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Abstract—We analyze the convergence behavior of iteratively
decoded coupled LDPC codes from a complexity point of view.
It can be observed that the thresholds of coupled regular LDPC
codes approach capacity as the node degrees and the number
L of coupled blocks tend to infinity. The absence of degree two
variable nodes in these capacity achieving ensembles implies for
any fixed L a doubly exponential decrease of the error probability
with the number of decoding iterations I , which guarantees a
vanishing block error probability as the overall length n of the
coupled codes tends to infinity at a complexity of O(n log n). On
the other hand, an initial number of iterations Ibr is required
until this doubly exponential decrease can be guaranteed, which
for the standard flooding schedule increases linearly with L. This
dependence of the decoding complexity on L can be avoided by
means of efficient message passing schedules that account for the
special structure of the coupled ensembles.

I. INTRODUCTION

For the binary erasure channel (BEC), capacity achieving

sequences of irregular low-density parity-check (LDPC) codes

can be found, for which a vanishing gap between the BP

decoding threshold and the Shannon limit can be proven [1].

On the other hand, ensembles with thresholds close to capacity

usually have poor minimum distance properties compared to

Gallager’s original regular LDPC ensembles [2], resulting in

comparatively high error floors.

It can be observed that the coupling of several regular

LDPC code blocks together to a terminated convolutional code

[3] leads to a slight irregularity at the ends of the Tanner

graph, resulting in substantially better belief propagation (BP)

decoding thresholds compared to their tail-biting version or the

block codes they are constructed from [4] [5] [6]. In particular,

as the number L of coupled blocks increases the BP decoding

threshold of the coupled ensembles converges to the optimal

maximum a-posteriori probability (MAP) decoding threshold

of the underlying block ensemble. At the same time, it can be

shown that the minimum distance of the coupled ensembles

grows linearly with the block length as the block length tends

to infinity, i.e., they are asymptotically good [7] [8].

In this paper we analyze the convergence behavior of BP

decoded coupled LDPC codes. We show that for any L a

vanishing block error probability is achievable at a complexity

of O(n log n). In the low signal-to-noise ratio (SNR) region,

between the thresholds of the coupled ensemble and its un-

derlying block ensemble, a dramatic increase in the decoding

complexity with L can be avoided by efficient message passing
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Fig. 1. Illustration of the edge spreading procedure for transmission of L = 6

blocks: (a) uncoupled protograph of a (3,6)-regular block code, (b) coupled
protograph of Ensemble (3,6)-A, and (c) coupled protograph of Ensemble
(3,6)-B.

schedules. An attractive, practical implementation of such a

schedule is the sliding window decoder considered in [9],

[10] and [4], for which both latency and complexity are

independent of L.

II. COUPLED LDPC CODE ENSEMBLES

A. From Block to Convolutional Codes

Consider the transmission of a sequence of codewords vt,

t = 1, . . . , L, using an LDPC block code. Let the structure

of this code be defined by a protograph with nc check

nodes and nv variable nodes. The bi-adjacency matrix B of

the protograph is called its base matrix. The parity-check

matrix H of an individual code of length nt = nvN is then

constructed by replacing each 1 in B by an N×N permutation

matrix and each 0 by an N×N all-zero matrix. Also multiple

edges between a pair of nodes are allowed in a protograph,

which are represented by integer entries larger than one in the

base matrix and are replaced by a sum of permutation matrices.

The performance of the code depends on the lifting factor N ,

the chosen set of permutation matrices, and the structure of the

protograph. A chain of protographs of a (3,6)-regular LDPC

code with nv = 2, nc = 1 and base matrix B = [3, 3] is

depicted in Fig. 1(a) for L = 6.

