

This paper is a postprint of a paper submitted to and accepted for
publication in IEE Conference Publications ; vol. 494, and is subject to
IEE Copyright. The copy of record is available at IEE Digital Library.

The paper was presented at the Fourth International Conference on 3G

Mobile Communication Technologies, 25-27 June 2003.
This paper has been peer-reviewed but may not include the final

publisher proof-corrections or pagination.

Citation for the published paper:
J. Andersson, M. Kihl, and C. Nyberg, 2003,

"Priorities and overload control in OSA",
Fourth International Conference on 3G Mobile Communication

Technologies (3G 2003) : 25 - 27 June 2003, Savoy Place, London, UK
(IEE Conference Publications ; vol. 494)

ISBN: 0-85296-756-X.
Published with permission from: IEE (Institution of Electrical Engineers).

http://dx.doi.org/10.1049/cp:20030353

http://dx.doi.org/10.1049/cp:20030353

ABSTRACT

In this paper, an OSA gateway is modelled in a multi
application environment. Also, an overload control
mechanism is proposed. The mechanism supports
different time constraints and priorities for the
applications. By simulations it is shown how the
proposed overload control works during different load
conditions in the modelled environment.

INTRODUCTION

During the last years there has been a change in the
evolution of service architectures. As it is now, each
network has its own service architecture and only the
operator is able to create new services. Today a couple of
consortia are developing specifications for service
architectures which allow interactions between different
networks. Thus, an application in one network can use
capabilities from other networks. Service creation will
also be much easier in the new architectures.

Open Service Access (OSA) is the service architecture
that is proposed for the 3G networks. OSA is developed
by the 3GPP (7). With OSA it becomes easier to develop
and test new services outside the telecom domain. Since
OSA offers an increased security and integrity, operators
may dare to open up their networks to independent
software developers and service providers, see
Rajagopulan (2).

One common problem for all service architectures is
what actions to take if the control nodes become
overloaded. Overload control of communication systems
has been a research topic for some decades in telephone
networks. An early paper is Forys (8) in which the
protection of control processors in telephone exchanges
is discussed. Some papers on overload control in IN are
Pham and Betts (9) and Kihl and Nyberg (10) in which
overload control algorithms are suggested and
investigated. Until now, no papers have discussed
overload control in OSA. The general performance of a
Parlay gateway, which is almost the same as an OSA
gateway was analysed in Melen et al (11).

In the context of overload control, most papers present
methods on how to reject new calls in such way that the
callers are treated equally. This is, of course, the fairest
case from the users point of view, but the operators main
interest is probably revenue. Therefore, we believe that
an overload mechanism based on priorities should be

interesting for the service providers. The priority of an
application may be weighted according to, for example,
the amount of revenue the application generates for the
operator.

In this paper, we investigate overload control
mechanisms for the OSA service architecture. We
propose a queuing model for the most critical nodes in the
architecture. Also, we develop an overload control
mechanism with priorities, in which the main objective is
that all admitted application calls should keep a certain
deadline.

OPEN SERVICE ACCESS (OSA)

OSA consists of three parts, the Application Servers
(AS:s), the Service Capability Servers (SCS:s), and the
Framework. Fig. 1 shows one of the possible
configurations of an OSA architecture. Each SCS hosts
the Service Capability Features (SCF:s), which are
abstractions of the underlying network functionality. The
part referred to as the OSA gateway can be built on
several physical entities. In Fig. 1 the Framework and
both the SCS:s constitute the OSA gateway.

The Application Servers (AS:s) host the applications.
The applications can be Virtual Private Networks
(VPNs), conferencing, location based applications and so
forth. Each AS can host one or several different
applications. The AS:s can be physically positioned
inside or outside the network they are communicating
with.

In an OSA architecture there can be one or several
Service Capability Servers (SCS:s). The SCS provides
the applications with network functionality via one or
several SCF:s. An SCF consists of several narrow
functions, which together render possible to utilize the
network capability. One example is the Call Control SCF,
which provides functionality to connect and establish

Figure 1. An OSA architecture.

