a reasonably high level of theory. However,
an improvement of the treatment of solvation is probably necessary before an
improvement in relation to experiment can be expected.
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Chapter 4

Summary of the papers

4.1 Paper I: Exchange-repulsion energy

In paper I, we compare the ability of various repulsion models to reproduce
the Hartree–Fock exchange-repulsion energy for a large set of molecular dimers.
In particular, models based on orbital overlap, Eq. 2.26, and density overlap,
Eq. 2.27, respectively, are considered.

The models contain 1 or 2 parameters, with the exception of the density
overlap model with special scaling of certain element pairs (8 parameters) and
the parameter-free EFP method. For each model, the parameters are fitted to
the full set of dimers so that the average error is minimized.

The average error for each model is given in Table 4.1. The models assuming
direct proportionality to the orbital overlap, energy-weighted orbital overlap,
and density overlap, have similar errors. Introducing another parameter to
model the deviation from proportionality at shorter distances reduces the error
in both the orbital-overlap and density-overlap cases. However, the corrections
have different signs, because the exchange repulsion is steeper than the orbital
overlap but less steep than the density overlap. The similar results for the
SIBFA-type of correction shows that the exact functional form is not critical.

For the density overlap models, larger errors are obtained for the ethanethiol–
water dimers than for the other dimers, whereas no such effect is seen for the or-
bital overlap models. By comparing the contributions from each pair of molecu-
lar orbitals to the orbital and density overlap, respectively, we show that around
the sulfur atom, destructive interference plays an important role, and this can-
not be modeled by density overlap models. Therefore, it seems to be necessary
to introduce element-dependent parameters if density-overlap models should be-
come as accurate as the orbital overlap models, . The EFP method performs
worse than the other methods, but considering that no fitting is needed, it is a
useful method for unknown systems.

47
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Table 4.1: Average error in kJ/mol for each considered model. The number of param-
eters in each model is also given.

Method # param. Error

Orbital overlap:
Proportional 1 1.21
Proportional (energy-weighted) 1 1.10
Distance-dependent 2 0.73
SIBFA-type 2 0.74
EFP 0 1.68
Density overlap:
Proportional 1 1.15
Distance-dependent 2 0.97
Distance- and element-dependent 8 0.60

4.2 Paper II: Multipoles and polarizabilities

In paper II, the accuracy of distributed multipoles and polarizabilities are eval-
uated by comparing the static and induced electric potentials with those cal-
culated from a quantum-chemical (DFT) calculation, for a set of 20 molecules.
The comparison is done in 10,000 points chosen randomly in a suitable element-
dependent distance range. For the evaluation of the induced potential, homo-
geneous fields are applied in three orthogonal directions.

In particular, the multipoles and polarizabilities obtained by two different
approaches are compared: the MpProp method, in which the multipoles are
derived through a Mulliken-like approach [67] and the polarizabilities using the
uncoupled Hartree–Fock method [117] (but scaled to give the correct molecu-
lar polarizability), and the LoProp method [76], in which both the multipoles
and polarizabilities are obtained using an orthogonal localized basis set and
finite-field perturbations are used for the polarizabilities. All calculations are
performed with three different basis sets.

The mean absolute error in the static and induced potentials for each molecule
is shown in Fig. 4.1. For the basis sets without diffuse functions, the MpProp
method gives better multipole moments, regardless of the multipole level. The
reason for this is probably the better placement of the bond centers in the Mp-
Prop method. On the other hand, with the basis set including diffuse functions
(aug-cc-pVTZ), the LoProp method gives better results for L ≤ 3, which are the
most interesting levels in practice. In particular, the MpProp method fails for
large aromatic molecules. The LoProp method also gives better polarizabilities
for all basis sets, making it the preferred method for constructing intermolecular
potentials. In fact, all results become worse with the larger basis set, probably
because the neglect of charge penetration becomes a more severe approximation
as the density becomes more diffuse.