An essential feature of LDPC convolutional (LDPCC) codes

[3] is that the blocks of different time instants are inter-

connected. Instead of encoding all codewords independently,



the blocks vt are coupled by the encoder over various time

instants t. The maximal distance between a pair of coupled

blocks defines the memory mcc of the convolutional code. The

coupling of consecutive blocks can be achieved by an edge

spreading procedure [11] that divides the edges from variable

nodes at time t among equivalent check nodes at times t+ i,
i = 0, . . . ,mcc. The resulting ensemble can be described by

means of a convolutional protograph with base matrix

B[1,L] =
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




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

(L+mcc)nc×Lnv

. (1)

The corresponding sequence of coupled code blocks forms a

codeword v = [v1,v2, . . . ,vt . . .vL] of a terminated LDPC

convolutional code. Note that mccnc additional check nodes

result in a rate loss due to termination. The block coding

ensemble with disconnected protographs corresponds to the

special case mcc = 0 and B0 = B.

In general, we can apply this procedure to any given

regular or irregular protograph. In order to maintain the degree

distribution and the structure of the original ensemble, a valid

edge spreading should satisfy the condition

mcc
∑

i=0

Bi = B . (2)

This condition ensures that the entries of B are divided among

the matrices Bi in such a way that the sums over the columns

and rows of B[1,L] are equal to those of B. The only exception

are the first and last mccnc rows of B[1,L], whose weights

are reduced as a result of the termination at the ends of the

convolutional ensemble.

Example 1: Two different variants of spreading the edges

of the (3,6)-regular LDPC ensemble in Fig. 1(a) are illustrated

in Fig. 1(b) and Fig. 1(c). The corresponding component base

matrices within B[1,L] (see (1)) are equal to

Ens. (3,6)-A : B0 = B1 = B2 = [1, 1], mcc = 2 , (3)

Ens. (3,6)-B : B0 = [2, 2], B1 = [1, 1], mcc = 1 .

Analogously, starting from a (4,8)-regular LDPC ensemble

with base matrix B = [4, 4] we can define different convo-

lutional ensembles with

Ens. (4,8)-A : B0 = B1 = B2 = B3 = [1, 1], mcc = 3 ,

Ens. (4,8)-B : B0 = B1 = [2, 2], mcc = 1 , (4)

Ens. (4,8)-C : B0 = [3, 3], B1 = [1, 1], mcc = 1 ,

Ens. (4,8)-D : B0 = [2, 2], B1 = B2 = [1, 1], mcc = 2 .

Note that all the given examples satisfy (2). �

B. Threshold Saturation

It follows from the construction that the check nodes at

the start and end of the coupled protograph have lower

degrees (see also Fig. 1), resulting in a slight irregularity

with stronger protection of the symbols associated with the

connected variable nodes. As L → ∞, the fraction of lower

degree check nodes vanishes and the degree distribution of the

coupled ensemble B[1,L] converges to that of the original block

code ensemble B. As a consequence, each of the convolutional

protographs ensembles considered in Example 1 defines a

sequence of asymptotically regular LDPC codes. Despite of

the vanishing fraction of stronger check nodes, it turns out that

the coupled ensembles have a substantially better BP decoding

threshold than the block ensembles they are constructed from.

In particular, as L → ∞ the BP decoding threshold of the

coupled ensembles converges to the optimal MAP decoding

threshold of the underlying block ensemble. For regular LDPC

codes this threshold saturation phenomenon has been proven

analytically for the BEC in [5], and it can be observed

empirically for the additive white Gaussian noise (AWGN)

channel as well [6] [8]. The slight structured irregularity of

the coupled ensembles leads to BP decoding thresholds that

approach the Shannon limit as the node degrees increase.

Table I shows the AWGN channel thresholds Eb/N0
∗

of

the ensembles defined in (3) and (4) together with thresholds

Eb/N0
∗

blk of their uncoupled block counterparts. The values

have been computed by the discretized density evolution

technique [12]. It can be observed that the thresholds may

slightly change for different variations of edge spreading. Also

shown are the thresholds Eb/N0
∗

win (W = 50) corresponding

to the window decoder considered in Section IV-C [9] [10].

Some degradation from Eb/N0
∗

to Eb/N0
∗

win can be observed

for the asymmetric protogaphs of Ensembles (3,6)-B, (4,8)-C

and (4,8)-D.

