
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Service-oriented Process Control with Grafchart and the Devices Profile for Web
Services

Theorin, Alfred; Ollinger, Lisa; Johnsson, Charlotta

Published in:
14th IFAC Symposium on Information Control Problems in Manufacturing

DOI:
10.3182/20120523-3-RO-2023.00131

2012

Link to publication

Citation for published version (APA):
Theorin, A., Ollinger, L., & Johnsson, C. (2012). Service-oriented Process Control with Grafchart and the
Devices Profile for Web Services. In 14th IFAC Symposium on Information Control Problems in Manufacturing
(pp. 799-804). IFAC. https://doi.org/10.3182/20120523-3-RO-2023.00131

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3182/20120523-3-RO-2023.00131
https://portal.research.lu.se/en/publications/49050510-a3b0-4c32-aa6c-ce19c4bac8ec
https://doi.org/10.3182/20120523-3-RO-2023.00131

Service-oriented Process Control with

Grafchart and the Devices Profile for Web Services

Alfred Theorin*, Lisa Ollinger**, Charlotta Johnsson***
�

*Department of Automatic Control, Lund University, Sweden,
 (Tel: +46-46-222 3270; e-mail: alfred.theorin@control.lth.se).

**Institute for Production Automation, University of Kaiserslautern, Germany,
(email: lisa.ollinger@mv.uni-kl.de)

*** Department of Automatic Control, Lund University, Sweden,
(e-mail: charlotta.johnsson@control.lth.se)

Abstract: To fulfill increasing requirements within the manufacturing sector, highly flexible and
adaptable automation systems are needed. It is desirable to have one integrated approach that stretches
from the process planning phase, through the implementation phase and all the way to the phase for
execution of the process control logics. One promising approach is to use the concepts of service-oriented
architectures within automation, here referred to as SOA-AT. As service technology, DPWS has proved
to be the most suitable for realizing service based communication on device level. The paper shows how
Grafchart, a graphical language aimed for sequential control applications, can support the development of
DPWS applications, and how Grafchart can be used for process modeling and execution in the planning
and execution phase. This constitutes a unique framework for the development and execution of SOA
applications in accordance with the requirements for automatic control tasks. The paper also presents an
industry-related experimental setup in which the SOA-AT concepts are demonstrated through the use of
Grafchart.

Keywords: Manufacturing control, Process models, Flexible manufacturing systems, Production control,
Agile manufacturing, Control systems.

�

1. INTRODUCTION

To fulfill increasing requirements manufacturing companies
have to set up and reconfigure their production plants in ever-
shorter time intervals and time frames. In parallel, the
manufacturing equipment and the control tasks become more
complex. To deal with these circumstances highly flexible
and adaptable automation systems are needed. Therefore, the
automation devices and software should be easy to integrate,
configure, extend, and reuse. Today, control architectures
comprise several types of automation components that realize
different automation tasks. The control of the manufacturing
equipment for executing the production process is typically
done with a process logic controller (PLC). Usually, the
development of PLC processes is based on process diagrams
of the planning phase. However, the code is written from
scratch because there is no integrated or well-defined
information flow between process planning and
implementation. Since the process logic and the functionality
of field devices are increasing the PLC programs are getting
evermore complex. This leads to high efforts for
programming, commissioning, and reengineering of control
programs.

The increasing demands on automation systems call for
advanced automation concepts and technologies that meet
todays and future requirements. Component based methods
support the handling of complexity and reusability of control

programs. To facilitate an integrated information flow the
planning phase has to be linked directly to the component
based software development. Additionally, technologies are
needed to enable a high degree of vertical and horizontal
integration of the software components. A promising
approach that meets these demands is the paradigm of
Service-oriented Architectures (SOA). The potential of
applying SOA within the automation domain has already
been recognized in several research projects like the SIRENA
[Jammes 2005], SOCARDES [Souza 2008, Kirkam 2008],
DQG�3$%$',6¶3520,6(�>PABADIS¶3520,6(�����] and
other publications [Mersch 2010]. However, in practice SOA
is still not used for process control applications in factory
systems. To make use of the benefits provided theoretically
by SOA in real applications, planning methods and
technologies for implementing SOA in the automation
domain are needed. On this account, the approach SOA-AT
(SOA in automation technology) is developed, with the aim
to provide methods, models, proceedings, and technologies to
support the use of SOA in industrial automation [Ollinger
2011]. The work presented in this article is part of this.