The dependence of the error on the distance from the molecular surface is
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Figure 4.1: Errors in the static potential for various multipole levels L and in the
induced potential (using a field strength of 0.01 a.u.). Each point corresponds to one
molecule. A probe charge of 1 a.u. is assumed.

also tested. It is found that, for typical interaction distances, there is no gain in
using a higher multipole level than octupoles. In fact, the quadrupole level might
be a more balanced choice when simultaneously considering the performance of
the polarizabilities.

4.3 Papers III and IV: Polarization models

In paper III, the performance of the point-polarizability model is tested for a
large set of molecular dimers. To separately evaluate the various approximations
in the model, we use a hierarchy of models including various effects, as shown
in Table 4.2. In paper IV, we introduce an additional model (ppEPOL) that
is tested partly for the same systems.

4.3.1 Densities

Because the induction energy is not an observable, we concentrate in paper III
on the change in charge density due to the interaction. This is in itself an
interesting quantity, because it is responsible for the major part of the many-
body effects – one of the reasons for using polarizable force fields at all. Various
ways to analyze this induced density are used, with the most quantitative being
the point-wise comparison of the induced electric potential used in paper II.
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Table 4.2: Summary of the considered models.

Non-expanded Intramol. Local field- Pauli Charge

Model induced density coupling inhomogeneity effects transfer

Supermolecular yes yes yes yes yes

RVS yes yes yes yes no

EPOL yes yes yes no no

LPOL yes yes no no no

Polarizabilities no no no no no

ppEPOL yes yes yes yes no
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Figure 4.2: Relative mean error in the induced electric potential around the water
dimer as a function of intermolecular separation.

The result for the water dimer is given in Fig. 4.2, which shows the relative er-
ror compared to the supermolecular calculation for various models as a function
of the intermolecular separation. The most obvious feature is that the EPOL
model, which uses the exact electric field as a perturbation in the quantum-
chemical calculation, gives the largest error for all interesting distances. A
comparison with the RVS model shows that this is almost exclusively due to
the neglect of Pauli effects (cf. Section 2.2.2). Interestingly, the LPOL model,
which also neglects Pauli effects, gives much better results. Because the only
difference between the EPOL and LPOL is that the latter uses a locally ho-
mogeneous (linearized) field, the results indicate that this approximation partly
cancels the neglect of Pauli effects.

The difference between the results for the LPOL model (using quantum-
chemical calculations) and the simple polarizability model is much smaller. This
indicates that the most important approximations in the polarizability model
are not related to the actual response, but to the simplified potential that is
applied (linearized and neglecting the perturbing molecule). The curves with
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the LPOL response expanded up to dipoles and quadrupoles, respectively, show
that the remaining discrepancy comes entirely from the use of only dipoles in
the polarizability model; in fact, dipole–quadrupole polarizabilities would be
sufficient to reproduce the LPOL result. Finally, the ppEPOL model, which
includes Pauli effects in an approximate way, gives the best results, indicating
that better results can be obtained without relying on the error cancellation.

A statistical analysis of the large data set shows that the water dimer is
rather typical for the considered systems. In general, the LPOL and polariz-
ability models give lower errors (in average 9 and 10 %, respectively) than the
EPOL model (16 %). However, the error cancellation between Pauli effects
and local inhomogeneity effects is not always effective. For example, in the for-
mamide dimer, the error for the polarizability model is ∼90 % at the energy
minimum, i.e. only slightly better than a non-polarizable model. The large data
set also confirms that the LPOL and polarizability models give similar results.
In particular, the neglect of intramolecular coupling of the polarizabilities seems
to be a minor effect for the small molecules considered in this study.

4.3.2 Energies

With the introduction of the ppEPOL model in paper IV, we can also address the
total interaction energy. In the ppEPOL model, Pauli effects are described by a
pseudopotential (see Section 2.3.4), which models both the exchange-repulsion
energy itself and its effect on the polarization in a consistent manner. As in
the EPOL model, the exact electric field is used. For reproducing results at an
electron-correlated level, the model must be augmented by a dispersion term
(in paper IV taken as the exact expression from second-order perturbation the-
ory), whereas the intramonomer correlation contributions are self-consistently
included by using correlated monomer electron densities (MP2 response densi-
ties).