Eb/N0
∗

Eb/N0
∗

win Eb/N0
∗

blk

(3,6)-A 0.46 dB 0.46 dB 1.11 dB

(3,6)-B 0.46 dB 0.48 dB

(4,8)-A 0.26 dB 0.26 dB 1.55 dB

(4,8)-B 0.32 dB 0.32 dB

(4,8)-C 0.27 dB 0.79 dB

(4,8)-D 0.26 dB 0.29 dB

TABLE I
AWGN CHANNEL THRESHOLDS: DIFFERENT COUPLED ENSEMBLES ARE

COMPARED TO THEIR UNCOUPLED BLOCK COUNTERPARTS.

III. CONVERGENCE BEHAVIOR OF BP DECODING

A. An upper bound on the error probability

Consider an LDPC block code with minimal variable node

degree Jmin > 2 and maximal check node degree Kmax. Let

P
(I)
max denote the maximum hard decision error probability

of variable-to-check node messages after I iterations of BP

decoding, where the maximum is taken over all edges in the

Tanner graph of the code. Assume now that we can show by

density evolution that

P (Ibr)
max < B2

br/4 , (5)



where Bbr denotes the breakout value, defined as

Bbr = A−1/(Jmin−2)(Kmax − 1)−(Jmin−1)/(Jmin−2) , (6)

and A = exp(−REb/N0) denotes the Bhattacharyya param-

eter of the AWGN channel. Then, after a total number of

I iterations, I > Ibr, the bit error probability can be upper

bounded by [13]

Pb < exp
(

−a(Jmin − 1)I−Ibr
)

, (7)

where a is some positive constant. From Jmin > 2 follows a

doubly exponential decrease of the bit error probability with

the number of decoding iterations.

An assumption in the derivation of (7) is that all messages

exchanged in the I decoding iterations are statistically inde-

pendent, which puts some restrictions on the Tanner graph

structure and the length of the code. For protograph based

ensembles, by proper selection of the code, it is possible to

perform

I > α logN − β (8)

independent iterations, where N denotes the required lifting

factor and α, β are some positive constants. Equation (8)

follows either from Gallager’s deterministic construction al-

gorithm in [2] or from a protograph-based modification of the

random ensemble approach in [13]. The latter was applied to

LDPC convolutional code ensembles in [14]. Combining (8)

and (7) we can relate the achievable bit error probability to

N , i.e.,

Pb < exp (−a′Nγ) , a′ > 0 (9)

and establish an upper bound on the block error probability

PB < ntPb < nvN exp (−a′Nγ) , a′ > 0 . (10)

It follows that the block error probability PB tends to zero

whenever Pb tends to zero as N tends to infinity. Since the

complexity per iteration scales linearly with N it follows that

a vanishing block error probability can be achieved with an

overall decoding complexity of O(N logN).

B. Application to Coupled Ensembles

A common feature of other capacity approaching LDPC

ensembles is the presence of degree two variable nodes,

resulting in Jmin = 2. The fraction of these nodes increases

when the thresholds are optimized [1], which on the other hand

reduces the convergence speed and lowers the error floor.

For coupled ensembles, defined by B[1,L] according to

(1) and (2), all variable node degrees are equal to those

of the underlying ensemble defined by B. Starting from a

block ensemble with Jmin ≥ 3 we can construct terminated

convolutional ensembles for arbitrary numbers of sub-blocks

L. For large L the termination rate loss decreases and the

BP threshold of the coupled ensemble approaches the MAP

threshold corresponding to B [5] [6]. We can then apply the

bounds from Section III-A to the convolutional protograph

corresponding to B[1,L], defining an ensemble of specially

structured LDPC block codes with overall length n = ntL =
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Fig. 2. Breakout value condition: required number of initial iterations Ibr as
function of L. Ensemble (3,6)-A (triangles) and Ensemble (4,8)-A (circles)
for an AWGN channel with standard deviation σ = 0.923 (red), σ = 0.871
(blue), and σ = 0.822 (green).

nvNL. After an initial number of iterations Ibr, determined

by the breakout value condition (5), a doubly exponentional

decrease of Pb can be guaranteed for any channel parameter σ
below the threshold σ∗ of the coupled ensemble, resulting in

a vanishing block error probability PB for each vt. Replacing

nt by n = ntL = nvNL in (10) we see that for the overall

sequence v the block error probability bound increases linearly

with L, but still it vanishes for any L as N tends to infinity.