AS AS AS

AS

Frame-
work SCS

SCF

SCF
SCS

SCF

SCF

Network

OSA
Gateway

PRIORITIES AND OVERLOAD CONTROL IN OSA

J K Andersson, M Kihl and C Nyberg

Lund Institute of Technology, Sweden

different kind of calls to a mobile user. Another example
is the Charging SCF, which provides functionality to
charge the user for a service. For more details about
SCS:s, see Stretch (3).

The Framework can be seen as a separate SCS providing
the applications with basic mechanisms, like
authentication before accessing the network
functionalities or discovery to find out which SCF:s that
are provided by the SCS:s. Also, the Framework supplies
security and integrity functionalities.

An example of a service in OSA

In (4), a general OSA application is developed. It is an
“application initiated call”, where for example a
customer accesses a Web page and selects a name on the
page of a person or organisation to talk to. The sequence
diagram of this application is shown in Fig. 2. An
application setup consists of a number of OSA messages.
First the application sends a createCall message to the
SCS to create objects for further communication. In the
SCS the application call is translated into suitable
protocols for communication with for example an UMTS
network. When the A party has answered, the application
is notified and now the call is routed to the B party.

Overload control in OSA

In an OSA architecture there are especially two parts
sensitive to overload, the AS:s and the SCS:s. The most
critical SCF seen from the aspect of overload is the Call
Control SCF which connects and initiates calls. The
overload related functionality is managed by the
Framework. In the specifications (5), there is a
description of the functionality that is prepared.
Information about the load condition in the SCS:s and the
AS:s can be exchanged which gives the opportunity to
control the load either from the application side or from
the Gateway. Intuitive the simplest way is to let the AS
take care of its own load control and the Gateway take
care of its.

The load condition is described by three levels. Load

level 0 corresponds to normal load, load level 1
corresponds to overload and load level 2 corresponds to
severe overload. Nothing is said about how the load
levels should be set or what actions they should cause, but
corresponding threshold values to load level 1 and 2 can
be set. Different SCS:s can have different threshold
values for the load levels. The action an overload
situation should cause on a specific application is
identified in the load management policy, which is
created via contract writing (see below).

It is possible for the Framework to subscribe on load
information both from an AS and an SCS. The
subscription can be either load information sent to the
Framework at discrete times or load information sent on
a load level change.

Contract writing

When a new application is introduced it signs a contract
with the OSA gateway through the Framework.
Proposals of what a contract should include can be read
for example in (2). A typical contract might include a
variable determining how many application calls an
application at least should have accepted each second and
a variable determining the maximum delay of an
application call. Another variable that might be agreed on
is the charging criteria. The contracts should not only
consist of constraints for the applications according to the
gateway. Also the constraints that the application has to
fulfil is agreed.

MODEL

We have modelled a Gateway consisting of one SCS
containing one SCF in a multi application environment.
Our model consists of R applications, a call control SCF
and a network, see figure 3.

New application calls are generated as a Poisson process,
each with their own arrival rate. Each G-box in figure 3
corresponds to the generator of new application calls to a
specific application. Each application is assumed to be
positioned at a non-overloaded AS and is modelled as a
delay with deterministic values that vary depending of
which message to execute.

An application, al, has a guaranteed rate of dl calls per
second, and a total execution time in the SCS of
seconds. Of course the system must be stable which
implies that

(1)

Figure 2. Message sequence diagram for an application initiated call.

Application___| |_____________OSA Gateway (SCS)______________| |_______UMTS Network

createCall
routeReq

CAP RequestReportBCSM

CAP EventReport

routeRes
routeReq

CAP RequestReportBCSM

CAP Eventreport

routeRes

deassignCall
G

Delay

AS(:s) SCS Network

Figure 3. An OSA Model.

Delay
G

xtot l()

dll 1=

R
∑ xtot l()⋅ 1<

The application belongs to a priority, and
has a time constraint, . Each priority
corresponds to a guaranteed rate of application calls per
second, where guarantees a higher rate than . A
time constraint corresponds to the maximum delay a
message should experience each time it passes the SCS.
In the example in figure 2 the application call has to pass
the SCS five times and if the application call, when it is
completed, has had a total residence time in the SCS
larger than , the call is said to be expired. The time
constraints are set such that < <....< . The set of
applications with time constraint k is denoted A(Tk). The
total guaranteed rate of applications with time constraint
k, is denoted λk. λk is given by

The time constraints and priorities can be set independent
of each other to each application.