As established in paper I, a model that is proportional to the squared overlap
(S2) cannot reproduce the exchange repulsion over a large range of distances,
and the same holds for standard pseudopotentials of the type in Eq. 2.28. There-
fore, we introduce an S4-dependent term in the pseudopotential. Although the
resulting two-parameter model could presumably be fitted in the same way as
in paper I, we avoid uncertainties in the parameters by fitting the model to each
dimer separately, but still using only the zeroth-order Hartree–Fock exchange-
repulsion energies. In practice, this means that we are mainly testing whether
the polarization and its coupling to repulsion can be described by the ppEPOL
method.

The results for the water dimer are shown in Fig. 4.3. The supermolecular
curve is well reproduced, both at the HF and MP2 level. In particular, the
ppEPOL model is significantly better than the uncoupled model that uses the
EPOL model for the polarization and simply adds the exact Heitler–London
energy to account for the exchange repulsion. This shows that the coupling
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Figure 4.3: Intermolecular potential of the water dimer obtained with the ppEPOL
model at the Hartree–Fock and MP2 levels and the corresponding supermolecular
curves. The results without polarization (Heitler–London; HL) and with the EPOL
result directly added to the HL energy (uncoupled) are also shown.

between polarization and repulsion is well described. The fact that this coupling
in negative in sign for the minimum structures of the considered dimers suggests
that it should rather be seen as a relaxation of the exchange-repulsion than as a
damping of the polarization. However, at shorter distances the coupling becomes
positive.

Encouragingly, the ppEPOL model gives good results also for the formamide
dimer, which is a tough case for polarizability models. The water–chloride dimer
appears slightly more difficult, but the agreement is still satisfactory. In all cases,
a significant improvement of the induced density compared to the EPOL model
is also obtained. For example, the error in the induced potential decreases from
128 to 6 % for the formamide dimer. Thus, the ppEPOLmodel appears as a
useful model for developing and testing simpler polarization models including
coupling between polarization and repulsion.

4.4 Paper V, VI, and VII: The PMISP method

In the last three papers, we explore a novel way of combining fragmented
quantum-chemical and molecular-mechanical calculations to compute higly ac-
curate interaction energies for large systems. Paper V describes the PMISP
method, addresses several technical details, and compares the results with full
supermolecular calculations, as well as with other fragment approaches. Paper
VI presents the first calculation of a protein–ligand interaction energy performed
at a reasonably high level of theory (MP2/aug-cc-pVTZ) and investigates the
accuracy of various approximations. Paper VII combines the PMISP model
with the polarizable continuum model (PCM) for treating solvation effects and
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Figure 4.4: Example illustrating the MFCC procedure for cutting molecule A across
the peptide bond and capping with –COCH3 and –NHCH3 groups. The result is two
capped fragments A1 and A2 and a concap fragment A3.

applies the resulting method in a MM/PBSA-like manner to a set of protein–
ligand complexes for which the experimental binding free energies are known.

4.4.1 Methods

We try to approximate the quantum-chemical interaction energy (at a given
level of theory) between a large molecule A and a small molecule B. In the po-
larizable multipole interaction with supermolecular pairs (PMISP) method, the
interaction energy is decomposed into classical and non-classical parts, where
the classical part is the sum of electrostatic and induction energies given by
a polarizable multipole method. Furthermore, the large molecule A is divided
into a set of fragments {Ai} by the molecular fractionation with conjugate caps
(MFCC) procedure [228], as illustrated in Fig. 4.4.