IV. COMPLEXITY ASPECTS OF THRESHOLD SATURATION

A. The Two Convergence Regions of Couple Ensembles

The required number of initial iterations Ibr in general

depends on the structure of the ensemble and on the gap

to the threshold. For Ensemble (3,6)-A and Ensemble (4,8)-

A the behavior of Ibr as function of L is shown in Fig. 2

for different standard deviations σ of the AWGN channel.

Due to the special structure of the coupled ensembles it can

be observed that the threshold σ∗

blk of the underlying block

ensemble separates the principle behavior of Ibr into two

different convergence regions:

• Low SNR region (σ∗

blk < σ < σ∗):

Ibr increases linearly with L
• High SNR region (σ < σ∗

blk < σ∗):

Ibr approaches a constant value as L increases

In order to understand the behavior in the low SNR region,

recall that the threshold saturation effect stems from the lower

check node degrees at the ends of the convolutional proto-

graph, which are enabled by the additional mccnc check nodes

due to termination. As the number of iterations increases, the

improved performance from these low-degree check nodes

propagates through toward the center of the graph until,

eventually, a low bit error probability can be observed for all

t [15]. The price for this progression, however, is an increase

in the required number of iterations with L.

In general, Ibr is upper-bounded by the value corresponding

to the underlying block ensemble. Since the graph structure of
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MPS-I: standard (parallel) flooding schedule

MPS-II: as MPS-I, with deactivation of nodes for

which a target probability Pmax
b is reached

MPS-III: as MPS-II, with deactivation of nodes with

insignificant improvement

MPS-IV: as MPS-I within a sliding window of size W

TABLE II
OVERVIEW OF MESSAGE PASSING SCHEDULES CONSIDERED IN [15].

this ensemble is preserved in the center region of the coupled

graph, all messages exchanged during the iterations will be at

least as reliable as those in the graph of the block ensemble.

And in the high SNR region the block ensemble will satisfy

the breakout value condition (5) within a finite number Ibr.

B. Reduced Complexity Schedules for Coupled Ensembles

Up to this point a standard BP decoder with flooding sched-

ule was assumed in our analysis. It can be shown, however,

that the decoding complexity of coupled ensembles can be

dramatically decreased by means of efficient message passing

schedules (MPSs) that take advantage of the convolutional

protograph structure by omitting superfluous node updates

during the decoding iterations [15]. The considered schedules

are summarized in Table II.

Let It denote the number of times the variable and check

nodes at position t are updated during the iteration procedure.

While for the standard decoder with MPS-I It is constant and

equal to the total number of iterations I for all t, for the

other schedules the value It depends on the position in the

protograph. The average decoding complexity per symbol is

then proportional to the effective number of iterations, defined

as

Ieff =
1

L

L
∑

t=1

It .

Figure 3 shows Ieff as function of the signal-to-noise ratio

Eb/N0 for Ensembles (3,6)-B and (4,8)-B and L = 100.

For MPS-I, which was the schedule used in Fig. 2, we can

again see the dramatic increase in complexity in the low SNR

region beyond the threshold Eb/N0
∗

blk of the block ensembles.

The complexity of MPS-III, on the other hand, is lower than

that of MPS-I throughout the entire channel parameter range

and shows a substantial increase only close to the threshold

Eb/N0
∗
. An even more important property of MPS-III is the

fact that Ieff does no longer increase with L [15].

Note that the chosen target error probability Pmax
b = 10−5

in Fig. 3 is always below the value required by (5). As a

consequence, if we assume that the decoder switches to MPS-I

after Ieff initial iterations with MPS-III, (7) and (10) can be

applied with Ibr = Ieff . With this approach we can take

advantage of the threshold saturation phenomenon for arbitrary

L with vanishing block error probability without a dramatic

increase in the decoding complexity.