In the following, an integrated approach for the planning,
implementation, and execution of process control logics by
using process models and service-orientation is presented.
This allows for the first time to develop and execute control
tasks in a service-oriented way with a suitable service
technology. First, the conceptual approach SOA-AT is
described. After that, the modeling language Grafchart and

T-417

T-418

A drawback of DPWS is that no standardized modeling or
execution languages exist for orchestrating DPWS services.
Thus, a framework for the generation and execution of
DPWS processes is needed. One of the most important
requirements is that the framework should have a high
potential of being well-accepted by its future users, i.e.
people in the automation domain. Additionally, even high
complex logical structures should be presented clearly by
means of a graphical representation. A promising candidate
to meet these demands is Grafchart [Johnsson et al.1998].

3. GRAFCHART

3.1 Introduction to Grafchart

Grafchart is the name of a graphical language aimed for
sequential control applications. Grafchart has been developed
at Lund University [Årzen 1994; Johnsson 1999]. Graphical
programming is popular in the automation community, e.g.
three of the five proposed programming languages of the
PLC standard IEC 61131-3 are graphical. The advantages of
graphical programming languages are simplicity and
declarativeness. They often allow programming in a style that
closely mimics the style that people model problems. An
added benefit is the possibility to use color and animation to
provide feedback as the program executes.

Grafchart is based on the graphical syntax of Grafcet/SFC,
one of the graphical languages of IEC 61131-3. The syntax of
Grafcet/SFC is well-accepted in industrial application today,
however the language itself is a rather low-level graphical
language. By adding ideas from high-level Petri Nets [Jensen
and Rozenberg,1991], Statecharts [Harel, 1987], and object-
oriented programming, Grafchart is transformed into a high-
level, object-oriented graphical language with support for
formal analysis [Johnsson, 1999].

3.2 Syntax of Grafchart

The primary building blocks of Grafchart are steps,
representing states, and transitions, representing the change
of states. A step and a transition are connected by an arc.
Grafchart also supports alternative and parallel branches. An
active step is indicated by the presence of a token in the step.
An example of a Grafchart application is depicted in Fig. 3.

Associated with the steps are actions that are executed at
certain occasions, e.g. when the step is activated (S action) or
deactivated (X action). To each transition a boolean condition
is associated. The transition is enabled when all preceding
steps are active. An enabled transition fires if its condition is
true, this means that the preceding steps are deactivated and
the succeeding steps are activated.

Grafchart supports four hierarchical abstractions
mechanisms: macro steps, procedure steps, process steps, and
super steps. Macro steps are used to represent steps that have
an internal structure. Sequences that are executed in more
than one place in a function chart can be represented as
Grafchart procedures. The call to a procedure is represented
by a procedure step (procedure call) or process step (separate
execution thread). The added features in Grafchart compared
with Grafcet/SFC imply that Grafchart is better suited for

code reusability, higher abstraction through procedure and
process steps, and clarity of processes (Macro steps).

3.3 Modeling service orchestrations with Grafchart

Since Grafchart combines the well-known graphical syntax of
established process control languages and high-level
modeling features it is entirely suited as a formal language
for the mentioned demands. In particular, the possibility to
create different abstraction levels by means of encapsulation
of sub-processes and object-orientation is an important fact.
Due to this service orchestrations can be modeled in various
abstraction degrees so that both the process description and
the service orchestration can be done with the same language.
This enables a top-down engineering procedure without any
media breaks.

For generating the process description the process steps can
be represented as Grafchart steps (Fig. 3). During the
planning phase the process description can be detailed by
decomposing the processes steps by means of the mentioned
high-level features of Grafchart. For the development of an
executable control logic the abstract process description has
to be transferred to a service orchestration. Therefore, the
process steps have to be enriched with actions and the
transitions with conditions. In a last step, the actions and
transition conditions have to be implemented by assigning
them with existing services. By this procedure the
development of control software can be done hardware-
independent for the longest time.

Fig. 3. Process modelling with Grafchart

3.4 JGrafchart

For realizing this integrated engineering procedure a tool for
modeling and executing Grafchart applications with DPWS
services is needed. A Java implementation of Grafchart called
JGrafchart is developed by the department of Automatic
Control at Lund University and is available as freeware
[Årzen, 2002].

JGrafchart already contains several means of connecting
various I/O. For example it is possible to supply completely
custom made Java implementations of analog and digital
I/O.It is also possible to create more general I/O by utilizing
the Socket I/O. JGrafchart then connects as a client to a
TCP/IP server and sends TCP/IP messages to the server each
time a Socket output value is changed, and updates the
corresponding Socket inputs when a message is received
from the server.