A previously proposed method (which we denote pairwise additive, PA) ap-
proximates the total interaction energy by the sum of Ai–B interactions with
the concap interactions subtracted [228]. However, this approach neglects the
non-additivity (many-body effects) of the fragment interactions. Therefore, in
the PMISP method, the MFCC procedure is applied only for the non-classical
part, whereas the classical part is evaluated for the whole complex, i.e. includ-
ing non-additivity. The properties (multipoles and polarizabilities), on the other
hand, are assembled using the MFCC procedure.

When a full protein–ligand interaction energy is computed, the long-range
non-classical contributions are estimated by a standard molecular mechanics
force field, as described in paper VI. For the interaction energy in solvent (paper
VII), it is assumed that only the classical part of the interaction energy is
influenced by the solvent. A rescaling of the UAKS radii for the PCM method
is performed by fitting to experimental solvation energies for a small data set.

4.4.2 Results

In paper V, the PMISP model is tested against supermolecular calculations for
a 216-atom model of avidin interacting with seven biotin analogues. Calcula-
tions are performed at the HF and MP2 levels using the 6-31G* basis set. A
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Table 4.3: Mean absolute error (in kJ/mol) for the ligand set using several methods.

Level Method Error
HF PMISP 5.8
HF EMB-PMISP 5.0
HF PA 19.4
HF FMO2 6.4
HF EE-PA 8.0
MP2 PMISP 6.9
MP2 PMISP-CE 3.3

summary of the results is shown in Table 4.3. The error of the PMISP methods
(5–7 kJ/mol) is small compared to the interaction energy (−256 kJ/mol in av-
erage). It is also significantly smaller than the error for the PA model, showing
that many-body effects are important in this type of system. Moreover, a com-
parison with two other approaches to include many-body effects, the fragment
molecular orbital method, FMO2 [224] and the electrostatically embedded pair-
wise additive method, EE-PA [233], shows that the PMISP method gives slightly
smaller errors at a reduced computational cost. Interestingly, the PMISP error
is not significantly larger at the MP2 level. This shows that the non-classical
correlation contribution is almost pairwise additive. Therefore, the best results
are obtained with the PMISP-CE method, which uses the PMISP procedure
only for the correlation contribution.

A detailed investigation shows that the error introduced by the MFCC pro-
cedure is negligible, both for the assembly of properties and for the evaluation
of the non-classical term. Instead, the three-body contributions to the coupling
between the classical and non-classical terms are the main cause of the error.
This can be addressed by an embedded model (EMB-PMISP), but the effect is
overestimated because of the lack of Pauli effects. Introducing pseudopotentials
would probably solve the problem.

Special attention in paper V is given to the problem of intramolecular po-
larization. It is shown that the neglect of intramolecular coupling of polariz-
abilities, which is a reasonable approximation in paper III, gives a significant
error (in average ∼8 kJ/mol) for the large molecule A. We also emphasize the
importance of using a consistent definition of the electrostatic and induction in-
teraction energy when comparing results of various force fields: the direct use of
the electrostatic and polarization terms of the potential energy is not adequate.

The interaction energy for the full avidin–biotin complex, computed in paper
VI, is given in Table 4.4 for PMISP/MM (with two different basis sets) and two
Amber force fields. The basis-set dependence is significant, indicating that the
6-31G* result is quite meaningless. Moreover, the two Amber force fields give
widely different results, with the PMISP/MM estimate in between. The term-
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Table 4.4: Interaction energies (in kJ/mol) of the avidin–biotin complex with the
PMISP/MM method using two different basis sets and with two Amber force fields,
divided into electrostatic (Eele), induction (Eele), and non-classical (Enc) energy.

MP2/6-31G* MP2/aug-cc-pVTZ Amber ff94 Amber ff02
Eele -1120 -1126 -1300 -1096
Eind -190 -286 0 -113
Enc 50 -8 -143 -143
Etot -1261 -1419 -1443 -1353

wise comparison shows that the polarizable Amber ff02 force field significantly
underestimates the induction energy, whereas this is partly cancelled by the
non-classical term.