The SCS is modelled as a single server queue, in which
one message at a time is served. The execution times in
the SCS are set to deterministic values. We have assumed
that the deviation in the execution times is small. We
denote with xscs the largest execution time in the SCS,
and with N(t) the number of messages in the SCS with a
remaining time t before their deadline expires.

The network is assumed to be non-overloaded and is
modelled as a deterministic delay with stochastic
elements from, for example, the phone pick up time in
Fig. 2. Also, we have assumed that all applications
require the same execution as in Fig. 2.

OVERLOAD CONTROL MECHANISMS

We have developed an overload control mechanism for
the SCS, shown in figure 4. It consists of a controller, a
gate and a selector. The controller makes appropriate
measurements on the SCS. Also, it analyses the
measurement data and determines what action that has to
be taken by the gate, which regulates the acceptance of
new application calls.

The objective of the overload control scheme is to keep
all time constraints for the accepted application calls. As
different applications can have different time constraints
the selector has to decide in which order the messages in
the SCS should be served. The selector uses an Earliest
Deadline First (EDF) scheduling algorithm, see Lui and
Layland (1). The controller performs measurements of
the load status in the SCS to check if it is possible at all
for the selector not to exceed the time constraints. If not,

the controller informs the gate to decrease the acceptance
of new application calls. If the time constraints can be
kept the gate is told to increase the acceptance of new
application calls if possible.

Gate

When there is an overload situation in the SCS, the gate
starts to reject application calls. The gate uses a call
gapping method, see Berger (6), to reject application
calls. The time is divided into small intervals of a certain
length, and then exactly one application call is accepted
each interval. The interval lengths are dependent of
which guaranteed rate the application has. If, for
example, an application is guaranteed at least 10 calls per
second, this corresponds to a time interval of 0.1 seconds.
During an overload situation (load level 1) the gate
introduces call gapping on the lowest priority
applications. If this action is not enough and the overload
condition remains, call gapping is introduced on
application calls of the next priority level, and so on until
applications from all priority levels have their calls
rejected according to the call gapping method. If a severe
overload condition (load level 2) appears all the priority
levels are blocked at once, only letting the guaranteed
amount of application calls through.

Controller

For each arriving or departing message the controller
checks if the time constraints for the messages waiting in
the queue may fail if the message is admitted. The
following condition should of course always be fulfilled:

(2)

If not fulfilled, application calls with time constraint
will most probably fail even if the gate starts to reject
arriving application calls at this stage.

Figure 5 shows an abstraction of the controller
mechanism with three time constraints. Each time
constraint can be seen as an insertion point in the waiting
queue. When the execution of one message is completed
the next message at the front of the queue is executed.

While a message with time constraint T3 is waiting to get
first in the queue it is possible for new messages with
time constraint T1 and T2 to arrive at the queue with a
closer deadline and thereby get a closer position to
service. This means that during the interval of length

after the arrival of a time constraint 3 message, all
applications with time constraint T1 or T2 will have a

pj j 1…M=(),
Tk k 1…N=(),

pj pj 1+
Tk

5 Tk⋅
T1 T2 TN

λk dl

l A Tk()∈
∑=

Controller

Gate
new application
calls

SCS

Figure 4. Model of the overload control mechanism

se
le

ct
or

N Tk() xscs⋅ Tk 1 k N≤ ≤(),≤

Tk

time for
service

T1T2T3 (T3-T1)
tim

e
ax

is

Figure 5. Abstraction of controller mechanism

T3 T2–

closer deadline. Then during another interval of ,
arriving messages with time constraint T1 will have a
closer deadline. Therefore, condition (2) can be improved
to also include the guaranteed rate of new application
calls. This condition can be expressed as

(3)

If this condition is fulfilled and if the gate only let the
guaranteed application calls through, the messages
currently in the queue should be served within their time
constraints.

However, the controller should also check that the
condition in (3) not is violated in the future by admitting
too many calls from applications with less tough time
constraints. Assume for example that an application call
with time constraint arrives at time . Let A be the
set of all calls with a deadline in the interval at
this arrival. After seconds all the calls in A will
have a deadline that is less than seconds in the future.
But in the time interval messages with
time constraint and may have arrived to A and
these messages will also have a deadline that is less than

seconds in the future.