T-419

T-420

The JGrafchart application starts in the initial step where the
lamp is initially turned off. When motionSensor is true, the
initial step will be deactivated which means that the lamp will
be turned on. The construct <stepName>.s returns the number
of seconds that the step named ³stepName´ has been active
since the last activation. The bottom right transition makes
sure that this counter is reset whenever motionSensor is true.

5. EXAMPLE

To evaluate and illustrate the DPWS implementation, a
service orchestration in JGrafchart that controls real
production equipment is implemented.

5.1 Experimental setup

The experimental setup is part of the demonstration facility of
SmartFactory

KL and comprises real industrial devices. It
consists of a conveyor belt transporting carriers with bins that
shall be filled with a certain number of pills. There are two
stations on the demonstrator, one that fills the bins with pills,
and one that checks the quality of the filled bins. The latter
simply checks if the bins have been filled with the correct
number of pills by image recognition. On each bin there is an
RFID tag containing life cycle information about the product
[Stephan 2010]. Amongst other things it saves some
information about the production process, e.g. how many
pills that the bin should contain, if it has been filled, and if
quality control has been performed.

Fig. 7. The quality control station of the demonstrator.

The quality control process consists of five devices; an
inductive sensor that detects the arrival of a carrier, a stopper
that can stop the carriers, an ultrasonic sensor that can check
if there is a bin on the carrier, an RFID reader that can read
from and write to the RFID tag on the bin, and a camera that
can take top view pictures of the contents of the bin, see Fig.
7. In previous work the devices of the quality control process
have been enhanced with microcontrollers that serve as
service gateways. The basic functions of the devices have
been encapsulated and implemented as DPWS services

[Ollinger et al, 2011a]. The sequence for coordinating the
station can be modeled as in Fig. 8.

Fig. 8. A model of the coordination sequence for the quality
control station, where state (1) is the initial state

5.2 Process execution with JGrafchart

Using the model as a basis, a JGrafchart application for
coordinating the quality control station is created, see Fig. 9.
The code in the figure is shown to highlight the approximate
amount of code that is required; it is not intended to be
readable. As some states in the model have a straight forward
flow, they can be implemented in the same Grafchart step.
The steps CheckBinRFID and QC in JGrafchart correspond to
the model states (3)-(4) and (5)-(8) respectively.

Fig. 9. A JGrafchart implementation of the quality control
station.

XML utility functions are used to simplify the code, e.g.
xmlFetch is used to obtain a derived value from an xml
string�� 7KH� FDPHUD¶V� count operation returns a sequence of
value elements, where each element describes the number of

T-421

pills of a specific color. The total number of pills is fetched
with xmlFetch(resp, "value", "sum"); where resp is the
returned string, "value" is an XPath that selects all elements
with the tag name value, and "sum" is a built-in handler that
calculates the arithmetic sum of the selected HOHPHQWV¶�WH[WV�

6. CONCLUSIONS

Service-oriented architectures constitute a powerful concept
to improve industrial automation systems regarding the
flexibility, integration capability, and re-usability of their
devices and software. However, the effective use of SOA in
automation application depends heavily on how well the
concept can be realized with existing tools, technologies, and
engineering proceedings. Therefore, an integrated procedure
from the process planning to the operation phase is presented.
Grafchart is used as the process modeling and service
orchestration language and DPWS as the service technology.

Using the basic concepts of SOA-AT, together with the
DPWS service technology and the sequential language
Grafchart, three main advantages are achieved; 1) the
development and modeling of elaborated processes can be
made independently of the implementation of the process
control logic which is vendor and hardware dependent, 2) the
language used for modeling of elaborated processes can also
be used for execution of the same processes, 3) the coupling
to the services is made in a simple and straight forward way
using the DPWS technology.

The focus of the work has so far been on integrating DPWS
in JGrafchart. Version 2.1.0 of JGrafchart can be used for
realizing DPWS service orchestrations and is freely available
at http://www.control.lth.se/Research/Tools/grafchart/.

Future plans include linking the process implementation in
Grafchart to previous factory planning phases. Another future
research area is the realization of services for production
equipment. Concepts are needed for defining service for the
different automation tasks. Furthermore, technological
questions have to be answered, e.g. demands on the SOA
communication system like real-time, security, and safety
issues and how industrial devices can provide the
computational power and networking capacity.