The approximation to take the long-range non-classical contributions from
a standard force field is evaluated by varying the cutoff distance for the PMISP
treatment. At 4 Å, this approximation gives an error of 16 kJ/mol, but this error
can be reduced by including extra atoms for the strongest interacting groups. At
7 Å, the error is negligible. Various approximations to the classical term are also
tested. It is found that MP2 properties can be replaced by B3LYP properties
without loss of accuracy. Octupoles and quadrupoles can be neglected outside a
distance of 2 and 5 Å from the ligand, respectively, and polarizability coupling
outside of 15 Å. A significantly smaller basis set can also be used for the property
calculations outside of 15 Å.

In the computation of binding free energies in paper VII, still for biotin
analogues binding to avidin, we encounter several problems. In particular, the
difference in non-polar solvation energies obtained with the PCM model devi-
ates significantly from other estimates. Therefore, the solvent-accessible surface
area (SASA) model is also tested. However, no matter which definition of non-
polar solvation energy one uses, the results are disappointing when compared to
experimental binding affinities, giving a mean absolute deviation of ∼20 kJ/mol
for relative affinities. The reason might be that the solvation model is not suffi-
ciently accurate to enable the improved interaction energies to make a difference
in the total results.

4.5 Conclusions and outlook

The papers presented above can be said to represent three different approaches
to a common goal: the calculation of protein–ligand energies from first prin-
ciples. Papers I and II represent the traditional molecular-mechanical picture,
in which properties are computed separately for each monomer by quantum-
chemical calculations, and then combined using simple expressions. The prop-
erties in paper I are molecular orbitals or electron densities, which are somewhat
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awkward to handle in a molecular-mechanics force field, but there are already
such examples [47, 83].

Papers III and especially paper IV develop a more sophisticated approach.
Although it is shown that the polarizability model works well in most cases, this
model is based on error cancellation, and thus there will always be systems for
which it is inaccurate. Moreover, it cannot easily account for explicit coupling
with the repulsion. A solution to this is found to be a model (ppEPOL) in
which the monomers are treated quantum-chemically but the interactions are
included by simple expressions. Although the main purpose of this method is
as a reference for models using a simpler description of the monomers (i.e. of
the previous type), we also believe that it has a potential on its own.

Finally, the last three papers represent an approach (PMISP) in which ex-
plicit quantum-chemical supermolecular calculations are performed, but only
for small subsystems. The many-body effects are instead modeled by a point-
polarizability model. Partly, the same problem is seen here as in paper III, but
as it enters only in the many-body effects, it is typically much smaller.

Which of these approaches is most suitable for achieving the goal? Surely this
depends on the level of accuracy required and to what computational cost. The
first approach will always be the fastest. However, the accuracy may be limited
for at least two reasons. First, the coupling between polarization and repulsion
will necessarily be rather approximate, and second, most such methods will have
to include some type of fitting, which may limit the transferability. The third
approach will always be the most accurate one, but to a higher computational
cost, allowing much fewer energy evaluations for a given problem. For the second
approach to be computationally viable, it is essential to use simpler models for
the electric field and the dispersion energy. If this is done, such type of methods
could be a suitable compromise between the other two.

What is the accuracy needed? In my view, the best way to address this
question is to first use a potential-energy method that is as accurate as possible
and then, when agreement with experiment has been confirmed, gradually re-
place it by computationally cheaper estimates. However, as the result of paper
VII shows, this is not a trivial thing to do. Because we are currently limited
to methods that treat entropic and solvent effects at a much more approximate
level, it is not guaranteed that an improvement is obtained. We are currently
investigating the possibility of calculating a rigorous free energy with a stan-
dard force field and using perturbations from the standard force field to the
quantum-chemical level at the end-points [234], but the preliminary results are
disappointing: The geometries obtained with a standard force field are too dif-
ferent from those that would be obtained by a quantum-chemical simulation,
thus prohibiting a direct perturbational treatment. However, the use of a better
force field for the simulations would possibly solve this problem.
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