If calls from all priority levels are rejected and a burst of
application calls with time constraint arrives, then the
maximal number of messages that might be additional to
an interval of length can be expressed as

(4)

and the execution time of these should be added to the
execution time of all initial messages in the interval of
length . Just as before we also have to include that new
application calls might arrive during the execution of the
messages in the interval. This new condition can be
described as

(5)

where is the same as in equation (4). This constraint
has to be fulfilled for all possible combinations of and

, where i > k.

If conditions (3) and (5) are fulfilled, the controller
decides that the system has a high probability to succeed
without too many expired deadlines. If any of the two
conditions fail, the controller signals overload to the gate.

Too further decrease the number of expired deadlines and
to get a more calmly behaviour, the controller uses a
marginal when signalling for overload. This marginal is
created by multiplying the right hand of the conditions
with a marginal factor, f<1. If any of the conditions are
violated when the right hand side is multiplied with f, the
controller signals overload (load level 1). If any of the
conditions are violated without the marginal factor, the
controller signals severe overload (load level 2) to the
gate.

SIMULATION PARAMETERS

The SCS is modelled as a single server queue with
capacity of serving 100 application calls per second,
assumed that each application call requires the same
execution as the example in Fig. 2. Each time a message
executed in the SCS results in a new message, the service
time is 2 ms. Otherwise, the service time is 1 ms. Each
delay in the AS is 1 ms.

Each call has to executed twice in the network. The first
time is when the call is connected to the callers phone. In
this case a delay of 10 ms is used, since there is probably
some kind of auto phone pick up function. The second
execution correspond to the B party pick up time. This
pick up time exponentially distributed with mean 2
seconds.

The marginal factor f, used in the controller, is set to 0.9.
To prevent the system from oscillating, the load level is
only changed if the controller detects overload for five
consecutive arrivals or departures. Also, there is a
minimum time of 50 ms between changes.

To evaluate a characteristic behaviour of the proposed
overload mechanism, we have investigated two different
configurations of the application variables. In
configuration 1 there are three different applications with
three different priorities and two different time
constraints. Application a1, a2, and a3 correspond to
priority 1, 2, and 3 respectively. The priorities in
increasing order correspond to guaranteed rates of 50, 10,
and 0.5 application calls per second. a1 and a3 have a
time constraint of 100 ms, and a2 has a time constraint of
1 second.

Configuration 2 has 10 applications divided into three
priority classes and two time constraints. Priorities 1, 2,
and 3 correspond to guaranteed rates of 10, 5, and 0.5
calls per second, respectively. Applications 1, 3, 5, 7, and
9 have a time constraint of 100 ms and the other
applications have a time constraint of 1 s. Applications 1,
4, and 5 have priority 1. Applications 2, 6, 7, and 8 have
priority 2. Consequently, applications 3, 9, and 10 have
priority 3.

RESULTS AND DISCUSSION

In this section the overload control mechanism will be
evaluated. Simulation results are presented and the gain

T2 T1–

N Tk() λj

j 1=

k 1–

∑ Tk Tj–()⋅
 
 
 
 

+
 
 
 
 

xscs⋅ Tk< 1 k N≤ ≤

T3 t0
t0 T1– t0[,]

T3 T1–
T1

t0 t0 T3 T1–+[,]
T2 T1

T1

Ti

Tk

λj

j k=

i 1–

∑ T⋅ λj

j 1=

k 1–

∑+ Tj⋅
2 i N≤ ≤

i k>

T
Tk Tk Ti Tj–()<

Ti Tj–() Tk Ti Tj–()≥



=

Tk

N Ti() N Ti Tk–()– λj

j 1=

k 1–

∑ Tk Tj–()⋅
 
 
 
 

λj

j k=

i 1–

∑ T⋅ λj

j 1=

k 1–

∑+ Tj⋅

+ +















xscs⋅ Tk<

2 i N≤ ≤
i k>

T
Tk

Ti

of an overload mechanism as proposed is discussed.