C. Low-Complexity and Low-Latency Window Decoding

The MPS-III decoding rule adapts the set of updated

variable nodes and check nodes in each decoding iteration
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Fig. 3. Effective number of iterations Ieff for L = 100 as function of the
signal-to-noise ratio for MPS-I, MPS-III, and MPS-IV. A target probability
of Pmax

b
= 10

−5 is considered.

according to the improvement of the message reliabilities. It

is interesting to observe in Fig. 3 the resulting transition of

Ieff between the two SNR regions in the vicinity of the block

ensemble threshold Eb/N0
∗

blk. In fact, in the high SNR region

the MPS-III decoding rule effectively implements the MPS-II

rule, which in turn becomes equivalent to the MPS-I rule as

Eb/N0 increases. In the low SNR region, due to the structure

of the coupled ensemble, the set of updated nodes moves

from both ends of the protograph toward the center during

the decoding process.

As Eb/N0 decreases, a natural approximation of MPS-III

can be easily implemented by means of the sliding window

decoder (MPS-IV) [9] [10], whose effective number of itera-

tions is also shown in Fig. 3. At each position p = 1, . . . , L
of the window, Iwin

p iterations are performed for nodes at

t = p, . . . , p + W − 1 until the target error probability is

achieved at t = p. The effective number of iterations is shown

in Table III for the ensembles introduced in (3) and (4). For

large L, since Iwin
p is almost constant for p > 1, the complexity

increases linearly with the window size W . On the other hand,

for small values W an increase in Iwin
p can be observed, so

that an optimal window size in terms of complexity can be

identified. Observe that Ensembles (3,6)-B with W = 6 and

(4,8)-D with W = 4 offer a good complexity-latency trade-

off [9] despite of their degraded thresholds shown in Table I,

which motivates their choice in our analysis. An important

feature of the window decoder compared to MPS-III is that

not only the complexity but also the latency and size of the

decoder is determined by the window size W and independent

of L.



Ens (3,6)-A W 11 14 15 16
Ieff 184 119 119 123

Ens (3,6)-B W 4 5 6 7
Ieff 164 118 115 123

Ens (4,8)-A W 9 10 12 13
Ieff 81 66 63 66

Ens (4,8)-B W 3 4 6 8
Ieff 69 59 77 102

Ens (4,8)-D W 4 5 6 8
Ieff 78 62 61 73

TABLE III
NUMBER OF REQUIRED EFFECTIVE ITERATIONS Ieff WITH MPS-IV AND

WINDOW SIZES W . AN AWGN CHANNEL WITH σ = 0.923
(Eb/N0 = 0.7dB AS L → ∞) AND A TARGET PROBABILITY OF

P MAX

b
= 10

−5 IS CONSIDERED1 .
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Fig. 4. Medium to high SNR region: comparison of Ieff for window decoding
of Ens (3,6)-B (MPS-IV) with MPS-III and the (3,6) block ensemble (MPS-I).

A closer look at high SNR values in Fig. 4 reveals that

after some Eb/N0 the window decoder complexity is slightly

higher than that of MPS-III or the block ensemble with MPS-

I. This can be prescribed to the overhead due to the overlap

regions of the sliding window, whose effect could be reduced

in the high SNR region by a larger step-width of the window

position p. Note, however, that this would require an increase

in the overall window size W , since an overlap size below

the values of W in Table III would again increase the amount

of iterations Iwin
p . In this region, a decoder of the coupled

ensemble with standard MPS-I would have the same Ieff as

the block ensemble. This decoding rule can efficiently be

implemented by the traditional pipeline decoder for LDPC

convolutional codes [3] [16] [17], which is characterized by

a larger initial delay but allows for highly parallel high-speed

processing with a small number of operations per time unit

in each of the processors. Investigating the trade-offs between

the pipeline decoder and the window decoder with MPS-IV

for lifting factors that are suitable for practical applications

form an interesting area for further research.

1Ensemble (4,8)-C does not appear in the table because its threshold
Eb/N0

∗

win
is above the considered Eb/N0.
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