REFERENCES

Årzen, K.-(�� �������� ³*UDIFHW� IRU� LQWHOOLJHQW� VXSHUYLVRU\�
FRQWURO�DSSOLFDWLRQV�´�Automatica, 30:10.

Årzen, K.-E. �������� ³*UDIFKDUW�� � 6HTXHQFH� &RQWURO� DQG�
3URFHGXUH� +DQGOLQJ� LQ� -DYD�´� In Reglermötet, 2002.
Linköping, Sweden.

Bieberstein, N., et. al. (2005). Service-Oriented Architecture

Compass: Business Value, Planning, and Enterprise

Roadmap. Prentice Hall PTR. Upper Saddle River, NJ,
USA

DPWS4j toolkit: DPWS4j toolkit webpage
https://forge.soa4d.org/projects/dpws4j/ Retrieved
November 05, 2011.

+DUHO�� '�� �������� ³6WDWHFKDUWV: A visual formalism for
FRPSOH[� V\VWHPV�´� Science of Computer Programming,
No 8, pp. 231±274.

Jammes, F., Mensch, A. & Smit, H. (2005). Service-oriented
device communications using the Devices Profile for

Web Services. In Proceedings of the 3rd international

workshop on Middleware for pervasive and ad-hoc

computing. Grenoble, France.
Jensen, K. and G. Rozenberg (1991): High-level Petri Nets.

Springer Verlag.
Johnsson, C. (1999): A Graphical Language for Batch

Control. PhD thesis ISRN LUTFD2/TFRT--1051--SE.
Dept. of Automatic Control, Sweden.

Johnsson, C. and Årzen K.-E., (1998): Grafchart
Applications. In Gensym User Society Meeting.
Baltimore, MD, USA, 1998.

Kirkham, T., et. al. (2008). SOA middleware and automation:
Services, applications and architectures. In Proceedings

of the Conference of Industrial Informatics 2008.
Daejon, Korea.

Krafzig, D., Banke, K., and Slama, D. (2004). Enterprise

SOA: Service-Oriented Architecture Best Practices.
Prentice Hall, Upper Saddle River, New Jersey, USA.

Melzer, I. (2008). Service-orientierte Architekturen mit Web

Services: Konzepte ± Standards ± Praxis. Spektrum
Akademischer Verlag, Heidelberg, Germany.

Mersch, H., Schlutter, M., and Epple, U. (2010). Classifying
services for the automation environment. In Proceedings

of the Conference on Emerging Technologies and

Factory Automation (ETFA 2010), Bilbao, Spain.
OASIS Web Services Discovery and Web Services Devices

Profile (WS-DD) TC (2009). OASIS Devices Profile for

Web Services (DPWS) Version 1.1. Oasis Standard.
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-
dpws-1.1-spec-os.pdf. Retrieved November 05, 2011.

Ollinger, L., Schlick, J., and Hodek, S. (2011a). Leveraging
the Agility of Manufacturing Chains by Combining
Process-Oriented Production Planning and Service-
Oriented Manufacturing. In Proceedings of the 18th

IFAC World Congress. Milan, Italy.
Ollinger, L., Schlick, J., and Hodek, S. (2011b). Konzeption

und praktische Anwendung serviceorientierter
Architekturen in der Automatisierungstechnik. In VDI-

Berichte 2143. AUTOMATION 2011. Baden-Baden,
Germany.

3$%$',6¶3520,6(� &RQVRUWLXP� �������� Structure and

%HKDYLRXU� RI� D� 3$%$',6¶3520,6(� 6\VWHP. White
Paper. http://www.uni-magdeburg.de/iaf/cvs/
pabadispromise/dokumente/whitepaper2_v60.pdf.
Retrieved November 05, 2011.

Souza L, et. al. (2008). SOCRADES: A Web Service based
Shop Floor Integration Infrastructure. In Proceedings of

the Conference Internet of Things 2008. Zurich,
Switzerland.

Stephan, P. et. al. (2010). Product-Mediated Communication
through Digital Object Memories in Heterogeneous
Value Chains. In Proceedings of the Conference on

Pervasive Computing and Communications (PerCom

2010), Mannheim, Germany.
Zeeb E., et. al. (2007). Lessons learned from implementing

the Devices Profile for Web Services. In Proceedings of

the Conference Digital EcoSystems and Technologies

Conference 2007. Cairns, Australia.

T-422