We first consider configuration 1 and let the arrival rates,
, for each application increase every 25th second. In

Fig. 6 the resulting rates of completed application calls
are shown. As long as the total arrival rate is below the
capacity of the SCS, no calls are rejected. However, after
50 seconds, the total arrival rate exceeds the capacity of
the SCS and, therefore, application calls with the lowest
priority are rejected. After 75 seconds, calls from all
priority levels are rejected, however all applications will
have their guaranteed rate of application calls. In the
realization shown in figure 6 about 0.2% of the served
application calls were so-called expired calls. The SCS
has a utilization of 88% during the 100 seconds. If the
simulation should have been done such that the total is
larger than the capacity of the SCS the utilization is
almost 99% instead.

It is interesting to see what we gain with a priority based
rejection mechanism as proposed. An estimation of how
good the outcome is can be performed if we introduce a
utility measure U. As an example, we can assume that
priority 1, 2, 3 correspond to utility 3, 2, 1 respectively.
In the realisation shown in Fig. 6,

If an ordinary random rejection method would be used, U
would have an upper bound at 17600.

Next, we use configuration 2 and let the applications
randomly adopt a that equals 0, 10, 20 or 30 calls per
second, which is kept during an exponentially distributed
time with mean 2 seconds. In this case, the rate of expired
calls will be less than 0.1%. The utilization of the SCS in
this case is larger than 97%. The utility measure for a
simulation of 100 seconds becomes.

If all applications would have been treated equally, U
would have an upper bound at 20000. Clearly we get a
better gain when the priority based overload control is
used.

CONCLUSION

We have modelled an overload control mechanism for an
SCS in an OSA architecture. The overload control
mechanism can implement priorities among applications.
The overload control mechanism also makes sure that
application calls that are accepted will meet their time
constraint with a high probability.

Also, we have shown that the total gain of the served
application calls is higher when we use our priority based
rejection mechanism compared with a random rejection
mechanism.

ACKNOWLEDGEMENT

This work has partially been financed by the Swedish
Research Council, contract no 621-2001-3053

References

1. Liu C. L. and Layland J. W., 1973, “Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time Envi-
ronment“, Journal of the Association for Computing
Machinery, Vol. 20 No. 1, 46-61

2. Rajagopulan R., 2002, “The impact of Open Service
Access on Network Services”, http://www.wmrc.com/
businessbriefing/pdf/wireless_2003/Technology/
lucent.pdf

3. Stretch R. M., 2001, “The OSA API and other related
issues”, B T Technol J., Vol. 19 No 1, 80-87

4. ETSI standard 201 915-4 v1.3.1, 2002, “Open Service
Access (OSA); Application Programming Interface
(API); Part 4: Call Control SCF”

5. ETSI standard 201 915-3 v1.3.1, 2002, “Open Service
Access (OSA); Application Programming Interface
(API); Part 3: Framework”

6. Berger A., 1991, "Comparsion of Call gapping and
Percent blocking for overload control in distributed
switching systems and telecommunications networks",
IEEE Transactions on Communications, vol. 39, 407-414

7. The 3GPP home page, "www.3gpp.org"

8. Forys L. J., 1983, “Performance Analysis of a New Over-
load Strategy”, ITC 10

9. Pham X. H. and Betts R., 1992, “Congestion Control for
Intelligent Networks”, 1992 International Zurich Seminar on
Digital Communications

10. Kihl M. and Nyberg C., 1997, "Investigation of overload
control algorithms for SCPs in the intelligent network", Com-
munications IEE Proceedings, vol. 144, 419-423

11. Melen R., Moiso C. and Tognon S., 2001, “Performance
evaluation of an Parlay gateway”, http://exp. telecomi-
talialab.com/pdf/06-MOISO4.pdf

λ

λ

U td∫ 19400≈

0 10 20 30 40 50 60 70 80 90 100
0

100

200

λ

0 10 20 30 40 50 60 70 80 90 100
0

50

100

se
rv

ed
pr

io
rit

y
1

ap
p.

ca
lls

/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

se
rv

ed
pr

io
rit

y
2

ap
p.

ca
lls

/s

0 10 20 30 40 50 60 70 80 90 100
0

50

100

time

se
rv

ed
pr

io
rit

y
3

ap
p.

ca
lls

/s

Figure 6. Results for configuration 1.

λ

U td∫ 21100≈

